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Abstract

Based on simple time series plots and periodic sample autocorrelations� we

document that monthly river �ow data display long memory� in addition to

pronounced seasonality� In fact� it appears that the long memory characteristics

vary with the season� To describe these two properties jointly� we propose a

seasonal periodic long memory model and �t it to the well�known Fraser river

data �to be obtained from Statlib at http���lib�stat�cmu�edu�datasets���

We provide a statistical analysis and provide impulse response functions to show

that shocks in certain months of the year have a longer lasting impact than those

in other months�
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� Introduction

It is well known since the early work by Hurst on Nile data that river 
ows show

persistent 
uctuations which may be characterized by long memory� Additional to

long memory� most river 
ow data display pronounced seasonality� both in mean and

in variance�

In this paper we propose a new periodic model where long memory characteristics

at yearly lags� so called seasonal long memory� vary from month to month� The model

speci�cation is motivated by examining sample periodic autocorrelation functions for

monthly river 
ows at long yearly lags�

Lawrance and Kottegada ������ presented an overview of early results on the sta�

tistical modeling of river 
ows� One of the main objectives of these modeling e�orts is

to develop simulation models which can be used for the design and operation of reser�

voirs� Brochu ������ noticed that even modest improvements in the operation of large

reservoir systems can result in multi�million dollar savings per year� The time series

analysis of river 
ow data has remained an innovating research area� Novel statistical

models for simulation� forecasting and diagnostic analysis have been introduced for

river 
ow data and other new methods have been tried on river 
ow data soon after

their introduction� see e�g� Lawrance and Kottegada ������� McLeod and Hipel �������

and Hipel and McLeod �����ab��

Noakes� Hipel� McLeod� Jimenez and Yakowitz ������ compared the one�year�

ahead forecasting ability of ARMA models� fractional Gaussian noise models� Frac�

tional ARMA models� Markov type models and nonparametric regression models for

four yearly river 
ow series� These series were analyzed earlier by McLeod and Hipel

������� They showed that it is hard to �nd signi�cant di�erences between the models�

but the simple fractional models seemed too restrictive for the four series they studied�

The evidence on the adequacy of statistical models for seasonality is much clearer�

Not only the mean and variance of monthly river 
ows depend on the season� Other

characteristics like skewness and autocorrelation do as well� as shown by Moss and

Bryson ������� Moreover� on average� monthly lag � correlations tend to be larger

than yearly lag � correlations�

The skewness is usually taken care of by an a priori log transformation of the series�

The seasonally dependent autocorrelations are successfully modeled using periodic au�

toregressive moving average �PARMA� models� see e�g� Vecchia and Ballerini �������
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Periodic autoregressive �PAR� models have de�nite computational advantages over

PARMA models� PAR models are easy to identify using periodic partial autocorrela�

tion functions� and they are easy to estimate using least squares� using Yule�Walker

equations� or by Maximum Likelihood� see e�g� McLeod ������� PAR models for

monthly river
ow modeling and simulation were originally introduced by Thomas and

Fiering ������ �

Noakes� McLeod and Hipel ������ compared the short�term forecasting ability of

seasonal ARIMA models� deseasonalized ARMA models and periodic autoregressive

�PAR� models on �	 monthly river 
ow series� The results clearly suggest that peri�

odic autoregressive models� identi�ed by the partial autocorrelation function� provided

the most accurate forecasts� They also established the superiority of the natural log

transformation over other Box�Cox transformations� Box and Cox ������� in a classical

likelihood framework�

Although the explicit modeling of long range dependence may not be too useful

for point�forecasting� especially if the process is stationary� it can still be important

for con�dence interval forecasting� see e�g�� Ray ������� It also plays a decisive role in

hypothesis testing and in the development of simulation models� It is� e�g�� important

to take account of long range dependence if one wants to do inference on the �sea�

sonal� long run mean of a process� as emphasized by Beran ������ in the �rst chapter

of his monograph on �Statistics for Long�Memory Processes�� Neglecting long�range

dependence may result in gross downward biases in estimates of the uncertainty about

the mean� This is especially relevant if one wants to test for structural stability of

the correlation structure and the mean� where proper estimation of the variance of the

�sub�sample means is crucial�

Beran and Terrin ������ reanalyzed yearly minimum water levels for the river

Nile ���������� using an ARFIMA�	�d�	� model and found signi�cant changes in the

correlation structure over time� The analysis of structural change in long geophysical

time series is particularly interesting for climate research� Atkinson� Koopman and

Shephard ������ used recent structural time series for the annual 
ow of the Nile

���������	� to illustrate new tests for structural breaks and found that the process

could well be described by white noise allowing for a couple of additive outliers and a

structural break due to the building of the Aswan dam in ����� MacNeill� Tang and

Jandhyala ������ surveyed earlier analyses of those Nile data�

A class of models� which seems to have been overlooked in the literature on river 
ow
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modeling is the class of seasonal long memory models� introduced by Carlin� Dempster

and Jonas ������ for economic time series� These models are used to describe long

range depedence in the seasonal pattern of time series� and focus on the correlation

structure at yearly intervals� Our model focuses on this aspect as well� We discuss

the relationship between our model and other seasonal long memory models in more

detail in section ��� below� In our model we combine seasonal long memory allowing

for the well established periodic variation in the autocovariance function of monthly

river 
ows� The combination of these two features may explain both the long memory

apparent in yearly series of minima of river 
ows� the so�called Joseph e�ect� and the

absence of long memory in aggregate yearly river 
ow data� In this paper we specify

and estimate such a seasonal periodic model for monthly river 
ows�

Droughts and 
oods are phenomena that are typical for special seasons of the year�

If we look at autocorrelations for data of a speci�c month we may notice the long

nonperiodic cycles� whereas we overlook them if we aggregate 
ow data over the year�

This is of course more likely to happen if the seasonal long range dependence occurs

for months with relatively small 
ows�

There seems to be a misunderstanding among practitioners that seasonal �frac�

tional� di�erencing as applied in seasonal AR�F�IMA modeling� and periodic modeling�

as in PAR models� are substitutes for describing seasonal phenomena� Our application

shows that they are complements� In fact� seasonal parameters can be periodic as well�

The speci�cation of our model does not involve new statistical problems� The model

can easily be estimated using existing software for ARFIMA analysis� We basically

extend the periodic AR��� model of McLeod ������ introducing error terms which

display seasonal fractional integration which varies from month to month�

For application we consider the monthly Fraser river 
ow data at Hope� B�C�� made

available on Statlib at http���lib�stat�cmu�edu�datasets� by Ian McLeod�

We show how we can capture the interesting long memory characteristic� which

appears evident from the periodic autocorrelation functions at long yearly lags� Statis�

tical analysis shows seasonal long memory to be signi�cant� especially for the month of

March� Our statistical analysis provides an additional test on model adequacy and can

be used as a parametric complement to the residual serial correlation tests for periodic

models developed by Vecchia and Ballerini ������� McLeod ������ and Franses ������

and residual correlation tests for long memory models by Beran ������ and Robinson

�������
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The outline of our paper is as follows� In section � we present the relevant char�

acteristics of the monthly Fraser river 
ow data� In section � we propose the novel

seasonal periodic long memory model� compare it with related models and discuss es�

timation issues and available software� Section � provides the empirical analysis and

section � concludes�

� Data and memory characteristics

Let yt denote a monthly time series� t � �� �� � � � � n�� In our case yt concerns log�

transformed data of the monthly mean river 
ows in cubic feet per second� following

the analyses in Vecchia and Ballerini ������ and McLeod ������� Let Ym�T denote these

observations� m � �� �� �� � � � � �� and T � �� �� � � � � N� so that m denotes the number

of the month and T denotes the number of the year� We have N years of subsequent

observations with monthly data� To simplify notation we only use complete years with

observations starting in month �� so that t � m��� ��T���� Note that the Fraser river


ow data in our analysis start in January ����� whereas Vecchia and Ballerini ������

use index ��� for October ���� and McLeod ������ denotes March ���� by ���� We

use the natural logarithmic transformation� Vecchia and Ballerini ������ seem to have

used the � log�function� This matters for the periodic means of the series� E�Ym�T ��

Our sample mean for June is ����� see Table � below� whereas Vecchia and Ballerini

������ Table �� obtain a value of ����	�� The basis of the log�transformation does not

change the periodic variances and autocovariances which we de�ne as

�t�l�m � cov�yt� yt�l� � �l�m� ���

following McLeod ������� Throughout we assume that yt is periodic stationary
 �l�m

depends only on the lag l between yt and yt�l� and on m� the index of the �leading�

month yt� For example� we assume that the lag � autocovariance for June� ���� �

cov�Y��T � Y��T � does not change over time T �

McLeod ������ presents the sample information on these covariances in scatter�

plots� Such scatterplots present additional evidence on the adequacy of the log�

tranformation to obtain approximate �multivariate� normality� Note that Vecchia and

Ballerini ������ use periodic lead l autocovariances� indexed according to the �lagging�

month ��l�m �cov�yt� yt�l�� so ������cov�Y��T � Y��T �� The lead l and lag l autocovariances

di�er for periodic processes� Throughout we will use ����
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Figures � and � show the pronounced periodicity of the process� The scales on the

vertical axes of Figure � show the variation in the mean and the changes in variability

of the log mean river 
ows from month to month� The mean varies from ���� in March

to ���� in June� The standard deviation varies from 	��	 in August to 	��� in April�

see also Table � below� One can interpret the standard deviations approximately as

relative errors for the untransformed mean river 
ows�

Our study is motivated by inspection of the sample periodic autocorrelation func�

tion at longer lags� McLeod ������ equations ������������ gives a de�nition of the

sample periodic autocorrelation function� The periodic sample autcorrelation func�

tions are used in the identi�cation of the submodels for each month� in a way similar

to model identi�cation for nonperiodic time series models� Vecchia and Ballerini ������

and McLeod ������ present an extensive data analysis including time series plots of

untransformed and logarithmic data� and plots of periodic sample autocorrelations at

monthly lags of order � to ��

The inspection of sample periodic autocorrelation functions� PeACFs� and sample

periodic partial autcorrelation functions� PePACFs� led McLeod to the speci�cation of

periodic stationary AR model of order � in June and October� of order � in July and

of order � in the other months of the year� i�e�� a PAR������������������������� model�

Vecchia and Ballerini ������ speci�ed a PARMA����� model using the same orders

for each month� We present the residual standard errors of the respective models in

Table � below� McLeod ������ Table III� last row� uses a method of indexing that

is incompatible with the one used by Vecchia and Ballerini ������� leading to huge

di�erences in measures of �t�

The periodic sample autocorrelations tend to zero �rst as shown in Figure � of

McLeod ������� who did not show that they increase again for some months to reach

local maxima at seasonal lags ��� �� etc� The lag � autocorrelations are relatively small

for May and June� 	���	��� compared to 	���	�� for the other months� Figure � shows

that lag �� autocorrelations� i�e� one year autocorrelations� vary from about zero for

January and April to 	�� for February and March� So there is signi�cant periodicity

in the autocorrelation function at seasonal lags as well�

For the month of March the oscillations retain a signi�cant amplitude up to ��	

months� as can be seen from Figure �� Since we want to focus on seasonal modeling

we present sample periodic autocorrelations at yearly lags in Figure �� This analysis

does not require special software for periodic analysis
 the correlations in Figure �
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are simply sample autocorrelations of the monthly subseries Ym�T presented in Figure

�� The corresponding spectral density estimates are also presented in Figure � for

additional interpretation in the frequency domain� We used GiveWin� Doornik and

Hendry� ������ for the computations and chose a maximum yearly lag of ��� i�e� a

monthly lag of �		�

Figure � already shows marked di�erences in the �trending� behavior for the di�er�

ent months� February seems to display two long cycles and March appears to show an

upward trend� May shows neither a trend nor a cycle� The plots do not show severe

outliers�

The sample periodic autocorrelation functions and spectral densities in Figure �

con�rm the need for the extra periodic modeling at yearly lags� The standard error of

the autocorrelation estimates is about 	�� under the white noise assumption� so many

autocorrelations are statistically signi�cant� One would expect white noise to be a

good approximation for all the monthly subseries if a short memory low order PAR

model would apply� However� they deviate systematically from zero for some months�

Moreover� the autocorrelation patterns di�er substantially from month to month� The

null hypothesis of white noise is clearly inappropriate�

The data for March deserve a closer look� The autocorrelation function for March

seems to display the typical characteristics of a long memory process
 it dies o� very

slowly and stays positive for high lags� A simple Dickey�Fuller test for a �yearly� au�

toregressive unit root would not even reject the null that the March series follows a

random walk� although an augmented test does reject the unit root hypothesis� see

Dickey and Fuller ������� Dickey�Fuller tests� including the computation of their p�

values� have become a standard feature of econometric software packages like PcGive�

Hassler and Wolters ������ discuss the use of Dickey�Fuller tests in the presence of

long�memory processes in more detail� The spectral representation of the March au�

tocorrelation function shows a prominent peak near zero� which may indicate the pole

in the spectral density that characterizes long memory processes�

The data analysis con�rms the need for more careful modeling of the periodic

autocorrelations at seasonal lags� where long memory may be in order� The time series

plots and autocorrelation functions show that the seasonal pattern in the monthly river


ows changes persistently over time� but these changes are most marked in the winter

months where a long period with large river 
ows is observed in the sixties and in

the beginning of the seventies� In the next section we develop a statistical model to
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capture these characteristics�

� A Seasonal Periodic Long Memory model

The basic idea of our model is very simple� It is a standard multiplicative �Seasonal�

Autoregressive Integrated Moving Average model� �S�ARIMA �p� 	� 	� � �	� D� 	����

where the integration parameter d and the MA order for monthly lags� q are zero and

where the other parameters of the model� i�e� the seasonal AR and MA parameters�

the seasonal integration parameter D and the AR parameters for the monthly lags

are allowed to vary from month to month� Furthermore� we allow for fractional D�

so that the seasonal pattern can be periodic long memory without being periodic

nonstationary� i�e�� the periodic autocovariances at seasonal lags may not be absolutely

summable �seasonal long range dependence�� but the unconditional periodic variances

of the undi�erenced series still exist�

Our point of departure is a periodic AR model of order p used by McLeod �������

i�e�

yt � �m � ���myt�� � ���myt�� � � � � � �pmyt�p � �t� t � �� �� � � � � n� ���

with �t a white noise process� The AR parameters �i�m vary with the months� i �

�� �� � � � � p� m � �� �� � � � � ��� We condition on the starting values y�� y��� � � � � y�p� In

order to capture the long memory characteristics we extend the model of McLeod

������ by representing �t as follows


�t � ��� L����Dm�t� ���

where ��� L����Dm is de�ned by its binomial expansion

��� L����Dm �
�X
k��

�
B�
�Dm

k

�
CA ��L���k � � � DmL

�� �
�

�
Dm�� � Dm�L�	 � � � � ���

involving the lag operator L� Lkyt � yt�k� This de�nition is analogous to the fractional

time series di�erencing operator introduced by Granger and Joyeux ����	� and Hosking

������� We assume ��
�
	 Dm 	 �

�
� We say that �t is integrated of order Dm in month

m� The innovations �t have a seasonally varying variance 
�m�

For the statistical analysis of this model it is useful to put it in a companion form

which explains the values of the di�erent months Ym�T � See Pagano ������� Tiao and

Grupe ����	� and L�utkepohl ������ for detailed descriptions of this procedure� Recall
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that the time series plots in Figure � represent these di�erent months� We use the fol�

lowing vector notation� thereby extending the notation for the periodic autoregressive

model used by Ooms and Franses ������� Equations ������� can be written as

A�YT � A�YT�� � � � �� APYT�P � � � D�L�ET � ���

with YT � �Y��T � Y��T � � � � � Y���T ��� A�ii � �� A�ij � 	� j � i� A�ij � ��i�j�j� j 	

i� Akij � �i���k�j�j� i � �� �� � � � � ��� j � �� �� � � � � ��� k � �� �� � � � � P � P � � � ��p �
������ if p � 	� and � is a ��� � vector of constants� where the expressions with index

m obey the modulo��� arithmetic� i�e� �m � �m���k� k � � � � ������� 	� �� �� � � � ET �

�E�T � E�T � � � � � E��T �� denotes the zero mean white noise innovations corresponding to

Y �

T � D�L� is a diagonal matrix f�� � L��D� � � � � � �� � L��D��g� where the lag operator

now shifts observations by a year� Note that periodic AR models up to order p � ��

as in ��� can be captured in a VAR model of order P � �� as in our application� where

p � �� Note further that the constants �m in ��� and in ��� do not measure the monthly

means of yt� but rather the means of the monthly long memory innovations� �t� The

monthly means of yt can easily be derived from � and A�L� under our assumption of

periodic stationarity�

In contrast to Ooms and Franses ������ we assume the roots of det�A��A�z� � 	 to

lie strictly outside the unit circle� so we assume a priori there is no periodic integration�

The VAR�part of the model does not lead to nonstationarity� Therefore� all long

memory properties of the model are captured in D�L�� Given these assumptions the

multivariate model is covariance stationary if Dm 	 	��� m � �� �� � � � � ��� Covariance

stationarity of D�L�ET is a necessary condition for Gaussian maximum likelihood

estimation of Dm� m � �� � � � � ���

The model is invertible� in the sense that the coe�cients of the VAR��� representa�

tion of ��� die o� to zero at long lags� if Dm � �	��� m � �� �� � � � � ��� Estimation using

nonlinear least squares methods following Beran ������ is a possibility for invertible

cases� See Odaki ������ for other de�nitions and conditions regarding invertibility in

long memory models�

��� Relations with other seasonal long memory models�

Under the nonperiodicity restrictions �i�m � �i� Dm � D� 
�m � 
�� the model reduces

to the seasonal fractionally di�erenced model applied by e�g� Porter�Hudak ����	��

��� L���D��� ��L� ��L
� � � � �� �pL

p�yt � �t ���
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This model and its more 
exible extensions do not seem to have been used for monthly

river 
ows� See Ooms ������ for a survey of other seasonal long memory models� In

the econometric literature tests for the adequacy of the unit autoregressive seasonal

di�erencing operator �� � L���� have received a lot of attention� Dickey� Hasza� and

Fuller ������ developed a likelihood ratio test against short memory alternatives like

�� � 
L���� 	 	 
 	 �� Hylleberg� Engle� Granger� and Yoo ����	� extended the

so�called seasonal unit root tests to a test for the adequacy of the separate factors�

��� exp���ik����L�� k � �� � � � � ��� i �
p��� of the operator ��� L����

Our model can also be used to test the adequacy of the �unit� seasonal di�erence

operator� in our case against fractional alternatives� There are three important di�er�

ences with the seasonal unit root tests of Dickey� Hasza and Fuller ������� First� the

null and the alternative hypothesis for the integration parameters are not restricted

to � and zero� respectively� Second� the LM� likelihood ratio and Wald tests follow

similar standard chi�squared limiting distributions under the null� whereas seasonal

unit root tests have non�standard asymptotic distributions that depend on the design

of the regressor set of explanatory variables� even asymptocially� see Robinson �������

Third and most important� the tests do not require the assumption of an identical

dynamic model for each month of the year� an assumption that is clearly inappropriate

for monthly river 
ows�

We do not test for the separate factors of the seasonal di�erencing operator in

the context of our periodic models following Hylleberg et al� ����	�� although this

could be done in principle using standard inference in approximate maximum likelihood

methods� see Ooms ������ for an application in nonperiodic seasonal ARFIMA models�

Our model di�ers crucially from the periodic autoregressive fractionally integrated

model� PARFIMA�pm� dm� qm�� suggested by Hui and Li ������ and Franses and Ooms

������ in the unit of the lag to which the fractional di�erence operator is applied� In

those articles the fractional di�erence operator was applied to weekly and quarterly

lags� respectively� corresponding to the basic time interval of the time series analyzed�

Here we apply the operator to yearly lags� which is the seasonal lag for our time series�

We therefore label our model SPARFIMA �pm� dm� qm���Pm� Dm� Qm��� to distinguish

it from the PARFIMA�pm� dm� qm� model� As indicated at the beginning of this section

the last three �uppercase� parameters deal with the seasonal lag operator� and the �rst

three concern the lag operator at the basic frequency of the time series�

In this paper we put Pm � Qm � dm � qm � 	� Extension of the statistical
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analysis and the estimation procedures to models where Pm and Qm di�er from zero is

straightforward as long as pm 	 ��� Only equation ��� changes and one simply obtains

ARFIMA models for each month of the year� where the preceding months are used as

explanatory variables�

Generalization to cases where dm di�ers from zero is not as easy� General con�

ditions for stationarity are not known and simulation and identi�cation procedures

still have to be developed� Estimation and forecasting has been done for simple cases

however� although not for monthly river 
ows� Franses and Ooms ������ and Hui

and Li ������ used nonlinear least squares on the AR����representation to estimate

PARFIMA�pm� dm� 	� models� The negative of the minimand of this procedure can

be viewed as an approximate likelihood function following Beran ������� Stationarity

conditions on the integration parameters dm for �PARFIMA�	� dm� 	� models are still

a subject of research� It is� e�g�� obvious that the existence of one dm � 	 is a su�cient

condition for short memory� Is is therefore not necessary for all the individual dms to

be smaller than �
�

in order to get periodic stationarity� This is a marked di�erence with

the periodic stationarity conditions for the seasonal fractional integrations parameters

Dm�

��� Estimation and Software

Under the assumption of covariance stationarity we can easily estimate the model using

Gaussian maximum likelihood for the �� equations for the yearly data for the separate

months� i�e�� the �� rows of ���� This amounts to estimating an ARFIMA�	� D� 	�

model where the mean depends on regressor variables�

The monthly lags are treated as regressors� as is customary in least squares es�

timation of periodic autoregressive models� Pagano ������ showed that Yule�Walker

estimates for parameters for the di�erent periods in PAR models are asymptotically un�

correlated� so that the information matrix is block diagonal� The same property holds

for the asymptotically equivalent least squares estimates� There is no reason to believe

that this property does not hold for our estimates which are asymptotically equivalent

to generalized least squares estimates of the parameters �i�m� c�f� Dahlhaus ������� Ef�

�cient estimation can therefore proceed equation by equation� One can also look at the

set of equations ��� as an econometric dynamic simultaneous equations model� Under

the restriction Dm � 	� m � �� � � � � ��� ��� reduces to an �exactly identi�ed� recursive
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dynamic simultaneous equations model� for which it is well known that equation�by�

equation least squares estimation is asymptotically e�cient� see e�g� Spanos ������

x������ Since our dynamic error speci�cation excludes cross�equation�e�ects� equation�

by�equation generalized least squares estimation should also be asymptotically e�cient

in our case where the errors are serially correlated�

We employ the ARFIMA�package of Doornik and Ooms ������� now written in Ox

��	 by Doornik �������

The package is freely available from http���www�nuff�ox�ac�uk�Users�Doornik

for academic users� Ox is an object oriented matrix language with a large number of

econometric and statistical procedures� The ARFIMA�package is a class of procedures

derived from the database class available in Ox� Data can be imported from many

software packages like Excel� Gauss� text��les etc� The ARFIMA�package implements

the basic algorithm of Sowell ������� with several improvements in memory use and

numerical stability� which makes the package also suitable for bootstrapping exercises�

see Ooms and Doornik ������� The ARFIMA package implements also nonlinear least

squares estimation� It allows for the simultaneous estimation of the coe�cients of

regressor variables� which makes it ideally suited for the problem at hand� Graphs can

be exported in several formats like encapsulated postscript� There is a special link with

GiveWin �Doornik and Hendry������� which can be used to show graphs online� It also

o�ers the possibility to export graphs in Windows meta�le format to other packages

which are compatible with Windows ����� or Windows NT� The graphs in Figures �

and � are in standard GiveWin format�

Given the estimates of �i�m and Dm one can simply invert ��� to obtain periodic

impulse response functions� This is easy to program in a matrix�language like Ox�

These impulse response functions represent the e�ect of an innovation in month m� in

year T� on a later month m� in year T�� The impulse response function estimates can

also be used to obtain approximate con�dence intervals for out�of�sample forecasting�

This requires a little more programming but virtually no computation time� That is

an important advantage of the linearity of the model� In the next section we present

estimation results for the parameters and impulse responses�

��



� Empirical Results

We �rst check McLeod s periodic AR��� model using the familiar diagnostic regression

tests implemented in PcGive ��	� Hendry and Doornik ������� We simply regressed

the April series on a constant and the series for March� February and January� The

May series were also regressed on the three previous months and so forth� In con�

trast to McLeod ������ we used the same AR order for all months� These regressions�

which are not reproduced here� showed no substantial problems with the model spec�

i�cation at yearly lags� with regard to nonnormality and short run serial correlation�

Only the March and September equations showed a little evidence of residual serial

correlation with p�values of second order serial correlation tests of 	�	� and 	�	�� respec�

tively� McLeod ������ already checked the speci�cation for residual serial correlation

at monthly lags� Testing is particularly easy because of the absence of periodic MA pa�

rameters in the model� cf� McLeod ������� Our regression results for June and October

are qualitatively similar to the Yule�Walker estimates obtained by McLeod ������� Our

regression standard errors are only marginally larger� Diagnostics for �yearly� residual

serial correlation are extremely easy to compute in all leading econometric packages for

the analysis of time series� Since least squares is more akin to maximum likelihood than

Yule�Walker estimation� we prefer �generalized� least squares� See Brockwell and Davis

������ for a thorough comparison of di�erent estimation methods for ARMA�models�

Figure � indicated that McLeod s model should be extended with a periodic sea�

sonal long memory part� Two long memory parameters are statistically signi�cant

when we apply Wald�tests in the SPARFIMA model� We present our equation�by�

equation maximum likelihood estimation results in Table �� It turns out that the long

memory parameters for March and September are indeed signi�cantly larger than zero�

whereas the long memory parameters for the other months are not� The residual vari�

ance for March changes from 	�	�� in the AR��� to 	�	�� in the long memory model�

For September it decreases from 	�	�� to 	�	��� In terms of reducing one�step�ahead

forecast error variance the progress is not so impressive� The last rows in Table �

show comparisons in goodness�of��t with the models of McLeod ������ and Vecchia

and Ballerini ������� The di�erences between the models are much smaller than indi�

cated by McLeod ������ Table III�� Note also that Vecchia and Ballerini used a shorter

sample� The introduction of the long memory component does not in
uence the AR

parameter estimates and their standard errors signi�cantly� For these type of data one

��



can therefore start model identi�cation with the speci�cation of the AR part� ignoring

long memory� without making gross mistakes�

The AR�parameters do not have a clear structural interpretation� but one sees that

the river s new year starts around May� June� where the links with river 
ows of the

previous season are weakest� The R� is only about 	��	 for May and 	��� for June� This

phenomenon also showed in the periodic autocorrelation functions for low lags� clearly

presented by Vecchia and Ballerini ������� Overall� one�month�ahead predictability is

rather high�

A more systematic understanding of the properties of the model can be obtained

from the impulse responses� which we present in Tables � and �� The impulse responses

are most easily interpreted using the multivariate formulation ��� of the model� The

columns in the tables present the e�ect of white noise innovations� a�ecting the system

for the �rst time in the corresponding month� Remember that the size of the innova�

tions is measured approximately in relative terms because of the initial log transfor�

mation of the monthly river 
ows� Note further that the innovations are orthogonal

by construction�

Let us �rst look at short run e�ects in the upper panel of Table �� The weakness of

the links between May river 
ows and previous months is seen in the rows labeled May�

The largest e�ect� 	����� is from a one percent shock in the March river 
ow of the

same year� The short term �pipeline� e�ects on other months are much larger� which

is seen in the o��diagonal elements in the upper panel� The e�ect of June innovations

seems to last longest during the �rst year� even the following April shows an e�ect of

	�����

Seasonal e�ects appear in the diagonals of the following panels� The diagonal

elements of the second panel correspond quite closely to the periodic seasonal fractional

integration parameters Dm� c�f� ���� The AR parameters do not a�ect the impulse

responses at lag �� very much� Comparing the diagonals of subsequent panels� one

notices the slow decay of the periodic impulse response function due to the long memory

character of the model� An exponential decay would result in a short memory model�

and this would not correspond to the periodic correlations observed in Figure ��

It is seen at the bottom of Table � that the March and September innovations have

a long lasting e�ect� whereas this e�ect is substantially smaller for the other months�

Again� this corresponds to the relatively high estimates for Dm in those months� The

March innovations in
uence future March� April and May observations in particular�

��



The e�ect of the September innovations die out more slowly within the year�

Long non�periodic cycles present in the winter precipitation and temperatures could

be the cause of the March long memory innovations� These cycles have only a limited

e�ect on the summer and autumn months� The long memory parameter estimate for

September is harder to interpret� It is not as clearly identi�ed from Figure � as the

parameter for March� Only the �rst two yearly autocorrelations are positive� The

September estimate might pick up short memory correlation at yearly lags and an

ARIMA �p� 	� 	�� �P� 	� Q� might be more appropriate for September than the current

��� 	� 	���	� D� 	� speci�cation� The development of a more speci�c model identi�cation

strategy is an interesting exercise� which we leave for future research�

� Conclusion

We extended the periodic AR model developed by McLeod ������ for the monthly data

for the logs of the Fraser river 
ow� with a periodic seasonal long memory innovation

process� Our statistical likelihood based procedure detected the presence of long non�

periodic cycles which are also evident in sample periodic correlations for the data for

the month of March� We estimated the model using Gaussian Maximum Likelihood

month�by�month�

The linear Gaussian speci�cation can easily be used for tests for structural breaks�

for simulation and for point and �cumulative� interval forecasting� These are all im�

portant areas of research in river 
ow modeling� as we indicated in our introduction�

Other estimation methods could apply in di�erent situations� If the long memory

is not too pronounced and the MA�part of the model is clearly invertible one can use

the PAR��� expansion of the model and estimate this using nonlinear least squares

methods following Beran ������� Franses and Ooms ������ and Baillie� Chung and

Tieslau ������� In that way one could estimate other extended versions of the model

allowing for GARCH�errors� non�normal innovations and so on� This could robustify

the results in the presence of outliers and serially dependent innovation volatility and

make the model suited for a wider range of data sets�

��
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	 in each month �in logs��
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Table �
 SPARFIMA ��� 	� 	���	� Dm� 	� model estimates for log monthly river �ows of

Fraser River and Comparisons with PAR model of McLeod ������ and PARMA models

of Vecchia and Ballerini ������
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 ��M � residual variances
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 E�ect of Shock in month labeled in column on month labeled in row in year
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