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Econometrica, Vol. 59, No. 6 (November, 1991), 1787-1801 

INDEPENDENCE OF IRRELEVANT ALTERNATIVES 
AND REVEALED GROUP PREFERENCES 

BY HANS PETERS AND PETER WAKKER 

1. INTRODUCTION 

IN CONSUMER DEMAND THEORY the concept of revealed preference is based on the 
assumption that, by choosing from budget sets, a consumer reveals his preferences over 
the available commodity bundles. Analogously, in bargaining game theory the agree- 
ments reached in bargaining games may be thought to reveal the preferences of the 
bargainers as a group. In this paper we consider, more generally, single-valued choice 
functions defined on the convex compact subsets of the positive orthant of Rn. These 
subsets are called choice situations. In bargaining game theory choice functions are 
called bargaining solutions and choice situations are called bargaining games. In con- 
sumer demand theory choice functions are called demand functions and choice situations 
are called budget sets. Compact convex budget sets may be regarded as "generalized" 
budget sets where certain commodity bundles from the full simplices (linear budget sets) 
are not available. An example is the case of piecewise linear budget sets (see Hausman 
(1985)); our results would remain valid under the restriction to this case as well. Works 
concerned with revealed preference in consumer demand theory are, e.g., Richter (1971), 
Varian (1982), and Pollak (1990). The latter discusses generalized budget sets. 

One purpose of this paper is to find conditions under which a choice function 
maximizes a real-valued function. In consumer demand theory such a function is called 
the consumer's utility function. Another purpose is to provide a thorough study of the 
consequences of the well-known independence of irrelevant alternatives (IIA) condition. 
A third purpose is to generalize the Nash bargaining solution. 

We will first observe that a choice function maximizes a binary relation if and only if it 
satisfies IIA. This condition was introduced by Nash in his seminal 1950 paper on the 
bargaining problem. Next we show that the combination of Pareto optimality and IIA for 
a choice function in general only excludes cycles of length 1 or 2 in the revealed binary 
relation. If the dimension is 2, then also cycles of length 3 are excluded, but cycles of 
length at least 4 may still occur. For the latter case (i.e., n = 2), adding a weak form of 
continuity called Pareto continuity suffices to exclude circularity of the revealed binary 
relation; in general, however, even "full" continuity does not exclude cycles. For the case 
of 2-dimensional linear budget sets, related work was done by Samuelson (1948) and 
Rose (1958). 

The main result of the paper is obtained by strengthening Pareto continuity to 
continuity: this condition together with Pareto optimality, and IIA for n = 2 or the 
(stronger) strong axiom of revealed preference for n > 2, is sufficient for the existence of 
a function representing the revealed binary relation, i.e., of a function which is maxi- 
mized by the choice function. We finally show that this representing function must be 
strongly monotonic and strictly quasiconcave and, conversely, that the existence of a 
representing function with these properties implies the conditions of continuity, Pareto 
optimality, IIA, and the strong axiom of revealed preference for the choice function. 

The organization of the paper is as follows. Section 2 gives elementary definitions and 
considers the role of IIA. Sections 3 and 4 study the (a)cyclicity of revealed preference 
without and with continuity conditions, respectively. Section 5 is devoted to the afore- 
mentioned main result and briefly discusses an application to bargaining game theory. 
Section 6 shows that the results can be extended to other domains, and concludes. 
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2. THE ROLE OF IIA 

We denote by X the set of all possible alternatives (for a consumer, a group of 
bargainers,...). In this paper, with the exception of Section 6, X = 1R++, and a choice 
situation is a nonempty convex compact subset of X. The collection of all choice 
situations is denoted by L. 

A choice function is a map F: X -),X with F(S) E S for every S E S. Note that in this 
paper a choice function is single-valued by definition. From F we derive a binary 
relation R on X as follows: xRy ("x is directly revealed preferred to y") if there is an 
S E X with x = F(S), y E S. 

Sometimes choice functions can be derived from binary relations. A binary relation a 
on X represents a choice function F if for every choice situation S we have 

(2.1) {F(S)} = {x E S: x -y for every y in S}, 

i.e., F uniquely maximizes a on S. 
Obviously not every binary relation represents a choice function, and not every choice 

function can be represented by a binary relation. The following condition will character- 
ize, within the set-up of this paper, the choice functions which can be represented by a 
binary relation. It was introduced in Nash (1950) for bargaining game theory, and is 
central in this paper. 

DEFINITION 2.1: The choice function F satisfies independence of irrelevant alternatives 
(IIA) if for all choice situations S and T with S c T and F(T) E S we have F(S) = F(T). 

THEOREM 2.2: The choice function F can be represented by a binary relation a if and 
only if F satisfies IA. 

PROOF: First suppose F is represented by a . Let S, T e 1 with S c T and F(T) E S. 
By definition {F(T)} = {x E T: x a y for every y E T}. So {F(T)} = {x E S: x a y for 
every y E S}. From this we conclude that F satisfies IIA. 

In order to prove the converse, suppose F satisfies IIA. Define - := R. Then, for 
every S E X, F(S) a y for every y E S. We still have to show that F(S) uniquely 
maximizes a on S, for every S E LX. Suppose there is an S E X with y E S and y a F(S), 
i.e., yRF(S). Then there is a T e with F(S) E T and y = F(T), so by IIA applied 
twice, y = F(T n S) = F(S). This completes the proof. Q.E.D. 

In defending the IIA-condition Nash (1950, p. 195) argues that (two) rational individu- 
als, agreeing on a common choice x from T, should find the agreement to choose x from 
S c T "of lesser restrictiveness" than the agreement to choose x from T, and thus should 
also agree to choose x from S. Theorem 2.2 and Formula (2.1) clarify how the presence 
of fewer points in S may make it "of lesser restrictiveness" to agree on the choice x 
from S: in S the players must agree on [x - y] for fewer points y. Thus Theorem 2.2 
clarifies two ideas which may have been underlying Nash's intuition: firstly, that the two 
players should choose in accordance with a binary "group preference" relation, and, 
secondly and more basic, the idea that the two players may be considered as one decision 
unit on which consistency requirements can be imposed. 

Let us further note that Theorem 2.2 essentially depends on the restrictive framework 
in this paper, in which the choice function is single-valued and has a domain which is 
intersection-closed. Under more general circumstances many other conditions for choice 
functions have been formulated in the literature which in the context of this paper are 
equivalent to IIA. We mention the weak axiom of revealed preference (see Samuelson 
(1938)), property a and property 8 of Sen (1971), renamed nonincreasing eligibility and 
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nondecreasing eligibility in Wakker (1989a), the independence of/from irrelevant alter- 
natives of Luce (1959) and Kaneko (1980), and the V-axiom of Richter (1971). Most of 
these properties were studied in the context of consumer demand theory. Arrow (1959) 
showed that IIA (called C4 there) is necessary and sufficient for the existence of a 
transitive complete representing binary relation under the restrictive assumption that the 
domain of the choice function contains all finite subsets of X. 

The next two sections deal with the (a)cyclicity of the binary relation in Theorem 2.2. 
In Section 3 we consider choice functions without the (Pareto) continuity property; in 
Section 4 we will add Pareto continuity and continuity. 

3. (A)CYCLICITY OF REVEALED PREFERENCE WITHOUT CONTINUITY 

Let F be a choice function and R the corresponding directly revealed preference 
relation. We write xPy if there exists an S E X with x = F(S) and y E S, y # F(S). P is 
called the directly revealed strict preference relation. For x = (x1, x2,..., xd), Y = 

(Y1, Y2 * *- Yn) E X, we write x > y if xi > yi for i = 1, 2,. .., n and x > y if xi > yi for 
i = 1, 2,. . ., n; x S y, x < y are analogous. For T cX, conv(T) denotes the convex hull of 
T and comv (T):= {x e X: x S y for some y E conv (T)} denotes the comprehensive 
convex hull of T. For S E X, P(S) {x E S. there is no y E S with y > x, y # x} denotes 
the Pareto optimal subset of S. F satisfies Pareto optimality (PO) if F(S) E P(S) for every 
SEES. 

LEMMA 3.1: (i) For every x E X we have xRx and not xPx. (ii) Suppose F satisfies PO and 
IIA. Let x, y E X with x # y. Then the following three statements are equivalent: 
(a) xRy, (b) xPy, (c) x = F(S) for every S E X with x E S and S c comv {x, y}. 

PROOF: (i) xRx since F({x}) =x. [Not xPx] is obvious. (ii) (b) => (a) by definition. To 
prove (a) = (c), suppose xRy. Then x = F(T) for some T E X with conv {x, y} c T; so 
F(conv {x, y}) = x by IIA, hence by PO and IIA, F(S) = x for every S E X with P(S) = 
conv {x, y}; so by IIA again x = F(S) for every S E X with x E S and S c comv {x, y}. We 
have proved (a) = (c). Suppose (c) is true; then x =F(conv {x, y}) so xPy. (c) = (b) 
follows, which completes the proof. Q.E.D. 

Lemma 3.1 (and the arguments in its proof) will often be used without explicit 
mentioning. 

DEFINITION 3.2: The choice function F satisfies the strong axiom of revealed preference 
(SARP) if there does not exist a cycle x = x OPx lPx 2 ... xk-lpxk =X, where k > 0 is the 
length of the cycle. 

The condition SARP and the following result (formulated here in a way suited for our 
context) have been obtained by Ville (1946) and, independently, by Houthakker (1950) 
for general contexts. Kim (1987) has shown that slight weakenings of the transitivity of 
the binary relation do not affect the characterizing condition. 

THEOREM 3.3: There exists a transitive binary relation representing F if and only if F 
satisfies SARP. 

The following question arises: Are there in our context simpler and more appealing 
conditions which are still strong enough to imply SARP? In view of Theorem 2.2, IIA is a 
necessary condition. Further, we have the following lemma. 
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LEMMA 3.4: Let F satisfy IL4. Then there do not exist cycles of length 1 or 2 in the 
revealed preference relation. 

PROOF: Cycles of length 1 are excluded by Lemma 3.1(i), which also excludes cycles of 
length 2: xPyPx would by IIA imply x = F(conv {x, y}) = y and hence xPx. Q.E.D. 

The last property in Lemma 3.4, nonexistence of cycles of length 2, is known as the 
Weak Axiom of Revealed Preference (WARP); see e.g. Richter (1971). Further discussion 
is postponed until the end of the next section. 

In the sequel we shall always assume Pareto optimality. In consumer demand theory it 
is an implicit condition; in bargaining game theory it is fairly standard. In what follows, 
l(a, b) denotes the straight line through the points a ? b in X. 

LEMMA 3.5: Let n = 2, and let F satisfy PO and IIA. Then there do not exist cycles of 
length 3. 

PROOF: Assume the following: 

(3.1) a, b, x E X satisfy aPb and x9b. 

In view of the reflexivity of R (Lemma 3.1(i)) and the definition of P it follows from (3.1) 
that a ? b, a ?x, b #x. We will show that xJa; in some cases the additional require- 
ment bPx will be needed. Nonexistence of cycles of length 3 then follows immediately. 

In order to prove xla, we list the following cases, which essentially exhaust all 
possible configurations of {a, b, x). 

(3.1.a) a > b, 

(3.1.b) b1 <a1, b2> a2, 

(3.1.b.1) x1 < b1, x on or above l(a, b), 

(3.1.b.2) x1 < b1, x2> b2, x strictly below l(a, b), 

(3.1.b.3) x E comv{a, b}, 

(3.1.b.4) x1 > a1, x on or below l(a, b), 

(3.1.b.5) x2 < a2, x strictly above l(a, b), 

(3.1.b.6) x1 >,a1, a2 ><x2< b2, 

(3.1.b.7) x1 <a1, x2< b2, x strictly above l(a, b). 

Note that the case b > a is excluded by aPb and PO. Also the case x > b is excluded by 
xI,b and PO. Further, the cases with b1 > a1, b2 < a2 are analogous to (3.1.b.1)-(3.1.b.7) 
and are therefore omitted. The proof of xla is given in two steps. 



INDEPENDENCE OF IRRELEVANT ALTERNATIVES 1791 

STEP 1: In the cases (3.1.a), (3.1.b.1), (3.1.b.3), and (3.1.b.4), we have xita. 

PROOF: (3.1.a): xRa would by Lemma 3.1(ii) imply x = F(conv {x, a, b)), contradicting 
xJb. 

(3.1.b.1): Same proof as for case (3.1.a). 
(3.1.b.3): By aPb and Lemma 3.1(6i) we have a = F(conv{a, b, x)), so aPx, hence xga. 
(3.1.b.4): Let S = conv{x, a, b). If F(S) E conv{a, b) then F(S)= a and hence aPx. If 

F(S) E conv {a, x), then F(S) # x since otherwise xRb; so by IIA also F(conv (a, x)) # x, 
which by Lemma 3.1(i) implies xlta. This completes the proof of Step 1. 

STEP 2: Suppose bPx. Then xIta in the cases (3.1.a), (3.1.b.1)-(3.1.b.4), and (3.1.b.7). 
The cases (3.1.b.5) and (3.1.b.6) cannot occur. 

PROOF: In view of Step 1 we still have to consider the cases (3.1.b.2), (3.1.b.5)-(3.1.b.7). 
(3.1.b.2): Let S = conv{x, a, b). If F(S) E conv{a, b) then F(S) = a by IIA, so aPx. If 

F(S) E conv{x, b), then F(S) = b since bPx, which leads to the contradiction bPa. 
(3.1.b.5), (3.1.b.6): By Lemma 3.1(ii), bPx, and a E comv{b, x), we would have bPa, a 

contradiction. 
(3.1.b.7): Let T:= conv{a, b, x). If F(T) e conv{b, x), then F(T) = b, which would 

imply bPa, a contradiction. So F(T) E conv {x, a) and F(T) ? x since otherwise xPb. So 
by IIA, F(conv {x, a)) # x, hence xhta by Lemma 3.1(ii). 

This completes the proof of Step 2, and of the lemma. Q.E.D. 

The following example, which was not easy to construct, shows that for n = 2, IIA and 
PO are not sufficient to exclude cycles of length greater than 3. 

EXAMPLE 3.6: We define the following subsets of X = R 2+ (see Figure 1): 

Gl:= {x EX: x1 >4, x2>4 + 2V7} - {(4,8)} 

- xeX:x,<4+2V', x248, (xl-4-212i) 

+(X2-8-22) 2> 16}, 

G2: = {xeX:2<x1 <4} - {xeX:x2 10, 
(x1l 

4)2+ (x2- 10)2>4), 

G3{= ex X:4 x2<4+2V22} - {(8,4)} 

- exEX:x1,8,(xj-8-22V)2 + (x2 -4- 24) 2> 16}, 

G4:=I{xeX:2<x2<4} - {x eX:x1l 10, (x1 - 10)2 + (x24)2 >4), 

G5:= {(8,4)}, 

G6 ={x EX : X2 > 9}- G1-G2, 

G7 ={x eX: x1 > 8} - G-G3-G4 

G8 :=(4,8)}, 

Gg:= X\ (Gl U - U G8)- 
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G 6 G 
10 2 

d 
9 G 

1 
8 

G\2 8~~~~~~~~~~~ 

4+2V7 
4 

G1, G4, G5,G7, the first coordinate is maximized. On G2, G3, G6, G8, the second coordinate is 
maximized. On G9, x1x2 is maximized. A cycle aPbPcPd results. 

Further a =(9, 1), b =(4, 8), c := (8, 4), and d 8= (1, 9). Let the transitive binary 
relation a on X be deined as fo lows: 

(ii) On G1,G4, G5,G7, a is the lexicographic order. 
(iii) On G, G7 6,G8, a is the reversed lexicographic order (first maximizing the 

second coordinate). 
(iv) On Gg, a maximizes the product xax2. 
We define F as the choice function maximizing a. It can be seen that F is 

well-defined, and satisfies IIA, P0, and SARP. We define a to be equal to a with one 
exception: b a c instead of c a b. So a is not transitive. We define F as the choice 
function maximizing a. Then also F is well-defined and satisfies P0 and IA (by 
Theorem 2.2), but F does not satisfy SARP: aPbPcPdPa, a cycle of length 4. 

This section is concluded by an example showing that if n > 2, IA and P0 admit 
cycles of length 3. 

EXAMPLE 3.7: Let n =3 and let the choice function F: X" - X be defined as follows. 
Let Y:== {x E X: x > (1,1, 1)} and let S E$L If S contains an interior point of Y, then let 
F(S) be the unique point of Yfl S where the product (xl - 1)(x2 -1)(X3 -1) iS 
maximized on this set; then F(S)> (1, 1, 1). If S fn Y 0, then let F(S) be the unique 
point of S where the product x"x2x3 is maximized on s. If 5 rd Y? 0 and xl (resp. 
X2, X3) = 1 for all x E S n Y, then let F(S) be the Pareto optimal point of S n Y with 
maximal third (resp. first, second) coordinate. Then F can be seen to be a well-defined 
choice function satisfying IIA and P0. The corresponding revealed preference relation 
contains cycles of length 3, e.g. (2, 1, 1)P(1, 1, 2)P(1, 2, 1)P(2, 1, 1). 

4. (A)CYCLICITY OF REVEALED PREFERENCE WITH CONTINUITY 

The following additional condition for a choice function was introduced in Peters 
(1986). 
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DEFINITION 4.1: A choice function F: X -* X satisfies Pareto continuity (PC) if for 
every sequence SISI, S2 ... in X with Sk -o S and P(Sk) -+ P(S) (where the limits are 
taken with respect to the Hausdorff metric) we have F(Sk) -* F(S). 

For n = 2 and S E X, let DI(S) be the point of P(S) with maximal first coordinate, 
and let D2(S) be the point of P(S) with maximal second coordinate. D1 and D2 are 
choice functions satisfying PO, IIA, and Pareto continuity but not continuity (see Def. 
4.9). Note that for choice functions F satisfying PO and IIA we have F(S) = F(T) 
whenever P(S) = P(T): so, for such F, requiring Pareto continuity instead of continuity 
seems reasonable. 

The remainder of this section is devoted, firstly, to proving that the combination of 
PO, PC, and IIA for a choice function F implies SARP if n = 2; secondly, to showing 
that for n > 2 these conditions, even with full continuity instead of PC, do not suffice to 
exclude cycles. For x # y, lx(x, y) denotes the straight closed halfline through x and y 
with endpoint x. 

LEMMA 4.2: Let F satisfy PO, IL, and PC. Let v, w E X with v ? w. 
(i) If wPv then wPx for all x E 1w(w, v)\ {w}, and wPx' for all x' A x E lw(w, v)\ {w}. 
(ii) [xPv or xPw] for all x E conv{v,w}\{v,w}, and [x'Pv or x'Pw] for all x' >x with 

x E conv {v, w) \ {v, w}. 

PROOF: (i) Suppose wPv. By convexity of choice situations this immediately implies 
wPx for all x E conv {v, w) \ {w). The case remains where x E 1w(w, v), x not between v 
and w. Let S = conv{x, w}. If F(S) E conv{v, w} then, by IIA, F(S) = F(conv{v, w}) = w, 
so wPx. The case remains where F(S) e conv {v, w). We will show that this case cannot 
occur. By PC the function y -. F(conv {y, w}) is continuous on l(v, w). Its image must be 
connected, so there is a y E conv {x, v} such that F(conv {y, w)) = v. This and 
F(conv {v, w}) = w contradict IIA. So everything concerning x in (i) has been proved. 
The result concerning x' follows from consideration of comv{x, w}. 

(ii) Let x' be as in (ii) (possibly x' =x). If x' > v or x' > w, then we are done. 
Otherwise, note that conv {w, x'} U conv {x', v} is the Pareto optimal subset of 
conv {w, x', V}. W.l.o.g. suppose F(conv {w, x', v}) i conv {w, x'}. By PC the function y - 
F(conv {y, x', v}) from conv {w, x'} to conv {w, x'} u conv {x', v} is continuous. Its image 
must be connected; hence F(conv {y, x', v}) = x' for some y E conv {x', w}. This implies 
x'Pv. Q.E.D. 

Up to Theorem 4.8 we make the following assumption: 

(4.1) n = 2 and F satisfies PO, IIA, and PC. 

We will show that P has no cycles by induction based on Lemma 3.5, which says that 
there are no cycles of length 3. Fix a sequence a, b,..., y, x of length at least 4 with 
aPbP ... PyPx. We want to show: xl*a. The induction hypothesis is that no cycles of 
length smaller than the length of (a, b,..., y, x) exist. This implies: 

For all v and w in this sequence with vP ... Pw and not both v = a 
(4.2) and w = x, we have wiv. Further, x*a if there are v and w in the 

sequence with w not the immediate successor of v and vPw. 

Note that aPb and x*b. Again (3.1.a)-(3.1.b.7), distinguished in the proof of Lemma 3.5, 
are essentially all possible cases. Step 1 in the proof of Lemma 3.5 (in which only x*b is 
used) implies the following lemma. 
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LEMMA 4.3: In the cases (3.1.a), (3.1.b.1), (3.1.b.3), and (3.1.b.4), we have x*a. 

The remaining cases (3.1.b.2), (3.1.b.5), (3.1.b.6), and (3.1.b.7), are treated in the 
following lemmas. 

LEMMA 4.4: In case (3.1.b.2): x1 < b1 < a1, x2> b2 > a2, x strictly below l(a, b), we 
have x*a. 

PROOF: From Lemma 4.2(i) with a in the role of w and b in the role of v, it follows 
that (even) aPx. Q.E.D. 

LEMMA 4.5: Case (3. 1.b. 6): x 1 > a 1 > b 1, a2 -x2 < b2, cannot occur. 

PROOF: yPx, x > a, and Lemma 3.1(ii) imply y = F(conv{a, y, x}). So yPa in contra- 
diction with (4.2). Q.E.D. 

LEMMA 4.6: Case (3.1.b.7): b1 < a1, x1 < a1, b2> a2, b2 >x2, x strictly above l(a, b), 
cannot occur. 

PROOF: We consider all possible locations of y. If y1 < a1 and y on or below l(a, b), 
then aPy in view of Lemma 4.2(i), so from (4.2) we obtain x*a. Since by (4.2) also x*9b, a 
contradiction with Lemma 4.2(i) follows. If Y1 > a1, and y on or below l(x, a), then xPa 
would by Lemma 4.2(i) imply xPy which is a contradiction. So x*a, but as before that is 
also impossible. If y2 > b2 and y on or above l(a, b), then b E comv{x, y}, so yPb by 
Lemma 3.1(i) (since yPx), in contradiction with (4.2). If y2< a2 and y on or above 
l(x, a), then a E comv {x, y}, so yPa (since yPx), in contradiction with (4.2). Also y > a 
would imply the contradiction yPa. The only possibility left is: y strictly above l(a, b), 
Y2 < b2, y1 < a1. In that case, yPa or yPb by Lemma 4.2(ii), in contradiction with (4.2). 

Q.E.D. 

LEMMA 4.7: In case (3.1.b.5): b1 <a1, b2>a2 >x2, x strictly above l(a,b), we have 
x*a. 

PROOF: Suppose xPa. Then xPaPb ... Py, and yPx. By the previous lemmas, yPx is 
excluded in all possible configurations except for the configuration described in this 
lemma, so a, <x1, a2> X2 > y2, y strictly above l(x, a). If z is the immediate predeces- 
sor of y, then yPxPaPb ... Pz and zPy. Again, the only possible configuration for this is: 
x1 <y1, x2 > Y2 > z2, z strictly above l(y, x). Repeating this argument we find for the 
final step bPcP ... PzPyPxPa and aPb: c1 < b1, c2 > b2 > a2, a strictly above l(b, c). In 
particular, b1 > c1 > ... > y1 > x1 > a1 > b1, an obvious impossibility. Q.E.D. 

Lemmas 3.4 and 3.5, and Lemmas 4.3-4.7, imply the following theorem. 

THEOREM 4.8: For n = 2, PO, IL, and PC imply SARP. 

Samuelson (1948) and Rose (1958) essentially showed that PO and WARP suffice to 
exclude cycles, for a single-valued choice function defined on only 2-dimensional linear 
choice situations (i.e., budget sets of the form comv{(a, 0), (0, b)} where a, b e R 
Theorem 4.8 extends this result to choice functions defined on nonlinear 2-dimensional 
budget sets, while weakening WARP to IIA. 
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The next question is whether Theorem 4.8 will still hold if n > 2. Gale (1960) has 
provided an example of a continuous demand function defined on 3-dimensional linear 
budget sets which satisfies PO and WARP but not SARP. In other words, the result of 
Rose (1958) mentioned before does not have to hold if there are more than 2 commodi- 
ties. In the Appendix we will show that Gale's example can be extended to 3-dimensional 
nonlinear budget sets (our choice sets) as well. This can be done even with PC 
strengthened to full continuity: 

DEFINITION 4.9: A choice function F: X -4 X is continuous if for every sequence 
SI Sl,S2, ... in X with Sk -* S (where the limit is taken with respect to the Hausdorff 
metric) we have F(Sk) - F(S). 

The appendix shows that WARP does not imply SARP for dimension n = 3, by 
extending the example of Gale (1960) to nonlinear choice sets. The extension to higher 
dimensions, also for linear budget sets, will be given in Peters and Wakker (1991). For 
linear budget sets a theoretical argument has already been given in Kihlstrom, Mas-Colell, 
and Sonnenschein (1976, first paragraph of page 975). 

Another interesting question is whether IIA can be strengthened in an appealing way 
in order to imply SARP. For instance, for each dimension n, can one find a natural 
number k(n) such that requiring the exclusion of cycles of length smaller than or equal 
to k(n), instead of IIA, implies SARP? For linear budget sets the answer is negative, as 
follows from Shafer (1977). For our case the answer is also negative: this can be shown by 
extending Shafer's 3-dimensional example to nonlinear budget sets in the same way as is 
done in the Appendix with Gale's example. 

5. REPRESENTATION OF REVEALED PREFERENCE 

Let F be a choice function. x E X is revealed preferred to y E X, notation xRy, if there 
exists a sequence x = x?, xi, ... ., xk = y in X with x0Rx1R ... Rxk. If in this sequence 
x'Px'+1 for some i E {0,1, . . ., k - 1}, x is revealed strtictly preferred to y, notation xPy. By 
Wakker (1989b, Corollary 1.2.12, (vi) and (vii), and Theorem 1.2.5, (ii) and (vi)), F 
satisfies SARP if and only if P is the asymmetric part of R. Note that in our case, by 
Lemma 3.1(;), if x = y and xRy, then xPy. 

Although it is not impossible that R is complete (i.e., xRy or yRx for all x, y e X; for 
instance let n 2 and F = Di), this will in general not be the case. For instance, if n = 2 
and F is the Nash choice function N (that is, N(S) is the point of S CX where the 
product x1x2 is maximized over S), then neither (1, 2)R(2, 1) nor (2, 1)R(1, 2)). Also, R 
does not have to be "representable" by a real-valued function on X; f: X -1 R represents 
the binary relation a on X if [x y=*f(x)>f(y)] and [x >-y=f(x)>f(y)] for all 
x, y e X, where >- is the asymmetric part of a . For instance, if R is revealed by D1 
then R is the lexicographic order on X which is well-known not to be representable by a 
real-valued function. 

The main purpose of this section is to find sufficient conditions for F such that the 
corresponding revealed preference relation R is representable by a real-valued function 
f. Such a function will be called a utility function (of the consumer, or the group of 
bargainers). It will be shown that f is strongly monotonic and strictly quasi-concave (see 
above Lemma 5.4). Up to Theorem 5.3 we assume: 

(5.1) F is continuous and satisfies PO and SARP. 

The following lemma can be derived from Corollary 1 in Jaffray (1975) applied to the 
transitive, asymmetric partial order P. 
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LEMMA 5.1: If there exists a countable subset A of X such that for all x, y E X with xPy 
there is an a E A with xPaPy, then there exists a function f: X -* R such that [xPy 
f(x) >f(y)] for allx, yEeX. 

REMARK: Lemma 5.1 is a variation on a result by Debreu (1954, Lemma II); the latter 
holds for weak orders (transitive complete binary relations). Actually, given an enumera- 
tion A= (a1, a2, ... } of the set A, a function f as in Lemma 5.1 is easily defined: 
f: x k: xpak2-k 1. See Jaffray (1975) for further details. 

A set A as in Lemma 5.1 can be obtained as follows: 

(5.2) A:={aeX:a =F(conv{x,y})for some x,yEXn(a}. 

LEMMA 5.2: Let x, y E X with xPy. Then there exists an a E A with xPaPy. 

PROOF: First assume xPy. Choose sequences (xj),(y') cX n aQn with x' x, yI -ky, 
and with for all j: xi <x, yi > y, and 2xi + -yi E comv {x, y}. By the continuity of F we 
have F(conv {xI, y1}) -* F(conv {x, y}) = x which implies: there is some k E RJ such that 
a =F(conv{xk,yk}) E comv{x, y}. So a EA, and xPa in view of Lemma 3.1(ii). Since 
y E comv{a, yk}, also aPy. So this point a has the desired properties. 

Next assume xPy. Then x = x0Rx'1 ... RXj-lRjX ... * * k = y with, say, i- 'Pxj. So by 
the first part of the proof we have xi - 1PaPx i for some a E A, hence also xPaPy. Q.E.D. 

For an arbitrary choice function F and a real-valued function f on X, F maximizes f 
if f(F(S)) > f(x) for every S E=. and x E S, x # F(S). 

THEOREM 5.3: Let F be a Pareto optimal continuous choice function. Then the following 
two statements are equivalent: 

(a) F satisfies SARP. 
(b) F maximizes a real-valued function f on X. 

PROOF: Suppose F satisfies SARP. Then F satisfies condition (5.1), so by Lemmas 5.1 
and 5.2 there is an f: X- 1;R with xPy ='f(x) > f(y) for all x, y E X. Since F(S)Px for 
all F(S) # x E S and S E X, F maximizes f. The implication (b) * (a) is straightforward. 

Q.E.D. 

Consequently, if the consumer's demand function, or the bargainers' solution, is 
continuous, Pareto optimal, and satisfies SARP, then the consumer chooses as if 
maximizing a utility function, and the bargainers reach a compromise as if maximizing a 
group utility function. 

Next we will show that the function f in Theorem 5.3 is strongly monotonic, i.e., 
strictly increasing in each coordinate, and strictly quasiconcave, i.e., the set {ye X: 
f(y)>f(x)} is "strictly convex," for every xe X. A set TcX is strictly convex if 
ax + (1 - a)y is an interior point of T whenever x, y E T, x * y, 0 < a < 1. 

LEMMA 5.4: Let F be a Pareto optimal continuous choice function which maximizes a 
real-valued function f on X. Then f is strongly monotonic and strictly quasiconcave. 

PROOF: Let x,yeX with x>y, x#y. Then F(conv{x,y})= x by PO of F, so 
f(x) > f(y). This proves strong monotonicity of f. 
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Next, for contradiction let z E X and T:= {x E X: f(x) >f(z)}. For convexity of T, let 
x, x' E T with x # x' and y = ax + (1 - a)x' where 0 < a < 1. We have to show f(y) > 
f(z). By Lemma 4.2(ii), we have yPx or yPx', so f(y) >f(z) and y E T. 

Finally, suppose that T is not strictly convex. If v # w E T and conv {v, w} contains an 
interior point t of T, then by convexity of T all points in conv {v, w} \({v, w} are interior. 
So the assumption that T is not strictly convex implies the existence of v # w E T such 
that conv {v, w} is a subset of the boundary of T. Let F(conv {v, w}) = v (otherwise 
continue the proof with F(conv {v, w}) in the role of v if F(conv {v, w}) # w, or with the 
roles of v and w reversed if F(conv{v,w}) = w). Note that f(v) >f(w) >f(z). Also, 
f(x) <f(z) for every x in the interior of comv{v, w} since otherwise, by PO, conv{v, w} 
would contain an interior point of T. Let v1, v2, ... E X be a sequence in the interior of 
comv {v, w} converging to v. Then F(conv {v k, w}) = w for every k E NI whereas 
F(conv {v, w}) = v. This contradicts the continuity of F. Q.E.D. 

LEMMA 5.5: Let F be a choice function which maximizes a strongly monotonic and 
strictly quasiconcave real-valued function f on X. Then F is Pareto optimal and continuous. 

PROOF: Pareto optimality of F is an immediate consequence of strong monotonicity 
of f. Next suppose for contradiction that F is not continuous. Using compactness, 
subsequences, and IIA, we can arrange sequences p, p, p2 .. and q, q', q2,... in X 
with pk -p, q k -4 q, F(conv{pk, qk}) =pk, F(conv{p, q}) = q. From f(q) >f(p) and 
strict quasiconcavity of f it follows that 2p + 1q is an interior point of {x : f(x) >f(p)}; 
so f(lp + 'q) > f(p) by monotonicity of f. Similarly 3q74 +p/4 is an interior point of 
{x : f(x) > f( p + 1q)}; so by monotonicity of f there is a q < 3q74 + p/4 such that 
f(t() >f(2p + 2q). Further, there is a p>p such that 2p + 2q> W for some w E 

conv {p, q}. Then f(q) >f(2p + 2q) >(w). By strict quasiconcavity of f:f(w)> 
min{f(p), f(q)}. We conclude that f(p) <f(q). 

So qc<3q/4+p/4, p >p, f(p)q<f(q). Take kER N so large that pk <p and q E 
comv{pk, qk}. Then f(pk) < f(p) <f(q) whereas F(conv{pk, qk}) =k Since q E 
comv{pk, qk} this contradicts Lemma 3.1(i). Q.E.D. 

Theorem 5.3 and Lemmas 5.4 and 5.5 lead to the following theorem. 

THEOREM 5.6: For a choice function F the following two statements are equivalent: 
(a) F is continuous and satisfies PO and SARP. 
(b) F maximizes a strongly monotonic strictly quasiconcave real-valued function f on X. 

For n = 2, Theorems 4.8 and 5.3 imply the following corollary, which further illus- 
trates the meaning of Nash's IIA. 

COROLLARY 5.7: Let n = 2 and let F be a Pareto optimal continuous choice function. 
Then the following two statements are equivalent: 

(a) F satisfies IL. 
(b) F maximizes a real-valued function f on X. 

The function f in Theorem 5.6 may fail to be continuous. This can be inferred from 
the straightforward adaptation of Example 1 and Remark 4 in Hurwicz and Richter 
(1971) to our context. 

We conclude this section with some consequences for bargaining game theory. If 
n = 2, a choice situation S may be interpreted as a 2-person bargaining game where 
bargainer i (= 1,2) derives utility xi from a compromise x E S; if no compromise is 
reached, then the game results in the status quo alternative (0, 0). To solve their problem 
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the bargainers may appeal to a choice function called (bargaining) solution in this 
context. This is essentially the model proposed by Nash (1950), who showed that the 
solution N defined before is the unique solution satisfying, besides some other proper- 
ties, IIA. The results of this paper may contribute to clarifying the role of IIA. Theorem 
2.2 and Corollary 5.7 characterize large classes of solutions with the IIA property. These 
solutions can be interpreted as generalizations of the Nash bargaining solution that allow 
for interaction between players, and payments in more realistic quantities than 
von Neumann-Morgenstern utilities. Similarly, Theorem 5.6 characterizes a large class of 
n-person solutions with the SARP property. Further discussion was given at the end of 
Section 2. 

6. DOMAIN EXTENSIONS AND CONCLUDING REMARKS 

The choice of domain X = t+ was made for convenience. Examples 3.6 and 3.7 
(with any strictly quasiconcave strongly monotonic function instead of x1x2x3 for case 
(c) below) can be adapted to the cases below in a straightforward manner. Also the 
example elaborated in the Appendix can be adapted to these cases (see there). Further 
we have the following: 

(a) If X = R', then all theorems and lemmas in this paper remain true. 
(b) If X= St+, then all theorems and lemmas before Lemma 5.5 remain true. Lemma 

5.5 and Theorem 5.6 are no longer valid. This case is the mathematically most deviating 
one since the (essential) domain is not open. 

Details are as follows. In the first part of the proof of Lemma 5.2 allow xi and yi to 
have zero coordinates whenever the corresponding coordinates of both x and y are zero, 
and suppress these coordinates. Take any x' = ,utx + (1 - ,u)y (0 < ,u < 1). Then xPx'Py 
by Lemma 4.2. Proceed with x' instead of x. In the last part of the proof of Lemma 5.4 
the interior of comv({v, w}) must be replaced by the interior relative to the subspace 
where those coordinates are zero that are zero for both v and w. The claim about 
(nonrelative) interior points of T then remains true. In the proof of Lemma 5.5, the 
point q does not have to exist. 

(c) If X=DSt+, S is restricted to the sets T which contain a strictly positive point, 
F(T) > 0 for all T, and the function f and the revealed and representing binary relations 
are restricted to 1Rn+, then all theorems and lemmas of this paper remain true. (Note 
that all intersections required in the proof of Theorem 2.2 are in S.) 

Case (b) is of interest for consumer demand theory. Case (c) can be used to derive the 
Nash bargaining solution from our results. One of the conclusions from this paper is that 
the IIA condition, combined with Pareto optimality and continuity, only has strong 
implications in the 2-dimensional case. This case is relatively important: bargaining 
situations often include two parties, and if there are more than two parties intermediate 
coalitions should usually be allowed, which restricts the importance of n-person pure 
bargaining games; in consumer demand theory, many situations can be modeled as 
involving only two goods by considering composite goods. Nevertheless it is unfortunate 
that, in general, we obtain the n-dimensional analogue only by strengthening IIA to 
SARP. 

We conclude by indicating the relation between our results and those of Lensberg 
(1987). In a context where the dimension may vary and where a choice function is a 
(countably infinite) list of prescriptions (one for each dimension), Lensberg shows that a 
condition called multilateral stability is necessary and sufficient for a Pareto optimal 
continuous choice function to maximize an additively separable strictly quasiconcave 
function. Further, if the dimension may vary but has an upper bound of at least 3, then 
Lensberg shows that this result still holds under the weaker condition of bilateral 
stability. Additive separability excludes interactions between dimensions. It has been 
discussed in many contexts; see Wakker (1989b, Section II.5). In consumer theory where 
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dimensions refer to commodities which may have physical interaction, and even more in 
group decision making where dimensions refer to individuals who may have social 
interaction, violations of additive separability are of considerable interest. This motivated 
the general approach of this paper. 
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APPENDIX 

In this appendix a choice function F is constructed for dimension n = 3, satisfying continuity, 
PO, and IIA, but not SARP. F extends a demand function, proposed by Gale (1960) in order to 
show that WARP does not imply SARP if there are at least three goods. Let A be the matrix 

-3 4 0~ 
0 -3 4. 
4 0 -3 

For all (price) vectors p, q E X with (demand vectors) Ap > 0, Aq > 0 (cf. Gale, 1960, sect. 3): 

(*s ) If pAq < pAp and qAp S qAq, then Ap =Aq ("WARP"). 

Let 

-9 12 16 
B :=A-'= 1/37 16 9 12 

-12 16 9 

Let SE X be fixed, and let M:= {x E S: there is no yE S with x, = y' for all i # 1 and x1 < y}. For 
every x E M let ir(x) ER3 be defined by mr(x)i = x, for all i $ 1, m(x)l = 0, i.e., ir is the projection 
on the hyperplane xI =0. Then irr: M -+ r(M) is a homeomorphism, and mr(M) is nonempty, 
compact, and convex. Further, for every x > 0 let H(x) be the supporting hyperplane of S with 
normal x and such that S is below H(x). Then the correspondence I: x - H(x) n S = H(x) fn P(S) 
for every x > 0 is upper semicontinuous (as can be shown directly, or as a consequence of the 
Maximum Theorem). 

Finally, let the correspondence ,I: 7r(M) -+ ir(M) be defined by 

,u(x) = rr(I(B(mr-(x)))) for every x. 

Then clearly ,u is convex-valued and upper semicontinuous, so by Kakutani's fixed point theorem 
there exists a fixed point x*E e(x*). 

Next we show that such a fixed point x* is unique. Suppose z* E= (z*) is another fixed point. 
Then 7r-1(x*) E I(B(1-1(x*))) and 7rl(z*)E I(B(ir-1(z*))). So by definition of I: 

(B,7-1(z*))T-1(x*) S (Bir-l(z*))7w-l(z*) and 

( B7-1(x* )) ,,- (z*) s (B rr- l(x* ))Tr-l(x* )- 

Hence 

(B7r-1(z*))A(B,r1(x*)) s (B7r-l(z*))A(Birl1(z*)) and 

(BFm t(x ))A(Bn r w(Z*)) <c(B7-ul(x*))A(B7r-a(x*)) = 

From these inequalities and (*), we conclude 7r- 1(x*) =7r-'(z*), and so x* = z*. 
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Let F assign the point 1i-1(x*) to every choice situation, with x* the unique fixed point as 
above. Then F is a well-defined choice function. PO and IIA of F follow straightforwardly from its 
definition. Next we prove that F is continuous. 

Let S, Sl S2 ... , SiS in the Hausdorff-metric, and F(Si) = -+ y e S. For every i let 
pi = B(yi); by construction, p' is a normal of a supporting hyperplane of Si at y1. Since y' -+ y, we 
have B(y') -+B(y) := p, so p' -+p. It is straightforward to show that {x: px =py} supports S at y. 
(Incidentally, it also follows that p = B(y) > 0, since all entries of B are positive. Hence y E P(S).) 
So ii-1(y) is the fixed point of ,u, and F(S)=y follows. 

Finally, a violation of SARP is obtained, adapting the example of Gale (1960, Section 5). The 
following observation will be used. Let S E . be such that P(S) c {x e X: px = c} for some vector 
p > 0 and some constant c > 0. If the point c(pAp)- 'Ap is an element of P(S), then by construction 
of F it is equal to F(S). We now turn to the example. 

Let x1 = (1, 0.001, 0.001), x2 = (0.6,0.001,0.3), X3 = (0.3,0.001,0.6), X4 = (0.001, 0.001, 1), and let 
pl = (9.028, 16.021, 12.025), p2 = (10.212, 13.209, 9.916), p3 = (12.312, 12.009, 9.016), p4 = 

(16.021,12.025,9.028). Then each x' is a multiple of Ap1. Further, we have: 

p1xI >p1x2, so F(conv{x', x2}) =XI, 

p2x2>p2x3, so F(conv{x2,x 3}) =X2, 

p3x3 > p3x4, so F(conv {x3, X4}) =x 3. 

So x1 is revealed preferred to X4, i.e., (1, 0.001, 0.001) is revealed preferred to (0.001,0.001,1). By 
interchanging the appropriate numbers one similarly shows that (0.001,0.001, 1) is revealed pre- 
ferred to (0.001, 1,0.001), and that (0.001, 1,0.001) is revealed preferred to (1,0.001,0.001). So F 
violates SARP. 

The above construction holds for the prevalent case in the paper where all choice situations are 
strictly positive. We conclude this Appendix by modifying the construction for the cases (a)-(c) in 
Section 6. We construct G as follows. Let c > 0 be a constant such that the set 

C = { x E R3: X > 0, X1X2X3 > C} 

contains all the points needed for the construction of the cycle above. Now for S E X, let 
G(S)= F(S n C) if S n C s 0. If S n C = 0, then let as > O be the minimal number such that 
S n (C - as(1, 1, 1)) s 0, and let G(S) be the (unique!) point in this intersection. This G is 
continuous and satisfies PO and IIA, but not SARP. It can be used in the cases (a) and (b) in 
Section 6. For the case (c) there, take, instead, the choice function G' with G'(S) = G(S) if 
S nl C $ 0, and G'(S) is the unique point of S with maximal product of the coordinates, otherwise. 
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