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Sorting out Downside Beta

ABSTRACT

Downside risk, when properly defined and estimated, helps to explain the
cross-section of US stock returns. Sorting stocks by a proper estimate of
downside market beta leads to a substantially larger cross-sectional spread
in average returns than sorting on regular market beta. This result arises
despite the fact that downside beta is based on fewer return observations
and therefore is more difficult to estimate and predict. The explanatory
power of downside risk remains after controlling for other stock
characteristics, including firm-level size, value and momentum.

A well-known objection against variance as a measure of investment risk is that
it assigns the same weight to upward and downward deviations from the mean.
The same argument also casts doubt on market beta as a measure for the
systematic risk of individual stocks. For example, a stock that has gone up faster
than others during market upswings and has gone down slower than others
during market downswings, will be considered by most investors as a low-risk
stock.

An appealing candidate to replace variance is semi-variance, already
advocated by Markowitz (1959). Semi-variance measures the average squared
downward deviation from a return threshold, and is also known as the second-
order lower-partial moment (LPM). Hogan and Warren (1974) and Bawa and
Lindenberg (1977) developed a market equilibrium based on this risk measure.
In their model, the regular market beta is replaced with a downside beta that
emphasizes the co-movements of individual stocks with the market during
market downturns as a measure of systematic downside risk.

Price, Price and Nantell (1982) show that the historical downside betas of
US stocks systematically differ from the regular betas. Specifically, the regular
beta underestimates the risk for low-beta stocks and overestimates the risk for
high-beta stocks. This finding may help to explain why low-beta stocks appear
systematically underpriced and high-beta stocks appear systematically
overpriced in empirical tests of the mean-variance CAPM (see, for example,
Black, Jensen and Scholes (1972), Fama and MacBeth (1973), Reinganum (1981),
and Fama and French (1992).

Unfortunately, despite the intuitive and theoretical appeal of downside
beta and the empirical problems of regular beta, the role of downside risk for the

cross-section of stock returns remains an open question. Not withstanding some



important contributions in this area, issues related to data and methodology of
earlier studies do not allow for an unambiguous conclusion. An early study of the
mean-semivariance equilibrium model by Jahankhani (1976) focuses on the
relatively short sample period 1951-1969 that does not include the important
bear markets of the 1930s, 1970s and 2000s. This may critically affect the
conclusion that the model does not fare any better than the CAPM. Price, Price
and Nantell (1982) demonstrate the divergence between regular beta and
downside beta, but they do not analyze the cross-sectional explanatory power of
downside beta. Harlow and Rao (1989) examine a generalization of the mean-
semivariance equilibrium model, based on general lower partial moments.
Unfortunately, their regression-based asymmetric response model (ARM)
generally does not estimate the lower-partial-moment beta, a problem that is
discussed in the next section. Ang, Chen and Xing (2006) define downside beta as
the standardized covariance during a falling market. Unfortunately, as discussed
1in the next section, this definition is not consistent with the theoretical mean-
semivariance framework, and, more worryingly, generally does not seem
economically meaningful. Finally, some studies have focused on in-sample
analysis and have not covered the estimation of downside beta from prior data
and out-of-sample prediction of expected returns.

The purpose of this study is to provide a rigorous empirical analysis of the
role of downside beta for the cross-section of stock returns. Using stock market
data from 1926 to the present, we create stock portfolios based on past estimates
of regular beta and various estimates of downside beta. Subsequently, we analyze
the betas and means of these portfolios out-of-sample. We find that downside
risk, when properly defined and estimated, drives stock prices. Sorting stocks by
semivariance beta leads to an annual cross-sectional mean spread of 5.5%,
compared to 3.7% for sorting by regular beta. This result arises despite the fact
that downside beta is based on fewer return observations and is more difficult to
estimate and predict than regular beta. Semivariance beta also dominates
regular beta after controlling for other stock characteristics, including firm-level
size, value and momentum. Using the ARM regressions or covariance-based
definition leads to markedly different results. The ARM results are very close to
those obtained with the standard market beta and do not seem to reflect
systematic downside risk. Using downside-covariance betas leads to more noisy
estimates of systematic downside risk and a significant deterioration of the cross-
sectional mean spread.

The remainder of this study is structured as follows. Section I first
discusses the various ways to define and estimate downside beta. We will
introduce the downside beta that is consistent with the theoretical mean-



semivariance model. In addition, we will show that the ARM regressions and
covariance-based definition generally do not produce the semivariance beta. Both
approaches tacitly assume that upside risk and downside risk are symmetric.
Section II discusses our data and methodology. Next, Section III presents our
results. Finally, Section IV summarizes our findings and gives some suggestions

for further research.

I. Measuring Downside Beta

This section introduces semi-variance and the associated downside beta. It also
introduces the asymmetric response model (ARM) beta and the downside-
covariance beta and derives the formal conditions under which these alternative
betas equal the semivariance beta. A simple numerical example illustrates the
differences between the various estimates of systematic downside risk.

Semivariance Beta
Semi-variance measures the average squared downward deviation from a return
threshold:

SV =E[(R-k)’ | R<k] (1)

In this expression, R is the investment return in excess of the riskless rate and &
is a return threshold that separates “losses” from “gains”. This risk measure is
also known as the second-order lower partial moment.

For nominal returns, plausible values for the threshold range from zero (the
investor benchmarks against the initial value of her portfolio) to the average
market return (the market portfolio is the benchmark). Hogan and Warren (1974)
and Bawa and Lindenberg (1977) choose k =0 for their equilibrium model. Since
the threshold is applied to excess returns, this choice boils down to using the
riskless rate as the threshold for nominal returns. In this paper, we will adhere
to this specification. Fortunately, the empirical results are very robust to the use
of alternative plausible thresholds. In order to significantly change the empirical
results, we need to select a threshold from the left tail or the right tail of the
distribution. However, a threshold from the left tail generally excludes too many
return observations to allow for accurate estimation for downside beta, and the
beta no longer measures downside risk when the threshold is taken from the
right tail.



The equilibrium model of Hogan and Warren (1974) and Bawa and
Lindenberg (1977) preserves all key characteristics of the CAPM, including the
two-fund separation principle, efficiency of the market portfolio and the linear
risk-return relationship. The key difference is that semi-variance replaces
variance as the relevant portfolio risk measure. The following “semivariance
beta” arises as the relevant measure of systematic risk for an individual stock
(see, for example, Bawa and Lindenberg, 1977, p. 196, Eq. 5):

E[R,R, | R, <0]
ﬂSV,i = M2 Ry 2)
E[R,, | R, 0]

The numerator of this expression is the second lower partial co-moment

between the stock return R, and the market return R,, and measures the co-

movements with the market during market downturns. This co-moment is
standardized with the semi-variance of the market. The resulting beta measures
the contribution of the evaluated stock to the semi-variance of the market
portfolio, just like the regular beta measures the contribution to the variance of
the market portfolio.

Since the semivariance beta is only based on market downswings, it is
more difficult to estimate empirically than the regular beta. For example, the
CRSP all-equity index, our proxy for the market, yielded a negative excess return
in roughly 40% of the monthly observations in our sample from January 1926 to
December 2007. This implies that estimation error needs to be taken into account
when analyzing the explanatory power of downside risk and out-of-sample results
are likely to look worse than in-sample results.

The following linear risk-return relationship applies in equilibrium:
E[R,'] = ﬁSV,iE[RM] 3

It should be stressed that this relationship links the unconditional expected
returns E[R;] and E[R,, ]. The motivation for focusing on downside beta is that

the sensitivity of stock returns to the market may change with the level of the
market returns, leading to an asymmetric risk profile. Therefore, conditional
versions of the risk-return relationship, such as
E[R;|a <R, <b]=p E[R, |a<R, <b], generally do not apply. This insight will

prove essential to understanding the differences between semivariance beta and
other measures of downside beta.



Asymmetric Response Model (ARM)
Regular betas are often computed by estimating “characteristic lines” using
linear regression analysis. Harlow and Rao (1989) design a regression model to
estimate the betas of a general lower-partial-moments equilibrium model.
Unfortunately, this asymmetric response model (ARM) generally does not
produce the correct lower-partial-moments betas.

Applying their model to the case of semi-variance and using our notation,
Harlow and Rao (1989, Eq. 10) employ the following bivariate regression model to
estimate their downside beta:

Rf”UWJ+ﬂWMX+7mmZ+Q (4)

where X = (Ry lRM <+ E[Ry IRy > O]lRM>0) and 7= (Ry, 1RM .o —E[Ry |Ry > 0]1RM 20)* In

these regressors, 1 1s a down-market dummy and 1, , 1s an up-market

Ry <0 0
dummy. The expected values of these dummies are the probabilities of downs and

ups: E[l, ,,]1=Pr[R, <0], E[l, .,]=Pr[R, >0]; the expected values of the regressors
are simply E[X]=E[R, ] and E[Z]=0.

Since X and Z are independent by construction, the ARM beta equals the
univariate regression coefficient for X:

5 _FIXR]-FIXIEIR ]
ARM i — E[X2]_E[X]2

_E[R, R, |R, <O]Pt[R, <01+ E[R,|R, >OlE[R,|R, >O0]PtR, >0]-E[R, JER,] 5)
- E[R? |R,, <O]Pr[R,, <0]+ E[R,, | R,, >0]’ Pr[R,, >0]— E[R,, |’

In contrast to the semivariance beta, this expression includes several terms that
are affected by the return values during market upswings. These terms enter
because the ARM regressor takes a non-zero value during market upswings, that
is, X =E[R,, |R, >0]. This is a first indication that the ARM beta may not be a
pure measure of downside risk, but rather mixes upside deviations and downside
deviations.

To further investigate the relationship between the two betas, it is useful
to consider the case where the betas are identical and in addition the mean-
semivariance model applies. In this case, we can substitute g, . =g,

E[R,R,|R, <0]=B E[R; |R, <0] (from Definition (2)) and the equilibrium
condition (3) in the numerator of the right-hand side of (5), to find:



B (E[R? |R,, <O0]PH[R,, <O0]+ E[R,, | R, >O]E[R, | R, >O0]Pt[R, >0]- B E[R, T’
E[R? |R,, <O]Pr[R, <0]+E[R,, |R, >0 Pr[R, >0]- E[R,, ]’

ﬂSVz -

_ E[Ry |Ry >O0l(E[R; |R), >0]- By E[R) | R, >0])Pr[R,, >0]
 E[R} | R, <O]Pr[R,, <0]+E[R,, |R,, >0]’ Pr[R,, >0]-E[R,, |’

E[R; |R, >0]= B, E[R, |R, >0] (6)

The final equation follows from the observation that the denominator and the
terms E[R,, |R, >0] and Pr[R,, >0] from the numerator of the second equation are

strictly positive. Hence, the term (E[R, |R, >0]- S, E[R,|R, >0]) from the

numerator equals zero.

Equation (6) basically assumes that the unconditional risk-return
relationship (3) also applies during market upswings. In this case, the upswing
terms in Equation (5) can be shown to cancel out and do not affect the definition
of downside beta. Unfortunately, this condition generally is violated if the stock
has a different market beta for losses than for gains. Hence, the ARM beta g, .

generally differs from the semivariance beta g, .

The ARM beta not only reflects co-movements during market downswings,
but also co-movements during market upswings, because the ARM regressor
equals the conditional average market return X =E[R,, |R,, >0] during upswings.

The ARM beta will therefore be higher if the stock yields higher returns during
market upswings. Indeed, the ARM regressor generally is highly correlated with
the market return and the ARM beta is highly correlated with the regular
market beta. The numerical example at the end of this section and the results in
the empirical section further illustrate this point.

Downside Covariance (DC) Beta
Ang, Chen and Xing (2006, Eq. 5) interpret downside beta as the

standardized covariance during a falling market:!

Cov[R,,R,/|R,, <0]
Var[R,|R,, <

DpCi =

! Ang, Chen and Xing (2006) use the mean excess market return ( E[R,,]) rather than zero as the threshold for

excess returns. Our arguments apply with equal strength for every target rate of return. Furthermore, the
empirical effect of replacing the riskless rate with the mean market return typically is very small.



_E[R, R, |R, <0]- E[R, | R, <OIE[R,|R, <0] o
E[R? |R, <0]- E[R,, | R, <0’

While the definition of semivariance beta is based on a second-order lower
partial moment, this definition is based a conditional measure of variance. This
means that returns during down markets are computed in deviation of the
average return during down markets, and that the central tendency of losses
plays no role in the definition of risk. This property is not consistent with the
criterion of monotonicity for coherent risk measures (see, for example, Artzner et
al., 1999); lowering the mean return during market losses increases the value of
coherent risk measures, but it does not affect downside variance. Related to this,
a portfolio model that balances mean return and downside variance would not be
consistent with nonsatiation and risk aversion, two basic criteria for investor
preferences. In addition, the implied pricing kernel of an equilibrium model that
balances mean return against downside-covariance beta would not always be
positive and decreasing, contrary to what finance textbooks require.

The following derivation yields the conditions under which the conditional-

covariance and semivariance definitions are equivalent:

ﬁSV,[ = ﬁDC,[

E[R,R,|R, <0] E[R,R,|R, <0]-E[R,|R, <OJE[R,|R, <0]

E[R? |R, <0] E[R? |R, <0]- E[R,, | R, <O’

< E[R, R, |R, <OJE[R,, |R, <0]=E[R’ |R, <OlE[R, |R,, <0]

_E[R,R,|R, <0]

< E[R, | R, £0

E[R, |R, <0]

< E[R; |Ry, SO]zﬁsv,iE[RM | R, <0] (8)

Like Equation (6), this equation basically is a conditional version of the
unconditional cross-sectional relationship (3). The relationship is now assumed to
apply also during market downturns.? In this case, the above problem of ignoring

? Equation (6) and (8) are equivalent under the mean-semivariance equilibrium condition (3),
because E[R]=E[R|R,, <0]Pt[R,, <0]+ E[R|R,, >0]Pr[R,, >0]. However, Equation (8) is
derived without Equation (3) and is generally not equivalent to Equation (6).



the central tendency of losses indeed does not affect the definition of risk.

Unfortunately, the conditional relationship generally does not hold when a stock

has an asymmetric risk profile. Consequently, the downside-covariance beta g,

generally differs from the semivariance beta g, .

Numerical example

The differences between the three downside betas can be demonstrated by

means of a simple example with a market index and an at-the-money call option

on the market index. This setup represents for example investors who consider

writing covered call options to reduce downside risk. For simplicity, we consider

only four states-of-the-world of equal probability and assume that the riskless

rate is zero. The returns are as follows:

State Prob. AM Call Market
Option Index
(R) (Ry)
1 25% -100% -15%
2 25% -100% -5%
3 25% +110% +15%
4 25% +250% +25%

The following table is helpful for computing the various betas:

State Prob. R, R, X sz R/12/1 X’ RR,, RX
1 25% -100 -15 -15 10,000 225 225 1,500 1,500
2 25% -100 -5 -5 10,000 25 25 500 500
3 25% 110 15 20 12,100 225 400 1,650 2,200
4 25% 250 25 20 62,500 625 400 6,250 5,000
E[] 40 5 5 23,650 275 2625 2475 2,300
E[-|R, <0] -100 -10 -10 10,000 125 125 1,000 1,000
E[-|R, >0] 180 20 20 37,300 425 400 3,950 3,600

The regular market beta in this case amounts to

ﬁReg,i =

E[R.R, 1- E[R

i

E[R}]1- E[R, T’

275-52

JER, ] _2475-40-5

This value is higher than the regular beta of a typical stock, because the call

option involves more extreme negative and positive returns than a typical stock.




The effect of including a call option in the portfolio is however mitigated by the
value of the call option being only a fraction of that of the underlying index.

Since the call option is more sensitive to the market index when the
market index goes up than when it goes down, we may expect the downside betas
to give lower values. Indeed, the semivariance beta in this case takes the

following value:

E[RR, |R, <0] 1000

- 8.0
E[R}|R,<0] 125

ﬂsv,t =

Thus, buying a dollar worth of call options adds eight times as much downside
risk as investing a dollar in the market index. Conversely, writing a dollar worth
of call options offsets the downside risk of eight dollars invested in the market
index.

This example is constructed to be consistent with the mean-semivariance
equilibrium model, that is, to obey the unconditional equality (3). However, the
conditional equality (6) does not apply, because the call option has an asymmetric
risk profile. Indeed, the ARM beta differs from the semivariance beta:

E[RX]-E[R]E[X] 2300-40-5
Barvi = 2 > = 2
E[X°]-E[X] 262.5-5

This value is close to that of the regular market beta. This is not surprising given
that the correlation between the ARM regressor and the market return is 97.5%
in this example.

The asymmetric risk profile of the call option also implies that the
conditional equality (8) is violated. Hence, the conditional-covariance beta also
differs from the semivariance beta:

5~ BIRR | Ry <01=FIR | Ry <O1EIR, | Ryzy] _ L000—(100):(-10) _ o
b E[R} | R, <0]-E[R, | R, <O 125-(-10)

The value of zero suggests that a long position in the call option would
reduce downside risk. However, while the call option reduces the uncertainty
about the magnitude of possible losses (which is always -100%), it does not reduce
the probability of those losses and clearly increases the magnitude of the losses.
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I1. Data

In our empirical analysis, we use monthly stock returns (including dividends and
capital gains) from the Center for Research in Security Prices (CRSP) at the
University of Chicago. The CRSP total return index is a value-weighted average
of all US stocks included in this study. The one-month US Treasury bill is
obtained from Ibbotson. We subtract the risk-free rate from nominal returns to
obtain excess returns. To control for the book-to-market effect prior to 1963, we
use the high-minus-low (HML) hedge portfolio from Kenneth French’ data
library.3

We select ordinary common US stocks listed on the New York Stock
Exchange (NYSE), American Stock Exchange (AMEX) and Nasdaq markets. We
exclude ADRs, REITSs, closed-end-funds, units of beneficial interest, and foreign
stocks. Hence, we only include stocks that have a CRSP share type code of 10 or
11. We require a stock to have (1) 60 months of data available (for beta
estimation) and (2) information about market capitalization (defined as price
times the number of outstanding shares) at formation date. Except for
momentum (monthly rebalancing), portfolio formation takes place at December of
each year. For example, to be included at December 1930 a stock must have
trading information since January 1926 and a positive market capitalization for
December 1930. A stock is excluded from the analysis if price information is no
longer available. In that case, the delisting return or partial monthly return
provided by CRSP is used as the last return observation.

When analyzing risk, it is particularly important to include periods during
which investment risks are high and investors are sensitive to risk. In this
respect, the failure of the mean-semivariance model to improve upon the mean-
variance model in the analysis of Jahankhani (1976) is presumably caused by the
focus on a sample period (1951-1969) that excludes the important bear markets of
the 1930s, 1970s and 2000s. Nowadays, empirical researchers often confine
themselves to the post-1963 period to avoid biases associated with the Compustat
database. Nevertheless, since the revisions of 1999, the CRSP database is free of
delisting bias and survivorship bias for the total 1926-2007 period. Therefore,
when only CRSP data are used (without Compustat requirements) there is no
reason to exclude the pre-1963 period. In fact, the early period seems particularly
useful because it includes the bear market of the 1930s. This study will use the
entire sample period of the 2007 CRSP database: January 1926 — December 2007.

3 Kenneth French: http:/mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.
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Furthermore, we analyze the role of downside risk in four historical subsamples
of 19 and 20 years, 1931-1949, 1950-1969, 1970-1988 and 1989-2007.

Rather than analyzing all individual stocks, empirical studies generally
evaluate a small set of benchmark portfolios formed from the individual stocks.
This reduces the computational burden of having to analyze thousands of
individual stocks and also allows the researcher to control for particular stock
characteristics and for changes of those characteristics (by periodically
rebalancing the portfolios). The main part of our analysis focuses on benchmark
portfolios that are based on regular market beta and downside market beta. If
the mean-variance CAPM applies and regular beta drives stock prices, then
sorting on other stock characteristics may lead to a lack of variation in means
and erroneous rejections of the mean-variance CAPM. Similarly, if the mean-
semivariance CAPM applies, then sorting stocks on downside beta maximizes the
mean spread and minimizes the probability of erroneous rejections of the mean-
semivariance CAPM.

At the end of December of each year, all stocks that fulfill our data
requirements are sorted based on beta and grouped into ten decile portfolios
consisting of an equal number of stocks. The sorting starts in December 1930, 60
months after the beginning of the CRSP files, because 60 months of prior data
are needed for estimating the betas of the individual stocks when sorting on beta.
The results are not affected by the sorting frequency. When sorting takes place
on a monthly basis (instead of in December of each year), we find similar portfolio
characteristics and test results.

Next, for each portfolio, value-weighted returns are calculated for the
following 12 months. Using equal weighted returns would strengthen the case for
using downside risk, because the differences between regular beta and downside
beta are most pronounced for small cap stocks. Still, we prefer value-weighted
returns to equal-weighted returns, because equal-weighted returns require
continuous portfolio updating, which in practice involves high transaction costs.
By contrast, value-weighted returns closely resemble a buy-and-hold strategy
with relatively low transaction costs. When a stock is delisted or removed from
the database after formation date, the portfolio return is calculated as the
average for the remaining stocks in the portfolio during the holding period.

In practice, regular beta and the several downside beta definitions are
highly correlated. To disentangle the effect of the different (downside) risk
measures, we apply a double-sorting routine. We sort stocks first into quintile
portfolios based on regular-beta and then subdivide each regular-beta quintile
into five portfolios based on three definitions of downside beta: semivariance
beta, ARM beta, and downside covariance beta. These downside betas are defined

12



in equations (2), (5), and (7) respectively. In addition, we also control for
downside risk by first sorting on the three definitions of downside beta and
subsequently by sorting on the other (downside) betas. In sum, we generate 12
sets of double-sorted beta portfolios.

Similarly, we use double-sorted portfolios to separate the effect of regular
beta and downside beta from the effect of other sorting variables that are known
to be relevant for explaining the cross-section of risk and return: co-skewness,
volatility, idiosyncratic volatility, size, value, reversal and momentum. Prior to
1963, we solely rely on the CRSP database and use HML-betas to classify a stock
as a growth or value without direct use of accounting multiples from Compustat.
HML beta is measured relative to the Fama and French high-minus-low hedge
portfolio over a 60-month period. The size control uses NYSE quintile market
capitalization breakpoints which results in a larger number of stocks in the low
size quintiles. For momentum and reversal, we use the Fama and French (1996)
definitions 12-1 and 60-12 month stock return. Total volatility and co-skewness
are estimated using a 60-month period. Idiosyncratic volatility is estimated over
a 60-month period using the Fama-French three factor model. We also control for
all of these cross-sectional effects simultaneously, using Fama & MacBeth (1973)
type regressions. The sample for these regressions, which contain stock
characteristics such as Size and Book-to-Market (BtM), starts in January 1963.

IT1. Results

A. Beta-sorted decile portfolios

Panel A of Table I shows the results for the portfolios based on regular beta. The
mean return ranges from 60 to 91 basis points per month, an annual return
spread of 3.7%. The regular beta ranges from 0.66 for the bottom decile to 1.76 for
the top decile, a spread of 1.10. Given that the annualized market risk premium
was 8.0% during this sample period, these numbers are difficult to reconcile with
the idea that market beta is the relevant risk measure.

Panel B shows what happens if we sort on semivariance beta instead of
regular beta. The mean return ranges from 56 to 102 basis points per month, an
annual return spread of 5.5%. Recall that semivariance beta uses only a fraction
of the monthly return observations and hence is more difficult to estimate than
regular beta. Indeed, the relevant beta spread narrows to 0.98. This number is
not only lower than the regular-beta spread of 1.10 in Panel A, but also lower
than the semivariance-beta spread of 1.06 in Panel A. The strong increase of the
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mean spread, suggests that semivariance beta, despite the estimation problems,
1s a more relevant measure of systematic risk than regular beta.

The results in Panel C are based on the ARM beta. As discussed above, the
ARM beta generally deviates from the semivariance beta and is more likely to
resemble the regular beta. Indeed, the correlation between the ARM beta and
semivariance beta of individual stocks is 85% in our sample, while the correlation
with regular beta is 94%. Not surprisingly, the results in panel C are very similar
to those in Panel A, with an annualized mean spread of 4.0% and an ARM beta
spread of 1.05. These results illustrate that the ARM beta basically picks up
systematic upside risk in addition to systematic downside risk.

Finally, Panel D is based on the downside-covariance beta. The mean
return ranges from 66 to 89 basis points per month, an annualized spread of only
2.8%. The relevant beta ranges from 0.88 to 1.58, a spread of 0.69. These results
illustrate that the downside-covariance beta of stocks generally differs
substantially from the semivariance beta. As discussed above, the divergence
between the two downside betas arises because downside-covariance beta is
invariant to the central tendency of losses. In addition, the low mean spread
suggests that the downside-covariance beta does not capture priced downside
risk.

[Insert Table I about here]

B. Disentangling the competing betas

The above results for beta-sorted portfolios clearly plead in favor of the
semivariance beta. Still, the various betas are highly correlated, possibly
obscuring the differences between them. To disentangle the effect of the various
risk measures, Table II shows the results for the double-sorted portfolios. The
results further support the conclusion that downside beta is more relevant to
investors than regular beta and that downside beta is best measured using the
semivariance definition.

Panel A shows the results for sorting stocks based on a downside beta
measure after controlling for regular beta; every quintile now has the same
distribution in terms of regular beta. Interestingly, after controlling for regular
beta, the semivariance beta still yields a mean spread of 19 basis points per
month and a beta spread of 0.20, suggesting that it captures substantial priced
risk that is not captured by regular beta. By contrast, the ARM model and
downside-covariance model yield mean spreads of only 7 basis points.
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Panel B shows the results after first controlling for semivariance beta. The
regular beta now yields a beta spread of 0.31. Since regular beta accounts for
upside risk in addition to downside risk, and return distributions generally are
not symmetric, it is not surprising that regular beta captures risk beyond
semivariance beta. The interesting thing however is that the upside risk seems
not priced by investors, witness the small mean spread of the regular-beta
portfolios. In fact, the highest-regular-beta quintile actually earns five basis
points less on average than the lowest-regular-beta quintile. Very similar results
are found for the ARM regression methodology, which seems to unintentionally
capture upside risk in addition to downside risk. The downside-covariance beta
yields a zero mean spread, suggesting that it does not capture any priced
downside risk beyond semivariance. In addition, the beta spread is only 2 basis
points per month. These results suggest that downside-covariance beta
essentially i1s a noisy proxy for the semivariance beta and does not capture
additional downside risk, let alone priced downside risk.

Panel C shows the results after first sorting on the ARM betas. The results
are very similar to those obtained after first sorting on regular beta. The
semivariance beta yields a mean spread of 18 basis points per month and a beta
spread of 0.15. By contrast, the regular beta and downside-covariance beta yield
mean spreads of only 5 and 6 basis points, respectively. The close similarity
between the results in panels A and C further illustrates that the ARM beta
basically picks up systematic upside risk in addition to systematic downside risk.

Finally, Panel D shows what happens if we first sort stocks based on their
downside-covariance beta. Interestingly, all three other betas (regular betas,
semivariance beta and ARM beta) now yield very large beta spreads of 0.50 to
0.62, suggesting that they capture substantial systematic risk beyond downside
covariance. The semivariance beta in this case yields a mean spread of 21 basis
points per month, compared with nine and ten basis points for regular beta and
ARM beta. This further supports the notion that semivariance beta captures
priced downside risk that is not captured by the other systematic risk measures.

[Insert Table IT about here]

C. Controlling for other stock characteristics

It is well-known that stock characteristics such as firm-level size, value
and momentum are correlated with average return and risk. To avoid wrongly
attributing a mean spread to a beta spread, it is useful to control for other stock
characteristics.
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Table III summarizes our results after correcting for a list of stock
characteristics that are commonly used in the empirical asset pricing literature.
For the sake of brevity, the table now includes only semivariance beta as the
relevant measure of downside beta, and excludes ARM beta and covariance beta,
which are both highly dominated by semivariance beta. The corrections generally
change the mean spreads and beta spreads. However, the effect is similar for
regular beta and downside beta or even strengthens the case for downside beta.
For every stock characteristic, we see the same pattern. Sorting on semivariance
beta leads to a larger mean spread, despite a smaller beta spread.

The mean spreads are lowest after controlling for variance. Variance is
highly positively correlated with both regular beta and downside beta and
correcting for it substantially reduced the flexibility for finding large beta
spreads. The mean spread for regular-beta quintiles is zero. For semivariance
beta, 14 basis points per month remain.

By contrast, the mean spreads are highest after controlling for HML
exposure. Growth stocks tend to have relatively high betas and value stocks tend
to have low betas. Hence, the value risk premium tends to artificially raise the
returns of low-beta stocks and lower the return of high-beta stocks. Correcting for
HML exposures therefore increases the mean spread.

Overall, the results suggest that the differences between regular beta and
downside beta do not pick up omitted stock characteristics. This further supports
the conclusion that downside beta, when properly defined and estimated, is

relevant for understanding stock returns.

[Insert Table III about here]

D. Fama-MacBeth regressions

The analysis of single-sorted and double-sorted portfolios allows us to
maximize the spread in the betas and to disentangle the effects of the competing
betas. Unfortunately, this approach is too crude to correct for more than one
stock characteristic at the time. The multivariate regression methodology of
Fama and MacBeth (1973) can perform multiple corrections simultaneously.
Table IV shows the results of applying this methodology to our data set. The
results confirm the above results: the semivariance beta dominates the
coefficients for the other betas, in terms of both economic significance and
statistical significance.

The first four rows show the results of univariate regressions with only one
of the four betas as regressor. Consistent with Fama and French (1992), the first

regression finds no significant relation between average return and beta.
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Interestingly, the relation between risk and return is partly restored when
regular beta is replaced by semivariance beta. The cross-sectional premium on
semi-variance beta is 2.4% (t-value 1.32) during this sample period. In the third
and fourth regression we test ARM beta and downside covariance beta
respectively and find lower premiums. As in our analysis of single-sorted
portfolios, semivariance beta dominates the three other betas.

The last four rows show the results of multivariate regressions that
include all other stock characteristics in addition to the betas. Including the other
characteristics only strengthens the pattern. Most notably, the semivariance beta
premium is 3.2% per annum (t-stat 2.32) and clearly dominates the risk
premiums for the other betas. The coefficients of the other stock characteristics
are consistent with what is documented elsewhere in the empirical literature. In
sum, semivariance beta has a higher cross-sectional premium than the other
betas.

[Insert Table IV about here]

E. Alternative lower-partial moments
Semi-variance is a special case of a general lower partial moment (LPM):

LPM (k,t) = E[(R - k)" | R < k] 9)

where k is the return threshold and ¢ is the relevant order. The most common
LPMs are expected loss ((=1) and semi-variance (t=2); other LPMs are less
common. Related to this general downside risk measure is the following general
LPM beta as a measure of systematic risk:

E[(R, —k)"'R | R, <Kk]
= m ! m 10
ﬂLPM(k,t),l E[(Rm _ k)”lRm |Rm < k] ( )

We have thus far assumed that below-zero semi-variance (1=2, k=0) is the
relevant specification. Table V shows the results that are obtained if stocks are
sorted based on alternative specifications.

The results generally are robust to the use of alternative values for the
threshold; in order to significantly change the empirical results, we need to select
a value from the left tail or the right tail of the distribution. A threshold from the
left tail generally excludes too many return observations to allow for accurate
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estimation for downside beta. When the threshold is taken from the right tail, the
LPMs seem increasingly less relevant as downside-risk measures.

The first-order LPM (expected loss) yields very similar results as semi-
variance, but the less common orders lead to deterioration and seem less relevant
as downside risk measures for stocks. The threshold level gives similar results for
values ranging between -1% and +3%, including 33% and 69% of all observations
respectively.

The results suggest that below-zero semi-variance is an appropriate
downside risk measure for stocks and our results are reasonably robust for

plausible changes in the relevant threshold and the relevant order.

[Insert Table V about here]

F. Subsample results

We have thus far analysed our full sample that covers 82 years of stock
return history. It is well-known that the expected returns and risks evolve over
time. This introduces the question whether our results are robust to the sample
period under consideration. Table VI summarizes the results after splitting the
full sample in to four subsamples of equal size.

The most striking result is that the mean spread is very high in the first
subsample (1931-1949) and negative in the third subsample (1970 — 1988). It is
beyond the scope of this paper to determine the origins of these variations;
sampling error, temporary market inefficiencies, variations in risk attitude, or
other factors. What is relevant for our study is that the semivariance beta in
every subsample gives the highest mean spread. The second sub-sample overlaps
with the sample of Jahankhani (1976) and for this particular sample period we
find that regular beta and semi-variance beta give almost similar results, which
confirms his earlier conclusions. These sub-sample results further support our
conclusion that downside risk is relevant for stock investors and that systematic

downside risk is best measured using the semivariance beta.

[Insert Table VI about here]

IV. Conclusions
This study investigates the role of downside risk for the cross-section of US stock

returns. The mean-semivariance equilibrium forwards the semivariance beta as

the relevant measure of systematic downside risk for individual stocks. This beta
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generally differs systematically from two commonly employed alternative
measures of systematic downside risk: the asymmetric response model (ARM)
beta of Harlow and Rao (1989) and the downside-covariance beta used by Ang,
Chen and Xing (2006). In contrast to the semivariance beta, these two alternative
measures generally are not consistent with the first principles of choice theory.

To examine the empirical relevance of downside risk, we consider a broad
cross-section of NYSE, AMEX and Nasdaq stocks and a long sample period
including the important bear markets of the 1930s, 1970s and early 2000s. Using
this sample, we form dynamic stock portfolios based on regular beta, the three
downside betas, and other stock characteristics, including firm-level size, value
and momentum. The average returns and betas of these portfolios are examined
out-of-sample, to account for beta estimation error when predicting expected
returns and betas.

Decile portfolios formed on semivariance beta yields an annual cross-
sectional mean spread of 5.5%, compared to 3.7% for regular beta deciles. This
result arises despite the fact that the semivariance beta is based on fewer return
observations and is more difficult to estimate and predict than regular beta.
Using the ARM regressions or covariance-based definition leads to markedly
different results. The ARM results are very close to those obtained with the
standard market beta and do not seem to reflect systematic downside risk. Using
downside-covariance betas leads to more noisy estimates of systematic downside
risk and a deterioration of the cross-sectional mean spread to 2.8%.

Double-sorted portfolios help to further disentangle the effects of the
various betas and control for the effect of other stock characteristics.
Semivariance beta continues to yield a large and positive mean spread and beta
spread even after correcting for regular beta, ARM beta and downside-covariance
beta. However, after controlling for semivariance beta, the regular beta, ARM
beta and downside-covariance beta cease to yield a positive mean spread.
Semivariance beta continues to outperform the alternative measures of beta also
after controlling for other stock characteristics, including firm-level size, value
and momentum.

Our conclusions seem robust to the choice of the methodology, data set and
definition of semi-variance. Using the multivariate regression approach of Fama
and MacBeth (1973) yields similar conclusions as our analysis based on single-
sorted and double-sorted portfolios. Semivariance beta dominates the other betas
also in each of four historical subsamples and mostly so in most recent years. The
results for semivariance beta are also robust to reasonable changes in the

threshold that separates gains from losses.
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In summary, our results suggest that downside risk, when properly
defined and estimated, is a driving force behind stock prices. Risk aversion thus
not only helps to explain why stocks yield higher average returns than safer asset
classes, but also why high-risk stocks yield higher average returns than low-risk

stocks, ceteris paribus.
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Table I: Single-Sorted Beta Portfolios

Common NYSE/AMEX/Nasdaq stocks are sorted into deciles each year at the end of December based on
their (downside) betas. The sorts are constructed such that each portfolio contains an equal number of stocks
at the formation date. The sample period is from January 1926 to December 2007 where the first 60
observations are used for estimating the stock betas, resulting in 924 monthly return observations for each
portfolio. The table reports value weighted monthly mean excess returns of the decile portfolios and a
portfolio that is long in the highest ranked decile and shorts the lowest ranked decile (H-L). Next to that, the
standard deviation, skewness and kurtosis of the deciles’ excess returns are reported. The final 4 rows show
the different (downside) betas of the decile portfolios together with the H-L portfolio. The results are shown
for regular beta, SV beta, ARM beta and DC beta in Panel A, B, C and D respectively.

Panel A: Regular Beta

Low 2 3 4 5 6 7 8 9 High H-L
Average 0.60 0.60 0.70 0.70 0.84 0.76 0.79 0.78 0.85 091 0.31
St.dev 4.39 4.57 5.06 550 6.25 6.61 7.13 7.93 9.03 10.26
Skewness 0.24 042 0.62 0.53 085 0.81 0.99 129 1.63 1.19
Kurtosis 11.0 87 93 99 109 11.8 13.0 13.2 169 114

Breg 0.66 0.76 0.86 0.96 1.10 1.16 1.27 1.40 1.57 1.76 1.10
Bsv 0.65 0.74 0.82 0.93 1.03 1.12 1.22 1.34 148 1.71 1.06
Barm 064 0.73 082 092 103 110 1.19 1.30 145 1.66 1.02
Boc 0.76 0.78 084 096 1.04 1.11 121 1.31 143 166 0.89

Panel B: Semivariance Beta

Low 2 3 4 5 6 7 8 9 High H-L
Average 0.56 0.67 0.66 0.80 0.80 0.80 0.82 0.77 0.87 1.02 0.46
St.dev 4.46 4.69 5.08 5.76 6.56 6.87 7.46 8.17 9.56 10.66
Skewness 0.04 0.31 0.05 1.00 0.81 1.61 1.32 137 192 1.36
Kurtosis 90 74 7.1 127 115 17.7 154 156 202 11.7

Breg 0.70 0.80 0.89 1.02 1.17 120 133 143 166 1.78 1.07
Bsv 0.71 0.77 087 093 1.11 1.09 123 136 152 168 0.98
Parm 0.70 0.79 0.87 0.95 1.11 110 1.22 1.33 148 1.66 0.95
Boc 0.80 0.83 092 098 1.14 1.11 1.27 1.39 156 1.68 0.89

Panel C: ARM Beta

low 2 3 4 5 6 7 8 9  High HL
Average 0.58 0.60 063 0.76 0.81 083 0.77 079 0.77 0.91 0.33
St.dev 436 4.60 504 551 6.23 672 7.29 7.92 9.02 10.44
Skewness 0.35 0.16 0.49 049 1.21 1.09 0.92 088 1.39 1.23
Kurtosis 125 7.6 86 9.4 156 127 11.8 11.8 140 11.4

Preg 0.66 0.78 0.87 097 1.10 1.18 129 1.40 158 1.79 1.13
Bsv 0.65 0.77 0.84 0.93 1.04 1.11 1.26 1.37 1.52 1.74 1.09
Barm 0.63 0.75 0.83 0.92 1.03 1.11 1.22 1.33 147 1.68 1.05
Boc 0.75 0.82 0.87 0.95 1.05 1.09 1.24 1.37 148 1.69 094
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Table I: (continued)

Panel D: Downside Covariance Beta

Low 2 3 4 5 6 7 8 9 High H-L
Average 0.66 0.63 0.63 0.75 0.68 0.75 0.85 0.77 0.78 0.89 0.23
St.dev 498 4.71 5.08 547 5,50 6.45 689 7.53 821 9.70
Skewness 0.48 0.26 0.35 0.33 0.17 1.22 1.28 145 092 131
Kurtosis 11.6 86 91 80 6.0 13.7 151 174 108 124
Pres 0.82 0.81 0.89 098 098 1.14 122 1.33 144 1.64 0.82
Bsv 0.81 0.81 0.87 096 0.98 1.08 1.15 1.27 1.42 159 0.78
Parm 0.79 0.80 0.86 0.95 0.97 107 1.14 123 137 154 0.75
Boc 0.88 0.84 091 097 097 105 1.14 1.27 140 1.58 0.69
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Table II: Double-Sorted Beta Portfolios

Double sorted portfolios are constructed each year in December by sorting on three measures of downside
beta after controlling for regular beta (Panel A) and sorting on regular beta after controlling for one of the
three downside beta measures SV, ARM and DC (in Panel B, Panel C and Panel D respectively). Common
NYSE/AMEX/Nasdaq stocks are first sorted into quintiles using the control (downside) beta and next, within
each quintile, sorted on the evaluated (downside) beta. The sorts are constructed such that each portfolio
contains an equal number of stocks at the formation date. The sample period is from January 1926 to
December 2007 where the first 60 observations are used for estimating the stock betas, resulting in 924
monthly return observations for each portfolio. The table reports value weighted monthly mean excess
returns of the relevant (downside) beta portfolios averaged over the five control portfolios as well as the
mean return spread (H-L). Next to that, the table reports the relevant (downside) betas of the quintiles
together with the (downside) beta spread between the highest and lowest ranked portfolios.

Mean Excess Return Beta

Panel A: Controlled for Regular Beta

Low 2 3 4 High H-L Low 2 3 4 5 H-L
SV 0.72 0.77 0.76 0.89 0.91 0.19 1.07 1.08 1.12 1.16 1.28 0.20
ARM 0.75 0.73 0.77 0.80 0.82 0.07 1.01 1.08 1.11 1.17 1.28 0.27
DC 0.75 0.76 0.78 0.76 0.81 0.07 1.09 1.09 1.14 1.12 123 0.15
Panel B: Controlled for Semivariance Beta
Low 2 3 4 High H-L Low 2 3 4 5 H-L
Regular 0.81 0.85 0.80 0.82 0.76 -0.05 1.05 1.12 1.19 1.22 1.37 0.31
ARM 0.83 0.77 0.78 0.87 0.78 -0.06 0.99 105 1.11 1.21 1.36 0.37
DC 0.81 0.81 0.84 0.74 0.81 0.00 1.18 1.15 1.18 1.14 1.20 0.02
Panel C: Controlled for ARM Beta
Low 2 3 4 High H-L Low 2 3 4 5 H-L
Regular 0.80 0.73 0.76 0.76 0.85 0.05 1.06 1.10 1.19 1.21 1.28 0.22
SV 0.74 0.76 0.82 0.85 0.93 0.18 1.11 1.10 1.12 1.16 1.25 0.15
DC 0.76 0.76 0.77 0.76 0.82 0.06 1.12 112 1.14 1.11 1.22 0.10
Panel D: Controlled for Downside-Covariance Beta
Low 2 3 4 High H-L Low 2 3 4 5 H-L
Regular 0.80 0.70 0.71 0.79 0.89 0.09 0.88 1.01 1.13 1.30 1.50 0.62
SV 0.75 0.68 0.79 0.84 0.96 0.21 0.94 1.03 1.13 1.25 1.44 0.50
ARM 0.78 0.64 0.77 0.83 0.88 0.10 0.86 1.00 1.10 1.25 1.46 0.61
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Table III: Controlling for Other Stock Characteristics
Double sorted portfolios are constructed each year in December by sorting on (downside) beta after
controlling for size (Panel A), HML beta (Panel B), Momentum (Panel C), Reversal (Panel D), Variance
(Panel E), Co-skewness (Panel F) Idiosyncratic Volatility (Panel G) and Industry (Panel H). Common
NYSE/AMEX/Nasdaq stocks are first sorted into quintiles using the control variable and next, within each
quintile, sorted on the relevant (downside) beta. The sorts are constructed such that each portfolio contains
an equal number of stocks at the formation date except for the size quintiles for which NYSE breakpoints
are used and the industry portfolios for which we use the 5-industry classification from Kenneth French’s
website. The HML factor is taken from the same website, momentum is based on past eleven month returns
lagged one month, reversal is based on past 48 month returns lagged 12 months, variance and co-skewness
are based on past 60 months and the idiosyncratic volatility is estimated using the Fama & French (1993)
three factor model on past 60 month returns. The sample period is from January 1926 to December 2007
where the first 60 observations are used for estimating the stock betas, resulting in 924 monthly return
observations for each portfolio. The table reports value weighted monthly mean excess returns of the regular
and SV beta portfolios averaged over the five control portfolios as well as the mean return spread (H-L).
Next to that, the table reports the regular and SV betas of the quintiles together with the beta spread
between the highest and lowest ranked portfolios.
Mean Excess Return Beta
Panel A: Controlled for Size
Low 2 3 4 High H-L Low 2 3 4 5 H-L
Regular 0.86 1.01 1.04 1.06 0.93 0.07 0.82 1.07 1.23 1.44 1.65 0.84
SV 0.84 0.99 1.05 1.04 1.02 0.18 0.80 0.98 1.15 1.31 1.54 0.73

Panel B: Controlled for HML-Factor
Low 2 3 4 High H-L Low 2 3 4 5 H-L
Regular 0.70 0.72 0.81 0.89 0.91 0.20 0.83 0.98 1.14 1.33 1.59 0.76
SV 0.67 0.75 0.87 0.92 0.96 0.29 0.84 0.97 1.09 128 1.52 0.68

Panel C: Controlled for Momentum
Low 2 3 4 High H-L Low 2 3 4 5 H-L
Regular 0.66 0.74 0.75 0.74 0.67 0.02 0.87 1.03 1.19 1.34 1.57 0.70
SV 0.64 0.67 0.74 081 0.79 0.15 0.87 1.01 1.15 129 1.54 0.66

Panel D: Controlled for Reversal
Low 2 3 4 High H-L Low 2 3 4 5 H-L
Regular 0.75 0.83 0.88 0.89 0.93 0.16 0.83 1.02 1.15 1.34 1.61 0.78
SV 0.76 0.87 0.88 0.87 0.99 0.23 0.82 0.97 1.10 125 1.50 0.68

Panel E: Controlled for Variance
Low 2 3 4 High H-L Low 2 3 4 5 H-L
Regular 0.77 0.86 0.80 0.84 0.78 0.00 1.01 1.12 124 1.32 1.43 0.43
SV 0.73 0.80 0.83 0.87 0.86 0.14 1.09 1.15 1.25 1.30 1.41 0.32

Panel F: Controlled for Coskewness
Low 2 3 4 High H-L Low 2 3 4 5 H-L
Regular 0.73 0.78 0.82 0.78 0.89 0.16 0.86 1.00 1.17 1.29 1.54 0.68
SV 069 0.79 0.79 0.82 0.97 0.28 0.87 1.01 1.13 1.26 1.50 0.63

Panel G: Controlled for Idiosyncratic Volatility
Low 2 3 4 High H-L Low 2 3 4 5 H-L
Regular 0.78 0.82 0.84 0.88 0.79 0.01 091 1.09 121 1.37 155 0.64
SV 0.75 0.80 0.86 0.84 0.90 0.14 099 1.13 125 1.33 1.50 0.51

Panel H: Controlled for Industry
Low 2 3 4 High H-L Low 2 3 4 5 H-L
Regular 0.66 0.77 0.81 0.85 0.91 0.25 0.75 0.94 1.16 1.33 1.60 0.85
SV 0.67 0.77 0.89 0.75 1.03 0.37 0.77 0.95 1.09 1.31 1.54 0.77
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Table IV Cross-Sectional Fama & MacBeth Regressions

We compute Fama & MacBeth (1973) regressions of monthly excess returns of common
NYSE/AMEX/Nasdaq stocks on individual firm characteristics. Cross-sectional regressions are run each
month from January 1963 to December 2007 (540 months). For the univariate regressions I — IV (downside)
beta is the independent variable. These (downside) betas are estimated using the past 60 month returns. In
the multivariate regressions V — VIII we also include the firm’s market capitalization (LnSize), the Book-to-
Market ratio (BtM) defined as the book value of equity of previous calendar year’s fiscal year-end divided by
the market equity at the end of previous calendar year, past eleven month return lagged one month (riz.1),
past 48 month return lagged 12 months (reo-12), standard deviation and coskewness which are both based on
past 60 month returns. The reported coefficients are time-series averages of the monthly regression slopes
multiplied by 100. The t-statistics of these averages are shown in brackets. The adjusted R? of the regression
model is reported underneath the regression number. All the independent variables are Winsorized each
month at the 1% and 99% level.

Const.  [Rreg Psv Parm  Ppc  LnSize BiM  risa reo-i2 Stdev  Cosk.

I 0.877 -0.009
1.9% [6.61] [-0.06]

11 0.641 0.202
1.8%  [4.48] [1.32]

111 0.851 0.023

2.0% [6.43] [0.15]

A% 0.736 0.115

1.1% [4.33] [1.36]

\% 0.749  0.141 0.132 0.195 0.472 -0.156 -0.968 0.005
6.1% [5.50] [1.31] [-4.96] [3.64] [2.87] [-1.89] [-0.58] [0.20]
VI 0.705 0.266 0.140 0.191 0.556 -0.079 -1.056 -0.040
6.1% [5.19] [2.32] [-5.22] [3.56] [3.20] [-0.75] [-0.62] [-1.24]
VII  0.750 0.200 0.138 0.192 0.480 -0.162 -1.285 -0.017
6.1% [5.53] [1.83] [-5.14] [3.58] [2.84] [-1.81] [-0.77] [-0.65]
VII  0.745 0.111 -0.124 0.195 0.463 -0.132 -0.466 -0.029
5.8% [5.45] [1.84] [-4.33] [3.61] [2.66] [-1.36] [-0.26] [-0.88]
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Table V: Alternative Lower-Partial Moments

Common NYSE/AMEX/Nasdaq stocks are sorted into deciles each year at the end of December based on
their lower-partial moment betas using different orders (¢) and different thresholds (%), ranging from -5% up
to +5%. The sorts are constructed such that each portfolio contains an equal number of stocks at the
formation date. The sample period is from January 1926 to December 2007 where the first 60 observations
are used for estimating the stock betas, resulting in 924 monthly value weighted return observations for
each portfolio. The table reports the monthly return spread and the percentage of observations smaller or
equal to the threshold (k) in Panel A. The relevant lower-partial moment beta spread of the deciles are
shown in Panel B.

Panel A: Mean Return Spread

Threshold (k)
5% 4% 3% 2% -1% 0% 1% 2% 3% 4% 5%
0.31 0.29 054 0.30 0.27 0.02 0.02 0.07 -0.14 -0.04 -0.08
0.31 0.43 0.51 053 0.38 0.37 0.39 0.48 055 0.59 0.44
0.32 028 026 036 046 046 045 049 044 0.42 0.34
0.25 0.23 0.19 0.19 0.24 029 0.30 0.31 0.39 0.42 0.47
0.27 0.21 0.22 0.15 0.17 0.19 025 0.26 0.29 0.30 0.33

Order (t)
W - O

Obs. 11% 14% 19% 26% 33% 40% 50% 60% 69% 78% 856%

Panel B: Beta Spread

Threshold (k)
5% 4% 3% 2% 1% 0% 1% 2% 3% 4% 5%
0.92 1.50 -0.21 0.13 1.01 0.09 -247 -1.20 0.20 0.19 0.39
0.98 0.87 0.88 0.87 096 093 0.81 0.75 054 0.61 0.84
0.82 0.87 092 094 096 098 0.99 1.00 098 0.94 0.91
0.63 0.71 0.74 0.79 082 085 0.87 0.90 091 0.92 091
0.58 0.59 063 066 069 073 0.75 0.79 082 0.83 0.85

Order (2)
B WO
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Table VI: Single-Sorted Beta Portfolios for Four Subsamples

Common NYSE/AMEX/Nasdaq stocks are sorted into deciles each year at the end of December based on
their (downside) betas. The sorts are constructed such that each portfolio contains an equal number of stocks
at the formation date. The sample periods are from January 1931 to December 1949 (Panel A), January 1950
to December 1969 (Panel B), January 1970 to December 1988 (Panel C) and January 1989 to December 2007
(Panel D). We use 60 monthly observations for estimating the stock betas (hence starting in January 1926).
The table reports mean return spreads as well as the different (downside) beta spreads between the highest
and the lowest ranked deciles.

Panel A: 1931 - 1949 Panel B: 1950 - 1969
High-Low Spread High-Low Spread
Return  Bres  Bsv Barm  Bpc Return  fBres  fsv farm  Bpc
Regular 1.19 1.15 0.98 1.04 0.83 Regular 0.34 0.85 0.95 0.77 1.01
SV 1.29 1.23 1.03 1.11 0.83 SV 0.33 0.71 0.73 0.62 0.75
ARM 1.24 1.17 1.00 1.07 0.86 ARM 0.28 0.84 096 0.76 1.06
DC 0.93 0.93 0.80 0.84 0.71 DC 0.14 0.58 0.66 0.53 0.67
Panel C: 1970 — 1988 Panel D: 1989 - 2007
High-Low Spread High-Low Spread
Return  Bres  Bsv Barm  Bpc Return  fBres  fsv farm  Bpc
Regular -0.55 0.87 0.99 0.92 0.69 Regular 0.26 140 149 134 1.38
SV -0.17 0.78 0.81 0.77 0.64 SV 0.41 1.14 122 112 1.21
ARM -0.31 0.98 1.07 1.03 0.80 ARM 0.12 1.35 1.47 1.30 1.33
DC -0.44 0.54 0.61 055 041 DC 0.30 1.03 1.08 0.99 1.00
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