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Bayesian procedures for specification analysis or diagnostic checking of modeling assumptions for 
structural equations of econometric models are developed and applied using Monte Carlo 
numerical methods. Checks on the validity of identifying restrictions, exogeneity assumptions and 
other specifying assumptions are performed using posterior distributions for discrepancy vectors 
and junctions representing departures from specifying assumptions. Several mappings or functions 
of reduced form coefficients are defined and their posterior distributions are computed. A 
restricted reduced form approach is used to compute posterior distributions for structural 
parameters. These procedures are applied in analyses of two econometric models. 

1. Introduction 

There have been many studies relating to limited information estimation of 
the parameters of the simultaneous equation model (SEM) from both the 
Bayesian and non-Bayesian points of view - see, e.g., Zellner (1971, 1979), 
Dreze (1976), Dreze and Richard (1983), Hausman (1983), Tsurumi (1985, 
1987), and the references cited in these works. In non-Bayesian approaches, 
there is usually reliance on asymptotic approximations in making inferences.’ 
Some previous Bayesian approaches also involve asymptotic approximations. 

*The first and thud authors received support from the National Science Foundation and from 
the H.G.B. Alexander Endowment Fund, Graduate School of Business, University of Chicago. 
The second author acknowledges support from Erasmus University. Comments by J. D&e and 
J.F. Richard on an earlier draft were very helpful. 

‘A brief discussion of small sample results in non-Bayesian limited information estimation of 
the SEM is given by Anderson (1984, pp. 518-519). Tsurumi (1987) reports Monte Carlo 
experimental results. 
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A problem in previous exact Bayesian analyses is that posterior distributions 
of structural parameters are in most cases not analytically tractable2 and thus 
must be integrated numerically to obtain their moments, marginal distribu- 
tions, etc. As regards Monte Carlo numerical integration, usual posterior 
distributions of structural parameters do not have simple forms from which 
draws can be made easily. As a consequence, the success of Monte Carlo 
integration procedures depends importantly on an investigator’s ability to find 
distribution functions that are good approximations to posterior distributions 
and from which pseudo-random drawings can be made easily. Also, past 
Bayesian analyses of the SEM have not devoted much attention to diagnostic 
checking of models’ assumptions, that is to specification error analysis. 

In the present paper, we start from the reduced form of the SEM and make 
a distinction between ‘unrestricted reduced form analysis’ (URFA) and ‘re- 
stricted reduced form analysis’ (RRFA). In our URFA, we define indirect least 
squares, generalized indirect least squares, two-stage least squares and limited 
information maximum likelihood mappings or functions of unrestricted re- 
duced form coefficients which do not require that overidentifying restrictions 
hold exactly and obtain complete posterior distributions of these mappings or 
functions by a direct Monte Carlo simulation approach. Also discrepancy 
vectors and discrepancy functions are introduced which measure the extent to 
which overidentifying restrictions are in error and we indicate how to obtain 
their posterior distributions by a direct simulation approach. One may also use 
Bayesian realized error analysis [Zellner (1975)] to provide further diagnostic 
checks of the SEM. 

In the case that exact identifying restrictions are imposed, we present a 
RRFA and discuss a method for computing posterior distributions of structur- 
al parameters which makes use of Monte Carlo integration in a relatively 
simple way, namely a direct simulation approach. 

The plan of our paper is as follows. In section 2 we consider simple, 
canonical models to illustrate our approach and go on to specify a general 
system. Then various mappings of the URF coefficients are introduced and we 
indicate how to compute their posterior distributions, moments, etc. This is 
followed by an analysis of the RRF system to obtain posterior distributions of 
structural coefficients. Section 3 is devoted to further diagnostic checking 
procedures. In section 4, our methods are applied in illustrative analyses of 
several well known models using actual data. Section 5 provides some conclud- 
ing remarks. An efficient algorithm for generating pseudo-random drawings 
from a matrix Student-t distribution is presented in the appendix. 

‘An exception is Dreze (1976) where the posterior density is in the poly-t family. Then one can, 
in some cases, compute moments of structural coefficients analytically. See also Bauwens and 
Richard (1985) and Tsurumi (1985,1987). 
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2. Model specification, interpretation and analysis 

In this section we first consider canonical models to illustrate features of our 
approach. Then we specify unrestricted reduced form (URF) systems and 
indicate how to compute posterior distributions for interesting functions or 
mappings of URF coefficients. These functions or mappings are related to 
discrepancy uectors which measure departures of the URF coefficients from 
satisfying usual overidentifying restrictions. Next, we impose identifying and 
normalizing restrictions, derive the posterior distribution of the parameters of 
a single structural equation using diffuse and informative prior distributions 
and discuss a Monte Carlo integration procedure for the computation of 
posterior moments and densities. Also, various conditional posterior distribu- 
tions centered at OLS, 2SLS, LIML, and MEL0 point estimates and diagnos- 
tic checks of the validity of overidentifying restrictions are provided. 

2. I. Canonical models 

The first canonical model is a ‘means model’ for two endogenous variables, 
namely, 

Yl, = 171 + Ulr 3 

Y2r = 5j + “Zi> 
i=1,2 ,..., it, 

(2.la) 

(2.lb) 

where ni and <, are means of yii and y2,, respectively, and the zero-mean 
disturbance terms, air and Q,, are assumed independently drawn from a 
bivariate normal distribution with 2 X 2 positive definite symmetric (pds) 
covariance matrix. For example, q1 and 5, can be interpreted as the ith 
individual’s ‘permanent’ or ‘anticipated’ consumption and income, respec- 
tively, whereas Yii and Y,, are their measured counterparts. Interest may 
center on various functions of the 7,‘s and 4,‘s for example II,/<,, i = 
1,2,..., n, the ‘permanent consumption-income’ ratios, 
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higher-order moments, skewness and kurtosis measures, etc. Further, weighted 
averages of the ratios r~/,$~, e.g., 

or 

where 

q’=(q,,q,,...,q,) and 5’=(E13t23...TE,,)9 

might be of interest. If we write 

v=~Y+A,, (2.2) 

where y is a scalar parameter and A, is an n x 1 discrepancy vector, which 
measures the extent to which the 7,/t, depart from a common value y, then 
yz =E’s/<‘E is the value of y that minimizes Aid, = (7 --ty)‘(~I -[y), 
a discrepancy function. Also, the functions 5: = (77 - tui)‘( VI - &l)/n and 
fi: = I - na2 i/~I’q are of interest and have obvious regression interpretations. 

Given a posterior distribution for the 2n parameters, q and 5, draws can be 
made from it and complete posterior distributions for 77,/t,, i, g, at5, Us,, aSs, 
7, Sf, p:, etc. can be obtained by a direct Monte Carlo approach, that is by 

repeated evaluation of these quantities using independent draws from the joint 
distribution. If it is the case that the distribution of 5: is centered far from 
zero, there is little support for the assumption A, = 0 or 17 = y[. On the other 
hand, if 5:‘s distribution is centered close to zero, this provides some support 
for the assumption A, = 0 and, with this assumption, the model becomes a 
form of the usual ‘errors-in-variables’ model. While we do not pursue the 
matter now, it is also possible to compute posterior odds relating to the 
hypotheses A, = 0 and A, # 0. 

If in addition to (2.1), we have proxies for 9, and E,, namely, 

(2.3a) 

(2.3b) 

where XJ’ is a 1 X k vector of predetermined variables, a typical row of an 
n x k matrix X, assumed of full column rank, and vi and or, are k X 1 

coefficient vectors, the number of location parameters is reduced from 2n 5,‘s 
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and qli’s to 2k r ‘s. Using (2.3), we can express (2.1) in matrix form as follows: 

Yi=X~,+u,, (2.4a) 

yz=X75+u2, (2.4b) 

where yl, y2, q, and u2 are n x 1 vectors with typical elements pi,, y2,, ui, 
and uzi, respectively. 

In (2.4), we have two URF equations. Just as with (2.1), we may be 
interested in various functions or mappings of the URF coefficients, the 
analogues of those for 7, and 5, with x:lri and x:rr2 replacing 77, and [,, 
respectively, in their definitions. Also, we can introduce 

Xrri = X?r,y +A,, (2.5) 

where A, is an n x 1 discrepancy vector. Then y2 = Ir,lX’Xn,/n,lX’X?r, is the 
value of y that minimizes d;A,. Further, 6; = (X?r, - XrzUz)‘( XT, - 
XrrzY2)/n and p: = 1 - nr$/r, X’Xrr, are regression-like mappings of the ?T ‘s 
which are of interest. Also, if we consider 

where A, is a k x 1 discrepancy vector, then the value of y, say y3, minimizing 
d;A,, is just uj = rr@i/$;1~2 and Z: = (nl - rrzIT2y3)‘(~i - qY3)/k and 5: = 1 - 
ktY:/r;n, are measures of the extent to which A, = 0 holds. 

Given a joint posterior pdf for rri and rr2 from which draws can be made, a 
direct Monte Carlo simulation approach can be employed to obtain the 
posterior distributions of y2, y3, c?:, S:,‘, pt, pi, etc., since these quantities are 
given functions or mappings of the unrestricted 71 ‘s. 

If A, = 0 in (2.5) or A, = 0 in (2.6), we have the case of e.xact restrictions. 
Then (2.4) can be written as 

(2.7a) 

(2.7b) 

or 

Yl =Y,Y + Ul, 

yz=Xrr2+uz, 

(2.7~) 

(2.7d) 

where ui = ui - u2y and u2 = u,. Eqs. (2.7a) and (2.7b) form the restricted 
reduced form (RRF) equation system which can also be expressed in structural 
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form as shown in (2.7~) and (2.7d). On introducing a prior distribution for y, 
q and the reduced form disturbance covariance matrix, we can obtain a 
posterior distribution for these parameters. Note that in working with (2.7a) 
and (2.7b), it is assumed that the overidentifying restrictions hold exactly, that 
is A, = 0 in (2.5) or A, = 0 in (2.6). The number of coefficients in (2.7) is k + 1, 
usually a large reduction from the 2k coefficients in (2.4) for k > 1. When 
k = 1, the case of ‘just-identification’, the number of coefficients in the URF 
and RRF is the same. Also, relative to the 2n location parameters in (2.1) the 
reduction is much larger. This reduction, however, is dependent not only on 
the identifying restrictions holding exactly but also on the appropriateness of 
the proxy expressions in (2.3). Diagnostic checking procedures relating to 
these assumptions will be described in a subsequent section. 

We now turn to provide results for general cases including mappings of 
reduced form coefficients in the unrestricted case and posterior distributions 
for structural parameters in the restricted reduced form case after introducing 
some needed notation. Let Y, = ( y,:Y,:Y,) denote an n x m’ matrix of ob- 
servations on m’ endogenous variabl’es with URF, 

( y,:Y,:Y,) = x(a,:Ir,:rrI,) + (ol:V1:VO), (2.8) . . . . . . 

where X is an n x k matrix of observations on k predetermined variables of 
rank k and the rows of the disturbance matrix have been independently drawn 
from a zero-mean multivariate normal distribution with a pds covariance 
matrix. A structural equation, say the first, with normalization imposed can be 
written as 

(2.9a) 

or 

Yl - y,v1= Xl& + Ul, (2.9b) 

where Y, and X0 are observations on endogenous and predetermined variables 
excluded from the first equation and X = (X1:X0). The m, X 1 vector yr and 
the k, x 1 vector & are the structural coefficients and u1 is an n x 1 vector of 
structural disturbance terms. 

To obtain the well-known restrictions on the reduced form coefficients, we 
write (2.8) as 

(2.10) 
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and on multiplying both sides of (2.10) on the right by (1: - y[:O’), the result is 
. . 

Y, - YlYl = (x1:x0) . (:::,I:;;:) +u,- VIYl. (2.11) 

For compatibility with (2.9b), ui = ui - Vry, and 

(2.12a) 

TlO - DlOYl = 03 (2.12b) 

which are restrictions on the reduced form coefficients with yi and pi 
appearing in them, a generalization of (2.6) with A, = 0. In (2.12b) II,, is 
assumed to be of full column rank. 

On substituting for (n;,:?r;o)’ in (2.10) from (2.12), the RRF equations for 
yi and Y, are 

Yl = xn,Yl+ Xl& + 01, (2.13a) 

y,=xIT,+ VI, (2.13b) 

where II; = (II;,:II;,). It is seen that (2.13) is in the form of a multivariate 
non-linear regression model, a generalization of (2.7). The system in (2.13) will 
serve as the starting point for an analysis of the RRF system, whereas 

( y,:y,) = x( m,:n,) + (uy,) (2.14a) 

will serve as the starting point for the URF analysis of the data ( yi;Y,). 

2.2. Mappings of unrestricted reduced form (URF) coejicients 

We shall obtain a posterior distribution for the parameters of (2.14a) and 
use it to obtain posterior distributions of interesting functions or mappings of 
the URF coefficients, (lr,:II,). For convenience, we write Y = ( yi: Y,), 17 = 
(mi:IIi) and V = (q:VJ and thus (2.14a) becomes 

Y=XIIIV. 
nXtW nxk kxm TIXM 

(2.14b) 

The n rows of V are assumed to be independently drawn from a multivariate 
normal distribution with zero mean vector and m X m pds covariance matrix 
s2, i.e., MVN(0, L?). If X includes lagged endogenous variables, we assume that 
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initial or starting values are given. Then the likelihood function for (2.14b) is 

w, WY,, x> a p- “/*exp{ -+tr(Y-XII)‘(Y-XII)Qn-‘) 

a IT “/*exp{-$tr[S+(n-I?)’ 

xx’x(II-fi)]9-‘}, (2.15) 

where a denotes ‘is proportional to’, and 

I? = (X'X)_'X'Y, (2.16a) 

s=(r-Xfr)'(Y-xl?). (2.16b) 

It is seen that the likelihood function in (2.15) is in the same form as that for a 
multivariate regression model - see, e.g., Zellner (1971, ch. 8) with I? and S 
sufficient statistics. 

We shall employ the following standard diffuse prior distribution for II and 
the distinct elements of CL3 

p(II, 52) a 1521-(m+1+uo)/2, (2.17) 

where u0 2 0, that is the elements of II and s2 are independent, with the 
former being uniformly distributed and the latter in the form of a degenerate, 
inverted Wishart distribution. 

On multiplying (2.15) and (2.17) and using y0 = 0, we obtain by Bayes’ 
Theorem the joint posterior density of II and Q, namely, 

P(fl, QP) a IQI- (n+m+1)/2exp{ - +tr[ S + (II - I?)’ 

XX~X(IT-il)]K’}, (2.18) 

where D denotes the given sample information (Y, X) and prior information 
in (2.17). On integrating (2.18) with respect to a, we obtain the well-known 
marginal posterior density for II, 

(2.19) 

‘The value v0 = k in the exponent of (2.17) has been suggested by D&e (1976) while Zellner 
(1971) employs Y” = 0. 
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which is in the form of a matrix Student-t density - see, e.g., Dickey (1967), 
Box and Tiao (1973), D&e and Richard (1983), Geisser (1965), and Zellner 
(1971) for properties of this distribution. As explained below, it is possible to 
make independent draws from (2.19) and to use them to determine the 
posterior distributions of interesting functions or mappings of the elements of 
II. Some of these mappings are given below. 

We first consider the case of ‘just-identification’ in which the matrix II,,, in 
(2.12b) is square and non-singular and the matrix (n,,: - 17,,) is not of full 

column rank. Then (2.12b) has a unique solution for yl’ - see Graybill (1969, 
p. 140), and this solution can be substituted in (2.12a) to express /?, in terms 
of the RF coefficients. Explicitly, we have 

81 = =11 - ~11Ghl~ (2.20a) 

(2.20b) 

which we call the Indirect Least Squares (ILS) mapping since if least squares 
estimates of the n’s are inserted in (2.20), the result is the ‘indirect least 
squares’ estimate of non-Bayesian econometrics. In the Bayesian approach. 
pith the posterior distribution for II in (2.19), the least squares quantity 
IT = (X/X)-IX’Y is the modal value and mean of (2.19) and the ILS estimate 

is the modal value of the posterior distribution of p1 and y1 in this case of 
‘exact identification’ since (2.20) is a one-to-one transformation from the n’s 

to & and yl. Further, as explained below, we can make independent draws 
from the matrix Student-t posterior distribution for II in (2.19) and evaluate 
/3, and y1 for each draw by use of (2.20) and thus obtain the complete 
posterior distributions for the elements of /3, and yl. Also, various measures 
associated with these distributions can be calculated, for example medians, 
inter-quartile ranges, means (if they exist), etc., as will be illustrated in 
computed examples below.4 

In the case of overidentification, the matrix n,, in (2.12b) has dimension 
k, x ml, where k, is the number of columns of X0 or the number of 
predetermined variables left out of the first structural equation in (2.9b) and 
ml is the number of columns of Y, or the number of endogenous variables 
included in (2.9b) less one. The rank condition for identification of the 
structural coefficients y1 and & is that the rank of II, is ml which requires 
k, > ml, the order condition in the overidentified case. In the overidentified 
case, we cannot go from the URF coefficients, the elements of II in (2.14b) 
and (2.19) to the elements of y1 and /3,. For example in (2.6) with A, = 0, 
r1 = rzy and given that 7~~ and r2 are a.s. linearly independent in the URF, 
we cannot solve for y in terms of the elements of the vectors of URF 

4Drkze (1976, p. 1055) discusses conditions for existence of moments of structural coefficients. 
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coefficients, ?rt and rrZ. In fact, we can only find an approximate solution 
[Graybill (1969, p. 103ff.)] as follows. Just as in (2.6), we shall append a 
discrepancy vector A,, to (2.12b). This yields 

*11 - flI,lYl = 813 

*lo-nI,oy,=A,. 

(2.21a) 

(2.21b) 

We can now define discrepancy functions and obtain values of y1 and & 
which minimize them. One example of a discrepancy function is d;A 2 and the 
value of yi which minimizes this function, denoted by yi* and the associated 
value of /3t, p: are 

8: = 811 - &lY; 2 (2.22a) 

v: = m,~lo)-l~;o~lo. (2.22b) 

We shall call the mapping in (2.22) the Generalized Indirect Least Squares 
(GILS) mapping since when least squares estimates of the 7~‘s are inserted in 
(2.22), the result is the GILS estimate - see Khazzoom (1976). In our Bayesian 
approach, the posterior distribution of the elements of /3: and yt* can be 
computed by direct Monte Carlo simulation based on draws from the matrix 
Student-t posterior distribution for IT in (2.19). Also posterior distributions 
for the discrepancy functions can be computed, for example 

d;a dko = ( ~10 - flI,o~: >’ ho - 171,~: J/k,, (2.23a) 

and 

(2.23b) 

Also, the posterior distributions of the elements of b, = rlo - alloy: can be 
computed by direct Monte Carlo simulation. The posterior distributions of d 2, 
h’Zd,/k, and $ will provide information regarding the validity of the exact 
restrictions in (2.12) in the frequently encountered overidentified case. 

We next turn to a mapping that involves the matrix of predetermined 
variables by multiplying both sides of (2.12) on the left by X= (X,X,) to 
obtain 

xn, = xII1yl + Xl& = z,s,, (2.24) 

where ai’ = (ai1 a{,,), Hi = (Hii II;,), 2, = (XII, Xl) and 8; = (yr’ 8;). 
To allow for possible errors in the exact restrictions in (2.24), we introduce a 
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discrepancy vector, A,, as follows: 

Xn, = @, +A,. (2.25) 

Then, just as in the cases considered above, we can minimize the discrepancy 
function A;A, with respect to 6, to obtain 

-- 
s: = (z;z,) -12;x7rl (2.26) 

as the minimizing value which defines a mapping of the s’s, which resembles 
that arising in 2SLS estimation. 5 Thus we call (2.26) the 2SLS Mapping. Also 
from (2.25) and (2.26), we can define 

A, = x7r1 - z,s:, (2.27a) 

d;A,/n = ( Xrl - Z,ST )‘( Xrt - 2,6:)/n, (2.27b) 

$ = 1 - b;A &r{X’Xn, . (2.27~) 

Posterior distributions of ST, A,, d;d,, 6: and other interesting functions of 
the URF coefficients can be calculated using a direct Monte Carlo simulation 
approach based on draws from the matrix Student-t distribution in (2.19). 

Last, we define a LIML mapping as follows. Write the URF system for 
Y = (yl Y,) in (2.14) as 

Y = x&L,.+ x,n,.+ V, (2.28) 

where II’ = (II;. II;.) and multiply both sides of (2.28) on the right by 
y, = (1:~;)’ to obtain 

Yy, = x,n, .yO + x,n, .Y, + vv, = XflY, + vu,. (2.29) 

Note that 17,,y0 = 0 if the restrictions in (2.12) hold and thus we introduce a 
‘ variance ratio’ discrepancy function, 

9 = Y,'K'v,Ya/Y,'~'~Y,> (2.30) 

where V= Y - XII and V, = Y - XIII,. With i being the smallest root of 
IV,‘V, - /V’V( = 0, the value of y, minimizing + in (2.30) is obtained by 
solving the following set of equations, given II, X and Y, 

5An alternative procedure to compute Sl* is presented in section 3 
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The solution is y,* = (1: - y:‘)’ and we can then define 8: = rll - II,,y: 
from the restrictions in ‘(2.12). Thus ST’= (y;“’ 8:‘) is the LIML mapping 
which can be substituted in (2.30) to yield +* = y,*‘V,‘Vryz/y,*‘V’Vy$. The 
posterior distributions of ST, $*, II,,,y,*, etc. can be calculated by direct 
Monte Carlo simulation based on independent draws of 17 from its posterior 
distribution in (2.19). 

We have discussed various mappings that are useful in connection with 
URF analysis which do not involve assuming that identifying restrictions hold 
exactly. One may extend the GILS mapping and the 2SLS mapping to the case 
of a full system of equations [see van Dijk (1985)]. We shall not pursue this 
extension herein. We turn now to the derivation of posterior distributions for 
structural parameters in a RRF framework. 

2.3. Restricted reduced form analysis (RRFA) 

We now assume that the restrictions in (2.12) and in the line above (2.12) 
hold exactly and impose them to obtain the RRF system of the equations for 
yr and Y, as follows. Substitute the expression u1 = ur + V,y, in (2.13a), use 
(2.13b) and (2.10) and re-express (2.13) as 

(2.13’) 

Assuming that the rows of (ur V,) are independently drawn from a zero-mean 
normal distribution with PDS covariance matrix 9*, where 

(2.13”) 

one can write the likelihood function 

01, n,, Q*P) a p*1- “/*exp{ -$tr[(u, V,)‘(u, Vr)fi*-‘I}, 

(2.31) 

where Si = (y; /I;), D = (Y X) and ( IQ VI) is restricted by eq. (2.13’). A 
well-known diffuse prior for the parameters of (2.31) is 

p(sl, II,, n*) a 1i2*I-(ml+2+uo)/2, (2.32) 

where v,, ( 2 0) can be chosen in accordance with invariance considerations. 
More informative priors are discussed below. Multiplying (2.31) and (2.32) 
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gives the posterior pdf as 

51 

p(Sr,IIt,52*)0) a152*1-(fi*+"1+2)/2 

xexp{ - +tr[(u, V,)‘(u, V,)52*P’]}, (2.33) 

where n, = n + vo. On integrating the posterior with respect to the elements of 
Q *, one obtains the marginal pdf for 6, and II,, given as 

P(& fl7,P) a Ku1 F)‘(~, v*) I -n*‘2. (2.34) 

We now make use of 

Ku* tS)‘(+ VI) I = b4~~4wlYl~ 

where 

M, =I- V&T,))‘V,l, 

and rewrite (2.34) as 

x I( Y, - XII,)‘( Y, - XII,) 1 -n*‘2, (2.35) 

where W, = (Y, X,). By making use of the definitions of the multivariate and 
matrix variate Student-t density functions [see Zellner (1971, app. B)] one can 
re-express (2.35) as 

where 

l/2 

{ v1 + (6, - &)‘W;M,W,( s, - 8,)/g } -(vl+‘1)‘2, 

(2.36a) 

and 

p2(zr1p) = c2~(lr1)( c3(s, + (n, - fi,)'X'X(~,- 01) iy2jt 

(2.36b) 
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with f(II,) given as 

f(rI,) = Iwp11w1p2(s:)-““*. (2.36~) 

The normalizing constants cr and c3 are well-known in terms of elementary 
functions [see our appendix and Zellner (1971, app. B)]. The parameters of 
(2.36a) are given as vr = n, - 1,, I, = m, + k, and 

8, = ( Wp4,W,) - l w;lkf, y1, qs: = ( Y1- WlQ’Ml( Yl - WA)? 
(2.37a) 

with IW;M,W,l > 0, vlsf > 0. The parameters of (2.36b) are 

II, = ( XlX) _lX'Yl, s, = (Y, - xf&)‘( Yl - XI?,). (2.37b) 

Note that p(S,(ITI,, D) in (2.36a), the conditional posterior density for 6, 
given II, and D, is in the form of a l,-variate Student-t pdf with vr degrees of 
freedom with mean 8, and covariance matrix (W[M,W,)-‘v,s~/(v, - 2), both 
of which depend on II,. On integration over the elements of S, in (2.36a), the 
marginal posterior density for II, is given in (2.36b) which is written as 
czf(II,) times a normalized matrix Student-t factor with c2 the normalizing 
constant that, to the best of our knowledge, is not known in terms of 
elementary functions. 

To obtain the unconditional moments of the elements of S,, we make N 
draws IT!‘), i = 1,. . _, N, from the matrix Student-r factor in (2.36b) (see the 
algorithm described in the appendix) and use well-known formulas to compute 
marginal moments from conditional moments. For example, to compute the 
unconditional mean of S,, we have 

E(W) = j~dW’)d4 

(2.38) 

where 

p3(IT,(D) = c,jS, + (I!, - fi,)‘X’x(fl, - f&) I-n*‘z. 
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To approximate the ratio of integrals in (2.38), we make N draws from 
p,(L!,ID), evaluate &f(II,) and f(II,) for each draw and then compute 

where 8ii) is 8, evaluated at II, = II [‘). The marginal covariance matrix of 8, 
is defined as the sum of the expectation of the conditional variance and the 
variance of the conditional expectation, i.e., 

+ J(h - E(a,))(Jl - E(~l))‘P2mw~l. (2.40) 

Each integral in the formula above can also be approximated by ratios of 
sums. 

To compute the posterior density of an element of a,, say Sir, we integrate 
(2.36a) analytically to obtain the conditional posterior pdf for 8ii, p(6ij(II,, D), 
which is in the form of a univariate Student-t pdf with pi degrees of freedom. 
Then we consider 

with p,(II,ID) given in (2.36b). A Monte Carlo numerical integration proce- 
dure can be employed to evaluate the integral in (2.41). To approximate 
p(&,(D) at a given value of a,,, say SC, compute simply 

i=l I i=l 

In this way, complete marginal posterior pdfs for the elements of 8, can be 
calculated. Also joint posterior pdfs for 6ii and Sij can be calculated in a 
similar manner since, from (2.36b), p(&, 6,$11,, 0) has a bivariate Student-t 
form and jp(&, 6,$I,, D)pz(17i(D)dII, can be evaluated using Monte 
Carlo integration procedures. Finally, we note that (2.33) can be integrated 
analytically with respect to the elements of S,, wi and 52, to obtain 
p(afJIl,, D)p,(IIT,ID) and numerical integration procedures can be utilized to 
obtain the marginal posterior pdf for a:, p(afID). 
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Above, we have employed the diffuse prior assumptions in (2.32). As an 
alternative, we can use the following informative prior density: 

P(& %a*> =Pi(& &lfi*)P*(Q*), (2.42) 

where pi(6,, n,]Q*) is a multivariate normal density with mean (&, n,) and 
covariance matrix 52* @ C-’ and p2( O* ) is an inverted Wishart form. With 
this prior, operations similar to those presented above in the case of a diffuse 
prior are easily performed given values of 8i, ?i,, C and other prior parame- 
ters. It is also possible to use an informative prior for S, given Q* and diffuse 
priors for the other parameters. 

Various conditional posterior densities azsociated with (2.35) are now con- 

sidered. If we condition on XIII, = Y, - Kvi’,, where K z 0 is a given:onstant 
and fi = Y, - XI?,, we have X17, = (1 - K)Y, + KXIll or Vi = KVl, where 

Vi = Yi - XTX,. Then on defining i5?, = 1- fi( ~i’~i))‘~i’ and 6; = (vi’,, &,), 

the conditional posterior mean value, given by S,, = ( l+‘i’~lB’,)-‘B’i’~, yi, is 
by direct evaluation 

With these conditioning assumptions, &_, the conditional posterior mean of 
a,, is in the form of a K-class estimate. As is well known, for K = 1, t,, is the 
2SLS estimate, for K = A, the smallest root of a determinantal equation 
encountered in maximum likelihood estimation, ti, is the LIML estimate, and 
for K = 1 - k/(v - 2) with v = n - k - m, > 2, a,, is the MEL0 estimate; see 
Zellner (1986). Note that if K = 0, &,, is the OLS estimate defined for K = 0. 
While the above conditional results are interesting, it is often the case that 
conditional means, etc. are not very good approximations to unconditional 
means, etc. in small or even moderate sized samples. This is illustrated in 
computed examples presented in section 4. 

We end this section with two remarks. First, the model (2.13) or (2.13’) does 
not include a reduced form equation for Y,, the endogenous variables ex- 
cluded from the structural equation. This means that, in fact, our analysis in 
this section is conditional on the hypothesis that Y, is independent of y, and 
Y,. This hypothesis can be suppressed easily and the Bayesian analysis of the 
RRF can be adapted to the more general case. We note that one may interpret 
the model (2.13’) as an incomplete simultaneous equation model [see Richard 
(1984)]. Second, we did not discuss conditions for the existence of the 
marginal posterior moments of S,. Given that our approach of computing 
posterior moments may be considered as an alternative to Dreze’s (1976) 
approach, one may argue that Dreze’s discussion of existence conditions [see 
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also Dreze and Richard (1983)] is also applicable to our case. A inore explicit 
discussion of conditions for existence of moments will be given in future work. 

3. Some Bayesian diagnostics for the model specification 

In this section we extend the computational procedures of the previous 
section in order to compute posterior moments and densities of parameters (or 
functions of parameters) that give diagnostic checks of the specification of the 
model (2.13) or, equivalently, (2.13’). 

First, we discuss how to check the hypothesis of weak exogeneity [as defined 
by Engle et al. (1983)] of the included endogenous variables Y in eq. (2.13’).6 
In non-Bayesian econometrics this can be done by testing whether vi = 0 in 
the expanded first equation of (2.13’) which is written as 

Yl = YlYl + Xl& + +I1 + El> (3.1) 

where pi = Y, - XI?, is the n x m, matrix of ordinary least squares residuals 
of the set of reduced form equations for Y,. [For details see, e.g., Hausman 
(1983). Holly (1982) and Engle (1984, ch. 9.3).] In our unrestricted reduced 
form (URF) approach one may proceed as follows: 

0) 

(ii) 

(iii) 

Use independent random drawings nil), . . . , II!‘), . . . , II{“‘, that are 
generated from a matrix Student-t distribution with a density function 
proportional to (2.19) and compute the sequence V/l’, . . , V:“, . . . , V/N’ 
where V{‘) = Y, - XII{‘), i = 1,. . . , N. 
Run N ordinary least squares regressions on (3.1) with V’j” instead of 
pi. This yields the sequence G’,“, . . . , fiy’, . . . , ;I’,“’ where ;l’,i’ is the 
well-known OLS expression. 
Compute the moments and densities of the elements of the vector 4, by 
standard sampling theory formulas. If the posterior density of 4, is 
located around zero, one has an indication that the variables Y, in eq. 
(2.13’) are weakly exogenous in the sense that the stochastic component 
Vl of the variables Y, does not contribute much to the eq. (2.13’). The 
smaller the dispersion of ?ll around zero the greater one’s confidence in 
this indication. 

The sequence (f;(l), gi”“), i = 1,. . . , N, that is obtained in the OLS regres- 
sion described in step (ii) above is equal to the sequence {ST(‘)}. i = 1,. . . , N, 
that is obtained by using the 2SLS mapping (2.26). This follows by direct 
verification. As a consequence, one expects that the sample mean fil from the 
sequence { +y)}, i = 1,. .., N, contains an approximation er:or with respect to 
q1 when the system (2.13’) is strongly overidentified since V, # V, in general. 

6For earlier Bayesian results on testing for exogeneity, see Reynolds (1980,1982). 
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In order to deal with the overidentified case in an exact way, we consider 
again the RRF system (2.13) and (2.13’) and reformulate this model as 
follows. First, denote the ith row of (ui Vi) by (ui u;~) and decompose the 
(1 + m,)-multivariate normal density of (ui vii) as a conditional normal 
density of ui given a value of vii and a marginal multivariate normal density 
of uii. This yields (ui]+) - N(uiinl, uf - +a;‘~,) with ni = L?;‘w, and 
uii - N(0, s2,). Next, perform the transformation of random variables from 
(u,]Vi) to ( y,(Y,) and from Vi to Y,. This yields 

Y,-N(XII,,S2,@1). (3.3) 

From (3.2) and (3.3) one can write the model 

Yl = YlYl + Xl81 + v,v,+ E, 

r,=xn,+ v,, (3.4) 

where (ei, uii), i = 1,. . . , n, are independent random drawings from a multi- 
variate normal distribution with mean zero and covariance matrix 

(3.4’) 

Note that COV(E;, uii) = 0 which follows from direct verification. Therefore, 
testing whether wi = 0 in the model given in (2.13’) and (2.13”) is equivalent 
to testing whether TJ~ = 0 in the model given in (3.4) and (3.4’). Further, note 
that if vi = -yi, one can substitute XII, = Y, - Vi in the first equation of 
(3.4). As a consequence, there are only predetermined variables on the 
right-hand side of eq. (3.4). 

The likelihood function of the parameters 8; = (y;, &), vi, u,’ and 9, is 
obtained from (3.4) and (3.4’) as 

I( 6,, g,, CT,‘, O,(D) a ( u2)-n’2exp{ -~‘.5/2u,2} lQnll-n/2 

Xexp( -itr[(V{Vi)-‘Q;‘]), (3.5) 

where E and V, are given by equations in (3.4). As a next step we have to 
transform the prior density on (S,, II,, CT:, wl, 9i) [see (2.32)] to a prior 
density on the parameter set (S,, fll, u,‘, nl, a,). The relevant part is the 
transformation from (u:, wi, a,) to (a:, nl, 9,) which gives as Jacobian ]52,]. 
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As a consequence the prior information specified in (2.32) is given in terms 

of (S,, II,, e,‘, rll, 0,) as 

p(&, IT,, fJ,Z, ql, Q,) a (u~)-(ml+~~+*)‘2,~l(-(m1+v,)/*. 
(3.6) 

The posterior density of the p-vector 8’ = (Si, vi), with p = I, + m,, and 
IIi,u:, s2, is given by 

~(8, HI,, u,‘, D,JD) a (uE2)-(“*+m1+2)‘2exp{ -e’e/2ee2) 

XPll -(n*+ml)/2exp( - itr[(V{Vi)L?;‘]}. 

(3.7) 

Integrating (3.7) with respect to u,’ and 02, yields the marginal posterior 

P(@? We), 

~(6, II,(D) a (E’E)-(~*+*~)‘*~~~/;V~(-(~*-~)/*, (3.8) 

where E and Vi are given in (3.4). The density (3.8) may be compared with the 
pdf given in (2.34) and (2.35). In a similar way as done below (2.35) in 
subsection 2.3, we can rewrite (3.8) as 

where 

2aw,, w = cl - 
i 1 4 

x { v1 + (e - fQwvv(e - Q/S:} +‘+p)‘2, (3.9a) 

and 

p2(IIlp) a c2h(IIl)c,)Sl + (II, - fl,)‘X’X(n, - fil) I-(n*-1)‘2, 
(3.9b) 

and 

h(ll,) = JWVVl-i/*(S:)-““*. (3.9c) 
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From the definition of W= (W, V,) it follows that IW’W( = IW;M,W,( IV;V,l, 
where M, is as given below (2.34). Therefore 

w4) =f~~,W;Jw? (3.10) 

with f(II,) given in (2.36~). It follows that the posterior density of III, given 
in (2.36b) is equivalent to the posterior density given in (3.9b). The parameters 
of the conditional multivariate Student-t density of the p-vector 8 are given as 
vi = n, - I,, and 

e= (W/W)_‘W’y,, vls: = ( y1 - WJ) ( y1 - WJ). (3.11) 

The conditional density p1(8111,, D) in (3.9a) is in the form of a p-variate 
conditional Student-t pdf of 8 given TI, and D with v1 degrees of freedom, 
with mean 6 and covariance matrix (W’W)-‘v,sfj(v, - 2), both of which 
depend on III,. Similar remarks that were made with respect to (2.36a) apply 
to (3.9a) and are not repeated. We mention here only that if the marginal pdf 
of ?I is centered around zero, then one has an indication that Y, is weakly 
exogenous in the sense discussed before. 

We note that one may use diffuse or informative priors other than (3.6). For 
instance an alternative type of diffuse prior is given by 

p(B, II,, a;, ti,) cc (~~)-‘m’+“o+2”2~W~W/1/2~~l~-(ni~+u(~)/2. (3.12) 

This prior is equal to (3.6) times IW’Wl’/2, which is the root of the determi- 
nant of the information matrix of B given II,. As a result the factor 
IW’W\_“2 will not appear in (3.9~). Further, we note that conditional 
moments associated with (3.9) can be formulated in a similar way as was done 
in subsection 2.3. In particular, if we condition pi(0117,, 0) on II, = fiI, and 
integrate out S,, the posterior density ~~(q~lfi,, 0) is an ml-variate Student 
pdf with mean Gjl, the OLS estimate of q1 in (3.1). The non-Bayesian test 
procedure for the weak exogeneity of Y1 using (3.1) is to reject the null 
hypothesis if a (1 - cu)% confidence region centered at 4, = 0 does not contain 
the point tl = 0. The Bayesian decision is to reject the null if a (1 - a)% 
posterior probability region centered at 4, does not contain the point q1 = 0. 
An exact Bayesian decision procedure relies on the marginal posterior density 
pl(ql(D) rather than on the conditional density pl(qlllIl, 0). Some illustra- 
tive results on exogeneity testing are presented in subsection 4.1. 

Next, we discuss how we can check whether the overidentifying restrictions 
in (2.12a) and (2.12b) seem acceptable. It follows from the discussion, given in 
subsection 2.2 [between eqs. (2.20) and (2.21)], that the degree of overidentifi- 
cation is equal to the number k, of omitted predetermined variables in eq. 
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(2.9b) minus the number m, of included endogenous variables on the right- 
hand side of (2.9b). Thus, we may include some predetermined variables in 

(2.9b) that were, at first, excluded from this equation. If we add k, - m, 

predetermined variables to the right-hand side of (2.9b), then we have an 
exactly identified equation instead of an overidentified equation. As a conse- 
quence, one can make use of the URF approach and compute highest 
posterior density (HPD) regions around zero for the parameters of the k, - m, 

included variables. This yields a check on the value of the overidentifying 
restrictions. If we add fewer than k, - ml predetermined variables to (2.9b), 
then this equation is still overidentified and the RRF approach can be used to 
analyze the HPD regions around zero of the parameters of the included 
variables. 

Several other diagnostic checks may be constructed, i.e., restricted reduced 
form moments may be compared with unrestricted reduced form moments. 
Diagnostic checks on autocorrelation and outliers may be constructed from 
posterior distributions of realized error terms [see van Dijk (1987)]. Further, 
one may compute posterior odds relating to exogeneity hypotheses. There are 
thus ample opportunities for much applied work using the methods discussed 

above. 

4. Applications of methods 

In this section we illustrate the methods of sections 2 and 3 for the case of 
an exactly identified simultaneous equation model and for the case of an 
overidentified model. As an example of an exactly identified model we 
consider the Belgian beef market model [see DrPze and Richard (1983, sect. 
2.4)] which is given as 

Q, = aI+ P,f’c + ulr, + UI~? (4.1) 

Q, = a:! + Pd’, + ~24 + ~2r3 (4.2) 

where Q, is the quantity of beef consumed per capita in period t; P, is the 
price index; Y, is real national income per capita: and S, is the cattle stock per 
capita (measured as the number of heads at the beginning of each period). The 
variables Q, and P, are endogenous, and the variables Y,, S, and the constant 
term are assumed exogenous. The data are annual observations for the period 
1950-1965. Given our uniform prior with v0 = 0 and given that the model is 
exactly identified, posterior first- and higher-order moments do not exist. In 
fig. 1 we present the marginal posterior density of p, and give the computed 
quartiles of the posterior distribution. The density is concentrated around the 
mode but has a long tail to the left. We note that the mode and the median are 
almost equal; however, the first and fourth quartiles indicate that the density is 
skewed to the left. Further, we find evidence that the exogeneity of the price 
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UNIVARIATE POSTERIOR OF BETA1 (BBM) 

Oj 

-2.0 -I a -1 6 -1.4 -1.2 -I 0 -0 a -0 6 -0.4 -0.2 

BETA1 

Fig. 1. Marginal posterior density of & in the Belgian beef market model [eq. (4.1)]. 

variable is rejected. The results reported are based on N = 100,000 drawings in 
order to obtain an accurate figure. We emphasize, however, that the figure is- 
already rather accurate with N = 10,000 or N = 20,000. 

As an example of an over-identified simultaneous equation model we take 
Klein’s Model I [see Klein (1950)], which is given as 

c = fx,P + azP_l + a,W+ cqJ + u1. 

I = PIP + &P-r + P&-r + P,, + ~2, 

w, = y,X+ YlX_, + Y$+ Yo + u3, 

X=C+I+G, 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

P=X- W,-T, (4.7) 

K= K_, + I, (4.8) 

w= w, + w,. (4.9) 

Consumption expenditure (C) is structurally dependent on profits (P), on 
profits lagged one year ( P_1) and on total wages (W). Net investment 
expenditure (I) depends on profits, lagged profits and on the capital stock at 
the beginning of the year (K_ 1). Finally, private wage income ( W,) depends 
on net private product at market prices (X), the same variable lagged (X_ r) 
and a trend term (t). The model is closed by four identities, which provide 
links with three exogenous variables: the government wage bill (W,), govern- 
ment non-wage expenditure, including the net foreign balance, (G) and 
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C~N~VARIATE POSTERIOR OF BETAS (KLEIN I) 

- GIL5 mapping 
* 2SLS mapping 
0 conditional pdf 
+ marginal pdf 

l[NIVARIATE POSTERIOR OF ETA1 (KLEIN I) 

l 2SLS mapping 
q conditional pdf 
+ marginal pdf 

Fig. 2. Univariate marginal posterior densities of & and ?lP in the investment equation of 
Klein’s Model I. 

business taxes (T). The model has seven jointly dependent variables 
(C, I, W,, X, P, W) and eight predetermined variables (1, P_,, X_,, K_,, 

G, T, W,, 1). All variables (except 1 and t) are measured in constant dollars. 
Posterior moments for Klein’s Model I are reported in tables l-3 and 
univariate and bivariate marginal posterior densities of a structural parameter 
and an exogeneity parameter in the investment equation are given in figs. 2 
and 3. It is seen from the results on the investment equation in table 1 that the 
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Fig. 3. Bivariate marginal posterior density functions for (&, qllP) in the investment equation of 
Klein’s Model I. 
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URF approach, in particular the GILS mapping, yields gross approximation 
errors for several parameters. The posterior means and standard deviations of 
the parameter of the included endogenous variable, of the constant term, and 
of the exogeneity parameter differ substantially from the results of the 
restricted reduced form approach. The results of the latter approach are based 
on N = 20,000 drawings. We note that the marginal results differ also from the 
conditional results in the RRF approach but less than from the results given 
by the URF approach. The sensitivity with respect to the particular choices of 
v0 = 0 and v0 = k is as expected. A larger value of v0 implies smaller variances 
due to lighter tails. It is of interest that the exogeneity of profits appears to be 
rejected while some preliminary results on overidentifying restrictions (not 
reported) suggest that these restrictions are not to be rejected. More details 
will be reported in future work. It is also of interest that conditional standard 
deviations are always smaller than the asymptotic TSLS standard deviations. 
The reason is that in the conditional approach the values of s: is smaller than 
in the non-Bayesian approach. The results for the wage income equation given 
in table 2 produced by different methods are similar. The hypothesis that net 
private product is exogenous is not rejected while, for preliminary results, it 
appears that the overidentifying restrictions are rejected. The consumption 
function was the most complex case to analyze. The posterior means differ 
substantially for the different approaches. The posterior standard deviations 
for the exogeneity parameters for profits and wage income show a surprising 
result. The marginal standard deviations are smaller than the conditional ones. 
It appears that the effect of the weight function f(Hi) (see subsection 2.3) is 
very non-linear. This is a topic of current research. Exogeneity and pre- 
liminary results on over identification, not reported here, suggest that both 
hypotheses are rejected. Figs. 2 and 3 show the skewness of the marginal pdf’s 
and differences between the results of the URF, the conditional RRF and the 
marginal RRF approaches. 

5. Concluding remarks 

In this paper, we have shown how Monte Carlo numerical methods can be 
employed to compute exact posterior densities of the parameters of a structur- 
al equation using diffuse or informative prior distributions. In addition, 
operational procedures for Bayesian diagnostic checking or specification anal- 
ysis were described. For example, discrepancy parameter vectors were intro- 
duced to represent departures from exact identifying restrictions and it was 
shown how to compute posterior densities for them and interesting functions 
of their elements which we refer to as discrepancy functions. In addition, a 
Bayesian procedure for evaluating exogeneity hypotheses was described. That 
diagnostic checking or specification analysis be performed is quite important 
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and the fact that operational Bayesian procedures for diagnostic checking or 
specification analysis can be carried through without much difficulty is for- 
tunate. 

Applications of our methods were presented and yielded useful results. In 
particular, it was found in several instances that certain specifying assump- 
tions, exogeneity hypotheses and identifying restrictions, were of doubtful 
validity. Also, it was found that exact marginal posterior densities differed 
considerably from conditional posterior densities based on conditioning as- 
sumptions which are often employed in non-Bayesian procedures, for example 
in the 2SLS approach or other K-class estimation approaches. Thus we 
consider it very important to use appropriate marginal posterior densities for 
structural parameters rather than approximate conditional posterior densities. 
That the former can be computed using Monte Carlo techniques without much 
difficulty is indeed fortunate. 

In future research, we plan to extend our consideration of diagnostic 
checking procedures to consider checks for autocorrelation of error terms, 
outliers and possible left out variables. Also, the single-equation analysis in 
this paper will be extended to provide results for sets of structural equations 
and complete structural equation systems. 

Appendix: The generation of pseudo-random drawings from a matrix 
Student distribution 

Because the matrix Student (Mt) distribution is related to the matrix 
Normal (MN) and to the inverted Wishart (iW) distributions, we define these 
three families of distributions through their density functions and state a few 
properties that are useful to build an algorithm for generating a pseudo- 
random drawing from an Mt distribution. 

A. I. Dejinitions 

Let II E Rk” be a k X m random matrix. 
(i) II has an MN distribution if its density function is 

(A.11 

where r? E Rk” is a k X m constant matrix, D is an m X m PDS constant 
matrix and M is a k x k PDS constant matrix. 
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From here on, let 0 be a random PDS matrix. 
(ii) D has an iW distribution if its density function is 

:= 

[ 
ym,*~m(m-1),4 fi r( v +; - i)] -l 

i=l 

XIW1”‘*1f2- (~+m+w*eXp - $tr a-‘w, (A.4 

where W is an m x m constant matrix and the constant v > m - 1. 
(iii) II has an Mt distribution if its density function is 

PM) =fK”(m w, M, v) 

x~~~~/*lMl~/*~W+ (II-~)‘M(II-n)j-‘“+k)‘2, (A.3) 

where n, W, M and v are defined as in (i) and (ii). 

A.2. Some properties of these distributions 

(1) If p(fllQ) = fFNm(IIl?l, Q (8 M-‘) and p(Q) = f$,(QlW, v), then p(n) 
is given by formula (A.3). This property states that an Mt distribution is a 
marginal distribution from an MN-iW one. 

(2) Let IT have the density (A.l). 
(i) If A is an r X k matrix of rank r I k, and B is an m X s matrix of rank 

s<m. then 

p( AIIB) = fs( AnBjAnB, B’OB 8 AM-‘A’). 64.4) 

(ii) In particular, if B’DB = I, and AM-‘A’ = Ik, Z := A(II - ?r)B is a 
matrix of independent standard normal variables. 

(3) Let D have the density (A.2). 
(i) IfCisanmXsmatrixofranks<m,then 

p(C’OC)=f&(C’OCIC’WC,v-m+s). (A.9 

(ii) Partition D into Qll(ml X m,,PDS), u2,(m2 X m2, PDS), Q2,(m2 X mi), 
al2 = 9;, and let fi22X1 = ti2, - Q219,1912. Then fi and (a,,, S&‘ti12, O,,,,) 
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are in one-to-one correspondence and 

with 

where Wll, WE and %,x1 are defined from W as 9r,, D,, and LnzzX1 are 
defined from 0. 

(iii) In particular, if C’WC = I, in (A.5), !P := C’s)C is in one-to-one 
correspondence with $m( m + 1) independent random variables: im( m - 1) 
standard normal variables, plus m variables hi, each of them having an 
inverted-gamma density defined as 

f&(X,Il,v-ifl) for i=1,2 ,..., m. 

This follows from the property 3(ii) applied to + m times: one starts, e.g., 
with m2 = 1 and ml = m - 1 and notices that 3(ii) can be applied again to 
p( !Plk,,) which is an iW density with parameters I,,,, and v - 1. 

Other properties from these distributions can be found in Zellner (1971, 
app. B.4, B.5), Drbze and Richard (1983, app. A) and Bauwens (1984, app. 
A.l, AX, who gives separate algorithms for the generation of random num- 
bers from MN and iW distribution). These algorithms can be combined to 
draw from an Mt distribution, with density given by (A.3), by drawing firstly 
an iW 52 matrix with density (A.2), and by drawing subsequently an MN 
matrix with density (A.l) where s2 is the iW matrix obtained at the iW step. 

A.3. Mt algorithm 

To obtain a drawing IT from the Mt distribution defined by (A.3): 

(1) Compute the lower triangular (LT) matrices Q’ and P such that 
W= Q’Q and M-’ = PP’. 

(2) iW step: 
(i) Generate im(m - 1) standard normal drawings and m inverted gamma 

drawings Xi, with p(X,) =f&(Xijl, v - i + 1). 
(ii) Compute the m X m LT matrix @ such that @@’ =: s2 is a drawing from 

the iW distribution of 52 defined by (A.2) (but one does not need to compute 
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@@I). Let @ = (Gij): then &, = 0 for i <j. The lower triangle of @ can be 
filled by the following steps: 

1) i~O;1~~m(m+1)+1;let~beavectorofI-1elementsthatwillfinally 
contain the column expansion of the LT of @, i.e., $I = (&i&r,. . . , +ml+22~32 

,...,~m-lrn-1~mrn-l~~*~). 
2) i+ i+ 1; if i> m, stop. 
3) I+ I- i+(f) = fi [A, obtained at step 2(i)]. 

4) If i = 1, go to 2); or else go to 5). 
5) Pick i - 1 standard normal drawings obtained at step 2(i) and assign them 

in a vector u. Compute y = fi@;-i.u where y is a vector of i - 1 
elements and @,_ 1 denotes the LT matrix whose column expansion of the 
lower triangle is stored in the last i(i - 1)/2 elements of the vector 9 (but 
Q1 is the scalar &, = \/A,). Finally, +(l + k) +y(k), k = 1,2,. . . , i - 1, 
and go to 2). 

(3) MN step: 
(i) Generate km standard normal drawings zij (i = 1,2,. . . , k and j = 

1,2,. . . ) m). Let Z = Q,). 
(ii) Compute II = II + PZQ’Q’ where Qi is the LT matrix obtained at step 

2(ii). 

To draw standard normal variables, one can use the polar algorithm - see, 
e.g., Knuth (1971). To draw inverted gamma variables, one can use the GRUB 
algorithm of Kinderman and Monahan (1980) that is efficient since the 

computer time required to obtain one inverted gamma drawing is almost 
perfectly independent of the value of Y (as is not the case if one generates 
gamma drawings as sums of v independent squared normal drawings). To get 
one drawing II, one needs im(m - 1) + mk univariate standard normal 
drawings, plus the m inverted gamma drawings; all these drawings must be 
independent. 

The proposed Mt algorithm has the advantage that the marginal cost of a 
drawing (steps 2 and 3) is not affected by the value of the degrees of freedom 
parameter v. For a similar type of algorithm, where use is made of the Wishart 
instead of the inverted Wishart distribution, we refer to Geweke (1988). 

Provided v is an integer, one could replace the implementation of the iW 
step by (i) drawing a Wishart matrix 9-l as Cl;=iZ,Z,’ where the m x 1 
independent vectors Zj have a multivariate normal density with zero expected 
value and covariance matrix given by W, (ii) inverting 3-l and (iii) computing 
the LT matrix @ such that D = @@‘. This implementation requires vm 
standard normal drawings at the iW step, instead of fm(m - 1) of these plus 
the m inverted gamma drawings. So for very small values of v and m, this 
implementation may be more efficient. Notice however that a Cholesky 
decomposition of 52, giving @, has to be performed, whereas @ is obtained 
directly in the implementation we use. 
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Another method to generate from the Mt distribution (A.3) that is expected 
to be less efficient, is to use the property that 

P@) =~(~~,lIT,~~...n,)p(n,ln,...n,) --p(K,,), 64.10) 

where II, (i = 1,2,. . , m) is the i th column of II, and each of the densities on 
the right of (A.lO) is a multivariate Student density [see Zellner (1971, p. 397) 
or Dreze and Richard (1983, p. 589)]. Formula (A.10) suggests a sequential 
drawing procedure. 
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