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1 A Numerical ProblemIn this section we propose a numerical problem which came up when we redid a regressionanalysis of simple fractionally integrated models for ination, where two packages came upwith di�erent answers. In the next sections we propose solutions.Periodogram regression is by now a standard procedure to start the examination oflong memory in a time series. A popular model with long memory is the ARFIMA(p; d; q)model: �(L)(1 � L)dyt = �(L)�t, t = 1; 2; : : : with �(L) and � (L) polynomials of ordersp and q in the lag operator L : Lkyt = yt�k and (1 � L)d = 1 � dL � d(1�d)2 L2 � : : : :; seee.g. Hosking (1981). In the �rst stage of the estimation of an ARFIMA(p; d; q) model onesimply regresses the log periodogram on the logarithm of the spectrum of simple fractionallyintegrated process to obtain an estimate of the fractional order of integration d: One usesthe following equation:ln I (!j) = ln fu (0) + �Rj + �j j = m1;m1 + 1; : : : ;m (1)where the regressand ln I (!j) is the log periodogram at frequency !j = 2�j=T , with Tthe number of observations, where the constant ln fu (0) is the log of spectrum at zero of(1� L)d yt = ut, where the regressor Rj is de�ned by Rj = � ln 4fsin2 (!j=2)g and wherethe error term �j = ln fI (!j) =f (!j; d)g measures di�erences between the periodogram andthe model spectrum f (!j; d). Robinson (1995) showed that standard regression results canbe employed to test hypotheses about the fractional integration parameter d using the OLSestimate � in (1), provided m1 and m are chosen appropriately. The only modi�cation inthe inference compared with OLS is that the error variance is �xed at �2=6: For the simplefractionally integrated process (p = q = 0) one should use as many independent periodogrampoints as possible: m1 = 1, m = T=2, in �nite samples, see e.g. Hurvich and Beltrao (1994). Hassler and Wolters (1995) found the simple fractionally integrated process to provide agood description of 5 post war consumer price ination series, and compared periodogramestimates of d with estimates from more e�cient procedures.First they regressed monthly changes in logs of price indices on seasonal dummies toget rid of seasonal variation. They used the sample period 1969.01-1992.09 (T = 285).Both dummy regression and periodogram regression were done in MicroTSP. They �xedm1 = 1 and presented results for a range of values of m. In the upper panel of Table 1 theirresults for U.K. ination are extended with results for shorter sample periods, obtained bysubsequently deleting observations from the beginning of the sample period.Table 1 around hereWe redid their regressions using a di�erent computer package written in Borland Pascal.We obtained much larger estimates for the integration parameter for some sample periodsfor some choices of m; see the lower panel of Table 1 For sample size 283 and 281 the resultsof the di�erent panels agree. For sample size 285, 284, 282 and 280 they agree only for lowvalues of m: How come?2 Singularities in the log periodogramNumerical problems are usually do to (near-)singularities. This problem is no exception.A simple examination of the values of the regressand ln I (!j) shows some large negative2



values, pointing to values close to zero for the periodogram ordinate. The singularity of theperiodogram at the seasonal frequencies for seasonally adjusted data is a well known featurefor data series containing full years of data. Depending on the number of observations thisextreme singularity problem can pop up at one or more frequencies. For T = 283 andT = 281 it does not occur, but this is not to say that there is no need to worry in that case.The following theorem states that the periodogram ordinates of a seasonally adjustedseries are zero at frequencies 2�i=s, i = 0; : : : ; s where s is the number of observations peryear.TheoremLet yt, t = 1; : : : ; T; be a time series contained in the T�1 vector y: Let x = MDy be theseasonally adjusted time series vector obtained by regression on a complete set of s seasonaldummy variables with period s contained in the T � s matrix D, MD = IT �D(D0D)�1D0:Then the periodogram Ix(�i) for x equals zero at frequencies �i = 2�i=s, i = 0; : : : ; s:The appendix contains the proof of the theorem, which is based on the regression in-terpretation of the Discrete Fourier Transform. Consider the case of Hassler and Wolters,s = 12, T = 285, where the periodogram is computed at frequencies 2�j=285; j = 1; : : : ; 142:The �rst frequency with a singularity appears for j = 95, since 95=285 = 4=12: Theoreti-cally ln I(!95) would be minus in�nity and the estimate of d using this ordinate would beill de�ned, but in practice using �nite precision in the computation �nite negative valueswill be obtained. The larger the precision, the more negative the log periodogram ordi-nate, the larger the estimate of d: For T = 284 one obtains singularities at j = 71, forT = 282 at j = 47, 94 and for T = 280 at j = 70; 140. Suppose we would have full yearsof data e:g: 24 years: T = 288: Then we get the familiar case with singularities at all theseasonal frequencies: 2�i=12; i = 0; 1; : : : ; 6; i.e. at 2�j=288; j = 0; 24; : : : ; 144. The peri-odogram regression results in Hassler and Wolters (T = 285) for m > 95 are arti�cial, sincethey include a singular frequency. This explains why Package 1 and Package 2 di�er form = 100; 120; 140. Please note that no singularities arise for T = 281 and T = 283; that iswhy the corresponding columns show no di�erences in Table 1.3 Proper EstimationHow do we avoid using the spurious estimates involving the singularities? One way would beto omit only the singular ordinates from the regression. This could lead to the situation ofusing a decreasing number of periodogram points with an increasing number of observations,e.g. 143 points for T = 287 and 138 points for T = 288: A preferable way is to extendthe original data set to full years by adding zeros at the end, i.e. by "zero padding" asit is called in the popular econometric software package RATS. The periodogram of thisextended series will contain ordinates for all the seasonal frequencies. These ordinates arethen omitted in the subsequent periodogram regression. This has the additional advantagethat the subsequent estimator of d does no longer depend on the regression estimates forthe seasonal means. These means are hard to estimate in models with long memory. Seee.g. Samarov and Taqqu (1988), who discussed the e�ciency of regression estimation of themean for fractionally integrated processes in detail. Note that our procedure makes priorregression on seasonal dummies obsolete. In sum: instead of seasonal adjustment in the3



time domain by prior regression, we suggest seasonal adjustment in the frequency domainby omitting all periodogram ordinates at the seasonal frequencies.In Table 2 we present the results of this estimation procedure for the four \seasonal"ination series analyzed in Hassler and Wolters (1995), which are now also reliable form > 95 as well. We also show outcomes for the asymptotically e�cient approximatefrequency domain ML estimator for the simple fractionally integrated process applied inBoes et al. (1989), which minimizesXj ln g (!j; �) + T ln0@2�T Xj I (!j)g (!j; �)1A (2)over �, where g (!j ; �) = 2��2v f (!j; �) = �4 sin2 (!j=2)	��. Here periodogram ordinates withzero values do not lead to numerical problems. Seasonal adjustment is again done byzero padding and omission of the contribution of the seasonal frequencies in the objectivefunction (2). Note that minimizing only the second term of (2) leads to the \simple" Whittleestimator suggested by Fox and Taqqu (1986), which Hassler and Wolters applied to checktheir periodogram regression results. Robinson (1994) provided an overview of di�erentfrequency domain estimators of the fractional integration parameter. The results of theperiodogram regression and the two approximate ML estimators are now close, see the lastrows of Table 2. Table 2 around hereOne might be tempted to use seasonal adjustment for "stochastic seasonality" like Cen-sus X-11 or ARIMA model based methods as an alternative way to avoid the singularities.That is not an option. These seasonal adjustment methods introduce "seasonal moving av-erage unit roots" in the adjusted series. See Maravall (1993, p.23) for a theoretical account.This leads to singularities in the log of the model spectrum for the adjusted series. The useof sample spectrum ordinates around the seasonal frequencies in the periodogram regressionfor the seasonally adjusted series will therefore lead to arti�cial results as well. See Ooms(1994, p. 274) for an empirical illustration of this phenomenon using a seasonal extensionof the periodogram regression.4 ConclusionsPrior regression on seasonal dummies can lead to artifacts in subsequent periodogram re-gressions for the detection of long memory. We suggest a combination of zero padding andseasonal adjustment in the frequency domain to avoid this problem. This method can alsobe applied to approximate frequency domain ML estimators. The problems are illustratedusing data from Hassler and Wolters (1995). Our modi�ed periodogram regression con�rmstheir fractional speci�cation and provides an even closer agreement between periodogramregression and frequency domain ML estimation.This example clearly shows the bene�t of checking empirical results across computerprograms to reveal hidden numerical problems. It also shows the bene�t of inuence analysisas a standard procedure in empirical regressions, even in auxiliary regressions.
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These can also be written, see Harvey (1993, sect. 6.2), as:Iy (!j) = 14� �a2j + b2j� ; j = 0; : : : ; nwith b0 = bn = 0: For odd T one has n = (T � 1)=2:For matrix notation we de�ne the orthogonal T � T matrixZ and the T � 1 vectory = (a0; a1; b1; a2; : : : ; an)0, according to the de�nition of �j and �j in (3), so that we canrewrite (3) as y = Zy. Consequently one has y = Z 0y.Look then at the corresponding representation for the seasonally adjusted vector x.De�ne x = (c0; c1; d1; c2; : : : ; cn)0 = Z 0x, so thatIx (!j) = 14� �c2j + d2j� ; j = 0; : : : ; n (4)with d0 = dn = 0: Let Zj be the T � 2 sub matrix of Z that corresponds to the parameterscj and dj ; j = 1; : : : ; n� 1 so that  cjdj ! = Z 0jx :Let S(D) be the space spanned by seasonal dummy columns in the matrix D. Let Zicorrespond to parameters ci and di for the frequencies �i = 2�i=s; i = 1; : : : ; s=2 � 1. LetZtj ; t = 1; :::; T; denote the rows of Zj . Zi lies in S (D) ; since Zti = Zt0i for ���t� t0��� = ks;k = 0; 1; : : : ; [T=s] : The vector x lies in the orthogonal complement of S (D) by construction.Thus Z 0ix = 0 for i = 1; : : : ; s=2: Therefore cj = dj = 0 for j = i=s; i = 1; 2; : : : ; s � 1:Analogously we have c0 = Z 00x = 0 and cn = Z 0nx = 0; corresponding to �0 and �s=2,respectively. Consequently Ix (�i) = 0 for �i = 2�i=s, i = 0; 1; : : : ; [s=2]: Finally one hasIx (�i) = Ix (2� � �i), which completes the proof.
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Table 1: Results of Periodogram Regressions for Seasonally Adjusted U.K. Ination RateWith Increasing Range m for varying sample sizes T and two computer packages. Estimatesof d. Package 1 (Hassler and Wolters (1995))m SE T = 285 284 283 282 281 28020 .182 .59 .60 .63 .65 .65 .6440 .119 .57 .56 .54 .52 .53 .5460 .095 .39 .39 .43 :64� .41 .4280 .081 .45 :69� .44 :53� .45 :65�100 .073 :55� :56� .42 :60� .41 :52�120 .068 :54� :53� .46 :57� .46 :50�140 .064 :51� :50� .44 :51� .43 :59�Package 2m SE T = 285 284 283 282 281 28020 .182 .59 .60 .63 .65 .65 .6440 .119 .57 .56 .54 .52 .53 .5460 .095 .39 .39 .43 :83� .41 .4280 .081 .45 :84� .44 :61� .45 :80�100 .073 :69� :65� .42 :76� .41 :61�120 .068 :63� :59� .46 :67� .46 :56�140 .064 :58� :54� .44 :57� .43 :69�NOTE: Estimation period for 1969:01 + k, k = 0; 1; 2; 3; 4; 5 until 1992:09. Changes in logconsumer price index, from the OECD Main Economic Indicators. SE denotesapproximate standard error for T = 285. Asterisks indicate di�erences between packages.Table 2: Adjusted Periodogram Regression for four countries. Results for increasing range,with zero padding and frequency domain seasonal adjustment. Estimates of d.m U.K. France Germany Italy20 .57 .74 .71 .5540 .53 .60 .36 .5260 .42 .49 .34 .4480 .47 .48 .33 .51100 .42 .46 .30 .51120 .45 .46 .30 .52140 .45 .47 .33 .51FDML .40 .50 .36 .51SE (.045) (.042) (.045) (.045)Whittle .39 .48 .35 .50NOTE: FDML: approximate Frequency Domain Maximum Likelihood, see objectivefunction (2). SE: corresponding standard error. Whittle: Whittle Estimates from Hasslerand Wolters (1995), computed using only the second term of objective function (2).7


