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1. INTRODUCTION 

Let U: ‘93 + ‘$4 be a continuous function. Let cp: ~(‘3) + ‘3 be a “transfor- 
mation” (which in our terminology does not have to be bijective). We set 
u := q 0 U. It is well known that continuity of CQ implies continuity of Y. We 
shall consider the reversed question: Does continuity of u imply continuity 
of cp? Elementary as this question may be, we did not find a place in 
literature where the answer is given. In fact it is our experience that the 
probability that a mathematician at first sight will gamble on the wrong 
answer, is a strictly increasing function of his familiarity with elementary 
analysis, and is always above l/2. This paper will answer the reversed 
question above, in a somewhat more general setting, and give applications. 

2. THE MAIN THEOREM 

Throughout this section r denotes a connected topological space, u: r --+ 93 
and v: I--+ 93 are continuous functions, and cp: u(T) -+ ‘% is a transformation 
such that v = q ou. This section studies the question whether rp is con- 
tinuous. 

LEMMA 2.1. If q is nondecreasing or nonincreasing, then it is continuous. 

Proof: Since cp is a nondecreasing, or nonincreasing, function from a 
(connected) interval u(r) onto the (connected) interval v(T), cp cannot 
make “jumps,” and must be continuous. B 

LEMMA 2.2. The transformation q has the intermediate value property. 
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Proof: Let 2, v E r, with 1~ v. Let cp(l) < q(v). [The case cp(l) > q(v) is 
analogous.] Let ~(2) < p < p(v) for some /I. We must lind a ~1 between J, 
and v such that cp(p) = /I. Let G := {(U(O), u(a)) E ‘ill*: c E r}. G is the graph 
of 4p. Since u and U, thus (T H (I, u(a)), are continuous, G is connected. 
Let V= {(,u,cr)~G:p<J or [1<pLv and cr<p]}, and W= {(p,y)~ 
G: ,n > v or [A d ,u < v and y 2 /I J }. V and W are closed subsets of G with 
Vu W= G, (1, ~(2)) E V so V# 0, and (v, ~(v))E W so W# 0. By con- 
nectedness of G, Vn W # 0. Say (p, /I’) E Vn W. It follows that 8’ = B and 
that A < ,n < v. So cp(p) = /I, and the intermediate value property has been 
established. m 

EXAMPLE 2.3. The transformation cp is not necessarily continuous: Let 
cp: ‘9Z + ‘$l assign 0 to 0, and sin( l/p) to every ,u # 0. Let G be the graph of 
cp, and r= G. Let v be the projection on the second coordinate, u the 
projection on the first. Then indeed r is connected, v and u are continuous, 
and v = cp 0 U. Still cp is not continuous in 0. m 

LEMMA 2.4. If cp is bijective then it is either strictly increasing or strictly 
decreasing. 

ProoJ: It is sufficient to show, for any 2 < p < v in the domain of cp, that 
either ~(1) < cp(p) < q(v), or cp(n) > (p(p) > p(v). Say, for 1 <p < v, that 
cp(l) < q(v). We show that cp(l) < (p(n) < q(v). If we had cp(p) < q(l), then 
by Lemma 2.2 any value between ~(1) and qo(,u) would be assigned by cp 
to at least two arguments, one between I and ,n, and one between p and 
v. By bijectivity of q this cannot hold. An analogous violation of bijectivity 
occurs if cp(p) > q(v). Also the equalities q(p)= cp(A) and cp(p) = q(v) 
obviously violate bijectivity of q. The only possibility left is cp(;l) < 
V(P) < dv). I 

The following lemma shows that in the main case of interest for us, 
where r is a convex subset of a Euclidean space, the transformation cp is 
continuous. 

LEMMA 2.5. The transformation cp is continuous fr is arcwise connected. 

Proof It is sufficient to show that any sequence (~(~~))~=r in u(T), 
converging to a u(p) in u(T), has a subsequence (Use such that 
lim,, cx) d4clk,)) =cp(Q)). So let (4hJ) converge to U(P). We may 
assume u(pup) # u(p) for all k. There must exist a subsequence (u(v~)),: , of 
MPd),E 1 which either strictly increases or strictly decreases. We use 
the arcwise connectedness of r by taking an arc 1 from v, to p, 
i.e., 1: [O, l] + r is continuous, with n(O) = v,, A( 1) = p. Now uol is 
continuous, (U 0 n)(O) = u(v,), (U 0 A)( 1) = U(P). By the intermediate value 



CONTINUITY OF TRANSFORMATIONS 3 

property, there exist (rri)Tz 1 in [0, l] such that (U 0 n)(a,) = u(vi) for all j. 
We define zj := A(crj) for all j. Then u(rj) = u(v,) for all j. Since A( [IO, 11) is 
compact, (rj),?= I has a convergent subsequence (r,,)T= i, with limit say z. 
Also (u(z,,))z 1 and (u(zj,))z I must converge to u(t), respectively u(r). This 
can hold only if u(r) = u(p), and lim;, cc rp(u(v,,)) = lim,, a cp(u(ri,)) = 
lirniqm U(rj,) = u(r) = cp(u(z)) = v(u(P)). SO (pLk,)E, = (vi,),“=, is taken. 1 

THEOREM 2.6. The transformation cp is continuous if cp satisfies one qf 
the following conditions: 

(1) cp is nondecreasing; 
(2) cp is nonincreasing; 
(3) cp is bijective; 
(4) The domain r of cp is arcwise connected. 

Proof. This follows from Lemmas 2.1, 2.2, 2.4, and 2.5. 1 

3. APPLICATIONS 

The first application is well known in mathematical economics. Suppose 
+ is a preference relation on %:, i.e., 3 is a binary relation on !Rz which 
is transitive (for all x, y, ZE %F, if x+y and y+z then x+z) and 
complete (for all x, yE %:, x 3 y or y 3/x). The elements of ‘%T are 
commodity bundles, and + reflects the opinion of a consumer, x3 y 
meaning that the consumer thinks x is at least as good as y. A function 
u: ‘%; + !R is a utility function if, for all commodity bundles x, y, 
[x 3 y o u(x) 2 u(y)]. It is straightforwardly verified that a utility function 
is unique up to a strictly increasing transformation, i.e., if u is a utility 
function for 3 then the class of all utility functions for $ is a class of 
the form {a: ‘!Rz + %: u = cp 0 u for a strictly increasing transformation cp ). 
This indeterminateness of a utility function was the starting. point of a 
controversy between economists in the beginning of this century; for a 
recent account, and references, see Cooter and Rappoport [2]. 

In literature one is usually interested only in continuous utility functions. 
It is well known that a continuous utility function exists for a preference 
relation if and only if the preference relation is continuous, i.e., for all com- 
moditybundlesxthesets(yE~2::y~xJand{yE~”,:x~~}areclosed 
(see for instance Debreu [3-51). Obviously, if u is a continuous utility 
function, then for any continuous strictly increasing transformation cp also 
cp 0 u is a continuous utility function. Lemma 2.1 shows that no other con- 
tinuous utility functions exist. So a continuous utility function is unique up 
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to a continuous strictly increasing transformation. We found that many 
textbooks on mathematical economics are not explicit w.r.t. this point. 

Next we shall briefly sketch the application of Theorem 2.6 as used in 
Wakker [7, Sect. IV.41 and Wakker [S]. Again r denotes a nonempty 
connected topological space. Let n E N, n > 2. The Cartesian product r” is 
endowed with the product topology. Its elements are called alternatives. An 
alternative x E r” has ith coordinate xi. There is given a preference relation 
3 on f”. We write x N y for [x3 y and y+ x]. Obviously N is an 
equivalence relation. 

Notation 3.1. For 1 <iin, creT, XE~“, 

x-~o: := (x with xi replaced by a). 

We shall assume that every coordinate has influence on the preference 
relation, i.e., for all coordinates i there exists an alternative x, and an a E r, 
such that not xeia 2: x. 

We say that + is weakly separable if, for all i, x, y, a, /?, we have 

[X-iU+X-j/3] * [y-iU$y-ip]. 

This is the analogue of monotonicity in ‘%t”, . Further we shall need: 

DEFINITION 3.2. The binary relation $ satisfies equivalence cardinal 
coordinate independence (ECCI) if for all i, j, x, . . . . 6 we have 

X-iU N Y-iB and v-/a 2: wWjB and 

X-i7 ‘v y-i6 

=a [u-jy N w -jS]. 

Note that the above condition cannot be immediately expressed in the 
derived tradeoffs of Wakker [9]. 

THEOREM 3.3. The following two statements are equivalent for the binary 
relation 3 on r”: 

(i) There exist real (S)j’= 1 and a continuous function U: r + %, such 
that XH c;=, AjU(xj) is a utility function for +. 

(ii) The binary relation $ is a continuous weakly separable ECCI 
preference relation. 

Sketch of Proof The implication (i) * (ii) is straightforward. So we 
assume (ii) and derive (i). As demonstrated in Wakker [7, Proof of 
Theorem IV.4.31 (see also Remark 111.7.3 in Wakker [9]) there exists a 
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utility function V of the form V: xt-+ Cy=, V,(x,) for >, with all V’,‘s 
continuous and nonconstant. ECCI gives 

Vi(E) - V,(B) = 1 CVk(Yk) - I/,(x,)1 = V,(Y) - V,(6) 
k#i 

and 

vj(cr)- vj(fi)= c [vk(wk)- vk(vk)l 
k#j 

* lIvjCa)- v,(b)= v,(Y)- vj(s)l. (3.1) 

Setting cc=/I,x=y,u=w, we have [V,(y)=V,(S)]+[V,(y)=V,(6)]. 
Hence there exists a transformation cp such that Vi= cp 0 Vi. Analogously 
there exists a transformation $ such that V, = $0 V,. Thus, cp: Vi(r) -+ 
V,(T) is bijective. Since Vi and V, are continuous, cp is continuous by 
Theorem 2.6. 

Now let V,(c) be an arbitrary element of Vi(Z), the domain of cp. No V, 
is constant, and all Vj(r) are nondegenerate intervals. Since IZ B 2 and 
V, = cp 0 Vi with cp continuous, there exists an open interval S around V,(c) 
so small that for all Vi (a), V,(p) in S, there are x and y for which V,(a) - 
Vi(b)=Ck+r [:Vk(yk)- vk(xk)l and there are u and u’ for which 
~cP(vi(cr))-cP(vi(B))l= vj(a)- Vj(b)=Ck+j EVk(wk)- I/,(uk)l. Setting 
/I = y, and finding appropriate x, y, u, M;, by (3.1) we get, for all 
vi(a)9 vi(B)9 vi(d)Es: Cvi(cc)- vi(B)= vi(/3)- vi(s)l * Cv,(@-)- vjCBI 
= V,(b) - V,(S)]. Thus, on S, cp satisfies Jensen’s equality cp((o + r)/2) = 
[~(a) + (p(z)]/2. By Theorem 1 of Section 2.1.4 of Acztl [l], or by (88) of 
Section 3.7 of Hardy, Littlewood, and Polya [6], cp must be afline on S. 
Hence it has second derivative zero in all V,(i). Consequently cp must be 
afline on Vv, (r). 

We have shown that each V, is an afIine transform of V,. The 
proof is completed by specifying U and the ATi’s as follows: For arbitrary 
fixed a and /I in r with V,(a)# V,(b), set U(.) := VI(.)- V,(U) and set 
I*, := Evj(B)- vj(cr)llCv~(B)- VI(a)l,j= I, ...2 n. 1 

Applications of the above theorem to the theory of economic indexes, 
and to production theory, have been indicated in Wakker [S]. 
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