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Anscombe and Aumann showed that if one accepts the existence of a physical randomizing 
device such as a roulette wheel then Savage's derivation of subjective expected utility can be 
considerably simplified. They, however, invoked compound gambles to define their axioms. We 
demonstrate that the subjective expected utility derivation can be further simplified and need not 
invoke compound gambles. Our simplification is obtained by closely following the steps by which 
probabilities and utilities are elicited. 

1. INTRODUCTION 

The most well-known justification for subjective expected utility theory (SEU) was pro- 
vided by Savage (1954). Savage's hallmark contribution was to derive both utilities and 
probabilities from preferences. His axioms are appealing but the analysis is complex and 
requires a rich set of available acts and states of the world. Soon after publication of 
Savage's work, several authors attempted to simplify the derivation of SEU (Rubin (1949), 
Blackwell and Girshick (1954), Chernoff (1954), Anscombe and Aumann (1963), Pratt, 
Raiffa and Schlaifer (1964)). The simplifications were obtained by introducing an objective 
randomizing device such as a roulette wheel. These alternative derivations utilized a two- 
stage setup where an act yields a probability distribution under each state of the world. 
In contrast, Savage's act yields a prize (degenerate lottery) under each state of the world. 
This added complexity of the two-stage setup paid dividends in the simplification of the 
state space and of the axioms and proofs. 

Anscombe and Aumann's (1963) (AA) approach for deriving SEU has been found 
to be the most attractive. They adapt the independence axiom of von Neumann and 
Morgenstern (1944) to the two-stage setup by means of a "reversal of order in compound 
lotteries" assumption. They permit finite state spaces, thus avoiding several mathematical 
complications (Stinchcombe (1994)). The AA approach attained a celebrity status because 
the axioms are highly transparent and the proofs are simple (Kreps (1988)). Subsequently, 
many authors have fruitfully employed the AA setup in refinements and modifications of 
the SEU model (Fishburn (1970, 1982), Hazen (1987, 1989), Schmeidler (1989), Karni 
(1993), Nau (1993), Eichberger and Kelsey (1993), Machina and Schmeidler (1995), Lo 
(1996)). 

The aim of this paper is to further simplify the AA approach. Like AA, we use a 
randomizing device for calibrating subjective probabilities and utilities. One distinction 
between our approach and that of AA is that, in AA's formulation, under each uncertain 
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event the outcome can be any lottery, whereas in our approach we only need to assume 
that the outcome is a prize, i.e. a degenerate lottery. Thus we avoid the two-stage setup. 
This strategy of employing a single-stage approach rather than the traditional two-stage 
setup has been used by Sarin and Wakker (1992) to simplify Schmeidler's (1989) derivation 
of Choquet-expected utility. Complications that are introduced by two-stage setups have 
been described by Loomes and Sugden (1986), Segal (1990), and Luce and von Winterfeldt 
(1994). 

A second distinction between our approach and that of AA is that in our setup we 
need not invoke all assignments of prizes to events. The two distinctions imply that we 
need fewer structural assumptions and obtain greater flexibility in modelling. Arguments 
for the need for structural simplicity have been given by Aumann (1962, 1971), Krantz, 
Luce, Suppes, and Tversky (1971), Suppes, Krantz, Luce and Tversky (1989), Fishburn 
(1967, 1976), and Nau (1992). 

The strategy in our axiomatization is to closely follow the steps of elicitation com- 
monly employed in decision analysis. Consistency conditions are imposed that serve to 
prevent contradictions in the elicitations. The resulting axioms are highly transparent and 
the proofs are elementary. We hope that the obtained simplicity is considered a virtue. 

The consistency conditions are provided in Section 2. In Section 3, a formal presenta- 
tion of our axioms and characterization theorem is given. Section 4 describes some 
examples that illustrate the simplicity of our model. Section 5 presents an alternative 
characterization through a dominance axiom; the dominance axiom resembles stochastic 
dominance. Section 6 provides a conclusion. Proofs are given in the appendix. 

2. CONSISTENCY CONDITIONS 

The problem addressed here is the evaluation of an act (H1, x1;...; H, xn) yielding a 
prize xj if event Hj occurs, where probabilities of the events Hj are not given. The events 
Hj are disjoint and exhaustive. AA gave an example where the H events refer to the 
outcome of a horse race. Their terminology has been generally accepted, therefore we call 
these events "horse events." We do not impose restrictions on prizes; they could be 
quantitive variables such as money or could be qualitative such as good or bad health. 

In the evaluation of a gamble two imputs are required. One is the probability of 
events and the other is the utility of prizes. Two elicitation assumptions, one dealing with 
the elicitation of utilities and the other with the elicitation of probabilities, and one valua- 
tion assumption give us the desired SEU of a gamble. 

We follow AA in using a randomizing device such as a roulette wheel for calibrating 
utilities and subjective probabilities. Physical ("known," "objective") probabilities are 
generated by using the roulette wheel. Thus, any desired probability distribution over 
prizes can be specified in terms of a lottery contingent on the outcomes of the roulette 
wheel. Following AA, we assume: 

Assumption 2.1 (Elicitation). Preferences over roulette wheel lotteries are represented 
by ("von Neumann-Morgenstern") expected utility. 

Assumption 2.1 is utilized to elicit utilities over prizes by standard procedures (Mos- 
teller and Nogee (1951), Raiffa (1968), Farquhar (1984)). In spite of the expected utility 
assumption for lotteries it is by no means clear that preferences over uncertain acts will 
satisfy SEU (Ellsberg (1961), Schmeidler (1989)). Keynes (1921) and Knight (1921) 
emphasized the distinction between risk and uncertainty. Ramsey (1931), de Finetti (1937), 
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and Savage (1954) argued that subjective probabilities can be assigned to uncertain events. 
The first step to obtain an SEU representation for acts is to show that beliefs about 
uncertain events (horse events) can be quantified by probabilities. 

In the standard procedure to calibrate the probability of an event H, a favourable 
prize x* and an unfavourable prize x* are fixed. Then a roulette-wheel probability p is 
elicited such that the decision maker is indifferent between the act (H, x*; not-H, x*) and 
the lottery (p, x*; 1 -p, x*). This indifference is displayed in Figure 1. 

H * P x* 

is indifferent to 

not-H 1 -p 

FIGURE I 

The method for eliciting probabilities just described is based on a comparison of 
likelihoods of different events through bets on events. Events E and E' are equally likely 
if one equally prefers betting on E to betting on El, i.e. (E, x*; not-E, x*) is indifferent to 
(E', x*; not-E', x*). In this case we write E'1E'. This method for calibrating probabilities 
has been well understood throughout history (Borel (1939, Sections 39 and 48)). 

A consistency check for subjective probabilities will require that if the probability of 
H is assessed to be p, the probability of a disjoint event H' is assessed to be q, and in a 
cross-checking the probability of the union Hu H' is assessed to be r, then r must be 
equal to p + q. This additivity of probability is ensured by the following assumption on 
likelihood comparisons through bets on events: 

Assumption 2.2 (Elicitation). For all disjoint horse events H, H' there exist disjoint 
roulette events R, R' such that H ,R, H' ,R', and H u H' ,R u R'. 

While Assumption 2.2 may seem self-evident, we note that, as early as 1949, Shackle 
had argued for nonadditive probabilities. Ellsberg (1961) provided some ingenious 
examples where Assumption 2.2 is violated. Recently, many authors (for example, 
Schmeidler (1989), Gilboa (1987)), have developed alternative models for decision under 
uncertainty that relax Assumption 2.2. Assumptions 2.1 and 2.2 guarantee that utilities 
are assigned to prizes and that beliefs can be quantified by additive probabilities. We now 
turn to the valuation of acts, for which it must be specified how probabilities and utilities 
are aggregated into an overall valuation. At this stage it is still possible that the decision 
maker uses methods of valuation that deviate from SEU. A way to elicit the value of an 
act (HI, xi ;... .; Hn, x,) is as follows. First one elicits the probabilities p, ... , p,P of the 
events H,- ... , Hn using the roulette wheel. By additivity, assured by Assumption 2.2, 
p , ... . p, sum to one. Therefore we can construct a "matching" lottery 
(R,, xl; .. .; Rn , Xn), where the events R, , ... , Rn are roulette wheel events with probabil- 
ities P, .. . . p,P respectively. By Assumption 2.1, the roulette wheel lottery is valued by 
the expected utility EnI pj U(xj). For consistency we would want the value of the act 
(HI, xi;...; Hn, xn) to be the same. This consistency is ensured by the following condition. 

Assumption 2.3 (Valuation). An act (Hi , xl; .. .; Hn , xn) is indifferent to a lottery 
(R,, xl; ... .; Rng xn)whenever HI I/RI 9 ... 9 Hn -/Rn 
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Assumption 2.3 is based on the general principle that two gambles be judged indiffer- 
ent if each prize is equally likely under the two. This method of evaluation of an uncertain 
act by matching it with a lottery with the same probability distribution has been widely 
used in decision analysis (Raiffa (1968, Section 5.3 and page 109/110), Schlaifer (1969, 
Section 4.4.5)). Although the conditions of this section are guided by the elicitation process 
and serve to avoid contradictions in the assessments, they are easily reformulated as 
preference conditions. This is obtained mainly by replacing the equal-likelihood conditions 
in Assumptions 2.2 and 2.3 by their definitions in terms of bets on events. It is straight- 
forward to observe that Assumption 2.2 implies additivity of probability and Assumption 
2.3 implies an SEU valuation for all acts. In this manner the assumptions of this section, 
along with some common assumptions that are described in the next section, provide an 
elementary characterization of SEU. 

3. A FORMAL PRESENTATION 

Our setup involves two basic elements. One is the horse event H and the other is the 
roulette event R. The set of horse events, denoted by X, may be viewed as containing 
subsets of an underlying horse-state space S (finite or infinite). Some richness conditions 
concerning Xf are specified in Assumption 3.1. The set of roulette events, R, contains all 
the subintervals of [0, 1);' to each interval R a probability is assigned that corresponds 
to the length of the interval. Our notation is as follows. 

X An arbitrary set of prizes ;2 

(HI, xI;...; Hn, xn) An act ("pure horse lottery") yielding 
prize xj in event Hj; 

v/ The set of all acts; 
(R1, xl; ..; Rn, x) = (pI, xI;... Pn, xn)3 A ("pure roulette") lottery yielding xj in 

roulette event Rj with probability pj 
0 <n<COo, Ej.= IPi =1); 
The set of all (roulette) lotteries; 

G= (E1, x; ...; En, xn) A gamble, i.e. either an act or a lottery; 
1 =, u Y The set of all gambles; 
>_ The decision maker's preference relation 

on !. 

The notation >-, , ?, and -< is as usual. Acts are functions from the underlying 
horse state space S to X. Thus the events HI, . .. , Hn partition the horse state space. 
Lotteries are functions from [0, 1) to X, and the roulette events R,,. . . , Rn partition the 
roulette wheel state space [0, 1). Prizes are identified both with degenerate lotteries and with 
constant acts.4 Thus preferences over prizes are generated by preferences over degenerate 
lotteries, and preferences over constant acts necessarily coincide with those preferences. 
To avoid triviality we assume throughout that two non-indifferent prizes x* >-x* are 

1. The only reason for taking [0, 1) instead of [0, 1] is that the notation of partitions into intervals is now 
somewhat simpler; the intervals can all be left-closed and right-open. 

2 X can be finite as well as infinite. 
3. The identification of a lottery with the induced probability distribution over prizes will be justified in 

the sequel. 
4. It is sometimes convenient to assume one joint underlying state space S x [0, 1) that specifies both the 

uncertainties regarding horses and regarding the roulette wheel. Then a roulette wheel event R is related to the 
subset S x R of the joint state space and a horse event H to the subset H x [0, 1) of the joint state space. In this 
case, degenerate lotteries and constant acts are formally identical. 
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available. These two prizes are fixed throughout and are used to obtain likelihood 
comparisons. 

The set ? of roulette lotteries consists of all roulette lotteries (RI, xl;. . .; R, xn) for 
prizes xl, .. ., x, and subintervals R ,... , Rn partitioning [0, 1). Throughout we assume, 
without further mention, that all lotteries that generate the same probability distribution 
over prizes are indifferent. Therefore we often denote lotteries simply by the generated 
probability distributions. This is the common approach in decision under risk. Note that 
all simple probability distributions over prizes can be generated by the roulette wheel. 

We do not assume that .4 contains all assignments of prizes to horse events. We 
describe our assumptions regarding horse events and acts later. We will often use two- 
outcome gambles (E, x*; not-E, x*) in our analysis, hence we introduce the simplifying 
notation (E, x*) for such gambles; similarly, (p, x*) denotes (p, x*; 1 -p, x*). 

Assumption 3.1 (Domain).5 

X-Y contains: 

H, . .. , Hn for each act (HI, xi;... ; H, xn) with xi : xj whenever i #Aj; 

the union of all of its pairs of elements. 

a? contains the act (H, x*) for each event H -Y'. 

Equivalently, we could have first defined the collection XY of events, and then define 
a? as a subset of the set of functions from S to X that are "measurable" with respect to 
,-. That is the most natural approach for Savage's (1954) model and other models where 
all functions from S to X are incorporated as acts. In our setup, where the set d can be 
fairly general, we preferred the setup where d is defined first and -X is derived from d. 

Now we turn to preference axioms that characterize SEU. Our axioms concern prefer- 
ences over acts in d, preferences over lotteries in Y and preferences where an act is 
compared to a lottery. Of course, both d and Y are contained in I so, to avoid repetition, 
our axioms are formulated in terms of 1. 

Axiom 3.2 (Weak Ordering). The preference relation >- on I is complete and 
transitive. 

The following axiom imposes a dominance condition. It implies that the likelihood 
of each event is between the likelihoods of the universal event and the impossible event. 
Alternatively, it can be interpreted as a monotonicity condition with respect to prizes, 
saying that replacing x* by x* is desirable. 

Axiom 3.3 (Monotonicity). x*?>(H, x*)?-x* for all HeXY. 

For lotteries the classical independence and continuity axioms are imposed; we use 
Jensen's (1967) versions. 

Axiom 3.4 (Independence axiom for lotteries). For lotteries L, L', QeY, if L>-L' 
and 0< A < 1, then AL+ (1-A)Q>AL'+ (1 _A) Q.6 

5. Observation 1 in the appendix demonstrates that our assumptions imply that X is an "algebra." 
6. Here AL + (I - A)L' assigns to each prize x the probability AL(x) + (I - A)L'(x), where L(x) and L'(x) 

are the probabilities assigned to x by L and L', respectively. 



404 REVIEW OF ECONOMIC STUDIES 

Axiom 3.5 (Jensen Continuity for Lotteries). For lotteries L, L', L", if L>-L'>-L", 
then there exist 0<)A< 1 and 0<p <1 such that ALL+ (1 -)A)L">-L'>-pL+(1 -p)L". 

The next axioms reformulate Axioms 2.2 and 2.3 in terms of preference conditions. 

Axiom 3.6 (Additivity). For all disjoint horse events H, H' there exist disjoint rou- 
lette events R, R' such that (H, x*) (R x*), (H', x*) (R' x*), and 
(Hu H', x*) - (R u R', x*). 

Axiom 3.7 (Probabilistic Beliefs). Act (H1, xi; . . ; H, xn) is indifferent to lottery 
(RI, xl; .. .; R, xn) whenever (Hi x*) - (Ri x*) for all i. 

We now state our main result. 

Theorem 3.8. Under the Domain Assumption 3.1, the following two statements are 
equivalent: 

(i) SEU holds; i.e., there exists a utility function U: X-+ R and the probability P can be 
extended to the horse events, such that preferences overgambles are represented by thefunction 

(El, xi x;.. _; E.n I n >," P(Ej) U(xj). 

(ii) > satisfies Axioms 3.2 (weak ordering), 3.3 (monotonicity), 3.4 (independence 
axiom), 3.5 (Jensen continuity), 3.6 (additivity), and 3.7 (probabilistic beliefs). 

4. EXAMPLES 

This section presents two examples to illustrate the flexibility of our approach. In both 
examples, horses participate in a race, exactly one horse will win, and it is unknown which 
horse will win. The first example describes a simple single-stage approach that is compatible 
with our assumptions. The second example further illustrates the increased flexibility that 
is possible in our approach, requiring fewer hypothetical assumptions. 

Example 4.1. There are two horses s, t. Acts are mappings from {s, t} to X, i.e. the 
prize resulting from an act depends on the horse that will win the race. Horse events are 
subsets of {s, t}. Roulette lotteries are generated by the random drawing of a number 
from [0, 1), as in the previous sections. Obviously, a subjective probability p for s means 
that an act assigning a prize x to s and a prize y to t is indifferent to a roulette lottery 
assigning x to the interval [0, p) and y to [p, 1). Note that we did not make independence 
assumptions, or other assumptions, about joint probability distributions of horses and 
numbers from [0, 1). Simply, such assumptions are not needed in our setup. 

Example 4.2. Assume three horses, h,, h2, h3. Suppose the decision maker considers 
three acts: Stake $1 on horse 1, stake $1 on horse 2, or not bet at all. Further suppose 
that a bet on horse 1 yields $10 if horse 1 wins. Then the net profit, in dollars, of betting 
on horse 1 is 9 if it wins and -1 if some other horse wins. Similarly, a bet on horse 2 
yields $2 if horse 2 wins. Denoting acts by the corresponding net profit vectors, the three 
acts considered by the decision maker are: 

(9, -1, -1), (-1, 1, -1), and (0, 0, 0). 
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In our model we assume all "pure" lotteries over the set of prizes X = {9, 1, 0, -1 }, and 
from these the utilities of prizes result by standard procedures. Let us take x* = 1 and x* = 
-1 as the prizes for calibrating the probabilities of horse events. The three "imaginary" acts 
used for probability calibration are (1, -1, -1), (-1, 1, -1), (-1, -1, 1). Our axiomatiza- 
tion, requiring availability of all acts (H, x*; He, x*) for any horse event H, requires three 
more imaginary acts, i.e. the acts (-1, 1, 1), (1, -1, 1), (1, 1, -1).7 In elicitations, these 
acts can be used to verify additivity of probability and can thus provide cross-checkings 
for elicited probabilities. 

With the pure lotteries over the prizes and the six imaginary acts just described, the 
domain of our theory is complete and the characterization Theorems 3.8 (and 5.3) can 
already be invoked. Obviously, if considered useful, one has the possibility of adding more 
imaginary acts. One may, for instance, add the three imaginary acts (9, 0, 0), (0, 9, 0), 
(0, 0, 9) to provide alternative calibrations of probability. Then still our characterization 
theorems apply and give a foundation to SEU. In short, there is considerable flexibility 
concerning domain. 

AA invoke more imaginary choice alternatives in this example, with the displayed 
three actual acts. Like us, their model invokes the entire set Y of lotteries over X= 
{9, 1, 0, -1 }. Their model requires all 34=81 assignments of prizes to {h1, h2, h3}, which 
adds 78 imaginary acts, including all, unrealistic, acts that assign net wins to all horses. 
But then (both in its original version and in its modern version) the model also requires 
all assignments of lotteries-over-X to {hI, h2, h3}. In the original version, the domain was 
extended further by also including all lotteries over assignments as just described. 

5. A DOMINANCE-CHARACTERIZATION 

Some may judge that the axiomatization given before is not satisfactory because the axioms 
are too close to the representation that they seek to characterize. Thus Axiom 3.6 may 
simply seem like a direct reformulation of additivity of probability. Note, however, that the 
axioms given before satisfy all the requirements of a characterization, i.e. they formulate 
conditions entirely in terms of the empirical primitive which is the preference relation. 

In this section we provide an alternative characterization, that shares all the structural 
advantages of the analysis in the previous sections. The present characterization resembles 
the one of Section 3 but is based on an appeal to the intuition of stochastic dominance 
rather than additivity and probabilistic beliefs. 

Minimal prizes of gambles play a special role here, hence we use subscripts 0 to denote 
them. We rank-order prizes of gambles; i.e. a typical gamble is now denoted by (Eo0 x0; 
E1 xl; .. .; En, xn) where it is assumed that xo<x x< *.. * * x,. For two-outcome gambles 
(not-E, x*; E, x*) and (1 -p, x*; p, x*) we maintain the abbreviated notation (E, x*) and 
(p, x*). Now we turn to our new condition that extends the well-known idea of stochastic 
dominance. This condition is an alternative to the extension of stochastic dominance used 
by Sarin and Wakker (1992) to characterize a nonexpected utility model, "Choquet- 
expected utility." They use a single-stage approach similar to the present paper, and 
describe the axioms that should be added to their Choquet-expected utility model to 
characterize SEU. Their axioms are, however, more complicated than the ones presented 
in this paper. 

Consider two lotteries (po 5 xo; pi. xlI; . .. ; Pn xn) and (qo o xo; q, l . xi q, . xn,) and 
assume that p?> q ,. ... , p, > qn. In other words, each non-minimal prize is more likely in 

7. Besides the trivial acts (I, I, I) and (- I, - I, -1). 
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the first lottery. This implies that the first lottery stochastically dominates the second. A 
generally accepted condition for rational choice is that the stochastically dominating lottery 
be preferred. The expected utility model as implied by the von Neumann-Morgenstern 
axioms satisfies stochastic dominance. Strict stochastic dominance adds the requirement 
that the preference between the above two lotteries be strict if in addition, for some j, 
xj>-xo and pj> qj. We extend the principle of stochastic dominance to general gambles. 
The preference (H, x*) > (R, x*) in the next condition can be interpreted as saying that 
H is at least as likely as R; we then write H>,R. Obviously, -1 as defined before is the 
symmetric part, and the asymmetric part >., is defined as usual. 

Axiom 5.1 (Event-Dominance). (Ho, xo; H1, xl; ... ; Hn, xn)>(Ro, xo; R1, xI, 
Rn , x") whenever (HI , x*)>(RI , x*), . . . , (Hn, x*)?(Rn, x*); further, the former 

preference is strict if, in addition, xj>- x0 and (Hj, x*) >-(Rj, x*) for some j. Similar 
conditions hold when preferences are reversed (< instead of >- and -< instead of >-) 
except in xj)-x0. 

Axiom 5.1 says that, if for each non-minimal prize the associated horse event in an 
act is more likely than the corresponding event in the lottery, then the act must be preferred 
to the lottery. Note that in Axiom 5.1 it cannot be assumed a priori that from 
H1 >R1, .. ., Hn? IRn it follows that Ro>-IHo. That conclusion does follow as an implica- 
tion of Theorem 5.3. Next we strengthen Jensen continuity. 

Axiom 5.2 (Continuity). For lotteries L, L', and gamble G, if L>-G>-L', then there 
exist 0<2A< 1 and 0<p < 1 such that AL+ (1 -A )L'>-G>-L +(1 -p)L'. 

The axiom strengthens Jensen continuity because G can be an act as well as a lottery. 

Theorem 5.3. Under the Domain Assumption 3.1, the following two statements are 
equivalent: 

(i) SEU holds. 
(ii) > satisfies Axioms 3.2 (weak ordering), 3.3 (monotonicity), 3.4 (independence for 

lotteries), 5.1 (event dominance), and 5.2 (continuity). 

In Theorem 5.3, event dominance and continuity replace Jensen continuity, additivity, 
and probabilistic beliefs of Theorem 3.8. 

6. CONCLUSION 

Our approach shares some similarities as well as some important differences with that of 
AA. We adopt their strategy of using a randomizing device (roulette wheel) to simplify 
the axiomatization. The important difference between our approach and that of AA is 
that we do not need compound gambles in our analysis. In AA's setup a horse event yields 
an outcome that is not a determinate prize but a probability distribution over prizes. Thus 
AA invoke all assignments of lotteries to horse events. In our single-stage approach, the 
outcomes of either a horse race or a roulette wheel spin are always final prizes (degenerate 
lotteries). Examples illustrating the simplicity of our approach have been given in 
Section 4. 
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The simplification of the measurement and application of expected utility obtained 
in this paper may be viewed as a modest contribution to a large literature that exists for 
deriving and justifying expected utility (for another recent justification, see Hammond 
(1988)). It is remarkable, however, that in spite of a long history of the study of the AA 
approach, no one has noticed the simpler single-stage approach. Several authors (Hazen 
(1987), Schmeidler (1989), Nau (1993), Machina and Schmeidler (1995) have used the 
two-stage setup of AA to derive new models for decision under uncertainty. We believe 
that the single-stage setup can lead to simplifications of these derivations. Finally, we hope 
that the single-stage approach will facilitate the presentation and teaching of expected 
utility, and the development of alternative models. 

APPENDIX 

Proofs and additional results 

The first observation demonstrates that X, the collection of horse events, is an "algebra." Thereafter, proofs 
of Theorems 3.8 and 5.3 are given. 

Observation 1. Under Assumption 3.1 X is nonempty, it is closed under finite unions, intersections, and 
complementation; i.e. it is an algebra. 

Proof. It was assumed in the text that all simple lotteries are contained in Y, and that the degenerate 
lotteries can be identified with constant acts. Hence all constant acts are contained in 4, in particular the act 
(S, x*; 0, x*), where S denotes the universal event. By Assumption 3. 1, this implies that S and 0 are contained 
in X, and therefore X is nonempty. For every event H, (H, x*) is contained in X, i.e. (H, x*; HC, x*) is 
contained in X. This implies that not only H, but also its complement H' is contained in X, so X is closed 
under complementation. As it is closed under union, it is an algebra, and is closed under finite unions and 
intersections. 11 

Proof of Theorem 3.8. Necessity of the conditions in Statement (ii) is obvious, so we show sufficiency. 
For each horse event H we define the "probability" P(H) as the number p such that (H, x*) - (p, x*). Existence 
of such a number p follows from Axiom 3.6 (take H' = H') and uniqueness follows from stochastic dominance 
on lotteries, implied by expected utility there (Jensen (1967) and Axioms 3.2, 3.4, 3.5). 

To show additivity of probability, assume that H and H' are disjoint horse events and take R and R' as 
in Axiom 3.6. Set P(H) = P(R) =p, P(H') = P(R') = q. Now (H u H', x*) - (R u R', x*) implies that P(H u H') = 

p + q. 
To value an act (HI, x,;... Hn, xn), define inductively, by Axiom 3.6, disjoint RJ* 1, Rj such that RJ*7I 

,..,I(HI u ... u Hj-), (pj=)P(Hj)=P(Rj), RJ* I u RyjIHI u ... utHj. We may assume Rj=[pi+-- - +p. , 

p,+. * -+pj) and RJ* I=[O,pp+ * *+p- 1)=R1 RI u * u R_11. Now P(HI u ... u HJ )=P(RI u .. u u Rn)_l. 
Strict inequality is excluded because x*>-(x*, RI u ... u Rn)- (x*, HI u* * u Hn) = x* cannot be. Hence 
RI,. . ., Rn is exhaustive. By Axiom 3.7, (HI, xl; ... ; Hn, xn) - (RI, xl;... Rn, xn) with value ,4> Pi U(xj); 

i.e., the SEU value of the act. This completes the proof of Theorem 3.8. 11 

Proof of Theorem 5.3. The proof of necessity of (ii) is immediate, so we assume (ii) and derive (i). 
Continuity implies Jensen continuity, hence expected utility holds for lotteries as in the proof of Theorem 3.8. 
Next a preparatory result is derived. 

Lemma 2. For each event Hef' there exists a unique pe[O, 1] such that (H, x*)-(p, x*). 

Proof. By Axiom 3.3 (monotonicity), (p, x*) >(H, x*) >(q, x*) for p = 1 and q = O. We may assume 
that both preferences are strict, as the other cases are trivial. Next consider any arbitrary p and q such that 
(p, x*) >-(H, x*) >-(q x*).- 

By stochastic dominance on lotteries as implied by the expected utility representation there, p > q and the 
same preferences hold for all p'>p and q'<q. By Axiom 5.2 (continuity), (p', x*)>-(H, x*)>-(q', x*) for some 
p'<p and q'> q: In the notation used in the definition of continuity, p'= Ap + (1 - A)q can be taken for some 
O < A < I and q'= pp + (I - p)q for some O < p < 1. Apparently, the set of p such that (p, x*) > (H, x*) is an 
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interval of the form (a, 1] and the set of q such that (H, x*)>-(q, x*) is an interval of the form [0, t). For all 
probabilities r?p < a, (p, x*) - (H, x*). By stochastic dominance on lotteries, a = r =p must hold; i.e. there 
exists a p as required and it is unique. 11 

For each horse event H we define the "probability" P(H) as the number p such that (H, x*) - (p, x*). 
Existence and uniqueness of such a number p follows from Lemma 2. 

The proof now proceeds in three stages. The first stage prepares for Stage 2, Lemma 2 and Stage 2 then 
implies Axiom 3.6, and Stage 3 derives Axiom 3.7. All events and acts used in this proof are available because 
of the Domain Assumption 3.1; this will not be made explicit anymore. 

Stage 1. For disjoint horse events H, H', P(H) + P(H') ? 1. 

To derive this stage let P(H) =p, P(H') = q and assume, for contradiction, that p + q > 1; i.e. q > 1 -p. 
Consider the lottery (p, x*); assume that it is generated by the roulette wheel gamble (R, x*) for R = [0, p). We 
have H -,R. Also H'>-1 not-R because (H', x*) - (q, x*)>-(l -p, x*); the latter strict preference follows from 
q> 1 -p and expected utility for lotteries. 

Consider the gamble (H u H, x*) = (not-(H u H'), x*; H', x*; H, x*), and compare it to the roulette wheel 
lottery (0, x*; not-R, x*; R, x*) (which is the degenerate lottery yielding x* for sure). Because H'>-, not-R and 
H>,R, by event dominance the former gamble is strictly preferred to the latter. That means, however, that 
(H' u H, x*)>-x*, contradicting the monotonicity Axiom 3.3. Stage 1 has been established. 

Stage 2. For disjoint horse events H, H', P(H u H') = P(H) + P(H'). 

Consider the act (H u H', x*). We rewrite the act as (not-(H u H'), x*; H, x*; H', x*). Assume P(H) = 

p, P(H') = q. Compare the act just-described to the lottery (1 -p - q, x*; p, x*; q, x*). By Stage 1, the latter 
lottery can be defined indeed. Assume that the lottery is generated by roulette wheel events R= [0, p), R'= 
[p, p + q), and not-(R u R') = [p + q, 1); i.e. the lottery corresponds to (not-(R u R'), x*; R, x*; R', x*). Now 
H-,R, H'- ,R', and two-fold application of event dominance, once with -< and once with X, implies that the 
lottery is indifferent to the act (not-(H u H'), x*; H, x*; H', x*). We can rewrite the lottery and act to obtain 
(p + q, x*) - (H u H', x*). That implies that P(H u H') =p + q. Stage 2 has been established. 

Stage 3. Acts are valued by their SEU value. 

Consider an act (HO, xo; .. .; Hn, x"). Assume that P(Hj) =pj for all j. As in the proof of Theorem 3.8, 
the pjs sum to 1, hence we can consider the lottery (po, xo;... .;pP, xn), corresponding to some (Ro, xo; ...; 
Rn, xn). We have Hj -1 Rj for all j> 1, therefore by two-fold application of event-dominance the gamble and the 
lottery are indifferent. This implies that the value of the gamble is its SEU value. 11 
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