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Abstract

The dependence between asset returns varies. Its strength can become stronger or

weaker. Also, its structure can change, for example, when asymmetries related to bull

and bear markets become more or less pronounced. To analyze these different types

of variations, we develop a model that separately accommodates these changes. It

combines a mixture of structurally different copulas with time variation. Our model

shows both types of changes in the dependence between several equity market returns.

Ignoring them leads to biases in risk measures. An underestimation of Value-at-Risk

by maximum 15% occurs exactly when most harmful, during crisis periods.

Keywords: Dependence, Stock markets, Copulas, International correlations

JEL classification: C32, F3, G15
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1 Introduction

The dependence between asset returns is neither linear nor constant. Instead, asset returns

exhibit asymmetric dependence, as negative returns show stronger dependence than posi-

tive returns. Furthermore, they exhibit tail dependence, because the dependence does not

vanish when returns become more extreme. Also, the dependence between returns becomes

stronger when volatilities increase or markets become more integrated. These changes can

correspond with a strengthening or a weakening of the overall level of the dependence or

can alternatively concern particular aspects of it such as tail dependence or asymmetry.

We refer to the overall level of the dependence as its strength, and to particular aspects of

the dependence as its structure.

Distinguishing changes in the strength of the dependence from changes in its structure

is important. Mistaking a change in the structure for a change in the strength (or vice

versa) can have dire consequences, in particular for risk management. For example, what

if two asset returns change from being tail independent to being tail dependent? If a

risk manager uses a model that only accommodates changes in the strength by explicitly

specifying the dynamics of the correlation, then the new strength of the dependence is

biased upward to compensate for the new structure. As a consequence, measures for the

overall risk such as the portfolio’s volatility are overestimated; but, because the model does

not exhibit tail dependence, measures of tail risk like Value-at-Risk and Expected Shortfall

are underestimated. In both cases, risk management is based on erroneous measures.

More generally, an investigation into the nature of the time variation in the dependence

between asset returns can contribute to our understanding of the driving forces for this

variation. We first have to understand what is changing before we can explain why it is

changing. Changes in the strength, for example in correlations, can be hard to relate to

other changes in the economy or financial markets when some of these changes are actually
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changes in the structure. This difficulty holds in particular when changes in the dependence

strength happen at different points in time or with a different frequency than changes in

the dependence structure.

In this paper, we develop a novel framework that allows for both changes in the struc-

ture and in the strength of the dependence. We propose mixture copulas1 where both the

mixture weights and the copula parameters can vary over time. Because copulas separate

the dependence from the marginal distributions, they offer full flexibility in constructing

a multivariate distribution for asset returns. Copulas that exhibit tail dependence and

asymmetry are useful in various applications such as forecasting, risk management, deriva-

tive pricing, and asset allocation (see Patton, 2009, 2012, for surveys). Time variation

in the copula parameters enables the overall level of the dependence to become stronger

or weaker, while the structure stays the same. A time-varying mixture of copulas with

different properties for (a)symmetry or tail (in)dependence can include the time variation

in the structural aspects of the dependence.

We model the changes in the strength and the structure as switches between regimes.

For the strength as well as the structure, one out of a fixed set of regimes prevails at each

point in time, and switches between the regimes occur separately for both aspects. The

regime processes are latent and follow first-order Markov chains as pioneered by Hamilton

(1989, 1990). In this approach, we can formally test whether both types of time variation

in the dependence are present. More generally, we can assess the relative importance of

the changes in the strength and the structure of the dependence and examine whether the

two types of changes occur independently or coincide.

So far, the research on the time variation in the dependence between asset returns has

considered either changes in the strength or changes in the structure. The oldest literature

on changes in the strength analyzes multivariate extensions of GARCH models, such as the

1See Joe (1997) and Nelsen (2006) for general introductions to copula theory and Cherubini et al. (2004)
for applications in finance.
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BEKK model introduced by Engle and Kroner (1995) and the DCC model proposed by

Engle (2002) (see Bauwens et al., 2006; Silvennoinen and Teräsvirta, 2009, for a survey).

Pelletier (2006) considers regime switching in correlation parameters. In the literature on

stochastic volatility, some models with a separate latent process for correlations have been

proposed (see Chib et al., 2009, for an overview). Patton (2006b) introduces conditional

copulas where parameters depend on past observations (see also Bartram et al., 2007;

Hafner and Manner, 2012). Jondeau and Rockinger (2006) introduce regime switching in

copula parameters. Rodriguez (2007), Okimoto (2008) and Chollete et al. (2009) provide

evidence of changes in the dependence structure with changes in the functional form of the

copula that are governed by a Markov chain. Our approach joins these strands of literature

that investigate regime switching by building one framework with both types of changes.

We build our framework on Markov regime-switching models that have become pop-

ular in financial modeling over the last decade.2 In particular, prior research finds these

models well suited to model changes in the dependence. Regime-switching models can

accommodate changes between a limited set of dependence configurations. Ang and Chen

(2002) and Ang and Bekaert (2002) find regime switching in correlations that can be re-

lated to cycles of bull and bear markets. Guidolin and Timmermann (2006a,b, 2007, 2008)

provide evidence for regime switches in the correlations between bond and stock markets,

and between international equity markets. Pelletier (2006) shows that regime switches in

correlations can provide a better fit than the autoregressive changes of the DCC model

of Engle (2002). Although most of these applications concern recurring changes among a

limited set of dependence configurations, Chib (1998) shows that regime-switching models

can also be used to accommodate nonrecurring changes. Such changes can typically be

related to an increase in financial integration (see Bekaert and Harvey, 1995; Goetzmann

et al., 2005; Quinn and Voth, 2010).

2See the surveys by Ang and Timmermann (2011) and Guidolin (2011a,b).

5



We apply our framework to examine the dependence between several different stock

markets during the period of 1995-2008. Our mixture copula consists of the Gaussian

copula, which is symmetric and tail independent, and the survival Gumbel copula, which

exhibits asymmetry and lower tail dependence. Our results provide significant evidence

of changes in the strength, i.e. the copula parameters, as well as the structure, i.e. the

mixture weights. Periods of weak and strong dependence alternate frequently and can be

related to periods of low and high volatility. The changes between the symmetric and

asymmetric structures happen less frequently. For some market pairs, the periods with an

asymmetric dependence structure occur after crisis periods, while for other pairs we only

observe a single switch. The combination of asymmetric and strong dependence can be

related to periods of turmoil in financial markets, such as the Asian crisis, the burst of the

dotcom bubble, and the credit crunch. The changes in strength do not necessarily coincide

with the changes in structure, which stresses the different nature of these changes.

To determine the practical relevance of properly capturing the time variation in the

dependence, we take a risk-management perspective and compare Value-at-Risk (VaR)

measures under different model specifications. Restricting changes to either the strength or

the structure leads to biases in the VaR compared to the unrestricted model with both types

of changes. Risk is mostly underestimated when the dependence is strong, asymmetric, and

tail dependent, with measures that are up to 15% too low. Overestimation by a maximum

of 10% generally occurs when the dependence is weak, symmetric, and tail independent.

Taken together these results imply that risk is underestimated during periods of turmoil

in financial markets, and overestimated during quiet periods. So, the consequences of the

misspecification that arises from ignoring one kind of changes occur when their impact is

worst.

Our finding of distinct changes in the strength and the structure contributes to the dis-

cussion on the causes of changes in the dependence. With mixed success, researchers have
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tried to link the time variation in correlations to explanatory variables. Most convincing

is the evidence that market liberalizations and increased globalization lead to stronger de-

pendence between equity markets (see Bekaert and Harvey, 1995; Goetzmann et al., 2005;

Quinn and Voth, 2010). However, Bekaert et al. (2009) doubt that this explanation applies

to the correlation movements between developed markets. Longin and Solnik (1995) and

Bracker and Koch (1999) find that the state of the world economy contributes to explaining

international correlation movements, though the evidence is weaker than for liberalization

and globalization. Baele et al. (2010) find that stock-bond correlations can hardly be re-

lated to the state of the economy, though liquidity plays an important role. The difficulty

of linking changes in the dependence to fundamental changes in markets and economies

might be caused by our limited comprehension of what actually constitutes these changes.

By allowing for distinct changes in different aspects of the dependence, our approach can

disclose what is changing, which can help to explain why it is changing.

This paper proceeds as follows. In Section 2 we outline the time-varying mixture copula

approach. In Section 3 we describe the international stock market returns data and the

specific modeling choices for the empirical application. We discuss the estimation results

in Section 4 and their implications for risk management in Section 5. We conclude in

Section 6.

2 Methodology

In this section we describe the general set-up of the copula framework that comprises

time variation for both the strength and the structure of the dependence. For the ease

of exposition the model is described for the bivariate case, but the generalization to more

than two variables is straightforward. We also show how tests for time variation in the

strength and structure of the dependence can be implemented and provide details on the
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estimation procedure for our model.

2.1 General framework

We consider two random variables X and Y with realizations x and y. In our empirical

application, X and Y represent the daily returns on different stock markets. The depen-

dence between X and Y is completely characterized by their joint distribution FXY(x, y).

Sklar (1959)’s theorem states that we can express any joint distribution in terms of the

marginal distributions FX and FY and a copula function C:

FXY(x, y;θX,θY,θC) = C(FX(x;θX), FY(y;θY);θC), (1)

where θX and θY denote parameter vectors for the marginals, and θC is a vector of copula

parameters. If the marginal distributions FX and FY are continuous, the copula function

C is unique.

The decomposition in Equation (1) immediately shows the attractiveness of the copula

approach for flexibly modeling dependence. Because the marginal distributions FX and FY

only contain information on the individual variables, the dependence between X and Y is

governed completely by the copula C. Consequently, a wide range of joint distributions

can be obtained by combining different marginals with different copulas. We assume that

the marginal distributions FX and FY are continuous and specified parametrically with

coefficient vectors θX and θY. In this paper, we concentrate on the possible specifications

of the copula function C to accommodate time-varying features in the dependence.

A useful way to characterize a copula is its so-called “quantile dependence” and the

limiting case of tail dependence. Quantile dependence τ(q) is defined as the conditional

probability that a realization of one variable lies above or below a given quantile q of

its marginal distribution, given that the other realization lies above or below the same
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quantile,

τ(q) =


C(q, q)/q for q ≤ 0.5

(1− 2q + C(q, q))/(1− q) for q > 0.5.

(2)

The lower and upper tail dependence coefficients are defined as the limits of the quantile

dependence measure, τL = limq↓0 τ(q) and τU = limq↑1 τ(q). Different copula specifications

(also referred to as copula families) have different quantile and tail dependence charac-

teristics. Elliptical copulas, such as the Gaussian and Student’s t copulas, are symmetric

with τ(q) = τ(1− q),∀q ∈ [0, 0.5]; whereas other copulas, such as the Clayton and Gumbel

copulas, are asymmetric. Correspondingly, copulas can have independence in both tails

(e.g., the Gaussian copula); lower and upper tail dependence (e.g., the Student t copula);

tail independence in one direction and tail dependence in the other (Clayton and Gumbel

copulas).

Recent applications of copulas to asset returns frequently conclude that a single copula

is not sufficient to describe the dependence between these series adequately (see Hu, 2006;

Rodriguez, 2007; Okimoto, 2008; Chollete et al., 2009). A mixture of copulas yields more

flexibility and a wider range of dependence patterns. Two copulas Ca and Cb can produce

a mixture copula:

C(u, v) = ωCa(u, v;θa) + (1− ω)Cb(u, v;θb), (3)

where 0 ≤ ω ≤ 1 is the weight that determines the relative importance of the two copulas,

and u ≡ FX(x) and v ≡ FY(y) denote the marginal probability integral transforms (PITs).

The copulas Ca and Cb can be from the same family, though with different parameters,

but they can also be from different families with different properties.

A time-invariant copula such as Equation (3) cannot capture the changes in the depen-

dence between asset returns for which ample empirical evidence exists. Assuming that the

functional forms of the copulas Ca and Cb do not change, we can incorporate time variation
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in two ways. First, the copula parameters θa and θb can change over time, as considered

by Jondeau and Rockinger (2006) and Patton (2006b) among others. Such dynamics lead

to a time-varying strength of the dependence. Second, the mixture weights ω can vary over

time, as in Rodriguez (2007), Okimoto (2008) and Chollete et al. (2009). Assuming that

the constituents Ca and Cb are copulas from different families, such changes result in a

time-varying structure of the dependence.3

Changes in the strength of the dependence can have rather different implications than

changes in the structure of the dependence, though it is likely that the two can be mistaken

for each other. Hence, it is important to distinguish between the two types of time variation.

Obviously, it may also happen that both the strength and the structure change, but at

different points in time. Both reasons demand a model that jointly accommodates both

types of time variations in the dependence. We propose a time-varying mixture copula for

changes in the strength of the dependence via the copula parameters and in the structure

of the dependence via the mixture weight:

Ct(u, v) = ωtCa(u, v;θat ) + (1− ωt)Cb(u, v;θbt ). (4)

To make the flexible mixture copula in Equation (4) work we opt for a regime-switching

approach. The parameter vectors θat and θbt can each switch between two different values.

The switching between these states is governed by a first-order Markov process Sθt with

transition probabilities pθij ≡ Pr[Sθt = j|Sθt−1 = j]. For the dependence structure, we

adopt a similar idea. We assume that the mixture weight ωt can take two different values

that depend on the value of a second Markov process Sωt with transition probabilities

pωij ≡ Pr[Sωt = j|Sωt−1 = i].

Other possibilities for the evolution of the copula parameters (and also of the mixture

3When Ca and Cb are copulas from the same family, a time-varying mixture weight ω is observationally
equivalent to time variation in the copula parameters θa and θb.
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weight) are available. Jondeau and Rockinger (2006), and Patton (2006b) have considered

autoregressive specifications for the copula parameters θat and θbt . These kinds of models

often show very strong persistence. The volatility literature argues that strong persistence

points to the presence of large infrequent breaks or regime switches (see Diebold and Inoue,

2001; Gouriéroux and Jasiak, 2001; Lamoureux and Lastrapes, 1990, among others). Dias

and Embrechts (2009) provide direct evidence in the context of copulas for the presence

of infrequent structural changes in the dependence between exchange rates. These results

motivate our choice of using Markov processes.

The Markov-switching nature of our model straightforwardly leads to testing that the

strength of the dependence is constant while the structure can vary over time, and vice

versa. Testing whether strength is constant corresponds with the null hypothesis θa1 = θa2

and θb1 = θb2 in Equation (4). A constant structure of the dependence implies the null

hypothesis ω1 = ω2. These (likelihood ratio) tests suffer from the usual complications

involved in specification tests in Markov-switching models due to the presence of uniden-

tified nuisance parameters under the null hypothesis. Simulations are needed to obtain

the distribution under the null hypothesis and the appropriate critical values (see Hansen,

1992; Garcia, 1998).

Our model can be easily extended in several directions. First, we assume that the

Markov processes Sθt and Sωt are independent of each other (and independent of FX and

FY), that is, changes in the strength of the dependence and in the structure of the depen-

dence occur independently. This assumption reduces the number of parameters. A more

extensive model relaxing this assumption can also be used. Second, increasing the number

of states of the Markov processes allows for more than two different values for the copula

parameters and the mixture weight. This extension can be particularly useful when the

framework of Markov processes is used for modeling nonrecurring structural changes. As

demonstrated by Chib (1998) this type of time-variation may be achieved in the Markov-
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switching approach by restricting the transition probabilities such that the regimes occur

in an irreversible sequence (see Pástor and Stambaugh, 2001; Pesaran et al., 2006; Pet-

tenuzzo and Timmermann, 2011, for applications of this approach). Third, a mixture of

more than two copulas can be considered.

2.2 Estimation

We use Maximum Likelihood (ML) to estimate the parameters in the time-varying mixture

copula of Equation (4) with Markov-Switching specifications for Sθt and Sωt . ML is the ob-

vious approach, because the marginal distributions FX and FY are specified parametrically

up to the unknown parameter vectors θX and θY. When the marginal distributions are

unknown or to prevent the adverse effects from misspecification of the marginal models,

the semiparametric copula-based multivariate dynamic models of Chen and Fan (2006) or

other techniques based on quasi-ML can be used. Fermanian and Scaillet (2005) point

out that misspecification of the marginal models can severely impact the estimation of the

copula parameters.

In typical empirical applications, the total number of parameters quickly becomes large.

For example, even though we consider fairly basic specifications for the marginals and the

constituent copulas our most general time-varying mixture copula contains 26 parameters.

In such cases, numerical optimization of the log likelihood function becomes a daunting

task. As an alternative two-stage estimation method we adopt the Inference Function for

Margins (IFM) procedure described in Joe (1997). The IFM method uses the decomposi-

tion of the complete log likelihood function in the log likelihood functions for the margins

and for the copula. Differentiating Equation (1) yields the log likelihood function for the
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observation at time t:

`t(xt, yt;θX,θY,θC) = log ct
(
FX(xt;θX), FY(yt;θY);θC

)
+

log fX(xt;θX) + log fY(yt;θY)

=`c,t(θX,θY,θC) + `X,t(θX) + `Y,t(θY),

(5)

where fX and fY are the densities that correspond to the marginals FX and FY, and ct

is the density of the copula Ct. The IFM method boils down to the estimation of the

parameters θX and θY in the margins first by univariate ML,

θ̂Z = arg max
θZ

`Z(θZ), Z = X, Y, (6)

where `Z(θZ) =
∑T

t=1 `Z,t(θZ), with T denoting the sample size. In a second step, the

parameters in the copula are estimated conditional on the estimated parameters for the

margins:

θ̂C = arg max
θC

`c(θ̂X , θ̂Y ,θC) (7)

where `c(θX,θY,θC) =
∑T

t=1 `c,t(θX,θY,θC). This two-step estimation procedure leads

to consistent and asymptotically efficient estimators, (see Joe, 2005; Patton, 2006a). We

compute standard errors for θ̂C that take into account the additional uncertainty due to the

use of the estimated parameters for the margins. For the parameter vector θ̂ = (θ̂′X, θ̂
′
Y, θ̂

′
C)′

it holds that (see Patton, 2006a),

√
T (θ̂ − θ0)

a∼ N
(

0, Ĥ−1ĜĤ−1
)
, (8)

where H and G are the Hessian and the outer product of the gradients.

Because the time-varying mixture copula Equation (4) depends on the latent Markov

processes Sθt and Sωt , we follow the conventional approach of the EM algorithm as described
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in Hamilton (1989) to estimate the copula parameters. Applying the IFM approach requires

that the parameters of the marginal models can be separated from the copula parameters.

In our case, this means that the marginals FX and FY cannot be subject to the regime-

switching induced by Sθt and Sωt .

3 Data and model specification

3.1 Data

We examine the dependence between nine major stock markets: the United Kingdom

(UK), Germany (GE), France (FR), the United States (US), Canada (CA), Mexico (MX),

Japan (JP), Hong Kong (HK) and Korea (KO) over the period of 1995–2008. This set

of stock markets contains important developed and emerging markets. Moreover, these

markets have recently encountered different periods of tranquility and turmoil. This choice

of markets and period ensures that our results are not driven by one particular event in

financial markets, such as the credit crisis. The Asian crisis, the burst of the dotcom bubble

and the introduction of the Euro are also part of our sample period.

We implement the time-varying mixture copula for six pairs of stock markets: UK-

GE, UK-FR, US-CA, US-MX, JP-HK, and JP-KO. We choose these specific combinations

because the two markets in each of these pairs do not suffer from asynchronous trading.

If we combined Asian, European and American markets, their non-overlapping trading

hours would seriously distort the dependence patterns in the daily returns. Although we

could deal with the asynchronous trading hours by lowering the data frequency, this lower

frequency might lead to estimation difficulties. Accurate estimation of the two Markov

processes in combination with mixture copulas requires many observations.

We use the daily market index returns starting on July 3, 1995, when the emerging

market data became available, to November 7, 2008. We use MSCI indices for all countries
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except Mexico and Korea, for which we use the IFC-S&P indices. To avoid any spurious

correlations caused by holidays or other non-trading days, we remove days on which at

least one of the markets is closed. This procedure results in a sample with T = 3, 250

observations.

[Table 1 about here.]

Table 1 reports descriptive statistics of the daily returns. Canada and Mexico render

the highest annualized returns, while Japan is the only market with a negative mean

return. Volatilities are in the range 20–25% on an annualized basis, but Mexico and

Korea show substantially higher volatilities, which reflect the higher levels of risk in these

emerging markets. The skewness is positive for Japan and Korea, but negative for all

of the other countries, which suggests that large negative returns occur more frequently

in most markets. The kurtosis estimates range from 8.00 to 18.28 and indicate fat tails.

The unconditional correlations between the stock markets pairs UK-GE, UK-FR, US-CA,

US-MX, JP-HK, and JP-KO are 0.73, 0.81, 0.64, 0.60, 0.41, and 0.35 respectively. The

European markets have the highest degree of co-movement in terms of correlation, followed

by the American and Asian markets.

To get a first indication of the dependence structure, Figure 1 displays the exceedance

correlations as used in Longin and Solnik (2001), Ang and Chen (2002), and Patton

(2006b), among others. We compute the correlations given that both returns lie above

or below a given quantile q of their marginal distributions.4 For most country pairs,

correlations in the left tail are higher than correlations in the right tail of the return distri-

butions. The difference is most pronounced for the Asian countries, which have the lowest

unconditional correlation. The UK and France have a higher correlation conditional on

a positive return in both markets than conditional on two negative returns. They also

4We discuss the specification of the marginal distributions in more detail in Section 3.2.
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have the highest unconditional correlation. The kink at zero indicates that for all country

pairs the correlations conditional on negative returns are higher than the correlations con-

ditional on positive returns. This kink shows the importance of allowing for asymmetry

when modeling the dependence.

[Figure 1 about here.]

3.2 The marginal distributions

For the marginal distributions of the daily stock index returns Xt we use an AR(1)-

Threshold GARCH(1,1) [TGARCH] model with a (standardized) skewed Student’s t distri-

bution for the innovations (cf. Jondeau and Rockinger, 2006; Chollete et al., 2009, among

others). The GARCH part of the model captures the heteroscedasticity in the asset re-

turns, while the skewed Student’s t distribution can accommodate the remaining skewness

and kurtosis. The model reads

Xt = φ0 + φ1Xt−1 + εt (9)

εt = σtzt (10)

σ2
t = ψ + α+(ε+t−1)

2 + α−(ε−t−1)
2 + βσ2

t−1 (11)

zt ∼ st(ν, λ), (12)

where ε+t = max(εt, 0) , and ε−t = min(εt, 0). The skewed Student’s t density is given by

fst(z; ν, λ) =


bc
(

1 + 1
ν−2

(
bz+a
1−λ

)2)−(ν+1)/2

if z < −a/b

bc
(

1 + 1
ν−2

(
bz+a
1+λ

)2)−(ν+1)/2

if z ≥ −a/b,
(13)
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with

a = 4λc
ν − 2

ν − 1
, b2 = 1 + 3λ2 − a2, and c =

Γ
(
ν+1
2

)√
π(ν − 2)Γ

(
ν
2

) .
The skewness and kurtosis of Xt are nonlinear functions of the parameters ν and λ.

A negative value of the parameter λ corresponds with a left-skewed density. To ensure

positivity and stationarity of the conditional variance σ2
t we impose the restrictions ψ > 0,

α+, α−, β ≥ 0, and (α+ + α−)/2 + β ≤ 1 in Equation (11).

We do not allow for regime-switching in the marginal distribution (cf. Jondeau and

Rockinger, 2006; Chollete et al., 2009). Of course the possibility exists to include regime

switching in, for example, the conditional volatility σt as in Okimoto (2008) (either induced

by Sθt and Sωt or by a separate Markov process). However, this approach would preclude

the use of the IFM method for parameter estimation. Instead we would have to resort to a

one-step ML estimation of all parameters in the margins and the copulas. Another possible

extension of the model for the marginal distribution is time variation in the parameters ν

and λ as considered by Jondeau and Rockinger (2006, 2009).

3.3 The constituent copulas

The time-varying mixture copula should accommodate a variety of different dependence

structures. Stock returns exhibit tranquil periods with symmetric dependence, but also

periods of turmoil with asymmetric dependence and (lower) tail-dependence. Therefore,

we select the Gaussian copula and the survival Gumbel copula to constitute the mixture

copula. The Gaussian copula is the standard copula for tranquil periods. Okimoto (2008)

shows that the survival Gumbel copula performs better in modeling asymmetry and tail

dependence compared to other copulas such as the Joe and Clayton copulas. Hu (2006)

also uses these copulas to examine the dependence structure of returns in developed equity

markets (albeit in a mixture copula with constant weights).
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The Gaussian copula has cdf

CGau(u, v; ρ) = Φρ(Φ
−1(u),Φ−1(v); ρ), (14)

where u ≡ FX(x) and v ≡ FY(y) are defined as before, Φρ is the bivariate normal cdf

with correlation ρ, and Φ−1 is the inverse of the univariate standard normal cdf. The

corresponding density is given by

cGau(u, v; ρ) =
1√

1− ρ2
exp

(
−(r2 − 2ρrs+ s2)

2(1− ρ2)
+
r2 + s2

2

)
, (15)

where r = Φ−1(u) and s = Φ−1(v). The normal copula exhibits independence in both the

lower and upper tails unless |ρ| = 1 (see Embrechts et al., 2003).

The survival Gumbel copula has cdf

CGum(u, v; δ) = u+ v − 1 + exp
(
−[(− ln(1− u))δ + (− ln(1− v))δ]

1
δ

)
(16)

and the corresponding density

cGum(u, v; δ) =
(ln (1− u) ln (1− v))δ−1CGum(1− u, 1− v; δ)

(1− u)(1− v)((− ln(1− u))δ + (− ln(1− v))δ)2−
1
δ

×

(δ − 1− lnCGum(1− u, 1− v; δ)), (17)

where the parameter δ ∈ [1,∞). The strength of the dependence increases with δ, and

δ = 1 (δ → ∞) corresponds to independence (perfect dependence). The survival Gumbel

copula exhibits independence for the upper tails, but tail dependence for the lower tails

with coefficient τL = 2− 2
1
δ .

When using the Gaussian and survival Gumbel copulas in Equation (4), the parameters

ρ and δ vary according to the value of Sθt . For the identification of the regimes with
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different strengths of dependence, we impose the restriction ρ1 < ρ2. No restrictions are

put on the parameters of the Gumbel copula, but it turns out that for all country pairs the

estimates are such that δ1 < δ2. Hence, we can characterize the regime Sθt = 1 (Sθt = 2) by

weak (strong) dependence. Similarly, for identification purposes we impose the restriction

ω2 < ω1, so that the weight on the Gaussian copula in the first regime Sωt = 1 is larger

than in the second regime Sωt = 2. For this reason we label these regimes as symmetric

and asymmetric dependence.

In addition to the general time-varying mixture copula Equation (4), we estimate several

nested, restricted versions of the model. By examining the loss in the likelihood due to

the imposed restrictions, we can assess which characteristics are the most important in

modeling the dependence of the equity returns. As discussed in the previous section, we

conduct a likelihood ratio test of the null hypothesis ω1 = ω2 to test a constant dependence

structure. The restricted model with switching copula parameters but a constant mixture

weight is given by

C(u, v;θC) = ωCGau(u, v; ρt) + (1− ω)CGum(u, v; δt). (18)

Similarly, we conduct a likelihood ratio test of the null hypotheses ρ1 = ρ2 and δ1 = δ2 to

test for constant strength in the dependence. These hypotheses correspond with a model

where the copula parameters are constant, but the mixture weight can switch according to

the value of Sωt ,

C(u, v;θC) = ωtCGau(u, v; ρ) + (1− ωt)CGum(u, v; δ). (19)

We examine two other previously considered restricted copula specifications. We imple-

ment the model proposed by Okimoto (2008), which assumes constant copula parameters,

while the mixture weights in the two regimes are set equal to ω1 = 1 and ω2 = 0, such
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that the dependence structure switches between a Gaussian copula and a survival Gumbel

copula,

C(u, v;θC) =


CGau(u, v; ρ) if Sωt = 1,

CGum(u, v; δ) if Sωt = 2.

(20)

We also consider the specification by Hu (2006) with constant copula parameters and a

constant mixture weight,

C(u, v;θC) = ωCGau(u, v; ρ) + (1− ω)CGum(u, v; δ). (21)

4 Estimation Results

We estimate the marginal models and mixture copulas for the selected six combinations of

stock markets. In this section, we provide detailed results for the dependence between the

stock markets of the UK and of Germany. We analyze the patterns in the regime processes

for the variation in the strength and in the structure of the dependence, and test for their

significance. We finish with a brief summary of the results for the other combinations. We

provide detailed results in the appendix.

4.1 Estimation results for the UK and Germany

The results from the marginal models for the UK and Germany confirm the stylized facts

for the time-series of asset returns. Shocks to volatility are highly persistent, but negative

shocks have a stronger impact than positive ones. The shocks show evidence of negative

skewness and mildly fat tails, which supports our choice for a skewed Student’s t distribu-

tion. Table A.1 shows the parameter estimates and standard errors.

For the IFM method, it is of crucial importance that the marginal models are correctly

specified, because otherwise the estimates of the copula parameters in the second step can
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be biased (see Fermanian and Scaillet, 2005). We apply the Kolmogorov-Smirnov, Cramer-

Von Mises and Anderson-Darling tests to examine the goodness-of-fit. The p-values for

the UK exceed 0.90 for all tests, and for Germany they are all above 0.71, indicating we

can safely proceed with the second step of the IFM procedure.5

In Table 2, we report the results for the unrestricted model with changes in the strength

as well as the structure of dependence, and for restricted versions of the model discussed in

the previous section. The estimates for the unrestricted model in column 1 show different

regimes for both the strength and the structure of the dependence. First, regimes with

relatively weak and strong dependence are well defined. For identification purposes, we

imposed the restriction ρ1 < ρ2 for the Gaussian copula. We find in addition that δ1 < δ2

for the survival Gumbel copula. Both copulas thus have weaker dependence in the regime

Sθt = 1. Second, the weights on the Gaussian copula take the values ω1 = 1 and ω2 = 0.41,

such that the dependence in the regime Sωt = 1 is symmetric and tail independent, while

it is asymmetric with lower tail dependence in the regime Sωt = 2. The standard errors of

the copula parameters are fairly small, which indicates precise estimates.6

[Table 2 about here.]

The transition probabilities for the Sθt process, pθ11 = 0.998 and pθ22 = 0.998, indicate

high persistence of the regimes for strength. The unconditional probabilities for the weak

and strong dependence regimes are 0.60 and 0.40.7 So the process Sθt spends slightly more

time in the low strength regime, irrespective of the structure of the dependence. For the

dependence structure the transition probabilities pω11 = 0.996 and pω22 = 0.996 imply that

the symmetric and the asymmetric regimes are also highly persistent and that both occur

5The actual p-values for the UK (Germany) are Kolmogorov-Smirnov 0.943 (0.831), Cramer-Von Mises
0.904 (0.846), and Anderson-Darling 0.902 (0.710).

6Whenever a parameter estimate reaches a boundary, we impose this value and only compute standard
errors for the remaining parameters.

7The unconditional probabilities are given by P (Sθt = 1) = (1 − pθ22)/(2 − pθ11 − pθ22) and similar for
P (Sθt = 2).
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about half of the time. The unconditional probability for the symmetric (asymmetric)

regime is equal to 0.47 (0.53).

Figure 2 shows the smoothed inference probabilities for the weak dependence regime

(Sθt = 1) and for the symmetric dependence regime (Sωt = 1). The regime with asym-

metry and tail dependence seems to occur mostly when the UK and German markets are

bearish or suffer from periods of turmoil with high volatility. Switches from symmetric to

asymmetric dependence frequently coincide with the occurrence of a financial crisis, e.g.

the Asian crisis (July 1997), the Russian crisis (August 1998), the burst of the dot-com

bubble (March 2001), and the start of the credit crisis (January 2007). The dynamics

in the strength of the dependence are less easily related to macroeconomic or financial

circumstances, although the strong dependence regime occurred during the burst of the

dot-com bubble. Moreover, the strength of the dependence has increased over time, and

has been in the strong dependence regime since the beginning of 2004. This might be an

indication of higher financial integration, globally or on the European level.

[Figure 2 about here.]

We investigate the restricted models in Equations (18) to (21) (labeled 2–5 in Table 2)

to determine the importance of the different sources of the time variation. Imposing a

constant dependence structure (column 2) yields one regime with low strength, slight

asymmetry, and tail dependence, and a second regime in which these aspects are much

more pronounced. The mixture copula puts a weight of 0.707 on the Gaussian copula

and 0.293 on the Gumbel copula. This estimate corresponds roughly with the average

of ω1 and ω2 in the unrestricted model. For the weak dependence regime, the Gaussian

correlation parameter increases, but the Gumbel parameter decreases, compared to the

unrestricted model. Parameters for the strong dependence regime hardly change. The

likelihood ratio (LR) statistic of this model against the unrestricted model equals 16.73.

22



Due to the presence of the unidentified nuisance parameters pω11 and pω22 under the null

hypothesis, the LR-statistic does not follow a χ2(1)-distribution. A simulation of this

distribution as in Hansen (1992) leads to a p-value of 0.032, which indicates the relevance

of the changes in the dependence structure. The smoothed inference probabilities for the

restricted model in Figure 3a coincide to a large extent with the corresponding smoothed

inference probabilities of the unrestricted model (black line). This result indicates that

the restricted model only captures the changes in the strength and does not capture the

changes in the structure in any way.

[Figure 3 about here.]

In the model that only accommodates changes in the structure of the dependence (col-

umn 3 in Table 2), the Gaussian copula dominates one regime with ω1 = 0.962 and a large

correlation parameter of 0.855. This regime exhibits strong and symmetric dependence. In

the other regime, the Gumbel copula dominates (ω2 = 0.191), but its parameter of 1.439

implies only weak asymmetric dependence. The strong asymmetry and the tail dependence

of the unrestricted model do not show up in this restricted specification. The LR-statistic

of 69.5 strongly rejects this restriction. The smoothed inference probabilities for the sym-

metric regime of the constant-strength model in Figure 3b do not resemble the pattern

for the symmetric regime of the unrestricted model at all. The resemblance with the

strong dependence regime of the unrestricted model is clearer. It seems that the restricted

model tries to capture changes in strength by changes in structure. As a consequence, the

restricted model fails to accommodate strong asymmetry and tail dependence.

The model proposed by Okimoto (2008) in column 4 further restricts the structure-

only regime in column 3, because the copula must be either fully Gaussian or fully survival

Gumbel. The parameter estimates are close to those for the structure-only model, but lead

to a further deterioration of the likelihood function. Even though this model includes the
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survival Gumbel copula, it misses out on asymmetry and tail dependence. The LR-statistic

points at a strong rejection of this model in favor of the more flexible unrestricted model

with changing parameters and freely changing mixture weights.

Hu (2006) proposes a constant mixture of Gaussian and survival Gumbel copulas with

constant parameters. The estimates in column 5 of Table 2 do not support his unconditional

mixture model, because the survival Gumbel copula does not receive any weight. Imposing

constant dependence leads to a very large difference in likelihood.

Overall, these results show strong evidence for time variation in the dependence. More-

over, modeling changes only in strength or in structure is not sufficient, because the data

provides significant evidence for changes in both.

4.2 Estimation results for other pairs of equity markets

Our analysis for the other country pairs confirms our conclusions based on the UK and

German equity markets. We summarize the main results here, and provide a detailed

discussion in Appendix A.2.

All country pairs show two distinct regimes for the strength of the dependence. Table 3

shows that both the Gaussian correlation parameter ρ and the Gumbel parameter δ are

substantially higher in the strong dependence regime Sθt = 2 than in the weak dependence

regime Sθt = 1. The correlation parameters of the Gaussian copulas indicate positive but

mild dependence in the weak regime (estimates vary between 0 (JP-KO) and 0.58 (US-

MX)), and strong dependence in the other regime (estimates range from 0.47 (JP-KO)

to 0.89 (JP-HK)). The markets of the UK and France are always highly correlated, with

parameters ρ1 = 0.823 and ρ2 = 0.931. The parameters for the Gumbel copulas switch from

1.1–1.4 for the weak regime to 1.8–3.5 for the strong regime. So, both copulas contribute

to the increase in the dependence when the process switches to the strong dependence

regime.
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[Table 3 about here.]

For all of the market pairs, the Gaussian and Gumbel copulas are necessary to model

dependence. Table 3 shows that the Gaussian copula dominates the structure regime

Sωt = 1 with weights ω1 varying between 0.864 (US-MX) and 1 (US-CA). The Gumbel

copula contributes the most to the other regime with weights for the Gaussian copula

between 0 (US-CA) and 0.453 (JP-KO). So, for all of the pairs, the first regime is mostly

symmetric with some asymmetric influence, but the second regime can be characterized

as predominantly asymmetric. The US-CA pair has a fully symmetric Gaussian regime as

ω1 = 1, and a fully asymmetric Gumbel regime as ω2 = 0. For the other pairs, we reject

the restriction ω1 = 1 and ω2 = 0. We conclude that most market pairs need the mixture

of symmetric and asymmetric copulas in both regimes.

The transition probabilities are high (the lowest estimate is pθ22 = 0.871 for the JP-KO

pair), which implies that all regimes are highly persistent. In particular, Figure 4 shows

only occasional switches in the structure of dependence. For the pairs UK-FR, US-ME

and JP-KO, only one switch in the dependence structure is present with the symmetric

regime dominating in the second half of our sample period (roughly after July 2001). The

strength regimes switch more often. The low strength regime prevails mostly during quiet

periods when markets increase. The Japanese and Korean markets switch to a regime with

strong dependence only once, after July 2001. Though all market pairs show pronounced

switches around July 2001, the smoothed inference probabilities do not indicate that the

switches are highly synchronized.

[Figure 4 about here.]

All market pairs show switches in both the structure and the strength of the depen-

dence. Models in which changes are limited to strength are rejected with p-values of 0.022

and lower. The evidence for changes in strength are even stronger, as models with only
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changes in structure are rejected with p-values below 0.001 for all market pairs. The mod-

els of Okimoto (2008) and Hu (2006) are also strongly rejected in favor of the unrestricted

model. We conclude that accounting for either the time variation in the structure of the

dependence, as in Rodriguez (2007), Okimoto (2008) and Chollete et al. (2009), or the

time variation in the strength of dependence, as in Jondeau and Rockinger (2006), Bar-

tram et al. (2007) and Hafner and Manner (2012), does not suffice to accurately model the

dependence between international stock markets.

4.3 Robustness checks

As a robustness check we consider two alternatives for the marginal distributions. First,

we adopt the semi-parametric approach of Chen and Fan (2006). We estimate the AR(1)-

TGARCH(1,1) model with quasi-ML with a normal distribution for the innovations zt.

Then we use the empirical CDF of the standardized residuals ẑt to obtain the required input

for the copula estimation. Second, we use the empirical CDF’s of the returns themselves

as marginals. The first alternative gives results that are almost identical to those obtained

with the fully parametric marginal specification in Equations (9) to (12). For the second

alternative the general patterns in the copula estimates remain similar, but for some specific

parameters the differences with the fully parametric model are somewhat larger.8

An important assumption in our time-varying mixture copula is that changes in the

strength and structure of the dependence occur independently. We test the validity of this

assumption by estimating the same copula specification, but with the switches among the

four regimes driven by a single Markov process with unrestricted transition probabilities.

A likelihood ratio test can then be straightforwardly conducted to test the null hypothesis

that the transition probabilities can be restricted in accordance with the independence of

the Markov processes Sθt and Sωt . The test statistic gives p-values of 0.27 (UK-GE), 0.69

8Details are available upon request.
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(UK-FR), 0.77 (US-CA), 0.10 (US-MX), 0.31 (JP-HK), and 0.08 (JP-KO). Therefore, we

cannot reject the independence of changes in the strength and structure of the dependence

for any of the market pairs.

5 Implications for risk management

The estimation results provide statistical evidence that a dependence model should accom-

modate time variation in both the strength and the structure of the dependence. In this

section we assess the economic implications of our findings. We focus on risk management,

because failing to account for particular changes in the dependence can lead to biased risk

measures. A misspecified model with a symmetric and tail-independent copula can still

produce a reliable estimate of the overall dependence. However, it fails to properly indicate

the dependence between extreme returns and leads to (downside) risk measures that are

sometimes too low or too high. We first investigate how the dependence between nega-

tive extreme returns varies over the different regimes. Next we compare Values-at-Risk to

determine the impact of the misspecification of the dependence.

5.1 The dependence between extreme returns

The Gaussian and Gumbel copulas that constitute the mixture copula have different im-

plications for the dependence between returns. These differences pertain in particular to

extreme returns. Because the regimes differ in the weights attributed to both copulas and

in the parameters that determine the strength of the dependence, the exact impact for the

dependence in the different regimes is not obvious. Therefore, we examine tail dependence

and exceedance probabilities in each regime.

The lower tail-dependence coefficients in Table 4a show a substantial variation in the

dependence between extreme returns. In the asymmetric regimes, coefficients range from
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0.11 (US-MX) to 0.36 (UK-GE) when the dependence is weak, and from 0.31 (JP-KO) to

0.78 (US-CA) when the dependence is strong. This strong tail dependence reflects the high

weight that the Gumbel copulas receives in the asymmetric regime. When the asymmetric

regime prevails, the diversification opportunities decrease or completely vanish. To the

contrary, tail dependence is small or absent when a symmetric regime prevails, no matter

whether the prevailing strength regime is weak or strong. When the Gaussian copula re-

ceives all of the weight in the symmetric regime (UK-GE and US-CA), the coefficient of the

lower tail-dependence equals zero, because the Gaussian copula implies tail independence

(unless ρ = 1). For all other market pairs, the Gumbel copula receives a small weight,

which leads to small non-zero coefficients of tail dependence. For US-MX, for example, the

weight on the Gumbel copula in the symmetric regime is 0.14, so the lower tail-dependence

coefficient is 0.02 (0.07) in the weak (strong) dependence regime.

[Table 4 about here.]

Although these lower tail-dependence coefficients show large differences in the depen-

dence between extreme returns across the different regimes, they do not tell a complete

story. The tail dependence coefficients are limit concepts and apply to very extreme re-

turns. In Table 4b, we investigate the exceedance probabilities τ(q) defined in Equation (2)

for the less extreme case of q = 0.05. The differences are the largest between the weak and

strong dependence regimes. When the dependence is weak, the probability that the return

in one market falls below the 0.05 quantile, conditional on a realization in the other market

below this quantile ranges from 0.05 (JP-KO) to 0.52 (UK-FR). When the dependence is

strong, this probability varies from 0.23 (JP-KO) to 0.79 (US-CA). Under this regime,

losses in one market are very likely to be accompanied by losses in the other market. The

effect of the changes in the dependence structure are mixed. For the pairs UK-GE and

JP-KO, the exceedance probabilities increase substantially by about 0.20 when a switch
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from the symmetric to the asymmetric regime takes place. For the US-CA combination,

the exceedance probability in the weak dependence regime does not change when a switch

to asymmetry takes place, but in the strong dependence regime the probability doubles

from 0.40 to 0.79. For the pairs US-MX and JP-KO the switches in the structure of the

dependence hardly influence the exceedance probabilities. For UK-FR, a switch to the

asymmetric regime leads to small decreases.

5.2 Value at Risk

To determine the importance of accurate models for the dynamics of the dependence, we

examine VaRs. The estimation results and the differences in the regimes with regard to

the dependence between extreme returns indicate that both the structure and the strength

of the dependence should be modeled accurately. However, these outcomes do not indicate

what the practical consequences of an incorrect specification are. Therefore, we compare

the VaR that results from the unrestricted model with both changes in the strength and

in the structure to the VaR that results when only one type of change is allowed. We

calculate these VaR measures for a portfolio that is equally invested in both markets.

For a confidence level q, VaRq corresponds with the q-th quantile of the portfolio loss

distribution Z,

VaRq = arg max{z : Pr(Z ≥ z) ≥ 1− q}.

We perform a simulation study to compare the VaR obtained from the unrestricted time-

varying mixture copula with the models with time variation in either only the strength or

only the structure of the dependence. We vary the probability of the weak dependence

regime and the symmetric dependence regime between 0 and 1 with steps of 0.05. This

results in 212 = 441 combinations of regime probabilities in the strength-structure plane.

For each combination, we generate one million drawings from the copulas. Following
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Chollete et al. (2009), we then use the inverse cdf of the normal distribution to transform the

copula drawings in the [0, 1]-domain to returns. We then form equally-weighted portfolios

from the simulated returns and compute the VaRq by taking the q-th quantile.9 We follow

the same procedure for the restricted models where one of the two regime probabilities can

obviously be ignored.

Following Okimoto (2008) and Chollete et al. (2009), we compute the ratio of the VaR

measures for the unrestricted model, VaRU
q to that of the restricted model, VaRR

q . We

assume that the unrestricted model with changes in both the strength and the structure

of the dependence is the true model, because of the strong rejections of the restricted

models. Consequently, a ratio of VaRs above (below) one indicates that the restricted

model underestimates (overestimates) risk.

We differ in one important aspect from the design of the analysis in Okimoto (2008)

and Chollete et al. (2009). We calculate conditional VaR measures, because we fix the

regime probabilities at specific values. To the contrary, Okimoto (2008) and Chollete et al.

(2009) compute unconditional VaR measures, because they average across the regimes

with different structures of the dependence. Although their conclusions are valid in an

unconditional sense, they need not necessarily hold at each point in time. Instead, our

conditional approach can show in what situation a restricted model leads to the over- or

underestimation of risk.

Figure 5 shows the VaRq ratios for q = 0.99. In the left panels, the restricted models

accommodate only changes in the strength and impose a constant structure of the de-

pendence. In the right panels, the restricted models accommodate only changes in the

structure and impose a constant strength of the dependence. Overall, both restrictions

lead to both under- and overestimation of VaR. The underestimation of risk is more often

prevalent than the overestimation, and the degree of underestimation is also larger. When

9Because we model the returns of the portfolio, our approach actually produces VaR relative to the
initial portfolio value.
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a model ignores changes in the structure, the VaR ratios vary between 0.92 and 1.10.

When changes in the strength are excluded, the ratios lie between 0.90 and 1.15. The size

of these effects puts our results in line with those of Okimoto (2008), because he reports

ratios between 0.96 and 1.15. The results reported by Chollete et al. (2009) tend to be

a bit smaller. In line with the statistical evidence, the changes in the strength are more

important than the changes in the structure. When VaR measures are used to determine

capital reserves, the model misspecification leads directly to misalignments of capital.

[Figure 5 about here.]

[Figure 5 (continued) about here.]

Next, we consider each market pair separately. For the UK-GE pair (Figure 5a), ignor-

ing changes in the structure of the dependence leads to an overestimation of the VaR0.99

by at most 4%. This overestimation occurs when the low strength and the asymmetric

structure regimes prevail. The largest underestimation of 3% occurs for the low strength

and the symmetric structure regimes. When a high strength regime applies, the VaR ra-

tios are closer to one. Figure 5b shows that the restriction of constant strength leads to

larger deviations in the VaR. The largest underestimation of 5% shows up for the combi-

nation of high strength with an asymmetric structure. In the opposite combination of the

low strength and the symmetric structure regimes, an overestimation of 10% arises. For

both restrictions, the underestimation occurs exactly when the dependence is asymmetric,

which happens during crisis periods, like July 2001–July 2004 and from July 2007 onwards

(see Figure 2).

For the pair UK-FR in Figure 5c, the absence of changes in structure leads to a max-

imum underestimation of the VaR of 4%, when the combination of low strength and a

symmetric structure applies. Overestimation does not really occur. To the contrary, ig-

noring the changes in the strength (Figure 5d) leads to an underestimation of a maximum

31



of 4% when the dependence is strong and asymmetric. When the dependence is weak, we

observe a small underestimation of the VaR of about 1% independent of the probability

for the symmetric regime. When we combine these results with the smoothed inference

probabilities in Figure 4a, we see that the changes in the structure matters after March

2001, while the changes in the strength are important around July 1998.

Figures 5e and 5f for the US-CA pair show more severe underestimation. Ignoring

changes in the structure of the dependence leads mostly to underestimation with a max-

imum of 6%. For changes in strength, we observe a maximum underestimation of 10%,

and a maximum overestimation of 6%. In both cases, the underestimation is largest when

the strong and asymmetric dependence regimes prevail, which happens during the crisis

periods around October 1997 (Asian crisis), July 2001 (burst dotcom bubble), and July

2007 (credit crunch).

For the US-MX pair, imposing a constant copula structure leads again mostly to an

underestimation of the risk in Figure 5g. This underestimation is largest (3%) when the

symmetric and low strength regimes occur. When a constant strength of the dependence

is imposed (Figure 5h), the underestimation is more severe with a maximum of 10%. As

with the US-CA pair, the largest underestimation results from the combination of the

asymmetric structure and the high strength. This combination prevails during the Asian

crisis.

The pair JP-HK shows a large contrast in Figure 5i and Figure 5j. Ignoring changes

in structure seems almost inconsequential with both over- and underestimations limited to

1–1.5%. To the contrary, ignoring changes in strength can lead to an underestimation of up

to 15%. This underestimation is present for most combinations of regime probabilities, and

increases when the probability of strong dependence rises. Periods of strong dependence

happen frequently between 1997–2001 and particularly after July 2004.

The final pair JP-KO shows large variation in under- and overestimations of the VaR
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(Figures 5k and 5l). When the restrictions concern changes in the structure, the VaR-ratios

vary between 93% and 110%. The maximum results from the combination of the asym-

metric structure and the weak dependence, and the minimum results from the symmetric

structure and the weak strength. If the strength becomes higher, the effect of imposing

a constant structure becomes less consequential. When changes in strength are ignored,

differences are even larger. The maximum underestimation of 15% corresponds with a

strong symmetric dependence, which occurs from July 2001 to July 2006. The maximum

overestimation of 8% coincides with weak asymmetric dependence, which occurs from July

1995 to March 1998.

This detailed analysis shows that ignoring changes in strength means that risk is under-

estimated when the actual strength regime is strong. Periods of strong dependence occur

frequently, mostly during the bear markets after the Asian crisis, the burst of the dotcom

bubble, and the credit crisis. Ignoring changes in the structure is also most costly during

these periods. It is more difficult to link the effect directly to the regime that actually

applies (i.e., symmetric or asymmetric), because the prevailing structure regimes are not

strongly synchronized. Some countries actually show only a single switch.

One might argue that restricting the changes in the strength or in the structure only

matters in extreme situations and for risks far out in the tails. In Figure 6 we therefore

consider ratios for Value-at-Risk with a 95% confidence level. The graphs in the figure

are similar to those in Figure 5, and we also see that the magnitude of the ratios has not

diminished. So for less extreme VaR0.95 measurements also, we conclude that accurately

modeling the changes in the strength and in the structure of the dependence matter.

[Figure 6 about here.]

[Figure 6 (continued) about here.]
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6 Conclusion

Both the strength and the structure of the dependence between asset returns can vary

over time. Changes in the strength affect the overall level of the dependence, whereas

changes in the structure relate to (a)symmetry and tail (in)dependence. We propose a

new approach to model the dynamics of the dependence that combines mixture copulas

with Markov regime-switching models. Our analysis of six pairs of stock markets provides

evidence for the presence of distinct sets of regimes for both the strength and the structure

of the dependence. Switches between a weak or mild dependence regime and a strong

one happen regularly. The strong dependence regime often coincides with periods of high

volatility following financial crises. Changes from a symmetric, tail-independent structure

to an asymmetric, tail-dependent one happen less frequently. For some countries we observe

only a single switch, while for others we observe a few. While switches in strength show

some commonality, switches in the dependence structure do not seem synchronized. The

combination of a high strength regime and an asymmetric, tail-independent regime shows

up most around crisis periods such as the Asian crisis, the burst of the dotcom bubble,

and the credit crunch.

We find that both types of changes are important for an accurate model of dependence.

Models in which either the strength or the structure of the dependence can change can be

regarded as misspecified. Likelihood ratio tests reject these restricted models in favor of a

model with both types of changes. Applying a misspecified model with only one type of

changes in the dependence leads to biases in risk measures. A risk manager that calculates

the Value-at-Risk for an equally weighted investment in a pair of stock markets sometimes

underestimates the VaR by a maximum of 15%, while maximally overestimating it by 10%

at other points in time. The underestimation occurs exactly during crisis periods.

While our findings can lead to improvements in risk management, they can also con-
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tribute to our understanding of the determinants of the changes in dependence. Many

studies that try to relate the changes in the dependence between the returns of financial

assets to other economic changes, focus on the correlations between these returns. Changes

in correlations might offer only a limited perspective on what is actually changing in the

dependence. They are a poor measure to pick up changes in asymmetry or tail depen-

dence. This narrow focus might explain why relating the variation in correlations to other

economic variations is so hard. Our approach that accommodates distinct changes in the

strength and the structure of the dependence can show better what is actually changing,

which might make it easier to explain why it is changing.
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Figure 1: Exceedance correlations
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The graph shows the exceedance correlations of Ang and Chen (2002) for the different pairs of stock
indices. The sample covers the period from July 3, 1995 to November 7, 2008. The horizontal axis shows
the quantiles for which the exceedance correlation is computed. We model the marginal distributions as
in Section 3.2

.
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Figure 2: Smoothed inference probabilities for UK-GE

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

J
u

l-9
5

J
u

l-9
6

J
u

l-9
7

J
u

l-9
8

J
u

l-9
9

J
u

l-0
0

J
u

l-0
1

J
u

l-0
2

J
u
l-0

3

J
u
l-0

4

J
u

l-0
5

J
u

l-0
6

J
u

l-0
7

J
u

l-0
8

P(low strength) P(symmetric structure)

The graph shows the smoothed inference probabilities for the weak dependence regime (Sθt = 1) and the
symmetric dependence regime (Sωt = 1) in model Equation (4) for the UK and Germany. They correspond
with the estimation results for Model 1 in Table 2.
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Figure 3: Smoothed inference probabilities for UK-GE – restricted models
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(a) Time-varying strength, constant structure
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(b) Constant strength, time-varying structure

This figure shows smoothed inference probabilities for the restricted models 2 and 3 and the unrestricted
model 1 in Table 2. Panel (a) shows the probabilities for the weak dependence regime in model 2 (time-
varying strength, constant structure) with a gray line, and for the weak dependence regime in the unre-
stricted model 1 with a black line. Panel (b) shows the probabilities for the symmetric regime in model 3
(constant strength, time-varying structure) with a gray line, for the symmetric regime in the unrestricted
model with a black solid line and for the strong dependence regime in the unrestricted model 1 with a
dashed black line.
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Figure 4: Smoothed probabilities other country pairs
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(b) US-CA
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(c) US-MX
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The graph shows the smoothed probabilities of being in the regime with relatively weak dependence
(Sθt = 1) and the smoothed probabilities of being in the regime with relatively symmetric dependence
(Sωt = 1) in the model in Equation (4). They correspond with the estimation results in Table 3.
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Figure 5: 99% Value-at-Risk Ratios
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(d) UK-FR – Structure regimes only
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(e) US-CA – Strength regimes only
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(f) US-CA – Structure regimes only

This figure shows the ratio of VaRq that results from the unrestricted time-varying mixture copula to
the Varq that results from a restricted specifications as a function of the probability for the regime with a
symmetric dependence structure and of the probability for the regime with a low dependence strength. We
choose q = 0.99. In the left-hand (right-hand) figures the restricted model imposes a constant dependence
structure (strength), while allowing for time-variation in the strength (structure) of the dependence. –
Note continues on next page.
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Figure 5: 99% Value-at-Risk Ratios – continued
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(g) US-MX – Strength regimes only
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(h) US-MX – Structure regimes only
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(i) JP-HK – Strength regimes only
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(j) JP-HK – Structure regimes only
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(k) JP-KO – Strength regimes only
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Note continued from previous page. – The ratios are evaluated for all probability combinations in the two
dimensional grid with a distance of 0.05 between the points. We construct pseudo returns to calculate
VaRq for a portfolio that is equally invested in both stock markets. We approximate the distribution of
the mixture copula that the probability combinations imply by one million draws. We transform these
draws to pseudo returns using the inverse of the cdf of the standard normal distribution. For the restricted
model either the probability for the strength regime or for the structure regime can be ignored.
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Figure 6: 95% Value-at-Risk Ratios
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(a) UK-GE – Strength regimes only
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(d) UK-FR – Structure regimes only
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(e) US-CA – Strength regimes only
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(f) US-CA – Structure regimes only

This figure shows the ratio of VaRq that results from the unrestricted time-varying mixture copula to the
Varq that results from a restricted specifications as a function of the probability for the regime with a
symmetric dependence structure and of the probability for the regime with a low dependence strength.
We choose q = 0.95. For further explanation, see Figure 5.
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Figure 6: 95% Value-at-Risk Ratios – continued
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Figure note on previous page.
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Table 1: Descriptive statistics

Mean (%) Vol (%) Skewness Kurtosis

US 4.31 19.84 −0.16 11.19
Canada (CA) 8.68 22.01 −0.72 12.12
Mexico (MX) 9.68 30.06 0.09 13.85
UK 1.99 20.49 −0.23 13.83
Germany (GE) 3.80 24.92 −0.14 8.00
France (FR) 4.86 23.24 −0.22 9.83
Japan (JP) −3.38 24.74 0.17 8.09
Hong Kong (HK) 0.59 27.23 −0.19 11.07
Korea (KO) −0.27 43.59 0.26 18.28

The table reports the annualized mean (in %), annualized volatility (in %), skewness and kurtosis coeffi-
cients of the daily stock market returns over the period of July 3, 1995, to November 7, 2008 (T = 3, 250
observations)

.
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Table 2: Estimation results for UK-GE

Model 1 2 3 4 5
Strength varying varying constant constant constant
Structure varying constant varying varying constant

ρ1 0.480 0.638 0.855 0.844 0.677
(0.042) (0.033) (0.076) (0.008) (0.006)

ρ2 0.818 0.823
(0.028) (0.023)

δ1 2.120 1.314 1.439 1.541 ND
(0.209) (0.108) (0.254) (0.035)

δ2 3.761 3.953
(0.381) (0.740)

ω1 1 0.707 0.962 1 1
(–) (0.091) (0.175) (–)

ω2 0.405 0.191 0
(0.232) (0.289)

pθ11 0.998 0.997
(0.002) (0.002)

pθ22 0.998 0.996
(0.002) (0.003)

pω11 0.996 0.997 0.995
(0.006) (0.003) (0.003)

pω22 0.996 0.997 0.996
(0.007) (0.003) (0.002)

`C 1196.1 1187.7 1161.3 1153.9 991.3
LR test 16.7 69.5 84.3 409.5
p-value 0.032 < 0.001 < 0.001 0.001

The table reports the estimation results for the mixture copula specifications for the daily stock index
returns in the UK and Germany over the period of July 3, 1995, to November 7, 2008. Model 1 is the
unrestricted time-varying mixture copula in Equation (4) that allows for changes in both the strength and
the structure of the dependence. Model 2 corresponds with Equation (18) and accommodates switches
in the copula parameters (time-varying strength) but has no switches in the mixture weight (constant
structure). Model 3 corresponds with Equation (19) and has no switches in the copulas parameters
(constant strength) but accommodates switches in the mixture weights (time-varying structure). Model 4
corresponds with Equation (20) and has no switches in the copulas parameters but accommodates switches
in the mixture weight that are restricted to ω1 = 1 and ω2 = 0. Model 5 corresponds with Equation (20)
and does not accommodate any regime switches at all. The marginal distributions are modeled by the
AR(1)-TGARCH(1,1) specification for all of the copula models. We report asymptotic standard errors
in parentheses. For the restricted models the parameters that are assumed constant across regimes are
reported in the ‘regime 1’-row. When a boundary is reached during the estimation the boundary value
is imposed for this parameter. In those cases, a (–) appears instead of a standard error. Unidentified
parameters are indicated with ND. The last three rows report the values for the log likelihood of the
copula models (`C), the likelihood ratio statistic of the restricted Models 2–5 against Model 1, and the
corresponding p-values based on 2,500 simulations.
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Table 3: Estimation results for other country pairs

UK-FR US-CA US-MX JP-HK JP-KO

ρ1 0.823 0.519 0.578 0.435 0.003
(0.014) (0.073) (0.048) (0.057) (0.103)

ρ2 0.931 0.703 0.837 0.893 0.473
(0.007) (0.016) (0.029) (0.032) (0.035)

δ1 1.334 1.215 1.148 1.128 1.425
(0.061) (0.087) (0.048) (0.050) (0.112)

δ2 1.986 3.533 1.543 1.899 1.959
(0.194) (0.299) (0.534) (0.608) (0.239)

ω1 0.958 1 0.864 0.868 0.992
(0.018) − (0.138) (0.184) (0.115)

ω2 0.348 0 0.353 0.273 0.453
(0.071) − (0.317) (0.253) (0.172)

pθ11 0.996 0.99 0.99 0.989 0.999
(0.003) (0.006) (0.006) (0.005) (0.001)

pθ22 0.988 0.988 0.98 0.871 1
(0.006) (0.004) (0.012) (0.030) −

pω11 1 0.971 1 1 0.999
− (0.012) − − (0.001)

pω22 0.999 0.877 0.999 0.999 0.999
(0.001) (0.030) (0.002) (0.001) (0.002)

LR structure 79.7 21.9 21.5 15.6 18.4
[< 0.001] [0.014] [0.011] [0.022] [0.011]

LR strength 96.6 36.4 26.5 24.7 77.2
[< 0.001] [< 0.001] [< 0.001] [< 0.001] [< 0.001]

LR Okimoto 219.2 36.9 55.4 31.3 80.7
[< 0.001] [< 0.001] [< 0.001] [< 0.001] [< 0.001]

LR Hu 524.4 151.1 238.8 76.0 193.9
[< 0.001] [< 0.001] [< 0.001] [< 0.001] [< 0.001]

The table reports the estimation results for the mixture copula specifications for the daily stock index
returns for the pairs UK and France (UK-FR), US and Canada (US-CA), US and Mexico (US-MX), Japan
and Hong Kong (JP-HK), and Japan and Korea (JP-KO) over the period of July 3, 1995 to November
7, 2008. The estimates correspond with the time-varying mixture copula in Equation (4) that allows for
changes in both the strength and the structure of the dependence. The marginal distributions are modeled
by the AR(1)-TGARCH(1,1) specification for all of the copula models. We report asymptotic standard
errors in parentheses. When a boundary is reached during the estimation the boundary value is imposed
for this parameter. In those cases, a (–) appears instead of a standard error. We report four likelihood
ratio statistics with p-values in brackets below based on 2,500 simulations. The statistic “LR structure”
tests the restriction that the dependence structure is constant as in Equation (18). The statistic “LR
strength” tests the restriction that the strength of the dependence is constant as in Equation (19). The
statistics “LR Okimoto” and “LR Hu” test the restricted models of Okimoto (2008) in Equation (20) and
Hu (2006) in Equation (21) versus the unrestricted model.
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Table 4: The dependence between the lower tails

sθ sω UK-GE UK-FR US-CA US-MX JP-HK JP-KO

Weak symmetric 0 0.01 0 0.02 0.02 0.00
Weak asymmetric 0.36 0.21 0.23 0.11 0.12 0.21
Strong symmetric 0 0.02 0 0.07 0.07 0.00
Strong asymmetric 0.47 0.38 0.78 0.35 0.43 0.31

(a) Lower tail dependence coefficients

sθ sω UK-GE UK-FR US-CA US-MX JP-HK JP-KO

Weak symmetric 0.23 0.52 0.26 0.28 0.2 0.05
Weak asymmetric 0.47 0.41 0.27 0.23 0.2 0.24
Strong symmetric 0.52 0.69 0.4 0.53 0.62 0.23
Strong asymmetric 0.69 0.63 0.79 0.55 0.59 0.43

(b) Exceedance probabilities

Panel A reports the tail dependence for the different combinations of the regimes of the strength and struc-
ture of the dependence, implied by the estimation results of the dependence model. The tail dependence
is calculated as τL = (1− ωsω )(2− 21/δsθ ). Panel B reports the probability of observing one return in the
lower 5%-quantile given that the other return belongs to this quantile. This probability is computed as
C(0.05, 0.05)/0.05 = ωsωCGau(0.05, 0.05; ρsθ )/0.05 + (1− ωsω )CGum(0.05, 0.05; δsθ )/0.05.
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A Detailed results

A.1 Results for the margins

Table A.1 reports the estimation results for the marginal AR(1)-TGARCH(1,1) models

with skewed Student’s t innovations. The parameter estimates largely reflect the well-

known stylized facts of univariate daily stock return distributions. First, for all countries

the volatility is highly persistent as (α+ + α−)/2 + β is estimated to be close to one. This

persistence indicates prolonged periods of relatively high and low volatilities. Second, for all

of the countries, the estimate of α− substantially exceeds the estimate of α+, reflecting the

property that negative return shocks have the larger impact on the conditional volatility.

Third, the degrees of freedom ν that range from 6.6 (KO) to 18.5 (UK) indicate fat tails.

Fourth, the skewness parameter λ is negative for all of the countries and is significant at

the 1% level for all of the countries but Japan and Mexico. Fifth, the AR(1) parameter

φ1 is small and significant for only half of the countries, which corresponds with the small

first-order autocorrelation in the daily stock returns.

[Table A.1 about here.]

The IFM method requires a correct specification of the marginal distributions to prevent

biases in the second step. The results for the Kolmogorov-Smirnov, Cramer-Von Mises and

Anderson-Darling tests for the goodness-of-fit indicate that this requirement is generally

met. For all markets except Hong Kong, the test results in the final three columns of

Table A.1 fail to reject the null hypothesis of correct specification. For Hong Kong, we

re-estimate the AR(1)-TGARCH(1,1) model with a generalized error distribution for the

innovations. Because this distribution cannot be rejected, we use the generalized error

distribution for the Hong Kong stock return innovations.

A.2 Results for other country pairs

The results for the UK and France in Table A.2 indicate a regime with an almost symmetric

dependence structure (mixture weight for the Gaussian copula ω1 = 0.958) and a regime

with a more asymmetric dependence structure (mixture weight for the Gaussian copula
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ω2 = 0.348). Figure 4a shows one switch between these regimes at the burst of the dot-com

bubble in April 2001. Because there is only one switch, the transition probability pω11 is set

equal to one. The difference in the strength of the dependence is mainly concentrated in

the survival Gumbel copula, with δ2 = 1.99 > δ1 = 1.33. The correlation parameter of the

Gaussian copula is high in both regimes (ρ1 = 0.82 and ρ2 = 0.93). The strong dependence

regime prevails during crisis periods and the subsequent bear markets. In Figure 4a the

crisis periods of July 1997, April 2001, September 2002, and the recent financial crisis are

clearly visible.

[Table A.2 about here.]

The results for the restricted Models 2–5 indicate that these models capture dynamics

in the dependence less accurately than the unrestricted model. All restricted models are

rejected with p-values lower than 0.001. For all of the restricted models, the LR-statistics

exceed the values reported in Table 2, which indicates that properly modeling the time

variation in the dependence is even more important for the combination of the UK and

French stock markets than for the UK and Germany. The parameter estimates of the

restricted models can again be seen as a convex combination of the unrestricted parameter

estimates.

The estimation results of the US and Canada in Table A.3 show that the dependence

is either fully asymmetric or fully symmetric because ω1 = 1 and ω2 = 0. Because the

estimates for the mixture parameters reach their boundaries, the dependence structure is

described by a Gaussian copula in the symmetric regime and a Gumbel copula in the asym-

metric regime. This implies that for this country pair the joint Markov process switches be-

tween four different and distinct copulas. The parameters in the low strength regime differ

substantially from the parameters in the high strength regime, with ρ1 = 0.52 < ρ2 = 0.70,

and δ1 = 1.22 < δ2 = 3.53. The smoothed inference probabilities in Figure 4b for the de-

pendence structure switches relatively infrequently, mostly being in the asymmetric regime

during financial crises, and in the symmetric regime during tranquil periods. It is harder

to link the state of the dependence structure process to the financial market conditions for

the US-CA, although the process seems to be more often in the high strength state during

turmoil periods.
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[Table A.3 about here.]

Also for the combination of the US and Canadian stock markets, we reject the restricted

Models 2–5. Model 2 with no changes in the structure of the dependence is rejected with

a p-value of 0.014. For all other models, the p-values are below 0.001. When a model

only accommodates changes in strength as for Model 2, the dependence is asymmetric in

both regimes. When a model only accommodates changes in structure, one regime remains

fully Gaussian, while the other regime puts most but not all weight on the Gumbel copula.

The Gaussian regime shows strong dependence, while the Gumbel-dominated regime shows

weak dependence. The estimates for Model 3 are actually quite close to those for Model 4

as proposed by Okimoto (2008).

For the US and Mexico, we find a clear difference between the weak and strong depen-

dence regimes as both ρ1 < ρ2 and δ1 < δ2, although the difference between the Gumbel

parameters is not as large as for the US and Canada. The Gaussian copula is the most

important in the symmetric regime (ω1 = 0.864), although the Gumbel copula still receives

a non-negligible weight of 0.136. In the asymmetric regime, the copula is a weighted aver-

age of the Gaussian and Gumbel copulas with weights of 0.353 and 0.647. The smoothed

inference probabilities in Figure 4c show that the dependence structure switches only once

during the summer of 2001, from the asymmetric regime to the more symmetric regime.

Here the Markov-switching framework accommodates a nonrecurring change in depen-

dence, and consequently pω11 = 1. The strength regimes are persistent with probabilities of

0.990 and 0.980. The strong dependence regime occurs during most of the financial crises

and since 2006.

[Table A.4 about here.]

Comparing the restricted Models 2–5 with the unrestricted models shows again that

both changes in strength and structure are important. Restricting changes to only the

strength of the dependence is rejected with a p-value of 0.011; for all of the other restrictions

the p-values are below 0.001. Restricting the changes in the structure of the dependence

leads to mild asymmetry in both strength regimes (Model 2). Restricting the changes in

the strength of the dependence produces a symmetric regime with strong dependence and

an asymmetric regime with weak dependence.
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Japan and Hong Kong also experience a single change from a symmetric dependence

structure to an asymmetric structure (ω1 = 0.868 versus ω2 = 0.273), which occurred

around the burst of the dotcom bubble. The Gumbel parameter estimates in Table A.5

are fairly small, and suggest that the lower tail dependence between these markets is not

particularly strong. The transition probability pθ22 = 0.87 is relatively low, showing that

most of the time the dependence strength is in the weak regime. Figure 4d confirms that

the strength is mostly low, although we observe that the strong strength regime starts to

occur more and more often after March 2004.

[Table A.5 about here.]

The evidence for changes in the structure of the dependence for the combination of

the Japanese and Hong Kong equity markets is a bit less than for the other combina-

tions, but a p-value of 0.022 is still clearly below the conventional confidence level of 0.05.

When the structure of the dependence cannot change, we see that the strong dependence

regime becomes more asymmetric. When changes in the strength are restricted, we ob-

serve a Gaussian-dominated regime and a Gumbel-dominated regime. The parameter for

the Gaussian copula is in between the two parameters in the unrestricted model, but the

Gumbel parameter remains low.

Japan and Korea constitute the only pair that shows independence in the weak and

symmetric regime (ω1 = 0.992, ρ1 = 0.003), as shown in Table A.6. The regime with

an asymmetric structure puts approximately equal weights on the Gaussian and Gumbel

copulas. The parameters for the Gumbel copula do not indicate independence, as they

are both well above one. The smoothed inference probabilities in Figure 4e show that all

of the regimes are highly persistent. The strength is weak before June 2001, and remains

strong thereafter (and hence pθ22 = 1). The structure also switches only occasionally with

more asymmetry during the dotcom bubble (June 1999–July 2001) and the credit crisis

(after July 2007). The regime combination that implies (near) independence prevails from

the start of our sample until July 1999.

[Table A.6 about here.]
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When we restrict the changes in the dependence structure, the estimates indicate a

mostly Gaussian dependence structure with limited influence for the Gumbel copula (ω1 =

0.792). This specification is actually the only one where the low value for the correlation

parameter in the Gaussian copula is combined with the high value for the Gumbel copula,

that is, ρ1 < ρ2 but δ1 > δ2. The restrictions for this specification are rejected with a

p-value of 0.011. When the changes in the strength are rejected, the estimates indicate a

regime with a mixture of a near-independent Gaussian and a mildly dependent Gumbel

copula, and a regime that is fully determined by the Gumbel copula. This regime is strongly

rejected with a p-value below 0.001. The models with further restrictions are also rejected.
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Table A.1: The estimation results for the margins

φ1 ψ · 104 α+ α− β ν λ ` · 10−3 K-S C-M A-D

UK −0.024 0.021 0.011 0.128 0.915 18.487 −0.094 10.28 0.943 0.904 0.902
(0.018) (0.004) (0.007) (0.015) (0.011) (5.106) (0.026)

GE −0.006 0.025 0.028 0.135 0.909 12.638 −0.097 9.58 0.831 0.846 0.710
(0.018) (0.006) (0.010) (0.016) (0.010) (2.463) (0.025)

FR 0.002 0.026 0.018 0.123 0.916 11.792 −0.088 9.78 0.981 0.892 0.749
(0.018) (0.006) (0.009) (0.015) (0.010) (2.177) (0.025)

US −0.047 0.013 0.000 0.139 0.922 9.478 −0.123 10.38 0.639 0.711 0.058
(0.018) (0.003) (0.015) (0.017) (0.012) (1.448) (0.023)

CA 0.074 0.025 0.032 0.120 0.910 7.549 −0.115 10.01 0.776 0.812 0.649
(0.018) (0.007) (0.010) (0.018) (0.012) (0.905) (0.024)

MX 0.103 0.098 0.014 0.179 0.874 7.115 −0.030 8.95 0.697 0.781 0.846
(0.018) (0.020) (0.009) (0.024) (0.016) (0.814) (0.021)

JP −0.021 0.032 0.040 0.099 0.918 10.415 −0.021 9.31 0.715 0.591 0.450
(0.018) (0.010) (0.010) (0.014) (0.012) (1.662) (0.027)

HK 0.016 0.024 0.038 0.081 0.915 1.204 9.42 0.394 0.386 0.115
(0.018) (0.006) (0.012) (0.015) (0.011) 0.035

KO 0.097 0.047 0.042 0.115 0.916 6.632 −0.061 8.07 0.167 0.252 0.215
(0.018) (0.013) (0.010) (0.017) (0.011) (0.777) (0.022)

This table reports the estimation results of the AR(1)-TGARCH(1,1,1) model with skewed Student’s t
innovations as in Equations (9) to (13). For the Hong Kong stock market a generalized error distribution
(GED) is used for the innovations. The parameter of the GED distribution is given in the column headed
λ. The sample period runs from July 3, 1995, to November 7, 2008 (T = 3, 250 observations). The
table reports the estimates for the autoregressive component (column 2), the parameters in the TGARCH
specification (columns 3–6) and the degrees of freedom and skewness parameters (columns 7–8), with the
standard errors given in parentheses. The table also reports the log likelihood values ` (column 9) and
p-values for the Kolmogorov-Smirnov (K-S), Cramer-Von Mises (C-M) and Anderson-Darling (A-D) tests
for the uniformity of the standardized residuals in columns 10–12.

57



Table A.2: Estimation results for UK-FR

Model 1 2 3 4 5
Strength varying varying constant constant constant
Structure varying constant varying varying constant

ρ1 0.823 0.722 0.873 0.577 ND
(0.014) (0.078) (0.010) (0.021)

ρ2 0.931 0.890
(0.007) (0.021)

δ1 1.334 1.188 1.443 2.829 2.090
(0.061) (0.125) (0.067) (0.084) (0.041)

δ2 1.986 2.545
(0.194) (1.472)

ω1 0.958 0.723 0.969 1 0
(0.018) (0.079) (0.027) (–)

ω2 0.348 0.250 0
(0.071) (0.070)

pθ11 0.996 0.994
(0.003) (0.004)

pθ22 0.988 0.995
(0.006) (0.008)

pω11 1.000 0.997 0.993
(–) (0.003) (0.003)

pω22 0.999 0.996 0.994
(0.001) (0.002) (0.002)

`C 1542.942 1503.111 1494.663 1433.328 1280.737
LR test 79.662 96.558 219.227 524.410
p-value < 0.001 < 0.001 < 0.001 < 0.001

The estimation results for the mixture copula specifications for UK-FR. For further details see Table 2.
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Table A.3: Estimation results for US-CA

Model 1 2 3 4 5
Strength varying varying constant constant constant
Structure varying constant varying varying constant

ρ1 0.519 0.473 0.724 0.723 0.596
(0.073) (0.054) (0.017) (0.013) (0.011)

ρ2 0.703 0.731
(0.016) (0.019)

δ1 1.215 1.297 1.320 1.346 ND
(0.087) (0.115) (0.060) (0.038)

δ2 3.533 2.375
(0.299) (0.567)

ω1 1 0.833 1 1 1
(–) (0.087) (–) (–)

ω2 0 0.094 0
(–) (0.148)

pθ11 0.990 0.987
(0.006) (0.005)

pθ22 0.988 0.987
(0.004) (0.004)

pω11 0.971 0.988 0.987
(0.012) (0.004) (0.003)

pω22 0.877 0.984 0.982
(0.030) (0.007) (0.006)

`C 786.574 775.611 768.387 768.104 711.034
LR test 21.927 36.375 36.940 151.081
p-value 0.014 < 0.001 < 0.001 < 0.001

The estimation results for the mixture copula specifications for US-CA. For further details see Table 2.
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Table A.4: Estimation results for US-MX

Model 1 2 3 4 5
Strength varying varying constant constant constant
Structure varying constant varying varying constant

ρ1 0.578 0.512 0.758 0.729 ND
(0.048) (0.051) (0.073) (0.017)

ρ2 0.825 0.837
(0.029) (0.033)

δ1 1.140 1.148 1.238 1.262 1.559
(0.048) (0.094) (0.082) (0.038) (0.092)

δ2 1.832 1.543
(0.534) (0.189)

ω1 0.864 0.744 0.929 1 0.000
(0.138) (0.121) (0.056) (–)

ω2 0.353 0.126 0
(0.317) (0.130)

pθ11 0.990 0.992
(0.006) (0.005)

pθ22 0.980 0.987
(0.012) (0.008)

pω11 1.000 0.987 0.983
(–) (0.006) (0.004)

pω22 0.999 0.986 0.977
(0.002) (0.014) (0.007)

`C 712.815 702.044 688.809 685.101 593.412
LR test 21.541 26.470 55.428 238.805
p-value 0.011 < 0.001 < 0.001 < 0.001

The estimation results for the mixture copula specifications for US-MX. For further details see Table 2.
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Table A.5: Estimation results for JP-HK

Model 1 2 3 4 5
Strength varying varying constant constant constant
Structure varying constant varying varying constant

ρ1 0.435 0.387 0.585 0.337 0.379
(0.057) (0.039) (0.062) (0.019) (0.005)

ρ2 0.893 0.883
(0.032) (0.043)

δ1 1.128 1.192 1.164 2.591 ND
(0.050) (0.052) (0.039) (0.276)

δ2 1.899 2.559
(0.608) (0.957)

ω1 0.868 0.645 0.749 1 1.000
(0.184) (0.145) (0.130) (–)

ω2 0.273 0.228 0
(0.253) (0.139)

pθ11 0.989 0.990
(0.005) (0.005)

pθ22 0.871 0.872
(0.030) (0.035)

pω11 1.000 1.000 0.988
(–) (–) (0.007)

pω22 0.999 0.999 0.875
(0.001) (0.001) (0.029)

`C 289.007 281.209 276.660 273.339 251.001
LR test 15.595 24.694 31.337 76.011
p-value 0.022 < 0.001 < 0.001 < 0.001

The estimation results for the mixture copula specifications for JP-HK. For further details see Table 2.
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Table A.6: Estimation results for JP-KO

Model 1 2 3 4 5
Strength varying varying constant constant constant
Structure varying constant varying varying constant

ρ1 0.003 −0.045 −0.079 0.010 0.371
(0.103) (0.063) (0.140) (0.049) (0.008)

ρ2 0.473 0.552
(0.035) (0.041)

δ1 1.425 1.730 1.420 1.411 ND
(0.112) (0.335) (0.075) (0.031)

δ2 1.959 1.260
(0.239) (0.153)

ω1 0.992 0.792 0.770 1 1.000
(0.115) (0.082) (0.192) (–)

ω2 0.453 0.000 0
(0.172) (–)

pθ11 0.999 0.998
(0.001) (0.002)

pθ22 1.000 0.999
(–) (0.001)

pω11 0.999 0.997 0.997
(0.001) (0.003) (0.002)

pω22 0.999 0.999 0.999
(0.002) (0.001) (0.001)

`C 336.522 327.309 297.917 296.163 239.572
LR test 18.427 77.209 80.719 193.900
p-value 0.011 < 0.001 < 0.001 < 0.001

The estimation results for the mixture copula specifications for JP-KO. For further details see Table 2.
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