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Abstract

Based on simple time series plots and periodic sample autocorrelations, we
document that monthly river flow data display long memory, in addition to
pronounced seasonality. In fact, it appears that the long memory characteristics
vary with the season. To describe these two properties jointly, we propose a
seasonal periodic long memory model and fit it to the well-known Fraser river
data (to be obtained from Statlib at http://1lib.stat.cmu.edu/datasets/).
We provide a statistical analysis and provide impulse response functions to show
that shocks in certain months of the year have a longer lasting impact than those

in other months.
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1 Introduction

It is well known since the early work by Hurst on Nile data that river flows show
persistent fluctuations which may be characterized by long memory. Additional to
long memory, most river flow data display pronounced seasonality, both in mean and
in variance.

In this paper we propose a new periodic model where long memory characteristics
at yearly lags, so called seasonal long memory, vary from month to month. The model
specification is motivated by examining sample periodic autocorrelation functions for
monthly river flows at long yearly lags.

Lawrance and Kottegada (1977) presented an overview of early results on the sta-
tistical modeling of river flows. One of the main objectives of these modeling efforts is
to develop simulation models which can be used for the design and operation of reser-
voirs. Brochu (1978) noticed that even modest improvements in the operation of large
reservoir systems can result in multi-million dollar savings per year. The time series
analysis of river flow data has remained an innovating research area. Novel statistical
models for simulation, forecasting and diagnostic analysis have been introduced for
river flow data and other new methods have been tried on river flow data soon after
their introduction, see e.g. Lawrance and Kottegada (1977), McLeod and Hipel (1978),
and Hipel and McLeod (1978ab).

Noakes, Hipel, McLeod, Jimenez and Yakowitz (1988) compared the one-year-
ahead forecasting ability of ARMA models, fractional Gaussian noise models, Frac-
tional ARMA models, Markov type models and nonparametric regression models for
four yearly river flow series. These series were analyzed earlier by McLeod and Hipel
(1978). They showed that it is hard to find significant differences between the models,
but the simple fractional models seemed too restrictive for the four series they studied.

The evidence on the adequacy of statistical models for seasonality is much clearer.
Not only the mean and variance of monthly river flows depend on the season. Other
characteristics like skewness and autocorrelation do as well, as shown by Moss and
Bryson (1974). Moreover, on average, monthly lag 1 correlations tend to be larger
than yearly lag 1 correlations.

The skewness is usually taken care of by an a priori log transformation of the series.
The seasonally dependent autocorrelations are successfully modeled using periodic au-

toregressive moving average (PARMA) models, see e.g. Vecchia and Ballerini (1991).



Periodic autoregressive (PAR) models have definite computational advantages over
PARMA models. PAR models are easy to identify using periodic partial autocorrela-
tion functions, and they are easy to estimate using least squares, using Yule-Walker
equations, or by Maximum Likelihood, see e.g. McLeod (1994). PAR models for
monthly riverflow modeling and simulation were originally introduced by Thomas and
Fiering (1962) .

Noakes, McLeod and Hipel (1985) compared the short-term forecasting ability of
seasonal ARIMA models, deseasonalized ARMA models and periodic autoregressive
(PAR) models on 30 monthly river flow series. The results clearly suggest that peri-
odic autoregressive models, identified by the partial autocorrelation function, provided
the most accurate forecasts. They also established the superiority of the natural log
transformation over other Box-Cox transformations, Box and Cox (1964), in a classical
likelihood framework.

Although the explicit modeling of long range dependence may not be too useful
for point-forecasting, especially if the process is stationary, it can still be important
for confidence interval forecasting, see e.g., Ray (1993). It also plays a decisive role in
hypothesis testing and in the development of simulation models. It is, e.g., important
to take account of long range dependence if one wants to do inference on the (sea-
sonal) long run mean of a process, as emphasized by Beran (1994) in the first chapter
of his monograph on ”Statistics for Long-Memory Processes”. Neglecting long-range
dependence may result in gross downward biases in estimates of the uncertainty about
the mean. This is especially relevant if one wants to test for structural stability of
the correlation structure and the mean, where proper estimation of the variance of the
(sub)sample means is crucial.

Beran and Terrin (1996) reanalyzed yearly minimum water levels for the river
Nile (622-1281) using an ARFIMA(0,d,0) model and found significant changes in the
correlation structure over time. The analysis of structural change in long geophysical
time series is particularly interesting for climate research. Atkinson, Koopman and
Shephard (1997) used recent structural time series for the annual flow of the Nile
(1871-1970) to illustrate new tests for structural breaks and found that the process
could well be described by white noise allowing for a couple of additive outliers and a
structural break due to the building of the Aswan dam in 1899. MacNeill, Tang and
Jandhyala (1991) surveyed earlier analyses of those Nile data.

A class of models, which seems to have been overlooked in the literature on river flow



modeling is the class of seasonal long memory models, introduced by Carlin, Dempster
and Jonas (1985) for economic time series. These models are used to describe long
range depedence in the seasonal pattern of time series, and focus on the correlation
structure at yearly intervals. Our model focuses on this aspect as well. We discuss
the relationship between our model and other seasonal long memory models in more
detail in section 3.1 below. In our model we combine seasonal long memory allowing
for the well established periodic variation in the autocovariance function of monthly
river flows. The combination of these two features may explain both the long memory
apparent in yearly series of minima of river flows, the so-called Joseph effect, and the
absence of long memory in aggregate yearly river low data. In this paper we specify
and estimate such a seasonal periodic model for monthly river flows.

Droughts and floods are phenomena that are typical for special seasons of the year.
If we look at autocorrelations for data of a specific month we may notice the long
nonperiodic cycles, whereas we overlook them if we aggregate flow data over the year.
This is of course more likely to happen if the seasonal long range dependence occurs
for months with relatively small flows.

There seems to be a misunderstanding among practitioners that seasonal (frac-
tional) differencing as applied in seasonal AR (F)IMA modeling, and periodic modeling,
as in PAR models, are substitutes for describing seasonal phenomena. Our application
shows that they are complements. In fact, seasonal parameters can be periodic as well.

The specification of our model does not involve new statistical problems. The model
can easily be estimated using existing software for ARFIMA analysis. We basically
extend the periodic AR(3) model of McLeod (1994) introducing error terms which
display seasonal fractional integration which varies from month to month.

For application we consider the monthly Fraser river flow data at Hope, B.C., made
available on Statlib at http://1lib.stat.cmu.edu/datasets/ by lan McLeod.

We show how we can capture the interesting long memory characteristic, which
appears evident from the periodic autocorrelation functions at long yearly lags. Statis-
tical analysis shows seasonal long memory to be significant, especially for the month of
March. Our statistical analysis provides an additional test on model adequacy and can
be used as a parametric complement to the residual serial correlation tests for periodic
models developed by Vecchia and Ballerini (1991), McLeod (1994) and Franses (1996)
and residual correlation tests for long memory models by Beran (1992) and Robinson

(1994).



The outline of our paper is as follows. In section 2 we present the relevant char-
acteristics of the monthly Fraser river flow data. In section 3 we propose the novel
seasonal periodic long memory model, compare it with related models and discuss es-
timation issues and available software. Section 4 provides the empirical analysis and

section 5 concludes.

2 Data and memory characteristics

Let y; denote a monthly time series, ¢ = 1,2,...,n,. In our case y; concerns log-
transformed data of the monthly mean river flows in cubic feet per second, following
the analyses in Vecchia and Ballerini (1991) and McLeod (1994). Let Y;, r denote these
observations, m = 1,2,3,...,12 and T"'=1,2,..., N, so that m denotes the number
of the month and T denotes the number of the year. We have N years of subsequent
observations with monthly data. To simplify notation we only use complete years with
observations starting in month 1, so that ¢ = m+12-(7T'—1). Note that the Fraser river
flow data in our analysis start in January 1914, whereas Vecchia and Ballerini (1991)
use index 1,1 for October 1912 and McLeod (1994) denotes March 1913 by 1,1. We
use the natural logarithmic transformation. Vecchia and Ballerini (1991) seem to have
used the ?log-function. This matters for the periodic means of the series, E(Y,r).
Our sample mean for June is 8.84, see Table 1 below, whereas Vecchia and Ballerini
(1991, Table 3) obtain a value of 12.408. The basis of the log-transformation does not

change the periodic variances and autocovariances which we define as

Yelom = COV(yta ?Jt—l) = Yi,m; (1)

following McLeod (1994). Throughout we assume that y, is periodic stationary: 7,
depends only on the lag [ between y, and ¥y, ;, and on m, the index of the “leading”
month y,. For example, we assume that the lag 1 autocovariance for June, 7,5 =
cov(Ys 7, Ys7) does not change over time 7.

McLeod (1994) presents the sample information on these covariances in scatter-
plots. Such scatterplots present additional evidence on the adequacy of the log-
tranformation to obtain approximate (multivariate) normality. Note that Vecchia and
Ballerini (1991) use periodic lead [ autocovariances, indexed according to the “lagging”
month 77, =cov(ys, Y1), 50 Vi g=cov(Ys 1, Yzr). The lead [ and lag [ autocovariances

differ for periodic processes! Throughout we will use (1).
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Figures 1 and 2 show the pronounced periodicity of the process. The scales on the
vertical axes of Figure 1 show the variation in the mean and the changes in variability
of the log mean river flows from month to month. The mean varies from 6.71 in March
to 8.84 in June. The standard deviation varies from 0.20 in August to 0.36 in April,
see also Table 1 below. One can interpret the standard deviations approximately as
relative errors for the untransformed mean river flows.

Our study is motivated by inspection of the sample periodic autocorrelation func-
tion at longer lags. McLeod (1994, equations (2.1)-(2.2)) gives a definition of the
sample periodic autocorrelation function. The periodic sample autcorrelation func-
tions are used in the identification of the submodels for each month, in a way similar
to model identification for nonperiodic time series models. Vecchia and Ballerini (1991)
and McLeod (1994) present an extensive data analysis including time series plots of
untransformed and logarithmic data, and plots of periodic sample autocorrelations at
monthly lags of order 1 to 6.

The inspection of sample periodic autocorrelation functions, PeACFs, and sample
periodic partial autcorrelation functions, PePACFs, led McLeod to the specification of
periodic stationary AR model of order 3 in June and October, of order 2 in July and
of order 1 in the other months of the year, i.e., a PAR(1,1,1,1,1,3,2,1,1,3,1,1) model.
Vecchia and Ballerini (1991) specified a PARMA(1,1) model using the same orders
for each month. We present the residual standard errors of the respective models in
Table 1 below. McLeod (1994, Table III, last row) uses a method of indexing that
is incompatible with the one used by Vecchia and Ballerini (1991), leading to huge
differences in measures of fit.

The periodic sample autocorrelations tend to zero first as shown in Figure 3 of
McLeod (1994), who did not show that they increase again for some months to reach
local maxima at seasonal lags 12, 24 etc. The lag 1 autocorrelations are relatively small
for May and June, 0.2-0.3, compared to 0.6-0.8 for the other months. Figure 2 shows
that lag 12 autocorrelations, i.e. one year autocorrelations, vary from about zero for
January and April to 0.3 for February and March. So there is significant periodicity
in the autocorrelation function at seasonal lags as well.

For the month of March the oscillations retain a significant amplitude up to 120
months, as can be seen from Figure 2. Since we want to focus on seasonal modeling
we present sample periodic autocorrelations at yearly lags in Figure 2. This analysis

does not require special software for periodic analysis: the correlations in Figure 2



are simply sample autocorrelations of the monthly subseries Y, r presented in Figure
1. The corresponding spectral density estimates are also presented in Figure 2 for
additional interpretation in the frequency domain. We used GiveWin, Doornik and
Hendry, (1996) for the computations and chose a maximum yearly lag of 25, i.e. a
monthly lag of 300.

Figure 1 already shows marked differences in the ”trending” behavior for the differ-
ent months. February seems to display two long cycles and March appears to show an
upward trend. May shows neither a trend nor a cycle. The plots do not show severe
outliers.

The sample periodic autocorrelation functions and spectral densities in Figure 2
confirm the need for the extra periodic modeling at yearly lags. The standard error of
the autocorrelation estimates is about 0.1 under the white noise assumption, so many
autocorrelations are statistically significant. One would expect white noise to be a
good approximation for all the monthly subseries if a short memory low order PAR
model would apply. However, they deviate systematically from zero for some months.
Moreover, the autocorrelation patterns differ substantially from month to month. The
null hypothesis of white noise is clearly inappropriate.

The data for March deserve a closer look. The autocorrelation function for March
seems to display the typical characteristics of a long memory process: it dies off very
slowly and stays positive for high lags. A simple Dickey-Fuller test for a (yearly) au-
toregressive unit root would not even reject the null that the March series follows a
random walk, although an augmented test does reject the unit root hypothesis, see
Dickey and Fuller (1979). Dickey-Fuller tests, including the computation of their p-
values, have become a standard feature of econometric software packages like PcGive.
Hassler and Wolters (1995) discuss the use of Dickey-Fuller tests in the presence of
long-memory processes in more detail. The spectral representation of the March au-
tocorrelation function shows a prominent peak near zero, which may indicate the pole
in the spectral density that characterizes long memory processes.

The data analysis confirms the need for more careful modeling of the periodic
autocorrelations at seasonal lags, where long memory may be in order. The time series
plots and autocorrelation functions show that the seasonal pattern in the monthly river
flows changes persistently over time, but these changes are most marked in the winter
months where a long period with large river flows is observed in the sixties and in

the beginning of the seventies. In the next section we develop a statistical model to



capture these characteristics.

3 A Seasonal Periodic Long Memory model

The basic idea of our model is very simple. It is a standard multiplicative (Seasonal)
Autoregressive Integrated Moving Average model, (S)ARIMA (p,0,0) x (0, D, 0);2,
where the integration parameter d and the MA order for monthly lags, ¢ are zero and
where the other parameters of the model, i.e. the seasonal AR and MA parameters,
the seasonal integration parameter D and the AR parameters for the monthly lags
are allowed to vary from month to month. Furthermore, we allow for fractional D,
so that the seasonal pattern can be periodic long memory without being periodic
nonstationary, i.e., the periodic autocovariances at seasonal lags may not be absolutely
summable (seasonal long range dependence), but the unconditional periodic variances
of the undifferenced series still exist.
Our point of departure is a periodic AR model of order p used by McLeod (1994),
ie.
Yo = Bm = Prm¥i—1 — Gomle—2 = — GpmY—p =1, t=1,2,...,n, (2)

with 7, a white noise process. The AR parameters ¢;,, vary with the months, i =
1,2,...,p,m = 1,2,...,12. We condition on the starting values yo,y_1,...,y_p. In
order to capture the long memory characteristics we extend the model of McLeod

(1994) by representing 7, as follows:
n=(1—L?)Pre, (3)
where (1 — L'?)"Pm is defined by its binomial expansion

(1= L?)=Pm = fj _f’" (L") =1+ D, L"* + %Dm(l + DL+ (4)
k=0

involving the lag operator L, L¥y, = 1,_. This definition is analogous to the fractional
time series differencing operator introduced by Granger and Joyeux (1980) and Hosking
(1981). We assume —% < Dy, < 5. We say that 7, is integrated of order D,, in month
m. The innovations &, have a seasonally varying variance o?2,.

For the statistical analysis of this model it is useful to put it in a companion form
which explains the values of the different months Y, 7. See Pagano (1978), Tiao and
Grupe (1980) and Liitkepohl (1991) for detailed descriptions of this procedure. Recall
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that the time series plots in Figure 1 represent these different months. We use the fol-
lowing vector notation, thereby extending the notation for the periodic autoregressive

model used by Ooms and Franses (1997). Equations (2)-(3) can be written as
AOYT :A1YT_1+"'+APYT_p+M+D(L)ET, (5)

with Yy = (Yip, Yor, ..., Yior)', Aoii = 1, Agij =0, § > 4, Agij = —di_jj, J <
i, Agij = Givi2k—jj 0 =1,2,...,12, 7=1,2,...,12, k=1,2,...,P , P=1+[(p—
1)/12] if p > 0, and p is a 12 x 1 vector of constants, where the expressions with index
m obey the modulo-12 arithmetic, i.e. ¢, = dpr1ok, b =...,—2,—-1,0,1,2,... Ep =
(Err, Eor, ..., E1or)" denotes the zero mean white noise innovations corresponding to
Y}. D(L) is a diagonal matrix {(1 — L)1 ... (1 — L)~"22}, where the lag operator
now shifts observations by a year. Note that periodic AR models up to order p = 12
as in (2) can be captured in a VAR model of order P = 1, as in our application, where
p = 3. Note further that the constants p,, in (2) and in (5) do not measure the monthly
means of y;, but rather the means of the monthly long memory innovations, ;. The
monthly means of y, can easily be derived from p and A(L) under our assumption of
periodic stationarity.

In contrast to Ooms and Franses (1997) we assume the roots of det(4y—A;2) = 0 to
lie strictly outside the unit circle, so we assume a priori there is no periodic integration.
The VAR-part of the model does not lead to nonstationarity. Therefore, all long
memory properties of the model are captured in D(L). Given these assumptions the
multivariate model is covariance stationary if D,, < 0.5,m = 1,2,...,12. Covariance
stationarity of D(L)Er is a necessary condition for Gaussian maximum likelihood
estimation of D,,,m =1,...,12.

The model is invertible, in the sense that the coefficients of the VAR (oo) representa-
tion of (5) die off to zero at long lags, if D, > —0.5,m =1,2,...,12. Estimation using
nonlinear least squares methods following Beran (1995) is a possibility for invertible
cases. See Odaki (1993) for other definitions and conditions regarding invertibility in

long memory models.

3.1 Relations with other seasonal long memory models,

Under the nonperiodicity restrictions ¢; , = ¢;, Dy, = D, 02, = 02, the model reduces

to the seasonal fractionally differenced model applied by e.g. Porter-Hudak (1990).
(1 - LIZ)D(I —¢1L — ¢2L2 ... ¢pr)yt =& (6)
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This model and its more flexible extensions do not seem to have been used for monthly
river flows. See Ooms (1995) for a survey of other seasonal long memory models. In
the econometric literature tests for the adequacy of the unit autoregressive seasonal
differencing operator (1 — L'?)! have received a lot of attention. Dickey, Hasza, and
Fuller (1984) developed a likelihood ratio test against short memory alternatives like
(1 — pL'?),0 < p < 1. Hylleberg, Engle, Granger, and Yoo (1990) extended the
so-called seasonal unit root tests to a test for the adequacy of the separate factors,
(1 — exp(2mik/12)L),k =1,...,12, i = v/—1, of the operator (1 — L'?).

Our model can also be used to test the adequacy of the (unit) seasonal difference
operator, in our case against fractional alternatives. There are three important differ-
ences with the seasonal unit root tests of Dickey, Hasza and Fuller (1984). First, the
null and the alternative hypothesis for the integration parameters are not restricted
to 1 and zero, respectively. Second, the LM, likelihood ratio and Wald tests follow
similar standard chi-squared limiting distributions under the null, whereas seasonal
unit root tests have non-standard asymptotic distributions that depend on the design
of the regressor set of explanatory variables, even asymptocially, see Robinson (1994).
Third and most important, the tests do not require the assumption of an identical
dynamic model for each month of the year, an assumption that is clearly inappropriate
for monthly river flows.

We do not test for the separate factors of the seasonal differencing operator in
the context of our periodic models following Hylleberg et al. (1990), although this
could be done in principle using standard inference in approximate maximum likelihood
methods, see Ooms (1995) for an application in nonperiodic seasonal ARFIMA models.

Our model differs crucially from the periodic autoregressive fractionally integrated
model, PARFIMA (p,,, d, gm), suggested by Hui and Li (1995) and Franses and Ooms
(1997) in the unit of the lag to which the fractional difference operator is applied. In
those articles the fractional difference operator was applied to weekly and quarterly
lags, respectively, corresponding to the basic time interval of the time series analyzed.
Here we apply the operator to yearly lags, which is the seasonal lag for our time series.
We therefore label our model SPARFIMA (py,, dny @) X (Pry Dy Qi) 12 to distinguish
it from the PARFIMA (py,, d, ¢n) model. As indicated at the beginning of this section
the last three "uppercase” parameters deal with the seasonal lag operator, and the first
three concern the lag operator at the basic frequency of the time series.

In this paper we put P, = Q. = d, = ¢» = 0. Extension of the statistical



analysis and the estimation procedures to models where P,, and @), differ from zero is
straightforward as long as p,, < 12. Ounly equation (3) changes and one simply obtains
ARFIMA models for each month of the year, where the preceding months are used as
explanatory variables.

Generalization to cases where d,, differs from zero is not as easy. General con-
ditions for stationarity are not known and simulation and identification procedures
still have to be developed. Estimation and forecasting has been done for simple cases
however, although not for monthly river flows. Franses and Ooms (1997) and Hui
and Li (1995) used nonlinear least squares on the AR(oco)-representation to estimate
PARFIMA (py,, dm, 0) models. The negative of the minimand of this procedure can
be viewed as an approximate likelihood function following Beran (1995). Stationarity
conditions on the integration parameters d,, for (PARFIMA(O0, d,,,0) models are still
a subject of research. It is, e.g., obvious that the existence of one d,, = 0 is a sufficient
condition for short memory. Is is therefore not necessary for all the individual d,,s to
be smaller than % in order to get periodic stationarity. This is a marked difference with
the periodic stationarity conditions for the seasonal fractional integrations parameters

D,,.

3.2 Estimation and Software

Under the assumption of covariance stationarity we can easily estimate the model using
Gaussian maximum likelihood for the 12 equations for the yearly data for the separate
months, i.e., the 12 rows of (5). This amounts to estimating an ARFIMA(0, D, 0)
model where the mean depends on regressor variables.

The monthly lags are treated as regressors, as is customary in least squares es-
timation of periodic autoregressive models. Pagano (1978) showed that Yule-Walker
estimates for parameters for the different periods in PAR models are asymptotically un-
correlated, so that the information matrix is block diagonal. The same property holds
for the asymptotically equivalent least squares estimates. There is no reason to believe
that this property does not hold for our estimates which are asymptotically equivalent
to generalized least squares estimates of the parameters ¢; ,,,, c.f. Dahlhaus (1995). Ef-
ficient estimation can therefore proceed equation by equation. One can also look at the
set of equations (5) as an econometric dynamic simultaneous equations model. Under

the restriction D,, = 0,m = 1,...,12, (5) reduces to an (exactly identified) recursive
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dynamic simultaneous equations model, for which it is well known that equation-by-
equation least squares estimation is asymptotically efficient, see e.g. Spanos (1986,
§25.2). Since our dynamic error specification excludes cross-equation-effects, equation-
by-equation generalized least squares estimation should also be asymptotically efficient
in our case where the errors are serially correlated.

We employ the ARFIMA-package of Doornik and Ooms (1996), now written in Ox
2.0 by Doornik (1998).

The package is freely available from http://www.nuff.ox.ac.uk/Users/Doornik
for academic users. Ox is an object oriented matrix language with a large number of
econometric and statistical procedures. The ARFIMA-package is a class of procedures
derived from the database class available in Ox. Data can be imported from many
software packages like Excel, Gauss, text-files etc. The ARFIMA-package implements
the basic algorithm of Sowell (1992), with several improvements in memory use and
numerical stability, which makes the package also suitable for bootstrapping exercises,
see Ooms and Doornik (1998). The ARFIMA package implements also nonlinear least
squares estimation. It allows for the simultaneous estimation of the coefficients of
regressor variables, which makes it ideally suited for the problem at hand. Graphs can
be exported in several formats like encapsulated postscript. There is a special link with
GiveWin (Doornik and Hendry(1996)) which can be used to show graphs online. It also
offers the possibility to export graphs in Windows metafile format to other packages
which are compatible with Windows 95/98 or Windows NT. The graphs in Figures 1
and 2 are in standard GiveWin format.

Given the estimates of ¢;,, and D,, one can simply invert (5) to obtain periodic
impulse response functions. This is easy to program in a matrix-language like Ox.
These impulse response functions represent the effect of an innovation in month mg in
year Ty on a later month m; in year T;. The impulse response function estimates can
also be used to obtain approximate confidence intervals for out-of-sample forecasting.
This requires a little more programming but virtually no computation time. That is
an important advantage of the linearity of the model. In the next section we present

estimation results for the parameters and impulse responses.
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4 Empirical Results

We first check McLeod’s periodic AR(3) model using the familiar diagnostic regression
tests implemented in PcGive 9.0, Hendry and Doornik (1996). We simply regressed
the April series on a constant and the series for March, February and January. The
May series were also regressed on the three previous months and so forth. In con-
trast to McLeod (1994) we used the same AR order for all months. These regressions,
which are not reproduced here, showed no substantial problems with the model spec-
ification at yearly lags, with regard to nonnormality and short run serial correlation.
Only the March and September equations showed a little evidence of residual serial
correlation with p-values of second order serial correlation tests of 0.03 and 0.04, respec-
tively. McLeod (1994) already checked the specification for residual serial correlation
at monthly lags. Testing is particularly easy because of the absence of periodic MA pa-
rameters in the model, ¢f. McLeod (1994). Our regression results for June and October
are qualitatively similar to the Yule-Walker estimates obtained by McLeod (1994). Our
regression standard errors are only marginally larger. Diagnostics for (yearly) residual
serial correlation are extremely easy to compute in all leading econometric packages for
the analysis of time series. Since least squares is more akin to maximum likelihood than
Yule-Walker estimation, we prefer (generalized) least squares. See Brockwell and Davis
(1991) for a thorough comparison of different estimation methods for ARMA-models.

Figure 2 indicated that McLeod’s model should be extended with a periodic sea-
sonal long memory part. Two long memory parameters are statistically significant
when we apply Wald-tests in the SPARFIMA model. We present our equation-by-
equation maximum likelihood estimation results in Table 1. It turns out that the long
memory parameters for March and September are indeed significantly larger than zero,
whereas the long memory parameters for the other months are not. The residual vari-
ance for March changes from 0.029 in the AR(3) to 0.025 in the long memory model.
For September it decreases from 0.025 to 0.023. In terms of reducing one-step-ahead
forecast error variance the progress is not so impressive. The last rows in Table 1
show comparisons in goodness-of-fit with the models of McLeod (1994) and Vecchia
and Ballerini (1991). The differences between the models are much smaller than indi-
cated by McLeod (1991, Table III). Note also that Vecchia and Ballerini used a shorter
sample. The introduction of the long memory component does not influence the AR

parameter estimates and their standard errors significantly. For these type of data one
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can therefore start model identification with the specification of the AR part, ignoring
long memory, without making gross mistakes.

The AR-parameters do not have a clear structural interpretation, but one sees that
the river’s new year starts around May, June, where the links with river flows of the
previous season are weakest. The R? is only about 0.10 for May and 0.25 for June. This
phenomenon also showed in the periodic autocorrelation functions for low lags, clearly
presented by Vecchia and Ballerini (1991). Overall, one-month-ahead predictability is
rather high.

A more systematic understanding of the properties of the model can be obtained
from the impulse responses, which we present in Tables 2 and 3. The impulse responses
are most easily interpreted using the multivariate formulation (5) of the model. The
columns in the tables present the effect of white noise innovations, affecting the system
for the first time in the corresponding month. Remember that the size of the innova-
tions is measured approximately in relative terms because of the initial log transfor-
mation of the monthly river flows. Note further that the innovations are orthogonal
by construction.

Let us first look at short run effects in the upper panel of Table 2. The weakness of
the links between May river flows and previous months is seen in the rows labeled May.
The largest effect, 0.216, is from a one percent shock in the March river flow of the
same year. The short term ”pipeline” effects on other months are much larger, which
is seen in the off-diagonal elements in the upper panel. The effect of June innovations
seems to last longest during the first year, even the following April shows an effect of
0.133.

Seasonal effects appear in the diagonals of the following panels. The diagonal
elements of the second panel correspond quite closely to the periodic seasonal fractional
integration parameters D,,, c.f. (3). The AR parameters do not affect the impulse
responses at lag 12 very much. Comparing the diagonals of subsequent panels, one
notices the slow decay of the periodic impulse response function due to the long memory
character of the model. An exponential decay would result in a short memory model,
and this would not correspond to the periodic correlations observed in Figure 2.

It is seen at the bottom of Table 2 that the March and September innovations have
a long lasting effect, whereas this effect is substantially smaller for the other months.
Again, this corresponds to the relatively high estimates for D,, in those months. The

March innovations influence future March, April and May observations in particular.
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The effect of the September innovations die out more slowly within the year.

Long non-periodic cycles present in the winter precipitation and temperatures could
be the cause of the March long memory innovations. These cycles have only a limited
effect on the summer and autumn months. The long memory parameter estimate for
September is harder to interpret. It is not as clearly identified from Figure 2 as the
parameter for March. Only the first two yearly autocorrelations are positive. The
September estimate might pick up short memory correlation at yearly lags and an
ARIMA (p,0,0) x (P,0, Q) might be more appropriate for September than the current
(3,0,0)%x(0, D, 0) specification. The development of a more specific model identification

strategy is an interesting exercise, which we leave for future research.

5 Conclusion

We extended the periodic AR model developed by McLeod (1994) for the monthly data
for the logs of the Fraser river flow, with a periodic seasonal long memory innovation
process. Our statistical likelihood based procedure detected the presence of long non-
periodic cycles which are also evident in sample periodic correlations for the data for
the month of March. We estimated the model using Gaussian Maximum Likelihood
month-by-month.

The linear Gaussian specification can easily be used for tests for structural breaks,
for simulation and for point and (cumulative) interval forecasting. These are all im-
portant areas of research in river low modeling, as we indicated in our introduction.

Other estimation methods could apply in different situations. If the long memory
is not too pronounced and the MA-part of the model is clearly invertible one can use
the PAR(00) expansion of the model and estimate this using nonlinear least squares
methods following Beran (1995), Franses and Ooms (1997) and Baillie, Chung and
Tieslau (1996). In that way one could estimate other extended versions of the model
allowing for GARCH-errors, non-normal innovations and so on. This could robustify
the results in the presence of outliers and serially dependent innovation volatility and

make the model suited for a wider range of data sets.
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Figure 1: The Fraser River flow series 1914-1991 in each month (in logs).
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Figure 2: Sample autocorrelations functions and spectral densities for each month.
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Table 1: SPARFIMA (3,0,0) x (0, Dy, 0) model estimates for log monthly river flows of
Fraser River and Comparisons with PAR model of McLeod (1991) and PARMA models
of Vecchia and Ballerini (1991)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
D 0.027  0.119 0.218 -0.210 0.138 0.031 0.160 -0.128 0.217 0.019 0.069  -0.005
(.09) (:12) (.08) (.11) (:12) (.10) (.10) (.14) (.10) (.10) (.10) (:13)
o 1.959 1.424 1.458 2.217 6.678 6.938 2.897 1.141 1.526 0.588 0.608 0.387
(56)  (.58)  (.53) (78)  (.74) (75)  (1.14)  (.73)  (.94)  (1.05)  (1.13)  (.83)
o1 0.579 0.780 0.659 0.965 0.184 0.299 0.802 0.765 0.921 1.169 0.755 0.701
(.10) (.11) (.12) (.16) (.08) (.08) (.12) (.08) (.14) (.14) (.13) (.10)
b2 0.0561 -0.211 0.183 -0.550 0.039 -0.255 -0.200 -0.023 -0.247 -0.553 -0.164 -0.112
(.12) (:11) (.14) (.23) (.17) (.06) (.09) (.10) (.14) (.22) (.22) (:13)
b3 0.058 0.200 -0.060 0.353 0.026 0.187 0.042 0.074 0.094 0.278 0.283 0.298
(.10) (.09) (.09) (.21) (.15) (.08) (.06) (.06) (.12) (.18) (.18) (.16)
o? 0.028 0.023 0.025 0.081 0.044 0.023 0.025 0.013 0.023 0.035 0.049 0.037
012\/[ 0.036 0.026 0.037 0.088 0.047 0.023 0.025 0.016 0.025 0.036 0.052 0.038
U%/B 0.030 0.027 0.024 0.088 0.051 0.023 0.026 0.015 0.023 0.038 0.045 0.040
mean 6.80 6.73 6.71 7.39 8.47 8.84 8.60 8.16 7.76 7.54 7.32 6.99
s.e. 0.27 0.26 0.27 0.36 0.23 0.18 0.21 0.20 0.22 0.28 0.31 0.30

NOTES: Model: y¢ — ¢1,m¥t—1 — d2,mYt—2 — P3.mYt—3 = ftm + (1 — L*2)"Pmey, e ~ NID(0,02,).

Sample: 1914.1-1991.12. Bold numbers indicate significance at the 5% level. o3,: residual variances
from McLeod (1994) for PAR(1,1,1,1,1,3,2,1,1,3,1,1)-model. 0% 5: residual variances from Vecchia
and Ballerini from PARMA(1,1) model. Standard errors appear in parentheses. mean and s.e.:
sample means and standard deviations. These correspond to the results obtained by Vecchia in
Ballerini for the sample 1912/13-1983, except for their value for the mean in October (month 1 in

their notation).
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Table 2: Effect of Shock in month labeled in column on month labeled in row in year

T+

T+0 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Jan 1.000

Feb 0.780  1.000

Mar 0.697 0.659 1.000

Apr  0.596 0.086 0.965 1.000

May  0.157 0.067 0.216  0.184 1.000

Jun 0.025 0.122 0.006 -0.200 0.299 1.000

Jul 0.014 0.088 0.002 -0.155 0.040 0.802 1.000

Aug 0.022 0.069 0.017 -0.100 0.098 0.591 0.765 1.000

Sep 0.019 0.054 0.016 -0.073 0.109 0.440 0.458 0.921  1.000

Oct 0.014 0.049 0.010 -0.073 0.084 0.411 0.390 0.523 1.169 1.000

Nov  0.014 0.048 0.010 -0.072 0.073 0.405 0.436 0.527  0.718 0.755  1.000

Dec 0.014 0.044 0.010 -0.064 0.074 0.369 0.398 0.585 0.671 0.418 0.701 1.000

T+1 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Jan 0.036 0.031 0.007 -0.045 0.052 0.258 0.275 0.396 0.492 0.338 0.457 0.579
Feb 0.028 0.143 0.005 -0.036 0.039 0.205 0.218 0.291 0.386 0.327 0.409 0.241
Mar  0.025 0.097 0.222 -0.028 0.031 0.160 0.170 0.229 0.304 0.252 0.311 0.204
Apr 0.021 0.026 0.214 -0.233 0.026 0.133 0.141 0.200 0.255 0.183 0.236 0.269
May 0.006 0.012 0.048 -0.045 0.145 0.036 0.038 0.053 0.069 0.052 0.066  0.064
Jun 0.001  0.015 0.001 0.041 0.043 0.037 0.007 0.008 0.012 0.016 0.018 -0.011
Jul 0.000 0.011 0.000 0.032 0.006 0.028 0.164 0.004 0.007 0.010 0.011 -0.011
Aug 0.001  0.009 0.004 0.020 0.015 0.023 0.128 -0.121 0.010 0.011 0.013 -0.003
Sep 0.001  0.007 0.004 0.015 0.016 0.018 0.078 -0.112 0.225 0.009 0.011 -0.001
Oct 0.000 0.006 0.002 0.015 0.012 0.016 0.066 -0.063 0.260 0.026 0.009 -0.003
Nov 0.000 0.006 0.002 0.014 0.011 0.016 0.073 -0.063 0.162 0.021 0.078 -0.003
Dec  0.000 0.006 0.002 0.013 0.011 0.015 0.067 -0.071 0.152 0.015 0.057 -0.007

T+42 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Jan 0.014 0.004 0.002 0.009 0.008 0.010 0.046 -0.048 0.111 0.011 0.037 -0.004
Feb 0.011  0.070 0.001 0.007 0.006 0.008 0.037 -0.035 0.087 0.010 0.033 -0.002
Mar  0.010 0.046 0.134  0.006 0.005 0.006 0.029 -0.027 0.069 0.008 0.025 -0.002
Apr 0.008 0.008 0.129 -0.078 0.004 0.005 0.024 -0.024 0.057 0.006 0.019 -0.002
May  0.002 0.005 0.029 -0.014 0.080 0.001 0.006 -0.006 0.015 0.002 0.005 -0.001
Jun 0.000 0.008 0.001 0.017 0.024 0.016 0.001 -0.001 0.003 0.000 0.001 0.000
Jul 0.000 0.006  0.000 0.013 0.003 0.013 0.093 -0.000 0.002 0.000 0.001 0.000
Aug 0.000 0.005 0.002 0.009 0.008 0.010 0.072 -0.057 0.002 0.000 0.001 -0.000
Sep 0.000 0.004 0.002 0.006 0.009 0.007 0.043 -0.052 0.134 0.000 0.001 -0.000
Oct 0.000 0.003 0.001 0.006  0.007 0.007 0.037 -0.030 0.156 0.010 0.001 -0.000
Nov 0.000 0.003 0.001 0.006 0.006 0.007 0.041 -0.030 0.096 0.007 0.038 -0.000
Dec  0.000 0.003 0.001 0.005 0.006 0.006 0.038 -0.033 0.090 0.004 0.027 -0.002

T+3 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Jan 0.010  0.002 0.001 0.004 0.004 0.004 0.026 -0.022 0.066 0.003 0.017 -0.001
Feb 0.007  0.049 0.001 0.003 0.003 0.003 0.021 -0.016 0.052 0.003 0.015 -0.001
Mar 0.007 0.032 0.099 0.002 0.002 0.003 0.016 -0.013 0.041 0.002 0.012 -0.000
Apr  0.006 0.005 0.095 -0.048 0.002 0.002 0.013 -0.011 0.034 0.002 0.009 -0.001
May 0.001 0.003 0.021 -0.009 0.057 0.001 0.004 -0.003 0.009 0.001 0.003 -0.000
Jun 0.000 0.006 0.001 0.010 0.017 0.011 0.001 -0.000 0.002 0.000 0.001 0.000
Jul 0.000 0.004 0.000 0.008 0.002 0.009 0.067 -0.000 0.001 0.000 0.000 0.000
Aug  0.000 0.003 0.002 0.005 0.006 0.006 0.052 -0.035 0.001 0.000 0.000 0.000
Sep 0.000 0.003 0.002 0.004 0.006 0.005 0.031 -0.032 0.099 0.000 0.000 0.000
Oct 0.000 0.002 0.001 0.004 0.005 0.004 0.026 -0.018 0.115 0.006 0.000 0.000
Nov ~ 0.000 0.002 0.001 0.004 0.004 0.004 0.029 -0.019 0.071 0.005 0.026  0.000
Dec 0.000 0.002 0.001 0.003 0.004 0.004 0.027 -0.021 0.066 0.003 0.018 -0.002

T+4 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Jan 0.007 0.001 0.001 0.002 0.003 0.003 0.019 -0.014 0.049 0.002 0.012 -0.001
Feb 0.006  0.038 0.001 0.002 0.002 0.002 0.015 -0.010 0.038 0.002 0.011 -0.000
Mar 0.005 0.025 0.079 0.001  0.002 0.002 0.011 -0.008 0.030 0.002 0.008 -0.000
Apr  0.004 0.004 0.076 -0.033 0.001 0.001 0.010 -0.007 0.025 0.001 0.006 -0.000
May 0.001 0.003 0.017 -0.006 0.044 0.000 0.003 -0.002 0.007 0.000 0.002 -0.000
Jun 0.000 0.004 0.000 0.007 0.013 0.008 0.000 -0.000 0.001 0.000 0.000 0.000
Jul 0.000 0.003 0.000 0.005 0.002 0.007 0.053 -0.000 0.001 0.000 0.000 0.000
Aug 0.000 0.003 0.001 0.004 0.004 0.005 0.041 -0.025 0.001 0.000 0.000 0.000
Sep 0.000 0.002 0.001 0.003  0.005 0.004 0.024 -0.023 0.079 0.000 0.000 0.000
Oct 0.000 0.002 0.001 0.003 0.004 0.003 0.021 -0.013 0.092 0.005 0.000 0.000
Nov ~ 0.000 0.002 0.001 0.003  0.003 0.003 0.023 -0.013 0.057 0.004 0.020  0.000
Dec 0.000 0.002 0.001 0.002 0.003 0.003 0.021 -0.015 0.053 0.002 0.014 -0.001

NOTE: Model: (1 — L'2)Pn (¢, (L)y;: — ptm] = €.
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Table 3: Effect of Shocks in years T + 1,1 =5,...,9

T+5 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Jan 0.006  0.001  0.001 0.002 0.002 0.002 0.015 -0.010 0.039 0.002 0.009 -0.001
Feb 0.005 0.031  0.000 0.001 0.002 0.002 0.012 -0.007 0.031 0.002 0.008 -0.000
Mar  0.004 0.021 0.067 0.001 0.001 0.001 0.009 -0.006 0.024 0.001 0.006 -0.000
Apr 0.003 0.003 0.065 -0.025 0.001 0.001 0.008 -0.005 0.020 0.001 0.005 -0.000
May 0.001 0.002 0.014 -0.005 0.037 0.000 0.002 -0.001 0.005 0.000 0.001 -0.000
Jun 0.000 0.004 0.000 0.005 0.011 0.007 0.000 -0.000 0.001 0.000 0.000 0.000
Jul 0.000 0.003 0.000 0.004 0.001 0.005 0.044 -0.000 0.001 0.000 0.000  0.000
Aug  0.000 0.002 0.001 0.003 0.004 0.004 0.034 -0.020 0.001 0.000 0.000 0.000
Sep 0.000 0.002 0.001 0.002 0.004 0.003 0.020 -0.018 0.067 0.000 0.000 0.000
Oct 0.000 0.001  0.001 0.002 0.003 0.003 0.017 -0.010 0.078 0.004 0.000  0.000
Nov 0.000 0.001 0.001 0.002 0.003 0.003 0.019 -0.010 0.048 0.003 0.016 0.000
Dec  0.000 0.001 0.001 0.002 0.003 0.002 0.018 -0.011 0.045 0.002 0.011 -0.001
T+6 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Jan 0.005 0.001 0.000 0.001 0.002 0.002 0.012 -0.008 0.033 0.001 0.007 -0.001
Feb 0.004 0.026 0.000 0.001 0.001 0.001 0.010 -0.006 0.026 0.001 0.007 -0.000
Mar  0.003 0.018 0.058 0.001 0.001 0.001 0.008 -0.004 0.020 0.001 0.005 -0.000
Apr 0.003 0.003 0.056 -0.020 0.001 0.001 0.006 -0.004 0.017 0.001 0.004 -0.000
May 0.001 0.002 0.013 -0.004 0.031 0.000 0.002 -0.001 0.005 0.000 0.001 -0.000
Jun 0.000 0.003 0.000 0.004 0.009 0.005 0.000 -0.000 0.001 0.000 0.000 0.000
Jul 0.000  0.002 0.000 0.003 0.001 0.004 0.038 -0.000 0.000 0.000 0.000 0.000
Aug  0.000 0.002 0.001 0.002 0.003 0.003 0.029 -0.016 0.001 0.000 0.000 0.000
Sep 0.000 0.001 0.001 0.002 0.003 0.002 0.017 -0.015 0.058 0.000 0.000 0.000
Oct 0.000 0.001 0.001 0.002 0.003 0.002 0.015 -0.008 0.068 0.003 0.000 0.000
Nov 0.000 0.001 0.001 0.002 0.002 0.002 0.017 -0.008 0.042 0.002 0.014 0.000
Dec 0.000 0.001 0.001 0.001 0.002 0.002 0.015 -0.009 0.039 0.001 0.010 -0.001
T+7 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Jan 0.004 0.001 0.000 0.001 0.002 0.001 0.010 -0.006 0.029 0.001 0.006 -0.000
Feb 0.003 0.023 0.000 0.001 0.001 0.001 0.008 -0.005 0.022 0.001 0.006 -0.000
Mar 0.003 0.015 0.052 0.001 0.001 0.001 0.006 -0.004 0.018 0.001 0.004 -0.000
Apr  0.002 0.002 0.050 -0.017 0.001 0.001 0.005 -0.003 0.015 0.001 0.003 -0.000
May 0.001 0.002 0.011 -0.003 0.028 0.000 0.001 -0.001 0.004 0.000 0.001 -0.000
Jun 0.000 0.003 0.000 0.003 0.008 0.005 0.000 -0.000 0.001 0.000 0.000 0.000
Jul 0.000 0.002 0.000 0.003 0.001 0.004 0.033 -0.000 0.000 0.000 0.000 0.000
Aug  0.000 0.002 0.001 0.002 0.003 0.003 0.026 -0.013 0.001 0.000 0.000 0.000
Sep 0.000 0.001  0.001 0.001  0.003 0.002 0.015 -0.012 0.052 0.000 0.000  0.000
Oct 0.000 0.001 0.001 0.001 0.002 0.002 0.013 -0.007 0.060 0.003 0.000 0.000
Nov ~ 0.000 0.001 0.000 0.001 0.002 0.002 0.015 -0.007 0.037 0.002 0.012  0.000
Dec 0.000 0.001 0.001 0.001 0.002 0.002 0.013 -0.008 0.035 0.001 0.008 -0.001
T+8 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Jan 0.004 0.001 0.000 0.001 0.001 0.001 0.009 -0.005 0.025 0.001 0.005 -0.000
Feb 0.003 0.021 0.000 0.001 0.001 0.001 0.007 -0.004 0.020 0.001 0.005 -0.000
Mar 0.003 0.014 0.047 0.000 0.001 0.001 0.006 -0.003 0.016 0.001 0.004 -0.000
Apr  0.002 0.002 0.045 -0.014 0.001 0.001 0.005 -0.003 0.013 0.001 0.003 -0.000
May 0.001 0.001 0.010 -0.003 0.025 0.000 0.001 -0.001 0.004 0.000 0.001 -0.000
Jun 0.000  0.002  0.000 0.003 0.007 0.004 0.000 -0.000 0.001 0.000 0.000 0.000
Jul 0.000 0.002 0.000 0.002 0.001 0.003 0.030 -0.000 0.000 0.000 0.000 0.000
Aug 0.000 0.001 0.001 0.001  0.002 0.002 0.023 -0.011 0.001 0.000 0.000 0.000
Sep 0.000 0.001 0.001 0.001  0.003 0.002 0.014 -0.011 0.046 0.000 0.000  0.000
Oct 0.000 0.001  0.000 0.001 0.002 0.002 0.012 -0.006 0.054 0.002 0.000 0.000
Nov ~ 0.000 0.001 0.000 0.001 0.002 0.002 0.013 -0.006 0.033 0.002 0.010 0.000
Dec 0.000 0.001  0.000 0.001 0.002 0.002 0.012 -0.007 0.031 0.001 0.007 -0.001
T+9 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Jan 0.003 0.001 0.000 0.001 0.001 0.001 0.008 -0.005 0.023 0.001 0.005 -0.000
Feb 0.003 0.019 0.000 0.001 0.001 0.001 0.007 -0.003 0.018 0.001 0.004 -0.000
Mar  0.002 0.012 0.043 0.000 0.001 0.001 0.005 -0.003 0.014 0.001 0.003 -0.000
Apr 0.002 0.002 0.041 -0.012 0.001 0.001 0.004 -0.002 0.012 0.000 0.002 -0.000
May 0.001 0.001 0.009 -0.002 0.022 0.000 0.001 -0.001 0.003 0.000 0.001 -0.000
Jun 0.000  0.002  0.000 0.003 0.007 0.004 0.000 -0.000 0.001 0.000 0.000 0.000
Jul 0.000 0.002 0.000 0.002 0.001 0.003 0.027 -0.000 0.000 0.000 0.000  0.000
Aug 0.000 0.001 0.001 0.001  0.002 0.002 0.021 -0.010 0.000 0.000 0.000 0.000
Sep 0.000 0.001 0.001 0.001 0.002 0.002 0.012 -0.009 0.042 0.000 0.000 0.000
Oct 0.000 0.001 0.000 0.001 0.002 0.002 0.011 -0.005 0.049 0.002 0.000  0.000
Nov 0.000 0.001  0.000 0.001  0.002 0.002 0.012 -0.005 0.030 0.002 0.009 0.000
Dec  0.000 0.001 0.000 0.001 0.002 0.001 0.011 -0.006 0.028 0.001 0.007 -0.000

NOTE: see also Table 2
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