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An Empirical Comparison of Default Swap Pricing Models

In this paper we compare market prices of credit default swaps with model prices.
We show that a simple reduced form model with a constant recovery rate outperforms
the market practice of directly comparing bonds’ credit spreads to default swap
premiums. We find that the model works well for investment grade credit default
swaps, but only if we use swap or repo rates as proxy for default-free interest rates.
This indicates that the government curve is no longer seen as the reference default-
free curve. We also show that the model is insensitive to the value of the assumed

recovery rate.



Introduction

During the last decade, credit derivatives have become important instruments to lay off or
take on credit risk. The credit derivatives market has grown exponentially. Until today only
very limited empirical research has been devoted to these new instruments, although several
reduced form models have been developed to price them. Most empirical papers on credit risk
modelling have focussed on defaultable bonds. In this paper, we estimate risk-neutral hazard
functions for individual issuers and compare model-implied credit default swap premiums to
market data. We show that using a reduced form model outperforms the market practice of
directly comparing bonds’ credit spreads to default swap premiums. Moreover, we shed light on
the choice of the default-free term structure of interest rates. We find that swap and repo curves
strongly outperform the government curve as proxy for default-free interest rates for investment
grade issuers, but that their performance is similar for speculative grade issuers. As such, this
is one of the first papers to empirically confirm that financial markets no longer see Treausury
bonds as the default-free benchmark due to the lack of liquidity.

A default swap protects its buyer from losses caused by the occurrence of a default event to
a corporate or sovereign debt issuer. In exchange for this default protection, the buyer pays a
periodic premium to the protection seller. The no-arbitrage value of the default swap premium
can be derived by applying a reduced form credit risk model. In these models prices of default-
sensitive instruments are jointly determined by the probability of default and the recovered
amount at default. Default is often represented by a random stopping time with a stochastic
or deterministic arrival intensity (hazard rate), while the recovery rate is usually assumed to be
constant. We have a large data set of market quotes on credit default swaps at our disposal,
allowing us to conduct empirical testing of reduced form models, which the literature has lacked
so far. To the best of our knowledge, the only other paper that analyses credit default swap data
is Cossin and Hricko (2001). They restrained their analyses to regressing default swap premiums

on proxies for credit risk, whereas we estimate and apply a reduced form credit risk model.



Market practitioners commonly proxy the default swap premium by the credit spread of
a bond with a similar maturity issued by the same borrower. We show analytically that this
relationship only holds approximately. Moreover, we show empirically that the approximation
results in fairly large deviations between calculated and market default swap premiums. By
deriving the risk-neutral pricing formula for a defaultable coupon-bearing bond, we can explicitly
express its dependence on risk-neutral processes for default-free interest rates and hazard and
recovery rates. Since the paper focuses on the estimation and application of credit risk models,
we use readily available default-free term structures. The choice for default-free interest rates has
received little attention in the literature. Virtually all empirical papers on credit risk modelling
used zero-coupon rates extracted from government bonds. However, since 1998 financial markets
have moved away from estimating default-free interest rates from government securities, and
started using swap and repo contracts instead. We find that using the government curve results
in substantial overestimation of credit risk for investment grade issuers, but that swap and repo
curves estimate credit risk more or less unbiasedly. For speculative grade issuers the choice for
the default-free curve is less important, as the three curves perform similarly.

We also pay attention to the choice of the recovery rate. Since it is not possible to extract
both the hazard rate and the recovery rate from prices of bonds of a single seniority class, we fix
the recovery rate to identify the model. We show that not only bond spreads, but also default
swap premiums are relatively insensitive to changes in the recovery rate as long as the integrated
hazard function is scaled accordingly. Therefore, there is no need to determine the recovery rate
very accurately, as long as it takes a reasonable value.

To model the hazard process, we follow a non-parametric approach that is able to accom-
modate various shapes. More specifically, we model the hazard function as a constant, linear or
quadratic function of time to maturity. The parameters of the hazard function are estimated
using non-linear least squares from market prices of bonds of a single issuer. The estimated

credit model is subsequently applied to the pricing of credit default swap premiums written on



the same issuer. We observe that both the in-sample fit to bonds and the out-of-sample fit
to default swaps declines with an issuer’s credit quality. We also find that the various hazard
rate functions yield more accurate default swap premiums than the market practice of directly
comparing the premium to the credit spread of a similar bond. An analysis of the deviations
between calculated and market premiums reveals that the models overestimate the risk of high
grade, short-maturity contracts and underrate low grade, long-term default swaps.

The remainder of this paper is structured as follows. Section I discusses the characteristics of
credit default swaps. The literature on reduced form credit risk modelling is reviewed in Section
IT. In Section III we derive reduced form valuation models for bonds and default swaps, and
present our estimation framework. The construction of our data set is outlined in Section IV.
In Section V we present the results of applying the direct comparison methods and the reduced

form models. Section VI concludes the paper.

I Default Swaps

Credit derivatives were first introduced at the annual meeting of the International Swaps and
Derivatives Association (ISDA) of 1992. Since then, the global credit derivatives market has
experienced impressive growth. Whereas market size (measured in total outstanding notional)
amounted to no more than a few billion US dollars in 1995, participants to the biannual ” Credit
Derivatives Survey” by the British Bankers’ Association (BBA, 2000) estimated that the market
has grown to US$ 1 trillion at the end of 2000. To put these figures into perspective, at the end
of 2000 the total outstanding notional of interest rate swaps amounted to US$ 49 trillion and
the market size for interest rate options was estimated at US$ 9.5 trillion (BIS, 2000). Although
the market for credit derivatives is still relatively small, it is the fastest growing sector of the
global derivatives market (Smith, 2000). According to the BBA (2000) survey, the most popular

types of credit derivatives are default swaps (accounting for 38% of the global credit derivatives



market), total return swaps (11%), credit linked notes (10%) and credit spread options (5%).
The first academic papers on credit derivatives were Howard (1995), Smithson (1995), Das
(1996), Iacono (1997) and Masters (1998).

The publication of the ”Credit Derivatives Definitions” by the International Swaps and
Derivatives Association (ISDA, 1999) was a big move to standardizing the terminology in credit
derivatives transactions. The ISDA Definitions were amended in 2001 following disagreements
in the market on which obligations can be delivered in physically settled contracts in case of
a debt restructering event (ISDA (2001), see also Tolk (2001)). The Definitions established
a uniform set of definitions of important terms, such as the range of credit events that could
trigger payments or deliveries. In addition to the enhanced enforceability and interpretation of
the contracts, the Definitions increased flexibility and reduced the complexity of administration
and documentation. The vast majority of all credit derivative transactions are being documented
by the ISDA confirms.

A default swap is a contract that protects the holder of an underlying asset from the losses
caused by the occurrence of a credit event to the asset’s issuer, referred to as the reference
entity. Credit events that trigger a default swap can include one or more of the following:
bankruptcy, failure to make a principal or interest payment, obligation acceleration, obligation
default, repudiation/moratorium (for sovereign borrowers) and restructuring; these events are
jointly referred to as default. A default swap only pays out if the reference entity defaults;
reductions in value unaccompanied by default do not compensate the buyer in any way. Also,
the event of default must be verifiable by publicly available information or an independent
auditor. The buyer! either pays an up-front amount or makes periodic payments to the seller,
typically a specified percentage of the notional amount. In the latter case, the percentage that
gives the contract zero value at initiation is called the spread, premium or fized rate. If default
occurs, the default swap can be settled in one of two ways. With a cash settlement, the buyer

keeps the underlying asset(s), but is compensated by the seller for the loss incurred by the credit



event. In a physical settlement procedure, the buyer delivers the reference obligation(s) to the
seller, and in return, he receives the full notional amount. Either way, the value of the buyer’s
portfolio is restored to the initial notional amount.?

Several features of default swaps are worth mentioning. If the contract specifies periodic
payments, and default occurs, the buyer is typically required to pay the part of the premium
payment that has accrued since the last payment date; this is called the accrual payment. The
credit event may apply to a single reference obligation, but more commonly the event refers to
any one of a much broader class of debt securities, including bonds and loans. Similarly, the
delivery of obligations in case of physical settlement can be restricted to a specific instrument,
though more usually the buyer may choose from a list of qualifying obligations, irrespective
of currency and maturity as long as they rank pari passu with (have the same seniority as)
the reference obligation. This latter feature is commonly referred to as the delivery option.
Theoretically, all deliverable obligations should have the same price at default and the delivery
option would be worthless. However, in some credit events, for instance a debt restructuring,
not all obligations become immediately due and payable, so that after such an event bonds with
different characteristics will trade at different prices. This is favorable to the buyer, since he
can choose the cheapest bonds for delivery to the seller. Counterparties can limit the value of
the delivery option by restricting the range of deliverable obligations, e.g., to non-contingent,
interest-paying bonds.

Counterparty risk is generally not taken into account in determining deal prices; if a party
is unwilling to take on credit risk to its counterparty, it either decides to cancel the trade
or to alleviate the exposure, for instance by demanding that a collateral is provided or that
the premium is paid up-front instead of periodically (Culp and Neves (1998) and O’Kane and
McAdie (2001)).

An important application of credit default swaps is shorting credit risk. The lack of a

market for repurchase agreements (repos) for most corporates makes shorting bonds unfeasible.



So, credit derivatives are the only viable way to go short corporate credit risk. Even if a bond
can be shorted on repo, investors can only do so for relative short periods of time (one day
to one year), exposing them to changes in the repo rate. On the other hand, default swaps
allow investors to go short credit risk at a known cost for long time spans: default swaps with
maturities of up to 10 years can be easily contracted, but liquidity rapidly decreases for even

longer terms.

IT Literature

In reduced form models, also known as intensity based models, credit risk is jointly determined
by the occurrence of default and the recovered amount at default. Default is often represented by
a random stopping time with a stochastic or deterministic arrival intensity (hazard rate), while
the recovery rate is usually assumed to be constant. The leading frameworks are the Jarrow,
Lando, and Turnbull (1997) Markov chain model, which extended the work of Litterman and
Iben (1991) and Jarrow and Turnbull (1995) to multiple credit ratings, and the Duffie and
Singleton (1999) framework, which allows techniques developed for default-free term structure
modelling to be applied to defaultable interest rates. Other important contributions were made
by Duffie, Schroder, and Skiadas (1996), Lando (1998), Madan and Unal (1998) and Schénbucher
(1998). Bielecki and Rutkowski (2000) provided an overview of both frameworks.

The empirical literature on reduced form models has focused on estimating the parameters
of one of three processes: the hazard process, the spread process or the risky short rate pro-
cess. The first approach seems to be most popular. Cumby and Evans (1997) considered both
cross-sectional estimation of a constant hazard rate model and time-series estimation of several
stochastic specifications. Madan and Unal (1998) estimated recovery and hazard processes in
a two-step procedure using Maximum Likelihood (ML) and Generalized Methods of Methods

(GMM). Duffee (1998), Keswani (2000) and Driessen (2001) applied ML with Kalman filtering to



obtain parameter estimates of Cox, Ingersoll, and Ross (1985, CIR) processes from time-series
data. Janosi, Jarrow, and Yildirim (2000) and Frithwirth and Sogner (2001) used non-linear
squares to estimate the hazard rate parameters from cross-sectional data on a day-to-day basis.
The former specified a stochastic hazard rate that depends on the default-free short rate and an
equity market index, while the latter estimated a constant hazard rate. The second approach
encountered in the empirical literature refrains from modelling the default and/or recovery com-
ponents of credit risk and directly estimates the spread process instead. Nielsen and Ronn
(1998) estimated a log-normal spread model using non-linear least squares on cross-sectional
data. Taurén (1999) utilized GMM to estimate the credit spread dynamics as a Chan, Karolyi,
Longstaff, and Sanders (1992) process. Diilmann and Windfuhr (2000) and Geyer, Kossmeier,
and Pichler (2001) implemented a ML procedure with Kalman filtering to obtain parameter
estimates of Vasicek (1977) and/or CIR models for the instantaneous credit spread. Duffie,
Pedersen, and Singleton (2000) used an approximate Maximum Likelihood method to estimate
a multi-factor model with Vasicek and CIR processes. The third approach is to consider the
sum of the default-free rate and the credit spread and estimate a model for the total risky rate.
Duffie and Singleton (1997) utilized this approach to estimate the swap rate as a 2-factor CIR
process using Maximum Likelihood.

All discussed papers gauged the quality of the implemented models on their ability to fit
spreads and/or bond prices. Since credit derivatives allow credit risk to be traded separately
from other sources of risk, they provide a clean way of putting a price on credit risk. Therefore,
we may obtain better insights in the performance of credit risk models by applying them to the

pricing of credit derivatives.



IIT Methodology

In this section, we first present our reduced form credit risk model. Then we discuss the valuation

of credit default swaps. Finally, we elaborate on the specification and estimation of the models.

IITI.A Valuing Bonds

Following Jarrow and Turnbull (1995), we assume a perfect and arbitrage-free capital market, in
which default-free and defaultable zero-coupon bonds, a default-free money-market account and
defaultable coupon bonds are traded. The uncertainty is represented by a filtered probability
space (2, F,Q), where €2 denotes the state space, F is a o-algebra of measurable events in €2 and
Q is the actual probability measure. The information structure is represented by the filtration
F(t). We take as given some non-negative, bounded and predictable default-free short-rate

process 7 (t), so that the time-t value of the default-free money-market account B () is given by

B(t)zexp(/(jr(s)ds).

Let Q denote the equivalent martingale measure that is associated with the numeraire B (t)
(see Harrison and Kreps (1979) and Harrison and Pliska (1981)). That is, Q is the risk-neutral
measure. Using risk-neutral valuation, the value p (¢,7T") at time ¢ of a default-free zero-coupon

bond with maturity 7" and notional amount 1, can be calculated as

p(tT) = B (1) {pg(”TT))] — &, [exp (- 1 L) dsﬂ ,

where

E, [X] =EQ[X|F).

Let v (t,T) denote the time-t value of a defaultable zero-coupon bond with maturity 7' and



face value 1. Default occurs at a random time 7, independent of r (t) under Q. Assuming a

constant recovery fraction ¢ of face value in case of default, the time-T value of the bond equals
v(T,T) = 1oy + 61 <y,

where 174y is the indicator function of event A. Using the Q-independence of default-free interest
rates and the default time, we obtain the following expression for the price of the defaultable

zero-coupon bond (cf. Jarrow and Turnbull (1995, formula 49))

(. T) = B (1) By [”(T’Tq =p(t,T) [B(tT) +6 (1-B 1)) (1)

where
IP) (t7 T) = ]Et [1{T>T}] .

Hence, P (t,T) denotes the risk-neutral survival probability. We assume the existence of a non-

negative, bounded and predictable process A (t), which represents the intensity for 7 under Q.
We will refer to A (t) as the default intensity or the hazard rate. Intuitively, A(t)At is the risk-
neutral probability of default between times ¢t and ¢t + At as seen at time ¢, conditional on no

earlier defaults. Then,

~ ~ .T ~

B(1,T) = B {exp (— [ e d)] — By exp (—A (1,7))]. 2)

Jt
where A (t,T) denotes the integrated hazard function
T
AT) = / A(s) ds.
t

Finally, consider a defaultable coupon bond with coupon payment dates t = (t1,...,t,),

10



coupon payment ¢, maturity ¢, and notional 1. The price v (¢, t,c) of this bond at time ¢ equals
the sum of the expected values of its coupons and face value and a potential recovery payment.
The " coupon payment is only made if the bond’s issuer has not gone bankrupt yet at time ;.
Similarly, the face value is only paid if the bond is still alive at time ¢,,. If the bond does default
before it matures, a recovery payment of § is made at the random default time 7. Applying the

risk-neutral valuation principle to all cash flows, yields

v (ta t, C) = Zp (t7 tl) Et [Cl{’r>ti}] +p (ta tn) Et [1{T>tn}] + Et [p (ta 7—) 61{T§tn}] .
i=1
Evaluating the expectations, we obtain the following price for a defaultable coupon bond (cf.

Duffie and Singleton (1997, formula 26))

n

v(t,t,0) = 3 Pt ts) e (1, 1) +p (t,ta) B (1, 1) + /:"p(t, §) 6 (s)ds, 3)

i=1

where f (t) denotes the probability density function associated with the intensity process A (t),

1.e.

In our empirical application, we replace the integral expression in (3) by a numerical ap-
proximation. To do so, we define a grid of maturities sq, . . ., Sm, Wwhere so =t and s, = t,, and

set

/ttn (t,s)0f (s dsNZptsz < (t,8i-1) — ]f”(t,si)>.

In our implementation, we work with a monthly grid.
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III.B Valuing Default Swaps

Similar to a plain vanilla interest rate swap, a default swap contract may be viewed as consisting
of two ’legs’: a fixed leg and a floating leg. The former contains the payments by the buyer to
the seller and is called the fixed leg, because its payments are known at initiation of the contract.
The floating leg comprises the potential payment by the seller to the buyer and at the start date
it is unknown how much the seller has to pay — if he has to pay at all.

Consider a default swap contract with payment dates T = (T1,...,Tn), maturity Ty,
premium percentage P and notional 1. Denoting the value of the fixed leg by V (¢, T, P)
and the value of the floating leg by V (), the value of the default swap to the buyer equals
V (t) = V (¢, T, P) and to the seller V (t, T, P) — V (t). At initiation, the premium P is chosen
in such a way that the value of the default swap is equal to zero, because only then the value

to the buyer equals the value to the seller. Since the value of the fixed leg is linear in P, the

premium percentage should be chosen as

We first determine the value of the fized leg. At each payment date T;, the buyer has to
pay «(T;—1,T;) P to the seller, where a (7;_1,7;) is the year fraction between T;_1 and T; (Tp
is equal to t), taking into account the day count convention specified in the contract. If the
reference entity does not default during the life of the contract, the buyer makes all payments.
However, if default occurs at time s < Ty, the buyer has made only I (s) payments, where
I(s) =max(i=0,...,N:T; <s) and the remaining payments I (s) + 1,..., N are no longer

relevant; in addition, he has to make an accrual payment of « (T[(S),S) P at time s.> The value

12



of the fixed leg at time ¢ is thus equal to

N

1% (tv T, P) = Zp (tvﬂ) Et [Oé (E—lvﬂ) P1{7>Ti}] + Et [p (tv T) a (TI(T)7T) P]-{TSTN}]
=1
N

T
= > p(t,T)a(Timr, Th) PP(t,T;) + / p(ts)a (Tys),s) Pf(s)ds. (4)
i=1 st

To calculate the value of the floating leg, we have to distinguish between cash settlement
and physical settlement. If default occurs, and the contract specifies cash settlement the buyer
keeps the reference obligation and the seller pays the buyer an amount equal to the difference
between the reference price and the final price of the reference obligation. The reference price
is specified in the contract and is typically equal to 100%. The final price is the market value
of the reference obligation on the default date as computed by the specified calculation agent
by the specified valuation method; commonly, he has to poll one or more dealers for quotes on
the reference obligation, disregard the highest and lowest quotes and calculate the arithmetic
mean of the remaining quotes. Under our recovery assumption, the final price of the reference

obligation is equal to ¢, so that the value of the floating leg under cash settlement equals

V() =B [p(t,7) (1= 8) 1y ] = / " p(ts) (1— ) £ (s) ds. (5)

If the default swap contract specifies physical settlement things work somewhat differently.
At the default time, the buyer delivers one or more of the deliverable obligations with a total
notional of 1 to the seller and the seller pays 1 to the buyer. Assuming one deliverable, the net
value of these transfers is equal to 1 — §, so that the value of the floating leg under physical
settlement is equal to its value under cash settlement. However, a default swap contract generally
allows the buyer to choose from a list of qualifying obligations, irrespective of currency and
maturity as long as they have the same seniority as the reference obligation. This feature is

called the delivery option, see also Section I. We refrain from valuing the delivery option, and
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use the value of the floating leg under cash settlement. To numerically approximate the integrals
in (4) and (5), we use the same method as for the defaultable coupon bond price Now a grid
S0, - - ., S is chosen with Sg =t and Sy; = Tnv. Again, in our implementation we use a monthly
grid.

Our default swap pricing formula is very similar to other models encountered in the literature.
The models by Aonuma and Nakagawa (1998), Brooks and Yan (1998), Scott (1998), Jarrow
and Turnbull (1998) and Duffie (1999) are equal to our model, except that they only allow
defaults on premium payment dates. Consequently, they lack the accrual payment in the fixed
leg valuation. Cheng (1999) formally showed that the last four models, as well as a special
version of Das and Sundaram (1999), are all mathematically equivalent. Nakagawa (1999) and
Hull and White (2000), like us, also allowed defaults to occur on other dates than payment
dates. However, Nakagawa (1999) did not incorporate the accrual payment and Hull and White
(2000) assumed that the protection buyer makes a continuous stream of premium payments,

rather than a set of discrete payments.

III.C Specification

Since the focus of the paper is the estimation and application of credit risk models, we refrain
from estimating a model for the default-free short-rate. Instead we use a priori estimated
zero-coupon curves and use them to calculate the prices of default-free zero-coupon bonds. To
completely specify the model, we have to (1) select a model for the risk-neutral hazard process,

(2) pick a recovery rate and (3) choose a proxy for the default-free term structure.
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I1II.C.1 Hazard Process

As for the intensity process, we opt for a non-parametric approach by modelling the integrated

hazard function as a deterministic, polynomial function of time to maturity, i.e.

d
AT) =) (T —1t),
i=1
where d is the degree of the polynomial and Ay, ..., \; are unknown parameters. Note that we

have imposed the required restriction A (¢,¢) = 0 by omitting the constant term.

II1.C.2 Recovery Rate

There are two approaches for the specification of the recovery rate. The first is to consider it
as just another parameter, and estimate it from the data along with the other parameters. The
second method is to a priori fix a value. Although the first method seems preferable, it turns

out that it is hard to identify the recovery rate from the data.
[insert Figure 1 around here]

Figure 1.a illustrates this for a constant hazard rate model estimated on a data set of Deutsche
Bank bonds on May 4th, 1999 (the first day in our sample) using the swap curve as proxy for
the default-free curve. We vary the recovery rate from 10% to 90% in steps of 10% and for each
value we estimate the hazard rate. It is clear from the figure that the fitted zero-coupon curves
are virtually identical, except for the one estimated with a recovery rate of 90%. To get some
intuition for this outcome, consider the price of defaultable zero-coupon bond in equation (1).

This equation may be rewritten as

v(t,T)=p(t,T) [1 —(1-6) (1—1@@,:/7))} .

15



So, given a default-free curve p(¢,7T), the price only depends on the product of 1 — ¢ and
1-P (t,T) . Using formula (2) and a first order Taylor expansion, the bond price can be approx-

imated as

v(t,T) ~pt,T)[1—(1-8)A(t,T).

For the constant hazard rate model, A (¢,7) = A1 (T — t), so that the zero-coupon spread s (t,T)
with respect to the default-free rate is approximately equal to s (¢,7) ~ (1 —§) A1 (see also
Duffie and Singleton (1999, below equation 5)). Decreasing 1 — ¢ and simultaneously increasing
A1 by the same ratio will result in approximately the same spread. Figure 1.b shows that this
indeed happens when we estimate the hazard rate for different values of recovery rate. As long
as the recovery rate is chosen between roughly 10% and 80%, the product of 1 — § and \; is
approximately constant.

It is clear that it is hard to identify both the hazard and recovery processes from bond data,
see also Duffee (1998, p. 203), Duffie (1999, p. 80) and Duffie and Singleton (1999, p. 705).
This may pose a problem for some applications, but for our purpose of pricing default swaps it
fortunately does not. It turns out that the default swap premium is also relatively insensitive
to the assumed recovery rate. Figure 1.c shows the premiums for a 5 year default swap written
on Deutsche Bank for varying recovery rates (and thus varying hazard rates). As long as the
recovery rate is chosen between roughly 10% and 80%, the estimated default swap premium is
approximately between 13 and 15 basis points (bps).

In conclusion, both the bond spread and the default swap premium only depend on the
product of one minus the recovery rate and the integrated hazard function. Therefore, it is not
very important to choose the recovery rate very accurately, as long as takes a reasonable value.

In our implementation, we set § = 50%.
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I11.C.3 Default-Free Interest Rates

Our bond and default swap valuation models require a term structure of default-free interest
rates as input data. Recently, fixed income investors have moved away from using government
securities to extract default-free interest rates and started using plain vanilla interest rate swap
rates instead. Golub and Tilman (2000) and Koci¢, Quintos, and Yared (2000) mentioned the
diminishing amounts of US and European government debts, the credit and liquidity crises of
1998, and the introduction of the euro in 1999 as primary catalyzing factors for this development.
Nowadays, government securities are considered to be unsuitable for pricing and hedging other
fixed income securities, because in addition to interest rate risk they have become sensitive to
liquidity risk. Swaps, on the other hand, being synthetic instruments, are available in unlimited
quantities, allowing investors to go long or short any desired amount. A disadvantage of swap
rates is that they contain a credit risk premium due to two sources. First, being a bilateral
agreement between two parties, an investor is exposed to the potential default of its counterparty.
Duffie and Huang (1996) showed that this premium is quite small however: only one or two basis
points for typical differences in counterparties’ credit qualities. Second, the swap’s floating leg
payments are indexed on a short-term* LIBOR rate, which is a default-risky rate. Therefore,
the swap rate will be higher than the default-free rate even though the swap contract is virtually
default-free, see Collin-Dufresne and Solnik (2001).

An instrument that is less sensitive to the risk of counterparty default and is not linked to a
risky rate is a repurchase agreement (repo for short, see, e.g., Duffie (1996)). A repo is basically
a collateralized loan, typically between two banks for a relatively short time period (1 day to,
at most, 1 year). Each instrument has its own repo rate, and the highest repo rate is referred
to as the general collateral (GC) rate.® GC rates have historically been close to swap rates, but
they were typically several basis points lower. The usage of repo rates as default-free interest

rates was recommended by Duffie (1999, p. 75).
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Almost all empirical papers that estimate reduced form credit risk models used the govern-
ment curve as the default-free curve. In fact, Duffie, Pedersen, and Singleton (2000) are the only
exception by using the swap curve. From the discussion above, it seems that repo rates are best
suited to proxy for default-free interest rates. Nevertheless, we will estimate our models for all

three choices and see which curve works best.

II1.D Estimation

If we are given a default-free zero-coupon curve at time ¢, and the market prices Py (t), ..., Py (2)
of b(t) defaultable bonds, where the i'" bond has payment dates t; and coupon percentages c;,
we may estimate the parameters of the integrated hazard function by non-linear squares. We

minimize the criterion function,

b

—~

t)
(Pl (t) -V (tatia Ci))2 >
1

%

using the Gauss-Newton algorithm, see e.g. Greene (2000, Chapter 10). We repeatedly estimate
the model until all residuals are smaller than 2.5 standard deviations, removing the bond with the
largest residual (in absolute sense) each time this condition is not met. This procedure prevents
strongly mispriced bonds from unreasonablly affecting the estimated curves. To estimate a curve
on a particular trading day, we also consistently exclude all bonds with a remaining maturity of
less than 3 months. In our data set, such bonds showed constant prices or they were not quoted
at all for several consecutive days. Moreover, we require that on each day, quotes should be
available for at least 5 bonds. This ensures some degree of statistical reliability of the estimated

parameters.
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IV Data

For our purposes we require market data on defaultable bonds, default swaps and default-free
interest rates.

The bond data set consists of corporate and sovereign bonds and is obtained from two sources.
From Bloomberg, we obtain bond characteristics, like maturity dates, coupon percentages and
seniorities; a time series of credit ratings for each issuer is also downloaded from Bloomberg.
Clean bid and ask price quotes are retrieved daily at 4.00pm from Reuters’ TREASURY and
EUROBOND pages. These Reuters pages are connected to bank and broker pages, and each
time a party updates a quote for a bond, that quote is also refreshed on the Reuters page.
Therefore, the TREASURY and EUROBOND pages provide a good representation of the market
for euro-denominated bonds. The data covers the period from January 1, 1999 to January 10,
2001 and contains prices of almost 10800 bonds issued by over 1600 different entities. The total
number of price quotes is close to 2.5 million. To estimate the credit risk models, we construct
a sample of fixed-coupon, bullet, senior unsecured bonds that are denominated in euros or one
in of the currencies of the participating countries. This reduces the number of bonds to 3920,
the number of unique issuers to 704 and the number of quotes to approximately 1.1 million.

The default swap data set is constructed by combining quotes from two sources. Firstly, it
contains indicative bid and ask quotes from daily sheets posted by commercial and investment
banks, such as J.P. Morgan Chase, Salomon Brothers, Deutsche Bank and Credit Suisse, and by
brokers, such as Prebon, Tradition and ICAP. Secondly, it comprises bid and ask quotes from
internet trading services creditex and CreditTrade, whose participants, in addition to banks
and brokers, also include other financial institutions and corporates. The data period ranges
from May 1, 1999 to January 10, 2001. In this period, we observed 48098 quotes on default
swaps on 837 distinct reference entities. Contracts denominated in US dollars make up 82% of

the quotes, euro-denominated contracts account for 17% and the remaining 1% is comprised of
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British pounds, Japanese yens and Australian dollars. Quotes on dollar contracts are observed
in the entire data period, whereas quotes on euro-denominated default swaps are only observed
from March 2000 to January 2001. Virtually all quotes (99.7%) are for contracts with a notional
amount of 10 million (denominated in one of the above mentioned currencies); the remaining
contracts have face values of 1, 5, 15, 20, 25 or 50 million. The maturity of the default swaps
ranges from 1 month to 20 years, with multiples of 6 months up to 10 years being most common;
5-year deals are most popular, making up 53% of the observations, followed by 3-year (10%),
10-year (7%) and l-year (4%) contracts. For our subsequent analyses, we constrain ourselves to
default swaps that are euro- or dollar-denominated, have a maturity of at most 10 years and a
notional amount of 10 million. Imposing these constraints reduces the number of observations
by 2.7%, but creates a more uniform data set by removing the least liquid contracts. Whenever
we refer to 'the default swap data set’ we mean this restricted version of the original data set.
For our research, we need reference entities for which both bond and default swap prices are
available. Restricting the data sets to this subset of entities, leaves us with 225 reference entities,
1131 bonds, about 258000 bond prices and about 23000 default swap prices.

As proxy for default-free interest rates, we consider three alternatives: government rates,
swap rates, and general collateral (GC) repo rates. The zero-coupon ’euro’ government curve
is estimated on a daily basis from a subset of the bond data set, consisting of liquid German
government bonds. We model the discount function as a linear combination of third degree
B-splines basis functions with knots at 2, 5 and 10 years (see, e.g., Houweling, Hoek, and
Kleibergen (2001) for more details). Euro swap rates are downloaded from Bloomberg. We
apply a standard bootstrapping procedure to extract zero-coupon rates and interpolate linearly
between the available maturities to get a curve for all required maturities. Finally, we download
euro repo benchmark rates from the website of the British Bankers’ Association (BBA, 2001).
Unfortunately, the longest maturity for which GC rates are available (1 year) is too short for

our purposes. Therefore, we use the following method to calculate approximate GC rates for
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all required maturities: on each day, we determine the 1-year swap-GC spread and assume
that this spread may be subtracted from the swap rates of all other maturities to get the GC
rates. Analogously to the swap curve, we use bootstrapping and linear interpolation to obtain

a Zero-coupon curve.

[insert Figure 2 around here]

Figure 2 depicts the average zero-coupon swap, repo and government curves over the sample
period. By construction, the swap and repo curves have identical shapes and levels. The

government curve, however, is on average much lower than the other curves and also less concave.

V Results

In this section we first discuss the properties of the default swap data set and implement an
approximate default swap pricing method often applied by financial market participants. Then,
we present the results of applying our reduced form credit risk model to our data set. We

conclude by analyzing the pricing errors of the model.

V.A Analyzing Default Swap Premiums

[insert Table I around here]

[insert Figure 3 around here]

Since the empirical literature on credit default swaps is restricted to just one other paper
(Cossin and Hricko, 2001), it is interesting to look at the properties of the data first. Table
I summarizes the default swap quotes on several characteristics. Panel I subdivides the 46820
observations by the reference entity’s credit rating at the quote date. This information is also
depicted in Figure 3, which shows histograms of the default swap premiums per rating category.

As may be expected, the rating is a very important determinant of default swap premiums
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as average premiums decrease monotonously with credit quality. Cossin and Hricko (2001)
found a similar pattern of premiums with credit rating; their average premiums per rating differ
from ours, but this may be due to the different sample period. Within the class of investment
grade ratings, a linear relation seems to exist: average premiums roughly double each time
the credit quality decreases by one rating. For speculative grade issuers, average default swap
quotes rapidly increase. In addition, the histograms in Figure 3 show that not only the average
premium but also the variation of premiums increases with the issuer’s credit rating.

In panel II of Table I the sample is further subdivided by deal type. The number of bid
quotes is roughly equal to the number of ask quotes. As usual in financial markets, a spread
exists between them. The average bid-ask spread is 8 bps, but an increasing pattern with ratings
may be observed. For AAA-rated entities the average bid-ask spread amounts 4.4 bps, rising
gradually within high grade ratings to 12.6 bps for rating BBB. A much larger spread exists
between bid and ask quotes for speculative grade issuers: about 75 bps for BB and 110 for B.
The bid-ask spread for CCC-rated default swaps is negative, but this is most likely caused by
the small number of observations. Note that the bid-ask spreads are relatively large compared
to the quote size. For instance, for AA the average bid-ask spread of 6.8 bps amounts to about
28% of the average quote of 43.4 bps.

Contracts in our database are denominated in one of two currencies: either US dollars or
euros. Panel III shows that dollar-denominated default swaps prevail, but recall that euro-
denominated default swaps are only observed during the second half of the data period. For
all ratings, dollar quotes are on average larger than euro quotes, except for rating B where the
number of euro observations is rather small. This finding still holds, if we also control for quote
date, though to a lesser extent (not shown here).

The relation between premium level and contract maturity is assessed in panel IV. Notice
that more than 50% of the observations resides in the 4- to 5- year maturity range; Cossin and

Hricko (2001) also reported this asymmetric distribution of the quotes over the maturity range.
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Aggregated over all ratings, there does not seem to be clear relation between the average default
swap premium and maturity. Only for A- and B-rated reference entities an increasing pattern
may be detected, but for the other ratings premiums are approximately constant as a function
of time to maturity. Our findings are in line with Cossin and Hricko’s (2001), who tested several
specifications for the maturity effect, but none of them appeared to be significant.

Finally, we look at the behavior of average premiums over time. To that end we group the
default swaps by quote date into three-month periods, see panel V. Except for AA and BB, the
quotes for all ratings roughly follow a U-shape pattern over time: in the middle of the sample

period, the average premium is higher than both at the start and at the end.

V.B Comparing Bond Spreads and Default Swap Premiums

To admit a direct comparison between bonds and default swaps, we make the following intuitive
argument. Suppose an investor in a coupon-bearing defaultable bond buys protection by entering
into a credit default swap. The package consisting of the bond and the default swap is free of
default risk, so ”defaultable bond + default swap = default-free bond”. Therefore, we also
have ”default swap = default-free bond — defaultable bond”. Consequently, the default swap
premium should be equal to the spread between the defaultable and the default-free bond.

To formalize our argument, consider a defaultable bond with coupon payment dates t =
(t1,...,tn), coupon ¢, maturity ¢, and notional 1. Further, consider a default swap with the
same maturity, premium percentage P and notional 1. For simplicity, assume that the default
swap’s and bond’s payment dates coincide.

The value V (t) of the package to the investor is given by v (t,t,¢) =V (t,t,P) + V (1),
whose formulas are given by (3) — (5). We replace the integrals in the pricing formulas by the
approximations from Section III; the grids for both the bond and default swap are chosen to
be equal to the payment dates t. Under these assumptions, the loss of 1 — § on the bond on a

potential default date is exactly offset by the reception of 1 —¢ from the default swap. Moreover,
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the accrual payments of the default swap’s fixed leg vanish, because for the current grid choice
default can only occur on a payment date. Therefore, the value of the package can be written

as

V() = f:p (t,t:) (c — Pa(tie1, ) P (1) +
i=1

S (0t (Bt ~Bt.1)) 4 p(tt) B (1),

The first line indicates that the coupon payments ¢ on the bond are reduced by the ’insurance
premium’ Pa (t;_1,t;) on the default swap. The second line shows that the notional of 1 will be
paid eventually, but that the timing depends on the occurrence of the credit event. The investor
is thus protected against default risk, but is now exposed to the risk of premature redemption
of the notional and missing some of the promised coupons (prepayment risk).

If we additionally assume that both the default-free and defaultable bond are priced at par,
then their yields are equal to their coupons rates (ignoring the prepayment risk). Let y and
Y denote the yield of the defaultable and the default-free bond, respectively, then y = ¢ and
Y =c¢— P, so that y — Y = P. This confirms our intuition that the bond spread should equal
the default swap premium. Note however that we had to make several assumptions to get this
result, so that it is only approximately valid. Obviously, its validity is further impaired by
the implicit assumptions that the bond and default swap pricing models are correct, and that
bonds and default swaps are priced off the same survival curve by financial market participants.
Nevertheless, bond spreads and default swap premiums should be comparable. This relation
was also presented by Cossin and Hricko (2001), though without proof. Duffie (1999) showed
that this relation holds exactly for par floating rate notes instead of coupon-bearing bonds.

We will now determine to what extent this relation holds in our data set. For each quoted
default swap written on an entity, we have to find a quoted bond issued by that same entity

with the same maturity. Unfortunately, a bond with exactly the same maturity as the default
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swap is rarely available. Therefore, we examine two alternative methods that are often used by

practitioners®:

1. Find a quoted bond whose maturity differs at most 10% from the default swap’s maturity;

2. Find two quoted bonds, one whose maturity is smaller than, but at most twice as small
as, the default swap’s maturity, and one whose maturity is larger than, but at most twice

as large as, the default swap’s maturity, and linearly interpolate their spreads.

We will refer to method 1 as the matching method, and to method 2 as the interpolation
method. The performance of each method is evaluated for all three proxies for the default-free
term structure. That is, a bond’s spread is calculated by subtracting either the swap, repo or
government rate from its yield-to-maturity. This gives a total of six method-proxy combinations.

Each time a pair can be formed of a default swap premium and a (matched or interpolated)
bond spread, we calculate two pricing errors. One by subtracting bond bid spreads from default
swap ask quotes, and the other by subtracting bond ask spreads from default swap bid quotes.
In this way, we are contrasting similar sides of the market. For instance, an investor can create
an exposure to an issuer’s default by buying a bond — for which he pays the ask price — or by
writing default swap protection — for which he receives the bid premium. The pricing errors are
summarized in two ways. First, as the average, denoted by the Mean Pricing Error (MPE), and
second as the average of the absolute values, called the Mean Absolute Pricing Error (MAPE).
A negative (positive) sign of the former statistic indicates that bond spreads are, on average,
too large (small) and thus that the bond market’s estimate of the issuer’s credit risk is larger

(smaller) than the default swap’s market estimate.

[insert Table II around here]

[insert Figure 4 around here]

Figure 4 depicts scatter plots of pricing errors versus default swap premiums per rating
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for the interpolation method that uses the swap curve as default-free curve; the plots for the
other methods are similar. If interpolated bond spreads over the swap curve are good estimates
of default swap premiums, all (default swap premium, bond spread) pairs should lie on the
horizontal axis. For ratings AAA, AA and A, this seems indeed to be the case, so that on
average the method does a good job. This is confirmed by the MPE values in Table II which
are approximately zero. However, for rating BBB the scatter plot and MPE statistic indicate
that the bond spreads are on average smaller than default swap premiums. For ratings BB and
B this is almost always the case. So, for BBB, BB and B bond spreads are biased estimates of
default swap premiums. For all ratings, the dispersion around the horizontal axis is fairly large.
In fact, the MAPE statistics in Table II, together with the average default swap premiums in
Table I, imply that the calculated premiums deviate on average 19% (for BBB) to 68% (for
AAA) in absolute value from the market values.

Table II also sheds light on the performance of the other methods. A striking feature of
these results is the abominable performance of the government-based methods for AAA- to A-
graded issuers. Their MAPE values are up to four times higher than for methods that proxy
the default-free curve with the swap or repo curve. Moreover, since the MPEs are negative
and almost identical in size to the MAPEs, bond spreads relative to the government curve are
virtually always larger than default swap premiums for high grade issuers. The MPE values for
the swap and repo curve methods are much closer to zero, where the former are typically four
to five basis points larger than the latter. As already observed in Figure 4, the interpolation
method that uses the swap curve as default-free curve, yields almost unbiased estimates for
AAA, AA and A. Looking at the MAPE statistics as well, the swap curve interpolation method
performs a bit better than the repo curve interpolation method for investment grade, but a bit
worse for speculative grade entities. For the matching methods their performance is similar. For
speculative grade issuers, the government curve methods outperform the swap- and repo-based

methods except for BB for the interpolation method. For all methods the MPE statistics take
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large, positive values though, indicating that they all result in bond spreads being smaller than
default swap premiums.

Our overall impression is that bond and default swap markets deviate considerably, with
absolute deviations increasing for lower credit ratings. For AAA- to A-rated issuers, linear
interpolation of bond spreads over swap rates gives almost unbiased estimates of default swap
premiums. For ratings BBB to B, default swap premiums are substantially larger than bond

spreads for all considered methods.

V.C Estimating Hazard Functions

[insert Table IIT around here]

We now turn to the estimation of credit risk models as described in Section III.D. We
consider three proxies for the default-free curve — government, swap and repo curves — and three
degrees for the integrated hazard function — linear, quadratic and cubic. This yields a total of
nine models. For each issuer, we estimate all models for each day that we have at least one
default swap quote and at least five bond quotes. The first row of Table III shows the number
of ’issuer-days’ on which this was the case. Most observations are for AAA- and AA-rated
issuers even though rating classes A and BBB contain the largest number of default swap quotes
(see Table I). This is caused by the composition of the bond database, which contains (a) a
small number of BBB-rated bonds and (b) a small number of bonds per A-rated issuer. The
remainder of Table I shows the average fit of the model to the bond prices. A model’s quality
may be assessed by looking at the root mean squared error (RMSE) of the deviations between the
market prices and the model prices. Looking at the differences between ratings first, we observe
that the goodness of fit deteriorates as the rating declines. AAA- and AA-rated bond can be
fitted quite accurately with RMSE values of 15 to 20 bps. The RMSEs for other investment
grade bonds are well below 1% and usually below 50 bps. For speculative grade bonds, RMSE

statistics range from 1% to 2%. Next we try to determine which model performs best. We find
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that using more parameters — obviously — yields a better fit. This holds for all three proxies
for the default-free curve, but especially for the government curve if we move from a linear to
a quadratic model. Table I also indicates that using a cubic model has little advantage over a
quadratic model for high grade bonds, but does improve the fit for low grade bonds. As to the
choice of the default-free curve, we see that for the linear model, the government curve clearly
underperforms the swap and repo curves. For quadratic and cubic models, on the other hand,
choosing a proxy for the default-free curve is less important. Overall it seems sufficient for AAA
and AA to use a linear model with a swap or repo curve, for A and BBB a quadratic model
with a swap or repo curve, and for BB and B a cubic model with any proxy for the default-free

curve.

[insert Table IV around here]

Now we turn to the discussion of the estimated coefficients of the integrated hazard function,
see Table IV. Let us first look at the case where the integrated hazard function is modelled as a
first degree polynomial. Since the hazard function is a constant in this model, the A\; parameter
may be interpreted as the issuers’ average risk-neutral default intensity. The estimation results
for all three default-free curve proxies indicate that the average default intensity increases with
the issuers’ credit rating, except that B’s is somewhat below BB’s. Therefore, on average, credit
ratings do a good job in ranking firms by credit worthiness. However, the level of the default
intensity differs considerably between the models: the default rate for the government curve
model is about 50 bps to 60 higher than the default rate in the repo curve model, which in turn
is about 10 bps higher than in the swap curve model. Obviously, these differences reflect the
average spreads between these three curves, but especially for investment grade bonds they lead
to substantially different default rates. For instance, if we use the swap curve we would conclude
that AAA’s default rate is only 7 bps, but if we use the government curve that number would

be ten times as large.
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In the quadratic integrated hazard model the hazard function is linear, so that A; and A9
are the level and slope coefficient of the hazard function, respectively. The estimates for both
coefficients rise as the rating declines (with two exceptions: the level of B for all default-free
curve proxies is smaller than that of BB and BBB’s slope in the government curve model is
slightly smaller than A’s). These findings imply that if we compare the estimated spread curves
of two ratings, the worst rating’s spread curve both starts at a higher level and is steeper. Again,
noticeable differences exist between the three default-free curve types. Using the government
curve results in higher and steeper spread curves than using the swap curve. Comparing swap
and repo curves, we find that the levels differ by about 10 bps just like in the linear model, but
the slopes are exactly equal. This simply reflects the construction of our repo curve as a parallel
shift of the swap curve.

Finally, we look at the results of the cubic model for the integrated hazard function. Unlike
the nicely ordered level and slope coefficients, there does not seem to be relation between A3
and the credit rating. Both the size and sign of this parameter appear to be uncorrelated with
credit worthiness. Considering the results for the government curve, we observe that, compared
to the quadratic model, the level coefficient has decreased and the slope coeflicient has increased
for all ratings (except BB) . Interestingly, the A3 parameters for the government curve models
are almost equal to those in the swap and repo curve models. Further, in the latter models, the
level coefficient is virtually unchanged for AAA, AA and A, has increased for BBB and BB and
has decreased for B. Similarly, the level coefficients is virtually unchanged for AAA, AA and A,
has decreased for BBB and BB and has increased for B.

In conclusion, the choice of a proxy for the default-free curve has a significant impact on the
estimated credit risk model. Both the level and shape of the hazard function are substantially
effected by this decision. Moreover, the fit of the model to investment grade bonds is better if
we use the swap or repo curve instead of the government curve. For speculative grade bonds,

choosing a proxy is less important. Which combination of a default-free curve proxy and poly-
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nomial degree is the 'best’, can be judged by applying the models to the pricing of credit default

swaps.

V.D Comparing Model and Market Premiums

Having estimated a credit risk model for a specific issuer allows us to calculate model premiums
of credit default swaps written on that issuer. Like above, we define the pricing error as the
market premium minus the model premium and summarize it by the Mean Pricing Error (MPE),
and Mean Absolute Pricing Error (MAPE). A negative (positive) sign of the MPE statistic
implies that the model premiums are, on average, too large (small) and thus that the model

overestimates (underestimates) the issuer’s credit risk.

[insert Table V around here]

Table V contains the MPE and MAPE figures for all nine models subdivided by rating. If
we compare these figures to the ones in Table II, we see very similar patterns. First, mean
absolute pricing errors increase with credit ratings for all models, except for high grade entities
in the models that use the government curve. Second, government-based models perform very
badly for investment grade issuers: their MAPE statistics take larger values than for swap-
and repo-curve models, and their MPE statistics indicate a large overestimation of default swap
premiums. Third, the MPE values for the swap and repo curve models are close to zero, where
the former are typically three to four basis points larger than the latter. Fourth, for speculative
grade bonds, the government curve models outperform the swap- and repo-based models by two
to 20 basis points. Finally, for all models the MPE statistics take positive values, indicating that
they all underestimate the credit risk of low grade entities.

Estimating a hazard rate model gives a clear improvement over the direct methods of Section
V.B. Comparing the best direct method to the best model for each default-free curve proxy, we

find that MAPE statistics are reduced by 35% to 55% for investment grade issuers. For A-rated
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entities the reduction is less spectacular with a decrease of about 15%. Also, for government-
based approaches the best method and best model perform similarly poor. For speculative grade
issuers hazard rate models outperform the direct methods by 15% to 20%. Even though using
a model works better than directly comparing bond spreads and default swap premiums, the
model premiums of the best-performing model still deviate on average 20% to 50% in absolute
value from the market values. So the models fit rather well to bonds, but their out-of-sample
performance on default swaps is less satisfactory.

We now try to identify the best model. Table V shows that models that use the swap or the
repo curve on average do a reasonable job for investment grade issuers. The swap-based model
slightly underestimates and the repo-based model somewhat overestimates the true default swap
premiums. Looking at the MAPE statistics as well, the repo curve models perform a bit better
than the swap curve models for AAA and BBB, but a bit worse for AA and A. For speculative
grade issuers, the government curve models work best. As to the choice of the optimal degree
of the integrated hazard function, investment grade and speculative grade issuers again differ.
For the former, quadratic and cubic models outperform linear models (ignoring the government-
based models), but for the latter a linear model performs best. All in all, a quadratic model that
uses the repo curve seems to be the best choice for investment grade issuers. For speculative
grade entities, none of the considered models can be recommended, since they all significantly

underestimate credit risk.

V.E Analyzing Pricing Errors

In the previous section, we showed that the mean absolute pricing error increases if the credit
rating deteriorates. Moreover, speculative grade default swaps are grossly underpriced, but
investment grade contracts can be priced more or less unbiasedly. It is also interesting to see if
differences between market and model premiums can be related to other characteristics than the

issuer’s credit rating. We try to accomplish this by regressing absolute pricing errors on dummy
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variables for the following characteristics: deal type (bid or ask), currency (euro or dollar),
rating (AAA, AA, A, BBB, BB), maturity (1-year segments up to 5 years, and a segment from
5 to 10 years) and quote date (6-month periods). Since each set of dummies contains mutually
exclusive categories, their values sum to 1 for each observation. Usually, the coefficient of one
of the dummies is set to 0 as identifying restriction. We take a different approach here, and set
a linear combination of the coefficients to 0, where the weight of a coefficient equals the sample
mean of the corresponding dummy variable. For instance, if 3 and « denote the coefficients of
the bid and ask dummies, we could have set one of them to 0. Instead, we impose b3 + aa = 0,
where b is set to the percentage of bid observations and a to the percentage of ask observations.
The advantage of imposing these restrictions is that the constant of the regression equals the
sample mean of the dependent variable. Furthermore, each coefficient can be interpreted as the

change in the absolute pricing error for that dummy for an otherwise representative observation.

[insert Table VI around here]

Table VI shows the regression results for the quadratic specification of the integrated hazard
function for all three proxies for the default-free curve; the results for the linear and cubic model
are similar. We observe that most parameters are statistically different from zero, the signs of
the parameters are largely consistent between the models and the R? values are about 50%.
Mispricings strongly differ between deal types as errors on bid quotes are larger than on ask
quotes. Since we use hazard functions estimated from bond bid quotes to calculate default swap
ask premiums, and vice versa, this implies that the bid-side of the bond market is somewhat
more in line with the ask-side of the default swap market than vice versa. The maturity of the
default swap contract is also predictive of the pricing error, since the coefficients of the maturity
dummies are significant (except for the interval from 3 to 4 years) and monotonously increasing.
All models tend to overprice short-term contracts and underprice long-term contracts. As noted

before, pricing errors for investment grade ratings are usually negative, and for speculative grade
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ratings strongly positive. The currency dummies are only significant for the government model,
indicating that the swap and repo models can price both dollar- and euro-denominated default
swaps. Finally, the parameter estimates for the contract’s quote date dummies show that for
most models pricing errors in 2000 were smaller than in 1999 or 2001, although not all coefficients

are statistically different from zero.

VI Summary

In this paper we have empirically investigated the market prices of credit default swaps. We
have shown that a simple reduced form model better prices credit default swaps than the market
practice of directly comparing bonds’ credit spreads to default swap premiums. The model works
well for investment grade issuers and less in the high yield environment, so there is definitely
room for more empirical research and further model development. Furter, we found evidence
that government bonds are no longer considered by the markets to be the reference default-free
instrument. Swap and/or repo rates have taken over this position. We also showed that the
value of the assumed constant recovery rate has only marginal influence on model prices, since

a reduction in recovery rates comes along with a reduction in the probability of default.
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Notes

IThe party purchasing credit protection is called the buyer; similarly, the seller refers to the

party providing (’selling’) protection.

’In a so-called binary default swap the seller pays the buyer a pre-specified amount, indepen-

dent of the realized loss in case of default.

3We assume that if the default time exactly coincides with a payment date T}, the buyer does
not make the regular payment, but makes an accrual payment, i.e. I (7;) = ¢ — 1. Since the
regular payment and the accrual payment are equal on a payment date, this assumption does

not affect the value of the default swap.

4For US dollar-denominated swap contracts the floating payments are bound to 3-month

LIBOR, whereas euro-denominated swaps are indexed on the 6-month LIBOR rate.

SInstruments whose repo rates are at or near the GC rate, are called general collateral.
Instruments whose repo rates are significantly below the GC rate are referred to as special.
Since data on repo specialness is hard to find, we assume that all considered bonds are general

collateral.

6Only the methods are used in practice, the percentages are our own implementation of them.
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AAA AA A BBB BB B CcCC NR Total
I: By rating
12.0 24.5 43.4 87.9 269.5 483.4 1957.5 55.7 70.6
(1794) (8321) (18613) (13187) (1595) (1118) (10) (2182) (46820)
II: By rating and deal type
bid 9.8 20.7 38.4 81.5 236.0 431.9 1985.0 55.7 66.4
(882) (3724) (8672) (6484) (868) (592) (5) (880)  (22107)
ask 14.2 27.6 47.8 94.1 309.5 541.3  1930.0 55.8 4.4
(912)  (4597) (9941) (6703) (727) (526) (5) (1302) (24713)
ITI: By rating and currency
dollar 13.7 25.0 47.1 89.8 269.7 482.1 1957.5 59.9 79.7
(1325) (5193) (14910) (12543) (1589) (1106) (10)  (1775)  (38451)
euro 7.5 23.7 28.6 51.7 223.0 598.3 37.5 28.7
(469) (3128) (3703) (644) (6) (12) (407) (8369)
IV: By rating and maturity
(0,1 12.1 18.4 31.9 100.8 199.1 407.6 61.9 120.2
(55) (208) (790) (1191) (306) (359) (124) (3033)
(1,2] 9.4 22.3 30.3 108.1 290.2 432.8  2900.0 52.0 183.5
(24) (80) (721) (788) (295) (183) (4) (71) (2166)
(2,3] 9.6 26.4 37.2 74.5 242.4 501.0 45.7 75.6
(387) (562) (2142) (1750) (306) (222) (279) (5648)
(3,4 11.8 27.3 45.3 87.0 330.9 567.9 1016.7 50.6 65.8
(24) (453) (1242) (686) (32) (47) (3) (335) (2822)
(4,5] 11.8 24.1 44.6 82.3 281.6 561.2 425.0 60.4 58.4
(675) (6072) (11743) (6710) (555) (230) (1) (1217) (27203)
(5,-) 14.0 26.3 51.3 103.0 419.0 622.1  2250.0 45.2 75.5
(629) (946) (1975) (2062) (101) (77) (2) (156) (5948)
V: By rating and date
Q2-1999 13.4 19.7 56.0 103.5 259.6 768.1 98.2 90.7
(265) (839) (2374) (2529) (345) (105) (110) (6567)
Q3-1999 13.4 24.2 58.8 104.1 300.0 698.4 134.7 106.8
(211) (642) (2106) (2258) (253) (217) (110) (5797)
Q4-1999 12.2 25.5 42.4 100.1 301.7 545.3  2585.7 46.6 89.4
(77) (622) (1835) (1052) (280) (104) (7) (90) (4067)
Q1-2000 10.4 23.5 34.9 63.1 172.8 356.3 50.6 58.4
(32) (355) (1367) (953) (118) (99) (185) (8109)
Q2-2000 11.9 27.8 37.8 73.1 271.5 481.8 47.1 58.7
(109) (837) (2990) (1636) (99) (56) (570) (6297)
Q3-2000 9.5 25.2 35.9 67.9 299.5 353.8 491.7 46.5 60.0
(393) (2489) (4321) (2893) (304) (415) (3) (618)  (11436)
Q4-2000 11.9 23.6 41.4 93.7 211.9 342.1 53.3 52.8
(619) (2271) (3166) (1566) (186) (118) (464) (8390)
Q1-2001 17.6 30.6 58.9 114.4 220.5 518.8 61.4 66.7
(88) (266) (454) (300) (10) (4) (35) (1157)

Table I. Characteristics of the default swap data set.

The data set consists of indicative bid and ask quotes on default swaps obtained from internet trading
services crediter and CreditTrade and from daily price sheets posted by banks and brokers. The quotes
are observed from May 1, 1999 to January 10, 2001. All contracts have a notional of 10 million (euros or
US dollars) and a maturity of at most 10 years.

The table shows average default swap premiums by rating (Panel I), rating and deal type (II), rating and
currency (IIT), rating and maturity (IV) and rating and quote date (V). The number of observations
per cell is shown in parentheses.
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AAA AA A BBB BB B NR All

Matching
Obs. 1058 2168 1951 1188 441 297 40 7144
Swap 5.9 -1.4 -4.9 9.4 129.7 174.9 0.2 16.0
(9.1) (14.6) (11.4) (34.3) (137.0) (187.2) (27.0) (31.0)
Repo 1.7 -5.8 -9.7 4.4 124.9 170.3 -5.5 11.4

(8.3) (15.9) (13.5) (34.3) (133.6) (183.0) (29.1) (81.5)
Government  -31.1  -32.6 -37.1 -15.8  106.6  151.3 -29.1  -1.5
(31.4) (34.4) (37.8) (41.0) (1185) (165.6) (41.8) (46.7)

Interpolation
Obs. 292 1839 2260 1067 316 387 61 6222
Swap 0.8 -1.6 -3.7 16.6 154.1 200.5 -4.3 21.8
(8.2) (11.1) (10.6) (29.5) (156.0) (201.5) (28.6) (33.3)
Repo -3.4 -6.0 -8.7 11.6 149.4 196.0 -9.9 16.6

(82) (12.0) (12.8) (29.2) (151.8) (197.2) (32.0) (83.9)
Government ~ -33.9 -334  -31.7 7.5  177.2 1336 -326  -6.8
(34.3)  (34.2) (32.5) (34.8) (178.7) (137.2) (49.5) (48.1)

Table II. Performance of the direct comparison methods.

The premium of a default swap written on a specific entity is approximated by the yield difference
(spread) between a defaultable bond issued by that entity and an equivalent, but default-free bond. We
consider three curves to proxy default-free interest rates: swap, repo and government curves. Moreover,
two methods are considered to make pairs of bond spreads and default swap premiums: (1) matching:
find a bond whose maturity differs at most 10% from the default swap’s maturity; (2) interpolation: find
two bonds, one whose maturity is smaller than, but at most twice as small as, the default swap’s maturity,
and one whose maturity is larger than, but at most twice as large as, the default swap’s maturity, and
linearly interpolate their spreads.

Each time a pair can be formed of a default swap premium and a (matched or interpolated) bond spread,
we calculate two pricing errors. One by subtracting bond bid spreads from default swap ask quotes, and
the other by subtracting bond ask spreads from default swap bid quotes.

The table shows average pricing errors and average absolute pricing errors (between parentheses) by
rating, pricing method and proxy for the default-free curve. The first row for each method shows the
number of (bond spread, default swap premium) pairs that could be formed.
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AAA AA A BBB BB B NR All
Obs. 933 955 166 182 146 255 3 2639
Swap
1 0.17 0.22 0.39 0.74 2.15 1.95 0.53 0.88
2 0.15 0.17 0.26 0.54 1.26 1.21 0.30 0.55
3 0.15 0.15 0.23 0.46 1.13 097 0.15 0.46
Repo
1 0.17 0.22 0.39 0.74 2.14 1.95 0.54 0.88
2 0.15 0.17 0.27 0.54 1.26 1.20 0.30 0.55
3 0.15 0.15 0.23 0.46 1.13 096 0.16 0.46
Government
1 0.37 0.38 0.51 0.87 229 210 0.61 1.02
2 0.18 0.17 0.27 0.55 1.25 1.21 0.31 0.56
3 0.16 0.15 0.24 0.46 1.12 0.95 0.17 0.46

Table III. Goodness of fit of the reduced form credit risk models.

For each issuer and for each day, for which we have at least five bond quotes and one default swap quote,
we estimate a reduced form credit risk model with a constant recovery rate of 50%. The integrated
hazard function is modelled as either a linear, quadratic or cubic polynomial of time to maturity. The
default-free term structure of interest rates for each day is approximated by either zero-coupon swap,
repo or government curves. The model parameters are estimated using non-linear squares estimation.
The first row of the table shows the number of issuer-days categorized by rating on which we have at
least one default swap quote and at least five bond quotes. The remainder of the table shows, for each
model, the average model fit per rating measured by the root mean squared error (RMSE) of the bond
residuals. Each model is characterized by the proxy for the default-free curve and the degree of the

integrated hazard function.
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AAA AA A BBB BB B NR

Swap
1 M 0.07 0.36 0.72 142 7.18 6.65 1.95
2 A 0.10 0.27 0.46 1.05 4.83 4.52 0.43
Ao -0.02 0.02 0.05 0.06 0.38 0.39 043
3 A 0.10 0.27 042 1.16 546  2.98 -2.77
A2 -0.02  0.02 0.07 0.00 0.18 1.02 247
A3 0.00 0.02 -0.01 0.01 0.02 -0.06 -0.31

1 A 0.15 0.45 0.83 1.52 7.28 6.75  2.05
2 A\ 0.18 0.36  0.55 1.14 493 4.61 0.53
A2 -0.02 0.02 0.05 0.05 0.38 039 043
3 A 0.18 0.36  0.52 1.23 5.55  3.08 -2.69
A2 -0.02 0.01  0.07 0.01 0.18 1.02  2.48
A3 0.00 0.02 -0.01 0.01 0.02 -0.06 -0.31
Government
1 A 0.75 1.04 1.36 1.98 7.66 7.23 2.59
2 A 0.39 0.50 0.71 1.32 5.06 4.78 0.73
A2 0.07 0.10 0.11 0.10 0.43 0.45 0.53
3 M 0.26 0.45 0.61 1.29 5.61 3.15 -2.53
A2 0.12 0.13 0.17 0.10 0.24 1.11 261
A3 -0.01 0.02 -0.01 0.00 0.02 -0.06 -0.31

Table IV. Parameter estimates for the reduced form credit risk models.

For each issuer and for each day, for which we have at least five bond quotes and one default swap quote,
we estimate a reduced form credit risk model with a constant recovery rate of 50%. The integrated
hazard function is modelled as either a linear, quadratic or cubic polynomial of time to maturity with
parameters \;,i = 1,2,3 (Ag is restricted to zero). The default-free term structure of interest rates for
each day is approximated by either zero-coupon swap, repo or government curves. The model parameters
are estimated using non-linear squares estimation.

The table shows average parameter estimates (times 100) per rating and model. Each model is charac-
terized by the proxy for the default-free curve and the degree of the integrated hazard function.
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AAA AA A BBB BB B NR All

Swap
1 1.8 0.6 -0.4 -3.6 60.3 88.0 12.5 14.8
(4.5) (8.2) (11.7) (24.7) (110.8) (152.4) (12.5) (85.6)
2 3.0 2.5 2.1 5.1 123.4 145.9 74.4 30.2
(4.1) (6.9) (10.0) (19.3) (130.5) (159.5) (74.4) (38.2)
3 3.7 4.0 2.8 7.4 114.0 168.7 36.6
(4.9) (7.9) (9.3) (20.6) (137.2) (170.7) (44.2)

Repo
1 -2.0 -3.1 -4.7 -8.5 55.6 83.7 7.4 9.7
(4.7) (9.6) (11.8) (24.8) (109.7) (151.1) (8.2) (85.1)
2 -0.3 -1.4 -2.3 0.3 118.7 141.6 69.3 24.9
(3.7) (7.8) (10.4) (18.8) (126.7) (156.4) (69.3) (86.7)
3 0.4 0.0 -1.4 2.6 109.4 164.5 30.3
(3.9) (8.1) (9.4) (19.6) (134.0) (166.8) (41.1)

Government

1 -33.4  -36.6 -35.7  -29.9 34.6 56.8 -18.6 -19.5
(33.5) (36.7) (36.3) (36.0) (103.6) (149.6) (18.6) (53.7)
2 -25.3 -28.7  -25.3 -17.5 104.8 123.8 55.1 0.5
(25.3) (28.8) (27.0) (24.7) (114.8) (144.5) (55.1) (46.4)
3 -25.9 =284 -22.9 -13.0 96.6 148.1 6.4
(25.9) (28.5) (25.0) (22.3) (123.0) (151.0) (48.6)

Table V. Performance of the reduced form credit risk models.

For each issuer and for each day, for which we have at least five bond quotes and one default swap quote,
we estimate a reduced form credit risk model with a constant recovery rate of 50%. The integrated
hazard function is modelled as either a linear, quadratic or cubic polynomial of time to maturity. The
default-free term structure of interest rates for each day is approximated by either zero-coupon swap,
repo or government curves. The model parameters are estimated using non-linear squares estimation.
For each day a model can be estimated, we calculate two pricing errors: one as the default swap ask
market quote minus the model-implied default swap premium using parameters estimated from bond bid
quotes; the other as the market bid quote minus the model premium using parameters estimated from
bond ask quotes.

The table shows average pricing errors and average absolute pricing errors (between parentheses) catego-
rized by rating and model. Each model is characterized by the proxy for the default-free curve and the
degree of the integrated hazard function.
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Swap Repo Government

R2 58% 57% 46%

constant 38.2 36.7 46.4

(52.6) (52.9) (72.3)

Deal type bid 5.4 5.7 5.6
(8.4) (8.9) (9.2)

ask -7.0 -6.9 -6.4

(-8.4) (-8.9) (-9.2)

Maturity  (0,1] -48.1 -45.2 -37.7
(-26.6) (-24.5) (-18.2)

(1,2] -26.6 -24.5 -18.2

(-8.3) (-7.8) (-6.1)

(2,3] -8.7 -7.9 -7.5

(-4.1) (-3.9) (-4.0)

(3,4] -2.7 -2.1 -1.4

(:0.8) (-0.7) (:0.5)

(4,5] 7.7 7.0 5.8

9.6) 92) (8.7)

(5,) 19.7 16.9 7.8

(6.7) (6.1) (3.3)

Rating AAA -36.8 -33.9 -25.7
(-10.5) (-11.0) (-10.7)

AA -36.5 -33.0 -23.3

(-26.5) (-25.6) (-20.4)

A -30.6 -28.5 -21.1

(-27.5) (-26.9) (-21.0)

BBB -22.2 -21.4 -19.8

(-11.0) (-11.0) (-10.7)

BB 102.6 98.9 79.2

(38.9) (38.4) (31.9)

B 138.3 135.1 113.2

(60.3) (60.3) (52.3)

Currency  dollar -0.9 -0.6 -3.2
(-1.3) (-0.9) (-4.7)

euro 2.1 1.3 6.0

(1.3) (0.9) (4.7)

Date Q2 1999 6.0 6.1 -1.0
(2.7) (2.8) (-0.5)

Q3,Q4 1999 0.4 1.0 7.0

(0.2) (0.4) (2.7)

Q1,Q2 2000 -6.4 -6.5 -4.9

(-2.4) (-2.6) (-2.0)

Q3,Q4 2000 -4.3 -5.1 -3.3

(-1.7) (-2.1) (-1.4)

Q1,Q2 2001 11.1 8.2 -0.9

(1.9) (1.5) (-0.2)

Table VI. Analysis of absolute pricing errors from reduced form credit risk models.

For each issuer and for each day, for which we have at least five bond quotes and one default swap quote, we
estimate a reduced form credit risk model with a constant recovery rate of 50%. The integrated hazard function
is modelled as quadratic polynomial of time to maturity. The default-free term structure of interest rates for
each day is approximated by either zero-coupon swap, repo or government curves. The model parameters are
estimated using non-linear squares estimation.

For each day a model can be estimated, we calculate two pricing errors: one as the default swap ask market quote
minus the model-implied default swap premium using parameters estimated from bond bid quotes; the other as
the market bid quote minus the model premium using parameters estimated from bond ask quotes.

The table shows estimated coefficients and t-values (between parentheses) of regressions of absolute pricing errors
on dummy variables for deal type (bid or ask), currency (euro or dollar), rating (AAA, AA, A, BBB, BB), maturity
(1-year segments up to 5 years, and a segment from 5 to 10 years) and quote date (6-month periods). For each
set of dummies, we set a linear combination of the coefficients to 0, where the weight of a coefficient equals the

sample mean of the corresponding dummy variable.
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Figure 1. Illustration of the insensitivity of spreads and default swap premiums to the
assumed recovery rate.

A reduced form credit risk model is fitted to market bid quotes of Deutsche Bank bonds on 4 May 1999
using non-linear least squares estimation. The integrated hazard function is modelled as a linear function
of time to maturity, so that the hazard rate is a constant. The default-free term structure is approximated
by the swap curve. The recovery rate is varied between 10% and 90%.

Panel (a) shows the fitted spread curves for varying recovery rates; (b) portrays 1 minus the recovery
rate and the hazard rate on the left axis, and their product on the right axis; (c) depicts the calculated
premiums for a 5 year default swap.
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Figure 2. Swap, repo and government curves.

Average zero-coupon swap, repo and government curves over the sample period from May 1999 to January
2001.
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Figure 3. Histograms of default swap premiums.
The data set consists of indicative bid and ask quotes on default swaps obtained from internet trading

services creditex and CreditTrade and from daily price sheets posted by banks and brokers. The quotes
are observed from May 1, 1999 to January 10, 2001. All contracts have a notional of 10 million (euros or

US dollars) and a maturity of at most 10 years. per credit rating.
Figure (a) shows histograms of default swap quotes for ratings AAA, AA and A, and figure (b) for BBB,

BB and B. For rating class CCC, we have only 10 observations, so it is not shown here.
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Figure 4. Scatter plots of pricing errors versus default swap premiums per rating.

The premium of a default swap written on a specific entity is approximated by the yield difference
(spread) between a defaultable bond issued by that entity and an equivalent, but default-free bond. The
default-free curve is approximated by the swap curve. To make pairs of bond spreads and default swap
premiums, we use the interpolation method: find two bonds, one whose maturity is smaller than, but at
most twice as small as, the default swap’s maturity, and one whose maturity is larger than, but at most
twice as large as, the default swap’s maturity, and linearly interpolate their spreads.

Each time a pair can be formed of a default swap premium and an interpolated bond spread, we calculate
two pricing errors. One by subtracting bond bid spreads from default swap ask quotes, and the other by
subtracting bond ask spreads from default swap bid quotes.

The graphs depict scatter plots of pricing errors versus default swap premiums per rating. The horizontal
(vertical) axis corresponds to the default swap premiums (pricing errors).
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