
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 

ERIM REPORT SERIES RESEARCH IN MANAGEMENT 
ERIM Report Series reference number ERS-2005-008-F&A 

Publication  January 2005 

Number of pages 27 

Email address corresponding author pietersz@few.eur.nl 

Address Erasmus Research Institute of Management (ERIM) 
Rotterdam School of Management / Rotterdam School of 
Economics  
Erasmus Universiteit Rotterdam 
P.O. Box 1738  
3000 DR Rotterdam, The Netherlands 
Phone:  + 31 10 408 1182   
Fax: + 31 10 408 9640 
Email:  info@erim.eur.nl 
Internet:  www.erim.eur.nl 

 
Bibliographic data and classifications of all the ERIM reports are also available on the ERIM website:  

www.erim.eur.nl 

A COMPARISON OF SINGLE FACTOR MARKOV-FUNCTIONAL  
AND MULTI FACTOR MARKET MODELS 

 
Raoul Pietersz, Antoon A. J. Pelsser 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Erasmus University Digital Repository

https://core.ac.uk/display/18509653?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ERASMUS  RESEARCH  INSTITUTE  OF  MANAGEMENT 

 

REPORT SERIES 

RESEARCH IN MANAGEMENT 
 
 
 

BIBLIOGRAPHIC DATA AND CLASSIFICATIONS 
Abstract We compare single factor Markov-functional and multi factor market models for hedging 

performance of Bermudan swaptions. We show that hedging performance of both models is 
comparable, thereby supporting the claim that Bermudan swaptions can be adequately risk-
managed with single factor models. Moreover, we show that the impact of smile can be much 
larger than the impact of correlation. We propose a new method for calculating risk sensitivities 
of callable products in market models, which is a modification of the least-squares Monte Carlo 
method. The hedge results show that this new method enables proper functioning of market 
models as risk-management tools. 

Mission:  HF 5001-6182 

 Programme: HF 4001-4280.7 

Library of Congress 
Classification  

(LCC) 
LCC Webpage 

  Paper: HG 4524 Investment control 

Mission: M 

 Programme : G 3 

Journal of Economic 
Literature  

(JEL) 

JEL Webpage 
  Paper: G 13  Contingent Pricing; Futures Pricing 

Gemeenschappelijke Onderwerpsontsluiting (GOO) 

Mission: 85.00 

 Programme: 85.30 

Classification GOO 

  Paper: 85.30 Financieel management 

Mission: Bedrijfskunde / Bedrijfseconomie 

 Programme: Financieel management, besliskunde 

Keywords GOO 

  Paper: wiskundige programmering, prijsberekening, investeringen, 

                                             risicomanagement 

Free keywords Markov-functional model, market model, Bermudan swaption, terminal correlation, hedging, 
Greeks for callable products, smile 

 
 



A Comparison of Single Factor
Markov-functional and Multi Factor Market

Models∗

Raoul Pietersz†, Antoon A. J. Pelsser‡

Abstract. We compare single factor Markov-functional and multi factor market
models for hedging performance of Bermudan swaptions. We show that hedging
performance of both models is comparable, thereby supporting the claim that
Bermudan swaptions can be adequately risk-managed with single factor models.
Moreover, we show that the impact of smile can be much larger than the im-
pact of correlation. We propose a new method for calculating risk sensitivities of
callable products in market models, which is a modification of the least-squares
Monte Carlo method. The hedge results show that this new method enables
proper functioning of market models as risk-management tools.

Key words: Markov-functional model, market model, Bermudan swaption,
terminal correlation, hedging, Greeks for callable products, smile

JEL Classification: G13

1 Introduction

Bermudan swaptions form a popular class of interest rate derivatives. The un-
derlying is a plain-vanilla interest rate swap, in which periodic fixed payments
are exchanged for floating LIBOR payments. Institutional debt issuers use in-
terest rate swaps to revert from floating to fixed interest rate payments, and
vice versa. Often the issuers want to reserve the right to cancel the swap. A
cancellable swap can be valued by the following parity relation. A cancellable
interest rate swap is equal to a plain-vanilla interest rate swap plus a callable
interest rate swap with reversed cash flows. Thus a cancellable swap can be
valued when the callable swap can be valued. Such callable swap options are
referred to as Bermudan swaptions. Bermudan means that the exercise oppor-
tunities are at a discrete set of time points. A European swaption is an option
to enter into a swap at only a single exercise date.

In this paper, we will study the pricing and hedging performance of two
popular models for Bermudan swaptions. Many models have been proposed in
the literature for valuation and risk management of Bermudan swaptions. We
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Research Forum, Antwerp, Belgium.
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distinguish three categories: short-rate models, Markov-functional models and
market models.

Short-rate models model the dynamics of the term structure of interest rates
by specifying the dynamics of a single rate (the short rate) from which the whole
term structure at any point in time can be calculated. Examples of short-rate
models include the models of Vasicek (1977), Cox, Ingersoll & Ross (1985),
Dothan (1978), Black, Derman & Toy (1990), Ho & Lee (1986) and Hull &
White (1990).

The Markov-functional model of Hunt, Kennedy & Pelsser (2000) assumes
that the discount factors are a function of some underlying Markov process.
The model is then fully determined by no-arbitrage arguments and by requiring
a fit to the initial yield curve and interest rate option volatility.

Market models were introduced by Brace, Ga̧tarek & Musiela (1997), Mil-
tersen, Sandmann & Sondermann (1997) and Jamshidian (1997). The name
‘market model’ refers to the modelling of market observable variables such as
LIBOR rates and swap rates. The explicit modelling of market rates allows
for natural formulas for interest rate option volatility, that are consistent with
the market practice of using the formula of Black (1976) for caps (options on
LIBOR) and swaptions (options on swap rates).

Short-rate and Markov-functional models are usually1 implemented as mod-
els with a single stochastic process driving the term structure of interest rates. A
disadvantage is then that the instantaneous correlation between interest rates
can only be 1. Market models however efficiently allow for any number of
stochastic variables to be used, so that any instantaneous correlation structure
can be captured. There is substantial evidence that the term structure of in-
terest rates is driven by multiple factors (three, four, or even more), see the
review article of Dai & Singleton (2003). A more realistic description of real-
ity may thus be expected from multi factor models, which points to possibly
better hedge performance. The question addressed in this paper is whether the
increase in hedge performance due to use of a multi factor model is significant.
To those that a priori dismiss the use of single factor models due to their eco-
nomic irrelevance by failure in capturing the multi factor dynamics of the term
structure of interest rates, we say: Models that are best for managing an interest
rate derivatives book are not necessarily models that are most realistic, rather
they are models that most reduce variance of profit and loss (P&L), thereby
preserving wealth in the most stable manner. We mention four articles that
compare single and multi factor models.

First, in favour of multi factor models, Longstaff, Santa-Clara & Schwartz
(2001) claim that short-rate models, because of supposedly misspecified dynam-
ics, lead to suboptimal exercise strategies. This claim is supported by empirical
evidence performed with the short-rate models of Black et al. (1990) and Black
& Karasinski (1991). The authors then conclude that the costs to Wall Street
firms of following single factor exercise strategies could be several billion dollars.
The argument of Andersen & Andreasen (2001), and also ours, against the claim
of Longstaff et al. (2001), is that their choice of calibration does not correspond
to market practice and leads to models that are poorly fitted to market.

Second, in favour of single factor models, Andersen & Andreasen (2001)

1Two factor short rate models exist too, see for example Ritchken & Sankarasubramanian
(1995).
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claim that the exercise strategy obtained from a properly calibrated single factor
model only leads to insignificant losses when applied in a two factor model.

Third, Driessen, Klaassen & Melenberg (2003) are the first to investigate
hedge performance. These authors investigate two types of delta hedge instru-
ments, (i) a number of delta hedge securities, i.e. discount bonds, equal to the
number of factors, and (ii) a large set of discount bonds, one for each security
spanning the yield curve. They show that if the number of hedge instruments
is equal to the number of factors, then multi factor models outperform single
factor models. If, however, the large set of hedging instruments is used, which
is the case in practice, then single factor models perform as well as multi factor
models in terms of delta hedging of European swaptions.

Fourth, Fan, Gupta & Ritchken (2003) show, for the case of the number of
hedge instruments equal to the number of factors, that higher factor models
perform better than lower factor models in terms of delta hedging of European
swaptions and European swaption straddles2. The results of Fan et al. (2003)
are thus consistent with the findings of Driessen et al. (2003).

Relative to Driessen et al. (2003) and Fan et al. (2003), we make the contri-
bution of also considering vega hedging and Bermudan-style swaptions rather
than only delta hedging and only European-style swaptions. A European prod-
uct depends solely on the marginal distributions of the swap rates, whereas a
Bermudan product depends on the joint distribution, too. Moreover, we fit the
models exactly to a subset of European swaptions particular to a Bermudan
swaption rather than attempting to fit to the whole swaption volatility surface,
as Driessen et al. (2003) and Fan et al. (2003). The two practices of (i) fitting
to an appropriate set of swaptions, and (ii) vega hedging, are probably more
close in spirit to financial practice. In fact, we show that the variance of P&L
is significantly reduced when a vega hedge has been set up additional to a delta
hedge.

There is one drawback of using high factor models however, which is lesser
tractability than low (one or two) factor models. For valuation in high factor
models, we must resort to Monte Carlo (MC) simulation. Valuation by MC
is not a problem, but the estimation of sensitivities (Greeks) can be less effi-
cient. This is not due to the choice of calibration, as can sometimes be the
case as shown by Pietersz & Pelsser (2004), since in this paper the safe op-
tion of time-constant volatility (but dependent on the forward rates) is used.
The less efficient estimation of sensitivities occurs if the payoff along the path
can change discontinuously as dependent on initial parameters, see, for example,
Glasserman (2004, Section 7.1). We show that such discontinuity appears in the
Longstaff & Schwartz (2001) algorithm for valuation of Bermudan-style options.
We consider two methods to improve the efficiency of sensitivity estimates. The
comparison of hedge performance of single and multi factor models thus entails
a trade-off between more realistic modelling and tractability.

For the Markov-functional model, the failure of not capturing a realistic in-
stantaneous correlation structure can be remedied, in some sense, for Bermudan
swaptions and perhaps for other derivatives, too, as follows. In theory the price
of a co-terminal Bermudan swaption is dependent of and fully determined by the
joint distribution of the forward co-terminal swap rates at each of the exercise

2A European swaption straddle consists of a position of long a payer swaption and long an
otherwise identical receiver swaption.
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dates. In effect there are thus n(n+1)/2 stochastic variables that determine the
price. In this paper, we use the observation that the price of a Bermudan swap-
tion is, up to first order approximation, determined by the joint distribution of
only the underlying spot co-terminal swap rates at the exercise dates, see, e.g.,
Piterbarg (2004, page 67). There are only n such spot co-terminal swap rates.
The marginal distributions of these swap rates are governed by the associated
European swaption volatility quoted in the market, whereby, in a log-normal
model, we only need to specify correlation. We will call their correlation the
terminal correlation. A novel approximating formula is derived for the terminal
correlation in the Markov-functional model. The accuracy of the new formula
is tested numerically. The novel formula allows the Markov-functional model to
be calibrated to terminal correlation. We then equip a full factor swap market
model with a parameterized instantaneous correlation matrix, calculate the re-
sulting terminal correlation and fit the Markov-functional model to this terminal
correlation. Thus, although the Markov-functional model fails to capture instan-
taneous correlation, it can be tweaked such that it is fitted to product specific
terminal correlation. Since such correct correlation specification more or less
determines the price of the Bermudan swaption, it then no longer matters for
pricing Bermudan swaptions whether the single factor Markov-functional model
is a realistic or unrealistic model of other parts of reality in the interest rate
market, outside of the volatilities and correlations of the relevant swap rates.
Essentially, we have projected all relevant parts of reality correctly onto the
single factor Markov-functional model. With the thus fitted Markov-functional
model, and also with swap and LIBOR market models, we subsequently com-
pare hedge performance of Bermudan swaptions with real market data over a 1
year period.

The research in this paper is not aimed at comparing the model generated
Bermudan swaption prices to real-life market quoted prices. Rather, the hy-
pothetical viewpoint is taken that swaps and European swaptions are liquidly
traded in the market, and Bermudan swaptions are less liquidly traded. The
model is then used as an extrapolation tool to determine a Bermudan swaption
price consistent with swap and European swaption prices, and such that the
risk sensitivities provide a hedge of the former in terms of the latter securities.
In any case, the study in this paper is relevant for non-standard Bermudan
swaptions, for which the underlying has more exotic coupon payments. Exam-
ples of such exotic coupon payments are capped floater (min(`L,K) for some
cap rate K and leverage `), inverse floater (max(K − `L, 0)) and range accrual
(αL, with α the fraction for which LIBOR within the accrual period is within
a certain range). These non-standard Bermudan swaptions are called callable
LIBOR exotics. The results of this paper may apply to many types of callable
LIBOR exotics, but further research will have to provide a definitive answer.
Nonetheless, the results of this paper are interesting for the study of callable
LIBOR exotics, since these have evolved from standard Bermudan swaptions.

For both the swap market model and the Markov-functional model we ini-
tially use the basic well-known non-smile versions. Smile is the phenomenon
that for European options different Black-implied volatility is quoted for differ-
ent strikes of the option. As mentioned in Hunt et al. (2000, last paragraph of
Section 3.2), the Markov-functional model can be fitted to smile. We provide
details, also for the swap market model, and show that the resulting smile-fitting
procedure is numerically efficient and straightforward to implement. The smile
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Markov-functional model and smile swap market model are subsequently fitted
to USD swaption smile data. We then compare empirically the impact of smile
versus the impact of correlation.

The LIBOR Markov-functional model has been compared with the LIBOR
market model before by Bennett & Kennedy (2004). These authors show that
the one factor LIBOR Markov-functional model with mean reversion and the one
factor separable LIBOR market model are largely similar in terms of dynamics
and pricing. They also show this for an approximated version of the LIBOR
market model by drift approximations, as introduced by Pietersz, Pelsser & van
Regenmortel (2004) and Hunter, Jäckel & Joshi (2001). Relative to Bennett
& Kennedy (2004) this paper makes the contribution of also comparing multi
factor models with the Markov-functional model. Moreover, we show how multi
factor models can a priori be compared to the Markov-functional model which
is not a straightforward extension from the one-dimensional case.

The remainder of the paper is organized as follows. First, we outline the
comparison methodology for the two models. The LIBOR and swap market
models and Markov-functional model are discussed, as well as the two Greeks
calculation methods for market models. Second, the data is described. Third,
we numerically test the accuracy of an approximating formula for the termi-
nal correlation in the Markov-functional model. Fourth, empirical comparison
results are presented. Fifth, the impact of smile is investigated. Sixth, we
conclude.

2 Methodology

In this section, we first introduce some notation. Second, we set up the frame-
work that enables a comparison between multi factor and single factor models.

The type of Bermudan swaption that is considered here is the co-terminal
version, as opposed to, for example, the fixed maturity version. A co-terminal
Bermudan swaption is an option to enter into an underlying swap at several ex-
ercise opportunities, where each swap ends at the same contractually determined
end date. The maturity of the swap entered into thus becomes smaller as the
option is exercised later. In contrast, for a fixed maturity Bermudan swaption,
each swap that can be entered into has the same contractually specified maturity
and the respective end dates then differ. We consider a Bermudan swaption on
an underlying swap with n payments and a fixed rate F . Associated with this
swap is a tenor structure 0 < t1 < · · · < tn+1. The underlying swap makes a
payment Pi at time ti+1 depending on the LIBOR rate L(ti) fixed at time ti for
i = 1, . . . , n. Denote the notional amount by N and the day count fraction for
accrual period [ti, ti+1] by αi. Introduce the variable φ ∈ {−1, 1} by φ = 1 for
a pay fixed swap and φ = −1 for a receive fixed swap. The payment Pi is then
φαi(L(ti)− F )N . The holder of the Bermudan swaption has the right to enter
into the swap at the dates t1, . . . , tn. If the holder exercises the option at time ti,
then he or she will receive the payments Pi, . . . , Pn. Alternatively, in the market
the holder could have entered into an otherwise equal swap but with fixed rate
equal to the swap rate Si:n(ti). Here Si:j denotes the forward swap rate for
a swap that start at ti and ends at tj+1. The holder will thus only exercise
the Bermudan at time ti if φ(Si:n(ti)− F ) > 0. But even when the immediate
exercise value is positive, the holder can nonetheless decide to hold on to the
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option in view of a more favourable forward swap rate Sj:n(ti), j > i. It follows
that the price of a Bermudan swaption is dependent of and fully determined by
the joint distribution of the variables {Sj:n(ti) ; j = i, . . . , n, i = 1, . . . , n}. The
forward swap rates {S1:n, . . . , Sn:n} are called co-terminal since they all co-end
at the same termination date.

We contend that the main driver for the price of Bermudan swaptions is the
joint distribution of the realizations of the co-terminal swap rates {Si:n(ti) ; i =
1, . . . , n}. Ostrovsky (2002) calls this the diagonal process. The economic ar-
gument is that prima facta, the holder of the option has to choose between
receiving the payoffs of entering into the swaps starting at t1, t2, . . . , tn and the
associated payoffs are determined fully by S1:n(t1), S2:n(t2), . . . , Sn:n(tn).

As is common in financial practice, we calibrate models to only those sections
of the market that are relevant to the product, rather than attempting to fit
the models to all available market data. We assume that any valuation model
for the Bermudan swaption is calibrated to the so-called diagonal of European
swaptions that start at ti and end at tn+1, i = 1, . . . , n. This means that the
variance of the variables {S1:n(t1), . . . , Sn:n(tn)} is already fully determined.
Thus the diagonal process is fully determined (given a normal or log-normal
distribution) if we specify the correlation matrix for the variables {Si:n(ti) ; i =
1, . . . , n}. This correlation matrix will be called the terminal correlation. In the
next three sections, we discuss the LIBOR and swap market models and the
Markov-functional model, respectively. We show how the terminal correlation
can approximately be calculated in the swap market model and the Markov-
functional model. For the Markov-functional model we show how the model
can be calibrated to the terminal correlation.

The idea of terminal correlation is not new to finance. For example, Rebon-
ato (2002, Section 7.1.2) shows that it is the terminal and not the instantaneous
correlation that directly affects the price of swaptions. The terminal correlation
itself is determined both by the instantaneous correlation and the term struc-
ture of instantaneous volatility. In Rebonato (1999, Section 11.4) it is shown
that the terminal correlation is influenced just as much, and even more, by the
instantaneous volatility than by the instantaneous correlation.

2.1 The LIBOR and Swap Market Models

Within the swap market model, n forward swap rates are modelled as log-normal
processes under their respective forward measure, with forward swap rate Si:n

satisfying,

dSi:n(t)
Si:n(t)

= σi:n(t)dW (i:n)(t), 〈dW (i:n)(t), dW (j:n)(t)〉 = ρi:n,j:n(t)dt.

Here σi:n(·) denotes the instantaneous volatility function and W (i:n) denotes a
Brownian motion under the ith forward swap measure. The latter measure is
associated with a portfolio of discount bonds, weighted by the respective day
count fractions, with maturity times corresponding to the payment times of the
swap. The value of such a portfolio of discount bonds is named the present
value of a basis point (PVBP).

Within the LIBOR market model, n forward LIBORs are modelled as log-
normal processes under their respective forward measure, with forward LIBOR
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Li satisfying,

dLi(t)
Li(t)

= σi(t)dW (i+1)(t), 〈dW (i+1)(t), dW (j+1)(t)〉 = ρij(t)dt.

Here σi(·) denotes the instantaneous volatility function and W (i+1) denotes a
Brownian motion under the ith forward measure. The latter measure is asso-
ciated with a discount bond that matures at ti+1, the payment time of the ith

LIBOR deposit. The LIBOR market model is calibrated approximately to swap-
tion volatility, via an approximation of swaption volatility in terms of LIBOR
volatility, see, e.g., Hull & White (2000). By assumption of constant volatility
and constant correlation (see below), the resulting calibration algorithm reduces
to a simple bootstrap algorithm for determining the LIBOR volatility levels.

Within both market models, we set the instantaneous volatility and correla-
tion constant over time, i.e., σi:n(t) = σi:n and ρi:n,j:n(t) = ρi:n,j:n for the swap
model, and σi(t) = σi and ρij(t) = ρij for the LIBOR model. These choices,
relative to the time-homogeneous case, will not, or only favourably, impact the
results, as explained by the following two arguments. First, a constant instan-
taneous volatility assumption leads to efficiently estimated risk sensitivities,
whereas certain specific time-homogeneous specifications may not, as shown by
Pietersz & Pelsser (2004). Second, our choice of parametrization of the correla-
tion matrix is both a constant and time-homogeneous parametrization.

The rank of the correlation matrix R = (ρij)n
i,j=1 determines the number of

Brownian motions (number of factors) driving the model. When an arbitrary
correlation matrix has been specified, generally such matrix has full rank n,
but then if a number of factors k < n be required, we are led to solve a rank
reduction problem3. To test the two extreme cases, we consider only either rank
1 or full-rank correlation matrices, allowing respectively correlation constant at
1 or a full fit to any correlation matrix.

We parameterize the instantaneous correlation matrix by, for i < j,

(1) ρij(a) =

√
(e2ati − 1)/ti
(e2atj − 1)/tj

for a > 0, and ρij(a) ≡ 1, for a = 0.

This parametrization of instantaneous correlation allows for a simple calibration
of the Markov-functional model to the terminal correlation of the swap market
model. In fact, parametrization (1) has been chosen such that the resulting
terminal correlation of the swap market model exactly matches the terminal
correlation of a Markov-functional model with mean reversion parameter a.
The correlation structure (1) is nonetheless a good choice, since we will show
that, for a suitable choice of a, (1) corresponds to a form that is often quoted
in the literature, see, for example, Rebonato (1998, Equation (4.5), page 83),

(2) ρij(β) = exp
(− β|ti − tj |

)
, for some β ≥ 0.

We numerically fitted the form of (1) to (2), for 10 × 10 correlation matrices,
where n = 10 corresponds to the setting in the forthcoming hedge tests. In

3For solving such rank reduction problems the reader is referred to Pietersz & Groenen
(2004a, b), Grubǐsić & Pietersz (2004), Wu (2003), Rebonato (2002, Section 9) or Brigo (2002).
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Figure 1: Fitted a-parameter of parametrization (1) (left axis) and fit error
(right axis) versus the β-parameter of the Rebonato (1998) parametrization (2).
The fit error is the average absolute error over the entries.

other words, fix β, and then find a that solves

min
a≥0

n∑

i=1

n∑

j=1

∣∣ ρij(a)− ρij(β)
∣∣.

The relationship between the fitted a as dependent on β has been displayed in
Figure 1. As can be seen from the figure, the fit is of good quality, obtaining
an average absolute error over the entries in the correlation matrix that is less
than 0.02 for typical values of β and a.

2.2 The Markov-functional Model

We consider the swap variant of the Markov-functional model, see Hunt et
al. (2000, Section 3.4) for details on this variant. Within the (swap) Markov-
functional model, any model variable is a function of an underlying Markov pro-
cess x. For example, for a forward swap rate we have Si:n(tj) = Si:n(tj , x(tj)).
We assume that the driving Markov process of the model is a deterministically
time-changed Brownian motion, satisfying

dx(t) = τ(t)dW (t).

Here τ(·) denotes a deterministic function (that can be chosen piece-wise con-
stant) and W denotes a Brownian motion.

We now present an approximate formula for the terminal correlation. An
argument explaining the formula is given, and in a later section we investigate
the accuracy of the approximating formula. By a Taylor expansion, we have
ln Si:n(ti, x) ≈ s

(0)
i:n(ti) + s

(1)
i:n(ti)x. Since correlation is unaltered by a linear

transformation, the terminal correlation of the swap rates is thus approximately
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equal to the terminal correlation of the underlying Markov process,

(3) ρ
(

ln Si:n(ti), ln Sj:n(tj)
) ≈ ρ

(
x(ti), x(tj)

)
.

By straightforward calculation, for i < j,

(4) ρ
(

x(ti), x(tj)
)

=
Cov(x(ti), x(tj))√

Var(x(ti))Var(x(tj))
=

√√√√
∫ ti

0
τ2(t)dt∫ tj

0
τ2(t)dt

.

In fact, any functional of the Markov process can be linearized by a Taylor
expansion and, according to the argument above, would exhibit the same ap-
proximate terminal correlation (4). The above theoretical argument is therefore
not very strong. The approximation however turns out to be accurate, as will
be shown numerically in Section 4.

In principle, the Markov-functional model can thus be approximately fitted
to the terminal correlation by minimization of the fitting error given a market-
implied or historically estimated terminal correlation matrix. The parameters
for this minimization problem are for example the n parameters governing the
piece-wise constant function τ(·). For ease of exposition we will however restrict
our attention to the case of mean reversion, i.e. τ(t) = exp(at), with a denoting
the mean reversion parameter, see Section 4 of Hunt et al. (2000). In this case
we have, for i < j,

(5) ρ
(

x(ti), x(tj)
)

=

√
e2ati − 1
e2atj − 1

.

To verify that the Markov-functional model is properly calibrated to ter-
minal correlation, in the swap market model this correlation is approximately
calculated to be, from (1), for i < j,

(6)

∫ ti

0
σi:n(t)σj:n(t)ρij(t)dt√∫ ti

0
σ2

i:n(t)dt
∫ tj

0
σ2

j:n(t)dt
=

σi:nσj:nρijti√
σ2

i:ntiσ2
j:ntj

= ρij

√
ti
tj

=

√
e2ati − 1
e2atj − 1

.

The specification (1) of the instantaneous correlation of the swap market model
was constructed such that the (approximate) terminal correlation (5) of the
Markov-functional model with mean reversion parameter a is equal to the (ap-
proximate) terminal correlation (6) in the swap market model with parameter a.
Note that this correspondence does not necessarily hold for the LIBOR market
model, though we nonetheless employ it in the comparison tests.

2.3 Estimating Greeks for Callable Products in Market
Models

The algorithm of Longstaff & Schwartz (2001) (LS) renders the numeraire rel-
ative payoff along a simulated path discontinuously dependent on initial input.
The discontinuity in the LS algorithm stems from the estimated optimal exer-
cise index chosen from a discrete set of possible exercise opportunities. Such
a discrete choice is inherently discontinuously dependent on initial input. Any
discontinuity in a simulation may cause finite difference estimates of sensitiv-
ities to be less efficient, see Glasserman (2004, Section 7.1). We describe two
methods that enhance the efficiency of finite difference estimates, the second of
which is novel. These are:

9



(i) Finite differences with optimal perturbation size.

(ii) Constant exercise decision heuristic.

The two methods are discussed below in more detail. We denote by V the base
value of the derivative, i.e., the value of the derivative in the unperturbed model.

Method (i), the finite differences method is best described as the bump-and-
revalue approach. Initial market data is perturbed by amount ε, the model is re-
calibrated and subsequently priced at V (ε). The finite difference estimate of the
Greek is then (V (ε)−V )/ε. The mean square error (MSE) of the finite difference
estimator is dependent on the chosen perturbation size ε. If the numeraire
relative payoff along the path is continuously dependent on initial input, then
least MSE is obtained when ε is selected as small as possible (though larger
than machine precision), see Glasserman (2004). If the payoff is discontinuous
however, then there is a trade-off between increasing and decreasing ε, leading
to an optimal (‘large’ and positive) choice of ε that attains least MSE, see
Glasserman (2004). After some preliminary testing, we found perturbation sizes
of roughly 1 basis point (bp, 0.01%) for delta and 5 bp for vega.

Method (ii) that we propose, is named the constant exercise decision method.
Here, for the base valuation we record per path when the exercise decision takes
place. In the perturbed model, we no longer perform LS least-squares Monte
Carlo, but rather use the very same exercise strategy as in the base valuation
case. The constant exercise boundary method is a heuristic, since its estimate
is stable but biased. The bias stems from not taking into account the change
in value of the derivative as a result of a change in the (approximate) exercise
decision. The bias is likely to be small, because the exercise decision is close
to optimal by construction. Therefore, the change in value due to a change in
exercise decision is likely to be small. Though the method is biased, we never-
theless consider it in our tests. In finance, the importance is not bias, rather
it is reduction of variance of P&L. Moreover, the method is straightforward to
implement, and more efficient, since in re-valuations linear regressions for the
LS algorithm are no longer required. Note that the constant exercise method
renders a re-valuation continuously dependent on initial market data, provided
the underlying swap payoff is continuous, which is the case for the Bermudan
swaption studied in this paper. From the discussion on perturbation sizes for
method (i), it then follows that a least-MSE finite difference estimate of sensi-
tivities is obtained by employing perturbation sizes that are as small as possible.
We use 10−5 bp for both delta and vega.

We end this section by a brief discussion of other methods for calculation of
Greeks available in the literature. These methods could not straightforwardly
be extended to the situation of our investigations. Discussed are the path-wise
method (Glasserman & Zhao 1999), the likelihood ratio method (Glasserman &
Zhao 1999), the Malliavin calculus approach (Fournié, Lasry, Lebuchoux, Lions
& Touzi 1999) and the utility minimization approach (Avellaneda & Gamba
2001). The path-wise method cannot handle discontinuous payoffs. The like-
lihood ratio and Malliavin calculus method both require that the matrix of
instantaneous volatility be invertible. For the market model setting, we have an
n× d matrix with n the number of forward rates and d the number of stochas-
tic factors. Usually d < n and most often d ¿ n, which rules out inverting
the instantaneous volatility matrix. Glasserman & Zhao (1999, Section 4.2)
have resolved the non-invertibility issue only for a particular case, that does
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not apply to our case: When the payoff is dependent only on the rates at their
fixing times, {S1:n(t1), S2:n(t2), . . . , Sn:n(tn)}. Finally, the utility minimization
approach simply calculates a different sort of risk sensitivity and is thus alto-
gether biased.

3 Data

We describe the data used in the empirical comparison and smile-impact tests.
All market data was kindly provided by ABN AMRO Bank.

First, we describe the data used in the comparison test. For the comparison
test, we use an arbitrarily chosen time-span, 16 June 2003–2004, of USD data
of mid-quotes for deposit rates, swap rates and at-the-money (ATM) swaption
volatility. We use the 1 and 12 months deposit rates and the 2Y, 3Y, 4Y, 5Y, 7Y,
10Y and 15Y swap rates. The discount factors are bootstrapped from market
data. Any discount factors required at dates not available from the bootstrap
are calculated by means of linear interpolation on zero rates. A statistical
description of the swaption volatility data has been displayed in Table 1. For
each available tenor and expiry (Exp.), the associated column with four entries
reports, respectively, the mean, the standard deviation (in parentheses), the
minimum (in [·, form) and the maximum (in ·] form). Any volatility required at
expiries and tenors not available from Table 1 are calculated by means of linear
surface interpolation.

Second, we describe the data used in the smile-impact test, in which we will
consider a 6 year deal. We use USD data for 21 February 2003. The discount
factors have been displayed in Table 2. The swaption volatility against strike
and expiry has been displayed in Table 3.

4 Accuracy of the Terminal Correlation Formula

The terminal correlation in the Markov-functional model is estimated via the
terminal covariance. We have, for i < j, for any measure,

(7) E
[
ln Si:n(ti) ln Sj:n(tj)

]
= E

[
ln Si:n(ti)E

[
ln Sj:n(tj)

∣∣F(ti)
] ]

.

The above equality follows from the F(ti)-measurability of lnSi:n(ti). Expres-
sion (7) can be calculated on a lattice. We estimate (7) by calculating for
each grid point at time ti the conditional expectation E[ln Sj:n(tj)

∣∣F(ti)], sub-
sequently we integrate the result multiplied by lnSi:n(ti) to obtain the required
expectation.

The accuracy of the approximate formula (3) is tested for a 40 years deal,
with EUR market data of 8 February 1999, for which the swaption volatility
level is on average 14%. The test is performed at various mean reversion lev-
els, 0%, 5%, 10%, 15%, and 20%. The terminal correlation matrix within the
Markov-functional model is calculated numerically on a lattice under the ter-
minal measure and subsequently compared to the correlation matrix given by
the approximate formula (3). Note that the comparison contains two sources of
error: First, the approximation (3), and, second, the numerical error inherent in
the lattice calculation. In Table 4, various descriptive data for the comparison
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Table 1: Statistical description of the swaption volatility data.

Tenor (Years)
Exp. 1 2 3 4 5 7 10 15 30

1M 46.3 51.7 45.9 40.6 37.8 32.1 27.5 22.9 19.0
(6.2) (6.4) (6.2) (5.0) (4.7) (3.8) (3.5) (3.0) (2.7)
[34.3, [34.0, [30.3, [27.8, [26.2, [22.8, [19.6, [16.6, [13.6,
65.8] 68.3] 62.1] 53.1] 48.7] 42.1] 37.4] 33.0] 27.6]

2M 45.8 50.6 44.9 40.0 37.3 31.9 27.4 22.9 19.0
(4.8) (5.5) (5.3) (4.3) (4.1) (3.2) (2.9) (2.5) (2.2)
[36.0, [34.0, [30.3, [27.8, [26.2, [23.0, [19.9, [16.9, [13.8,
61.0] 63.5] 57.0] 50.1] 47.2] 39.4] 35.0] 30.9] 25.7]

3M 45.4 49.4 44.0 39.5 36.9 31.7 27.3 22.9 18.9
(3.9) (4.9) (4.5) (3.9) (3.6) (2.8) (2.5) (2.1) (1.8)
[36.0, [34.0, [30.0, [27.6, [26.0, [23.0, [19.8, [16.9, [13.7,
57.7] 60.3] 54.1] 49.3] 46.3] 37.8] 32.6] 28.8] 23.8]

6M 48.0 46.5 41.2 37.2 34.9 30.4 26.6 22.3 18.6
(4.3) (4.6) (4.1) (3.6) (3.4) (2.6) (2.1) (1.6) (1.3)
[34.9, [33.1, [29.3, [27.1, [25.4, [22.7, [20.0, [17.1, [14.1,
56.9] 56.8] 52.7] 47.6] 44.5] 37.0] 31.3] 25.5] 20.9]

1Y 46.0 41.0 36.5 33.5 31.7 28.3 25.1 21.4 17.9
(5.0) (4.7) (3.9) (3.4) (3.2) (2.5) (2.0) (1.5) (1.2)
[32.1, [29.4, [27.0, [25.2, [23.7, [21.6, [19.5, [16.7, [14.2,
55.5] 55.5] 48.2] 43.3] 40.6] 34.8] 30.0] 24.4] 20.3]

2Y 36.7 33.0 30.3 28.5 27.1 25.0 22.6 19.6 16.8
(4.3) (3.7) (3.1) (2.8) (2.6) (2.2) (1.8) (1.5) (1.2)
[26.9, [24.7, [23.2, [22.1, [21.1, [19.7, [17.9, [15.6, [13.5,
50.4] 44.3] 39.4] 36.5] 34.5] 30.8] 27.1] 22.7] 19.5]

3Y 29.9 27.8 26.3 25.0 24.0 22.4 20.5 18.0 15.5
(3.1) (2.7) (2.4) (2.2) (2.1) (1.8) (1.6) (1.3) (1.1)
[23.2, [21.7, [20.7, [20.0, [19.3, [18.1, [16.6, [14.6, [12.7,
38.6] 34.9] 32.6] 30.9] 29.7] 27.1] 24.2] 20.6] 18.1]

4Y 25.7 24.5 23.4 22.5 21.7 20.4 18.8 16.6 14.3
(2.2) (2.1) (1.9) (1.8) (1.7) (1.5) (1.3) (1.1) (1.0)
[20.8, [19.8, [19.1, [18.4, [17.9, [16.9, [15.6, [13.7, [11.9,
31.0] 29.6] 28.2] 27.2] 26.4] 24.4] 22.0] 19.0] 16.9]

5Y 23.2 22.3 21.4 20.7 19.9 18.8 17.4 15.5 13.4
(1.8) (1.7) (1.6) (1.6) (1.5) (1.3) (1.2) (1.0) (1.0)
[19.1, [18.4, [17.8, [17.2, [16.7, [15.8, [14.7, [12.9, [11.2,
28.0] 26.7] 25.7] 24.8] 24.0] 22.3] 20.2] 17.7] 15.8]

Table 2: Discount factors for the USD data of 21 February 2003.

1Y 2Y 3Y 4Y 5Y 6Y

0.98585 0.96223 0.92697 0.88571 0.84286 0.79986
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Table 3: Swaption volatility, in percentages, against strike and expiry for the
USD data of 21 February 2003. All displayed swaptions co-terminate 6 years
from today. Here ‘Exp.’ denotes Expiry.

Strike, in offset in basis points from the ATM forward swap rate

Exp. -300 -200 -100 -50 0 50 100 200 300

1Y 58.78 45.41 37.34 35.19 33.15 32.55 31.99 31.32 31.21
2Y 43.65 38.62 32.57 30.82 29.13 28.59 28.10 27.46 27.30
3Y 40.72 35.12 30.01 28.46 26.95 26.12 25.31 25.03 24.75
4Y 38.65 32.41 27.96 26.59 25.23 24.75 24.31 23.72 23.52
5Y 37.17 30.92 26.66 25.36 24.08 23.63 23.20 22.63 22.43

Table 4: Error analysis of the terminal correlation measured in the Markov-
functional model versus given by the approximate formula (3), for a 40 years
annual-paying deal, thus for a 40 × 40 correlation matrix. Abbreviations used
are m.r. for mean reversion, max. for maximum, abs. for absolute, err. for error,
rel. for relative, and avg. for average.

M.r. Max. abs. err. Max. rel. err. Avg. abs. err. Avg. rel. err.

0% 1.6× 10−4 0.0190% 4.5× 10−5 0.0076%
5% 5.0× 10−5 0.0072% 1.2× 10−5 0.0030%
10% 2.1× 10−5 0.0032% 3.0× 10−6 0.0012%
15% 1.0× 10−5 0.0018% 9.8× 10−7 0.0006%
20% 5.7× 10−6 0.0011% 4.0× 10−7 0.0003%
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Table 5: The Bermudan swaption deal used in the comparison.

Trade: Bermudan Swaption
Trade Type: Receive Fixed

Notional: USD 100m
Start Date: 16-Jun-2004
End Date: 16-Jun-2014
Fixed Rate: 3.2%

Index Coupon: Per Annum
Index Basis: ACT/365
Roll Type: Modified Following
Callable: At Fixing Dates

test have been displayed. Reported are, over the entries in the matrix, the max-
imum absolute and relative errors, and the average absolute and relative errors.
As can be seen from Table 4, these errors are quite small, especially considered
over a 40 years horizon.

5 Empirical Comparison Results

In this section, we report the results of our empirical comparison. The deal
description is given in Table 5. For market models we use the terminal measure,
10,000 simulation paths (5,000 plus 5,000 antithetic) and 10 stochastic factors
(a full factor model), bar when a = 0%, we use a single factor model. To
determine the exercise boundary in market models, we use the least-squares
Monte Carlo algorithm of Longstaff & Schwartz (2001), with all forward rates
as explanatory variables, i.e., all available LIBOR rates for the LIBOR market
model and all available swap rates for the swap market model. The reason for
using all available rates as explanatory variables is that the multi factor nature
of the market models needs be retained (if at all present; for a = 0% a single
factor model must be used). As basis functions we use a constant and one linear
term per explanatory variable, {1, X1, . . . , Xm}, where m denotes the number
of explanatory variables. The NPVs, deltas and vegas of the deal are calculated
at each trade date from 16 June 2003 till 15 June 2004, inclusive, for the mean
reversion levels 0%, 5% and 10%. A price comparison has been displayed in
Figure 2. As can be seen from the figure, the Markov-functional and market
models are similar in terms of NPV, and prices co-move and stay together over
time.

The models are, more importantly, compared in terms of hedge performance.
With respect to hedging, we use so-called bucket hedging rather than factor
hedging. With factor hedging, the number of hedge instruments equals the
number of factors in the model. Risk sensitivities are calculated by perturbing
only the model intrinsic factors. With bucket hedging, the number of hedge in-
struments equals the number of market traded instruments to which the model
has been calibrated to. Risk sensitivities are calculated by perturbing the value
of a market traded asset, and then by re-valuation of the derivative in a model
re-calibrated to the perturbed market data. The reasons that we employ bucket
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Figure 2: Bermudan swaption values per trade date, for various models and
correlation specifications.

hedging rather than factor hedging are twofold. First, Driessen et al. (2003, Sec-
tion VII.C) show that bucket hedging outperforms factor hedging for caps and
European swaptions (for delta hedging). Second, bucket hedging corresponds
to financial practice.

Two types of hedges are considered:

(i) Delta hedging only.

(ii) Delta and vega hedging.

The delta hedge is set up in terms of discount bonds, one discount bond for
each tenor time associated with the deal. In the case of the deal of Table 5,
there are 11 such discount bonds. To set up a joint delta and vega hedge, we
proceed in the following four steps. First, we calculate the vegas of the 10
underlying European swaptions. Second, we calculate the amount of each of
the European swaptions needed to have zero portfolio vega for all underlying
volatilities. Third, the aggregate delta position, of the Bermudan and European
swaptions, is calculated. Fourth, discount bonds are acquired to obtain zero
delta exposure for all 11 delta buckets.

The risk sensitivities are calculated in two ways, as detailed in Section 2.3,
(i) finite differences with perturbation sizes 1 bp for delta and 5 bp for vega
(referred to as ‘large’ perturbation sizes), and, (ii) constant exercise decision
method, with perturbation sizes 10−5 bp for both delta and vega (referred to
as ‘small’ perturbation sizes).

We note here that the computational time of calculating the NPV, the 11
deltas and the 10 vegas, at any particular trade date, is around 92 seconds for
market models4 with ordinary LS, around 42 seconds for market models with

4There are fast algorithms for implementation of market models with Monte Carlo, see
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Figure 3: Comparison of delta versus delta and vega hedging. Box-whisker
plots for the change in value (in USD) of the hedged portfolio. The percentages
denote the mean reversion level (MF) or correlation parametrization parameter
(LMM and SMM). For market models, we use the constant exercise decision
method, with ‘small’ perturbation sizes.

constant exercise decision method, versus 3 seconds for the Markov-functional
model. This difference of computational time is inherent to the (least squares)
Monte Carlo implementation of market models versus the lattice implementation
of Markov-functional models. Of course, such lattice implementation is allowed
only because of the mild path-dependency of Bermudan swaptions.

The hedge portfolios are set up at each trade day and the change in portfolio
value on the next trade day is recorded. The hedge test results are ordered in
three subsections.

5.1 Delta hedging versus delta and vega hedging

The performance of delta hedging versus delta and vega hedging is compared.
Box-whisker plots, for the change in hedge portfolio value, have been displayed in
Figure 3, for various models and mean reversion or correlation parametrization
parameters. Here, MF, LMM, and SMM denote respectively, Markov-functional
model, LIBOR market model and swap market model. Box-whisker plots pro-
vide a convenient representation of a distribution, by displaying five of its key
characteristics: the minimum, median, and maximum values, and the first and
third quartiles.

We draw the following conclusions from the box-whisker plots in Figure 3:

1. Delta hedging significantly decreases variance of P&L.

2. Vega hedging additional to delta hedging significantly further decreases
variance of P&L.

Joshi (2003) for LIBOR models, and Pietersz & van Regenmortel (2004, Section 5) for swap
models. Needless to say, we used these fast algorithms.
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Figure 4: ‘Large’ perturbation sizes versus constant exercise decision method
with ‘small’ perturbation sizes. Box-whisker plots for the change in value (in
USD) of the hedged portfolio. Mean reversion or correlation parameter of 0%.

It is clear that a joint delta and vega hedge by far outperforms a delta hedge.
Therefore we omit, in the remainder of the paper, further study of delta hedges
without a vega hedge.

5.2 ‘Large’ perturbation sizes versus constant exercise de-
cision method with ‘small’ perturbation sizes

The performance of joint delta-vega hedging is compared as dependent on the
method used to calculate risk sensitivities. Box-whisker plots for the change
in value of the delta-vega hedged portfolios, with a mean reversion of 0% or a
correlation parameter of 0%, have been displayed in Figure 4. Here, ‘const. ex.’
and ‘pert.’ denote ‘constant exercise decision method’ and ‘perturbation’, re-
spectively. The analogous box-whisker plots for mean reversion or correlation
parameters 5% and 10% are similar. We draw the following conclusions from
the box-whisker plots in Figure 4.

1. The estimation of sensitivities by finite differences over MC with ‘large’
perturbation sizes adversely affects the variance of P&L for hedging in
market models.

2. The best performing Greek calculation method, for delta-vega hedging, is
the constant exercise decision method, for which we approximately obtain
similar results as with the Markov-functional model.

3. The use of the constant exercise decision method enables proper function-
ing of market models as risk management tools, for callable products on
underlying assets that are continuously dependent on initial market data.

It is clear that the constant exercise decision method with ‘small’ perturbation
sizes by far outperforms ordinary LS with ‘large’ perturbation sizes. The the-
oretical explanation of this out-performance is related to two issues. First, the
classical LS algorithm causes a discontinuity in the numeraire relative payoff
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Figure 5: Delta-vega hedge results. Box-whisker plots for the change in value (in
USD) of the hedged portfolio. The percentages denote the mean reversion level
(MF) or correlation parametrization parameter (LMM and SMM). For market
models, we use the constant exercise decision method, with ‘small’ perturbation
sizes.

along the path, which renders finite difference estimates of sensitivities to be
less efficient. Second, ‘larger’ perturbation sizes cause more variance in the fi-
nite difference estimate of a sensitivity, since the correlation between the payoff
in the original and perturbed models becomes smaller. These two effects lead
to more Monte Carlo caused randomness in the contents of the hedge portfolio,
which ultimately leads to increased variance of P&L, as can be seen in Figure
4.

We omit, in the remainder of the paper, further study of ordinary LS with
‘large’ perturbation sizes.

5.3 Delta-vega hedge results

The performance of joint delta-vega hedging is compared across models and
mean reversion or correlation specifications. For the market models, we use the
constant exercise decision method with ‘small’ perturbation sizes. Box-whisker
plots for the change in value of the delta-vega hedged portfolios have been
displayed in Figure 5. We draw the following conclusions from the box-whisker
plots in Figure 5.

1. The impact of mean reversion or correlation parameter specification on
hedge performance is not very large.

2. The hedge performance for all three models is very similar.

6 The Impact of Smile

In this section, we provide details on how the Markov-functional and swap
market models can be fitted to smile and investigate the impact of smile relative
to the impact of correlation cq. mean reversion on the prices of Bermudan
swaptions. As a concrete example, the displaced diffusion smile dynamics of
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Rubinstein (1983) are considered. In a displaced diffusion setting, the forward
swap rate is modelled as

(8) Si:n(t) = S̃i:n(t)− ri,
dS̃i:n(t)
S̃i:n(t)

= σi:ndW (i:n)(t),

with ri the displacement parameter and W (i:n) a Brownian motion under the
forward swap measure associated with Si:n. The solution to stochastic differen-
tial equation (SDE) (8) is

(9) Si:n(t) = −ri + (Si:n(0) + ri) exp
{

σi:nW (i:n)(t)− 1
2
σ2

i:nt
}
.

The displaced diffusion extension is first discussed for the Markov-functional
model and second for the swap market model. The Markov-functional model is
fitted to volatility by fitting the digital swaptions. The value V (i) of the digital
swaption on swap rate Si:n(ti) with strike K is given by the familiar formula in
the Black world

(10) V (i) = PVBPi:n(0)N(d(i)
2 ), d

(i)
2 =

log(K/Si:n(0))− 1
2σ2

i:nti

σi:n

√
ti

where N(·) denotes the cumulative normal distribution function and where
PVBPi:n denotes the present value of a basis point, PVBPi:n =

∑n
k=i αiBi+1(t).

Here αi denotes the day count fraction for period [ti, ti+1] and Bi(t) denotes the
time-t value of a discount bond for payment of one unit of currency at time ti.
In the displaced diffusion world, the value Ṽ (i) of the digital swaption is given
by a displaced forward swap rate and strike

(11) Ṽ (i) = PVBPi:n(0)N(d̃(i)
2 ), d̃

(i)
2 =

log
( Si:n(0)+ri

K+ri

)− 1
2σ2

i:nti

σi:n

√
ti

.

The implementation of a non-smile Markov-functional model has to be changed
only in two places to incorporate displaced diffusion smile dynamics. First, the
functional form of the terminal discount bond Bn+1 at time tn is determined,
using the equation

(12) Bn+1(tn) =
1

1 + αnSn:n(tn)
.

In a non-smile Markov-functional model, we then have

(13) Bn+1(tn, x(tn)) =
1

1 + αnSn:n(0) exp{− 1
2σ2

n:ntn + σn:n
e2atn−1x(tn)} ,

this is exactly the penultimate equation on page 399 of Hunt et al. (2000). In a
displaced diffusion setting, we substitute (9) into (12) and then (13) becomes

B̃n+1(tn, x(tn)) =
1

1 + αn[−ri + (Sn:n(0) + ri) exp{− 1
2σ2

n:ntn + σn:n
e2atn−1x(tn)}] ,

Second, the functional forms of the swap rates Si:n(ti, ·), i = 1, . . . , n − 1 are
determined, by inverting the value of the digital swaption against strike. In a
non-smile Markov-functional model, we invert (10) and obtain

Si:n(ti, x(ti)) = Si:n(0) exp
{
− 1

2
σ2

i:nti − σi:n

√
tiN

−1
( J (i)(x(ti))

PVBPi:n(0)

)}
,
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Table 6: Displaced diffusion parameters fitted to the USD market data of 21
February 2003 of Table 3.

i 1 2 3 4 5

Expiry 1Y 2Y 3Y 4Y 5Y
Tenor 5Y 4Y 3Y 2Y 1Y
σi:n 28.29% 21.76% 18.28% 16.08% 14.62%
ri 0.71% 1.55% 2.33% 2.89% 3.39%

with J (i)(x) denoting the value of a digital swaption with strike x in the model,
calculated by induction from i = n − 1, . . . , 1. In a displaced diffusion setting,
we invert (11) to obtain

Si:n(ti, x(ti)) = −ri+(Si:n(0)+ri) exp
{
−1

2
σ2

i:nti−σi:n

√
tiN

−1
( J (i)(x(ti))

PVBPi:n(0)

)}
.

Next, the displaced diffusion swap market model is made reference to. The
dynamics of the forward swap rates under the terminal measure in general smile
models can be found in Jamshidian (1997, Equation (6), page 320).

We fit the displaced diffusion model to the market data of Table 3 and find
the volatility parameters σi:n and displacement parameters ri as listed in Table
6. The fitted volatility and fit errors have been displayed in Table 7. As can
be seen from the table, the displaced diffusion model fits the market well for
ATM and out-of-the-money (OTM) options (fit error less than a percent), but
not so well for in-the-money (ITM) options, for which the model underfits the
market up to 21%. We note here that the disability of obtaining a perfect fit to
the smile volatility data is due solely to the displaced diffusion model, and not
to the Markov-functional or market models. An exact fit to the swaption smile
surface can be obtained, for example, with the relative-entropy minimization
framework of Avellaneda, Holmes, Friedman & Samperi (1997). To benchmark
the implementation of the displaced diffusion Markov-functional and swap mar-
ket models, European swaptions are valued in (i) a constant volatility model
with the volatility associated with the expiry and strike of the swaption and
(ii) the smile model. The results of this test for the Markov-functional model
have been displayed in Table 8. The benchmark is of high quality, though there
are some slight differences due to numerical errors in the grid calculation. The
benchmark results for the swap market model are of similar good quality.

Subsequently, Bermudan swaptions are priced with varying strikes and oth-
erwise specified in Table 9. The Bermudan swaptions are priced in the Markov-
functional and SMM models, and in their displaced diffusion counterparts, at
various mean reversion or correlation parameter levels. In the non-smile models,
there are two possibilities for choosing the volatilities. First, the volatilities can
be used that correspond to the strike of the Bermudan swaption. Second, the
ATM volatilities can be used, regardless of the strike of the Bermudan swaption.
The calculated prices have been displayed in Table 10. The results in the table
show that the impact of correlation is significant, since a 10% change in mean re-
version can cause a change in value equal to a parallel volatility shift of 1%. The
impact of correlation is comparable to that reported by Choy, Dun & Schlögl
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Table 7: Fitted swaption volatility and fit errors with the displaced diffusion
model, in percentages, against strike and expiry for the USD data of 21 February
2003. All displayed swaptions co-terminate 6 years from today. Here ‘Exp.’
denotes Expiry.

Fitted swaption volatility
Strike, in offset in basis points from the ATM forward swap rate

Exp. -300 -200 -100 -50 0 50 100 200 300

1Y 37.82 35.11 33.88 33.48 33.15 32.89 32.66 32.30 32.03
2Y 34.32 31.57 30.07 29.54 29.11 28.74 28.43 27.92 27.51
3Y 32.23 29.58 28.02 27.45 26.98 26.57 26.21 25.63 25.16
4Y 30.34 27.83 26.29 25.72 25.23 24.82 24.46 23.85 23.37
5Y 29.17 26.74 25.21 24.63 24.14 23.72 23.35 22.73 22.23

Absolute fit errors, model volatility minus market volatility
Strike, in offset in basis points from the ATM forward swap rate

Exp. -300 -200 -100 -50 0 50 100 200 300

1Y -20.96 -10.29 -3.46 -1.71 0.00 0.34 0.67 0.98 0.82
2Y -9.33 -7.05 -2.50 -1.28 -0.02 0.15 0.33 0.45 0.21
3Y -8.49 -5.54 -1.99 -1.01 0.02 0.44 0.90 0.60 0.41
4Y -8.31 -4.58 -1.67 -0.87 0.00 0.06 0.14 0.13 -0.15
5Y -8.00 -4.18 -1.45 -0.73 0.06 0.09 0.14 0.10 -0.20

(2004, Table 11), though the latter authors name this impact ‘non-substantial’.
The impact of smile is, for the deal considered, much larger than the impact of
correlation and mean reversion, since 10% mean reversion is usually a high level
when observed in the market. In terms of vega, the smile impact can be as large
as a parallel shift in volatility of -8% to 1%, for per-strike volatilities, and -1%
to 6%, for ATM volatilities. Furthermore, the displaced diffusion smile model
underfitted the volatility smile observed in the market. Since increasing the
volatility usually leads to a higher value for Bermudan swaptions5, the impact
of smile can thus be even higher, when ATM volatilities are used.

7 Conclusions

We investigated the impact of correlation on the pricing and hedge perfor-
mance of Bermudan swaptions for various models. We showed how the Markov-
functional model can approximately be fitted to terminal correlation, by devel-
oping a novel approximate formula for terminal correlation. The approximate
formula was shown to be of high quality in a numerical test. Empirically, the
impact of terminal correlation was shown to be somewhat significant for pricing
of Bermudan swaptions in market models, and the same effect can be attained
in the single-factor Markov-functional model by calibration to terminal corre-
lation. We showed empirically by comparison with multi factor market models
that hedge performance for Bermudan swaptions is, for practical purposes, al-

5Pietersz & Pelsser (2004, Appendix) explain that Bermudan swaptions can in certain
particular circumstances have negative vega.
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Table 9: The Bermudan swaption deal used in the test of impact of smile.

Trade: Bermudan Swaption
Trade Type: Receive Fixed

Notional: USD 100m
Valuation Date: 21-Feb-2003

Start Date: 21-Feb-2004
End Date: 21-Feb-2009

Index Coupon: Per Annum
Index Basis: ACT/365
Roll Type: Modified Following
Callable: At Fixing Dates

most identical, regardless of the model, number of factors, or correlation speci-
fication. Our results show that the need of modelling correlation can already be
adequately met by a single factor model. Whether these results extend beyond
the asset class of Bermudan swaptions, is an interesting question that we leave to
answer in future research. With respect to hedge portfolios, we showed (i) that
delta hedging significantly reduces variance of P&L in both Markov-functional
and market models, (ii) that vega hedging additional to delta hedging signifi-
cantly further reduces variance of P&L in both Markov-functional and market
models, (iii) that estimation of Greeks by finite differences over Monte Carlo
for callable products with the regular LS algorithm and ‘large’ perturbation
sizes adversely affects the delta-vega hedge performance of market models. We
showed that our proposal of the constant exercise decision method with ‘small’
perturbation sizes enables proper functioning of market models as risk man-
agement tools, for callable products on underlying assets that are continuously
dependent on initial market data. Moreover, we investigated the impact of smile
via displaced diffusion versions of the Markov-functional and swap market mod-
els. For a particular deal and USD market data, we showed that the impact of
smile is much larger that the impact of correlation.
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Fournié, E., Lasry, J.-M., Lebuchoux, J., Lions, P.-L. & Touzi, N. (1999), ‘Appli-
cations of Malliavin calculus to Monte Carlo methods in finance’, Finance
and Stochastics 3(4), 391–412.

Glasserman, P. (2004), Monte Carlo Methods in Financial Engineering,
Springer-Verlag, Berlin.

Glasserman, P. & Zhao, X. (1999), ‘Fast Greeks by simulation in forward LIBOR
models’, Journal of Computational Finance 3(1), 5–39.
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