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INTERNATIONAL ECONOMIC REVIEW 
Vol. 29, No. 1, February 1988 

CONTINUITY OF PREFERENCE RELATIONS 
FOR SEPARABLE TOPOLOGIES* 

BY PETER WAKKER** 

1. INTRODUCTION 

In Debreu (1954, 1959) some classical results were provided for consumer 
theory. Necessary and sufficient conditions were given for the existence of (con- 
tinuous) utility functions to represent preference relations of consumers. Further 
results are given in Bowen (1968), Jaffray (1975), Richter (1980), and Chateauneuf 
(1985). 

A basic procedure is to first derive the utility function on a countable subset. 
Next, some denseness property of this subset is used to extend the domain of the 
utility function. In view of this, a good starting point for the study of derivations 
of utility functions may be the study of preference relations which are continuous 
w.r.t. a separable topology (i.e., a topology with a countable dense subset). This 
will be the topic of the present paper. It is well-known (see Richter 1980, Remark 
1; or Fleischer 1961, p. 50) that for such preference relations no utility function 
has to exist. 

Let X be a set of alternatives, and > a binary (preference) relation on X. We 
write x < y if y ? x; x > y or y < x if x 2 y and not y ? x; and x y if x 2 y 
and y ? x. The binary relation > is a weak order if it is complete (i.e. x ? y or 
y ? x for all x, y E X) and transitive. Its natural topology YT, (?) is the smallest 
topology for which 2 is continuous; i.e., TY(?) is the smallest topology which 
contains all sets of the form {x E X: x > y} and {x E X: x < y}. 

The lexicographic ordering ? L on R x {0, 1} is defined by 

(X1, X2) 2L(Y1, Y2) 

if 

xi > y, or [x1=Y1 & x2 2 Y2j 

For a set V with a binary relation 2' on it, (X, ?) is embeddable in (V, ?') if 
there exists an embedding f: X -> V; i.e., x 2 y tf(x) ? f(y) for all x, y E X. A 
utility function is an embedding in (R, 2). 

(A topology on X) is second countable if it has a countable basis. Then X is 
separable and every subset of X is second countable. A topology on X is con- 
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106 PETER WAKKER 

nected if there is no non-trivial subset of X which is simultaneously open and 
closed. 

2. THE MAIN THEOREM 

In this section, we provide a characterization of weak orders which are con- 
tinuous w.r.t. a separable topology. Note for the following preparatory lemma 
that lR x {O, 1} with the natural topology induced by the lexicographic ordering 
is not second countable, so that there is no direct way to conclude that any 
subset of R x {O, 1 } is separable. 

LEMMA 2.1. Every subset A of lR x {O, 1} is separable w.r.t. the restriction of 
Ynt(? L) to A. 

PROOF. Note that the restriction of TY(?L) to RlX x {1} consists of unions of 
sets of the form ]ca, ,B[ x {1} and [oc, ,B[ x {1}. 

Now let A c -R x {O, 1}. We construct a countable dense subset C in A, where 
CO will be C n DR x {O}, and C1 will be C n BR x {1}. For k = 0, 1, Ck will firstly 
contain an element in every non-empty {(o, k): r' < a < r2} rn A with r', r2 
rational; further Ck will contain all endpoints in A of gaps of A in BR x {k}. Here 
a gap of A in R x {k} is an element, maximal w.r.t. inclusion, of the collection 

{A* x {k}: A* x {k} is contained in (D1 x {O, 1})\A, and A* c R1 is 
convex and has non-empty interior}. 

Different gaps must be disjoint, so there can be at most countably many. Hence, 
indeed Ck can be taken countable. Let C:= CO u C1. 

There remains to be shown that C is dense. So we consider an open non-empty 
subset of A. Such a set can be written as D r- A for some open D in RlX x {O, 1}. 
To show is that C n D n A is non-empty. Let (oc, j) E D n A. Say j = 0. (The 
proof for j = I is similar.) There must exist a, b with (oc, 0) E {z: a <L Z <L b} c: 
D. We can take b = (oc, 1). From a = (a,, a2) <L (Lx, 0), it follows that a, < o. Let 
da be a rational number such that a, < a, < Lx. If no b' exists s.t. (bl, 0) E A and 
da < b' < cc, then (cc, 0) is the right endpoint of a gap as described above, and 
(oc, 0) itself is in C. If a b' exists s.t. (b', 0) E A and da < b' < o, then take b, 
rational s.t. b' <b < Lx. Then (b', 0) E (]d1, b1[ x {0}) n A # 0. So C intersects 
the latter set. 

Always C has an element in D r- A. n 

The following is our main theorem. 

THEOREM 2.2. The following three statements are equivalent for the binary 
relation ? on the set X: 

(i) (X, ?) has an embeddingf in (R x {0, 1}, ?L). 

(ii) ? is a weak order with a separable natural topology Tn (?). 
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(iii) ? is a weak order that is continuous w.r.t. a separable topology Y. 

PROOF. First we derive the implication (i) = (ii). Suppose (i) holds. By Lemma 
2.1, the set f(X) c R x {O, 1} is separable w.r.t. Y,,(> L), therefore has a countable 
dense subset C. Let C c X be countable s.t. f(C) = C. We show that C is dense. 
Let S be a non-empty basis element of Y,,(> L); so S has one of the following 
forms: {y E X: y > w}, {y E X: y < v}, or {y E X: v > y > w}. Thenf(S) is open 
in f(X), and is non-empty since S is empty. Therefore f(S) must contain an 
element of C. The entire original under f of that element of C must be contained 
in S. Hence, S contains an element of C. Indeed C is dense, and (ii) follows. 

The implication (ii) => (iii) follows by taking 1Y = Y, (2). Finally, we assume 
(iii) and derive (i). Let C be a countable dense subset of X. If X has "maximal" 
elements x (i.e., x ? y for all y), we let C contain at least one such maximal 
element. Also let C contain at least one minimal element, if one exists. There 
exists a function 0, embedding (C, ?) in (Q[O, 1], 2), with Q[O, 1] the set of 
rational numbers in [0, 1] (see Jaffray 1975, the Lemma). We extend 0 to all of X 
by defining p(x) = inf {q(y): y E C, y > x}. This infimum is between 0 and 1. 
And of course, x ? y => (p(x) > (p(y). Still [x > y and so(x) = so(y)] can occur, so 
p is not necessarily an embedding. 

We consider, for every oc E so(X), p -(oc). Suppose v > w > x, so(v) = so(w) = 

s(x) = oc, and suppose w w' for no w' E C. A contradiction will follow. Since 
{z: v > z > x} is open and non-empty, it contains an element w' of C. Either 
w' > w or w > w', say the latter. Then v > w > w'. Again, C must contain an 
element w" with v > w" > w'. This implies (p(w") > (p(w'). Then s(x) = so(v) ? 
(p(w") > (p(w') ? (p(x); i.e., a contradiction has been obtained. Apparently, if 
5o- 1(cc) contains three equivalence classes, then the middle one must contain an 
element of C. This also reveals that p - 1(tx) cannot contain four (or more) equiva- 
lence classes; then the middle two would have to contain elements of C, and 
hence be assigned different (p-values. This is impossible since both (p-values 
should be equal to c. So (p- 1(cc) can contain at most three equivalence classes, of 
which at most one can contain an element of C; this one is the middle equiva- 
lence class if p - '(cx)contains three equivalence classes. 

Now, in preparation for the definition of f, we first define f= (ft, f2): 

X-- R x {0, 1}. We set f1 = sp(x) for all x. Furthermore, f2(x) = 0 if p-1(p(x)) 
contains only the equivalence class of x. If p - 1(p(x)) contains two equivalence 
classes, thenf2 assigns 0 to every element of the worst (in terms of ?) equivalence 
class, and 1 to every element of the best equivalence class. If r- 1(p(x)) contains 
three equivalence classes, then f2 assigns 0 to every element of the worst and 
middle, and 1 to every element of the best equivalence class. Thus, with only one 
exception, we have [x > y =A(x) 2 Lf(y)] and [x > y => f(X) > L A(Y)] for all 
x, y. The exception concerns the case where x is from a middle class, and y from a 
worst class of a (p - 1(tx). Then x xi for some xi E C. For these exceptions a final 
rearrangement is performed. C is countable; hence, we can also enumerate as xl, 
x 2, ... the xi's in C occurring in a middle equivalence class as above. Finally we 
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definef by 

f:X<l ([>f1(x) + J1,f2x)) 

This gives: 

[x > y] =[f(x) 2 Lf(Y) and f(x) L f(Y)]; 

[x > y and f(x) > L AM => If[X() > L f (Y]; 

[x > y and f(x) = X(y)] -> [x xi for some j, so f (x) > L f (y. 

Conclusion: f embeds (X, ?) in (R x {0, 1}, ? L) Note that f is constructed such 
that, for all cc E R: 

(2.1) [(cx, 1) ef(X)] =[ (cx, 0) ef(X)]. D 

It is known (see for instance Chipman 1960, Theorem 3.1; or Chipman 1971, 
Appendix) that any (X, >), with ? a weak order, can be embedded in (Rv, _ L) 

where v is an ordinal number. Chipman addressed the question concerning the 
smallest ordinal number v as above, for several cases of (X, 2). In particular, he 
showed that in some "natural cases" the minimal v may still be uncountable. 

Our theorems consider embeddability in (ER x S, ?L) for sets S. The above 
theorem has shown that the minimal cardinality v of S is not larger than 2 if and 
only if the order topology is separable. Since separability of the order topology 
does not guarantee the existence of a utility function, indeed v = 2 may occur as 
minimal value. Let us further note that v = 3 is too high in the sense that (R x {0, 
1, 2}, ?L) is not embeddable in (R x {0, 1}, ?L), as it is not separable w.r.t. the 
natural topology: {{z: (cc, 2) >L Z > L (', O)}: a E R} is an uncountable family of 
open non-empty mutually disjoint sets. 

3. EXISTENCE OF UTILITY FUNCTIONS 

The above theorem and proof indicate what problems remain for the deri- 
vation of a utility function, once a countable dense subset has been obtained. 

LEMMA 3.1. Let X, >, andf be as in the proof of Theorem 2.2. Thefollowing 
two statements are equivalent: 

(i) There exists a utilityfunction ufor 2. 
(ii) R:= {oc E R: (oc, 1) ef(X)} is countable. 

PROOF. Let (i) hold. For every rational r, there can exist at most one oc E BR 
such that r E ]u(x), u(y)[, where f(x) = (cc, 0) and f(y) = (cc, 1). By (2.1), for every 
oc E R, there exists such a rational r. So (ii) follows. 

Next suppose that (ii) holds. Let R = (OC)T1 Define u: X -- R by 

u:xti(x)+~i EOi 0) 
j 

ClLf 
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The above result is related to the theorem in Fleischer (1961). Fleischer presup- 
poses antisymmetry of > and then shows that a utility function exists for > if 
and only if the natural topology TY(?) is separable and has countably many 
so-called "jumps." These jumps are related to the set R in (ii) above. 

Lemma 3.1, in itself not attractive since the "characterization" in (ii) is not 
formulated directly in terms of elementary properties of >, does show how a 
countable dense subset leads to the derivation of a utility function. As an illustra- 
tion, we show how the above lemma implies some well-known results. (For the 
case where 2 is antisymmetric, Corollaries 3.2 and 3.3 below are like the remark 
after the theorem in Fleischer 1961.) 

COROLLARY 3.2. If ? is continuous w.r.t. a connected separable topology, then 
a utility function u exists. 

PROOF. Connectedness implies that no two open disjoint non-empty sets V, 
W, with union X, can exist. Any (oc, 1) in the set R of Lemma 3.1 (ii) induces a 
violation of this because, with w such that f(w) = (oc, 1) and v (existing by (2.1)) 
such thatf(v) = (Lx, 0), we can define V:= {x: x > v} and W:= {x: x < w}. [] 

COROLLARY 3.3. If > is continuous w.r.t. a second countable topology Y1, then a 
utility function u exists. 

PROOF. Y being second countable means that an array (Aj)j 1 of open sets 
exists, s.t. every open set is a union of some Ai's. Let oc be in the set R of Lemma 
3.1 (ii); say f(xl) = (oc, 1). By (2.1), and xo must exist with f(x) -(Lx, 0). By 
openness of {x: x < xl}, there must exist an A, containing xo and containing no 
y> xo. So every ,B # o E R has Aj 0 Aj# , Therefore R is countable. C] 

As a further illustration: 

COROLLARY 3.4. Thefollowing two statements are equivalent: 

(i) There exists a utilityfunction ufor >. 
(ii) > is a weak orderfor which a countable set V c X exists s.t.for all x > y 

there is a v E V with x > v > y. 

PROOF. Suppose (i) holds. Then (X, ?) is embeddable in DR, so in DR x {0, 11. 
Hence Theorem 2.2 applies. For V we take C u R', where (f and) C are as in the 
proof of Theorem 2.2, and R' is a countable subset of X such that f(R') = {(cc, 1): 
(oc, 1) E f(X)}, i.e., f(R') = R x {1} with R as in Lemma 3.1. Obviously V is 
countable. If x > y and Z:= {z: x > z > y} is non-empty, then v E C is taken 
such that f(x) > L f(V) > L f(y). If Z is empty, and not x 1 v or y 1 v for some 
v E C, then f1(x) =f1(y),f2(x) = 1,f2(y) = 0, and x v for some v E R'. So (ii) has 
been established. 

Next, suppose that (ii) holds. We can let V contain a maximal element, if one 
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exists, and a minimal element, if one exists. Let W c X be a countable set s.t., 
for every (x, y) E V with {z: x > z > y} non-empty, W contains an element in 
{z: x > z > y}. We first show that V u W is dense w.r.t. TY(?). It suffices to 
show that, for any x > y e X with {z: x > z > y} non-empty (say zo E {z: 
x > z > y}), there exists a b E V u W s.t. b E {z: x > z > y}. Let vl, v2 e V be 
such that x ? v, 2 z 2v 2 y. If not x ; vl, then we take b = vl. If not y t V2, 
then we can take b= v2. If x t v1 >z > v2 y, we can take b from W. This 
way separability of Y,,(?) follows. And since for every two different oc, /3 E R, 
there must exist different v?, vp E V s.t. (oc, 0) L f(V) < L (, 1) and (/3, 0) <Lf(v ) 
<L (3, 1), R in Lemma 3.1 must be countable. So (i) follows. E 

The condition in (ii) above is called "perfect separability" in Chateauneuf 
(1985). We have not considered continuity properties of utility functions. For 
these, the reader can consult the following references: Debreu (1964), Bowen 
(1968), Jaffray (1975), and Richter (1980). 

Netherlands Central Bureau of Statistics, Voorburg, The Netherlands. 
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