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Abstract 

 

Asia is presently the most important market for the production and consumption of natural 

rubber. World prices of rubber are not only subject to changes in demand, but also to 

speculation regarding future markets. Japan and Singapore are the major futures markets 

for rubber, while Thailand is one of the world’s largest producers of rubber. As rubber 

prices are influenced by external markets, it is important to analyse the relationship 

between the relevant markets in Thailand, Japan and Singapore. The analysis is conducted 

using several alternative multivariate GARCH models. The empirical results indicate that 

the constant conditional correlations arising from the CCC model of Bollerslev (1990) lie 

in the low to medium range. The results from the VARMA-GARCH model of Ling and 

McAleer (2003) and the VARMA-AGARCH model of McAleer et al. (2009) suggest the 

presence of volatility spillovers and asymmetric effects of positive and negative return 

shocks on conditional volatility. Finally, the DCC model of Engle (2002) suggests that the 

conditional correlations can vary dramatically over time.  In general, the dynamic 

conditional correlations in rubber spot and futures returns shocks can be independent or 

interdependent.  

 

Keywords:  Multivariate GARCH, volatility spillovers, conditional correlations, Asian 

rubber prices, spot returns, futures returns. 

 

JEL Classifications: C22, C32, G17, G32, Q14 
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1.  Introduction 

 

Natural rubber is one of the most important agro-based industrial raw materials in 

the world. Rubber is produced entirely in developing countries. Asia is the largest 

producing region, accounting for around 96.6% of output in 2007, and Thailand is one of 

the world’s biggest rubber producers. However, rubber prices are determined in the 

Singapore and Japanese markets. The factors involved in setting Thailand’s rubber prices 

are quite interesting. According to the relevance of Thailand’s rubber price to the Japanese 

and Singapore markets, it is important to examine the relationship between the Thai spot 

market and the three major global rubber futures markets, namely Tokyo Commodity 

Exchange (TOCOM), Singapore Commodity Exchange and Agriculture Futures Exchange 

(SICOM), and Osaka Mercantile Exchange (OME). In particular, volatility spillover 

effects will be considered across and within these markets. 

  Recent research has used the GARCH specification to model volatility spillovers 

across futures markets. The volatility transmission between futures and cash markets has 

received considerable attention in finance. Shocks in one market may not only affect the 

volatility in prices and returns in its own market, but also in related markets. Apergis and 

Rezitis (2003) investigated volatility spillover effects across agricultural input prices, 

agricultural output prices and retail food prices, using GARCH models. Feng et al. (2009) 

examined the inter-temporal information transmission mechanism between the palm oil 

futures market and the physical cash market in Malaysia.  

  Despite the recent developments in the multivariate GARCH framework, most of 

the research in agricultural futures markets has been confined to univariate GARCH 

specifications. It is well known that the univariate GARCH model has two important 

limitations: (1) it does not accommodate the asymmetric effects of positive and negative 

shocks of equal magnitude; and (2) it does not permit interdependencies across different 

assets and/or markets. Modelling volatility in a multivariate framework leads to more 

relevant empirical models than using separate univariate models in financial markets, 

wherein volatilities can move together over time and across assets and markets.  

  To date, few papers have paid attention to analyzing volatility spillovers across 

futures markets and physical cash markets in the context of multivariate GARCH models 

for agricultural commodity future markets. For example, Kim and Doucouliagos (2005) 
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examined volatility spillover effects by fitting a multivariate model to realized volatility 

and correlations. The dynamic relationships and causality among the volatilities and 

correlations of three grain futures prices, namely corn, soybean and wheat, were 

investigated by conducting impulse response analysis based on the vector autoregressive 

model.  

  The purpose of this paper is to (1) to model the multivariate conditional volatility in 

the returns on rubber spot and futures price in three major rubber futures markets, namely 

TOCOM, OME and SICOM and two rubber spot markets, Bangkok and Singapore, using 

several recent models of multivariate conditional volatility, namely the CCC model of 

Bollerslev (1990), DCC model of Engle (2002), VARMA-GARCH model of Ling and 

McAleer (2003), and VARMA-AGARCH model of McAleer et al. (2009), and (2) to  

investigate volatility transmissions across these markets. 

  The remainder of the paper is organized as follows. Section 2 discusses the 

econometric methodology. Section 3 explains the data used in the empirical analysis, and 

presents some summary statistics. The empirical results are analysed in Section 4. Some 

concluding remarks are given in Section 5. 

 

2. Econometric methodology 

 

  This section presents models of the volatility in rubber spot and futures prices 

returns, namely the CCC model of Bollerslev (1990), VARMA-GARCH model of Ling 

and McAleer (2003), VARMA-AGARCH model of McAleer et al. (2009), and DCC 

model of Engle (2002). The typical specifications underlying the multivariate conditional 

mean and conditional variance in returns are given as follows: 

 

 1t t t ty E y F                                                       (1) 

t t tD   

 

where  1 ,...,t t mty y y  ,  1 ,...,t t mt     is a sequence of independently and identically 

distributed (iid) random vectors, tF  is the past information available to time t, 

 1 2 1 2
1 ,...,t mD diag h h . The constant conditional correlation (CCC) model of Bollerslev 
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(1990) assumes that the conditional variance for each return, ith , 1,..,i m , follows a 

univariate GARCH process, that is  

 

2
, ,

1 1

r s

it i ij i t j ij i t j
j j

h h    
 

                                               (2) 

 

where ij  and ij  represents the ARCH effect and the GARCH effects, respectively. The 

conditional correlation matrix of CCC is    1t t t tE F E     , where  it   for 

, 1,...,i j m . From (1), t t t t tD D    ,  1 2
diag t tD Q , and  1t t t t t tE F Q D D      , 

where tQ  is the conditional covariance matrix. The conditional correlation matrix is 

defined as 1 1
t t tD Q D   , and each conditional correlation coefficient is estimated from the 

standardized residuals in (1) and (2). Therefore, there is no multivariate estimation 

involved for CCC, except in the calculation of the conditional correlations. 

  This model assumes independence of the conditional variance across returns. In 

order to accommodate possible interdependencies, Ling and McAleer (2003) proposed a 

vector autoregressive moving average (VARMA) specification of the conditional mean in 

(1) and the following specification for the conditional variance: 

 

1 1

r s

t i t i j t j
i j

H W A B H  
 

   
                                              (3) 

 

where  1 ,...,t t mtH h h  ,  2 2
1 ,...t mt   


, and W, iA  for 1,..,i r  and jB  for 1,..,j s  are 

m m  matrices. As in the univariate GARCH model, the VARMA-GARCH model 

assumes that negative and positive shocks of equal magnitude have equivalent  impacts on 

the conditional variance. In order to separate the asymmetric impacts of the positive and 

negative shocks, McAleer et al. (2009) proposed the VARMA-AGARCH model for the 

conditional variance, namely 

 

1 1 1

r r s

t i t i i t i t i j t j
i i j

H W A C I B H    
  

      
                            (4) 
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where iC  are m m  matrices for 1,..,i r , and  1diag ,...,t t mtI I I , where  

 

0, 0

1, 0
it

it
it

I




  

. 

 

If 1m  , (3) collapses to the asymmetric GARCH, or GJR model. Moreover, the VARMA-

AGARCH model reduces to VARMA-GARCH when 0iC   for all i. If 0iC   and iA  

and jB  are diagonal matrices for all i and j, then VARMA-AGARCH reduces to the CCC 

model. The parameters of model (1)-(4) are obtained by maximum likelihood estimation 

(MLE) using a joint normal density. When t  does not follow a joint multivariate normal 

distribution, the appropriate estimator is defined as the Quasi-MLE (QMLE). 

  Unless t  is a sequence of i.i.d. random vectors, or alternatively a martingale 

difference process, the assumption that the conditional correlations are constant may seen 

unrealistic. In order to make the conditional correlation matrix time dependent, Engle 

(2002) proposed a dynamic conditional correlation (DCC) model. The DCC model is 

defined as: 

 

1| (0, )t t ty Q  ,  1,...,t T                                       (5) 

,t t t tQ D D                                                               (6) 

 

where  1diag ,...,t t ktD h h  is a diagonal matrix of conditional variance, and t  is the 

information set available to time t. The conditional variance, ith , can be defined as a 

univariate GARCH model, as follows: 

 

, ,
1 1

p q

it i ik i t k il i t l
k l

h h    
 

                                               (7) 

 

If t  is a vector of i.i.d. random variables, with zero mean and unit variance,  tQ  in (9) is 

the conditional covariance matrix (after standardization, it it ity h  ). The it  are used 

to estimate the dynamic conditional correlation, as follows: 
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   1/2 1/2( ( ) ( ( ) ,t t t tdiag Q Q diag Q                                    (8) 

 

where the k k  symmetric positive definite matrix tQ  is given by 

 

1 2 1 1 1 2 1(1 )t t t tQ Q Q                                               (9) 

 

in which 1  and 2  are scalar parameters to capture the effects of previous shocks and 

previous dynamic conditional correlations on current dynamic conditional correlation, and 

  and   are non-negative scalar parameters, satisfying 1   . As tQ  is conditional on 

the vector of standardized residuals, (9) is a conditional covariance matrix. Q  is the k k  

unconditional variance matrix of t . 

 

3. Data 

 

  The alternative multivariate GARCH models are estimated using data on daily 

closing prices of spot and futures returns, and are expressed in local currencies for the 

period 23 September 1994 to 13 March 2009, giving a total of 3,755 observations. All data 

are obtained from Reuters. The data set comprises 2 daily RSS3 spot prices, namely RSS3 

F.O.B. spot price from Bangkok (TRSS3: Bath/kg.), RSS3 Noon spot price from Singapore 

(SRSS3: Singapore cent/kg.), and three daily RSS3 futures from different futures markets, 

namely Tokyo Commodity Exchange (TOCOM: Yen/kg.), Osaka Mercantile Exchange 

(OME: Yen/kg.), and Singapore Commodity Exchange and Agriculture Futures Exchange 

(SICOM: US cent/kg).  

 Returns of market i at time t are calculated as  , , , 1logi t i t i tr P P  , where ,i tP  and , 1i tP   

are the closing prices of spot or futures for days t and t-1, respectively. 

  

4. Empirical results 

 

The empirical results of the unit root tests for all sample returns in each market are 

summarized in Table 1. The Augmented Dickey-Fuller (ADF) and Phillips-Perron (PP) 
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tests are used to explore the existence of unit roots in the individual series. Both tests have 

the same null hypothesis to check for non-stationarity in each time series. The results show 

that all returns series are stationary. In order to see whether the conditional variances of the 

return series follow the ARCH process, the univariate ARMA-GARCH and ARMA-GJR 

models will be estimated. The ARCH and GARCH estimates are significant for the spot 

and futures returns, and are available from the authors upon request.  

 

[Insert Tables 1 and 2 here] 

 

  The constant conditional correlations among the spot and futures returns from the 

CCC model are summarized in Table 2. Two entries for each pair are their respective 

estimates and the Bollerslev and Wooldridge (1992) robust t-ratios. For the five returns, 

there are 10 conditional correlations, with the highest estimated constant conditional 

correlation being 0.685 between the standardized shocks to the volatilities in the SICOM 

and TOCOM returns, and the lowest being 0.236 between the standardized shocks to the 

volatilities in TRSS3 and TOCOM. 

  The DCC estimates of the conditional correlations between the volatilities of spot 

and futures rubber returns based on estimating the univariate GARCH(1,1) models are 

given in Table 3. Based on the Bollerslev and Woodridge robust t-ratios, the estimates of 

the two DCC parameters, namely 1̂( )  and 2̂( ) , are statistically significant, except for the 

short run persistence of shocks in the dynamic correlation 1̂( )  of trss3_ome, trss3 _tocom 

and trss3_sicom. The long run persistence to the conditional correlations is statistically 

significant and close to 0.99, which suggests that the assumption of constant conditional 

correlations is not supported empirically.  

 The short-run persistence of shocks in the dynamic conditional correlations is greatest 

between the returns in ome_tocom, at 0.108, whereas the largest long run persistence of 

shocks to the conditional correlations is between the returns of srss3_sicom, at 0.998 = 

0.996+0.002. The time-varying conditional correlations between pairs of returns are given 

in Figure 1, where it is clear there is significant variation in the conditional correlations 

over time. 

 

[Insert Table 3 and Figure 1 here] 
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  Finally, the volatility spillover estimates between the volatilities of spot and futures 

rubber returns, based on estimating the VARMA-GARCH and VARMA-AGARCH 

models, are given in Tables 4 and 5, respectively. Panels 4a-4j show that volatility 

spillovers from the VARMA-GARCH model are evident in 7 of 10 cases, whereas 

interdependences are evident in the remaining 3 cases. Panels 5a-5j present evidence of 

volatility spillovers of the VARMA-AGARCH model in 8 of 10 cases, while significant 

interdependences are evidence in the remaining 2 cases. In addition, the estimates of the 

conditional variance show significant asymmetric effects of positive and negative returns 

shocks of equal magnitude on conditional volatility in all cases, thereby suggesting that the 

VARMA-AGARCH model is preferable to its VARMA-GARCH counterpart. 

 

[Insert Tables 4 and 5 here] 

 

5.  Conclusion 

 

  In this paper, we estimated four multivariate conditional volatility models in rubber 

spot and futures returns from Asian rubber markets, namely Thailand, Singapore and 

Japan, for the period 23 September 1994 to 13 March 2009. All rubber return series were 

found to be stationary. The constant conditional correlations between spot and futures 

rubber returns from the CCC model were found to lie in the low to medium range. The 

VARMA-GARCH results showed that there were spillover effects between most pairs of 

spot and futures rubber returns, while some pairs of returns showed evidence of 

interdependence, as did the results arising from the VARMA-AGARCH model.  

 In addition, the statistically significant asymmetric effects of negative and positive 

shocks of equal magnitude on the conditional variance suggested that VARMA-AGARCH 

was preferable to its VARMA-GARCH counterpart. The DCC estimates of the conditional 

correlations between the volatilities of spot and futures returns were statically significant, 

thereby suggesting that the conditional correlations were dynamic. 
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Table 1 

Unit root tests 

 

ADF test (t-statistic) Phillips-Perron test 
Returns 

None C C&T None C C&T 

OME -57.7 -57.7 -57.7 -57.7 -57.7 -57.7 

SICOM -35.8 -35.8 -35.8 -51.8 -51.8 -51.7 

SRSS3 -27.1 -27.1 -27.1 -46.7 -46.7 -46.7 

TOCOM -58.5 -58.5 -58.5 -58.5 -58.5 -58.5 

TRSS3 -22.0 -22.1 -22.1 -48.7 -48.7 -48.6 

 
Note: None denotes no intercept and trend, C is intercept and T is trend. Entries in bold are 
significant at the 5% level. 
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Table 2 

Constant Conditional Correlations  

 

Returns OME SICOM t-ratios SRSS3 t-ratios TOCOM t-ratios TRSS3 t-ratios 

OME 1 0.483 (46.62) 0.393 (30.47) 0.685 (132.0) 0.262 (19.05) 

SICOM  1  0.526 (47.98) 0.524 (50.7) 0.275 (19.05) 

SRSS3    1  0.401 (32.27) 0.491 (44.35) 

TOCOM      1  0.236 (16.12) 

TRSS3        1  

 
Note: The two entries for each parameter are their respective parameter estimates and 
Bollerslev and Wooldridge (1992) robust t-ratios. Entries in bold are significant at the 5% 
level. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



13 

 

 

Table 3 
 

Dynamic Conditional Correlations 
 

Returns 1̂  t-ratios 2̂  t-ratios 

trss3_srss3 0.014 (5.394) 0.981 (267.432) 

trss3_ome 0.003 (0.866) 0.987 (49.265) 

trss3_tocom 0.003 (1.370) 0.991 (125.691) 

trss3_sicom 0.002 (1.465) 0.994 (245.050) 

srss3_ome 0.021 (4.034) 0.958 (87.349) 

srss3_tocom 0.020 (3.776) 0.959 (85.918) 

srss3_sicom 0.002 (2.423) 0.996 (497.70) 

ome_tocom 0.108 (30.558) 0.878 (211.640) 

ome_sicom 0.017 (7.132) 0.978 (328.651) 

tocom_sicom 0.053 (12.488) 0.936 (181.221) 

 
Note: The two entries for each parameter are their respective parameter estimates and 
Bollerslev and Wooldridge (1992) robust t-ratios. Entries in bold are significant at the 5% 
level. 
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Table 4  

 
VARMA(1-1)-GARCH(1,1) Estimates 

 

 

Panel 4a. VARMA-GARCH: TRSS3_SRSS3 

   TRSS3  SRSS3  TRSS3  SRSS3  

TRSS3 0.013 

(3.224) 

0.088 

(5.298) 

0.802 

(27.089) 

0.117 

(5.379) 

-0.025 

(-1.554) 

SRSS3 0.015 

(3.860) 

0.078 

(6.106) 

0.868 

(37.473) 

0.004 

(0.200) 

0.046 

(4.737) 

Panel 4b. VARMA-GARCH: OME_TRSS3 

   OME  TRSS3  OME  TRSS3  

OME 0.109 

(1.807) 

0.058 

(3.533) 

0.914 

(31.831) 

0.089 

(1.984) 

-0.048 

(-0.843) 

TRSS3 0.019 

(2.693) 

0.090 

(6.716) 

0.882 

(63.377) 

-0.006 

(3.317) 

0.009 

(-2.154) 

Panel 4c. VARMA-GARCH: TRSS3_TOCOM 

Panel 4d. VARMA-GARCH: SICOM_TRSS3 

   SICOM  TRSS3  SICOM  TRSS3  

SICOM 0.032 

(4.600) 

0.081 

(6.111) 

0.880 

(44.355) 

0.060 

(3.660) 

-0.021 

(-0.949) 

TRSS3 0.044 

(4.297) 

0.116 

(5.233) 

0.674 

(14.038) 

-0.030 

(-2.487) 

0.114 

(5.694) 

Panel 4e. VARMA-GARCH: OME_SRSS3 

   OME  SRSS3  OME  SRSS3  

OME 0.623 

(3.744) 

0.121 

(4.110) 

0.667 

(8.962) 

0.276 

(1.625) 

0.065 

(0.486) 

SRSS3 0.021 

(4.700) 

0.097 

(8.128) 

0.886 

(69.017) 

-0.004 

(-2.923) 

0.004 

(3.782) 

Panel 4f. VARMA-GARCH: SRSS3_TOCOM 

   TRSS3  TOCOM  TRSS3  TOCOM  

TRSS3 0.013 

(9.172) 

0.107 

(17.719) 

0.006 

(2.877) 

0.856 

(98.607) 

0.040 

(3.449) 

TOCOM 0.774 

(15.620) 

-0.314 

(-10.097) 

0.265 

(25.674) 

1.650 

(8.166) 

0.514 

(33.838) 
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   SRSS3  TOCOM  SRSS3  TOCOM  

SRSS3 0.033 

(7.347) 

0.093 

(8.312) 

0.890 

(78.160) 

0.008 

(5.703) 

-0.009 

(-6.221) 

TOCOM 0.792 

(3.246) 

0.244 

(3.004) 

0.561 

(5.383) 

0.509 

(2.418) 

0.018 

(0.179) 

Panel 4g. VARMA-GARCH: SRSS3_SICOM 

   SRSS3  SICOM  SRSS3  SICOM  

SRSS3 0.041 

(1.329) 

0.022 

(0.876) 

-0.002 

(-0.025) 

0.343 

(4.846) 

0.242 

(10.442) 

SICOM 0.030 

(4.370) 

0.086 

(5.600) 

0.879 

(32.613) 

-0.018 

(2.664) 

0.049 

(-0.635) 

Panel 4h. VARMA-GARCH: OME_TOCOM 

   OME  TOCOM  OME  TOCOM  

OME 0.284 

(4.545) 

0.047 

(2.286) 

0.915 

(27.924) 

0.075 

(2.664) 

-0.083 

(-2.132) 

TOCOM 0.526 

(1.713) 

0.188 

(2.997) 

0.246 

(2.235) 

0.492 

(2.994) 

0.134 

(2.022) 

Panel 4i. VARMA-GARCH: OME_SICOM 

   OME  SICOM  OME  SICOM  

OME 0.489 

(3.518) 

0.108 

(3.416) 

0.698 

(9.896) 

0.170 

(1.421) 

0.088 

(0.814) 

SICOM 0.036 

(4.606) 

0.099 

(7.038) 

0.879 

(55.106) 

-0.004 

(-1.337) 

0.006 

(2.096) 

Panel 4j. VARMA-GARCH: SICOM_TOCOM 

   SICOM  ENI  SICOM  ENI  

SICOM 0.036 

(4.518) 

0.108 

(7.248) 

0.875 

(55.777) 

0.001 

(1.105) 

-0.002 

(-1.113) 

TOCOM 0.817 

(3.083) 

0.241 

(2.654) 

0.546 

(4.544) 

0.219 

(1.270) 

0.181 

(2.005) 

 
Note: The two entries for each parameter are their respective parameter estimates and 
Bollerslev and Wooldridge (1992) robust t- ratios. Entries in bold are significant at the 5% 
level. 
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Table 5 

 
VARMA(1-1)-AGARCH(1,1) estimates 

 

 

Panel 5a. VARMA-AGARCH: SRSS3_TRSS3  

   TRSS3  SRSS3    TRSS3  SRSS3  

SRSS3 0.015 

(3.942) 

0.087 

(5.225) 

-0.019 

(-0.979) 

0.871 

(38.500) 

0.048 

(4.827) 

0.002 

(0.080) 

TRSS3 0.013 

(3.220) 

0.094 

(4.542) 

-0.012 

(-0.376) 

0.802 

(26.605) 

-0.026 

(-1.541) 

0.118 

(5.458) 

Panel 5b. VARMA-AGARCH: OME_TRSS3 

   OME  TRSS3    OME  TRSS3  

OME 0.112 

(1.871) 

0.054 

(2.099) 

0.008 

(0.262) 

0.912 

(30.861) 

0.090 

(1.972) 

-0.047 

(-0.775) 

TRSS3 0.019 

(2.695) 

0.100 

(4.667) 

-0.024 

(-0.809) 

0.887 

(66.205) 

-0.006 

(-2.264) 

0.008 

(3.405) 

Panel 5c. VARMA-AGARCH: TOCOM_TRSS3 

   TRSS3  TOCOM    TRSS3  TOCOM  

TOCOM 0.823 

(3.360) 

0.274 

(2.180) 

-0.056 

(-0.494) 

0.584 

(5.934) 

0.056 

(0.767) 

0.357 

(2.001) 

TRSS3 0.050 

(5.726) 

0.100 

(4.831) 

-0.024 

(-0.787) 

0.867 

(61.334) 

-0.016 

(-4.574) 

0.017 

(4.809) 

Panel 5d. VARMA-AGARCH: SICOM_TRSS3 

   SICOM  TRSS3    SICOM  TRSS3  

SICOM 0.032 

(4.636) 

0.084 

(5.053) 

-0.008 

(-0.382) 

0.883 

(44.908) 

0.062 

(3.767) 

-0.022 

(-1.009) 

TRSS3 0.045 

(4.291) 

0.101 

(3.978) 

0.032 

(0.792) 

0.675 

(14.244) 

-0.030 

(-2.498) 

0.114 

(5.737) 

Panel 5e. VARMA-AGARCH: OME_SRSS3 

   OME  SRSS3    OME  SRSS3  

OME 0.629 

(3.833) 

0.108 

(2.603) 

0.030 

(0.596) 

0.664 

(9.018) 

0.279 

(1.650) 

0.068 

(0.497) 

SRSS3 0.021 

(4.701) 

0.105 

(6.566) 

-0.016 

(-0.708) 

0.887 

(70.423) 

-0.005 

(-2.967) 

0.005 

(3.731) 

Panel 5f. VARMA-AGARCH: SRSS3_TOCOM 

   SRSS3  TOCOM    SRSS3  TOCOM  



17 

 

SRSS3 0.032 

(5.614) 

0.105 

(6.414) 

-0.011 

(-0.461) 

0.882 

(71.498) 

0.007 

(4.710) 

-0.008 

(-4.549) 

TOCOM 0.793 

(3.242) 

0.276 

(2.128) 

-0.068 

(-0.591) 

0.559 

(5.316) 

0.526 

(2.434) 

0.022 

(0.223) 

Panel 5g. VARMA-AGARCH: SICOM_SRSS3 

   SRSS3  SICOM    SRSS3  SICOM  

SICOM 0.031 

(4.362) 

0.084 

(4.932) 

0.005 

(0.202) 

0.879 

(32.493) 

0.050 

(2.630) 

-0.018 

(-0.621) 

SRSS3 0.042 

(1.386) 

0.031 

(0.875) 

-0.022 

(-0.602) 

0.004 

(0.059) 

0.338 

(4.811) 

0.242 

(10.449) 

Panel 5h. VARMA-AGARCH: OME_TOCOM 

   OME  TOCOM    OME  TOCOM  

OME 0.292 

(4.826) 

0.041 

(2.089) 

0.012 

(0.455) 

0.914 

(29.174) 

0.076 

(2.769) 

-0.085 

(-2.277) 

TOCOM 0.513 

(1.686) 

0.233 

(2.454) 

-0.090 

(-0.924) 

0.223 

(2.047) 

0.524 

(3.208) 

0. 137 

(2.100) 

Panel 5i. VARMA-GARCH: OME_SICOM 

   OME  SICOM    OME  SICOM  

OME 0.483 

(3.610) 

0.092 

(2.101) 

0.032 

(0.660) 

0.698 

(10.276) 

0.168 

(1.414) 

0.093 

(0.843) 

SICOM 0.036 

(4.603) 

0.100 

(6.062) 

-0.002 

(-0.082) 

0.879 

(55.146) 

-0.005 

(-1.341) 

0.006 

(2.101) 

Panel 5j. VARMA-AGARCH: SICOM_TOCOM 

   SICOM  ENI    SICOM  ENI  

SICOM 0.037 

(4.514) 

0.107 

(6.157) 

0.003 

(0.125) 

0.874 

(55.548) 

0.001 

(1.084) 

-0.002 

(-1.106) 

TOCOM 0.826 

(3.098) 

0.280 

(1.918) 

-0.083 

(-0.652) 

0.541 

(4.374) 

0.234 

(1.247) 

0.189 

(2.047) 

 
Note: The two entries for each parameter are their respective parameter estimates and 
Bollerslev and Wooldridge (1992) robust t- ratios. Entries in bold are significant at the 5% 
level. 
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Figure 1 

Dynamic Conditional Correlations Between Pairs of Rubber Spot and Futures 
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