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1 Introduction

Currently, there are two types of market models for valuation and risk manage-
ment of interest rate derivatives, which are the LIBOR and swap market models
of Brace, Ga̧tarek & Musiela (1997), Jamshidian (1997), Musiela & Rutkowski
(1997) and Miltersen, Sandmann & Sondermann (1997). In this paper, we in-
troduce generic market models featuring forward rates that span periods other
than the classical LIBOR and swap periods. The generic market model gener-
alizes the LIBOR and swap market models. We derive necessary and sufficient
conditions for the structure of the forward rates to span an arbitrage-free econ-
omy in terms of relative discount bond prices, at all times. We develop generic
expressions for the drift terms occurring in the stochastic differential equation
(SDE) driving the forward rates under a single pricing measure. We show how
the instantaneous correlation of the generic forward rates can be calculated from
the single instantaneous correlation matrix of forward LIBOR rates. These re-
sults are sufficient for implementation of calibration and pricing algorithms for
generic market models.

Generic market models are specifically designed for the pricing of certain
types of swaps. In particular, we will consider constant maturity swaps (CMS)
and hybrid coupon swaps. An interest rate swap is an agreement to exchange,
over a specified period, interest rate payments, at a specified frequency, over a
specified underlying notional that is not exchanged. In a plain-vanilla swap, the
floating interest rate is the LIBOR rate. A constant maturity swap pays not the
LIBOR rate but instead a swap rate with specified tenor, fixed for all payments
in the CMS swap. The payment frequency remains unchanged however. A hybrid
coupon swap is a swap that features a floating payment schedule, designating
the nature of each of the floating payments. The nature of the floating payment
can be that it is determined by either a LIBOR rate with varying maturity or
a swap rate with varying tenor. An example of such a payment schedule has
been given in Table 1. Additionally, the function that transforms the LIBOR or
swap rate into a cash flow may even be not entirely linear, for example, capped,
floored or inverse.

The above swaps may have the feature that the swaps can be cancelled. Such
versions are deemed cancellable swaps. To hold a cancellable swap is equal to
holding a swap and an option to enter into the very same swap but with reversed
cash flows2. The latter option is called a callable swap. In this paper we will
also be concerned with the pricing of callable and cancellable CMS and hybrid
coupon swaps. There are two types of callable swaptions: fixed-maturity or
co-terminal. A co-terminal option allows to enter into an underlying swap at
several exercise opportunities, where each swap ends at the same contractually
determined end date. The swap maturity becomes shorter as exercise is delayed.
In contrast, for the fixed-maturity version, each underlying swap has the same
contractually specified maturity and the respective end dates then differ.

The main outset of the paper is that a model is deemed to be proper for valu-
2Some readers might not be familiar with ‘callable’ and ‘cancellable’ swaps and might prefer

to think of swaps and options thereon.
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Table 1: Example of a hybrid coupon swap payment structure for the floating
side. Date roll is modified following and day count is actual over 365.

Fixing Day count Payment Rate
date fraction date

11-Jun-04 1.005479 13-Jun-05 1Y LIBOR
13-Jun-05 0.997260 12-Jun-06 2Y swap rate
12-Jun-06 0.997260 11-Jun-07 4Y swap rate
11-Jun-07 1.002740 11-Jun-08 1Y LIBOR
11-Jun-08 1.000000 11-Jun-09 2Y swap rate
11-Jun-09 1.000000 11-Jun-10 1Y LIBOR

ing a certain callable or cancellable swap, if the volatility of a rate that appears
in the contract payoff has been calibrated correctly to the market volatility. The
concept is best illustrated by example. In the case of the hybrid coupon swap
of Table 1 at the valuation date 11 June 2004, we would want to calibrate ex-
actly to the volatilities of the 1Y × 2Y swaption, 2Y × 4Y swaption, 3Y caplet,
4Y × 2Y swaption and 5Y caplet. In contrast, for a cap one would calibrate to
the volatilities of the 1Y , 2Y , 3Y , 4Y and 5Y caplets. For a co-terminal Bermu-
dan swaption, to the volatilities of the 1Y × 5Y , 2Y × 4Y , 3Y × 3Y , 4Y × 2Y
and 5Y × 1Y swaptions. When employing a LIBOR market model to value a
cap, the model would feature the following 1Y forward LIBOR rates: 1Y , 2Y ,
3Y , 4Y and 5Y . If a swap market model would be used to value the Bermu-
dan swaption, it would feature the 1Y × 5Y , 2Y × 4Y , 3Y × 3Y , 4Y × 2Y and
5Y × 1Y forward swap rates. For both LIBOR and swap market models, the
canonical interest rates are simply equipped with the corresponding canonical
volatilities, allowing for an efficient and straightforward calibration. Obviously,
to straightforwardly calibrate a market model for the hybrid coupon swap of
Table 1, and callable or cancellable versions thereof, the model would have to
feature the forward swap rates 1Y ×2Y , 2Y ×4Y , 4Y ×2Y , and the 1Y forward
LIBOR rates at 3Y and 5Y . Up to now, whether a model containing such rates
would be arbitrage-free is not well-known. To our knowledge, generic methods
for deriving the arbitrage-free drift terms for the SDE driving the various for-
ward rates have not been developed yet. In this paper, we develop such generic
theory.

In terms of practical relevance, the generic market model technology is valu-
able to financial institutions that aim to trade in CMS Bermudan swaptions or
callable hybrid coupon swaps. As such, their costumers might require any se-
quence of various maturity LIBOR or swap rate payments in the tailored exotic
derivatives that they demand for their business. In this paper, we show that a
generic implementation of the resulting drift terms is feasible in practice, thereby
enabling proper pricing and hedging of such hybrid coupon swaps.

A further motivation for the theory in this paper is that the idea of generic
market models is not new to the finance literature, since it has already been
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suggested by Galluccio, Huang, Ly & Scaillet (2004). These authors discuss
what they call the co-sliding (commonly referred to as ‘LIBOR’) and co-terminal
(commonly referred to as ‘swap’) market models. The class of co-sliding market
models corresponds to our class of CMS market models, but ours is defined
differently. Galluccio et al. (2004) show that the only admissible co-sliding model
is the LIBOR market model. Interestingly, we show that there are n arbitrage-
free CMS market models associated with a tenor structure with n fixings, and
the LIBOR and swap models are two special cases of these CMS models. In
addition to the n CMS models, we introduce generic market models, extending
the number of arbitrage-free market models to n!. Also, Galluccio et al. (2004)
discuss the co-initial market model, but this model does not fit into our dynamic
market model framework. Moreover, in contrast to Galluccio et al. (2004), we
derive generic expressions for the drift terms of the forward rates, for all n!
models (thus for LIBOR, swap, CMS and generic models).

An alternative way of calibrating a model to the relevant volatility levels, is
to take a LIBOR market model, and derive generic approximate expressions for
the volatility of various forward rates. Such a procedure, for the specific case
of calibration of the LIBOR model to swaption volatility, has been investigated
in Jäckel & Rebonato (2003), Joshi & Theis (2002), Hull & White (2000) and
Pietersz & Pelsser (2004). The advantage of the generic market model specifica-
tion is that the relevant volatility functions can be directly specified. Moreover,
the development of the theory of generic market models is justified already by
the additional insight into the workings of LIBOR and swap market models.

We mention three areas of market model theory to which the generic mar-
ket model approach extends. First, generic models may also be used in multi-
currency market models, see Schlögl (2002). Second, a numerical implemen-
tation of a generic model may utilize drift approximations, see, for example,
Hunter, Jäckel & Joshi (2001) and Pietersz, Pelsser & van Regenmortel (2004a,
b). Third, generic models may be equipped with smile dynamics. The volatil-
ity smile is the phenomenon that for European options different Black (1976)
implied volatilities are quoted in the market when the strike of the option is
varied. The derivation of generic market models in this paper does not make
any assumptions on the instantaneous volatility. As a result, smile-incorporating
models, such as the displaced diffusion (Rubinstein 1983), and constant elastic-
ity of variance (CEV) (Cox & Ross 1976) models, can be readily applied to the
generic market model framework. An application of the CEV specification to
the LIBOR market model can be found in Andersen & Andreasen (2000).

Finally, for an in-depth overview of pricing models for interest rate deriva-
tives, the reader is referred to Rebonato (2004).

An outline of the paper is as follows. First, preliminaries are introduced.
Second, necessary and sufficient no-arbitrage conditions on the structure and
values of the forward rates are derived. Third, generic arbitrage-free drift terms
for the forward rates are derived under a change of measure in a market model
setting. Fourth, the numeric efficiency of the generic drift term calculations is
discussed. Fifth, the issue of calibrating generic market models to correlation is
addressed. Sixth, we end with conclusions.
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2 Preliminaries

Consider tenor times or a tenor structure 0 =: t1 < · · · < tn+1 and day count
fractions αi, over the period [ti, ti+1], for i = 1, . . . , n. Suppose traded in the
market is a set of m forward LIBOR or swap rate agreements that are associated
with that tenor structure3. Initially, m may be different from n, but in Theorem
1 we show that it makes sense, from an economic point of view, to consider only
m = n. The set of associated forward swap agreements is administered by a set
of pairs

E =
{

εj =
(
s(j), e(j)

)
; j = 1, . . . ,m ; s(j), e(j) integers ;

1 ≤ s(j) < e(j) ≤ n + 1
}

. (1)

Here s(j) and e(j) denote start and end of the forward swap agreement. The
above set expression for E simply designates that there are m associated forward
swap agreements, that each forward swap agreement starts and ends on one of
the tenor times and that a start is strictly before an end. If the start s and
end e of two forward swap agreements ε(1), ε(2) are equal, then ε(1) and ε(2) are
considered equal, thereby a priori excluding the possibility of different forward
rates for the same forward swap agreement. Note also that different payment
frequencies for a given swap period are not allowed. The value of the forward
rate associated with εj is denoted by fj . Forward rate fj may, and shall, in the
course of our paper, depend on time, fj = fj(t). The associated forward swap
agreement is defined as follows. At times ts(j) and te(j) the agreement starts and
ends, respectively. The agreement is partitioned by the e(j)−s(j) accrual periods
[ts(j), ts(j)+1], . . . , [te(j)−1, te(j)]. The LIBOR rate is recorded at the start of each
accrual period. If the accrual periods are indexed by i = s(j), . . . , e(j)− 1, then
the LIBOR-observation time is ti, the maturity of the LIBOR deposit is ti+1−ti,
and the observed LIBOR rate is denoted by `(ti). If forward swap agreement
j has been entered into at time t∗ at rate fj(t∗), then the fixed and floating
payments are αifj(t∗) and αi`(ti), respectively. We assume liquid trading in
the market at times t∗ = t1, . . . , tn of those forward swap agreements ε ∈ E for
which ts(j) ≥ t∗. In other words, there is trading in a forward swap agreement
if the agreement has not yet started or is about to start. We assume the cost of
entering into any forward swap agreement at any tenor time to be zero.

The forward swap agreement structures of the LIBOR and swap market
models fit into the framework of (1). For the LIBOR market model (LMM),
ELMM = {(1, 2), (2, 3), . . . , (n, n + 1)}. For the swap market model (SMM),
ESMM = {(1, n + 1), (2, n + 1), . . . , (n, n + 1)}. We introduce here a third kind of
market model, associated with the q-period CMS rates. We name it the CMS(q)
market model, for q = 1, . . . , n, and it is defined by ECMS(q) = {(1, 1 + q), (2, 2 +

3The frequency of the floating payments is restricted to one payment per fixed-payment
period, but this is only for ease of exposition. In practice, this assumption may be relaxed and
the theory follows through unchanged for any positive whole number of floating payments per
fixed-payment period.
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q), . . . , (n− q + 1, n + 1), (n− q + 2, n + 1), . . . , (n, n + 1)}. Note that for q = 1
and q = n we retain the LIBOR and swap market models, respectively.

The structure of these market models can be specified equivalently as follows,
too. There exists an enumeration εj = (s(j), e(j)), such that, for the LIBOR
model, s(j) = j, e(j) = j + 1. For the swap model, s(j) = j, e(j) = n + 1. For
the CMS(q) model, s(j) = j,

e(j) = j + q (j = 1, . . . , n− q + 1), e(j) = n + 1 (j = n− q + 2, . . . , n). (2)

2.1 Absence of Arbitrage

Associated with the tenor structure we also consider discount bonds. A discount
bond is a hypothetical security that pays one unit of currency at its maturity.
The price at time t of a discount bond maturing at time ti is denoted by bi(t).
Note that there are n+1 discount bonds and that we necessarily have bi(ti) = 1
for i = 1, . . . , n + 1. The latter is just saying that the cost of immediately
receiving one unit of currency is one unit of currency. The time-t1 discount
bond prices are sometimes simply denoted by bi rather than by bi(t1).

In terms of price consistency among the discount bonds, forward swap agree-
ments, and LIBOR deposits, we require some form of absence of arbitrage. We
follow Musiela & Rutkowski (1997), in which two forms of no-arbitrage are intro-
duced. First, a weaker notion of no-arbitrage is the usual no-arbitrage condition
in a pure bond market. Second, a stronger notion of no-arbitrage assumes, in
addition, that cash is also available in the market, which means that money,
not stored in a money market account, can be carried over at zero cost. The
stronger form of no-arbitrage excludes a number of situations allowed by the
weaker form. For example, discount bond prices greater than 1 (negative inter-
est rates) are excluded by the strong form, but not by the weak form. More
generally, the discount bond prices are required, by the strong form, but not by
the weak form, to not increase with increasing maturity, as shown by Musiela &
Rutkowski (1997, page 267, below Equation (13)). In the next section, it will be
shown that the generic market models guarantee the weak form of no-arbitrage.
Conditions guaranteeing the stronger form of no-arbitrage are more difficult to
derive. Therefore, hereafter we only consider the weak form of no-arbitrage, and
any mentioning of ‘no-arbitrage’ will refer to the weak form. Note that the weak
form of absence of arbitrage is guaranteed when all discount bond prices are
positive, since a set of positive future cash flows implies a portfolio that holds
non-negative amounts of discount bonds, of which at least one position is pos-
itive. Since all discount bond prices are positive by assumption, we have that
the price of such a portfolio is positive, thereby excluding arbitrage.

Valuation of non-European interest rate derivatives requires a dynamic
model, that is, a model that generates unique arbitrage-free discount bond prices
at all future time points. Examples of such dynamic models are the LIBOR and
swap market models. An example of a non-dynamic model is the co-initial
market model, as defined by Galluccio & Hunter (2004). The co-initial model
features forward swap rates that span the periods (1, 2),(1, 3),. . . ,(1, n+1), that
is, all swap rates start at time t1 but end consecutively at times t2, . . . , tn+1.
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The co-initial specification is non-dynamic since at time t2, all forward swap
agreements have expired. From a practical point of view, non-dynamic mod-
els are less useful than dynamic models, since non-dynamic models can only be
used for European-style options. For the dynamic case, arbitrary specification
of forward rates at not only t1, but at all time points t1, . . . , tn, is required to
lead to unique discount bond prices.

Given an arbitrary set E of forward rates and their values {fj(ti)}i,j , there
are two mutually exclusive possibilities, that are given in the following definition.

Definition 1

• Condition A. At each of the times t1, . . . , tn, there is a unique system of prices
for the discount bonds, such that the resulting aggregate trade system of discount
bonds, forward swap agreements, and LIBOR deposits, is arbitrage-free.

• Condition B. At least at one of the times t1, . . . , tn, either there exists no system
or there are more than one different systems of prices for the discount bonds,
such that the resulting aggregate trade system of discount bonds, forward swap
agreements, and LIBOR deposits, is arbitrage-free.

Obviously, we would want condition A to hold in financial models, and, in par-
ticular, in generic market models. In this paper, we will derive necessary and
sufficient conditions on E and the values {fj(ti)}, for condition A to hold. In
particular, given a number of n + 1 tenor times, we will show that there are
exactly n! possibilities of choosing E . The CMS market model (with LIBOR and
swap market models as special cases) only accounts for n of these possibilities.
An example for n = 6 with market models of LIBOR, CMS(3), swap, co-initial,
and the hybrid swap of Table 1 (viewed from the valuation date 11 June 2003),
is given in Figures 1 and 2.

Remark 1 (Forward LIBOR versus swaption frequencies) In this remark we
point out a silent assumption that is sometimes made when calibrating a market
model to parts of the swaption volatility matrix. For concreteness, we consider
the EUR market, for which market traded swaps have annual fixed payments
and semi-annual floating LIBOR payments. If a market model with semi-annual
fixed payments is calibrated to a swaption volatility, then silently it has been
assumed that there is no significant difference between semi-annual fixed versus
semi-annual floating swaption volatility and annual fixed versus semi-annual
floating swaption volatility.

3 Necessary and Sufficient Conditions on the
Forward Swap Agreements Structure for
Guaranteed No-Arbitrage

In this section we derive the necessary and sufficient conditions for a set of
forward rates to specify unique arbitrage-free discount bond prices. The program
to achieve that goal is as follows. First, we value the forward swap agreements
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in terms of discount bond prices. Second, the conditions on the forward swap
agreements are translated into conditions on the discount bond prices.

A forward swap agreement is valued by valuation of its floating and fixed
payments in turn. The collections of floating and fixed payments of a forward
swap agreement are called floating and fixed legs, respectively. The value πflt(ε)
of the floating leg of a forward swap agreement ε = (s, e) is4

πflt(ε) = bs − be.

This equation can be seen to hold by considering a portfolio in the discount
bonds that will have the exact same cash flows as the floating leg, to wit, long
a discount bond maturing at time ts and short a bond maturing at time te. At
time ts, we invest the proceeds of the long position in the discount bond into
the LIBOR deposit. At each LIBOR payment, we re-invest the notional into the
LIBOR deposit. At the end of the floating leg, the notional cancels against the
short position in the discount bond. It is not hard to see that such procedure
provides the exact same cash flows as a floating leg.

The value πfxd(ε, f) of a fixed leg with forward rate f can be obtained by
simply discounting back the known future cash flows5,

πfxd(ε, f) = f

e−1∑

i=s

αibi+1

︸ ︷︷ ︸
.

The under-braced expression is also called present value of a basis point (PVBP
in short), and is denoted by ps:e.

The conditions on the forward rates are governed by the forward swap agree-
ments to have zero value, that is, πflt(ε) − πfxd(ε, f) = 0. In fact, there exists
a unique system of prices for the discount bonds consistent with the forward
rates if and only if the system of m linear equations in the n unknown variables
b2, . . . , bn+1 given by

{
bs(j) − be(j) −

e(j)−1∑

i=s(j)

fjαibi+1 = 0
}m

j=1
, (3)

with b1 = 1, has a unique solution. The latter is already a precisely specified and
tractable necessary and sufficient condition for existence of unique discount bond
prices that are consistent with the forward rates. This condition can be validated
by numerically checking invertibility of linear equation (3). In the sequel, we
will develop conditions and implications that are more straightforward to verify
and that a priori guarantee invertibility of (3), and we will sketch scenarios in
which these implications will hold. It will be shown that invertibility of (3) is

4Here we assume equality of the forecast and discount curves and of the payment and index
day count fractions.

5Note that we assume, for notational simplicity only, that the fixed payment frequency
equals the floating payment frequency.
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guaranteed in typical finance scenarios, and that invertibility can be violated
only under extreme situations, that are fully irrelevant to a finance setting.

If m < n then if a solution exists, it is bound to exhibit non-uniqueness. If
m > n, then the system is in general over-determined. Only for a very particular
choice of forward rates fj , the system could then be degenerate, thereby still
allowing for a unique solution. Given arbitrarily specified forward rates however,
the degeneracy will occur, if at all, only occasionally. Generally specified forward
rates span a non-degenerate set of equations, thereby implying that, when m >
n, in most cases the model does not have unique discount bond prices. In other
words, two different subsets of n forward rates determine, via (3), two sets of
discount bond prices that are different and thus inconsistent with each other.
The model should have the property that there exist unique discount bond prices
regardless of how the forward rates are specified. The possibility of degeneracy
is excluded by the following assumption on the values that the forward rates can
attain.

Assumption 1 A forward rate f can only attain any non-negative value, that
is, we must have

f ≥ 0. (4)

Assumption 1 will be satisfied almost always in any interest rate market. Only
in very rare occasions have negative interest rates been observed. An example of
negative interest rates in Japan at the start of November 1998 is given in Ostrom
(1998). These interest rates reached -3 to -6 basis points (bp) (-.03% to -.06%).
Moreover, the popular displaced diffusion smile model of Rubinstein (1983) can
generate negative forward rates with positive probability, if the displacement
parameter is negative. However, violation of Assumption 1 does not necessarily
imply that the system of forward rates admits arbitrage of the weak form. In
fact, we make plausible that slightly negative interest rates still allow for unique
discount bond prices that are arbitrage-free in the weak sense, by considering
a simple numerical example. Consider a single forward rate, two tenor times
{t1 = 0, t2} market model. The price of the discount bond for maturity at time
t2 is given by 1/(1 + αf). The rate f should thus satisfy f > −1/α, to ensure a
positive and finite price for the discount bond. For annual payments, for which
α ≈ 1, we have −1/α ≈ −100%. In fact, for more frequent payments than
annual, the arbitrage-defying rate is even more negative than −100%. These
considerations lead us to conclude that arbitrage of the weak form in a forward
swap agreement market can occur only in situations that are considered finan-
cially extreme. Essential to no-arbitrage is thus the structure of the forward
swap agreements.

3.1 Main Result

The main result can now be formulated. The theorem below states that, for
dynamic market models, (i) if a tenor structure has n fixing times t1, . . . , tn,
then we require n forward swap agreements, and (ii) for each fixing time ti,
there is exactly one forward swap agreement that starts at that fixing time ti,

10



i = 1, . . . , n. Note that the co-initial model does not fit the requirements below,
though it is a perfectly sensible arbitrage-free model. The reason that the co-
initial model is not incorporated is the requirement that a model be dynamic,
see the discussion in Section 2.1.

Theorem 1 Let {t1, . . . , tn+1} be a set of tenor times. Let E = {εj}m
j=1 and fj

be a set of forward swap agreements and forward rates, respectively, associated
with the tenor times. Then, at each of the times t1, . . . , tn, for all forward rates
{fj}m

j=1 satisfying Assumption 1, there exists a unique weak-form arbitrage-free
solution to the system of linear equations (3) in the discount bond prices, if and
only if m = n and there exists an ordering of the n forward swap agreements
εj = (s(j), e(j)), j = 1, . . . ,m such that s(j) = j.

Proof: The proof is split into two parts. First, we prove that the described
structure of forward rates leads to arbitrage-free invertibility of system (3) for
all forward rates satisfying Assumption 1. Second, the reverse implication is
proven.

Suppose that the structure E of forward swap agreements is such that m =
n and that there exists an ordering of the n forward swap agreements εj =
(s(j), e(j)), j = 1, . . . , m such that s(j) = j. The existence of unique arbitrage-
free discount bond prices is guaranteed if we show there exists unique discount
bond prices that are all positive. To that order, consider system (3) in terms of
the deflated discount bond prices, b̂i ≡ bi/bn+1, and substitute s(j) = j,

{
b̂j − b̂e(j) −

e(j)−1∑

i=j

fjαib̂i+1 = 0
}n

j=1
, {b̂n+1 = 1}. (5)

Note that the (n + 1)× (n + 1) matrix U = U(f) associated with this system is
unit upper-triangular, which means that the diagonal contains ones and that the
lower-triangular part of the matrix contains zeros. It follows that this matrix is
invertible. We thus have

U(f)b̂ = c, b̂ = U(f)−1c, c = (0 · · · 0 1)T ∈ Rn+1.

An efficient method for calculating the inverse of a unit upper-triangular matrix
is back substitution, see for example Golub & van Loan (1996, Algorithm 3.1.2).
Back substitution will aid in the proof, therefore it has been displayed in Algo-
rithm 1. We show by induction for i = n+1, n, . . . , 1 that b̂i ≥ 1. For i = n+1,
b̂i = b̂n+1 = 1, by line 1 of Algorithm 1, which states that b̂n+1 = cn+1 = 1.
Suppose, then, that b̂j ≥ 1 for j = i + 1, . . . , n + 1. We have, by line 3 of Algo-
rithm 1, that b̂i = ci−

∑n+1
j=i+1 uij b̂j = −∑n+1

j=i+1 uij b̂j . Note that, for j > i, uij

is either −αjfi, −1− αjfi, or 0. It follows that

b̂i = fi

e(i)−1∑

j=i

αj b̂j+1

︸ ︷︷ ︸
≥0

+ b̂e(i)︸︷︷︸
≥1

≥ 1,

11



Algorithm 1 Back substitution.
Input: n, U ((n + 1)× (n + 1) unit upper-triangular), c ∈ Rn+1.
Output: b̂ = U−1c ∈ Rn+1.
1: Set b̂n+1 ⇐ cn+1.
2: for i = n, . . . , 1 do
3: b̂i ⇐ ci −

∑n+1
j=i+1 uij b̂j .

4: end for

which concludes the induction proof. The unique solution for the undeflated
discount bond prices is then given by bi ≡ b̂i/b̂1, which is defined and positive
since b̂ = (b̂1, . . . , b̂n+1) ≥ 1.

Note that the above proof is independent of the number of tenor times.
Therefore the forward swap agreements structure n = m and {s(j) = j} guaran-
tees existence of unique arbitrage-free discount bond prices for all forward rates
satisfying Assumption 1 at all tenor times t1, . . . , tn, which was to be shown.

The reverse implication is proven by induction on n. For n = 1, the result is
immediate. Now, assume the result is true for i = 1 to n− 1. We want to prove
it is true for n. The model viewed from t2 has n tenor points, so by the induction
hypothesis we must have that: (i) m ≥ n−1, (ii) there are exactly n−1 forward
swap agreements that start at t2 or later, (iii) for these n − 1 forward swap
agreements, there is an enumeration j = 2, . . . , n, such that s(j) = j. There
are three possibilities: m = n − 1, m > n or m = n. We show that the cases
m = n−1 and m > n lead to non-uniqueness or non-invertibility of (3) for some
of the forward rates f that satisfy Assumption 1.

If m = n− 1, there are less equations than unknown variables in (3), and it
follows that, if there is a solution at all, it will be non-unique.

If m > n, then we may form a sub-model with n forward swap agreements
such that s(j) = j for j = 1, . . . , n. We have already proven that such a structure
with n forward rates leads to unique positive discount bond prices. For a left
out forward swap agreement, say ε = (s, e), the associated forward rate f should
then satisfy

f =
bs − be∑e−1
i=s αibi+1

. (6)

We conclude then that there are forward rates satisfying Assumption 1 for which
there do not exist discount bond prices.

Thus we must have m = n and for remaining forward swap agreement 1 we
have s(1) = 1 from which the result follows. 2

As a corollary, we can count the dynamic market model structures given the
number of tenor times n+1. For forward rate 1, we can chose from n end times
t2, . . . , tn+1, for forward rate 2, from n− 1 end times t3, . . . , tn+1, etcetera.

Corollary 1 (Counting dynamic market model structures) Consider market
models with n + 1 tenor times. Then there are n! ways of selecting forward
swap agreements such that, for all forward rates satisfying Assumption 1, and
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at all tenor times t1, . . . , tn, there exist unique weak-form arbitrage-free discount
bond prices satisfying (3).

Note that Theorem 1 rules out the applicability of generic market models to
Bermudan-callable spread options, in the sense that we cannot define two rates,
fixing at the same time, as state variables.

4 Generic Expressions for No-Arbitrage Drift
Terms

In this section, generic expressions are derived for the arbitrage-free drift terms of
generic market models, that are so characteristic for the LIBOR and swap market
models. We assume given a dynamic market model, therefore the forward swap
agreements are of the form εi = (i, e(i)). If dependency of the end index is clear
we simply write e(i) as e. The forward rate fi:e has start date ti and end date
te. Forward rate fi:e is modelled under its forward measure, which is associated
with the PVBP pi:e as numeraire. Forward rate fi:e is modelled as

dfi:e(t)
fi:e(t)

= σi:e(t) · dw(i:e)(t), (7)

with σi:e denoting a d-dimensional volatility vector, and with w(i:e) denoting a
d-dimensional Brownian motion under the forward measure Qi:e associated with
pi:e as numeraire. The positive integer d is deemed the number of factors of the
model. The volatility vector σi:e(t) = σi:e(t, ω) can be state dependent to allow
for smile modelling.

For pricing of non-standard interest rate derivatives, it is necessary to jointly
implement the above scheme (7) for all forward rates simultaneously. Therefore
we must work out the SDE for the forward rates under a single pricing measure.
We can work either with the terminal or spot measure. Each is treated below
consecutively.

4.1 Terminal Measure

In this subsection, we work with the terminal measure Qn+1, that is the measure
associated with the terminal discount bond bn+1 as numeraire.

Without loss of generality, the presentation is given as if all forward rates have
not yet expired. We work with the numeraire-deflated discount bond prices. The
quantity p̂i:e denotes the deflated PVBP, p̂i:e ≡ pi:e/bn+1. The deflated PVBPs
can be calculated, in turn, when the deflated discount bond prices b̂i ≡ bi/bn+1

are known. The deflated discount bond prices are given by (5). Recall that (5)
can be written in matrix form as Ub̂ = c, with c = (0 · · · 0 1)T , and U = U(f)
an (n + 1)× (n + 1) unit upper-triangular matrix, given by

uij =





0 if i > j or (i < j and j > e(i)),
1 if i = j,

−αj−1fi:e(i) if i < j and j < e(i),
−αj−1fi:e(i) − 1 if i < j and j = e(i).

13



Thus b̂ = U(f)−1c. We may write p̂ as a function of the forward rates, p̂ = p̂(f).
In fact,

p̂ = Ab̂, A ≡




0 (α1 · · · αe(1)−1 0 · · · 0)
0 0 (α2 · · · αe(2)−1 0 · · · 0)

0
...

. . . . . .
...

0 0 · · · 0 (αn)


 ,

for the n × (n + 1) matrix A. Thus, p̂ = AU(f)−1c. Subsequently, we define
the Radon-Nikodým density

zi:e,n+1(t) ≡ pi:e(t)/bn+1(t)
pi:e(0)/bn+1(0)

=
p̂i:e(t)
p̂i:e(0)

. (8)

Note that zi:e,n+1(t) is a martingale under the terminal measure Qn+1. This
implies that

dzi:e,n+1(t)
zi:e,n+1(t)

=
dp̂i:e(t)
p̂i:e(t)

= θi:e,n+1(t) ·w(n+1)(t), (9)

with the d-dimensional vector θ given by

θi:e,n+1(t) =
1

p̂i:e(t)

n∑

k=i+1

∂p̂i:e

∂fk:e(k)
(t)fk:e(k)(t)σk:e(k)(t). (10)

The summation is required only from i+1 to n since p̂i:e is dependent on fk:e(k)

only for k > i. Finally we apply Girsanov’s theorem to obtain the required
expression for dw(i:e)(t)− dw(n+1)(t),

dw(i:e)(t)− dw(n+1)(t) = −θi:e,n+1(t)dt. (11)

Thus,

dfi:e(t)
fi:e(t)

= − 1
p̂i:e(t)

n∑

k=i+1

∂p̂i:e

∂fk:e(k)
(t)fk:e(k)(t)|σk:e(k)(t)||σi:e(t)|ρk:e(k),i:e(t)dt

+σi:e(t) · dw(n+1)(t), (12)

where the scalar ρk:e(k),i:e has been defined as

ρk:e(k),i:e(t) =
σk:e(k)(t) · σi:e(t)
|σk:e(k)(t)||σi:e(t)| ,

and has the interpretation of instantaneous correlation.
An expression is given for ∂p̂/∂fk:e(k). Note that ∂U/∂fk:e(k) is a matrix

that is zero bar a single row, the kth row, and that the derivative is independent
of f , since all f terms occur linearly in the matrix U. The kth row is filled, from
entry (k, k + 1), with the row vector (−αk · · · −αe(k)−1 0 · · · 0). We have that

∂p̂
∂fk:e(k)

= −AU−1 ∂U
∂fk:e(k)

U−1c = −AU−1 ∂U
∂fk:e(k)

b̂ = AU−1ckp̂k:e(k), (13)
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where ck ∈ Rn+1 denotes the standard basis vector with unit kth coordinate,
and zero coordinates otherwise. We define b̃

(k)
i by

b̃
(k)
i = (U−1ck)i, i = 1, . . . , n, k = 1, . . . , n. (14)

Substituting (14) into (13) yields

∂p̂i:e

∂fk:e(k)
= 1{k≥i+1}p̂k:e(k)

(
min(e(i)−1,k−1)∑

j=i

αj b̃
(k)
j+1

)
. (15)

Define µ(i, k) ≡ min
(
e(i)−1, k−1). Substituting (15) into (12), suppressing the

dependency of time, and using p̂k:e(k)fk:e(k) = b̂k − b̂e(k), we obtain the generic
market model SDE under the terminal measure:

dfi:e

fi:e
= − 1

p̂i:e

n∑

k=i+1

(
b̂k − b̂e(k)

)
(

µ(i,k)∑

j=i

αj b̃
(k)
j+1

)
σk:e(k) · σi:edt + σi:e · dw(n+1).

(16)

4.2 Spot Measure

In this subsection, we work with the spot measure QSpot, that is the measure
associated with the spot LIBOR numeraire, defined as follows. The account
starts out with one unit of currency. Subsequently, this amount is invested in
the spot LIBOR account. After the first accrual period, the proceeds are re-
invested in the then spot LIBOR account. This procedure is repeated. For the
spot measure it is convenient to define the spot index i(t), defined by i(t) =
min{integer i ; t < ti}.

For the spot measure, we work with discount bond prices, deflated by the spot
discount bond bi(t). The quantities p̄ and b̄ denote the vectors of bi(t)-deflated
PVBPs and discount bond prices, respectively. We have p̄ = Ab̄ and

b̄ =
1

b̂i(t)

b̂ =
1

(U−1c)i(t)
U−1c.

The Radon-Nikodým density zi:e,i(t)(t) is defined similarly to (8). A martingale
SDE for the Radon-Nikodým density holds,

dzi:e,i(t)(t)
zi:e,i(t)(t)

=
dp̄i:e,i(t)(t)
p̄i:e,i(t)(t)

= θi:e,i(t)(t) · dw(i(t)),

similar to (9), with d-dimensional volatility vector equal to

θi:e,i(t)(t) =
1

p̄i:e(t)

n∑

k=i(t)

∂p̄i:e

∂fk:e(k)
(t)fk:e(k)(t)σk:e(k)(t). (17)

If we compare (17) to (10), we find that, for the spot measure, we sum over all
available forward rates from i(t) to n, since p̄i:e depends on all those forward
rates. Recall that, for the terminal measure, we need only sum from i + 1 to n.
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Similar to (11), we have dw(i:e)− dw(i(t)) = −θi:e,i(t)dt. Thus we obtain the
equivalent of (12),

dfi:e(t)
fi:e(t)

= − 1
p̄i:e(t)

n∑

k=i(t)

∂p̄i:e

∂fk:e(k)
(t)fk:e(k)(t)|σk:e(k)(t)||σi:e(t)|ρk:e(k),i:e(t)dt

+σi:e(t) · dw(i(t))(t). (18)

An expression for ∂p̄/∂fk:e(k) is given by

∂p̄
∂fk:e(k)

=
1

b̂i(t)

∂p̂
∂fk:e(k)

+
1

b̂i(t)

(
U−1 ∂U

∂fk:e(k)
U−1c

)
i(t)

︸ ︷︷ ︸
=p̂k:e(k)b̃

(k)
i(t)

p̄. (19)

Similar as in (13) and (15) for the terminal measure, we find for the spot measure:

∂p̄i:e

∂fk:e(k)
= 1{k≥i+1}p̄k:e(k)

µ(i,k)∑

j=i

αj b̃
(k)
j+1 − p̄k:e(k)p̄i:eb̃

(k)
i(t). (20)

Substituting (20) into (18), suppressing the dependency of time, and using
p̄k:e(k)fk:e(k) = b̄k − b̄e(k), we obtain the generic market model SDE under the
spot measure:

dfi:e

fi:e
= − 1

p̄i:e

n∑

k=i(t)

(
b̄k − b̄e(k)

)
(

1{k≥i+1}

µ(i,k)∑

j=i

αj b̃
(k)
j+1 − p̄i:eb̃

(k)
i(t)

)
σk:e(k)

·σi:edt + σi:e · dw(i(t)). (21)

4.3 An example: The LIBOR Market Model

For illustration, in this section the LIBOR drift terms are calculated starting
from the generic market model framework. We stress here that the explicit
calculation in this section of the generic expressions of the previous section is
not required for implementation of the generic market model framework, but is
merely performed for illustration only.

First, we derive the LIBOR SDE for the terminal measure, by applying (16).
In the LIBOR market model, a forward rate fk:e(k) is denoted by fk. Note that:

(i) p̂i:e(i) = p̂i:i+1 = αib̂i+1,

(ii) µ(i, k) = min(e(i)− 1, k − 1) = min(i, k − 1) = i, for k = i + 1, . . . , n,

(iii) b̃
(k)
j = b̂j

b̂k
1{j≤k} = b̄j

b̄k
1{j≤k},

(iv) b̂k−b̂k+1

b̂k
= b̄k−b̄k+1

b̄k
= 1− 1

1+αkfk
= αkfk

1+αkfk
,

(v)
∑µ(i,k)

j=i αj b̃
(k)
j+1 = p̂i:e(i)

b̂k
= p̄i:e(i)

b̄k
.
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Substituting (i)–(v) into (16), we obtain,

dfi

fi
= −

n∑

k=i+1

αkfk

1 + αkfk
σk · σidt + σi · dw(n+1),

which is the familiar expression for the SDE of the LIBOR market model under
the terminal measure.

Second, we derive the LIBOR SDE for the spot measure. If we substitute
(i)–(v) into (21), we see that for k ≥ i+1,

∑i
j=i αj b̃

(k)
j+1 cancels against p̄i:i+1b̃

(k)
i(t),

and for k ≤ i, we are left with −p̄i:i+1b̃
(k)
i(t), therefore:

dfi

fi
=

i∑

k=i(t)

αkfk

1 + αkfk
σk · σidt + σi · dw(i(t)),

which is the familiar expression for the SDE of the LIBOR market model under
the spot measure.

5 Complexity

We study the complexity of the drift calculation over a single time step in a
numerical implementation. For generic market models, we show that the com-
plexity is, at worse, of order O(n3). For specific market models, such as the
LIBOR, swap, and CMS market models, we show that a more efficient imple-
mentation is available that renders the order to O(nd). For CMS market models,
this more efficient implementation is approximate.

For generic market models, the results are derived for the terminal measure,
but can equally well be derived for the spot measure. Recall (13) that occurs in
the drift calculation,

∂p̂
∂fk:e(k)

= −AU−1 ∂U
∂fk:e(k)

U−1c.

The inverse of U can be calculated in O(n3) operations. Subsequently, the 4
consecutive matrix multiplications with a vector require O(n2) operations, for
each forward rate k, thus in total O(n3) operations. Therefore a generic market
model has at worse a complexity of O(n3).

The LIBOR market model has a special structure that renders the complexity
to O(nd), which has been shown by Joshi (2003). In Algorithm 2 such an O(nd)
algorithm has been displayed that calculates the forward LIBOR rates for a
time step under the terminal measure. An algorithm for the spot measure can
be defined analogously, by summing from 1 to n and by incrementing γj (rather
than decrementing) before updating φ

(2)
i .

We show that a similar approximate algorithm can be defined for CMS(q)
market models, for the terminal measure. The algorithm is shown to be exact
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Algorithm 2 An O(nd)-algorithm for calculating the forward LIBOR rates for
a time step in the LIBOR market model. The number of factors is denoted
by d. The log forward rates, log f(t) = (log fi(t)(t), . . . , log fn(t)) at time t,
and log f(t + ∆t) at time t + ∆t, are denoted by φ(1) and φ(2), respectively.
Here Σ = (σij) governs the volatility, with σij the time-t volatility of forward
rate fi with respect to factor j in the model. ∆w should be sampled from a
N (0,

√
∆tId) distribution.

Input: n; d (1 ≤ d ≤ n); φ(1),α ∈ Rn; ∆w ∈ Rd; Σ ∈ Rn×d; ∆t.
Output: φ(2) ∈ Rn.
1: Set γ ⇐ 0 with γ ∈ Rd.
2: for i = n, . . . , i(t) do
3: φ

(2)
i ⇐ φ

(1)
i .

4: for j = 1, . . . , d do
5: φ

(2)
i ⇐ φ

(2)
i + (γj − 1

2σij)σij∆t + σij∆wj .

6: γj ⇐ γj − αi exp(φ
(1)
i )

1+αi exp(φ
(1)
i )

σij .

7: end for
8: end for

for the swap market model (q = n). The following quantity that occurs in the
drift term is approximated:

p̃
(k)
i:µ(i,k)+1 = p̃

(k)
i:min(k,i+q) =

min(k,i+q)∑

j=i

αj b̃
(k)
j+1 (i < k). (22)

The approximation is based on the assumption that αi is close to αi+q, for
i = 1, . . . , n − q. Note that this assumption is used only to efficiently approxi-
mate (22) for calculation of drift terms, and this assumption is not used in the
calculation of contract payoffs. Moreover, if needs be, the drift terms can be
calculated exactly by exact calculation of (22).

Approximation 1 Approximately, by assumption of αi ≈ αi+q (i = 1, . . . , n−
q), we have, for p̃

(k)
i:µ(i,k)+1 defined in (22),

p̃
(k)
i:µ(i,k)+1 ≈ αk−1

k−2∏

m=i

(
1 + αmfm+1:e(m+1)

)
(i < k). (23)

Here, an empty product denotes 1. Formula (23) is exact for i > k − q − 1. In
particular, (23) is exact for any i in the swap market model (q = n).

The rationale for Approximation 1, as well as the proof of exactness when i >
k − q − 1, are given in Appendix A. Note that accumulating errors in (23) are
likely to cancel, since in practice the difference αi − αi+q is both negative and
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Table 2: Deal description for the test of exact versus approximate drift terms in
CMS(q) models.

Currency: USD
Market data: Swap rates and at-the-money swaption volatility
Valuation date: 18 July 2003
Deal: 30 year fixed-maturity Bermudan swaption
Start date: 16 June 2004
Frequency: Annual
Day count: ACT/365
Date roll: Modified following
Fixed coupon: 3.2%

positive. From (16) and Approximation 1, we obtain,

dfi:e

fi:e
≈ − 1

p̂i:e

n∑

k=i+1

(
b̂k − b̂e(k)

)
αk−1

k−2∏

m=i

(
1 + αmfm+1:e(m+1)

)
σk:e(k) · σi:edt

+σi:e · dw(n+1). (24)

Define

vi =
n∑

k=i+1

(
b̂k − b̂e(k)

)
αk−1

k−2∏

m=i

(
1 + αmfm+1:e(m+1)

)
σk:e(k). (25)

The proof of the following lemma has been deferred to Appendix B.

Lemma 1 The quantity vi defined in (25) satisfies the following recursive for-
mulas:

• vn = 0,

• vi =
(
1 + αifi+1:e(i+1)

)
vi+1 + αi

(
b̂i+1 − b̂e(i+1)

)
σi+1:e(i+1).

In Algorithm 3 an O(nd) algorithm, based on Lemma 1, has been displayed
that approximately calculates the forward swap rates for a time step under the
terminal measure, for the CMS(q) market model. This algorithm is exact for
the swap market model (q = n).

To benchmark the accuracy of Algorithm 3, various fixed-maturity Bermudan
swaptions are priced in their corresponding CMS(q) market models, with both
exact SDE (16) and approximate SDE (24). The deal specification is given in
Table 2. The swap tenor is q years, with 31−q exercise opportunities, at (16 June
2004 + i years), i = 0, . . . , 30− q, for q = 1, . . . , 30. The difference between the
minimum (0.996) and maximum (1.007) attained day count fractions is 0.011. To
price fixed-maturity Bermudan swaptions in Monte Carlo, we use the algorithm
of Longstaff & Schwartz (2001), with the swap value as explanatory variable
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Algorithm 3 An O(nd)-algorithm for approximately calculating the forward
swap rates for a time step in the CMS(q) market model (exact when q = n),
under the terminal measure. The number of factors is denoted by d. The
log forward rates, log f(t) = (log fi(t):e(i(t))(t), . . . , log fn:e(n)(t)) at time t, and
log f(t + ∆t) at time t + ∆t, are denoted by φ(1) and φ(2), respectively. Here
Σ = (σij) governs the volatility, with σij the time-t volatility of forward rate
fi:e(i) with respect to factor j. Here, e(·) is defined in (2). ∆w should be sampled
from a N (0,

√
∆tId) distribution.

Input: n; d, q (1 ≤ d, q ≤ n); φ(1),α ∈ Rn; ∆w ∈ Rd; Σ ∈ Rn×d; ∆t.
Output: φ(2) ∈ Rn.
1: βn+1 ⇐ 1. $n+1 ⇐ 0.
2: for i = n, . . . , i(t) do
3: $i ⇐ $i+1 + αiβi+1 − 1{i<n & e(i)=e(i+1)−1}αe(i+1)−1βe(i+1).
4: f

(1)
i ⇐ exp(φ(1)

i ).
5: βi ⇐ $if

(1)
i + βe(i).

6: If i = n, set vn ⇐ 0 ∈ Rd, else (i < n), set

vi ⇐
(
1 + αif

(1)
i+1

)
vi+1 + αi(βi+1 − βe(i+1))σi+1.

7: φ
(2)
i ⇐ φ

(1)
i + (− 1

$i
vi − 1

2σi) · σi∆t + σi ·∆w.
8: end for
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Figure 3: Results of the test of exact versus approximate drift terms in CMS(q)
models.
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x, and basis functions 1, x and x2. An 8 factor model is used (d = 8), with
the correlation of the forward CMS(q) rates given by the parametrization of
Rebonato (1998, Equation (4.5), page 83), exp(−β|ti − tj |), for rates fi:e(i) and
fj:e(j), with β = 3%. The differences between the prices obtained with exact
and approximate drift terms have been displayed in Figure 3. We note that for
q = n, equal prices are obtained up to all digits. The results show that the
error is small, up to only 3 bp of the option premium, and up to only 6% of
the simulation standard error. Moreover, the error fluctuates robustly around 0,
since the difference αi − αi+q is both negative and positive, in practice.

A significant reduction of computational time can thus be attained by select-
ing a low number of factors d. A result of using a low number of factors is that
the instantaneous correlation matrix (ρij) cannot be exactly fit to the histori-
cally estimated or market implied correlation matrix. The procedure for fitting
a generic market model to correlation is exactly the same as for the LIBOR
market model. For fitting a low-factor LIBOR market model to correlation, the
reader is referred to Pietersz & Groenen (2004a, b), Grubǐsić & Pietersz (2005),
Wu (2003) and Rebonato (2002, Section 9) or Brigo (2002).

6 Generic Calibration to Correlation

When each particular interest rate derivative has its own generic market model
that is used for its valuation and risk management, then the associated input cor-
relation to those models involves different interest rates. There is a relationship
between these correlations, and this relationship allows for netting correlation
risk or reserves. Moreover, utilizing the relationship between the correlations
means that correlation is determined consistently across different products. In
general all interest rate correlations stem from the correlations between differ-
ent segments of the yield curve. In this section we show how forward LIBOR
correlations can be used to determine subsequently the correlations for any of
the generic market models specific to certain interest rate products.

The advantage of considering all correlations in this way comes from the fact
that one can treat correlation risk (or reserves) in a consistent fashion across all
interest rate products. Netting of correlation reserves will subsequently occur
naturally. Furthermore only instantaneous forward LIBOR correlations have to
be determined and administered.

The key to the method is the well-known fact that, within the LIBOR market
model, the instantaneous volatility vector σs:e(t) of a forward swap rate fs:e

can expressed as weighted averages of instantaneous volatility vectors σi(t) of
forward LIBORs,

σs:e(t) =
e−1∑

i=s

ws:e
i (t)σi(t).

An expression for the weights ws:e
i may be found, for example, in Hull & White

(2000, page 53). The weights ws:e
i are state dependent. A highly accurate

deterministic approximation σ̃s:e(t) for the instantaneous volatility can however
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be obtained by evaluating the weights at time zero,

σ̃s:e(t) =
e−1∑

i=s

ws:e
i (0)σi(t).

From the preceding considerations it should be clear that the instantaneous
forward rate correlation ρs(1):e(1),s(2):e(2)(t) can be approximately expressed as a
function of the instantaneous forward LIBOR correlations ρij(t),

ρs(1):e(1),s(2):e(2)(t) = ρ
( dfs(1):e(1)(t)

fs(1):e(1)(t)
,
dfs(2):e(2)(t)
fs(2):e(2)(t)

)

=
σT

s(1):e(1)(t)σs(2):e(2)(t)√
σT

s(1):e(1)(t)σs(1):e(1)(t)σT
s(2):e(2)(t)σs(2):e(2)(t)

,

where

σT
i:j(t)σk:l(t) ≈ σ̃T

i:j(t)σ̃k:l(t)

=
j−1∑

m1=i

l−1∑

m2=k

wi:j
m1

(0)wk:l
m2

(0)|σm1(t)||σm2(t)|ρm1m2(t).

7 Conclusions

In this paper, a generalization of market models has been studied, whereby
arbitrary forward rates are allowed to span the tenor structure relevant to an in-
terest rate derivative. The benefit of such generalization is that straightforward
volatility-calibration can be achieved for the fixings of LIBOR or swap rates
relevant to the interest rate derivative. Generic market models are therefore
particularly apt for pricing and risk management of CMS and hybrid coupon
swaps, and callable and cancellable versions thereof, in particular, Bermudan
CMS swaptions and fixed-maturity Bermudan swaptions. We showed that the
LIBOR and swap market models are special cases of the generic market model
framework. The need for a generic specification of market models has been il-
lustrated by counting the admissible market model structures with n + 1 tenor
times. We found n! possible market models. For example, already only for an
annual-paying deal of 10 years, there are 10!=3,628,800 market models, thereby
establishing the need for a generic specification. Necessary and sufficient con-
ditions were derived for a set of forward swap agreements to provide a unique
solution for discount bond prices, essentially regardless of the scenario of attained
forward rates. The major novelty of this paper is the derivation of generic ex-
pressions for no-arbitrage drift terms in generic market models. We developed a
novel algorithm of order O(nd) for approximate drift calculations in CMS market
models under the terminal measure.
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A Rationale for Approximation 1

We proceed by induction on i = k − 1, . . . , 1.

• For i = k − 1: p̃
(k)
k−1:min(k,k−1+q) = αk−1b̃

(k)
k = αk−1.

• For i = k − q, . . . , k − 2, we have min(k, i + q) = k. The quantity b̃
(k)
i+1

satisfies, from the definition b̃
(k)
i+1 = (U−1ck)i+1, b̃

(k)
i+1 = fi+1:e(i+1)p̃

(k)
i+1:k,

since k < i + q + 1. It follows,

p̃
(k)
i:k = p̃

(k)
i+1:k + αib̃

(k)
i+1 = p̃

(k)
i+1:k(1 + αifi+1:e(i+1))

(∗)
= αk−1

k−2∏

m=i+1

(
1 + αmfm+1:e(m+1)

)
(1 + αifi+1:e(i+1))

= αk−1

k−2∏

m=i

(
1 + αmfm+1:e(m+1)

)
,

where equality (∗) follows from the induction hypothesis.

• For i = i(t), . . . , k − q − 1, we have min(k, i + q) = i + q and b̃
(k)
i+1 =

fi+1:e(i+1)p̃
(k)
i+1:i+q+1 + b̃

(k)
i+q+1. Therefore,

p̃
(k)
i:k = αib̃

(k)
i+1 − αi+q b̃

(k)
i+q+1 + p̃k

i+1:i+q+1

= αi

(
fi+1:e(i+1)p̃

(k)
i+1:i+q+1 + b̃

(k)
i+q+1

)− αi+q b̃
(k)
i+q+1 + p̃k

i+1:i+q+1

(∗)≈ p̃
(k)
i+1:k(1 + αifi+1:e(i+1))

= αk−1

k−2∏

m=i

(
1 + αmfm+1:e(m+1)

)
,

where in approximation (∗), we have used αi ≈ αi+q. 2

B Proof of Lemma 1

For i < n,

vi =
n∑

k=i+1

(
b̂k − b̂e(k)

)
αk−1

k−2∏

m=i

(
1 + αmfm+1:e(m+1)

)
σk:e(k)

=
(
b̂i+1 − b̂e(i+1)

)
αiσi+1:e(i+1) +

(
1 + αifi+1:e(i+1)

)×
{ n∑

k=i+2

(
b̂k − b̂e(k)

)
αk−1

k−2∏

m=i+1

(
1 + αmfm+1:e(m+1)

)
σk:e(k)

}

=
(
1 + αifi+1:e(i+1)

)
vi+1 + αi

(
b̂i+1 − b̂e(i+1)

)
σi+1:e(i+1),

which was to be shown. 2
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