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research has concentrated on the empirical applications ofvarious models, with little theoretical or statistical

analysis associated with the structure of the processes or the associated asymptotic theory. In this paper,

we first derive necessary conditions for strict stationarity and ergodicity of three different specifications of

the first-order smooth transition autoregressions with heteroskedastic errors. This is important, among other

reasons, to establish the conditions under which the traditional LM linearity tests based on Taylor expansions

are valid. Second, we provide sufficient conditions for consistency and asymptotic normality of the Quasi-

Maximum Likelihood Estimator for a general nonlinear conditional mean model with first-order GARCH

errors.

KEYWORDS: Nonlinear time series, regime-switching, smooth transition, STAR, GARCH, log-moment,

moment conditions, asymptotic theory.

1 Introduction

Recent years have witnessed a vast development of nonlineartechniques for modelling the condi-

tional mean and conditional variance of economic and financial time series. In the vast array of new

technical developments for conditional mean models, the Smooth Transition AutoRegressive (STAR)

specification, proposed by Chan and Tong (1986) and developed by Luukkonen, Saikkonen, and

Teräsvirta (1988) and Teräsvirta (1994), has found a number of successful applications (see van Dijk,

Teräsvirta, and Franses (2002) for a recent review). The term “smooth transition” in its present mean-

ing first appeared in Bacon and Watts (1971). They presented their smooth transition specification

as a model of two intersecting lines with an abrupt change from one linear regression to another at

an unknown change-point. Goldfeld and Quandt (1972, pp. 263-264) generalized the so-called two-

regime switching regression model using the same idea. In the time series literature, the STAR model

is a natural generalization of the Self-Exciting ThresholdAutoregressive (SETAR) models pioneered

by Tong (1978) and Tong and Lim (1980) (see also Tong (1990)).

In terms of the conditional variance, Engle’s (1982) Autoregressive Conditional Heteroskedastic-

ity (ARCH) model and Bollerslev’s (1986) Generalized ARCH (GARCH) model are the most popular

specifications for capturing time-varying symmetric volatility in financial and economic time series

data. McAleer (2005) provide an overview of different univariate and multivariate conditional volatil-

ity models.

Despite their popularity, the structural and statistical properties of these models were not fully es-

tablished until recently. Chan and Tong (1986) derived the sufficient conditions for strict stationarity

and geometric ergodicity of a two-regime STAR model, where the transition function is given by the

cumulative Gaussian distribution. Although several papers have been published in the literature with

general conditions for strict stationarity and ergodicityof nonlinear time series models, especially

threshold-type models, few attempts have been made to comprehend the dynamics of more general

smooth transition processes (see Chen and Tsay (1991) for anearly reference on the ergodicity of

threshold models). In general, only very restrictive sufficient conditions are provided. For general

nonlinear homoskedastic autoregressions, see Bhattacharya and Lee (1995), An and Huang (1996),

An and Chen (1997), Lee (1998), among many others. Nonlinearmodels with ARCH errors (not
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GARCH) have been considered, for example, by Masry and Tjostheim (1995), Cline and Pu (1998,

1999, 2004), Lu (1998), Lu and Jang (2001), Chen and Chen (2001), Hwang and Woo (2001), Lieb-

scher (2005), and Saikkonen (2007). Stability of nonlinearautoregressions with GARCH type errors

has been analyzed by Liu, Li, and Li (1997), Ling (1999), and,Cline (2007). Of these articles, those

of Liu, Li, and Li (1997) and Ling (1999) are restrcited to threshold AR-GARCH models, whereas

the one by Cline (2007) analyses a very general nonlinear autoregressive models with GARCH errors.

Cline (2007) obtained sharp results for geometric ergodicity but a difficulty with the application of

these results is that the assumptions employed are quite general and are difficult to verify. A threshold

AR-GARCH model is the only example that is explicitly treated by the authors. Furthermore, con-

ditional heteroskedasticity is driven by the observed series instead of the autoregressive errors as in

the usual GARCH specification. Ferrante, Fonseca, and Vidoni (2003) considered threshold bilinear

Markov processes. Only recently, Meitz and Saikkonen (2008) study the stability of general nonlinear

autoregressions or orderp with first-order GARCH errors. However, they explicitly analyze only a

STAR model with two limiting regimes.

Consistency and asymptotic normality of the nonlinear least squares estimator are given under the

assumption that the errors are homoskedastic and independent. In a recent paper, Mira and Escribano

(2000) derived new conditions for consistency and asymptotic normality of the nonlinear least squares

estimator. However, estimation of the conditional variance was not considered in these papers.

Significant efforts have been made to fully understand the properties of univariate and multivari-

ate GARCH models. Nelson (1990) derived the necessary and sufficient log-moment condition for

stationarity and ergodicity of the GARCH(1,1) model. This condition was extended to higher-order

models by Bougerol and Picard (1992). Weak stationarity andthe existence of fourth moments of

a family of power GARCH models have been investigated in He and Teräsvirta (1999a,b), while

Ling and McAleer (2002a,b) derived the necessary and sufficient conditions for the existence of all

moments for these models.

Concerning the estimation of parameters for GARCH models, Lee and Hansen (1994) and Lums-

daine (1996) proved that the local Quasi-Maximum Likelihood Estimator (QMLE) was consistent

and asymptotic normal under strong conditions. Jeantheau (1998) established the consistency re-

sults of estimators for multivariate GARCH models. His proofs of consistency did not assume a

particular functional form for the conditional mean, but assumed a log-moment condition and some

regularity conditions for purposes of identification. Morerecently, Ling and McAleer (2003) pro-

posed the vector ARMA-GARCH model and proved the consistency of the global QMLE under only

the second-order moment condition. They also proved the asymptotic normality of the global (local)

QMLE under the sixth-order (fourth-order) moment condition. Comte and Lieberman (2003) studied

the asymptotic properties of the QMLE for the BEKK model of Engle and Kroner (1995). Berkes,

Horváth, and Kokoszka (2003) proved the consistency and asymptotic normality if the QMLE of the

parameters of the GARCH(p,q) model under second- and fourth-order moment conditions, respec-

tively. Boussama (2000), McAleer, Chan, and Marinova (2007), and Francq and Zakoı̈an (2004) also
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considered the properties of the QMLE under different specifications of the symmetric and asymmet-

ric GARCH(p,q) model.

However, most of the theoretical results on GARCH models have assumed a constant or linear

conditional mean (see McAleer (2005) for further details).It has not yet been established whether

these results would also hold if the conditional mean were nonlinear. Chan and McAleer (2002)

combined the general STAR model with GARCH(p,q) errors, but their results were derived under the

assumption that the conditional mean parameters were known.

This paper extends existing results in the literature in several respects. The sufficient conditions

for strict stationarity and geometric ergodicity of a general class of first-order STAR models with

GARCH(1,1) errors are established. STAR models with more than two regimes are also considered.

Second, consistency and asymptotic normality of the QMLE ofthe a general nonlinear conditional

mean model with first-order GARCH errors are derived under weak conditions. Finally, a simulation

experiment highlight the small sample properties of the QMLE.

The structural and statistical properties developed in this paper can also be used to derive the

distributions associated with various test statistics proposed in the nonlinear time series literature.

These properties provide the foundation for developing more complete tests for important economic

and financial hypotheses. For instance, the correlation between prices over time is often used as a

test for the weak form of the Efficient Market Hypothesis (EMH), which assumes that prices follow

a linear process. However, if prices follow a nonlinear process, such as a STAR-type process, the

correlation between prices over time may appear insignificant in finite samples. Thus, formal tests of

nonlinear dependence would also provide an important diagnostic for testing the EMH.

The plan of the paper is as follows. Section 2 provides a description of the models considered

in the paper. Stationarity, ergodicity and the existence ofmoments are discussed in Section 3. The

asymptotic properties of the QMLE are considered in Section4. In Section 5 we present simulation

results concerning the finite sample properties of the QMLE and an empirical illustration is shown in

Section 6. Finally, Section 7 gives some concluding remarks. All technical proofs are given in the

Appendix.

2 Model Specification

In this section we consider three different classes of STAR-GARCH models. The first specification is

an additive logistic STAR model with multiple regimes in theconditional mean and GARCH errors.

This model nests the SETAR-GARCH process of Li and Lam (1995). A similar specification with

Gaussian errors was proposed in Suarez-Fariñas, Pedreira, and Medeiros (2004) and Medeiros and

Veiga (2000, 2005). The second specification is a restrictedform of the multiple-regime logistic

STAR model with GARCH errors.

This particular functional form with homoskedastic errorswas discussed in van Dijk, Teräsvirta,

and Franses (2002). Finally, the third specification is the Exponential STAR-GARCH (ESTAR-
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GARCH) model, of which the Exponential STAR (ESTAR) Teräsvirta (1994) model is a special

case.

DEFINITION 1. TheR-valued process{yt, t ∈ Z} follows an autoregressive model with time-varying

coefficients and GARCH(1,1) errors if

yt = f0(st) +

p∑

i=1

fi(st)yt−i + εt, (1)

εt = ηt
√
ht, and (2)

ht = ω + αε2t−1 + βht−1, (3)

where{ηt} is a sequence of independently and identically distributedzero mean and unit variance

random variables,ηt ∼ IID(0, 1) andfj(st) ≡ fj(st;λj), j = 0, 1, . . . , p, are nonlinear functions of

the variablesst and are indexed by the vector of parametersλj ∈ R
K .

It is clear that the model defined by equations (1)–(3) is similar to the functional coefficient

autoregressive model proposed by Chen and Tsay (1993). Depending on the choice of the functions

fj(st;λ), j = 0, 1, . . . , p, different specifications of the STAR model can be derived. The following

cases are considered:

1. The Multiple Regime Logistic STAR(p)-GARCH(1,1) (or MLSTAR(p)-GARCH(1,1)) model:

Setst = yt−d, d ∈ N, and

fj(st;λ) = φ0j +

m∑

i=1

φijG(yt−d; γi, ci), j = 0, . . . , p, (4)

where

G (yt−d; γi, ci) =
1

1 + e−γi(yt−d−ci)
. (5)

2. The Generalized STAR(p)-GARCH(1,1) (or GSTAR(p)-GARCH(1,1)) model:

Setst = yt−d, d ∈ N, and

fj(st;λ) = φ0j + φ1jG(yt−d; γ, c), (6)

where

G (yt−d; γ, c) =
1

1 + e−γ[
∏

m

i=1
(yt−d−ci)]

, (7)

with c = (c1, . . . , cm)′.

3. The Exponential STAR(p)-GARCH(1,1) (or ESTAR(p)-GARCH(1,1)) model:
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Setst = yt−d, d ∈ N, and

fj(st;λ) = φ0j + φ1jG(yt−d; γ, c), (8)

where

G (yt−d; γ, c) = 1− e−γ(yt−d−c)2 . (9)

EXAMPLE 1. Consider a three regime MLSTAR(1)-GARCH(1,1) model where the transition variable

is yt−1, φ00 = −0.001, φ10 = 0.001, φ20 = 0.001, φ01 = −0.001, φ11 = 0.001, φ21 = 0.001,

γ1 = 1000, γ2 = 1000, c1 = −0.01, c2 = 0.01, ω = 10−5, α = 0.05, andβ = 0.85. Figure 1 shows

the scatter plotf0(yt−1) and f1(yt−1) versusyt−1. One characteristic of such specification is that

the linear parameters in each limiting regimes are allowed to be different.
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Figure 1: Upper panel:f0(yt−1) versusyt−1 for one realization of the model described in Example
1. Lower panel:f1(yt−1) versusyt−1 for one realization of the model described in Example 1.

EXAMPLE 2. Consider a three regime GSTAR(1)-GARCH(1,1) model where the transition variable

is yt−1, φ00 = −0.001, φ10 = 0.002, φ01 = 0.025, φ11 = 0.0.25, γ = 100000, c1 = −0.01,

c2 = 0.01, ω = 10−5, α = 0.05, andβ = 0.85. Figure 2 shows the scatter plotf0(yt−1) and

f1(yt−1) versusyt−1. Contrary to the MLSTAR model, the linear parameters in eachlimiting extreme

regime are restricted to be equal. Furthermore,
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Figure 2: Upper panel:f0(yt−1) versusyt−1 for one realization of the model described in Example
2. Lower panel:f1(yt−1) versusyt−1 for one realization of the model described in Example 2.
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EXAMPLE 3. Consider a three regime ESTAR(1)-GARCH(1,1) model where the transition variable

is yt−1, φ00 = −0.001, φ10 = 0.002, φ01 = 0.025, φ11 = 0.0.25, γ = 100000, c = 0, ω = 10−5,

α = 0.05, andβ = 0.85. Figure 3 shows the scatter plotf0(yt−1) and f1(yt−1) versusyt−1. As

in the previous example, the linear parameters in each limiting extreme regime are restricted to be

equal.
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Figure 3: Upper panel:f0(yt−1) versusyt−1 for one realization of the model described in Example
3. Lower panel:f1(yt−1) versusyt−1 for one realization of the model described in Example 3.

3 Probabilistic Properties

In this section only first-order models will be considered while in Section 4 general nonlinear models

will be analyzed. Consider the following set of assumptions.

ASSUMPTION1 (Error Term). The sequence{ηt} of IID(0, 1) random variables is drawn from a con-

tinuous (with respect to Lebesgue measure on the real line),unimodal, positive everywhere density,

and bounded in a neighborhood of 0.

ASSUMPTION2 (Model Structure).p = 1 andst = yt−1 in Equation (1).

ASSUMPTION 3 (Identifiability and Positiveness of the Variance).The parameters of the model de-

fined by (1)–(3) satisfy the following conditions: (R.1a)γi > 0, i = 1, . . . ,m, andc1 < c2 < · · · <
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cm in (4); (R1.b)γ > 0 andc1 ≤ c2 ≤ · · · ≤ cm in (6); (R.1c)γ > 0 in (8); (R.2)ω > 0, α > 0, and

β > 0.

Assumption 1 is standard. Note that we do not assume symmetryof the distribution, which

is particularly useful when modelling financial time series. Assumption 2 forces the model to be

of first-order. This will be crucial to the results in this section but will be relaxed in Section 4.

The restrictions (R.1a)–(R.1c) in Assumption 6 are important to guarantee that the model is globally

identifiable. Restriction (R.2) is a sufficient condition for ht > 0 with probability one.

Note thatzt = (yt, ht, ηt)
′ is a Markov chain with homogenous transition probability expressed

as

zt = F (zt−1) + et, (10)

where

F (zt−1) =



f0(yt−1) + f1(yt−1)yt−1

ω +
(
β + αη2t−1

)
ht−1

0




andet = (εt, 0, ηt)
′.

The following theorems state the necessary conditions for strict stationarity and geometric ergod-

icity of the STAR-GARCH models considered in this paper.

THEOREM 1 (Stationarity – MRLSTAR(1)-GARCH(1,1) model).Defineφ =
∑m

i=0 φi1. Under

Assumptions 1–2, and if (R.1a) in Assumption 6 holds, the process{yt, t ∈ Z} defined by equations

(1)–(3) and (4) is strictly stationary and geometrically ergodic ifα+ β < 1, |φ01| < 1 and |φ| < 1.

Furthermore, the process{zt, t ∈ Z} admits a unique causal expansion.

THEOREM 2 (Stationarity – GSTAR(1)-GARCH(1,1) model).Setφ = φ01+φ11. Under Assumption

1, and if (R.1b) in Assumption 2 holds, the process{yt, t ∈ Z} defined by equations (1)–(3) and (6)

is strictly stationary and geometrically ergodic ifα + β < 1, |φ01| < 1 and |φ| < 1. Furthermore,

the process{zt, t ∈ Z} admits a unique causal expansion.

THEOREM 3 (Stationarity – ESTAR(1)-GARCH(1,1) model).Setφ = φ01+φ11. Under Assumption

1, and if (R.1c) in Assumption 2 holds, the process{yt, t ∈ Z} defined by equations (1)–(3) and (8)

is strictly stationary and geometrically ergodic ifα + β < 1 and
∣∣φ
∣∣ < 1. Furthermore, the process

{zt, t ∈ Z} admits a unique causal expansion.

If the conditions of the above theorems are met, the processes {yt} and{ht} have the following

causal expansions:

yt = λ0,t−1 +

∞∑

j=1

j−1∏

k=0

[f0(yt−1−j)f1(yt−1−k) + f1(yt−1−k)εt−j ] , (11)

ht = ω


1 +

∞∑

j=1

j∏

k=1

(
β + αη2t−i

)

 . (12)
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4 Parameter Estimation and Asymptotic Theory

In this section we discuss the estimation of general nonlinear autoregressive models with GARCH(1,1)

errors. The STAR-GARCH models analyzed previously are justspecial cases.

Consider the following assumption.

ASSUMPTION 4. TheR-valued process{yt, t ∈ Z} follows the following nonlinear autoregressive

process with GARCH errors (NAR-GARCH):

yt = g(yt−1;λ) + εt, (13)

εt = ηt
√
ht, (14)

ht = ω + αε2t−1 + βht−1, (15)

whereyt−1 = (yt−1, . . . , yt−p)
′ andηt ∼ IID(0, 1).

ASSUMPTION5. The nonlinear functiong(yt−1;λ) satisfy the following set of restrictions:

1. g(yt−1;λ) is continuous inλ and measurable inyt−1.

2. g(yt−1;λ) is parameterized such that the parameters are well defined.

3. g(yt−1;λ) andvarepsilont are independent.

4. E|g(yt−1;λ)|q <∞,q = 1, 2, 4.

5. E {exp [g (yt−1;λ)]
q} <∞, q = 1, 2, 4.

6. E
∣∣ ∂
∂λg(yt−1;λ)

∣∣q <∞, q = 1, 2, 4.

7. E
∣∣∣ ∂2

∂λ∂λ′ g(yt−1; λ)
∣∣∣
q
<∞, q = 1, 2.

Setψ =
(
λ′,π′

)
′
, whereλ is the vector of parameters of the conditional mean, as defined

in Section 2, andπ = (ω,α, β)′ is the vector of parameters of the conditional variance. As the

distribution ofηt is unknown, the parameter vectorψ is estimated by the quasi-maximum likelihood

(QML) method. Consider the following assumption.

ASSUMPTION 6. The true parameter vectorψ0 ∈ Ψ ⊆ R
N is in the interior ofΨ, a compact and

convex parameter space, whereN = dim(λ) + dim(π) is the total number of parameters.

The quasi-log-likelihood function of the NAR-GARCH model is given by:

LT (ψ) =
1

T

T∑

t=1

`t(ψ),

=
1

T

T∑

t=1

−1

2
ln(2π) − 1

2
ln(ht)−

ε2t
2ht

.

(16)
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Note that the processesyt andht, t ≤ 0, are unobserved, and hence are only arbitrary constants.

Thus,LT (ψ) is a quasi-log-likelihood function that is not conditionalon the true(y0, h0), making it

suitable for practical applications. However, to prove theasymptotic properties of the QMLE, it is

more convenient to work with the unobserved process{(εu,t, hu,t) : t = 0,±1,±2, . . .}.

The unobserved quasi-log-likelihood function conditional on F0 = (y0, y−1, y−2, . . .) is

Lu,T (ψ) =
1

T

T∑

t=1

`u,t(ψ),

=
1

T

T∑

t=1

−1

2
ln(2π) − 1

2
ln(hu,t)−

ε2u,t

2hu,t
.

(17)

The main difference betweenLT (ψ) andLu,T (ψ) is that the former is conditional on any initial val-

ues, whereas the latter is conditional on an infinite series of past observations. In practical situations,

the use of (17) is not possible.

Let

ψ̂T = argmax
ψ∈Ψ

LT (ψ) = argmax
ψ∈Ψ

(
1

T

T∑

t=1

`t(ψ)

)
,

and

ψ̂u,T = argmax
ψ∈Ψ

Lu,T (ψ) = argmax
ψ∈Ψ

(
1

T

T∑

t=1

`u,t(ψ)

)
.

DefineL(ψ) = E [lu,t(ψ)]. In the following subsection, we discuss the existence ofL(ψ) and

the identifiability of the NAR-GARCH models. Then, in Subsection 4.2, we prove the consistency of

ψ̂T andψ̂u,T . We first prove the strong consistency ofψ̂u,T , and then show that

sup
ψ∈Ψ

|Lu,T (ψ)− LT (ψ)| a.s.→ 0,

so that the consistency of̂ψT follows. Asymptotic normality of both estimators is considered in

Subsection 4.3. We prove the asymptotic normality ofψ̂u,T . The proof ofψ̂T is straightforward.

4.1 Existence of the QMLE

The following theorem proves the existence ofL(ψ). It is based on Theorem 2.12 in White (1994),

which establishes thatL(ψ) exists under certain conditions of continuity and measurability of the

quasi-log-likelihood function.

THEOREM 4. Under Assumptions 1 and 2,L(ψ) exists, is finite, and is uniquely maximized atψ0.

4.2 Consistency

The following theorem states the sufficient conditions for strong consistency of the QMLE.

11



THEOREM 5. Under Assumptions 1–6, the QMLE ofψ is strongly consistent forψ0, ψ̂
a.s.→ ψ0.

4.3 Asymptotic Normality

First, we introduce the following matrices:

A(ψ0) = E


−∂

2lu,t(ψ)

∂ψ∂ψ′

∣∣∣∣∣
ψ0


 , B(ψ0) = E


∂`u,t(ψ)

∂ψ

∣∣∣∣∣
ψ0

∂`u,t(ψ)

∂ψ′

∣∣∣∣∣
ψ0


 ,

and

AT (ψ) =
1

T

T∑

t=1

[
1

2ht

(
ε2t
ht

− 1

)
∂2ht

∂ψ∂ψ′
− 1

2h2t

(
2
ε2t
ht

− 1

)
∂ht

∂ψ

∂ht

∂ψ′

+

(
εt

h2t

)(
∂εt

∂ψ

∂ht

∂ψ′
+
∂ht

∂ψ

∂εt

∂ψ′

)
+

1

ht

(
∂εt

∂ψ

∂εt

∂ψ′
+ εt

∂2εt

∂ψ

)] (18)

BT (ψ) =
1

T

T∑

t=1

∂`t(ψ)

∂ψ

∂`t(ψ)

∂ψ′

=
1

T

T∑

t=1

[
1

4h2t

(
ε2t
ht

− 1

)2
∂ht

∂ψ

∂ht

∂ψ′
+
ε2t
ht

∂εt

∂ψ

∂εt

∂ψ′

− εt

2h2t

(
ε2t
ht

− 1

)(
∂ht

∂ψ

∂εt

∂ψ′
+
∂εt

∂ψ

∂ht

∂ψ′

)]
(19)

Consider the additional assumption:

ASSUMPTION7. There exists no setΛ of cardinal 2 such thatPr[ηt ∈ Λ] = 1.

As in Francq and Zakoı̈an (2004), Assumption 7 is necessary for identifying reasons when the

distribution ofηt is non-symmetric.

The following theorem states the asymptotic normality result.

THEOREM 6. Under Assumptions 1–6, 7, the additional assumptionE
[
ε4t
]
= µ4 <∞, then

T 1/2(ψ̂T −ψ0)
d→ N (0,Ω) , (20)

whereΩ = A(ψ0)
−1B(ψ0)A(ψ0)

−1. If the distribution ofηt is symmetric andE
[
η4t
]
= κ4, then

A(ψ0) =

(
A1 0

0 A2

)
, B(ψ0) =

(
B1 0

0 B2

)
, with
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A1 = E


 1

h2t

∂ht

∂λ

∂ht

∂λ′

∣∣∣∣∣
ψ0


+ E


 2

h2t

∂εt

∂λ

∂εt

∂λ′

∣∣∣∣∣
ψ0


 ,

A2 = E


 1

h2t

∂ht

∂π

∂ht

∂π′

∣∣∣∣∣
ψ0


 ,

B1 = (κ4 − 1)E


 1

h2t

∂ht

∂λ

∂ht

∂λ′

∣∣∣∣∣
ψ0


+ 4E


 1

h2t

∂εt

∂λ

∂εt

∂λ′

∣∣∣∣∣
ψ0


 , and

B2 = (κ4 − 1)E


 1

h2t

∂ht

∂π

∂ht

∂π′

∣∣∣∣∣
ψ

0


 .

Furthermore, the matricesA(ψ0) and B(ψ0) are consistently estimated byAT (ψ̂) and BT (ψ̂),

respectively.

5 Monte Carlo Simulations

In this section we report the results of a simulation study designed to evaluate the finite sample

properties of the QMLE. We consider three different model specifications as described bellow:

• Model 1: MLSTAR(1)-GARCH(1,1)

A three regime model where the transition variable isyt−1, φ00 = −0.001, φ10 = 0.001,

φ20 = 0.001, φ01 = −0.001, φ11 = 0.001, φ21 = 0.001, γ1 = 1000, γ2 = 1000, c1 = −0.01,

c2 = 0.01, ω = 10−5, α = 0.05, andβ = 0.85.

• Model 2: GSTAR(1)-GARCH(1,1)A three regime model where the transition variable isyt−1,

φ00 = −0.001, φ10 = 0.002, φ01 = 0.025, φ11 = 0.0.25, γ = 100000, c1 = −0.01,

c2 = 0.01, ω = 10−5, α = 0.05, andβ = 0.85.

• Model 3: ESTAR(1)-GARCH(1,1)Consider a two regime model where the transition variable

is yt−1, φ00 = −0.001, φ10 = 0.002, φ01 = 0.025, φ11 = 0.0.25, γ = 100000, c = 0,

ω = 10−5, α = 0.05, andβ = 0.85.

The results are illustrated in Table 1.

6 Empirical Illustration

7 Concluding Remarks

In this paper we have derived the necessary and sufficient conditions for strict stationarity and ge-

ometric ergodicity of three different classes of first-order STAR-GARCH models, and the sufficient
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Table 1: SIMULATION : ESTIMATION RESULTS.
The table shows the mean and the standard deviation of quasi-maximum likelihood estimator of the parameters of Models

1-3 over 1000 replications. We report the results with both 200 and 1000 observations.

200 observations
Model 1 Model 2 Model 3

Parameter True Value Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.
φ00
φ10
φ20
φ01
φ11
φ21

ω

α

β

1000 observations
Model 1 Model 2 Model 3

Parameter True Value Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.
φ00
φ10
φ20
φ01
φ11
φ21

ω

α

β
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conditions for the existence of moments. This is important in order to find the conditions under which

the traditional LM linearity tests are valid. The asymptotic properties of the QMLE have also been

considered. We have proved that the QMLE is strongly consistent and asymptotically normal under

weak conditions. These new results should be important for the estimation of STAR-GARCH models

in financial econometrics.

Appendix

A Proofs of Theorems 1– 3

The proofs of the theorems are based on Chan, Petruccelli, Tong, and Woolford (1985), and makes use of the

results in Tweedie (1988).

Let A be ak × k matrix thenρ(A) denotes the spectral radius ofA. That is, the maximum absolute

eigenvalue ofA. LetA be a bounded set of matrices andA
k =

{
k∏

i=1

Ai : Ai ∈ A, i = 1, . . . , k

}
, thenρ∗(A)

denotes the joint spectral radius of the setA, that is

ρ∗(A) = lim sup
k→∞

(
sup

A∈Ak

‖A‖
)1/k

For the purpose of the following proofs, consider a first-order STAR-GARCH models defined as:

yt = f0(yt−1) + f1(yt−1)yt−1 + εt, (A.1)

εt = ηt
√
ht, and (A.2)

ht = ω + αε2t−1 + βht−1, (A.3)

where

f0(yt−1) = φ00 + φ10G(yt−1; γ, c)

f1(yt−1) = φ01 + φ11G(yt−1; γ, c)

andG(yt−1; γ, c) is a twice differentiable function with the range equals to[0, 1]. Now, letzt = (yt, yt−1, ht)
′

then the STAR(1)-GARCH(1,1) model could have the followingMarkovian representation

zt = F(zt−1, ηt) (A.4)

where

F(zt−1, ηt) =



f0(yt−1) + f1(yt−1)yt−1

yt−1

h(zt−1)


+



h(zt−1)

1/2ηt

0

0


 . (A.5)

The proof of ergodicity for STAR(1)-GARCH(1,1) is based on the results from Meitz and Saikkonen

(2008), which provided sufficient conditions to verify ergodicity for the following process:
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yt = f(yt−1, ..., yt−p) + h
1/2
t ηt

ht = g(ut−1, ht−1)

ut = yt − f(yt−1, ..., yt−p)

(A.6)

wheref is a nonlinear function such thatf(yt−1, ..., yt−p) defined a nonlinear autoregressive process of order

p. ht is a positive function ofys such thats < t andηt is a sequence of iid(0, 1) random variables independent

of {ys : s < t}. Model (A.6) can be rewritten as a Markov chain such that

Zt = F (Zt−1, ηt)

whereZt = (yt, yt−1, ..., yt−p, ht)
′ and

F (Zt−1, ηt) =




f(yt−1, ..., yt−p)

yt−1

...

yt−p

ht(Zt−1)




+




ht(Zt−1)
1/2ηt

0
...

0

0




Meitz and Saikkonen (2008) showed that the following conditions are sufficient to ensure geometric er-

godicity for the Markov chain,Zt.

Condition 1. ηt has a (Lebesgue) density which is positive and lower semicontinuous onR. Furthermore, for

some realr ≥ 1, E(η2rt ) <∞.

Condition 2. The functionf is of the form

f(x) = a(x)′x+ b(x), x ∈ R
p;

where the functionsa : Rp → R
p andb : Rp → R are smooth and bounded.

Condition 3. Givena(x) from the previous assumption, rewritea(x) = (a1(x), a2(x), ..., ap(x))
′ and define

the(p+ 1)× (p+ 1) matrix such that

A(x) =




a1(x) a2(x) ... ap(x) 0

1 0 ... 0 0
...

...
. . .

...
...

0 0 ... 1 0



.

Then there exists a matrix norm‖•‖ induced by a vector norm such that‖A‖ ≤ ρ ∀A ∈ A where

A = {A(x) : x ∈ R
p} and some0 < ρ < 1.

Condition 4. a. The functiong : R× R+ → R+ is smooth and for someg > 0, inf
(u,x)∈R×R+

g(u, x) = g.

b. For allx ∈ R+, g(u, x) → ∞ asu→ ∞.

c. ∃h∗ ∈ R+ such that the sequencehk(k = 1, 2, ...) defined byhk = g(0, hk−1), k = 1, 2, ...

converges toh∗ ask → ∞ for all h0 ∈ R+. If g(u, x) ≥ h∗ for all u ∈ R and allx ≥ h∗ it

suffices that this convergence holds for allh0 ≥ h∗.
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d. There exist nonnegative real numbersa andc, and a Borel measurable functionψ : R → R+

such that

g(x1/2ηt, x) ≤ (a+ ψ(ηt))x + c

∀x ∈ R+. Furthermore,a+ψ(0) < 1 andE[(a+ψ(ηt))
r] < 1 where the real numberr ≥ 1

is as in Assumption 1.

e. For each initial valuez0 ∈ Z, there exits a control sequencee(0)1 , ..., e
(0)
p+2 such that the(p +

2)× (p+ 2) matrix

∇F (0)
p+2 =

[
∂

∂e1
Fp+2(z0, e

(0)
1 , ..., e

(0)
p+2) : ... :

∂

∂ep+2
Fp+2(z0, e

(0)
1 , ..., e

(0)
p+2)

]

is non-singular.

PROPOSITION1. Under Assumptions (?)-(?), the Model as defined in equations(??) - (??) is geometrically

ergodic in the sense of?.

Proof: It is sufficient to verify Conditions 1 to 5 in Meitz and Saikkonen (2008). Condition 1 is satified by

Assumption (?) withr = 1. Definef(yt−1) = λ0,t−1 + λ1,t−1yt−1 and let

a(x) = θ0 + θ1G(x; γ, c)

b(x) = φ0 + φ1G(x; γ, c)

g(u, x) = ω + αu2 + βx

Hence,f(x) = a(x)x + b(x) and hence Condition 2 is satisfied. Following?, a sufficient condition to ensure

Condition 3 is

ρ∗({Φ1,Φ2}) < 1

where

Φ1 =

(
φ0 0

1 0

)
Φ2 =

(
φ0 + φ1 0

1 0

)

Let bij denotes the(i, j) element of the matrixB for i, j = 1, 2 such thatB =
∏k

i=1 Ai, whereAi ∈
{Φ1,Φ2}∀i = 1, ..., k. Given the structure ofΦ1 andΦ2, it is easy to verify thatb12 = 0 andb22 = 0 for

all k ∈ Z+. This implies the eigenvalues ofB are0 andφl0(φ0 + φ1)
m for somel,m ∈ Z+. Given the

assumptions that|φ0| < 1, |φ0 + φ1| < 1 and|φ0(φ0 + φ1)| < 1, it is obvious thatφl0(φ0 + φ1)
m → 0 as

k → ∞. Hence, Condition 3 is satisfied.

Let g = ω, given thatω > 0, α ≥ 0 andβ ≥ 0 then

inf
u,x∈R×R+

g(u, x) = ω = g.

In addition,∀x ∈ R+, g(u, x) → ∞ asu→ ∞. Sinceα+ β < 1, α > 0 andβ > 0 therefore0 < β < 1.

Now, hk = g(0, hk−1) = ω + βhk−1 and for any nonnegative initial valueh0 < ∞, it is straightforward to

show that

hk =
ω(1− βk−1)

1− β
+ βkh0.

Hence,hk → ω
1−β ask → ∞. Moreover, letc = ω, a = β andψ(ηt) = αη2t theng(x1/2ηt, x) = (a +
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ψ(ηt))x+c, with a+ψ(0) = β < 1. From Condition 1,r = 1 and thereforeE(a+ψ(ηt))r = E(a+ψ(ηt)) =

α+ β < 1. Hence Condition 4 is satisfied.

To verify Condition 5, it is useful to note thatp = 1 so that∇F (0)
p+1 = ∇F (0)

3 such that

∇F (0)
3 =




∂y3

∂e1

∂y3

∂e2
h
1/2
3

∂y2

∂e1
h
1/2
2 0

∂h3

∂e1

∂h3

∂e2
0




Let the control sequence be(e(0)1 , e
(0)
2 , e

(0)
3 ) = (e1, 0, 0) where|e1| < ∞. Note thath1/2i > 0 for i = 2, 3.

Evaluating∇F (0)
3 at the specified control sequence gives

∂h3

∂e1
= β

∂h2

∂e1
> 0

∂h3

∂e2
= 2αe2h2 = 0

and hence, there exists a control sequence such that∇F (0)
3 is non-singular and therefore Conditions 1 to 5 are

satisfied. This completes the proof.�

A.1 Proof of Theorem 1

Theorem 2.1 in Chan, Petruccelli, Tong, and Woolford (1985). �

A.2 Proof of Theorem 2

�

A.3 Proof of Theorem 3

�

B Proofs of Theorems 4–6

B.1 Proof of Theorem 4

It is easy to see thatF(zt), as in (10), is a continuous function in the parameter vectorψ. Similarly, we can see

thatF(zt) is continuous inzt, and therefore is measurable, for each fixed value ofψ.

Furthermore, under the restrictions in Assumption 2, and ifthe stationarity conditions of either Theo-

rem 1, 2, or 3 are satisfied, thenE

[
sup
ψ∈Ψ

|hu,t|
]
< ∞ andE

[
sup
ψ∈Ψ

|yu,t|
]
< ∞. By Jensen´s inequality,

E

[
sup
ψ∈Ψ

|ln |hu,t||
]
<∞. Thus,E [|lu,t(ψ)|] <∞ ∀ψ ∈ Ψ.
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Let h0,t be the true conditional variance andε0,t = h
1/2
0,t ηt. In order to show thatL(ψ) is uniquely

maximized atψ0, rewrite the maximization problem as

max
ψ∈Ψ

[L(ψ)− L(ψ0)] = max
ψ∈Ψ

{
E

[
ln

(
h0,t

hu,t

)
− ε2t
hu,t

+ 1

]}
. (B.7)

Writing εt = εt − ε0,t + ε0,t, equation (B.7) becomes

max
ψ∈Ψ

[L(ψ)− L(ψ0)] = max
ψ∈Ψ

{
E

[
ln

(
h0,t

hu,t

)
− h0,t

hu,t
+ 1

]
− E

[
[εt − ε0,t]

2

hu,t

]

− E

[
2ηth

1/2
0,t (εt − ε0,t)

hu,t

]}

= max
ψ∈Ψ

{
E

[
ln

(
h0,t

hu,t

)
− h0,t

hu,t
+ 1

]
− E

[
[εt − ε0,t]

2

hu,t

]}
,

(B.8)

where

E

[
2ηth

1/2
0,t (εt − ε0,t)

hu,t

]
= 0

by the Law of Iterated Expectations.

Note that, for anyx > 0,m(x) = ln(x) − x ≤ 0, so that

E

[
ln

(
h0,t

hu,t

)
− h0,t

hu,t

]
≤ 0.

Furthermore,m(x) is maximized atx = 1. If x 6= 1, m(x) < m(1), implying thatE[m(x)] ≤ E[m(1)], with

equality only ifx = 1 a.s.. However, this will occur only ifh0,t

hu,t
= 1, a.s.. In addition,

E

[
[εt − ε0,t]

2

hu,t

]
= 0

if and only if εt = ε0,t. Hence,ψ = ψ0. This completes the proof.�

B.2 Proof of Theorem 5

Following White (1994), Theorem 3.5,̂ψu,T
a.s.→ ψ0 if the following conditions hold:

(1) The parameter spaceΨ is compact.

(2) Lu,T (ψ) is continuous inψ ∈ Ψ. Furthermore,Lu,T (ψ) is a measurable function ofyt, t = 1, . . . , T ,

for all ψ ∈ Ψ.

(3) L(ψ) has a unique maximum atψ0.

(4) lim
T→∞

sup
ψ∈Ψ

|Lu,T (ψ)− L(ψ)| = 0, a.s..

Condition (1) holds by assumption. Theorem 4 shows that Conditions (2) and (3) are satisfied. By Lemma

1, Condition (4) is also satisfied. Thus,ψ̂u,T
a.s.→ ψ0.
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Lemma 2 shows that

lim
T→∞

sup
ψ∈Ψ

|Lu,T (ψ)− LT (ψ)| = 0 a.s.,

implying thatψ̂T
a.s.→ ψ0. This completes the proof.�

B.3 Proof of Theorem 6

We start by proving asymptotic normality of the QMLE using the unobserved log-likelihood. When this is

shown, the proof using the observed log-likelihood is immediate by Lemmas 2 and 4. According to Theorem

6.4 in White (1994), to prove the asymptotic normality of theQMLE we need the following conditions in

addition to those stated in the proof of Theorem 5:

(5) The true parameter vectorψ0 is interior toΨ.

(6) The matrix

AT (ψ) =
1

T

T∑

t=1

(
∂2lt(ψ)

∂ψ∂ψ′

)

existsa.s. and is continuous inΨ.

(7) The matrixAT (ψ)
a.s.→ A(ψ0), for any sequenceψT , such thatψT

a.s.→ ψ0.

(8) The score vector satisfies

1√
T

T∑

t=1

(
∂lt(ψ)

∂ψ

)
d→ N(0,B(ψ0)).

Condition (5) is satisfied by assumption. Condition (6) follows from the fact thatlt(ψ) is differentiable

of order two onψ ∈ Ψ, and the stationarity of the STAR-GARCH model. The non-singularity of A(ψ0)

andB(ψ0) follows from Lemma 4. Furthermore, Lemmas 3 and 5 implies that Condition (7) is satisfied. In

Lemma 6 below, we prove that condition (8) is also satisfied. This completes the proof.�

C Lemmas

LEMMA 1. Suppose thatyt follows a STAR-GARCH model satisfying the restrictions in Assumptions 1 and 2,

and the stationarity and ergodicity conditions are met. Then,

lim
T→∞

sup
ψ∈Ψ

|Lu,T (ψ)− L(ψ)| = 0, a.s..

PROOF. Setg(Yt,ψ) = lu,t(ψ) − E [lu,t(ψ)], whereYt = [yt, yt−1, yt−2, . . .]
′. Hence,E [g(Yt,ψ)] = 0.

It is clear thatE

[
sup
ψ∈Ψ

|g(Yt,ψ)|
]
< ∞ by Theorem 4. Furthermore, asg(Yt,ψ) is strictly stationary and

ergodic, then lim
T→∞

sup
ψ∈Ψ

∣∣∣T−1
∑T

t=1 g(Yt,ψ)
∣∣∣ = 0, a.s.. This completes the proof.�

LEMMA 2. Under the assumptions of Lemma 1,

lim
T→∞

sup
ψ∈Ψ

|Lu,T (ψ)− LT (ψ)| = 0, a.s..
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PROOF. First, write

ht =

t−1∑

i=0

βi
(
ω + αε2t−1−i

)
+ βth0 and

hu,t = βt−1
(
ω + αε2u,0

)
+

t−2∑

i=0

βi
(
ω + αε2t−1−i

)
+ βthu,0,

such that

|ht − hu,t| = |βt−1α
(
ε20 − ε2u,0

)
+ βt (h0 − hu,0) |

≤ βt−1α
∣∣ε20 − ε2u,0

∣∣+ βt |h0 − hu,0| .

Under the stationarity of the process, and if (R.2) in Assumption 2 and the log-moment condition hold, it is

clear that0 < β < 1. Furthermore,hu,0 andε20,u are well defined, as

Pr

[
sup
ψ∈Ψ

(hu,0 > K1)

]
→ 0 asK1 → ∞, andPr

[
sup
ψ∈Ψ

(
ε2u,0 > K2

)
]
→ 0 asK2 → ∞.

Thus,

sup
ψ∈Ψ

|ht − hu,t| ≤ Khρ
t
1, a.s., and

sup
ψ∈Ψ

∣∣ε20 − ε2u,0
∣∣ ≤ Kερ

t
2, a.s.,

whereKh andKε are positive and finite constants,0 < ρ1 < 1, and0 < ρ2 < 1. Hence, asht > ω and

log(x) ≤ x− 1,

sup
ψ∈Ψ

|lt − lu,t| ≤ sup
ψ∈Ψ

[
ε2t

∣∣∣∣
hu,t − ht

hthu,t

∣∣∣∣+
∣∣∣∣log

(
1 +

ht − hu,t

hu,t

)∣∣∣∣
]

≤ sup
ψ∈Ψ

(
1

ω2

)
Khρ

t
1ε

2
t + sup

ψ∈Ψ

(
1

ω

)
Khρ

t
1, a.s..

Following the same arguments as in the proof of Theorems 2.1 and 3.1 in Francq and Zakoı̈an (2004), it can be

shown that

lim
T→∞

sup
ψ∈Ψ

|Lu,T (ψ)− LT (ψ)| = 0, a.s..

This completes the proof.�

LEMMA 3. Under the conditions of Theorem 6,

E

[∣∣∣∣∣
∂lt(ψ)

∂ψ

∣∣∣∣
ψ0

∣∣∣∣∣

]
<∞, (C.9)

E

[∣∣∣∣∣
∂lt(ψ)

∂ψ

∣∣∣∣
ψ0

∂lt(ψ)

∂ψ′

∣∣∣∣
ψ0

∣∣∣∣∣

]
<∞, and (C.10)

E

[∣∣∣∣∣
∂2lt(ψ)

∂ψ∂ψ′

∣∣∣∣
ψ0

∣∣∣∣∣

]
<∞. (C.11)
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PROOF. Set

∇0lu,t ≡
∂lu,t(ψ)

∂ψ

∣∣∣∣∣
ψ0

, ∇0hu,t ≡
∂hu,t

∂ψ

∣∣∣∣∣
ψ0

, ∇0εt ≡
∂εt

∂ψ

∣∣∣∣∣
ψ0

,

∇2
0lu,t ≡

∂2lu,t(ψ)

∂ψ∂ψ′

∣∣∣∣∣
ψ0

, ∇2
0hu,t ≡

∂2hu,t

∂ψ∂ψ′

∣∣∣∣∣
ψ0

, and ∇2
0εt ≡

∂2εt

∂ψ∂ψ′

∣∣∣∣∣
ψ0

.

Then,

∇0lu,t =
1

2hu,t

(
ε2t
hu,t

− 1

)
∇0hu,t −

εt

hu,t
∇0εt

and

∇2
0lu,t =

(
ε2t
hu,t

− 1

)
1

2hu,t
∇2

0hu,t −
1

2h2u,t

(
2
ε2t
hu,t

− 1

)
∇0hu,t∇0h

′

u,t

+

(
εt

h2u,t

)(
∇0εt∇0h

′

u,t +∇0hu,t∇0ε
′

t

)
+

1

hu,t

(
∇0εt∇0ε

′

t + εt∇2
0εt
)
.

Setψ =
(
λ′,π′

)′
, where, as stated before,λ is the vector of parameters of the conditional mean andπ

is the vector of parameters of the conditional variance. As in the proof of Theorem 3.2 in Francq and Zakoı̈an

(2004), the derivatives with respect toπ are clearly bounded. We proceed by analyzing the derivatives with

respect toλ. As εt = yt − f0(yt−1;λ)− f1(yt−1;λ)yt−1, we have

∂εt

∂λ
= −∂f0(yt−1;λ)

∂λ
− ∂f1(yt−1;λ)

∂λ
yt−1, (C.12)

∂2εt

∂λ∂λ′
= −∂

2f0(yt−1;λ)

∂λ∂λ′
− ∂2f1(yt−1;λ)

∂λ∂λ′
yt−1, (C.13)

∂hu,t

∂λ
= 2α

∞∑

i=0

(
βiεt−1−i

∂εt−1−i

∂λ

)
, and (C.14)

∂2hu,t

∂λ∂λ′
= 2α

∞∑

i=0

βi

(
εt−1−i

∂2εt−1−i

∂λ∂λ′
+
∂εt−1−i

∂λ

∂εt−1−i

∂λ′

)
. (C.15)

As the derivatives of the transition function are bounded, if the strict stationarity and ergodicity conditions

hold, (C.12)–(C.15) are clearly bounded. Hence, the remainder of the proof follows from the proof of Theorem

3.2 (part (i)) in Francq and Zakoı̈an (2004). This completes the proof.�

LEMMA 4. Under the conditions of Theorem 6,A(ψ0) andB(ψ0) are nonsingular and, whenηt has a sym-

metric distribution, are block-diagonal.

PROOF. First, note that (R1a)–(R1c) in Assumption 2 and Assumption 7 guarantee the minimality (identifia-

bility) of the different specifications of the STAR models considered in this paper. Therefore, the results follow

from the proof of Theorem 3.2 (part (ii)) in Francq and Zakoı̈an (2004). This completes the proof.�
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LEMMA 5. Under the conditions of Theorem 6,

(a) lim
T→∞

sup
ψ∈Ψ

∥∥∥∥∥
1

T

T∑

t=1

[
∂lu,t(ψ)

∂ψ
− ∂lt(ψ)

∂ψ

]∥∥∥∥∥ = 0, a.s.,

(b) lim
T→∞

sup
ψ∈Ψ

∥∥∥∥∥
1

T

T∑

t=1

[
∂2lu,t(ψ)

∂ψ∂ψ′
− ∂2lt(ψ)

∂ψ∂ψ′

]∥∥∥∥∥ = 0, a.s, and

(c) lim
T→∞

sup
ψ∈Ψ

∥∥∥∥∥
1

T

T∑

t=1

∂2lu,t(ψ)

∂ψ∂ψ′
− E

[
∂2lu,t(ψ)

∂ψ∂ψ′

]∥∥∥∥∥ = 0, a.s..

PROOF.

First, assume thath0 andhu,0 are fixed constants. It is easy to show that

∣∣∣∣
∂ht

∂λ
− ∂hu,t

∂λ

∣∣∣∣ = 2αβt−1

∣∣∣∣ε0
∂ε0

∂λ
− εu,0

∂εu,0

∂λ

∣∣∣∣

≤ 2αβt−1

(∣∣∣∣ε0
∂ε0

∂λ

∣∣∣∣+
∣∣∣∣εu,0

∂εu,0

∂λ

∣∣∣∣
)
<∞,

as0 < β < 1 andyt is stationary and ergodic. Hence, following the same arguments as in the proof of Theorem

3.2 (part (iii)) in Francq and Zakoı̈an (2004), it is straightforward to show that

lim
T→∞

sup
ψ∈Ψ

∥∥∥∥∥
1

T

T∑

t=1

[
∂lu,t(ψ)

∂λ
− ∂lt(ψ)

∂λ

]∥∥∥∥∥ = 0.

Furthermore, as

∂ht

∂ω
− ∂hu,t

∂ω
= 0

∂ht

∂α
− ∂hu,t

∂α
= ε20 − ε2u,0

∂ht

∂β
− ∂hu,t

∂β
= (t− 1)βt−2

(
ε20 − ε2u,0

)
+ tβt−1 (h0 − hu,0) ,

it is clear that

lim
T→∞

sup
ψ∈Ψ

∥∥∥∥∥
1

T

T∑

t=1

[
∂lu,t(ψ)

∂π
− ∂lt(ψ)

∂π

]∥∥∥∥∥ = 0.

The proof of part (a) is now complete. The proof of part (b) follows along similar lines. The proof of part

(c) follows the same arguments as in the proof of Theorem 3.2 (part (v)) in Francq and Zakoı̈an (2004). This

completes the proof.�

LEMMA 6. Under the conditions of Theorem 6,

1√
T

T∑

t=1

∂lt(ψ)

∂ψ

∣∣∣∣∣
ψ0

d→ N(0,B(ψ0)).

PROOF. Let ST =
∑T

t=1 c
′∇0lu,t, wherec is a constant vector. ThenST is a martingale with respect toFt,

the filtration generated by all past observations ofyt. By the given assumptions,E [ST ] > 0. Using the central
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limit theorem of Stout (1974),

T−1/2ST
d→ N (0, c′B(ψ0)c) .

By the Cramér-Wold device,

T−1/2
T∑

t=1

∂lu,t(ψ)

∂ψ

∣∣∣∣∣
ψ0

d→ N (0,B(ψ0)) .

By Lemma 5,

T−1/2
T∑

t=1

∥∥∥∥∥∥
∂lu,t(ψ)

∂ψ

∣∣∣∣∣
ψ0

− ∂lt(ψ)

∂ψ

∣∣∣∣∣
ψ0

∥∥∥∥∥∥
a.s.→ 0.

Thus,

T−1/2
T∑

t=1

∂lt(ψ)

∂ψ

∣∣∣∣∣
ψ0

d→ N(0,B0).

This completes the proof.�
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BOUSSAMA, F. (2000): “Normalité Asymptotique de L´Estimateur du Pseudo-Maximum de Vraisemblance

dún Modèle GARCH,”Comptes Rendus de l´Academie des Sciences, Série I, 331, 81–84.

CHAN , F., AND M. M CALEER (2002): “Maximum Likelihood Estimation of STAR and STAR-GARCH Mod-

els: A Monte Carlo Analysis,”Journal of Applied Econometrics, 17, 509–534.

CHAN , K. S., J. D. PETRUCCELLI, H. TONG, AND S. W. WOOLFORD(1985): “A Multiple-Threshold AR(1)

Model,” Journal of Applied Probability, 22(2), 267–279.

24



CHAN , K. S., AND H. TONG (1986): “On Estimating Thresholds in Autoregressive Models,” Journal of Time

Series Analysis, 7, 179–190.

CHEN, G., AND M. CHEN (2001): “On a class of nonlinear AR(p) models with nonlinearARCH errors,”

Australian and New Zealand Journal of Statistics, 43, 445–454.

CHEN, R., AND R. S. TSAY (1991): “On the Ergodicity of TAR(1) Processes,”Annals of Applied Probability,

1, 613–634.

(1993): “Functional Coefficient AutoRegressive Models,”Journal of the American Statistical Associ-

ation, 88, 298–308.

CLINE , D. (2007): “Stability of nonlinear stochastic recursionswith application to nonlinear AR-GARCH

models,”Advances in Applied Probability, 39, 462–491.

CLINE , D., AND H. PU (1998): “Verifying irreducibility and continuity of a nonlinear time series,”Statistics

and Probability Letters, 40, 139–148.

(1999): “Geometric ergodicity of nonlinear time series,”Statistica Sinica, 9, 1103–1118.

(2004): “Stability and the Lyapounov exponent of thresholdAR-ARCH models,”Annals of Applied

Probability, 14, 1920–1949.

COMTE, F., AND O. LIEBERMAN (2003): “Asymptotic Theory for Multivariate GARCH Processes,”Journal

of Multivariate Analysis, 84, 61–84.

ENGLE, R., AND K. K RONER(1995): “Multivariate Simultaneous Generalized ARCH,”Econometric Theory,

11, 122–150.

ENGLE, R. F. (1982): “Autoregressive Conditional Heteroskedasticity with Estimates of the Variance of UK

Inflations,”Econometrica, 50, 987–1007.

FERRANTE, M., G. FONSECA, AND P. VIDONI (2003): “Geometric Ergodicity, Regularity of the Invariant

Distribution and Inference for a Threshold Bilinear MarkovProcess,”Statistica Sinica, 13, 367–384.
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