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Abstract 

A method is given to extend demand functions to new commodities under preservation 
of the cycle number, i.e. the minimal length of a preference cycle revealed by the demand 
function. Thus, Gale’s (Economica, N.S., 1960, 27, 348-354) demand function that shows 
that the weak axiom of revealed preference does not imply the strong axiom of revealed 
preference for three commodities can be extended to more than three commodities. Also 
Shafer’s (Journal of Economic Theory, 1977, 16, 293-309) result, that arbitrarily high 
cycle numbers exist for three commodities, can now be extended to any number of 
commodities larger than three. This completely settles a question raised by Samuelson 
(Economica, N.S., 1953, 20, l-9). 

JEL clus.si@ttion; C60; Dl I 

K~ywor&: Revealed preference; WARP; SARP; Preference cycles 

1. Introduction 

Samuelson (1938) showed that the weak axiom of revealed preference (WARP) 
is necessary for the rationalizability of a demand function by a preference relation. 
The WARP excludes cycles of length two in the revealed preferences. It has been 
characterized by Clark (1959, Section 31, Kim and Richter (1986, Section 7), and 
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Kehoe (1992, Section 2). An open question remained as to whether or not the 
WARP was also sufficient for rationalizability. Ville (1946) and Houthakker 
(1950) showed that the strong axiom of revealed preference (SARP), excluding 
cycles of any length, was necessary and sufficient. Rose (1958) proved for two 
commodities that the SARP is implied by the WARP. Gale (1960) demonstrated 
that this does not hold for three commodities. Peters and Wakker (1994) extended 
Gale’s counterexample to any higher number of commodities, showing that the 
WARP does not imply the SARP for any number of commodities larger than two. 

An open question, raised by Samuelson (1953), was whether exclusion of 
cycles up to a certain length k would suffice to imply the SARP. A positive 
answer to this question would give an upper bound to the minimal number of 
observations needed to refute the SARP. This upper bound k might depend on the 
number of commodities. For instance, the mentioned result of Rose (1958) shows 
that for two commodities, k can be taken as equal to 2. For three commodities, 
however, Shafer (1977) provided a negative answer to Samuelson’s question. That 
is, he showed that, in that case, such an upper bound k does not exist. 

The present paper provides a general method to extend a demand function to 
more commodities while preserving cycles. Thus, it also preserves the ‘cycle 
number’, i.e. the minimal length of a preference cycle revealed by the demand 
function. As an intermediate tool, this method employs demand functions on 
nonlinear budget sets, studied in Peters and Wakker (1991). 

The method of this paper can be used to extend the counterexamples of Gale 
(1960) and Shafer (1977) to more than three commodities. It follows that, for any 
number of commodities higher than two, arbitrarily high cycle numbers can be 
found, so that the answer to Samuelson’s question is negative. 

2. Preparations 

Let lR: be the set of commodity bundles, 2” the collection of budget sets B” 

of the form: 

B”={xE[W:: p.x+}, 

for some price vector p E rW:+ and income (Y 2 0, and D” a demand function 
that assigns to each budget set the commodity bundle chosen from the budget set. 
Choosing the budget set as the argument of the demand function, rather than the 
vector of prices and income, is more convenient for the purpose of this paper. 
Throughout, we assume that, for each commodity, there exists a budget set in 
which a positive amount of that commodity is demanded. Otherwise, the commod- 
ity would never be bought and could be suppressed, and the demand function 
would essentially apply to fewer commodities. 

R is the (directly) revealed preference relation, i.e. xRy if there exists a budget 
set from which x is chosen, whereas y also is contained in the budget set. We 
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write xPy if xRy and x # y. P is called the directly revealed strict preference 
relation. 

For a subset T of [w” the set: 

SE(T):={xET:thereisnoyETwithyj>xjforallj,y#x), 

is the (strongly) efJicienr subset of T. Throughout, D” is assumed to satisfy 
efficiency, i.e. D”(B”) E SE(B”) for every budget set B”. 

D” satisfies the SARP if there does not exist a cycle x”PxlP,. . . , Pxk = x0, 
where k > 0 is the length of the cycle. D” satisfies the WARP if there do not exist 
cycles of length two. 

For a demand function D” that reveals cycles, the ‘cycle number’ is the 
minimal length of those cycles. That is, if the cycle number is k, then D” reveals 
a cycle of length k, but does not reveal cycles of length smaller than k. Thus, at 
least k choices must be observed to refute the SARP for D”. The WARP means 
that the cycle number is at least three. If the demand function does not reveal 
cycles, i.e. if it satisfies the SARP, then we say that the cycle number is infinite. 

3. The main result 

This section describes a general method for extending demand functions that 
satisfy the WARP to more commodities. That is, a continuous efficient demand 
function D” on 2” is extended to a continuous efficient demand function D” on 
2” (n < m) with preservation of the cycle number, which is assumed to be at 
least three. Subsequently the following theorem can be proved. 

Theorem 1. For any number of commodities greater than two: 
(a) the WARP does not imply the SARP; 
(b) There exist arbitrarily high but finite cycle numbers. 

The demand functions D” and D”, as well as their cycles, are related in a special 
way: each cycle of the lower dimensional demand function D” generates a cycle 
of the same shape for the higher dimensional demand function D” (for details, see 
Observation 10 in Appendix A). Conversely, every cycle of Dm generates a lower 
dimensional, ‘projected’ cycle of D”. 

Next, we describe the construction of D” from D”, which involves a number 
of steps. Proofs are given in Appendix A, as is a small generalization of the 
construction. 

Step I. In this step, m-dimensional (linear) budget sets are mapped to non-linear 
n-dimensional ‘budget sets’ by combining commodities n up to m into a sin- 
gle new commodity, as follows. We fix a function h : R, --) if%+ that is sur- 
jective, strictly increasing, strictly concave, and continuously differentiable; 
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e.g. h(r) = In(r + I). We define f : IX!: + K-8: by .f : (x,, . . . . XJ - 

CX i....'X,_,' X,+k(X,+i)+... -t- h( X,)1. The interpretation is that units of the 
new commodities n + I,. . . , m are exchanged for units of commodity n at a 
decreasing exchange rate, described by the function h. 

Now to each budget set B”’ E 2” the lower dimensional set flB”‘)clR’~ is 
assigned. The set f(B”‘) is convex and compact. 

For Steps 2 and 3, we fix a budget set B” E 2”. 

Srep 2. In the set f( B”), a unique element, denoted D”(A B”)), can be found, and 
a linear budget set B”, such that: 

(i) B” contains the set f(V); 
(ii> D”(B”) = ~~(~~~)). 

Note that B” is tangential to f(B”‘) at D”(flB”)). The uniqueness of the element 
D”(f(B”)) follows from the WARP. ‘The proof of this step invokes Brouwer’s 
fixed point theorem, and is given in Appendix A. 

Step 3. In this step, the demand vector D”(B”) is constructed. Its first n - 1 
coordinates are taken to be identical to those of D”(f(B”)). Then the function f,, 
i.e. .rn +htx,+,)+ . . . +h( x,), is maximized over the points in B”, with the 
first n - 1 coordinates fixed at D”(flB”)I,, . . . , D”(f(B”)),_ 1. The maximizer 
is uniquely dete~ined (see Lemma 4 in Appendix A). D”( Bm) is defined as this 
maximizer. 

The definition of D” has now been completed. Next, we state its relevant 
properties; these will be derived in Appendix A. 

Theorem 2. The demand function D” as consrructed above is efficient, continu- 
ous, and has the same cycle number as D”. 

Now we can extend the results of Gale (1960) and Shafer ( 1977) to more than 
three commodities, i.e. we can prove Theorem 1. 

Proof of Theorem 1. For three commodities, (a) was demonstrated by Gale (1960) 
and (b) by Shafer (1977). By Theorem 2, these results can be extended to any 
number of commodities. 0 

4. Conclusion 

This paper has presented a method to extend demand functions to larger 
numbers of commodities, while preserving cycles. In this way, a complete answer 
is obtained to a question raised by Samuelson (1953). This question was whether 
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or not exclusion of revealed preference cycles up to a certain length k (possibly 
depending on the number of commodities) would suffice to imply the SARP. Rose 
(1958) showed that we can take k = 2 for the case of two commodities. Shafer 
(1977) showed that, for three commodities, no such k exists. Using Shafer’s 
examples, we have shown that, for any number of commodities larger than two, no 
such k exists. This provides a generalization of earlier results by Gale (19601, 
Shafer (1977), and Peters and Wakker (1994). 

Appendix A 

This appendix contains proofs of the results of Section 3. For convenience of 
presentation, the construction described there will be considered here only for the 
case m = n + 1. The general case follows from repeated application of the 
construction. The argument generalizes that of Peters and Wakker (1994). For the 
results of the present paper, the number of commodities is assumed to be arbitrary, 
and the demand function D” need not be surjective. The main additional compli- 
cation for our generalization lies in the application of Brouwer’s theorem: here, a 
different mapping must be used compared with that of Peters and Wakker (1994). 

Convexity and compactness of j(B”+ ’ ) (cf. Step 1) can be proved similarly to 
Peters and Wakker (1994). 

For X=(X ,,..., A-J, y=(y ,,..., y,), we write x > y if xi 2 yi for i = 
1 ,*.., n; x<y is similar. We write x>y if xi>y, for i= l,...,n; x<y is 
similar. For a subset T of R” the set: 

WE(T):={xET:thereisno yET with y>x}, 

is the weakly eficient subset of T. 

Lemma 3. For each budget set II”+’ E z”+‘, WE(flB”+ ‘>I = SE(flB”+‘)). 

proof. Let x~f(B”+‘), and xfx’, X+X’ for some x’ Ef(B”+‘), i.e. xg 
SE(flB”+ I)>. Suppose x> > xj. We show that x $Z WE(flB”+ I)>, by constructing 
a yEB”+’ with f(y)>x. Let 2, X’EB”” be such that fl?i-)=x&Z)=.‘. 
We distinguish two cases. 

In the first case, j < n. Then let 3 be such that Zj < yj < ?I, and, for all i Z j, 
yi > q. 

Inthesecondcase,j=n.Thenx:,>~,orjE-’,+,>5;~+,.TakeyEB”+‘such 
that ~,=f,(Z)=i~+h(Z,+, )<y,+h(5,+,)=f,(Y)<f,(X’> and Y,<X’, for 
k = n,n + 1, and Yk > I$ z Xk for all k < n. Then y is as required. q 

The proof of the next lemma is similar to the proof of Lemma 1 in Peters and 
Wakker (1994), so is omitted. 
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Lemma 4. Let B”’ ’ E 2 n+ ‘, l?,, &, . . . , Z,_ , E R,, and suppose that the set 
(zEB”+‘: z’=z,, z2=22 ,..., z,_ , = Z,_ ,} is non-empty. Then f,, attains its 
maximum over that set at a unique point. 

As in Steps 2 and 3 of Section 3, we now fix a budget set B"+ ’ E Z”+ ’ 
determined by prices ( p, , . . . , p, + , >, and income cr. For every x E SE(fl B *+ ’ >) 

let(x ,,..., xn_,, Xn, X,+‘)eB”+’ be the unique f original of X, cf. Lemma 4. 
It is also denoted by f l(x). An explicit expression for the vector f ‘(x) can be 
inferred from the proof of Lemma 6 below. 

Lemma 5. f ‘(xl is continuous. 

Proofi Let xk +x in SE(flB”+ ‘)). By compactness of Bnf ‘, we may assume 
that f ‘(xk) converges to, say, y. By continuity of f, f(f ‘(xk>) *fly), that is, 
xk converges to fly>. Because x k also converges to x, fly) = x, which, by 
Lemma 4, uniquely determines y as f ‘(x>. Thus, f ’ is continuous. 0 

Let the map N : SE(fl B”+ ‘)> + R” be defined by 

N(x) := p 

Lemma 6. For every x E SE(fl B”+ I>), N( x is a normal vector of a hyperplane ) 
supporting fl B”+ ‘> at x. 

Proof For every x E SE(fl B”+ I>), let c(x) := (Y - Cy:“pi xi. 
First, suppose h’(0) < p,,+ ‘/pn. In this case, for every x E SE(fl B”+ I>>, Z,, = 

c(x)/p, and X,+, = 0, because these values maximize f,, given (xl,. . . , x,_ , >. 
In words, the marginal contribution to f, of the nth commodity is larger than that 
of the (n + 1)th commodity. Therefore, we have 

j-‘(x) =(x ,,...‘X,-I. C(X)/P,,O), 

and 

f(B”+‘)={x&R::(x ,,..., x,).(p ,,..., p&a). 

The desired result now follows, because p,,+ ,/h’( 2, + , > > p,,+ ,/h’(0) > p,, for 
every x E SE(fl B”+ I)). 

Next, suppose h’(O) > p,,+ ,/p,. We distinguish two cases. 
In the first case, consider x E SE(flB”+ ‘)> with h’(c(x)/p,+ ,) > p,+ ,/p,. 

Then, given (x,, . . . , x,,_,>, f, is maximized by Y,, = 0 and X,+, = 4x)/p,+,. 
In words, the marginal contribution to f, of the (n + 11th commodity is larger 
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than that of the nth commodity, even if the remaining ‘income’ c(x) is completely 
spent on the (n + I)th commodity. Therefore, in this case, we have 

f’(X)=(X,l...,x,-,,O, +)/P,+,). 

Such points x satisfy the equation G(x) = 0 with G(x) = p,+ ,h- ‘(x,) - c(x). 
The gradient of G at x is the vector (p,, . . . , p,_ ,. p,+ ,/h’(h-‘(x,))), which is 
equal to N(x), since Pn+ , /ti(h-‘(x,)) =pn+ ,/h’(F,+,) Gp,. Since the equa- 
tion G(X) = 0 locally describes SE(flB”+ I)>, the convexity of flB”+ ‘) implies 
that N(x) is normal to a supporting hyperplane of f(B”+ ‘) at x. 

In the second case, consider x E SE(flB”+ ‘>) with h’(c(x)/p,+ ,) <P,,+ ,/p,. 
Then in+, solves h’(X”+ ,) = pn+,/pn and ~,=(c(~)--~+,X,+,)/p,. Such 
points x satisfy G(x) = 0 where now G(x) = - c(x) + P,, x, + P,+ , X,,, , - 
p,h( X,,, , ). The gradient of this function G is ( p, , . . . , p,>, which equals N(x), 
because p, = p,,+ ,/h’(Ji-,+ , 1. Therefore, also in this case, N(x) is normal to a 
supporting hyperplane of flB”+ I > at x. 0 

Next we describe the construction of D"+' from D" in detail. Recall that D" 
satisfies the WARP. The construction described here is slightly more general than 
that in Section 3. By this generalization, cycles of D" give rise to cycles of D"+ I, 
where positive amounts of each commodity, in particular of the new commodity, 
are bought. This precludes trivial cases that are essentially lower-dimensional. 
Further, it enables us to adapt our results to rW:+ and rWy+ instead of ll%: and 
rWy; the interest of this has been discussed in Peters and Wakker (1991). For the 
method described in Section 3, one can take p = 0 below, and make minor 
adaptations in the subsequent analysis. 

To allow restriction to positive coordinates, we assume that there exists p > 0 
such that all commodity bundles that occur in cycles of D" have all coordinates 
greater than or equal to CL. If this assumption is violated, then D" is transformed 
to D' as follows. A value p > 0 is chosen. Then, if a budget set B” has a 
non-empty intersection B’ with [ p, xl”, then 

otherwise, D'(B") is the intersection of B" with the line segment that connects 
the origin and (p,. . . , p.). Then D' contains all cycles of D" shifted by 
(p,..., CL), and D' does not contain other cycles. This is similar to footnote 1 in 
Peters and Wakker (1994). 

Let x E SE(flB”+ ’ I), and let H(x) denote the budget set in 2” determined 
by the hyperplane supporting fl B n+ '1 at x with normal N(x). In view of Lemma 
6, H(x) is well defined; H depends continuously on x, since N does, in view of 
Lemma 5. Let $I denote projection on SE(f(B”+ I)); i.e. $ assigns to each point 
the nearest point of SE(fl B"+ '>I, according to Euclidean distance. Obviously, $ 
is continuous, so the map + 0 D" 0 H : SE(flB”+ I)) + SE(flB"+ ‘)) is continu- 
ous. Since, as a consequence of Lemma 3, the set SE(flB”+ ‘)) is homeomorphic 
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to a compact convex set (e.g. the projection on the plane x, = 01, we can invoke 
Brouwer’s theorem and obtain the existence of a point x * E SE(f(B”+ ‘)> with 
X *=~,/~OD”OH(x*).(Thebudgetset H(x*)istheset B”inStep2ofSection 
3.) We use the fact that, for all x~H(x*): $(x)=x* =x=x*, applied to 
x = D”( H( x * )), to conclude that D”(H( x * )) = x * . By the WARP of D”, this 
fixed point x * is unique. Therefore, we can define D”(f(B”+ ‘1) = x* . Finally, 
for each B”+ ’ E X”+ ‘, we let 

D”+ ‘(B”+ ‘) :=f ‘( Dn(f( B”+ I))). 

This completes the derivation of Steps 2 and 3 in Section 3. 
The following three lemmas prove Theorem 2. 

(1) 

Lemma 7. D”+ ’ is eficient and continuous. 

Proof. It is obvious that D”+’ is efficient. For continuity, let B”+ ‘, BP+‘, 
B”+ ’ be a sequence in C”+’ with lim BY+’ = B”+ I. Peters and Wakker 
(1’994,‘S&tion 4) show that f is continuous’;& iespect to the Hausdorff metric; 
hence, f(B!“‘> converges to flB”+’ ). Each set flB,!‘+ ‘> is supported at the point 
D”(f(BJ!‘+‘)) by a hyperplane with positive normal, determining a budget set By 
in 2”. By compactness, we may assume that the points D”(flB’p+ ‘)) and sets BJ? 
converge to a point y and a budget set B” respectively. It straightforwardly 
follows that Bn supports fl B n’ ‘> at y. By continuity of D” on Z”, y = D”(B”). 
By the definition of D”(f(B”+ ’ >>, y must be this point D”(f(B”+ I>>. Thus, 
D”(f(B,?+ ‘)) converges to D”(flB”+ I>). 

We must show that f’(D”(ABj”“)))~f’(D”(AB”+‘))) as j+a. Note 
that the function f ’ , used above, is different for different sets Bin+‘, or B"+ ‘. 
This dependence is not expressed in the notation. For this reason, we cannot 
invoke Lemma 5. Therefore, we use the explicit expressions for f ’ given in the 
proof of Lemma 6. As the sets BJ!’ ’ converge to B”+ ‘, so do the associated price 
vectors, and incomes (Y. Therefore, if h’(O) G p,+ ‘/pn, then the desired conver- 
gence follows. If h’(O) > p,+ ,/P,, and h’(c( y>/p,+ I > > p,+ ‘/p,,, then, for j 
sufficiently large, the same case applies for the sets BJ!‘+’ and the desired 
convergence follows. Similarly, if h’(O) > p,+ ‘/p, and h’(c(y)/p,+ ‘1 <p,+ ‘/pn, 
then, for j sufficiently large, the same case applies again for the sets BJ!‘+ ’ and the 
desired convergence again follows. Finally, if h’(O) > pn+ ‘/p, and h’(c( y)/p,+ I) 

=P “+ ,/p,, then both the formulas for the first case in the proof of Lemma 6 and 
for the second case there can be used, leading to the same result. The desired 
convergence again follows, both for the sets BJ*+ ’ for the first case there, and for 
the second case there. Thus, we conclude limj,_Dn+‘(BJ?“) = D”+‘(B”+‘) in 
all cases. •’ 

Lemma 8. The cycle number of D”’ ’ is greater than or equal to the cycle number 
of D”. 
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Proof. Let x0,. .., xk be a cycle revealed by D”” through the budget sets 
B”+ I 5;+’ (x”=xk). Then, in view of (11, fC~“>Pfix’>P...Pflx”> is 
re’veaied.by budget sets suF~~ing flB;+ ‘I,. . . ,flB,“+ ‘> at AX’), . . . , flxk- I). 
This yields a cycle of length k or smaller for D” (the length may be smaller if 
points coincide). U 

The following lemma extends Lemma 3 in Peters and Wakker (1994). 

Lemma 9. The cycle number of D”+ ’ is smaller than or equal to the cycle number 
of D”. 

Proof. Fix z,, ’ > 0 so small that h( q,+ 1) < p, where p > 0 is a lower bound for 
coordinates of comm~ity bundles that occur in cycles of D”. Let f, be the 
restriction of f to lR:X f z,, ,}; it is an affine bijection from lf%: X { z,+ ,} to 
lfq+(0,..., 0, h( z,+ ,>>. Let the constants N,, , and h, + ‘(0) be such that 

h,+l(X,+I)=~~+lx,+l+h,+, (0) is the affine function tangential to h at z,+ ,. 
Let E:(x ,,..., x,+,)++(x ,,..., x,_,, x,+~,+‘(X,+,)); this function is affine. 
Let x’Px2 be revealed by a linear budget set B” C ll%:, with all coordinates of x’ 
and x2 at least p. 

Let (p,,..., p,) and GT be the price vector and income that correspond to B”. 
Then 

On R:x{z,+,), j=f=fi, so &‘(x’X fi’(x”> Efj)-‘(B”); note that ~“cx’) 
and L’(x’I exist because h(z,,I) is smaller than .$ and x,‘. Elsewhere, f> f. 
Hence, for each y E (j)-‘(B”), f(y) afly); since fly) is an element of B”, so 
is fly); thus, fl(&‘(B”))CB”. Because fl(j>-‘(B”)) contains fl&“<x’)) = 
x’, it contains D”(B”I = x’. Therefore, by the WARP, x’ = D"(fl(f)- ‘(B”))). It 
follows by (1) that R ‘+ Y(f)- ‘(B”)) =c ‘(x’). Therefore, the linear (n + l)- 
dimensional budget set (I)-‘(B”), which also contains & ‘(x~>, has revealed 

.q(x’>P~‘(x2). 
It follows that cycles of D” are mapped by fi ’ to cycles of the same shape and 

length for D”+ ‘. 0 

The above proof has also demonstrated the following isomorphism between 
cycles of D” and of DRf ‘. 
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Observation IO. Let x’Px’P . . . Pxk be a revealed preference cycle of D”. Take 
any z,+ , such that xi > h( z, + , ) for all j. Then we obtain an isomorphic revealed 
preference cycle y”Py’P . . . Pyk of D”+ ‘, where, for each j: 

yj=(x:‘,..., x;_,,x;-h(z,+,),z,+,). 

The proof also shows that the price vectors used in the two revealed preference 
cycles are closely related. It can be demonstrated that the adopted budget sets are 
also isomorphic in a special way. Details are omitted. 
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