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ABSTRACT. The aim of this paper is to convince the reader that Choquet-expected 
utility, as initiated by Schmeidler (1982, 1989) for decision making under uncertainty, 
when formulated for decision making under risk naturally leads to anticipated utility, as 
initiated by Quiggin/Yaari. Thus the two generalizations of expected utility in fact are 
one. 
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1. H I S T O R Y ,  M O T I V A T I O N  A N D  P R E V I E W  

In the beginning of the eighties Schmeidler (1982; published 1989) and 
Quiggin/Yaari (published 1982/1987) devised new generaliizations of 
expected utility. The new idea of both of these generalizations was to 
deal with probabilities in a nonadditive way. Many previous trials to 
use nonadditive probabilities (e.g. in Edwards, 1954, and in Kahneman 
and Tversky, 1979; these authors themselves did not use an iinterpreta- 
tion of nonadditive probabilities) adopted a way to integrate with 
respect to nonadditive probabilities, seemingly dual to expected utility, 
but at closer study unsound. Kahneman and Tversky themselves 
already pointed out the major problem in their way of integration; 
further comments are given in Quiggin (1982), and illustrations are 
given in Wakker (1989c). The problem had already been known to L. 
J. Savage. The main contribution of Schmeidler and Quiggin/Yaari 
was to find a sound way to integrate with respect to nonadditive 
probabilities, a way which turned out to have been found already by 
the mathematician Choquet (1953/4). 

It was immediately understood that the ways of integration of 
Schmeidler and Quiggin/Yaari were related, see for instance Yaari 
(1987, p. 114). Nevertheless the data equivalence of the two ap- 
proaches for decision making under risk (DMUR), as pointed out in 
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this paper, has not been observed before, to the best of our knowl- 
edge. A possible explanation may be the following. In Schmeidler's 
approach, which we propose to call the Choquet-expected utility 
(CEU) approach, the 'subjective' probabilities (not given a priori) are 
dealt with in a new, nonadditive, way. Also there occur objective 
('known') probabilities, but it is essential for Schmeidler's proof, and 
also in accordance with his interpretations, that these be dealt with in 
the (traditional) additive way. The crucial new idea in Quiggin/Yaari's 
set-up, to the contrary, is that objective ('known') probabilities be 
dealt with in a nonadditive way. 

Nevertheless the approach of Quiggin/Yaari, the anticipated utility 
(AU) approach, is the natural version of the CEU approach when 
adapted to DMUR, as we shall argue. To do this, firstly an alternative 
derivation of the CEU approach must be established, one which does 
not need the auxiliary tool of objective probabilities to be dealt with in 
an additive way. Such an alternative derivation has been obtained in 
Gilboa (1987), Wakker (1989a, b), and Nakamura (1990). Once the 
possibility of such an alternative derivation has been accepted, knowl- 
edge of its details is not needed for the identification of CEU and AU. 
Hence this paper does not repeat those details. 

Secondly (see Section 3), we have to show that DMUR, the context 
to which AU applies, can be considered a special case of decision 
making under uncertainty (DMUU), the context to which CEU ap- 
plies. We shall only show the formal relatedness, and not enter 
conceptual discussions. The work of Section 3 has use on its own, in 
elucidating the risk/uncertainty dichotomy as introduced by Knight 
(1921), and in giving an 'algorithm' to translate results from DMUR to 
DMUU and vice versa. Section 3 can be read independently of 
Subsections 2.2 and 2.3. 

Now CEU can directly be applied to DMUR. Then, thirdly (see 
Section 4) and finally, we show equivalence of the following two 
approaches to DMUR: 

�9 AU with stochastic dominance. 
�9 CEU with stochastic dominance. 

The obtained identification enables the application of techniques, 
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developed before for CEU,  to AU. Thus results for AU can be 
generalized; this will be elaborated in Wakker (1990). We derive the 
present result in full generality, without imposing restrictions upon the 
state space, probabilities, probability transformations, consequences, 
utilities, or whatever. To do this, in Definition 5 the natural version of 
stochastic dominance for general consequence spaces will be given, 
generalizing the traditional stochastic dominance that has been formu- 
lated for monetary consequences and increasing utility. 

Proofs are given in the Appendix. Let  us finally refer to Fishburn 
(1988), giving a survey of CEU,  AU,  and many other deviations from 
expected utility. 

2. C E U  F O R  D M U U  

In this section we sketch the CEU approach to D M U U ,  as initiated by 
Schmeidler (1982, 1989). For  easy accessibility we shall not introduce 
measure-theoretic structure; the latter can be introduced exactly as in 
Schmeidler (1982, 1989) (supplemented in Wakker,  1989e), 

2.1. Elementary Definitions of Decision Making Under Uncertainty 

In decision making under uncertainty (DMU U )  the lack of informa- 
tion of the decision maker is modeled through a set S, the set of states 
(of nature). Exactly one state is the ' true state',  the other  states are not 
true. Subsets of S are events. A decision maker is uncertain about 
which state of nature is true, and has not any influence on the truth of 
the states. As an example one may think of a horse race that will take 
place. Every horse is identified with a state; s E S designates the 'state' 
that horse s will win. 

denotes the set of consequences. The set ~ is the set of all acts, 
i.e., functions from S to ~. If a decision maker chooses an act f,  this 
results in consequence f(s) for (him or) her,  where s is the true state of 
nature. For  instance, acts may designate bets for money on horses. 
Since the decision maker is uncertain about which horse will win, (he 
or) she is uncertain which amount  of money will result from a bet. 

By _~ we denote the preference relation of the decision maker on 

~.  As usual, we write f > g if f > g and not g >_ f,  f _< g if g >_ f,  f < g if 
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g > f ,  a n d f = g i f f _ > g  a n d g > f .  We call _> a weak order if it is 
complete ( f  > g or g > f for all f ,  g) and transitive. Further ~ is trivial 
if f ~ g  for all f , g .  A function V: ffo___~ represents > if [f_~ 
g] <::> [V( f )  t> V(g)]. (The term utility function is reserved in this paper 
for the function U in the sequel; the expectation of U will represent 
_> .) We shall often identify consequences with the associated constant 
acts. Thus, for a , / 3  E ~, we may write a _>/3, etc. 

2.2. The Choquet-Integral and CEU 

A function v: 2s-->[0, 1] is a capacity ( 'nonadditive probability') if 
v(O) = O, v(S)= 1, and v is monotonic w.r.t, set-inclusion, i.e., A 
B ~ v(A) >~ v(B). Further v is a probability measure if it is a capacity 
that is additive, i.e., v(A LJ B) = v(A) + v(B) for all disjoint A, B. In 
literature often a continuity condition is imposed on capacities, requir- 
ing for any sequence of events (A1,  A 2 . . . .  ) :  

[Vj: Aj+ 1C Ai, (Y] Ai = A] ~ [!im v(Aj) : v(A)], 
j =  1 l - ~  

and requiring the same with D ,  U instead of C ,  r In this paper the 
continuity restriction is not imposed. For probability measures the 
continuity condition is known to be equivalent to countable additivity, 
i.e., for any countable disjoint sequence of events the probability of 
the union of these events is the sum of the probabilities. Whenever  we 
require countable additivity of a probability measure we will make it 
explicit. 

For a capacity v, and a function ~b : S--* fl~, the Choquet-integral of ~b 
(with respect to v), denoted J's ~b dr ,  or .f ~b dr ,  is 

foV((s~S: 4,(s) ~> ~)1 d~ 

f~ + -= [v({s E S: ~b(s) i> T } ) -  1] d~'. (1) 

For probability measures the Choquet-integral is identical to the usual 
integral. Elucidations and illustrations for the Choquet-integral are 
given in Wakker (1989b, Section VI.2). 
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DEF I NI TI ON 1. We say that Choquet-expected utility (CEU) applies 
if there exist a utility function U : ~ --~ 9t and a capacity v on S, so that 
f ~ s ( U o f )  dv represents >_. The integral is the Choquet-expected 
utility (CEU) of f. 

2.3. Transforming Additive Probabilities 

One way to obtain a capacity is to take an additive probability measure 
P on S, a nondecreasing function q~: [0, 1]-->[0, 1] with q~(0)= 0, 
q~(1) = 1, and then take as capacity the 'distorted probability' v := q~ o P. 
Obviously the probability measure P may simply be a mathematical 
device, without any interpretation associated with it. Two other 
extreme cases are, firstly, the case of DMUU ,  where P is not given 
and must be derived from other sources, and secondly, the case of 
DMUR,  where P is a 'given objective' probability measure,  known in 
advance. This second case will be considered in Section 4. Let  us now 
comment shortly on the first case. 

Under  CEU one may wonder whether there exists a probability 
measure P so that v = q~ o P, with q~ nondecreasing. This is the case if 
and only if there exists a probability measure P so that, for > ' on S 
defined by A >_ 'B <=> v(A) >1 v(B), we have P(A) >I P(B) ~ A >_ 'B. 
Questions about the existence of such a probability measure P are 
studied in 'comparative probability theory' ,  see Wakker (1981, supple- 
menting Savage, 1954), Gilboa (1985, explicitly indicating the signifi- 
cance for AU) ,  or Fishburn (1986, giving a survey). See also Luce 
(1988, Section 6). The five-point example in Kraft, Pratt,  and Seiden- 
berg (1959) can be used to show that there exist, even for a finite state 
space, capacities which cannot be obtained as nondecreasing trans- 
forms of an additive probability, even so when the capacities satisfy a 
kind of 'ordinal additivity'. 

Section 4 will introduce AU,  and will show that it is a special case of 
CEU,  so that it is not more general. The above observation shows, in 
addition, that CEU is strictly more general. 

3. FROM DMUU TO DMUR AND VICE VERSA 

In Subsection 2.1 we sketched the approach of DMUU.  In the usual 
approach to DMUR,  which we shall also call DMUR without states, 
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one takes as point of departure a consequence set ~, a collection of 
countably additive probability distributions over ~, and a preference 
relation over these probability distributions. 

As a preparation for showing the relatedness of A U  and CEU,  this 
elementary section shows the way to consider D M U R  as a special case 
of DMUU,  in the sense that D M U U  requires less structure so can be 
applied more generally. The main step is carried out in Subsection 3.2, 
showing that in D M U R  it is no restriction to assume an 'underlying' 
state space. In Subsection 3.1 we start from the general model of 
D M U U ,  and show which restrictive assumptions must be added to end 
up in a case of DMUR.  Subsection 3.2 then shows that all cases of 
D M U R  can be thought to have been obtained like that. 

3.1. From DMUU to DMUR 

(DMUU) Firstly, we start from the general set-up of D M U U  as 
described in Subsection 2.1, with as primitives the state space S, the 
consequence set c~, the acts, and the preference relation _> over the 
acts. 

(Intermediate set-up) Secondly, we add the assumption that at the 
outset an objective probability measure P on S is given; it is custom to 
assume, and so shall we do, that this objective probability measure is 
countably additive. The set-up now obtained will be called the inter- 
mediate set-up. Any act f :  S ~  ~ induces a countably additive prob- 
ability distribution over the consequences, assigning to every subset of 
the consequence set the probability of its inverse under the act. In the 
intermediate set-up the probability distribution can be without any 
relevance to the decision maker.  

(DMUR with states) Thirdly, we add the restrictive assumption 
characteristic for DMUR.  It states that all relevant information of an 
act is contained in the probability distribution which the act induces on 
the consequences. Its formal statement is as follows: 

ASSUMPTION 2 [DMUR].  I f  two acts induce the same probability 
distribution over consequence, then they are (z-)equivalent. 

Yaari (1987) called this assumption 'neutrality' ,  Fishburn (1988) called 

it the ' reduction principle'. It will be implied by the stronger and 
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natural condition of stochastic dominance as we shall formulate it in 
the sequel. We call the set-up now obtained DMUR with states. In it, 
(preferences on) acts and probability distributions are equivalent; they 
will often be identified and interchanged. 

(DMUR without states) Fourthly and finally, if all acts which induce 
the same probability distribution over consequences are equivalent, 
then we may describe any act by the induced probability distribution, 
forget about the state space, the acts, and P, and use the naturally 
induced preference relation on the probability distributions over con- 
sequences. This is in accord with a tradition in mathematical statistics 
and probability theory. There one often works with probability distri- 
butions, having in mind that these are probability distributions of 
random variables (= acts) defined on a probability space, but leaving 
the probability space and the random variables unmentioned, simply 
because these are needed nowhere in the analysis. What has resulted is 
the usual approach of DMUR,  without states. In literature there is 
usually the further restrictive assumption that all probability distribu- 
tions over (a o--field over) q~ must be available. To achieve that, we 
must add the assumption that (S, P)  is 'rich enough' to generate all 
these. The next subsection will give further comments. 

3.2. From DMUR to DMUU 

To claim that D M U R  is truly a special case of DMUU,  we must show 
that each case of D M U R  can be the result of the procedure sketched 
in the previous subsection. I.e., starting from the usual set-up of 
D M U R  (without states), with a consequence set c~ and countably 
additive probability distributions over ~, we must show that we can 
always construct a state space S with a probability distribution P on S, 
generating all the considered probability distributions. This is shown in 
the next paragraph, is somewhat technical, and may be taken for 
granted. 

One can for instance assume that all considered probability distribu- 
tions are independent, and take as probability space a Cartesian 
product of dimension as large as the cardinality of the set of considered 
probability distributions, with all coordinate sets equal to % This 
procedure can also be adopted if the probability measures are not 
countably additive, and ~ is general. In DMUR,  where choices 
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between probability distributions are to be made by a decision maker,  
joint distributions of different probability distributions over ~ are not 
considered, they are irrelevant. Hence the above procedure can be 
considered a trivial application of a theorem of Kolmogorov,  see Feller 
(1966, Theorem IV.6.1). Usually simpler spaces will suffice. For 
instance, for the case cs C 9l, the state space [0, 1] endowed with the 
uniform distribution will suffice to generate all countably additive 
probability distributions over 91, through generalized 'inverses' of  
distribution functions. 

It has now also been established that there is no essential difference 
between D M U R  with or without states. We may always assume the 
states to be given, and so we shall do. 

4. AU AS SPECIAL CASE OF CEU 

In this section we introduce AU,  and show how to derive it from CEU.  

4.1. AU 

We consider the context of D M U R  with states. The integral below is a 
Choquet-integral,  with respect to the capacity q~ o P. 

D E F I N I T I O N  3. Anticipated utility (AU) applies when there exist a 
utility function U: ~----~91 and a nondecreasing transformation 
q~: [0, 1]---~ [0, 1] with q~(0)= 0, q~(1)= 1, so that (with Psthe  probabili- 
ty distribution over c~ induced by an act f )  _> is represented by 

t'f fs (u of) e.  (2) 

The integral is the anticipated utility (AU) of the act f,  or of the 
distribution Pc.. 

As the essential new idea of  A U  we take the fact that first the 
probability measure P is transformed nondecreasingly before expecta- 
tion is calculated. Other  conditions met in literature, such as continuity 
of q~ and linearity of U as in Yaari (1987), or continuity of q~ and the 
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equality q~(�89 = 1 (and possibly some unmentioned continuity of U) as 
in Quiggin (1982), or boundedness of U and convex-rangedness of 
q~ o p as in Gilboa (1987), or continuity of U as in the author's papers, 
or continuity and strict increasingness of U and q~ as in Chew (1989), or 
'solvability' as in Nakamura (1990), to our view are not crucial aspects 
of AU,  and are only used to simplify analyses. 

Several alternative terms for AU are used in literature. Chew, Karni 
and Safra (1987) use the term 'expected utility with rank dependent  
probabilities'. Yaari (1987) uses the term 'dual theory' ;  this seems 
most suited for the special case of linear utility, as considered in his 
paper. AU theory in full generality is a generalization of expected 
utility, rather than a dual. Also the appealing term 'cumulative utility' 

has occurred. 
The following equivalent formulation is suited for D M U R  without 

states, because no states or acts are used. For simplicity we assume 
that U is nonnegative. Let  Gvo f be the decumulative distribution 
function of U of, i.e., Gvo f : -c ~-~ P([ U of  >i 7]). The representing func- 
tion in (2) can be seen to be equal to: 

Pf ~ f[0, 2[ r d ( -  q) o Guof(~-)) " (3) 

This formulation shows that different acts which induce the same 
probability distribution over q~ are valued the same, as should be for 
DMUR.  One can consider the above integral to be a usual (expected- 
utility-)integral, not of the distribution given by Gvoy, but of the 
' t ransformed distribution' given by ~ o Gvo s . Right-continuity of q~ will 
guarantee that ~ o Gvo f indeed is the decumulative distribution function 
of a countably additive distribution; continuity of ~r will be character- 
ized in Wakker (1990). We prefer not to require continuity of ~r in the 
general definition of AU,  because we want to be able to include for 
instance maxmin behavior,  and other kinds of discontinuities at prob- 
abilities 0 or 1. 

We could write (3) alternatively by deleting the minus sign and 

replacing ~p o Gvor by qJ o Fuof, with 0 : z ~-~ 1 - q~(1 - r) ,  and Fro s the 
usual cumulative distribution function of U of, i.e., Fvoi: ~ '~  
P([ U of  <_ 7]). 
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4.2, Applying CEU to DMUR 

Let us start from the 'intermediate set-up' described in Subsection 3.1, 
with given P but without Assumption 2. This is a special case of 
DMUU,  and nothing prevents us from applying CEU. The objective 
probability measure P, while present, simply does not have to be used. 
The following lemma shows when it is used after all. 

L E M M A  4. Let > be nontrivial, let the intermediate set-up apply, and 
let CEU apply. Then there exists a transformation q~ : [0, 1]----> [0, 1] so 
that v = ~ o p if and only if Assumption 2 applies, i.e., if and only if 
DMUR with states applies. [] 

The above lemma does not yet give AU because the transformation 
does not have to be nondecreasing. For example, with qg a nondegen- 
erate interval, U identity, S =  {s I , s2}, and P(sl)> P(s2) > 0 ,  we are 
still free to choose q~(P(Sl) ) < ~(P(s2) ). However, if the state space S 
is so rich that for every P ( A ) > P ( B )  we can find a B '  so that 
P(B') = P(B) and B '  C A, then because of monotonicity of capacities 
~o(P(A)) >! ~(P(B')) = q~(e(B)) follows. The mentioned richness 
holds, under countable additivity of P, if and only if either the state 
space is atomless, or it consists of a finite number of equally-probable 
atoms. We will not derive AU from the richness-condition in the way 
as just suggested, but rather from the natural condition of stochastic 
dominance. Stochastic dominance is usually formulated for the case 
where consequences are real numbers and (utility/)preferences are 
increasing. The condition below is the natural generalization to general 
consequences. Also it is the natural generalization to acts instead of 
distributions. 

DEFINITION 5. We say for acts f ,  g that f (weakly, first-order) 
stochastically dominates g if 

[Va E ~ : P( f(s) > a) >>- e(  g(s) >_ a ) ] .  

We say > satisfies (monotonicity w.r.t, weak first-order) stochastic 
dominance if f > g whenever f stochastically dominates g. 
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Obviously, if f and g induce the same probability distribution over the 
consequences, then they stochastically dominate each other. By sto- 
chastic dominance of >_, f and g then must be equivalent. So we have: 

Stochastic dominance of >_ implies Assumption 2. (4) 

I.e., under stochastic dominance DMUR applies. It may be argued 
that our version of stochastic dominance for acts contains two separate 
ideas, firstly, the idea of Assumption 2, secondly, the idea of stochastic 
dominance for distributions over consequences. 

LEMMA 6. Let > be nontrivial. Let the intermediate set-up apply, 
and let CEU apply. Then there exists a nondecreasing transformation 
q~: [0, 1]---> [0, 1] so that v = q~ o P, i f  and only i f  stochastic dominance is 
satisfied. [] 

The existence of q~ in the above lemma is exactly what defines AU. 
Since by definition AU is a special case of CEU, the following theorem 
results: 

THEOREM 7. Let ~ be nontrivial. Let the intermediate set-up apply, 
and let stochastic dominance hold. Then C EU applies if and only if A U  
applies. 

5. C O N C L U S I O N  

We have given a general procedure for 'translating' results from 
decision making under uncertainty into results for decision making 
under risk. This suggests that decision making under uncertainty is the 
more basic of the two set-ups. By means of the procedure we have 
shown that two generalizations of expected utility, introduced indepen- 
dently for different contexts, at closer study in fact are one. We 
rephrase, taking the noncontroversial stochastic domJinance for 
granted, 

Choquet-expected utility, 
when applied to D M U R ,  is identical to 

Anticipated utility. 
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APPENDIX;  PROOFS 

P R O O F  of Lemma 4. First suppose Assumption 2 holds. We prove 
that v = q~ o P for some transformation ~o. It suffices to show that for 
any events A, B, P(A) = P(B) �9 v(A) = v(B). So let P(A) = P(B). 
Since _> is nontrivial, the utility function U used in CEU is not 
constant. So let U(a) > U(/3). According to Assumption 2 we have, 
with t~l A + /31AC denoting the act assigning a to A and 13 to A C, 
otl A + /31A c ~- al  B + ~31Be. Substituting CEU's  gives v(A)U(a) + (1 - 
v(A))U(/3) = v(B)U(a) + (1 - v(B))U(/3). This implies v(A) = v(B). 

Conversely, suppose a q~ as in the lemma exists. We derive Assump- 
tion 2. Let  acts f and g induce the same probability distribution over 
consequences. Then each of these acts has the same CEU since in the 
Choquet-integrals of f o U  respectively go U we find the same 
integrands. [] 

P R O O F  of Lemma 6. First suppose ~p exists and is nondecreasing. To 
derive stochastic dominance,  let f stochastically dominate g. By non- 
decreasingness of q~, q~(P(U of  >1 ~-)) >t q~(P(U o g >I ~-)). Substituting 
this in the Choquet-integrals of U of  and U og shows that f > g. 

Next we assume stochastic dominance holds, and derive (existence, 
which could also be derived from Formula 4 and Lemma 4 and) 
nondecreasingness of q~. It can be seen that it is sufficient to show that 
for any events A, B, P(A) >i P ( B ) ~  v(A) >t v(B). So let P(A) >t 
P(B). Since > is nontrivial, the utility function U used in CEU is not 
constant. So let U ( a ) >  U(fl). By stochastic dominance we have 
otl A + f l l a r  ~ otl B + f l l B c .  Substituting CEU's  gives v(A)U(a) + 
(1 - v(A))U(fl) >i v(n)U(a) + (1 - v(B))U(/3). This implies v(A) >! 
o( B ). [] 
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