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Abstract

This paper studies empirical issues of one-factor yield curve models. We focus

on the models by Ho & Lee (1986), Hull & White (1990) and Moraleda & Vorst

(1996). To be consistent in the comparison of the models, we derive them all within

the Ritkchen and Sankarasubramanian (1995) framework, which is a subset of the

very general Heath, Jarrow and Morton (1992) model. We estimate model parame-

ters from historical time series of government bond prices. The model by Moraleda

and Vorst (1996) turns out to best explain the yield curve dynamics through time.

Moreover, humped shapes in the volatility structure as modelled in this model are

typically found. Next, we use these parameter estimations for pricing options traded

in the Spanish �nancial market. A comparison between model and market option

prices is provided.

1 Introduction.

Over the last two decades, a lot of research has been devoted to the development of valu-
ation models for interest rate derivative securities such as options, caps, collars and swap-
tions. Most attention has been paid to the theoretical properties of these models, where
very few papers have studied empirical issues. Most of these empirical works have focussed
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on what the econometrians would call diagnostic checking or speci�cation testing of the
models. This means checking the assumptions of the model, computing statistics of the
parameter estimators, studying their stability over time, etc... Typically, this strand of
literature tests the models with bond price data. Brown and Dybvig (1986), Stambaugh
(1988), Dybvig (1989), Chan, Karolyi, Longsta� and Sanders (1992) and Brown and Schae-
fer (1994) are examples of research where the main purpose is estimating di�erent model
parameters and subsequently testing with bond price data.

The main result from these studies is that relatively simple models such as Vasicek
(1977) or Cox, Ingersoll and Rox (1985) �t bond price data remarkably well. A step further
in the analysis of the empirical behavior of the term-structure models is, though, to test how
the models with these parameter values price real option data. This is of crucial interest
since these models are mainly used for derivative pricing purposes. In our opinion, this
is the central question to be answered by empirical work in this area. Surprisingly, it has
been rarely addressed in the literature. Some examples are Flesaker (1993), who analysed
the continuous time version of the Ho and Lee (1986) model and Dietrich-Campbell and
Schwartz (1986), who examined the two factor Brennan and Schwartz (1986) model.

Some literature has approached this central question estimating the model parameters
with option data rather than with the underlying yield curve movements. In fact, the model
parameters are estimated in the same way as the implied volatility for options on stocks
is estimated from option and stock price data. Amin and Morton (1994) and Amin and
Ng (1995) are probably the most relevant examples that estimate implied volatilities and
comparing di�erent models. However, this approach has some theoretical inconsistencies.
In particular, implied volatilities techniques demand a di�erent estimation on each trading
day. The result is that the model parameters change daily. Contrary, term-structure models
generally assume that the volatility parameters are constant over time. The quoted authors
have tried to reconcile this apparent inconsistency by di�erent arguments although a full
understanding of the implied volatility estimation for models assuming constant volatility
parameters has not been yet obtained1.

In this paper, we focus on the estimation of term-structure model parameters from
historical yield curve movements. As the previous literature, we analyze econometric issues
such as the stability of the parameters. Our main interest, however, concerns the reliability
of the estimated parameters to price options traded in the markets.

We use the general Heath, Jarrow and Morton (1992) framework for pricing options.
However, for most interest rate derivative securities, such as American options, explicit
calculation of prices in this kind of framework requires computationally intensive numerical
methods. Recently, however, Li, Ritchken and Sankarasubramanian (1995) have developed
a numerical algorithm that makes the evolution of the term structure Markovian for a
broad class of models, as identi�ed by Ritchken and Sankarasubramanian (1995). All
models considered in this paper can be included in this class. We estimate parameters for
the Spanish market by minimizing the error between the forward rate changes produced
by the models and those historically observed in the markets. The forward rates, however,

1See Amin and Morton (1994)
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are not directly observed in the markets. They rather have to be inferred from bond
prices quoted in the debt markets as will be explained in Section 3. The parameters thus
estimated are used to price derivative securities traded in the Spanish option markets. A
comparison between the option prices given by the models and the prices quoted in the
markets is provided.

This paper compares three one-factor yield curve models. They have one, two and
three parameters respectively. The �rst one is the continuous time version of the Ho and
Lee (1986) model. Ho and Lee are credited for being the �rst to build a model that
provides arbitrage free prices which depend on an exogenously speci�ed initial yield curve.
Moreover, this process, contrary to traditional models, no longer involves an exogenous
speci�cation of the 'market price of risk'.

The Ho and Lee model, however, has the major disadvantage of just allowing parallel
yield curves for any moment in the future. This is because the volatility structure of the
interest rate dynamics is assumed to be a constant.

The second model under consideration is the Hull and White (1990) model or, equiva-
lently, the exponentially decaying model by Heath, Jarrow and Morton(1992). This model
adds a mean-reverting e�ect for the interest rates through a second parameter in the volatil-
ity speci�cation. In fact, the volatility structure under this model is a strictly decreasing
function of the time to maturity so that short term interest rates are more volatile than
long term rates. As a result, this models captures the well known e�ect that interest rates
are pulled to some long-run average level over time.

Some recent empirical studies, however, have found that the mean reversion for the
interest rates is not actually as straightforward as it was generally believed. In fact,
the volatility structure is not, frequently, a monotone decreasing function of the time to
maturity as modeled by Hull and White (1990). But, rather, it is initially upwards sloping,
it reaches a maximum, and then, due to the mean reversion, it decreases with the time to
maturity. This shape in the volatility for the interest rates is referred to in the �nancial
literature as humped volatility structures.2

The third model we consider in this paper is due to Moraleda and Vorst (1996). This
model allows for humped volatility structures in the yield curve dynamics at the price of
adding an extra parameter to the model.

The rest of this paper is organized as follows. In section 2, the general setting in which
all the models are nested is presented. Section 3 describes the two di�erent data set that
we will use. They record yield curve data and option price data, respectively. Section 4
outlines the methodology for the estimation of the models, while section 5 presents the
results achieved on both the volatility estimation and the �t to the option price data.
Section 6 draws the main conclusions and summarizes the paper.

2See, for example, Kahn (1991), Heath, Jarrow, Morton and Spindel (1992) and Amin and Morton
(1994) that have found, for di�erent periods and currencies, humped volatility structures in the yield
curve dynamics.
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2 The models.

The yield curve dynamics can be equivalently modeled through three related variables:
interest rates, forward rates and prices of discount bonds. The traditional approach fo-
cusses on the interest rate modeling. Vasicek (1977), for example, proposed the following
characterization of the instantaneous spot interest rate dynamics

dr = (a� br)dt+ �dW (t); (1)

where a,b and � are non-negative constants, r is short hand for r(t), the spot interest rate,
and W (t) is a Brownian motion. Extensions of this stochastic di�erential equation yield
to well known models in the �nancial literature.

More recently, Heath, Jarrow and Morton (1992) have proposed to model the forward
rates rather than the interest rate dynamics. We derive all considered models under this
framework as we outline in the sequel.

Consider a continuous time economy where bonds are traded for all maturities and
markets are frictionless. Denote by P (t; T ) the price at time t of a pure discount bond
that pays $ 1 at time T , and assume that P (t; T ) > 0 for all t 2 [0; T ]. The instantaneous
forward rate at time t for a maturity T , f(t; T ), is de�ned by

f(t; T ) = �@ lnP (t; T )

@T
;

so that

P (t; T ) = e�
R T
t
f(t;u)du: (2)

For a �xed maturity T , Heath, Jarrow and Morton (1992) model the evolution of the
instantaneous forward rates by the di�usion

df(t; T ) = �(t; T; f(t; T ))dt+ �(t; T; f(t; T ))dW (t); (3)

with f(0; T ) given and deterministic, and where �(:) and �(:) are stochastic processes
whose values are known at time t and W (t) is a Brownian motion. Notice that both �(:)
and �(:) can explicitly depend on the forward rates f(t; T ). The dependence of �(:) and
�(:) on f(t; T ) will not be made explicit hereafter.

Heath, Jarrow and Morton (1992) proved that at any moment in time arbitrage free
prices g(t) of interest rates derivative securities with only a terminal payo� g(T ) at time
T are given by

g(t) = Et

�
e�

R T
t
r(u)dug(T )

�
; (4)

where the expectation is taken with respect to the so called risk adjusted process which is
speci�ed by equation (3) with the restriction that

�(t; T ) = �(t; T )

Z T

t

�(t; u)du: (5)
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Substituting (5) in (3) and integrating, gives the instantaneous forward rate process
under which theoretical arbitrage free prices should be calculated

f(t; T ) = f(0; T ) +

Z t

0

�(u; T )

�Z T

u

�(u; y)dy

�
du+

Z t

0

�(u; T )d ~W(u); (6)

where ~W (u) denotes a Brownian motion under an equivalent martingale measure.
As follows from (6), the stochastic evolution of the forward rates under the risk neutral

process is fully characterized with the speci�cation of an initial forward rate curve and
the volatility function. The initial forward rate curve is observable in the market at any
moment in time. The volatility function, in turn, plays a key role in the analysis. Its
speci�cation uniquely determines the drift term of the risk adjusted process by the no
arbitrage argument.

The spot rate at time t, r(t), is given by

r(t) = f(t; t) = f(0; t) +

Z t

0

�(u; t)

�Z t

u

�(u; y)dy

�
du+

Z t

0

�(u; t)d ~W (u): (7)

Once this general setting has been established, we can now discuss the particular models
under consideration. Consider the framework given by (6) with

�(t; T ) = �
[1 + 
T ]

[1 + 
t]
e�

�
2
(T�t) (8)

and where �, 
 and � are non-negative constants. This choice for the volatility generalizes
a number of term-structure models. In particular, we consider the following models.

Table 1: One-Factor Yield Curve Models

Model Key Volatility speci�cation
1. Ho and Lee (1986) HL �(t; T ) = �

2. Hull and White (1990) HW �(t; T ) = �e�
�
2
(T�t)

3. Moraleda and Vorst (1996) MV �(t; T ) = �
[1+
T ]

[1+
t]
e�

�
2
(T�t)

1. The constant volatility model (HL). If we set � = 
 = 0, we get the continuous time
version of the Ho and Lee (1986) model as derived by Heath, Jarrow and Morton
(1992). This model is a one-parameter model with the volatility function being
constant. Hereafter, this model is referred to as the HL model.

2. The exponential volatility model (HW). This second model is the extended Vasicek
version of the Hull and White (1990) model or, equivalently, the exponentially de-
caying model by Heath, Jarrow and Morton (1992). It is obtained by setting 
 = 0,
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which leads to Vasicek's volatility function3. This model generalizes the previous
model by Ho and Lee (1986). Indeed, for � = 0 in the HW model, we get the con-
stant volatility model. What is more important, though, is that this approach models
a very well known e�ect for the interest rates dynamics known as mean-reversion.
This means that interest rates are pulled over time to some long-run average level.
Hence, it seems to imply that short term rates are more volatile than long term rates.
This model is denoted along this paper as the exponential volatility or HW model.

3. The humped volatility model (MV). We �nally consider a three-parameters model
introduced by Moraleda and Vorst (1996). These authors model yield curve dy-
namics with a volatility function as given by (8) with all parameters being strictly
positive. This yields a humped volatility structure (for 2
 > �) that has been sys-
tematically found in recent empirical studies. Notice that this model still implies
a mean-reverting process for the interest rates, as strongly supported by both eco-
nomic theory and previous empirical evidence. What this model adds to the existing
literature is a delay of the mean reverting e�ect. In fact, the volatility structure is
upwards sloping for the short-term rates. After reaching a maximum, the volatility
decreases with time so that interest rates revert to their long-run average. After all,
the empirical �ndings by Kahn (1991), Amin and Morton (1994), etc... point out
that the mean-reverting e�ect is not as straightforward as it was generally believed.
And this is precisely what Moraleda and Vorst (1996) modelled4. This model shares
all the advantages of the previous models and generalizes them. We refer to this
model as the humped volatility or MV model.

As explained in the introduction, the �nal goal of this chapter is to test the models
with real option data. If the options to be priced were European, their valuation would be
fairly simple since equation (4) can be used. In fact, equation (4) can be explicitly further
developed into an analytical formula in case the volatility is described by (8) (see Mercurio
and Moraleda (1996)). Therefore, pricing European style claims just requires solving an

3Brenner (1989) proved that the function � exp
�
�

�
2
(T � t)

�
in (6) yields an Ornstein-Uhlenbeck process

for the spot rates as assumed by Vasicek (1977). While the exponentially decaying model by Heath, Jarrow

and Morton (1992) matches the initial term structure by construction, Hull and White (1990) allowed the
drift parameter of Vasicek's model to be time dependent so that they exogenously �t the initial yield curve.
As a result, both models are equivalent [see Moraleda and Vorst (1996) for a formal proof]. Though, Hull
and White (1990) were the �rst to incorporate the initial yield curve as observed in the markets to a model
with Vasicek's volatility. For this historical reason we choose their name to refer to this model. However,
as with the HL model, the derivation of the model that we use through out this paper is due to Heath,
Jarrow and Morton (1992).

4The Moraleda and Vorst (1996) model as given by (8) is somehow related to a previous model by Mer-
curio and Moraleda (1996) where humped volatilities are already modelled. The latter authors considered
a volatility structure given by �(t; T ) = �[1 + 
(T � t)] exp[��

2
(T � t)], which is humped (for 2
 > �)

and stationary. But, such a choice leads to a model that cannot be used for pricing American-style claims
with a recombining lattice. On the other hand, the Moraleda and Vorst (1996) model can price American
options with recombining lattices, although it is no longer stationary.
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analytic formula.5

For the case of American style options, things are not so easy. Since we use this kind
of option data to test the models, we devote the next subsection to explain how to price
these claims within a homogeneous framework for all models.

2.1 The valuation of American style claims

In contrast with the European options case, there are no analytic formulas for the valuation
of American style claims. The expectation of the terminal payo� of the security considered
should be calculated recursively down to the valuation date t. This means discretising
the SDE (3) which leads, in the general case of general case of Heath, Jarrow and Morton
(1992), to a non-Markov process for the short rate, r This makes computing the model very
slow when not unfeasible. Indeed, for one factor models, there are 2n nodes at the n � th

time step. Recently, however, Ritchken and Sankarasubramanian (1995) have identi�ed a
class of volatility structures within the Heath, Jarrow and Morton (1992) paradigm that
enable the evolution of the term structure to be made Markovian with respect to two state
variables and thus reduce the number of di�erent nodes at each instant considerably. As
we show in this section, this class is fairly general. In fact, we show here how to embed all
models reported in Table 1 in the class of Ritchken and Sankarasubramanian (1995).

The Ritchken and Sankarasubramanian (1995) class of models is given by equation (3),
where we have the following speci�cation for the volatility

�(t; T ) = �(t)h(t; T );

h(t; T ) = e�
R T
t

�(x)dx;
(9)

Here �(t), the volatility of the spot interest rate at date t, can depend on all information
available at time t. In particular, �(t) can depend on the level of the spot interest rate
itself, while �(x) is some deterministic function.

For this choice of the volatility, Ritchken and Sankarasubramanian (1995) show that
bond prices at time t can be analytically computed according to

P (t; T ) =

�
P (0; T )

P (0; t)

�
e��(t;T )(r(t)�f(0;t))�

1
2
�2(t;T )�(t); (10)

with

�(t; T ) =

Z T

t

h(t; u)du

and

�(t) =

Z t

0

�2(u)h2(u; t)du:

5Notice that most of the interest rate derivatives can be written as portfolios of derivatives on discount
bonds.
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As before, European options can be computed according to (4) where the expectation
is now taken under the risk-neutral process

dr(t) = �(r; t)dt+ �(t)d ~W (t); (11)

with

�(r; t) = �(t)[f(0; t)� r(t)] + �(t) +
d

dt
f(0; t): (12)

In contrast with the process described by equation (7), the process described by equa-
tion (11) can be discretised in a Markovian (or recombining) lattice in terms of two vari-
ables, namely r(t) and �(t). An e�cient way to do this has been developed by Li, Ritchken
and Sankarasubramanian (1995).

We show now how the models under consideration in this paper (Table 1), can be
embedded in the general framework discussed so far. The constant volatility model (HL)
can be written in the form of equation (9) by setting �(t) = � and �(x) = 0, so that
h(t; T ) = 1. The computation of the functions �(t; T ) and �(t) is trivial. Nesting the
exponential volatility model (HW) in (9) is very simple as well. We set �(t) = � and
�(x) = �

2
. This implies that h(t; T ) = exp[��

2
(T � t)]. Again, the values for �(t; T ), �(t)

immediately follow. Finally we can embed the humped volatility model (MV) in (9) as
follows

�(t) = �;

h(t; T ) =
1 + 
T

1 + 
t
e�

�
2
(T�t);

where �(x) = �
2
� 


1+
x
.

The computation of the values of �(t; T ) and �(t) for this model is not as straightforward
as before. They are

�(t; T ) =
2

�2(
t+ 1)

h
(
�t+ 2
 + �) � (
�T + 2
 + �)e�

�
2
(T�t)

i
;

and

�(t) =�2

Z t

0

�
1 + 
t

1 + 
u

�
2

e��(t�u)du

=
�2(1 + 
t)


2

�
�Ei

�
�(1 + 
t)




�
e
��(1+
t)


 (1 + 
t)� 


�

� �2(1 + 
t)2


2

�
�Ei

�
�




�
e
��(1+
t)


 � 
e��t
�
;

where Ei denotes the exponential integral function6 de�ned as

Ei(z) =

Z z

�1

et

t
dt: (13)

6Moraleda and Vorst (1996) provide an approximation of this function for any desired accuracy.
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As mentioned before, Li, Ritchken and Sankarasubramanian (1995) discretised the spot
rate processes of the class identi�ed by Ritchken and Sankarasubramanian (1995). Such a
discrete-time model is Markov and hence, the nodes in the lattice recombine. For doing
so, they proposed a change of variable which is no longer needed for the models considered
in this paper7. The discretised lattice approximation for dr(t) in (11) can be established
through the following procedure. Suppose that at the start of some time increment the
spot rate is ra. In the next time period the variable moves to either ra+ or ra� whose
values are given by

ra+ = ra + �
h
(J + 1)

p
�t
i
;

ra� = ra + �
h
(J � 1)

p
�t
i
;

where J is computed as follows. Set Z =int[�(r
a;t)
p
�t

�
], and � = sign(Z). We put J = �Z if

Z is even and J = � jZj+1 otherwise. The remaining procedure closely follows the paper by
Li, Ritchken and Sankarasubramanian (1995) and we refer to that paper for completeness.
That paper also shows how to value American-style options with this recombining lattice.

3 The data

This section describes the two di�erent data sets that are used in this paper. The �rst
data set contains historical yield curves from the Spanish Government bond market. That
is, prices of coupon bearing Treasury bonds. However, the term structure of interest rates
is not directly observable for most maturities, since the term structure consists of prices of
zero coupon bonds. It has to be estimated, basically from bond prices. We devote some
attention in this section to detail in which way the term structure has been estimated. The
second data set records interest rate option prices. In particular, we took data on options on
10-year Treasury bond futures traded on MEFF (Spanish Exchange of Financial Futures).

3.1 The term structure data

The term structure of interest rates provides a characterization at a speci�c date of interest
rates as a function of time. There are three equivalent ways of specifying this characteriza-
tion: the discount function, the spot rates for di�erent maturities and the forward rates for
di�erent maturities. These functions can be readily computed only when zero coupon bond
prices (sometimes referred to as strips) are quoted in the debt markets. However, this is
not the case for most markets and certainly not for the Spanish Government bond market.
In the most general case, estimation from coupon-bearing bonds has to be implemented to
infer the term structure.

7In the general form of the Li, Ritchken and Sankarasubramanian (1995) model, stochastic volatilities
are possible. To compute such a model, these authors propose a change of variable in order to obtain a
constant volatility process. In our cases given by Table 1, this is not required since the instantaneous spot
rate volatility is already constant.
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In the literature, spline techniques are used to estimate the discount function. McCul-
loch (1971, 1975) introduced the methodology of �tting the discount function by polynomial
splines of di�erent degrees. Shea (1982) and Steely (1991) suggested using B-splines. Va-
sicek and Fong (1982) implemented exponential splines. Which of these techniques to use
for estimating the term structure is not a trivial matter at all. While the estimation should
be smooth, it should also approximate as accurate as possible the actual yield curve8. It
is likely that in the market, options on coupon bearing bonds will be priced based on the
market price of the underlying asset. If there is a large di�erence between the theoretical
price from a yield curve model of a coupon bearing bond and its market price, it will be
very probable that also the theoretical value of the option is incorrect. Not only will the
mispricing in the option be approximately equal to the mispricing in the bond in absolute
terms, but in relative terms it will certainly be larger since option prices are much lower
than bond prices.

The estimation of the term structure used here was carried out by AFI according to
the McCulloch's polynomial (cubic) spline technique for estimating the discount function
9. This produces estimates of the discount function as a continuous function of time and
yields the forward rates to be a smooth function. This estimation was done from daily
prices of Spanish Government bonds quoted at the Madrid Stock Exchange. The sample
we use lasts for 205 trading days covering the period from July 8, 1994 to May 12,1995.
On average, there are 17 daily bond prices. These bonds pay annual coupons. In order to
have more short term interest rates from 0 to 1 year, daily prices of REPOS on Treasury
bills of the Spanish Government were used too.

3.2 Bond Future Option data

We test the models in this paper with options on Treasury bond futures traded on MEFF
(Mercado de Futuros Financieros)10. The sample lasts for 94 trading days. It covers the
period from January 9, 1995 to May 23, 1995. All prices were taken during the time
interval that lasts from 16:00 p.m. to the closing time of the market (17:15 p.m.). In case
of several trades of the same option, the one that was closest to 16:00 p.m. has been taken.
This is because the yield curve data available in this paper were taken also at 16,00 p.m.
The sample contains 1085 options of which 538 are calls being the remaining, 547, puts.
On average, there are 12; 92 daily options being traded: 5; 83 calls and 5; 81 puts.

8The question regarding which of the above mentioned techniques best approximates the yield curve is
not addressed here.

9AFI stands for Analistas Financieros Internacionales (International Financial Analysts). We thank
Amadeo Reynes and Inmaculada Gomez from AFI that gently provided us with the estimation of the
discount function, that, as explained in this section, fully characterize the term structure of interest rates.
Thus, we are given the estimated coe�cients for the discount function for each day in the sample (for the
di�erent intervals into which the time horizon is divided). For doing this estimation, AFI used 5 knots in
all the dates considered, i.e., the time horizon was divided in 4 parts. The size of these parts changes daily
according to the usual criteria.

10Spanish Exchange of Financial Futures. We thank Miguel Angel Rodriguez from MEFF who gently
provided us with the option and future data.
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The underlying asset of the option is a 10-year Notional bond future traded as well on
MEFF. The underlying asset of the future is a notional bond theoretically issued at par the
day of the maturity of the future, with a maturity of 10 years, an annual coupon payment of
9% and a face value of 10.000.000 Pts (roughly $ 82.000). There are, basically, four future
contracts at any time traded on MEFF, with maturities in March, June, September and
December. Speci�cally, the future contracts expire the third Wednesday of the maturity
month. We collected closing prices of Treasury bond futures traded on MEFF. The closing
price is computed by MEFF as the average of a number of trades (generally the last 12
trades before the market closes at 17.15 p.m.). The sample period was January 9, 1995 to
May 23, 1995, making a total of 94 trading dates. In this period, two bond futures were
mainly traded: March 95 and June 95.

The options on these bond futures are American-style. There always trade two di�erent
maturities of options. These are the �rst Wednesdays of the two closest months in which the
bond futures mature, i.e., March, June, September and December. An additional option
can be traded. It is written on the closest time-to-maturity future and it is referred to as
the monthly option. The maturity of this option is also the �rst Wednesday of the closest
month, but just in case that such a month is not March, June, September or December. It
means that the monthly option is just called into existence for those months in which no
future matures. Eventually, we have then an option expiring the �rst Wednesday of every
month. The underlying asset is always the closest time-to-maturity future. However, there
is an important di�erence between the quali�ed options which mature in March, June,
September or December and the remaining ones. The two closest maturity of the former
are always alive while just one -at most- of the monthly options can be traded at any point
in time11.

4 The methodology for the estimation of the volatility

functions.

There are two ways for estimating the parameters of the models outlined in the previous
sections. One possibility is to use time series of government bond price data to estimate the
parameters that specify the dynamics of the underlying interest rate process. The other
choice is to estimate implied volatilities from option price data.

The procedure for estimating the implied volatility function is straightforward and very
similar to that used for stock options. The problems that might arise are due to the more
complicated expressions of interest rate movements and interest rate options compared to
stocks.

We focus in this essay on the estimation through time series of the volatility functions
from a data set of changes in forward rates. The data was divided into 10 partly overlapping

11Recently, the life of the monthly options have been enlarged by MEFF to allow for rolling-over the
positions at any time. Thus, either one or two monthly options can always be traded. However, this does
not apply to our sample period.
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samples of 120 days each. For each trading date in these samples, ti, the changes in forward
rates for maturities Tj, with Tj 2 f0:5; 1; 1:5; :::; 9:5g, were taken. As a result, each basic
sample includes 120 observations of 19 variables. Our data, then, take the following form:

�f(ti; T1)::::::::�f(ti; Tm) i = 1; 2; :::; n (14)

where �f(ti; T ) = f(ti + 1; T ) � f(ti; T ) for i = 1; ::; n and T = Tj with Tj 2 fT1:::Tmg;
and �ti = ti+1 � ti. Note that keeping constant the set of forward rate maturities implies
that as we move on the sample, ti, the time-to-maturity of the forward rates, � = Tj � ti,
decreases.

To estimate the volatility functions of the models, we �rst of all need to discretise the
process (6). Let us de�ne for h > 0 the discrete trading interval, where N intervals of size
h compose a unit of time. In such a discrete time model, the instantaneous forward rate
is de�ned by:

f(t; T ) = � log(P (t; T + h)=P (t; T ))

h
;

where f(t; T ) denotes the forward interest rate at time t for the investment period [T; T+h]
of length h, which is the time interval of the model.

Heath, Jarrow and Morton (1990) have proved that the discrete-time setting of the
process (6) is given by

f(t; T ) =f(0; T ) +
tX

j=1

aj�(jh; T )C

+

tX
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1
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!
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!
� 1

!
9>>>>=
>>>>;
;

(15)

where C =
p
h=(q(1� q)) and q stands for objective probabilities,12 with 0 � q � 1; aj

is a Bernoulli random variable, taking the value 1 with probability q and the value 0 with
probability (1 � q), p is the risk neutral probability

According to (15), the forward rates will move upward if the Bernoulli random variable
a takes the value 1, and downward otherwise. The size of the movements are determined
by the function �. Therefore, the variable determining the direction of the movements of
the forward rates is aj in the model. This variable is sometimes referred to as the state
variable.

12The objective probabilities are those of the general process (3), while the risk adjusted probabilities
are those of the the process under the no-arbitrage restriction (5).
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For the constant volatility model (HL), the general model in (15) reduces to (HJM
1990a, page 430)

f(t; T ) = f(0; T ) +

tX
j=1

aj�C +
1

h
Ln

 
1 + p(e�T�C � 1)

1 + p(e�(T�t)�C � 1)

!
(16)

with � being a strictly positive constant. Appendix A shows how the general process (15)
simpli�es for the HW and MV model.

We then run a principal component analysis. The central idea of principal component
analysis is to reduce the dimensionality of a data set in which there is a large number of
interrelated variables while retaining as much as possible of the variation present in the
data set. This reduction is achieved by transforming to a new set of variables, the principal
components, which are uncorrelated, and which are ordered so that the �rst few retain most
of the variation present in all of the original variables. Speci�cally, linear combinations of
the observed variables are formed. The �rst component is the combination that accounts
for the largest amount of variance in the sample. The second principal component accounts
for the next largest amount of the remaining variance and is uncorrelated with the �rst one.
Successive components explain progressively smaller portions of the total sample variance,
and all are uncorrelated with each other. The purpose of this technique is to reduce the
data while keeping as much information as possible from the original data set. The initial
data set is transformed into two matrices, the component or factor scores matrix and a
matrix relating these components to the original variables. These later elements are called
components or factor loadings (characteristic vectors).

In a number of studies,13 principal component analysis has been used to determine a
reduced number of variables to explain the stochastic evolution of the term structure of
interest rates over time. Typically, the historical variability of the rates is almost completely
explained with three orthogonal factors. In almost all cases, three factors account for more
than 95% of the variability in the data. The �rst factor essentially represents a parallel
shift in the yield curve, while the second and third factors describe the changes in the
overall slope and curvature of the yield curve, respectively. These factors (factor loadings)
constitute the volatility function of the Heath, Jarrow and Morton model (1990b). In
particular, they assume proportional volatility functions given by

�(t; T ) = �(T � t)f(t; T ): (17)

Assuming proportional volatility functions as (17) would have allowed us to take the
factor loadings from the principal component analysis as the estimators of these functions.
This is basically what Heath, Jarrow and Morton (1990b) do leading to a straightforward
estimation of the model. Moreover, such volatility functions match market data. But
it results in an evolution of the term structure that is non-Markovian with the dramatic
reduction in computational tractability that such models imply. Note indeed that the

13Dybvig (1989); Heath, Jarrow and Morton (1990b); Steely (1991) and Strickland (1993) are relevant
examples.
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function (17) cannot be embedded in the Ritchken and Sankarasubramanian (1995) class
of volatilities given by (9).

Instead, simpler choices such as those in Table 1 lead to term structure dynamics that
can be represented according to Markov processes as shown in section 2. Unfortunately,
these speci�cations of the volatility cannot retain as much explanatory power as the former
proportional ones. Furthermore, the volatility functions in Table 1 cannot be directly
inferred from a principal component analysis. This is because these speci�cations of the
volatility function no longer directly match the principal component extracted from the
historical forward changes14.

An indirect estimation for the discrete-time processes has been proposed by Hess (1994).
He proposes to take the factor scores as estimators of the state variables aj in (15). As
previously outlined, the state variables determine the direction of the movements of the
yield curve. Thus if aj = 1, the forward rates move upward, while if aj = 0, the movement
of the term structure is downwards. The size of the movements of the yield curve, and
how they a�ect each maturity of the forward rates, is determined by the speci�cation of
the volatility function. As a very �rst approximation, we can proceed as follows. Let the
state variable aj be equal to 1 if the j � th factor score occurs to be positive at time tj.
Consequently, when the factor scores are negative we set aj equal to 0. But this would
just be a rough approximation. Implicitly, we would be assuming that the time interval
between observations (�) and in the model (h) are the same and, hence, just one movement
of the yield curve per trading day would be suitable in our estimation procedure.

To obtain a better �t, we can reduce h, the time step in our model. This would
allow for several movements of the yield curve per trading day in the model, though
just the daily e�ect is observed. Then, the factor scores would no longer be estimated
realizations of singular Bernoulli random variables. Instead, they would be sums of �=h
realizations of the state variable. Thus, if we set � = nh, then aj = �n

i=1si where s is a
Bernoulli random variable taking the values f0; 1g. The factor scores would be estimators
of aj 2 f0; 1; 2; ::; ng, where aj is the number of upward movements within the period and
(n� aj) notes the number of downward movements.

The problem we face is, inferring the state variables in our model, sums of Bernoulli
random variables, from the outcome of the factor analysis (speci�cally, from the factor
scores). We proceed as follows. Let, e.g., n = 3, so that � = 3h, aj =

P
3

i=1 si and
the factor scores being estimators of aj 2 f0; 1; 2; 3g, where aj accounts for the upward
movements and (3 � aj) notes the downward movements. In order to maintain similar
probability structures, it is natural to do as follows. The intervals for which the factor
scores are higher than 1 are understood as three upward movements in that particular

14Heath, Jarrow and Morton (1990b) choose a volatility as (17). They use a data set of proportional
changes in forward rates in order to run a principal component analysis. To directly match the outcome of
such analysis, they stagger the observation in a convenient way (disregarding some forward rate maturities).
In particular, they just look at forward rates whose time-to-maturity is given by �i = (Tj+i � tj) with i

denoting the di�erent maturities considered and j standing for the di�erent dates in the sample. By doing
so, the outcome of the component analysis exactly matches their volatility function, which was precisely a
funtion of the time-to-maturity. See Heath, Jarrow and Morton (1990b)
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trading day and we make aj = 3. If the factor scores (fs) are smaller than -1, the
assumption of three downward movements is made and we set aj = 0. Consistently, we
make aj = 2 if just two upward movement (and one downwards) happened (0 � fsj < 1),
and �nally we let aj = 1 if �1 � fsj � 0 which would mean that one upwards (and two
downwards) movements took place at the time considered15.

With the state variables aj so de�ned, it is now possible to estimate the parameters of
the models in Table 1 with a non-linear optimization routine16. The function to be mini-
mized is de�ned as the squared errors of the di�erence between the forward rate changes
given by the models and the observed (historical) forward rate changes. To compute the
forward rate changes given by the models we use the previously estimated state variables
aj.

5 Results

For a �xed maturity T , the evolution of the forward rates was modelled by (3). Consider
now the set of forward rate observations in our sample given by the maturity set T1; :::; Tm
and arranged as shown in (14). Notice then that T1 determines the largest data set to be
considered: that one where tn equals T1.

On the other hand, the largest data set possible would be desirable in order to obtain
accurate estimates and to analyse the stability of the parameters through time. However,
as explained by Hull (1993), the volatility function changes over time, and data that is too
old may no longer be relevant. Furthermore, if, for example, T1 is chosen to be two years,
then the shortest maturity forward rates are disregarded for most of the observations. As
a result, T1 should be chosen in a way that allows for su�cient historical observations, but
reasonably small for the short term yield curve not to be systematically disregarded. The
choice in this paper is T1 = 0:5, i:e, half a year or 120 trading days. Hence, our largest
possible choice for tn is, as well, half a year17.

The starting date in our option sample is January 9, 1995. At the preceeding trading
date, January 6 1995, we take backwards 120 daily yield curve observations. For this
data set, we estimate the model parameters as explained in section 4. We can then use
the models in Table 1 to price the options in the market. However, as time goes by,
new information may arise in the markets. It would not be too realistic then to keep the
estimated volatility constant for a long time. It is our choice in this paper to re-estimate
the model parameters every two weeks. For doing so, we take backwards again 120 trading

15This choice for the intervals of the factor scores seemed natural to us in relating the coe�cients aj
and the factor scores from the factor analysis. Notice, in fact, that the probabilities associated with a
standard normal distribution for the intervals f(-1,-1], (-1,0], (0,1], (1,1)g are f0.15, 0.35, 0.35, 0.15g.
In the case of the considered state variables, the probability distribution for aj= f0, 1, 2, 3g is f1/8, 3/8,
3/8, 1/8g. However, di�erent choices may be possible as long as they maintain a relationship as shown for
the coe�cients and the factor scores.

16We used a Newton Raphson routine that was run in Gauss.
17Hull (1993), facing the historical estimation of stock volatility, advises a data set ranging from 90 to

180 daily observations.
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days term structure observations and we re-estimate the model parameters. These new
estimators are used for pricing options during the immediately following two weeks. After
this the whole procedure is repeated. Over all, this routine is implemented ten times. The
following subsection details the results of the estimation procedure.

5.1 Estimation of the volatility function

As explained in section 4, we estimate the state variables of the models from a princi-
pal component analysis and from this, model parameters are estimated running an error
minimization routine. The function to minimize, was de�ned as the squared errors of the
di�erence between the forward rate changes given by the models and those observed in
the markets. The remaining errors will be referred to as residual errors. Clearly, the lower
the errors are, the higher the explanatory power of the model. The precise coe�cients to
be estimated are the volatility function, �(t; T ), and the probabilities p and q as given in
(15). In all cases p and q have to be estimated whereas the number of volatility parameters
varies across the models.

Table 2 shows the parameter estimates for the three models considered for the ten
sample periods. However, the estimated values for the objective probability, q, are not
tabulated. Their values turned out to be 0:5 for all models and samples considered. This
is in agreement with previous studies (see Hess (1994)). Moreover, it could have been to
some extent expected, since the forward rate dynamics in (15) are hardly sensitive to the
probability parameter p. Therefore, estimated values for p were not expected to di�er much
from those provided as initial condition in the estimation procedure.18 The residual error
(Res. err.) for each model and sample is also given in Table 2. It follows that the humped
volatility model reduces the residual errors most, as could have been expected since this is
a three parameter model. We shall come back to this point later in this section.

Table 2 also shows that 
 is always positive for the MV model. Humped volatility
shapes are just obtained in this model if 2
 > �. It is con�rmed in Table 2, that this is
the case for all samples considered apart from sample V , in which 2
 < �, so that the
volatility is a decreasing function of time. Overall, therefore, nine out of the ten samples
studied give empirical support to the humped volatility model. The shape of the hump
is not uniform along the samples, though. In fact, the hump is rather sharp for samples
I, II, III and IV while it is smoother and wider for samples V I to X. Figure 1 plots
some of these shapes for illustrative purposes. Speci�cally, we draw the volatility function,
�(t; T ), for the MV model estimated from samples I, III, V III and X (solid line). Notice
that the volatility function for the HW model is also plotted (dotted line).

Comparison of the HW and MV volatility functions in Figure 1 leads to an interesting
point. Indeed, � in the HW model turns out to be negative in samples IV and V I to X

making positive the overall sign of the exponential coe�cient of this model.19 Clearly, such
an increasing volatility function is implausible for all maturities since it would lead to the

18The initial value for p in the estimation routine was chosen to equal 0:5 for all samples and models
considered. As explained below, this is its limiting value.

19Similar results for � in the exponential volatility model were found by Amin and Morton (1994).
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Table 2: Models parameter estimates

I II
� � 
 p Res. err. � � 
 p Res. err.

HL 0.0146 0.5171 0.008548 0.0142 0.4781 0.015835
HW 0.0150 0.0108 0.5072 0.008543 0.0158 0.0306 0.4790 0.015602
MV 0.0047 0.4587 2.4401 0.5001 0.007024 0.0042 0.5244 3.9045 0.4760 0.009352

III IV
� � 
 p Res. err. � � 
 p Res. err.

HL 0.0134 0.4737 0.014167 0.0146 0.5102 0.021490
HW 0.0161 0.0613 0.4752 0.012827 0.0076 -0.1501 0.4989 0.020864

MV 0.0060 0.5162 1.7886 0.4716 0.006459 0.0026 0.2208 2.3531 0.4760 0.017835

V � VI
� � 
 p Res. err. � � 
 p Res. err.

HL 0.0117 0.4964 0.003562 0.0157 0.4889 0.006677
HW 0.0119 0.0070 0.4966 0.003561 0.0155 -0.0042 0.4887 0.006676
MV 0.0141 0.0844 0.0052 0.4968 0.003476 0.0112 0.0827 0.1517 0.4884 0.006379

VII VIII
� � 
 p q � � 
 p Res. err.

HL 0.0148 0.4846 0.008671 0.0110 0.4667 0.009941
HW 0.0116 -0.0932 0.4799 0.007908 0.0086 -0.0751 0.4549 0.008622
MV 0.0085 0.0066 0.1460 0.4834 0.006902 0.0061 0.2232 0.4651 0.4884 0.007783

IX X
� � 
 p Res. err. � � 
 p Res. err.

HL 0.0110 0.4758 0.010543 0.0183 0.5156 0.008639
HW 0.0085 -0.1452 0.4722 0.007789 0.0143 -0.0844 0.5148 0.007793
MV 0.0039 0.2464 1.3158 0.4759 0.007480 0.0112 0.1851 0.3680 0.4884 0.007489

Roman numbers stand for the 10 samples whose period are reported below. Each of these samples account
for 120 daily observations of the yield curve. Sample I: July 8 1994 to January 6 1995; Sample II: July 22
1994 to January 20 1995; Sample III: August 8 1994 to February 3 1995; Sample IV: August 23 1994 to
February 17 1995; Sample V: September 6 1994 to March 3 1995; Sample VI: September 21 1994 to March
17 1995; Sample VII: October 4 1994 to March 31 1995; Sample VIII: October 17 1994 to April 12 1995;
Sample IX: October 31 1994 to April 28 1995; Sample X: November 14 1994 to May 12 1995.
(*) All parameters reported for sample V are estimated from the sample period September 21 1994 to
March 3 1995. This is a subsample accounting for 100 days rather than 120. The estimation for the sample
September 6 1994 to March 3 1995 turns out to be highly biased while that one reported seems steadier.
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explosion of interest rates. Therefore, negative values for � in the exponential volatility
model should be precluded. But this reduces the model to the constant volatility one
for samples IV and V I to X.20 Notice moreover, that quite apart from the theoretical
disadvantages of the constant volatility model, the di�erences in the residual errors become
now apparent. This can be veri�ed by comparing the residual errors ( Res. err.) in Table
2 for the HW and MV model in samples I, II, III and V ; and the HL and MV model in
samples IV and V I to X where, as explained, the HW model reduces to the HL model.

It should be noticed however, that the estimate for � in the HW model results to be
positive for samples I to III even though humped volatility structures are found for these
samples with the MV model. As Figure 1 illustrates, this is because the downward part of
the hump is dominant.21 Although Figure 1 su�ciently clari�es this fact, it can be further
veri�ed by comparing the residual errors of both models in Table 2 for samples I to III.

In conclusion, not only serious inconsistencies are found when estimating the exponen-
tial volatility model, but the �t to real yield curve data is largely improved by using the
humped volatility model. Our yield curve data, frequently reveals that the mean reverting
e�ect is not as straightforward as generally believed.

We address next the analysis of the results for the probability parameters in Table 2.
This table shows that both the risk neutral and objective probabilities, p and q respectively,
are very close to 0:5. In particular, q is systematically equal to 0:5 whereas p always lies
in the interval [0:45; 0:52]. Moreover, the forward rates are hardly sensitive to changes in
the objective probability coe�cient, q. In turn, the yield curve dynamics are very sensitive
to changes in the risk neutral probability p. This proximity to 0:5 of both parameters
is in agreement with a theoretical result by Heath, Jarrow and Morton (1990a). They
proved that the discrete-time process (15) converges in probability to its continuous-time
counterpart process (6) if and only if p = q = 0:5 in (15). Thus, the limiting forward
rate process is insensitive to the parameters p and q. Accordingly, these authors argue
that an estimation procedure that involves inverting the contingent claims values (implied
volatility estimation from option data) should be done with the limiting processes. This
is because the option market is a continuous-time economy and, hence, the option value
should be insensitive to the probabilities (see Heath, Jarrow and Morton (1990a), page
438). Whether this also applies to our model is discussed next.

In particular, we want to study the estimates of the volatility function achieved by the
discrete-time process where no restrictions are imposed on p and q, and the limiting process
where p and q are forced to take their limiting value 0:5. We study four subsamples of
each of the ten samples reported in Table 2. More precisely, the last date of each sample
we take backwards 120 (entire sample whose results are shown in Table 2), 100, 80 and 60
observations. These subsamples are referred to as A, B, C and D, respectively. For ease
of exposition we restrict our attention to the constant volatility model (HL).

20The volatility coe�cients as shown in Table 2 have been used for pricing bond future options whose
results are studied in the next section. This is similar to what Amin and Morton (1994) do, but as
explained, if the model is to be used practically, negative values for � should be precluded.

21Note that the volatility functions in Figure 1 are plotted for 25 years to maturity. However we just
use yield curve data up to 10 years for estimating model parameters.
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Figure 1: Volatility function for the HW (dotted line) and MV (solid line) model
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Table 3: Estimates of � for the constant volatility (HL) model

I II III IV V
dt ct dt ct dt ct dt ct dt ct

A 0.0146 0.0106 0.0142 0.0290 0.0134 0.0251 0.0146 0.0081 0.0171 0.0110
B 0.0124 0.0190 0.0113 0.0148 0.0158 0.0059 0.0137 0.0047 0.0117 0.0125
C 0.0134 0.0121 0.0147 0.0100 0.0127 0.0085 0.0139 0.0152 0.0109 0.0040
D 0.0129 0.0089 0.0135 0.0037 0.0119 0.0136 0.0144 0.0163 0.0163 0.0211

VI VII VIII IX X
dt ct dt ct dt ct dt ct dt ct

A 0.0157 0.0082 0.0148 0.0170 0.0110 0.0285 0.0110 0.0231 0.0183 0.0101
B 0.0140 0 0.0111 0 0.0102 0 0.0152 0.0352 0.0172 0.0105
C 0.0111 0 0.0144 0.0053 0.0166 0.0297 0.0165 0.0143 0.0192 0.0042
D 0.0157 0 0.0159 0.0181 0.0219 0.0149 0.0188 0.0184 0.0172 0.0095

Roman numbers, I to X, stand for the sample periods reported in the caption of Table 2. Each of these
samples accounts for 120 daily observations. A, B, C, D are subsamples of each of the previous samples.
A accounts for the total sample, i:e:, 120 observations, or alternatively six month yield curve data. B,
C and D correspond to subsamples of 100, 80, and 60 observation respectively. Finally, dt denotes the
discrete-time processes as given by (15) while ct denotes the limiting process, i.e., the probabilities p and
q in (15) are �xed equal to 0:5.

Columns dt in Table 3 report the volatility parameters for the HL model estimated
from the discrete-time process (16) where p and q were allowed to take any value in the
interval [0; 1]. Columns ct in Table 3 shows the estimation of the volatility function using
the limiting process for the HL model. As previously explained, the limiting process is
obtained by setting p = q = 0:5 in (16). Comparing columns dt and ct in Table 3, it is
obvious that the dt estimators are more stable than those produced by the limiting process.
Moreover, in many cases the ct volatility parameters are highly misestimated, yielding in
some cases null values for the volatility in the HL model. That is, the process (16) is very
sensitive to the risk neutral probability p, and although its value is very close to 0.5 (see
Table 2), forcing it to take this exact value leads, in many cases, to a misspeci�cation of
the volatility coe�cients. As a consequence, the probability parameters should be left free.

5.2 Yield curve and future prices

Pricing options with the models in Table 1 just requires as inputs the initial yield curve
on the valuation date and the volatility function parameters.22 The volatility function
is estimated as shown in section 4. The initial yield curve has to be estimated from
bond prices as explained in section 3. It was explained in section 3 that the estimation
of the term structure of interest rates is not trivial. Moreover, such estimation faces a
tradeo� between smoothness and accuracy. To give some insights on the accuracy of

22This is, of course, apart from the speci�c features of the options to be priced.
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Table 4: Summary of bond future pricing errors

Bond Future Av. err.a St. dev.b Av. rel. abs. err.c

March-95 -0.35 0.23 0.0044
June-95 -0.60 0.43 0.0080

The sample period is January 6, 1995 to May 26, 1995. The total number of trading dates in the sample
is 94. During 36 trading dates options with the March-95 bond future as the underlying asset were being
traded. The June-95 bond future was the underlying asset of traded options on 91 trading dates. The
price of the bond future is the same for all models considered. It just depends on the initial yield curve.
(a) Av. err. = Average error where the pricing error is de�ned as model price minus market price. (b) St.
dev. err. = Standard Deviation of the errors de�ned as (a).(c) Av. rel. abs. err. = average of (Pricing
error/Market price).

the estimation of the term structure, we compute the errors we make in pricing bond
futures. The 10 years Treasury bond futures are traded in MEFF, so that market prices
are available. Their model price can be calculated from the yield curve. Moreover, these
are the underlying instruments of the options we consider later in this chapter. Table 4
reports some descriptive statistics of the pricing errors de�ned as model price minus market
price. Notice that the models systematically underprice the futures in the market. The
errors though are not large. On average, we make an error of �0:35 and �0:60 percentage
points over the nominal value of the bond futures of March 95 and June 95, respectively.
This means a relative absolute error of, on average, 0:0044 and 0:0080.23 It is important
to realize that these errors may partially be caused by a lack of synchronicity of the data.
Recall that the yield curve data was estimated with bond prices taken at 16:00 p.m. while
the bond future data consists of closing prices. The closing price is computed by MEFF as
the average of a number of trades (generally the last 12 trades before the market closes at
17.15 p.m.). Due to the liquidity of these instruments, most of the references for calculating
the closing price are taken in the interval from 17:00 to 17:15. Therefore, there is roughly
a gap of one hour between the di�erent data sets. Given the underpricing of futures, it is
likely that all option pricing models produce biased theoretical values. However, all models
price bond futures exactly in the same way. They will all be a�ected by the same bias and,
hence, the comparison between the models is still possible.

5.3 Option pricing

Descriptive statistics for pricing errors of options produced by the di�erent models are
shown in Table 5. The pricing error is de�ned as model price minus market price. All

23Both market and model prices of the bond futures are given in percentage over its nominal value.
Thus, the average and standard deviation of the pricing errors are also given in the same unit. In turn,
the average relative absolute error reported in the last column of Table 4 is computed as pricing error over
market price.
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Table 5: Descriptive statistics for pricing errors

All Options
Model Av. errora Var. errb Av. abs. errc Av. rel. abs. err.d Sum sqr.err.d

HL -0.09 0.09 0.21 0.39 103.42
HW -0.11 0.09 0.22 0.40 106.19
MV -0.11 0.10 0.24 0.45 118.93

Call Options
Model Av. errora Var. errb Av. abs. errc Av. rel. abs. err.d Sum sqr.err.d

HL -0.17 0.07 0.22 0.40 57.31
HW -0.20 0.07 0.25 0.45 62.20
MV -0.20 0.08 0.26 0.47 67.24

Put Options
Model Av. errora Var. errb Av. abs. errc Av. rel. abs. err.d Sum sqr.err.d

HL 0.00 0.09 0.20 0.37 46.11
HW -0.02 0.08 0.20 0.36 43.99
MV -0.02 0.10 0.23 0.42 51.69

(a) Av. err. = Average error where the pricing error is de�ned as model price minus market price. (b)
Var. err. = Variance of the errors de�ned as (a). (c) Av. abs. err.= average pricing absolute error. (d)
Av. rel. abs. err. = average of (Pricing error/Market price). (e) Sum sqr. err. = Sum of the squared
pricing error. All prices of both market and models were computed as percentage of the face value of the
underlying asset.

option prices are computed as percentage of the face value of the underlying asset. Notice,
that the option prices given by the models will be a�ected by the mispricing in the futures
reported in Table 4. In particular, the mispricing in the option will be approximately equal
to the mispricing in the bond future in absolute terms, but in relative terms it will certainly
be larger since option prices are much lower than bond prices.

Table 5 shows that the constant volatility (HL) model provides the best �t to the data.
In fact, it is the model that makes the lowest error on average and the total squared errors
are also smaller. However, the mispricing for all models is very similar. They all drastically
underprice the call options, while, on average, provide a better �t to the puts.

The main conclusion, however, that can be drawn from Table 5 is that the models
poorly match the data. In fact, the average mispricing of the models ranges from 39% at
best to 45% in the worst case. In both cases, this is the mispricing percentage over the
options quoted in the market.

There are three reasons for these disappointing results. First, we use historical volatility,
where options in the markets are priced based on expectation of the volatility of the
underlying asset over the remaining time to maturity of the option. If for example, the
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market expects certain announcements about the interest rate policy of the Central Bank
or some other government agency, this might cause more uncertainty. Hence, traders might
increase the volatility that they put in their models above the historically observed level.
Second, although the derived theoretical prices are arbitrage free prices this of course only
holds if the dynamics of bond prices are indeed correctly described by the models. Since,
we cannot fully explain observed bond price dynamics with our models the theoretical
prices do not have to be arbitrage free prices. It is well known that market participants
often use a model developed by Black (1976) for pricing bond options. If one applies
this methodology to a large portfolio of options and bonds, Black's model certainly leads
to inconsistencies. However recently, Miltersen, Sandmann and Sondermann (1995) have
proved that for individual bond options one can specify a dynamic process for the price
of the underlying bond such that Black's model gives exactly the no arbitrage price. The
inconsistencies are due to the fact that if these processes really describe the price behavior
of a portfolio of bonds then there are arbitrage opportunities within the bond portfolio.
Finally, the no arbitrage argument is based upon the assumptions of continuous trading
and frictionless markets. Hence, small arbitrage opportunities can not be exploited due to
the market frictions. Market makers might increase the prices of options if there is a net
demand for certain kind of options to just below the level at which arbitrage opportunities
can be exploited in markets with frictions. We think that the �rst reason might be the
most relevant for this study.

6 Conclusions

We have studied in this paper the empirical behavior of three one-factor interest rate
models as developed by Ho and Lee (1986), Hull and White (1990) and Moraleda and
Vorst (1996). The same general setting has been used for all models. In particular, they
all have been embedded in the Ritchken and Sankarasubramanian (1995) framework. This
is a general model within the Heath, Jarrow and Morton (1992) paradigm, that allows
for pricing American options through recombining binomial trees. Moreover, the same
estimation procedure has been run in all cases. Speci�cally, we have used an indirect
estimation procedure from a principal component analysis. The model parameters have
been estimated from daily yield curve data. The parameter estimates have been used to
price bond future options traded in MEFF.

Humped volatility shapes as modeled by Moraleda and Vorst (1996), have been found
in 90% of the samples studied. Moreover, serious inconsistencies are found when estimating
the exponential volatility model. In particular, the exponential coe�cient of this model,
�, has a negative estimated value in 60% of the samples. Since this makes interest rates
explode, � should be precluded to become negative.

The humped volatility model (MV) turns out to be the model that best explains the
yield curve movements. In fact, it is the model that most reduces the residual errors but
it also has one more parameter. This higher explanatory power is even more evident when
restricting the exponential coe�cient, �, of the HW model to be non-negative. However,
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this ability no longer applies when pricing options. In fact, the simpler constant volatility
model (HL) minimizes the option pricing errors. Nevertheless, the errors are rather large
for all models. There have been given three reasons that might cause this frustrating
result. First, historical volatility might not be a correct indication of expected future
volatility in the market. Second, the arbitrage free prices are based on the assumption
that the underlying bond prices are correctly described by our models. Finally, market
imperfections do not allow the exploitation of all arbitrage opportunities.

Appendix

A Discrete-time models

The discrete time version of the exponential model (HW) is
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where � and � are positive constant.
The humped volatility discrte-time model (MV) is given by
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where � 
 and � are positive constant.
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