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Abstract: In Savage [41] a 'behavioral foundation' was given for subjective probabilities, to be 
used in the maximization of expected utility. This paper analogously gives a behavioral 
foundation for fuzzy measures, to be used in the maximization of 'Choquet-expected utility'. 
This opens the way to empirical verification or falsification of fuzzy measures, and frees them 
of their 'ad hoc' character. 
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1. History 

One of the most important scientific achievements of this century may be the 
result laid down in the first five chapters of Savage [41]. There a behavioral 
foundation was given for 'subjective probabilities', to be used in an expected 
utility criterion. That is to say, sufficient conditions were given for decision 
making to be representable by subjective probabilities, through expected utility. 
This demonstrated how to verify or falsify the appropriateness of subjective 
probabilities through observations, and made subjective probabilities operational. 
The meaning of subjective probabilities changed from obscure-ad-hoc into 
scientifically well-founded. Indeed, a foundation of (Bayesian) statistics had been 
laid. With this scientifically well-founded meaning, discussion and research could 
start about the question whether or not subjective probabilities are suited to 
represent (lack of) knowledge. In decision theory, expected utility is used to 
model all kinds of phenomena, related to risk and uncertainty. For instance, risk 
aversion is modeled through concavity of utility, and minus the quotient of the 
second and first derivative of utility has been found to be a good tool to compare 
attitudes towards risk, in Pratt [39] and Arrow [4]. (The works of de Finetti and 
Lindley are related to Savage [41] and will be discussed in Section 2.) 

Also in knowledge representation devices like subjective probabilities are 
called for. Good linguistic tools are needed to describe the processing of 
information and the reasoning with uncertainty and inexactitude. Modeling 
knowledge only with 'true', 'untrue', or 'unknown', or only with one exactly 
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determined value for any quantity, is too rough for most applications. Tools are 
searched by means of which an intelligent system can express its state of 
knowledge in a more refined way. Subjective probabilities might be such a tool. 

Still, subjective probabilities have not become the sole tool used by scientists 
to numerically model (lack of) knowledge. As the axioms of Savage give 
empirical meaning to subjective probabilities, they (primarily the 'sure-thing 
principle') are mostly taken to show that subjective probabilities have too many 
drawbacks; this was already argued for instance in the early Allais [1]. The most 
influential result in recent decision literature to deviate from expected utility has 
been Machina [34]. There expected utility has been deprived of its most 
celebrated results, the results on risk aversion of Pratt and Arrow. Machina 
showed that these results, extended in a natural way, hold in the general 
(differentiable) case, without needing the assumption of expected utility maxi- 
mization. Further Machina gave an extensive discussion of the 'sure-thing 
principle'. Nowadays decision scientists usually deviate from expected utility. See 
for instance the survey in Machina [35], and Fishburn [18]. Our paper builds on 
one of these deviations, the 'Choquet-expected utility approach', initiated by 
Schmeidler [42]. 

Another impulse for the deviation from expected utility stems from the recent 
developments in artificial intelligence. The prevailing view is nowadays that 
(subjective) probabilities are too restricted and intractable to describe reasoning 
with uncertainty, or for the updating of knowledge. See the introductions in Pearl 
[38], Halpern and Rabin [22], or Dubois and Prade [14]; or many contributions in 
Kanal and Lemmer [28, 29]. For example, it is usually felt that expressing 
subjective probabilities in exact real numbers is too specified to be sensible. This 
also hinders the application of the formula of Bayes to the incorporation of new 
information. The formula of Bayes requires exact probabilities (also concerning 
the event of the acquisition of information) to be available at the outset (compare 
Pearl [38], p. 242). 

For the above reasons, ways of modeling knowledge have become popular 
which are less restrictive. For instance one may want to work with 'upper and 
lower probabilities'. This is central in the 'belief functions' (and 'plausibility 
functions') of Dempster [11] and Sharer [44], as shown in Kyburg [31]. See also 
Sharer and Logan [45] (in particular Section 1.3), Shortliffe and Buchanan [46], 
BolaNos, Lamata and Moral [5], and the refinement in Jaffray [26, 27]; further 
Gordon and Shortliffe [21] and Nilsson [37] and the references therein. It made 
possible a new, often discussed way to model learning from new information: 
'Dempster's rule for combining evidence'. 

We shall consider another example, still more general than belief functions: 
'Fuzzy measures'. These were introduced by Sugeno [48], as a variation upon the 
fuzzy sets of Zadeh [60]. In other contexts set functions with identical mathemati- 
cal properties had been known for longer times, such as the 'capacities' in 
Choquet [7], 'monotonic normalized' characteristic games in cooperative game 
theory (see for instance von Neumann and Morgenstern [51] or Driessen [13]), 
or the 'nonadditive probabilities' in decision making under uncertainty (see 
Schmeidler [42]). 
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Fuzzy measures, and the multitude of other functions used to model knowl- 
edge, have often been criticized for being 'ad hoc' (see for instance several places 
in Kanal and Lemmer [28, 29]). Mathematical operations are defined and pushed 
forward only on the basis of intuitive appealingness, without empirically-founded 
meaning. In applications where the 'min'-operation, used by 'possibility 
measures' for AND, did not give a satisfactory result, Zadeh proposed to use 
a multiplication operation instead, only on an ad hoc basis, in Zadeh [61] 
(footnote p. 31) and Zadeh [62] (p. 34). The desirability of an empirical basis has 
been mentioned in fuzzy set literature, see for instance Zadeh [61] (p. 7, 1. 
32-35), Dubois and Prade [14] (Introduction), Giles [20] (p. 299, especially lines 
35-38), and Hisdal [23] (especially p. 329). 

Such an empirical basis will be given in this paper. We use recent developments 
in decision theory, contribute to these, and derive from these a behavioral 
foundation for fuzzy measures. Thus the edge is taken off the criticisms as 
described above. Let us emphasize that the behavioral foundation by itself does 
not entail a defense or criticism of fuzzy measures. All it does is 'translate' the 
meaning of fuzzy measures into empirical terms. It shows how to derive testable 
implications, without choosing sides. Again, this is analogous to Savage's 
behavioral foundation of expected utility. Allais [1] used it (mainly the sure-thing 
principle, or its analogue 'independence') to devise his famous example against 
expected utility. 

Let us consider Theorem 11 below. The 'theoretical' statement (i) describes the 
model with fuzzy measures and Choquet-expected utility (i.e., the integral in that 
statement). Statement (ii) 'translates' statement (i) into empirical terms. Fuzzy 
measures to be used through Choquet-expected utility are appropriate and can be 
justified/verified if and only if the empirical conditions in statement (ii) of 
Theorem 11 are/can be; alternatively, they are not appropriate and can be 
criticized/falsified if and only if the empirical conditions in the statement (ii) 
are/can be. If one starts from a fuzzy measure and derives preferences from it, 
then statement (ii) shows which preferences are excluded through this procedure, 
and which are available. Also the procedure may be reversed. One may start, in a 
'descriptive vein', from observed preferences, and then derive from these the 
fuzzy measure, as described in the proof in Section 5 (see (9), (10), and (11)). 
Statement (ii) shows for which preferences indeed this procedure works. 

The main intuitive tool to obtain our results will be the 'hedging' idea as 
described for risk theory in Yaari [58]. The main mathematical tool will be the 
work laid down in Schmeidler [42, 43]. Making the work of Schmeidler more 
easily accessible has been an additional goal of this paper; his result, for finite 
state spaces, is obtained below as a corollary of Theorem 11. 

All theorems in the sequel will be formulated so that they can be understood 
immediately, without consultation of the text, with the exception of the involved 
definitions of course. 

2. Elementary definitions of Savage 
First let us shortly discuss the works of de Finetti [8, 9] and Lindley [33], which 

are related to Savage [41]. These works also obtain behavioral foundations for 
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subjective probabilities, by means of 'coherence', and are more often quoted in 
artificial intelligence literature. Everything said in this paper concerning Savage 
[41] applies to these works as well. Wakker [54] (Section A2) argues that the 
work of de Finetti (this applies to the derived work of Lindley as well) implies a 
linearity of utility, in a way often neglected in literature; a quantitative nature of 
consequences is essentially needed. Linearity of utility (w.r.t. the quantitative 
nature of consequences) is mostly considered too strong a restriction in decision 
theory. 

Next we give the definitions needed to sketch, roughly, the work of Savage 
[41]. By S = { S l , . . . ,  sn} we denote a (for convenience finite) set ('space') of 
('crisp') (possible) states (of nature) (in other contexts called 'possible worlds', 
'elementary outcomes', 'elementary propositions', etc.). Exactly one state is the 
true state, the other states are untrue. For example one may think of a horse race 
that will take place, with n participating horses; sj is the 'state' that horse j will 
win. A person (intelligent system, robot, animal . . . .  ), called decision maker, 
does not have enough information to be certain which state is the true one, and 
has not any influence upon the truth of the states. Question is at this moment 
whether the knowledge of the decision maker can be modeled through a 
'subjective' probability distribution P over S, with P(A) measuring the 'degree of 
belief' of the decision maker in the truth of A. A basic idea, and one of the great 
contributions, of Savage's set-up is the idea that a probability measure by itself 
has no meaning. Only when it can be related in some sense to (observable) 
behavior with consequences that matter, does it get meaning. The observable 
behavior of the decision maker is modeled in Savage's decision-theoretic 
approach as the choosing, in any situation, between the so-called 'acts' available 
to him (or her). The term 'act' may be somewhat misleading, the behavior of the 
decision maker only consists of choosing one of the available acts. The resulting 
consequence of a chosen act depends upon which state is the true one. 

Formally, the set of all consequences that may in any situation result from any 
act is denoted by ~¢. For simplicity of exposition we assume that ~f = ~,  
designating amounts of money. In the appendix we shall show how the results can 
be generalized to more general consequence sets. So now we assume that a 
consequence is completely described through the resulting amount of money. An 
act f is just a function from S to ~,  assigning to every state s the consequence f(s) 
which would result if s would be true and fwould  have been chosen. ~: is U s, i.e., 
the set of all acts. Since the decision maker is uncertain about which state is true, 
he is uncertain about which consequence will result from a chosen act. For 
example if S describes a horse race, then 'acts' may consist of betting money on 
horses. 

Formally the (dispositional) choice behavior of the decision maker is modeled 
through a binary relation (the preference relation) >~ over the set ~ of all acts. We 
write f >~ g if the decision maker thinks f is at least as good as g, i.e., is willing to 
choose f if f, g are available to him. In any situation (with a finite number of acts 
available) the decision maker will choose the available act which is optimal 
according to ~>. The choice behavior of the decision maker, modeled through ~>, 
is considered to be the observable primitive of the model. Essential for the 
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meaning of subjective probabilities (or belief functions, fuzzy measures . . . . .  etc., 
as well as utility functions) is their relation to the preference relation. Without 
that relation to the preference relation, the meaning of subjective probabilities 
etc. would be void. Note that in this set-up there is nothing fuzzy in the 
preferences. All fuzziness is modeled through the state space. The only vagueness 
(fuzziness, uncertainty, . . ,  etc.) concerns the true state; the preference relation 
describes how to make decisions while facing this vagueness. 

Savage formulated a list of 'internal consistency' ('coherence') conditions for 
the preference relation, sufficient for the applicability of expected utility, i.e., 
sufficient for the existence of a probability measure P on S, and a 'utility function' 
U:C--->R, so that 

f ~g <:~ fsU(f(sl) dP(s)>~ fsU(g(s))dP(s) • 

We shall not repeat all the conditions of Savage [41]. Recent formulations have 
been provided in Fishburn [16] (Section 14), and Wakker [54] (Section A2), and 
on many other places. Let us only emphasize that all conditions are directly in 
terms of the preference relation, so that they have empirical meaning. The very 
idea of obtaining such a 'behavorial foundation' is one of the great achievements 
of Savage. Throughout this paper the behavioral foundations, given in statements 
numbered (ii) in theorems in the sequel, will also be directly in terms of 
conditions of the preference relation. 

Savage's conditions can be split into two categories, the intuitively meaningful 
conditions which are also necessary for expected utility maximization, and the 
('continuity-like') technical ones which are not fully necessary for expected utility 
maximization. The technical conditions in Savage are rather intractable, and for 
instance turned out to imply boundedness of utility in a 'hidden' way. Hence, for 
as far as we know, no scientific analysis has actually taken the set-up of Savage as 
point of departure. The most usual approach builds upon Anscombe and 
Aumann [3], and assumes that consequences consist of 'objective' probability 
distributions over 'prizes'. That induces a very convenient linear structure on the 
consequence space, and will also be the approach of this paper. In many contexts 
objective probabilities are not given, and other set-ups are required. This 
motivated the derivation of expected utility in Wakker [54] (Theorems IV.2.7 and 
V.6.1). There no objective probabilities are needed, and the only technical 
restriction left is continuity of utility. This is more tractable and suited for 
applications than Savage's technical conditions. The conditions for the preference 
relation are more complicated than those of Anscombe and Aumann [3], and the 
proofs much more complicated. Also for the characterization of fuzzy measures 
as provided in this paper a derivation which does not use objective probabilities 
as a tool may be desirable. Such a derivation (using the term 'capacity' instead of 
fuzzy measure), again with continuity of utility as only restriction left, has been 
obtained in Wakker [53] and Wakker [54] (Theorem VI.5.1). Again, the involved 
conditions are more complicated, and the derivations are much more compli- 
cated. A derivation of fuzzy measures with technical restrictions analogous to 
those of Savage, has been provided in Gilboa [19]. 
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3. Elementary definitions of our set-up 

S, ~ ,  and ~ are as in Savage's approach above. We assume that the 
consequence space ~ is the set ~ of money  lotteries. I.e.,  an element 
P = (pl ,Xl . . . . .  Pro; Xm) from ~ is a probability distribution with finite support 
over R, resulting with probability p~ in the amount of money (real number) 
xl . . . .  , and with probability Pm in the amount of money (real number) Xm. Of 
course, to any A c •, P assigns probability ~x,~APi- Money lotteries can be 
'mixed', for 0 ~< a~ ~< 1, a~P 1 + (1 - a0P 2 assigns tYPI(A) + (1 - t~)p2(A) to each 
A c R. For any function U: R --> R, by E U  we denote the function assigning to 
each money lottery the expectation of U ('expected utility', if U is 'utility') under 
the lottery, i.e., 

m 

E U : ( p l ;  Xl,  . . . , pm;Xm)~-> ~'~ piU(xi) .  (1) 
i = l  

An act f will result in the money lottery f ( s j )  where sj is the true state. Of course, 
next the probability mechanism of f ( s j )  will determine the amount of money 
received by the decision maker. Note that we do not assume any probability 
measure given on S. Acts can also be mixed, in a 'pointwise manner ' ,  as 
a f  + (1 - tr)g :s ~ af (s )  + (1 - tr)g(s). 

Like in Anscombe and Aumann [3] and Schmeidler [42], in our analysis the 
stochastic mechanism determining which amount of money will result from a 
money lottery is not the central interest. Rather is it an auxiliary structure to 
facilitate the analysis. It makes possible the application of techniques for mixture 
spaces as started in the Appendix of von Neumann and Morgenstern [51], and 
extensively used in Fishburn [17], and many other recent works in decision 
theory. We shall assume that the stochastic mechanism is well-established, and 
does not induce any vagueness. For instance, it may be constructed by an 
unbiased lottery wheel. Hence we shall, like Anscombe and Aumann [3] and 
Schmeidler [42], assume in the sequel that the decision maker uses expected 
utility to value money lotteries. Our central interest will be the way in which the 
decision maker processes the vagueness concerning the true state. 

Let us give one more comment concerning Anscombe and Aumann [3]. They 
not only use probability distributions over consequences, but also over acts. 
However, they add a 'reversal of order' condition which entails that the only 
relevant aspect of a lottery over acts is the induced marginal lotteries (given any 
state) over consequences. Hence one may as well describe a lottery over acts by 
the induced marginal lotteries given states, leading to the set-up of this paper. 

As usual, we write f > g if f ~ g and not g ~ f ,  f < g if g ~ f ,  f < g if g > f ,  and 
f = g  i f f  ~>g and g ~>f. We call ~ a weak order if it is complete ( f  ~ g  or g ~ f f o r  
all f, g) and transitive, and ~ is trivial if f ~>g for all f ,  g. We identify money  
lotteries with constant acts, and write p1 ~ p2 i f f  ~ g  for the acts f constant P~ and 
g constant p2; analogous notations are used with > ,  ~<, < ,  - .  This induces 
preference relations over money lotteries. A function tp: ~---> R represents ~ if, 
for all acts f,  g, 

f ~>g ¢:} g}(f) I> ~(g). 
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We call >> (mixture-)continuous if, for all f > g > h, there exist positive o~ and fl 
so ('close to 0') that (1 - o~)f + o~h > g  > [3f + (1 - fl)h. 

We call > weakly monotonic if, for all acts f, g, 

I f (s)  > g(s) for all s] ~ [ f  > g]. 

Before turning to the idea of hedging let us give some definitions. A function 
v:2s---> [0, 1] is a fuzzy measure if v ( ~ ) = 0 ,  v(S)= 1, and v is monotonic w.r.t. 
set-inclusion, i.e., A ~ B ~ v(A) >1 v(B). We call v a probability measure if it is 
a fuzzy measure which is additive, i.e., v(A U B)= v (A)+ v(B) for all disjoint 
A , B .  

One of the most difficult steps in finding a behavioral foundation for fuzzy 
measures is to find a sensible way to integrate with respect to these (in general) 
nonadditive functions. In the context of (subclasses, usually 't-conorms', of) 
fuzzy measures, several functionals have been studied in the literature, and 
proposed as 'integrals'; see for instance Weber  [56, 57], Smirez Garcia and Gil 
,Advarez [47], Sugeno and Murofushi [49], and Hua  [25]. The most well-known 
functional is the integral of Sugeno [48]. It is not linear (see Klement and Ralescu 
[30]) and for probability measures does not coincide with the usual integral. 
Sugeno did obtain, for probability measures, an upper bound for the difference 
between his integral and the usual integral; Murofushi and Sugeno [36] 
(Proposition A2.1) extend this. We follow the way of integration of Schmeidler 
[42], which later turned out to have been found already by Choquet  [7]. Also 
H6hle [24] found this way of integration for fuzzy measures as did Quiggin [40] 
for the context of decision making under risk with given probabilities. We prefer 
this 'Choquet integral' because it is an extension of the usual integral for 
probability measures, is defined for any fuzzy measure, and is characterized by 
natural 'integral-like' additivity conditions in Anger [2] (Theorem 3) and 
Schmeidler [43]. Also Murofushi and Sugeno [36] observed these advantages. The 
applicability of the Choquet  integral to fuzzy measures has been noted in H6hle 
[24] (his form is essentially equivalent to the Choquet  integral), Weber  [56], 
Sugeno and Murofushi [50], and Murofushi and Sugeno [36]. The usefulness for 
fuzzy measures of the decision-theoretic approach to Choquet  integration has 
been noted in Wakker  [52] (Example 7.8 and p. 21 lines 12-16). The present 
paper has grown out of an elaboration of the latter, and was announced in 
Wakker [55]. 

For a fuzzy measure v, and a function ~:S---> R, the Choquet integral of q~ 
(with respect to v), denoted f s  q~ dr ,  or S ~b do, is 

v({s e S: ~(s) >I r}) d r  + [v({s e S: ~(s) /> r}) - 11 dr. 

For probability measures the Choquet  integral is identical to the usual integral. In 
this paper we shall exclusively deal with the case where q~ = EU of with f an act, 
and EU a ('utility') function from ~ to N. Substituting that gives 

fo v((s e s: e u f f ( s ) )  >i r}) dr + [v({s e s: e u ( f ( s ) )  >>- r} )  - 11 dr. 
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-~~I v({Sl'""Sn})~ v(lSl'"~Sn})~j~th column 

v({S 1 .... sj } ) ~ t h  rectangle v({S I .... sj})~ 

s s ~ ~-:~/-~/-'. - I~'~N'N["k-'~ first 
v({ 1 .... J-! }) "~//////~ first ~.]q~,~%[%~] column 

~///Jt'////] rectangle 
v (( s 11) ~ . , , . [Y / / /F / / /A  ' r  v (( a 1 }) 

V///Z/////~T 

EU (f (sj)) EU (f (Sl)) U (f (sj)) EU (f (Sl)) 
EU (f (sj + 1 )) 

Fig. la. The Choquet integral of the function E U o f : S - ~  O~ illustrated for the case EUOr(sl)) >~.. • >I 
EU( f ( s , ) )  >>- O, according to the definition. The Choquet integral is the area below the graph of the 
function ~ v({s: EU(f(s ) )>i  ~}) on R+, i.e., the area dashed with upward or downward slope. It 
can be calculated as the sum of the areas of the rectangles dashed with upward slope. The height of 
the j-th rectangle is v({sl  . . . . .  s j } ) -  v({s  I . . . . .  sj_l}), the breadth is EU(f(s i )  ). The product of 
these two is the j-th term in formula (4). Also one can calculate the sum of the areas of the columns 

dashed with downward slope. The area of the j-th column is the j-th term in formula (6). 

See Figure la. As for additive v this is the usual expected utility off ,  for general 
v we call it the Choquet-expected utility off. The results concerning the Choquet 
integral, given below, and well-known, are elucidated in Wakker  [54] (Chapter 
VI). 

Let ~ :  {1 . . . . .  n}--~S be a bijection so that 

E U ( f ( ~ t ( 1 ) ) )  >I E U ( f ( ~ ( 2 ) ) )  >~. . . >I E U ( f ( ~ r ( n ) ) ) .  (2) 

!I 
. I first column 

EU (f (sl)) ~ j-th column 

Eu( (D) ~ ' 0 ~ ' -  . . . . . .  ~ 

I ~ /  v ( 1 8 x ' " " S j l )  

v(l a1,..~ sj-1 }) 

first 
EU (f (Sl)) ~ ~ rectangle 

~ ~ j-th 
~ rectangle 

Eu (f ( s j ) )  *-K-~ ~ .~,~ N \  ' "  

[ / 
v 11 S I' "~ Sj I) 

v ({ S I, "', Sj- I }) 
v 

s 

Fig. lb. The same Choquet integral as in Figure la, but now obtained by flipping Figures la  
horizontally and rotating right. Rectangles thus become columns and vice versa. The resulting figures 
can be interpreted as the graph of the function EUof :S - -~  R. The height of the j-th column indicates 
the EU-value assigned to state sj. The breadth of the first j columns, so of the j-th rectangle, is 

,.,({~, . . . . .  ~j}). 
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I.e., :r orders states from most to least 'favorable',  given function EUof. Define 

P'~({s}) := v({t e S: :r-'(t) <~ : r- l(s)}) - v({t e S: : r - ' ( t )  < :r- ' (s)}) .  (3) 

So P=({s}) is the 'marginal fuzzy measure-contribution of s to the states more 
favorable than s'. This induces a probability measure P "  on S. Now let f be an 
act, and EU: ~----> ~ a function. It can be seen (see Figue 1) that 

f EUof dv = ~ P'~({si})EU(f(si)). (4) 
i = 1  

From this one easily obtains, for any real )~, 

f (~. + EUof) dv = ~. + f EUof dr. (5) 

Formula 4 is most suited for applications and intuition, since the numbers 
P'~({si}) can be interpreted as 'act-dependent '  (through z 0 probabilities. The next 
formula (see again Figure 1) is most suited for mathematical derivations, and will 
be used in Section 5. We write EU(f(zc(n + 1))) := 0. 

f e u o f  ~ [ v ( { : r ( 1 ) , . . . ,  :r(i)})] x [eu(f(:r(i)) - eu(f(:r(i + 1)) 1. (6) dv 
i = l  

4. Independence in the presence of hedging, and main theorems 

Savage [41] (p. 68) wrote: " . . .  t h e . . ,  view sponsored here does not leave 
room for optimism or pes s imism. . ,  to play any role in the person's judgement of 
probabilities". Fuzzy measures generalize Savage's expected utility approach by 
leaving such room for optimism or pessimism phenomena. Let us elucidate this 
through formula (4). The probabilities Pn({si} ) (interpreting the marginal 
fuzzy-measure contributions as such) may now depend on the act f through the 
way in which f (viz. :r in (4)) orders the states from most to least favorable (this 
interpretation has been introduced in Wakker [52]). A pessimistic decision maker 
now has the possibility to assign larger probabilities to states when they are 
unfavorable, than when they are favorable. Because of this, a pessimistic decision 
maker appreciates 'hedging' against vagueness as in the following example. 

Example 1 [Hedging]. (It can be seen that this example is a variation of the 
'Ellsberg paradox'.) Suppose there are only two states of nature, sl and s2. The 
decision maker does not have information which would make one state more 
likely than the other. The following table describes the EU-values of the money 
lotteries assigned to the states by acts f, g, h, f ' .  Act f is the 1 ~-~ mixture of g and 
h, a c t f '  the 1 1 2-2 mixture of f and h. 

f g h f '  

sl 0 1 -1 _1 
1 s2 0 -1 1 
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A pessimistic decision maker will dislike the vagueness about the states. If he 
chooses act g he will give most weight to the unfavorable state s2, if he chooses 
act h he will give most weight to the unfavorable state sl. Act f does not involve 
any vagueness and will be preferred both to g and h. The effect of concern to us is 
the 'hedging' involved in mixing g and h. In the mixture (f=)~g + ½h, the 
favorable outcome of g given Sl gives a hedge against the unfavorable outcome of 
h given s~, and the favorable outcome of h given s2 gives a hedge against the 
unfavorable outcome of g given s2. In this extreme case a complete hedge against 
vagueness occurs. Appreciation of the hedging can be modeled by Choquet- 
expected utility, by setting 3.:= LI({S1}) : Lf({S2}) • 1 Then both for g and h the 
most favorable state gets assigned, according to Formula (3), marginal fuzzy- 
measure contribution A, the least favorable state gets assigned the higher 
marginal fuzzy-measure contribution 1 -A.  

For the sequel it is useful to note that, whereas f > g, mixing each act with ½h 
1 1 f l  leads to a reversion of preference, i.e., ~ + ½h < ~g + ~h, or, rewritten, <f .  

Again, hedging effects explain this. 

The point of the hedging in the above example was that acts were mixed which 
ordered states differently as regards 'favorableness': For act g state Sl was the 
most favorable, for act h state s2. Such hedging effects are excluded if acts are 
'comonotonic': 

Definition 2 (See Figure 2, left and middle). Acts f and g are comonotonic if 
there do not exist states s and t so that f (s)  > f ( t )  and g(s) < g(t). 

I f f  and g are comonotonic, then by Wakker [54] (Lemma VI.3.3) there exists a 
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Fig. 2. Comonotonicity and maxmin-relatedness. Left: l a n d  g are not comonotonic since for f s t a t e  s 1 
is strictly more favorable than s4, whereas for g it is reversed, s4 is strictly more favorable than sl.  
Middle: f and g are comonotonic. For each act state s2 is at least as favorable as s4, s4 is at least as 
favorable as s~, s 1 is at least as favorable as s 3. f a n d  g are not maxmin-related, for state s 1 (as well as 
s4) each act is neither maximal, nor minimal. Right: Extreme case of comonotonicity: f and g are 
maxmin-related. To change the acts from the middle figure to obtain maxmin-relatedness, EU-values 
had to be 'driven to the extreme' (old values indicated by dashed lines). In s~ the EU-value o f f  was 
lowered to the minimal EU-value of f ,  in s 4 the EU-value of g was increased to the maximal EU-value 
of g. Now in s I and s 3 act f has its minimal EU-values, in s 2 and s 4 act g has its maximal EU-value. 



A behavioral foundation for fuzzy measures 337 

bijection ~r : {1, . . . ,  n}---> S so that simultaneously 

and 
f(oz(1)) ~>f(~r(2)) ~>. . .  >~f(~r(n)) 

g(~r(1)) ~> g(~r(2)) >~.- .  ~> g(oz(n)). 

This shows that two acts are comonotonic if and only if the favorability ordering 
of states, described by ~r, can be taken the same for the involved acts. A set of 
acts is comonotonic if every pair of acts in the set is comonotonic. As shown in 
Wakker [54] (Lemma VI.3.3) then a ~r as above can be obtained applying 
simultaneously to all acts in the set. In other words, on a comonotonic set the 
'act-dependent'  probabilities P~ in (4) can be taken constant, and the Choquet  
integral behaves as a usual additive integral with respect to a usual additive 
probability measure. Dellacherie [10] was the first to see this role of comono- 
tonicity for nonaddive measures and the Choquet  integral. The additive character 
of the Choquet integral was independently observed in Schmeidler [42, 43] and 
Murofushi and Sugeno [36]; the rank-ordering of outcomes as in Section 3, line 4 
in the latter reflects comonotonicity. 

The following condition was used in Anscombe and Aumann [3] to characterize 
expected utility in the present set-up, with money lotteries as consequences. 

Definition 3 (see Figure 3). We say ~ satisfies independence if, for all acts 
{f, g, h }, and 0 < a~ < 1, 

f ~ g  ~ o c f + ( 1 - a 0 h > a ~ g + ( 1 - o 0 h .  

The idea is that, if in a mixture of acts, one 'ingredient' (g above) is replaced by 
a better 'ingredient' ( f  above),  then the mixture should improve by that. The 
condition does not reckon with attitudes towards hedging, and then, as in 
Example 1, is not appropriate if there is vagueness inducing hedging. Indepen- 
dence is the natural analogue of Savage's famous 'sure-thing principle'; about that 
principle analogous intuitive comments can be made. 

The term cardinal, used in the following theorems, in this paper is no more 
than a convenient abbreviation of 'unique up to a positive affine transformation'. 
A transformation is positive affine if it multiplies with a positive real number 
and/or adds up a real number. Section 5 proves Theorem 11, and derives 
Theorems 4 and 6 as corollaries. 

Theorem 4 (Anscombe and Aumann).  Let ~ be the set o f  money lotteries, S a 
finite set of  states, o ~ the set o f  functions from S to ~ (acts), and ~ a nontrivial 
preference relation on o ~. The following two statements are equivalent: 

(i) There exist a probability measure P on S, and a 'utility function' U : ~ ---> ~,  
so that f ~ ~s EU of dP represents ~.  

(ii) The preference relation ~ is a weakly monotonic mixture-continuous weak 
order, satisfying independence. 

Further, P in (i) is uniquely determined, and U is cardinal. 
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Fig. 3 (Independence). In the D-points the decision maker must choose; in the O-points chance (say 
roulette wheel) chooses. The arrows > indicate preferences. According to independence the (very 
bold) preference 1 should imply the preference 3. 

One justification argues that if in a mixture of g and h the ingredient g is replaced by the 'better' 
ingredient f, then the mixture as a whole should become better by that. 

Another justification argues as follows. The preference 1 should imply the preference 2, the 
involved choice situations being identical. The preference 2 should imply the preference 3, the 
involved choice situations being 'strategically' equivalent. 

Comonotonic independence requireg the implication of preference 3 by preference 1 only if all 
involved acts are comonotonic, maxmin-independence requires the implication only if all involved acts 
are maxmin-related. The idea is that, because of vagueness, the mixing of acts may induce 'disturbing' 
hedging effects. Hence, only if hedging effects are excluded by comonotonicity or maxmin- 
relatedness, the implication is required. 

So independence ,  in the p resence  of  the  o the r  condi t ions ,  leads to the  usual  
' p robab i l i zed '  expec ted  utility, where  no vagueness  abou t  the s ta tes  is incorpor-  
ated.  In the p resence  of  hedging-a t t i tudes ,  the impl ica t ion  in i ndependence  is 
natural  only  when  there  is no 'd i s turb ing '  hedging  effect  in the involved mixings.  
This leads to the fol lowing definit ion,  in t roduced  in Schmeid le r  [42], and  w e a k e r  
than  independence .  

Defini t ion 5 (see Figure  3). W e  say ~ satisfies comonotonic independence if, for  
all comono ton i c  {f, g, h }, and 0 < tr < 1, 

f > g ~ af  + ( 1 -  o~)h > o~g + ( 1 -  o~)h. 

Schmeidler  [42] p roved ,  for  the contex t  o f  decision theory  with ' nonadd i t ive  
probabi l i t ies '  instead of  fuzzy measu res ,  the fol lowing result.  H e  indicated an 
extension of  the result  to infinite s tate  spaces and ' b o u n d e d '  acts ( i .e . ,  E U o f  is 
bounded) .  
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Theorem 6 (Schmeidler). Let ~ be the set of  money lotteries, S a finite set of  
states, ~ the set of  functions from S to ~ (acts), and >~ a nontrivial preference 
relation over ~. The following two statements are equivalent: 

(i) There exist a fuzzy  measure v on S, and a function U:~---> R, so that 
f ~ Ss EU of dv represents >~. 

(ii) The preference relation >~ is a weakly monotonic mixture-continuous weak 
order, satisfying comonotonic independence. 

Further, v in (i) is uniquely determined, and U is cardinal. 

An extreme case of comonotonicity is the case where one act, say f, is constant. 
Then no optimism or pessimism is involved in the valuation of f,  so, as one easily 
sees: 

Lemma 7. Every act g is comonotonic with every constant act f. [] 

Restricting 'comonotonicity' in Definition 5 to the extreme case where one act 
(say h) is constant, leads to a condition too weak for our purposes. The following, 
somewhat less extreme, case will however suffice, Note that the following 
definition is symmetric in f and g. 

Definition 8. Acts f and g are maxmin-related if 

either for every state s: [Vt e S: f ( s )  ~ f ( t ) ]  or [Vt e S: g(s) ~<g(t)], 

or for every state s: [Vte S: g(s) ~g( t ) ]  or [Vt e S: f ( s )  ~f ( t ) ] .  

So one of the acts should be the 'max-act' ( f  in the 'either-case' above, g in the 
'or-case'), the other the 'min-act' (g in the 'either-case' above, f in the 'or-case'), 
so that: For every state: Either the max-act assigns its maximal value, or the 
min-act assigns its minimal value. This explains the term. It should not appeal to 
max-min-like optimization techniques. Finally, a set of acts is maxmin-related if 
every pair of different acts in it is maxmin-related. (Note that an act f usually is 
not maxmin-related with itself!) Note that for maxmin-related acts f,  g never 
simultaneously f ( s )  > f ( t )  and g(s) <g( t ) :  Given these preferences, state s 
excludes the possibility that f were the min-act and g the max-act, state t excludes 
the possibility that f where the max-act and g the min-act. So maxmin-related acts 
are comonotonic: 

Lemma 9. A maxmin-related set is comonotonic. [] 

The following definition replaces 'comonotonic' in Definition 5 by 'maxmin- 
related', thus leads to a definition which in general is weaker than comonotonic 
independence. We shall however see that in the presence of some other 
conditions maxmin-independence becomes equivalent to comonotonic independ- 
ence. (Compare statement (ii) in Theorem 6 and statement (ii) in Theorem 11; 
each is equivalent to the same statement (i).) 
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Definition 10 (see Figure 3). We say ~ satisfies maxmin-independence if, for all 
maxmin-related {f, g, h }, and 0 < cr < 1, 

f >g  ~ a f  + ( 1 - t r ) h > o l g + ( 1 - o O h .  

The following theorem strengthens the theorem of Schmeidler [42]. Recall that 
the notation EU has been introduced in (1). 

Theorem U.  Let ~ be the set of  money lotteries, S a finite set o f  states, ~; the set 
of  functions from S to ~ (acts), and ~ a nontrivial preference relation over J;. The 
following two statements are equivalent: 

(i) There exist a fuzzy  measure v on S, and a function U:ff~---> ~,  so that 
f ~ fs  EU of dv represents ~. 

(ii) The preference relation ~ is a weakly monotonic mixture-continuous weak 
order, satisfying maxmin-independence. 

Further, v in (i) is uniquely determined, and U is cardinal. 

In the present context, where lotteries are for money, it is very natural that the 
function U in (i) in the theorems above is increasing; this can be obtained by 
adding in (ii) everywhere the requirement that tr ~> fl ¢~ tr I>/3 for any degenerate 
lotteries te (= (1; or)) and/3 (= (1;/3)); or, equivalently, by adding an assumption 
of '(strict) stochastic dominance'. 

For the proof of the above theorem, given in Section 5, we could have closely 
followed Schmeidler [42, 43]. His proof can straightforwardly be adapted to our 
case of maxmin-relatedness. His proof is however not easily available. It is split 
into two parts. In Schmeidler [42] it is proved that a functional, analogous to CU 
below, satisfies a list of conditions. Next Schmeidler [43] is used to show in 
general that functionals satisfying the involved conditions are a Choquet integral. 
We take the opportunity to give an alternative presentation, with a 'one-stage 
all-in proof', without requiring knowledge of functional analysis, as Schmeidler's 
proof does. Our proof uses ideas of Theorem 3 in Anger [2], who already, in a 
slightly different context, obtained the result of Schmeidler [43] with comonotonic 
independence weakened to 'weak additivity', an analogue to maxmin-relatedness. 
Also the 'strong uncertainty aversion' axiom in Chateauneuf [6] was inspiring. 

5. Proof of theorems 

5.1. Proof of  Theorem 11 

First suppose (i) holds. All conditions apart from maxmin-independence are 
well-known and straightforward. We shall derive, stronger than maxmin- 
independence, comonotonic independence. So let {jr, g, h} be comonotonic. By 
Wakker [54] (Lemma VI.3.3) we can take ~ so that, for all f ' ~  {f, g, h}, 
f '(:r(1)) ~ f ' ( : r ( 2 ) ) ~ . - - ~ f ' ( ~ ( n ) ) .  It is straightforward from (i) that this also 
holds for every mixture of f, g, h. So we can write, according to (4) (noting that 
EU represents ~ on the constant acts, so that the :t in (2) can be chosen the same 
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as the :r above), f E U o f '  dv = ET=I e~({si})EU(f '(si)) ,  for any mixture f '  of f,  
g, h. Consequently 

f (Euoto4' + (x - .)h]) dr= (Euof') do] + 

both for f '  = f ,  and f ' =  g. From this and the fact that Choquet-expected utility 
represents ~ ,  comonotonic independence follows, hence also maxmin- 
independence. 

Next we suppose that (ii) holds, and derive (i) and the uniqueness result at the 
end of the theorem. Since all constant acts are mutually maxmin-related, 
restricted to the set of constant acts satisfies 'usual' independence; further it is a 
mixture-continuous weak order. Hence (see e.g. Fishburn [17] (Theorem 2.1)) 
there exists a cardinal function U : R ~ ~ so that on the set of constant acts P, 
is represented by P ~ EU(P). 

Note that the function U, mentioned in (i), has to be like the U just defined; 
hence U now has been obtained (up to a positive affine transformation). The 
following lemma derives 'certainty equivalents'. Because the mixture set gen- 
erated by one act together with all constant acts usually is not maxmin-related, 
the proof is less simple than in Schmeidler's case of comonotonic independence. 

Lemma 12. For every act f there exists a constant act Pf so that f -=- PY. 

Proof. Let k, l be so that f ( s ~ ) ~ f ( s t ) ~ f ( s l )  for all l~<i~<n. By weak 
monotonicity, f ( S k ) ~ f  ~f(s t) .  Suppose the preferences are strict (otherwise we 
are done immediately). Mixture-continuity implies that (within E U ( ~ ) )  the set of 
EU-values of the constant acts strictly preferred to f is open, as well as the set of 
EU-values of the constant acts to which f is strictly preferred. Since each of these 
open sets is nonempty, by convex-rangedness of EU, there must be a constant act 
Pf equivalent to f. [] 

Since all possible choices of Pf above are equivalent and have the same 
EU-value, we can define C U : f  ~-* EU(PI). Obviously CU represents ~ ;  this will 
often be used without further mention. Further CU is identical to EU on the 
constant acts. 

The remainder of  this proof  will be devoted to the demonstration that CU is 
Choquet-expected utility, with capacity v uniquely determined. 

Firstly, a preparatory lemma establishes a kind of 'maxmin-additivity' of CU 
(and implies the condition of maxmin-independence with equivalences instead of 
strict preferences). 

Lemma 13. Let acts f, g be maxmin-related. Then C U ( a f + ( 1 - r e ) g ) =  
~CU(f )  + (1 - oOCU(g ). 

Proof. Let phi__ h for all acts h. We may assume 0 < o~ < 1. It suffices to show 
that 

a f  + (1 - aOg -~ o~P I + (1 - oOg, 
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because we can repeat this result to establish equivalence with a~P I + (1 - oOP g. 
We shall only establish 

a f  + (1 - er)g ~ erP I + (1 - cQg, (7) 

since all following preferences (and minimal/maximal) can be reversed. If pI  is 
minimal (pI > Q for no Q) then, since EU represents ~ on constant acts, the 
right-hand act in (7) assigns to every state a money lottery not better than the 
left-hand act. By weak monotonicity (7) follows. So let there be a money lottery 
Q so that pr  > Q. To complete the proof, we suppose that a f  + ( 1 -  a0g < 
a~P I + ( 1 -  a)g  and derive contradiction. Since Q < f ,  by maxmin-independence 
we may add 

a~Q + (1 - c~)g < a f  + (1 - er)g < a~P I + (1 - cQg. 

By mixture-continuity there should be a mixture with nonzero weights of the left 
and right acts strictly preferred to the middle act. We are done if we show that 
the middle act is preferred to any such mixture. For any fl > 0, f > flQ + ( 1 -  
fl)Pf, so that by maxmin-independence err + (1 - tr)g > tr(flQ + (1 - fl)p1) + 
(1 - o:)g. U 

Secondly, we obtain the fuzzy measure v. By weak monotonicity and 
nontriviality we can fix some arbitrary money lotteries p l >  p0. Throughout this 
proof we use, for any P e ~ and A c S, the following notation: 

(pOmp) is the act assigning P to A, and p0 to A ¢. (8) 

Now, given U, if indeed CU is Choquet-expected utility, then the involved fuzzy 
measure v is straightforwardly seen to be uniquely determined as 

v :A ~ [CU((P°_AP1)) - EU(P°)] /[EU(P ~) - EU(P°)]. (9) 

While we have not yet established that CU is Choquet-expected utility, we can 
nevertheless see that the expression in (9) is invariant under application of a 
positive affine transformation on U, so that indeed v is independent of the 
particular choice of ('scale' and 'location' of) the cardinal U. Hence we define v 
as in (9), and have 

v is well defined and uniquely determined. (10) 

Mainly by weak monotonicity v is seen to  be a fuzzy measure indeed. For 
simplicity of notation we normalize U so that 

EU(P °) -- O, EU(P 1) = 1. 

This gives the simpler 

v :A ~ CU((P°_AP1)). (11) 

Thirdly, we show: 

L e m m a  14. For the set o f  acts o f  the form (P°_AP) with P ~ P ° ,  CU is 
Choquet-expected utility. 
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Proof. Twofold application of weak monotonicity (once with ~ ,  once with ~<) 
shows 

CU(f )  = CU(g) as soon as EU(f ( s ) )  = EU(g(s)) for all s. (12) 

Hence Lemma 13, with g =pO, shows that, for 0 ~  < o~< 1, CU( f )  = olCU(h) if 
EU(f (s ) )  = olEU(h(s)) for all s. Interchanging o~ and 1/a  and f and h if 
necessary, shows that this holds for all nonnegative ol (i.e., CU is kind of 
positively homogeneous). This and (11) give the lemma. [] 

Fourthly, we show: 

Lemma 15. For the set o f  acts f so that f ( s l )  ~f(s2) ~>--" ~ f ( s , )  ~ pO, CU is 
Choquet-expected utility. 

Proof (see Figure 4). We rewrite (6), with :t(j) = sj for all j, and with the order 
of terms reversed, as: 

f e V o f  = [ v ( { s , , . . . , s . } ) l x  e v f f ( s . ) )  dv 

"a t- [ U ( { S 1 , . . .  , Sn_j+l} )] X [EU(f(Sn_j+l)  ) - EU(f(Sn_j+2))]  

+ [v({sl})] x [EU(f(s l ) )  - EU(f(sz))]. (13) 

The proof will use induction in a way that shows how the Choquet integral is 
'built up layer after layer' by focusing during the induction step on the j-th term 
('layer') of (13) (doubly dashed in Figure 4). We define, for ] = 1 . . . .  , n, fJ as 
the 'truncation of f at its ]-th lowest value (f(s,_j+l))',  i.e., 

fJ is constant equal t o f ( s . _ ] + l )  o n  {sl . . . . .  s,_j}, fJ i s f  o n  {Sn_j+ 1 . . . . .  Sn}. 

So fJ assigns (at most)j  different consequences. It follows directly that CU o f f  1 is 
Choquet-expected utility, f l  being constant. 

Next we suppose (induction hypothesis), for some j > 1, that CU of f j-1 is 
Choquet-expected utility (i.e., it is equal to the first j - 1 terms of (13). We show 
that CU of fJ is Choquet-expected utility. By convex-rangedness of EU we can 
take P so that EU(P)  = EU(f(s ,_j+O) - EU( f (Sn_ j+2) ) .  By (12) (see Figure 4b) 

1 0 CU(½fj  + ½pO) = CU(½f j - ,  + ~P-~s, ........ ,+,)P)- 

Applying Lemma 13 to both sides of the equality, interchanging terms and 
multiplying by 2 gives 

c u ( F )  - c u ( F  -1) = cv(P°~s ,  ........ , , ~ e )  - cu(P°) .  

Substituting (by Lemma 14) Choquet-expected utility for the CU-values at the 
right-hand side, and using the definition of P, results in 

c v ( F )  - c v ( F  -1) = v( {s, . . . . .  s ._ j+ ,})  x [ e v ( f  (s._~+,) ) - e v f f ( s . _ ; + 2 ) ) l .  
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)) 

Fig. 4a. Illustration of Lemma 15. Formula (13) reverses the order of terms (or rectangles) as 
compared to formula (6) (or Figure lb) in the calculation of the Choquet integral. 

area of rectangle 
. graph ’ of EU(f') gives first term 

-'=ln Y' 

‘-, 
4 

‘graph' of EU(f ) ‘graph’ of p_ogs,, . . ., sn_j+l ))P 

Fig. 4b. A useful equivalence. The above mixtures (mixingp with PO, respectively mixingfj-’ with a 
two-valued act), give equivalent acts, by formula (12). Apply Lemma 13 to both mixtures, and 
interchange terms. It follows that the ‘CU-difference’ between the left-hand sides fj and fj-’ is the 
same as between the right-hand sides, i.e., as the j-th term in formula (13). This term has been doubly 

dashed in Figures 4a and 4b. 
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The second term in the difference in the left-hand side, by the induction 
hypothesis, is the Choquet-expected utility o f f  j-l, i.e., equals the first j - 1 terms 
in (13). The right-hand side equals the j-th term in (13). Hence the first term in 
the difference in the left-hand side equals the first j terms in (13), i.e., the 
Choquet-expected utility o f f  j. By induction, for f =f" ,  CU( f  n) equals (13), i.e., 
the Choquet-expected utility of f. [] 

Fifthly and finally, we show for arbitrary f that CU(f )  is the Choquet-expected 
utility of f, i.e., the Choquet integral of f o E U. Showing it for any f with f ( s )  ~ pO 
for all s is fully analogous to the above lemma, by a simple permutation of states. 
So we finally turn to acts f so that p0 is strictly preferred to some of the assigned 
money lotteries. Let for such an, arbitrary but now fixed, act f, p0, be a money 
lottery so that pO, <~f(sj) for each s t, e.g., p0, is the 'minimal' money lottery 
assigned by f. Define the 'location constant' lc by lc = - E U ( P ° ' ) .  Replace the 
cardinal U by U ' = U + I ~ ,  resulting in E U ' = E U + l c  instead of EU, and 
CU'= CU+ 1~ instead of CU. We can repeat the above exposition with p0' 
instead of pO, and pV instead of p1 so that EU'(P v) = 1 = EU(P 1') + lc. The 
result is that CU'(g) is the Choquet integral of g o EU' for any g with g(s) >~ pO, 
for all s, w.r.t, a capactity v' (v' = v will be shown). The result is also, by (5) and 
the role of l~ above, that CU(g) is the Choquet integral, w.r.t, the capacity v', of 
g o EU for any g with g(s) ~ pO, for all s, so certainly for f (so that showing v = v' 
will complete the proof), and certainly for any g with g ( s ) ~  pO for all s. The 
latter, together with (9), shows that v = v'. 

5.2. Proof of  Theorems 6 and 4 

The implication ( i ) f f  (ii) in Theorem 6 can be inferred from the beginning of 
Subsection 5.1. The implication ( i i )ff( i)  follows from Theorem 11, since 
comonotonic independence implies maxmin-independence. The implication (i) 
(ii) in Theorem 4 is straightforward. Finally, suppose (ii) there holds. This implies 
(ii) of Theorem 11, hence (i) there. Remains to be shown that the fuzzy measure 
v is additive. The result of Lemma 13 can now completely analogously be derived 
for all f, g. Applying it, for disjoint A, B, to the CU-values of the left- and 
right-hand side of 

!too oz~ ½pO _1oo oi 2~'-AUB" ) + = 1p°-ap1 + 2---B- 

and using (11), gives additivity of the fuzzy measure. 

6. A behavioral foundation for Zadeh's possibility measures 

In their full generality, fuzzy measures do not seem to be specified enough to 
be useful. This was argued for fuzzy set theory in Dubois and Prade [14] (above 
formula (15)), and several other places. Because of this there is interest in 
specified forms of fuzzy measures. 

Hence the results in Theorem 6 and its supplement Theorem 11 seem to be too 
general for direct applications. Still we hope these results will prove useful. 
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Because of their generality, they provide a convenient starting point for the 
derivation of more specified results. (A short survey of specified kinds of fuzzy 
measures and integrals is provided in Dubois and Prade [15].) As an example we 
show how to obtain a behavioral foundation of 'possibility measures', introduced 
in Zadeh [63]. It is our hope ¢o find a behavioral foundation of the belief 
functions of Dempster and Sharer, building upon Theorem 11. 

Definition 16. A fuzzy measure v is a possibility measure if, for all subsets A, B 
of S, 

v(A U B) = max(v(A), o(B)}. 

Below we use the notation (8). 

Lenuna 17. Let the assumptions, and statement (i), in Theorem 11, hold. Let A,  B 
be subsets o f  S. Then 

v(A U B) = max(v(A), v(B)} 

if  and only if, for some money lotteries p1 > pO, 

(e°ap1)= (P°AoBp1) or (P°_BP') = (P°,~oBe'). [] (14) 

The proof of the above lemma is obtained by substituting Choquet-expected 
utility, and is left to the reader. Let us next combine the above lemma, and 
Theorem 11, to formulate a behavioral foundation of possibility measures: 

Theorem 18. Let ~ be the set of  money lotteries, S a finite set o f  states, ~; the set 
of  functions from S to ~ (acts), and ~ a nontrivial preference relation over ~;. The 
following two statements are equivalent: 

(i) There exist a possibility measure v on S, and a function U: • ~ R, so that 
f ~ Ss EU of dv represents ~. 

(ii) The preference relation ~ is a weakly monotonic mixture-continuous weak 
order, satisfying maxmin-independence ; further for any subsets A,  B of  S, formula 
(14) holds. 

The uniqueness results are as in Theorem 11. [] 

Note that (14), the characterizing condition for possibility measures in the 
presence of the other conditions, reflects the intuitive idea of possibility measures 
that one of the subsets should be 'decisive', and that a kind of interaction 
between disjoint sets should be excluded. Zadeh [63] (formula (2.26)) defined 
two events A, B to be noninteractive if v(A tq B) = min{v(A), v(B)}. (Also the 
max-operation as applied to unions above is sometimes taken as noninteractive- 
ness of events.) The following lemma shows how to characterize noninteractive- 
ness. It is analogous to Lemma 17, and again the proof is left to the reader. 

Lemma 19. Let the assumptions, and statement (i), in Theorem 11 hold. Subsets 
A, B of  S are noninteractive if and only if, for some money lotteries p1 > pO, 

(P°AP')  = (POAmBP') or (P°aP')  = (P°_AmBP'). [] (15) 
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7. Conclusion 

Measures for valuing knowledge are usually judged by their intuitive appeal- 
ingness, computational efficiency, inner coherence, and/or performance in some 
applications. For one kind of such measures, fuzzy measures, this paper has given 
another kind of criteria, criteria derived from the decision-theoretic appropriate- 
ness for implementing decisions. This has been based on a theorem introduced by 
Schmeidler [42] into decision theory, and a strengthening of that theorem. While 
the criteria seem to be too mild, i.e., fuzzy measures seem to be too general, to 
be useful in applications, the obtained results may be useful as a starting point for 
other results. One example of that has been given, by deriving a behavioral 
foundation of possibility measures. 

Hopefully the results of this paper will help to value fuzzy measures and their 
many specified forms by more than ad hoc criteria. 

8. Appendix: Mathematical generaliTxtions 

To make the message of this paper as clear and accessible as possible, we have 
assumed that consequences are real numbers, designating amounts of money, or 
are money lotteries, and we have assumed that the state space is finite. In fact, 
the only mathematical structure of the consequence space ~ that we used was 
that this set is a 'mixture space' (see for instance Fishburn [17] (Section 2.1), Fish- 
burn [18] (Definition 8.3), Wakker [54] (Definition VII.2.1), etc.). This applies 
for instance to any convex subset of a linear space, a special case of which is the case 
of any convex set of probability distributions, such as considered in Schmeidler 
[42]. The only property of E U  that we used was that it is affine. Hence our results 
can for instance be applied to the case considered in Yaari [59], Chateauneuf [6] 
and Denneberg [12], with consequences (certain) amounts of money and utility 
linear. 

If indeed ~ is a convex subset of a linear space, then the generalization of 
Theorem 6 to the case of continuous (instead of affine) utility, (even when ~ is 
any connected topological space) has been carried out in Wakker [53] and 
Wakker [54] (Chapter VI). The extension of these results to infinite state spaces 
has been given in Wakker [52]. All the references just mentioned have been 
formulated for the context of decision theory. 

The following observation can be established by rereading the proof, and 
checking that nowhere we used more of maxmin-independence than the 
case described in the lemma. In particular Lemma 13 was needed only for two- 
valued g. 

Observation 20. In Statement (ii) in Theorem 11, maxmin-independence can 
further be weakened by requiring it only for the case where, in Definition 10, the 
act h is two-valued, and f or g is constant. [] 
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