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ing minimum variance portfolios and minimum tracking error portfolios with
daily rebalancing from the individual constituents of the S&P 100 index. We
focus on the issue of determining the optimal sampling frequency, which strikes
a balance between variance and bias in covariance matrix estimates due to
market microstructure effects such as non-synchronous trading and bid-ask
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1 Introduction

The work of Andersen and Bollerslev (1998) has triggered a vast amount of research

on the use of high-frequency data to measure, model and forecast volatility of finan-

cial asset returns. Most empirical studies on this topic of ‘realized volatility’ focus

exclusively on the variance of individual asset returns, see Andersen, Bollerslev,

Diebold and Ebens (2001), Andersen, Bollerslev, Diebold and Labys (2001), Areal

and Taylor (2002), Thomakos and Wong (2003), Martens et al. (2004), Pong et al.

(2004), and Koopman et al. (2005), among others. Many financial applications such

as risk management and portfolio construction, however, require estimates or fore-

casts of the entire covariance matrix, such that covariances or correlations between

returns on different assets are at least as important. Yet only limited (empirical)

research has addressed the merits of high-frequency data for potential economic or

forecasting gains in a multivariate context. Andersen et al. (2003) use a vector au-

toregressive (VAR) framework for the daily realized variances and covariance of two

exchange rates (DEM/USD and YEN/USD) based on 30-minute returns, but they

consider the statistical accuracy of (co-)variance forecasts only. Fleming et al. (2003)

use five-minute returns on three actively traded futures contracts (S&P 500 index,

Treasury bonds, and gold) to show that a mean-variance efficient investor would be

willing to pay 50 to 200 basis points per annum for being able to use daily covari-

ance matrix forecasts based on high-frequency intraday data instead of daily data.

Similarly, Liu (2004) constructs the minimum variance portfolio and the minimum

tracking error portfolio (tracking the S&P 500 index) using five-minute returns for

the 30 Dow Jones index constituents.

These three studies have in common that they motivate the selected intraday

sampling frequency as a trade-off between accuracy and potential biases due to

market microstructure effects. The sensitivity of the results to the choice of sam-

pling frequency used in constructing realized covariances is not investigated though.

Martens (2004) demonstrates that non-trading, non-synchronous trading, and bid-

ask bounce are indeed crucial determinants of the optimal sampling frequency that

minimizes the Mean Squared Error (MSE) for measuring, and hence forecasting, the

covariance matrix. The MSE is the sum of the squared bias and the variance of the

realized (co-)variance. High sampling frequencies lead to a potentially large upward
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bias in realized variances due to bid-ask bounce and to a substantial downward bias

in realized covariances due to non-synchronous trading. On the other hand, the

variance of both realized variances and realized covariances decreases with higher

sampling frequencies. As the degree of non-trading, non-synchronous trading, and

bid-ask bounce varies widely across assets, the appropriate sampling frequency in a

particular application needs to be investigated carefully.1

In this study we address the optimal sampling frequency issue for constructing

mean-variance efficient portfolios from the individual constituents of the S&P 100 in-

dex. In particular, we consider minimum variance portfolios and minimum tracking

error portfolios with daily rebalancing, where portfolio risk is minimized either glob-

ally or subject to a fixed target return. We focus on pure volatility-timing strategies,

in the sense that the portfolio weights are determined exclusively by forecasts of the

daily conditional covariance matrix, which in turn is constructed using the realized

covariance matrix with the sampling frequency of intraday returns ranging from one

minute to 130 minutes. In addition, we examine how different bias- and variance-

reduction techniques affect the choice of sampling frequency. First, we explore the

added value of subsampling as proposed by Aı̈t-Sahalia et al. (2005). Subsampling

makes use of the fact that, for example, five-minute returns for a trading session

starting at 9:30 could not only be measured using the intervals 9:30-9:35, 9:35-9:40,

. . ., but also using 9:31-9:36, 9:36-9:41, . . ., etc. Second, following the idea of Scholes

and Williams (1977) for estimating (illiquid) stock betas, we investigate the merits

of using leads and lags in measuring the realized covariances. Third, and finally, we

consider the suggestion of Fleming et al. (2003) for correcting the bias in realized

(co-)variances by means of scaling.

Our main findings are as follows. For both minimum variance and minimum

tracking error portfolios, we find that using daily conditional covariance matrix fore-

casts based on high-frequency intraday returns instead of daily returns considerably

improves portfolio performance. For the global minimum risk portfolios, the optimal

sampling frequency for the S&P 100 constituents typically ranges between 30 and 65

1The issue of sampling frequency in the presence of market microstructure noise has also been
investigated in the context of univariate realized volatility measurement, see Aı̈t-Sahalia et al.
(2005), Bandi and Russell (2005a,b), Zhang et al. (2005), and Hansen and Lunde (2006), among
others.
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minutes, considerably lower than the popular five-minute frequency. The same result

occurs for minimum variance portfolios subject to a target return. In contrast, for

the minimum tracking error portfolio subject to a target return the optimal sampling

frequency appears to be much higher at 1- to 2-minutes. These findings are robust

to the use of subsampling and lead-lag bias correction. Both of these techniques

marginally improve the out-of-sample performance for the minimum variance port-

folios and the minimum tracking error portfolios. However, selecting the appropriate

sampling frequency appears to be much more important than choosing between dif-

ferent bias- and variance-reduction techniques for the realized covariance matrices.

Finally, the bias correction procedure of Fleming et al. (2003) runs into problems

as the resulting bias-adjusted conditional covariance matrices are often not positive

definite.

The remainder of this paper is organized as follows. Section 2 describes the data

and the construction of the realized covariances. The mean-variance methodology

is presented in Section 3. In Section 4 the results are discussed. Finally, Section 5

concludes.

2 Data

The data set was obtained from Price-Data.com2 and consists of open, high, low,

and close transaction prices at the one-minute sampling frequency for the June 2004

S&P 100 index constituents, covering the period from April 16, 1997 until June 18,

2004 (1804 trading days). We disregard stocks for which the price series start at a

later date, leaving 78 stocks for the analysis. The appendix provides a list of ticker

symbols and company names. The data also comprise all (tick-by-tick) transaction

prices of the S&P 500 index futures from April 16, 1997, through May 27, 2004.

We follow the conventional practice of using the futures contract with the largest

trading volume. This typically is the contract nearest to maturity, until a week

before maturity when the next nearest contract takes over. Since the stock files miss

April 9, 2003, and the futures files miss March 30, 2003 and May 3, 2004, this leaves

1788 common trading days from April 16, 1997, through May 27, 2004.

For each day t, we divide the trading session on the NYSE, which runs from

2http://www.price-data.com/

3



9:30 EST until 16:00 EST (390 minutes), into I intervals of equal length ∆ ≡ 1/I,

normalizing the daily interval to unity for ease of notation. For example, for the

five-minute frequency I = 78. Let pt−1+i∆ denote the (N × 1) vector of log close

transaction prices, where N = 78 is the number of stocks. In addition, let rt−1+i∆,∆ ≡

pt−1+i∆−pt−1+(i−1)∆ denote the (N ×1) vector of returns for the ith intraday period

on day t, for i = 2, . . . , I. The return for the first intraday period, rt−1+∆,∆, is

defined as the difference between the log close and open transaction prices during

that interval. The realized covariance matrix Vt,∆ is defined as

Vt,∆ = rt,c−or
′

t,c−o +
I∑

i=1

rt−1+i∆,∆r′t−1+i∆,∆ (1)

where rt,c−o is the (N ×N) vector of close-to-open (overnight) returns from day t−1

(close) to day t (open),3 Martens (2002) documents that the overnight volatility

represents an important fraction of total daily volatility, hence incorporating the

cross-product of overnight returns as in (1) is important for accurately measuring

(co-)variances, see also Fleming et al. (2003) and Hansen and Lunde (2005) for

discussion. For the daily frequency the realized (co-)variance matrix Vt is defined as

the outer product of the daily (close-to-close) returns, which are denoted rt, that is

Vt = rtr
′

t.

Table 1, Panel A, illustrates some characteristic features of the daily realized

variances and covariances by showing the mean (across stocks and across trading

days) and variance for all sampling frequencies such that 390/I is integer, that is

1,2,3,5,10,15,30,65 and 130 minutes. Several familiar patterns arise. First, the aver-

age realized variance increases with the sampling frequency (except for frequencies

below 30 minutes). Bid-ask bounce induces negative autocorrelations in returns

when prices are sampled more frequently leading to an upward bias in the realized

variance. For example, the average variance using daily returns is 7.386 (corre-

sponding to an annualized standard deviation of about 43%), whereas it is 9.494

for one-minute returns. Second, the average realized covariance decreases monoton-

ically with the sampling frequency, where this downward bias can be attributed to

non-synchronous trading, i.e. not every stock trades exactly at the end of each (in-

traday) interval. The average covariance using one-minute returns is 0.826, whereas

3For obvious reasons the overnight return from 10 to 17 September, 2001 (the first trading day
after 9/11) has been dropped.
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for daily data it is almost double at 1.568. Third, the variance of the realized (co-

)variance becomes smaller for higher frequencies, simply because more data points

are used. Hence in general for realized (co)variances the bias increases and the

variance decreases for higher sampling frequencies.4

- insert Table 1 about here -

One way to reduce the variance of realized covariances, given a particular sam-

pling frequency, is to employ subsampling as first suggested in Aı̈t-Sahalia et al.

(2005) in this context. In particular, the grid of x-minute intervals can be laid over

the trading day in x different ways. For example, for the three-minute frequency

rather than starting with the interval 9:30-9:33 one could also start with 9:31-9:34 or

9:32-9:35. In this way three ‘subsamples’ are created and each subsample is used to

compute the realized covariance matrix. The final realized covariance matrix is then

taken to be the average across subsamples. A practical problem with this procedure

is how to treat the loose ends at the start and the end of the trading session. Here

the start of the day is added to the overnight return, while the end of the day is

omitted. The covariances measured during the trading session are proportionally in-

flated for the missing part of the trading session. Summary statistics for the realized

(co-)variances that are obtained with this subsampling procedure are presented in

Panel B of Table 1. In general the effects are ambiguous. There is a minor reduction

in the variance of the realized covariances for the two- to 30-minute frequencies, but

an increase in the variance of the realized variances, which becomes quite substantial

for the lower sampling frequencies. Note that the average realized (co-)variances are

not affected, that is subsampling does not affect the bias.5

Finally, we examine whether the downward bias in the realized covariances can

be reduced by adding lead and lagged covariances to the contemporaneous cross-

product of returns in the spirit of Scholes and Williams (1977) and Cohen et al.

(1983). Similarly, this might reduce the upward bias in the realized variance due

to the negative autocorrelations in high-frequency returns, see Hansen and Lunde

4An exception is the variance at the one- and two-minute frequencies, where also the variance
increases due to the increased importance of bid-ask bounce.

5Zhang et al. (2005) suggest a bias-correction procedure based on combining the realized variance
obtained with subsampling with the realized variance obtained with the highest available sampling
frequency.
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(2005, 2006). In particular, let Γt,∆,l denote the l-th order autocovariance matrix of

intraday ∆-period returns, that is

Γt,∆,l =
I−l∑

i=1

rt−1+i∆,∆r′t−1+(i−l)∆,∆.

The realized covariance matrix with lead and lags is then obtained as

Vt,∆,b = Vt,∆ +

q∑

l=1

dl

(
Γt,∆,l + Γ′

t,∆,l

)
, (2)

where Vt,∆ is given by (1) and the weights dl for the leads and lags are taken to be

either dl = 1 for all l = 1, . . . , q or dl = 1 − l/(q + 1). The equal-weighting scheme

is commonly used for estimating market betas of illiquid stocks and was suggested

by Zhou (1996) in the context of realized variance. The use of the Bartlett-weights

dl = 1− l/(q +1), on the other hand, guarantees that the realized covariance matrix

Vt,∆,b is positive definite, see Newey and West (1987).

Panels C and D of Table 1 present characteristics of Vt,∆,b with q = 1 and dl = 1

and dl = 1− q/(l + 1), respectively. As expected, the bias in both realized variances

and realized covariances is reduced for all frequencies, in particular when the equal-

weighting scheme is applied. For example, the average realized variance based on

1-minute returns is reduced to 7.556, only slightly higher than the average daily

squared return of 7.386. Similarly, the average realized covariance at the 1-minute

frequency is increased to 1.223, which comes much closer to the average cross-product

of daily returns (1.586) than the standard case. Note, however, that the reduction in

bias generally comes at the cost of increased variance, which also is more pronounced

when dl = 1. An exception is the 1-minute frequency where not only the average

variance is reduced and much closer to the average daily squared return, but at the

same time the variance is reduced from 597 to 501. In general, whether the net effect

on the MSE is positive or negative will depend on the data as well as the empirical

application.

3 Methodology

The benefits of high-frequency intraday data and the optimal way to employ these

will be gauged by their application in the context of portfolio construction. In par-

ticular, we consider volatility timing strategies within the framework of conditional
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mean-variance analysis. We construct the minimum variance portfolio as well as the

portfolio that minimizes variance given a set target return, which is denoted µP , al-

lowing for daily rebalancing. To be precise, we solve the following two optimization

problems for each day t:

min
wt

w′

tΣtwt (3)

s.t. w′

tι = 1

and

min
wt

w′

tΣtwt (4)

s.t. w′

tµt =µP and w′

tι = 1

where wt is the (N × 1) vector of portfolio weights, and ι denotes an (N × 1) vector

of ones. In addition, µ is the (N × 1) vector with conditional expected returns for

the individual stocks, that is µt ≡ E[rt|It−1], where It−1 denotes the information set

available at the end of day t− 1. Similarly, Σt is the (N ×N) conditional covariance

matrix, that is Σt ≡ E[(rt − µt)(rt − µt)
′|It−1]. We return to these below. The

solution to the problem in (3), the weights for the fully invested minimum variance

portfolio, is given by

wt,MVP =
Σ−1

t ι

ι′Σ−1
t ι

. (5)

For the solution of the problem in (4) first weights for the maximum Sharpe ratio

portfolio are computed as

wt,MSR =
Σ−1

t µt

µ′

tΣ
−1
t µt

(6)

and the weights for the target return portfolio are then provided by

wt,P =
µt,MSR − µP

µt,MSR − µt,MVP

wt,MVP +
µP − µt,MVP

µt,MSR − µt,MVP

wt,MSR (7)

where µt,MVP = w′

t,MVPµt and µt,MSR = w′

t,MSRµt are the expected returns on the

minimum variance portfolio and the maximum Sharpe ratio portfolio, respectively.

Subsequently the performance of the portfolios is evaluated using the actual stock

returns. For the minimum variance portfolio, we consider the actual standard de-

viation, and for the target return portfolios we monitor the actual return, standard

deviation, and Sharpe ratio.
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In addition the above analysis is repeated for stock returns in excess of the

S&P 500 futures returns. The solution to the problem in (3) then determines the

minimum tracking error portfolio, i.e. the portfolio of the 78 S&P 100 stocks that

tracks the S&P 500 index most closely. Similarly the solution to the problem in

equation (4) then minimizes the tracking error given a certain target level of active

return (i.e. portfolio return in excess of the S&P 500 return). The use of minimum

tracking error portfolios is motivated by the analysis in Chan et al. (1999) who

demonstrate that based on minimum variance portfolios it is difficult to distinguish

between different covariance matrix estimates in the presence of a dominant (market)

factor. Eliminating the dominant factor, in this case by switching to tracking error

portfolios, solves this problem.

Implementation of the portfolio construction methods discussed above requires

estimates or forecasts of the vector of conditional mean returns µt and the condi-

tional covariance matrix Σt. In order to concentrate on the use of high-frequency

data for estimating and forecasting (co-)variances, we assume that µt is constant

and, moreover, set it equal to the average return in the complete out-of-sample pe-

riod.6 Hence, we consider pure volatility-timing strategies, in the sense that the

portfolio weights are determined exclusively by forecasts of the daily conditional co-

variance matrix Σt. We closely follow Fleming et al. (2003) by using rolling volatility

estimators for Σt, building on the work by Foster and Nelson (1996) and Andreou

and Ghysels (2002).

The general rolling conditional covariance matrix estimator based on daily data

is of the form

Σ̂t =
∞∑

k=1

Ωt−k ⊗ rt−kr
′

t−k (8)

where Ωt−k is a symmetric (N × N) matrix of weights, and ⊗ denotes element-by-

element multiplication. Fleming et al. (2001, 2003) choose the weighting scheme

Ωt−k = α exp(−αk)ιι′, such that (8) can be rewritten as

Σ̂t = exp(−α)Σ̂t−1 + α exp(−α)rt−1r
′

t−1. (9)

6As explained below, we require part of the sample period to initialize the conditional covariance
matrix estimates, which in our case equals 122 trading days. This implies that the effective sample
period available for portfolio construction and evaluation runs from October 8, 1997 until May 27,
2004 (1666 trading days).
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This choice is consistent with Foster and Nelson (1996) in that exponentially weighted

estimators generally produce the smallest asymptotic MSE. In addition using a single

parameter (α) to control the rate at which the weights decay with lag length guar-

antees that Σ̂t is positive definite. One way of interpreting this weighting scheme is

as a restricted multivariate GARCH model.7 The optimal decay rate can therefore

be estimated using (quasi) maximum likelihood for the model

rt = Σ̂
1/2
t zt (10)

where zt ∼ NID(0, I) and Σ̂t is given by (9). We estimate α using observations

for the sample period October 8, 1997 until May 27, 2004 (1666 trading days). The

reason for not using the sample from the first available day, April 16, 1997, onwards

is that the covariance matrix estimate Σ̂t needs to be initialized. We use the first

122 observations as ‘burn-in’ period.

Given that the portfolios that subsequently are constructed using the weights

wt,MVP from (5) and wt,P from (7) are evaluated over the same period that is used

for estimating α, this raises the issue of data snooping. However, as noted by Fleming

et al. (2001), the statistical loss function used here to estimate the decay parameter

is rather different from the methods used to evaluate the performance of the various

portfolios. Hence, look-ahead bias probably is not too big a problem. We return to

this issue in the next section.

Andersen et al. (2003) and Barndorff-Nielsen and Shephard (2004) show that

intraday returns can be used to construct (co-)variance estimates that are more effi-

cient than those based on daily returns. Sticking to the concept of rolling estimators

and facilitating a direct comparison between daily and intraday data, it is most

natural to replace the daily update rt−1r
′

t−1 in (9) by the realized covariance matrix

Vt−1, that is, the conditional covariance matrix is estimated using high-frequency

data as

Σ̂t,∆ = exp(−α∆)Σ̂t,∆ + α∆ exp(−α∆)Vt−1,∆ (11)

where α∆ can again be estimated by means of maximum likelihood for the model

(10), but now using Σ̂t,∆ instead of Σ̂t. For Vt−1,∆ in (11), we consider the realized

7Fleming et al. (2003) show that actually using the (unrestricted) multivariate GARCH model
leads to a better fit of the data as expected, but the covariance matrix forecasts result in worse
portfolios than those obtained from the rolling covariance estimator. They cite the smoothness of
the rolling estimator as the main reason for this.
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covariance matrix obtained from the ‘basic’ form given in (1), from the subsampling

procedure described in Section 2, and from the lead-lag correction given in (2).

Fleming et al. (2003) mention three potential biases for the realized covariance

matrix Vt,∆ and, hence, for the conditional covariance matrix estimate Σ̂t,∆ obtained

from (11). First, the outer product of the vector of overnight returns is an imprecise

estimator of the covariance matrix over the non-trading period. Second, during the

trading period it uses non-simultaneous price observations across the assets under

consideration. Third, the intraday returns exhibit serial correlation induced by price

discreteness and bid-ask bounce. They argue that the impact of the last two factors

can be limited by choosing the sampling interval appropriately, and propose a bias

correction procedure (described below) primarily for the first potential bias. In

addition Hansen and Lunde (2005, 2006) demonstrate (for the realized variance)

that the same bias correction procedure can in fact be useful for correcting the

adverse effects of non-trading and bid-ask bounce as well. The evidence in Table

1 suggests that these problems may be relevant for the S&P 100 stock data at the

popular five minute frequency. This provides all the more reason to consider Fleming

et al.’s bias corrections to the rolling estimator in (11), not just for the noise in the

overnight return but also for the downward bias in the estimated covariances.8

The bias corrections proposed by Fleming et al. (2003) are based on scaling the

elements of Σ̂t,∆ with factors determined from the contemporaneous estimates from

the daily-returns-based rolling estimator. Specifically, the ith diagonal element of

Σ̂t,∆ is replaced by

σ̂∗ 2
it,∆ =

( ∑q
l=1 σ̂2

i,t−l∑q
l=1 σ̂2

i,t−l,∆

)
σ̂2

it,∆ (12)

where σ̂2
it and σ̂2

it,∆ denote the ith diagonal elements of Σ̂t (based on daily returns)

and Σ̂t,∆ (intraday returns), respectively. This way the conditional variance based on

intraday returns is adjusted by the average bias relative to the conditional variance

based on the daily returns measured over the last q days. Likewise, to correct for

8Recall that adding leads and lags to the realized covariance matrix, as in (2), is also aimed
at reducing the bias. Hence, the bias correction of Fleming et al. (2003) is an alternative to this
procedure.
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the bias in the realized covariances, the off-diagonal elements of Σ̂t,∆ are replaced by

σ̂∗

ijt,∆ = σ̂∗

it,∆σ̂∗

jt,∆

[
σ̂ijt,∆

σ̂∗

it,∆σ̂∗

jt,∆

+
1

q

q∑

l=1

(
σ̂ij,t−l

σ̂i,t−lσ̂j,t−l

−
σ̂ij,t−l,∆

σ̂i,t−l,∆σ̂j,t−l,∆

)]
. (13)

Fleming et al. (2003) use this additive correction for the covariances because the

bias measure can be positive, negative, or zero. Also, the term inside brackets (‘cor-

relation’) is constrained by plus and minus one. Note that by correcting the rolling

covariance estimator directly rather than the realized covariance matrix (Vt,∆), the

bias correction becomes a function of the decay rates α and α∆. Thus, first α is

estimated, and subsequently the bias corrections are computed in the course of es-

timating α∆. In (12) and (13) the choice of q is found not to be very important, as

long as it is small enough to capture the time variation in the biases. Fleming et al.

(2003) settle on q = 22 trading days and we do so here as well.

Equations (8) through (13) fully describe the approach of Fleming et al. (2001,

2003) that we employ here to investigate the benefits of intraday data for 78 S&P 100

stocks. As mentioned before, we examine different sampling frequencies to construct

the realized covariance matrix Vt. In particular, we divide the 390-minute NYSE

trading session in 1, 2, 3, 5, 10, 15, 30, 65 or 130 minute intervals, all of which cover

the full length of the trading day. In addition for each of these sampling frequencies

we explore the benefits of subsampling and of bias-correction by means of including

a single lead and lag.

4 Results

4.1 Positive definite problems

The results discussed in this section do not concern portfolios constructed with the

bias-adjusted covariance matrix estimates using the scaling approach advocated by

Fleming et al. (2003). The key problem with the bias adjustments as given in (12)

and (13) is that these adjust each individual element in the covariance matrix sep-

arately, with a possibly different correction factor. Hence, whereas the unadjusted

covariance matrix Σ̂t,∆ obtained from (11) is guaranteed to be positive definite, this

does not hold for the bias-adjusted matrix Σ̂∗

t,∆. In fact, we repeatedly ran into

trouble trying to estimate the optimal decay rates that maximize the likelihood of

the model in equations (8) and (10) due to the determinant of the covariance matrix
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being negative (whereas the likelihood requires the log of this determinant) and Σ̂∗

t,∆

not being invertible (also needed to compute the likelihood). We tried to address

this problem in several different ways but to no avail. First, following Ledoit and

Wolf (2003) we considered shrinking the adjusted matrix Σ̂∗

t,∆ back towards the un-

adjusted matrix Σ̂t,∆ that is known to be positive definite. Although this solved

the problems in computing the log-likelihood, the log-likelihood surface became dis-

continuous with discomforting spikes rather than a smooth run towards an optimal

decay parameter. The use of ‘optimal’ decay parameters resulted in a dramatic

out-of-sample performance of all portfolios. Second, we adjusted all stocks with the

same average required bias correction but this also gave unsatisfactory results. One

reason for this finding is that some of the required bias corrections to the realized

covariance, as given in (13), are enormous for individual pairs of stocks, simply be-

cause the realized covariance for that stock pair for the last month is close to zero.

For these reasons we only consider non-adjusted realized covariance matrices, leav-

ing the search for satisfactory bias adjustment procedures for further research. We

do consider the realized covariance matrices obtained with subsampling, and the

matrices obtained with the lead-lag correction in (2). For the latter, we only report

results obtained with Bartlett weights, dl = 1 − l/(q + 1). As mentioned before,

the popular scheme with unit weights, dl = 1, does not guarantee a positive definite

covariance matrix. For the 78 S&P 100 stocks this weighting scheme indeed ran into

this problem quite frequently. Again shrinkage led to discomforting spikes in the

log-likelihood surface. In contrast, the Bartlett weighting scheme does guarantee a

positive definite covariance matrix.

4.2 Optimal decay rates

Table 2 shows the optimal decay rates α and α∆ that maximize the likelihood of

the model in equations (10) with (9) for daily returns and with (11) for intraday

returns at the different sampling frequencies considered. Starting with total returns

(as opposed to returns in excess of the S&P 500 return) and the standard case

(no subsampling, no lead-lag correction), the optimal decay parameter increases

monotonically from 0.0070 for daily data to 0.2106 for the one-minute frequency.

This pattern implies that the update Vt−1,∆ in (11) is given more weight when it

is measured, presumably more accurately, at higher sampling frequencies. Fleming
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et al. (2003) report decay parameters of 0.031 and 0.064 for daily returns and five-

minute returns, respectively, for the three liquid futures contracts they consider. The

lower decay parameters at these frequencies obtained here for the 78 S&P 100 stocks

are likely to be caused by having relatively more noise in the intra-day returns data

and a well-known phenomenon in multivariate GARCH models (for daily returns)

that the larger the number of assets, the lower the decay parameter, see Engle and

Sheppard (2001) and Hafner and Franses (2003) for discussion.

- insert Table 2 about here -

The decay parameters when subsampling is applied to obtain the realized covari-

ance matrices are in general somewhat larger, which can be attributed to an overall

reduction in the variance (noise) of the updating realized (co-)variances. For the

lead-lag correction the bias decreases whereas the variance increases for a particular

sampling frequency. It appears that the latter is more important here, given that the

decay parameters are lower for the corrected covariance matrices compared to the

standard case. For the highest frequencies the log-likelihood is improved, however,

when using the Bartlett correction. The decay parameters in Panel B, consider-

ing excess returns, are in general slightly higher in all instances, but otherwise the

findings correspond to those for the total returns.

4.3 Portfolio performance

Table 3 shows the performance of the overall minimum variance portfolio, with

weights defined in (5), and the minimum variance portfolio given an annualized

target return of 10%,9 with weights given by (7). For the overall minimum variance

portfolio the optimal sampling frequency turns out to be 65 minutes in the standard

case. The annualized standard deviation of 12.16% compares favorably to the almost

14% for daily data. For the popular five-minute frequency the standard deviation

is 12.68%, clearly above the minimum. Also for the target return portfolios the 65-

minute frequency is optimal, resulting in a Sharpe ratio of 0.786 compared to 0.596

for daily returns and 0.626 for five-minute returns.

9We examined the sensitivity of our results to the target return level by varying µP between
2% and 18%. These alternative target return levels led to qualitatively similar conclusions to those
reported below. Detailed results are therefore not shown here, but are available on request from
the authors.
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- insert Table 3 about here -

The results in Panel B of Table 3, using subsampling, show only a marginal

improvement for the overall minimum variance portfolio with a standard deviation

of 12.07% compared to 12.16% before, both at the 65-minute sampling frequency.

The same conclusion holds for all other frequencies except 15 minutes. For the target

return portfolios, however, the results are ambiguous, in the sense that for certain

frequencies subsampling leads to a higher Sharpe ratio but for other frequencies it

declines. At the optimal frequency of 130 minutes the Sharpe ratio is lower at 0.709,

compared to 0.786 for the 65-minute frequency in the standard case.

The Bartlett correction in (2) leads to a higher optimal sampling frequency of

30 minutes for the minimum variance portfolio. The 12.01% annualized standard

deviation is slightly better than the 12.16% and 12.07% at the optimal 65-minute fre-

quency in the standard and subsampling cases, respectively. In fact, the the Bartlett

correction leads to a reduction in volatility of the minimum variance portfolio at all

frequencies, such that the 10-minute sampling frequency now leads to approximately

the same level of volatility as the optimal 65-minute frequency in the standard case.

Hence, using the lead-lag correction allows for a substantially higher sampling fre-

quency before the increased noise level, both due to the use of autocovariances and

due to the influence of microstructure effects, offsets this advantage. For the target

return portfolios, the optimal sampling frequency remains at 65 minutes as in the

standard case, although the corresponding Sharpe ratio is somewhat higher (0.797

compared to 0.786).

The performance of the minimum tracking error portfolios is shown in Table

4. Using the standard realized covariance matrix, the tracking error is minimized

at 4.43% using the 30-minute frequency compared to 4.75% for daily data. Again

subsampling provides a marginal improvement with the minimum tracking error

equal to 4.17% for the 65-minute frequency. Finally, using one lead and lag with

Bartlett weights results in a higher optimal sampling frequency of fifteen minutes

as for the minimum variance portfolio, with a lower tracking error at 4.35%. Hence

here we also observe that bias-correction using leads and lags helps.

In sum, the general conclusion from Tables 3 and 4 when computing the mini-

mum variance portfolio or minimum tracking error portfolio is that subsampling and
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the lead-lag bias correction marginally improve the out-of-sample performance for

both the minimum variance portfolios and the minimum tracking error portfolios.

We emphasize, however, that selecting the appropriate sampling frequency appears

to be much more important than choosing between different bias- and variance-

reduction techniques for the realized covariance matrices. For example, the reduction

in volatility of the minimum variance portfolio when going from the popular five-

minute frequency to the optimal 65-minute frequency in the standard case (from

12.69% to 12.16%) is more than three times as large as the additional reduction

achieved by applying the lead-lag bias correction at the 30-minute frequency (which

further reduces volatility to 12.01%).

- insert Table 4 about here -

Table 4 also demonstrates that for the active portfolio manager with an annu-

alized target excess return of five percent the optimal sampling frequency is much

higher than for total returns. The ex-post information ratio (excess return divided

by tracking error) is optimal for the two-minute frequency in the standard case at

0.436 compared to an information ratio of 0.110 at the daily frequency. The op-

timal frequency using one lead and one lag is even the one-minute frequency, but

it results in a slightly lower information ratio of 0.406. Subsampling results in an

optimal frequency of three minutes with an information ratio of 0.413. Although

this is below the optimum in the standard case, the benefits of subsampling are clear

when comparing the information ratios at other frequencies with the corresponding

results in the standard case. Apart from the two-minute frequency subsampling al-

ways improves the information ratio. Also subsampling leads to a lower annualized

tracking error in all cases, including the two-minute frequency.

In general we would like to express a warning note on the target return results

in Tables 3 and 4. The actual return pattern at the various frequencies is anything

but smooth and hence subject to a certain degree of ‘luck’. Obviously these results

depend both on the quality of the expected (excess) returns and the covariance ma-

trix forecasts, making a direct comparison of the quality of the covariance forecasts

more difficult than is the case for the minimum variance and minimum tracking error

portfolios.
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4.4 Genuine out-of-sample forecasting

FKO (2001; 2003) suggest that determining the decay parameters α and α∆ using

maximum likelihood on the full sample does not lead to serious data snooping prob-

lems because the final evaluation criterion (maximizing return or minimizing risk)

differs from the likelihood objective function. To test the validity of this argument,

and to test a true out-of-sample strategy, we proceeded as follows. First we find

the decay parameters that maximize the performance of the various stock portfolios

over the first 250 days following the initial burn-in period, i.e. the values of α and

α∆ that minimize the (relative) variance or maximizes the Sharpe (or Information)

ratio. These decay parameters are then used to estimate the conditional covari-

ance matrices Σ̂t and Σ̂t,∆ for the first day following the in-sample period, for which

optimal portfolio weights are then constructed using (5) and (7). This procedure

is repeated using a moving in-sample estimation window of 250 days, where every

day a new observation is added and the oldest one deleted. This not only implies

that the decay parameter varies over time, but also that the portfolio performance

thus obtained is truly out-of-sample. Since we lose an additional 250 days at the

start of the sample, for comparison we re-estimated the decay parameter using max-

imum likelihood for the shorter sample of 1416 trading days and constructed the

corresponding portfolio weights and performance.

- insert Table 5 about here -

The results are presented in Table 5. First of all, for both the minimum variance

(MV) and minimum tracking error (MTE) portfolios the results are re-assuring.

The optimal sampling frequency is still 65 minutes and 30 minutes for MV and

MTE, respectively. Also the performance itself is similar to that of the standard

case. Second, for the target return portfolios the results do change considerably.

In the total return case the optimal sampling frequency is now 10 minutes instead

of 65 minutes, and the performance has deteriorated from 0.640 to 0.554. In the

excess return case the optimal sampling frequency is now 1 minute instead of 2

minutes, but with a better information ratio at 0.457 versus 0.373 for the maximum

likelihood case. Third, and perhaps most revealing, the optimal decay parameters

are much lower when determined using in-sample portfolio performance than when
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estimated with maximum likelihood (except for the target return portfolios, when

performance is measured by the Sharpe ratio). This holds especially for the higher

sampling frequencies. To verify that this is not an artefact of using different alphas

over time, we also did a datasnooping exercise with a constant decay parameter,

where we determine the decay parameter that maximizes performance (rather than

the log-likelihood) over the entire out-of-sample period. These results (not reported

here) confirm that performance-based alphas are much lower than the log-likelihood

based alphas. In addition, this enhances the performance at those frequencies. Hence

the log-likelihood procedure tends to give too much weight to the updates. A logical

explanation for this is that the noise pattern of the updates suits the log-likelihood

when standardizing equally noise daily returns, but more smoothing is needed (lower

decay parameters) for forecasting the covariance matrices.

5 Conclusion

Existing studies that use high-frequency intra-day data to measure and forecast the

daily covariance matrix make ad-hoc choices with regard to the sampling frequency.

The presence of bid-ask bounce and non-synchronous trading creates a trade-off

between higher sampling frequencies leading to lower variances of the (co-)variance

measures due to having more data, and lower sampling frequencies reducing the

impact of these market microstructure effects. Popular ad-hoc choices to strike a

balance between the resulting bias and variance of the realized covariance estimates

are the five- and 30-minute sampling frequencies.

In this study we show that choosing the optimal sampling frequency is crucial for

the out-of-sample performance of portfolios constructed using realized covariances.

Even for the relatively liquid stocks that comprise the U.S. S&P 100 index the

optimum is more likely to be in the neighbourhood of an hour rather than five or

thirty minutes.

We also investigated the use of bias- and variance-reduction methods for com-

puting the realized covariances. Both the bias correction procedure proposed by

Fleming et al. (2003) and the use of one lead and one lag following Scholes and

Williams (1977) fail to produce better results. Subsampling, however, does help in

reducing the variance and results in a marginal improvement over the use of a single
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sample at the same frequency.

For further research it would be interesting to test other ways to correct for

biases in realized covariances due to non-synchronous trading. In addition Andersen

et al. (2003) suggest that with more and more assets eventually a factor model will be

needed, see Andersen, Bollerslev, Diebold and Ebens (2001) and Hafner et al. (2005)

for additional motivation and discussion. Bollerslev and Zhang (2003) is an example

where the Fama and French 3-factor model coefficients are estimated using five-

minute returns, albeit not with the purpose of estimating or predicting the covariance

matrix. Another interesting topic for further research is putting restrictions on the

portfolio weights, which we do not consider here. As shown by Jagannathan and

Ma (2003), imposing short-selling constraints and a maximum weight constraint, for

example, may enhance portfolio performance, even if the restrictions are wrong.
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Appendix: S&P 100 constituents on June 18, 2004

The 100 constituents of the S&P 100 index on June 18, 2004. The 78 stocks marked with a ∗ are

included in the analysis. For these stocks there is a complete set of one-minute open-high-low-close

prices from April 16, 1997, through May 27, 2004 (1788 trading days).

Symbol Issue name Symbol Issue name
AA* ALCOA INC IBM* INTL BUS MACHINE
AEP* AMER ELEC PWR INTC* INTEL CORP
AES* THE AES CORP IP INTL PAPER CO
AIG* AMER INTL GROUP JNJ* JOHNSON&JOHNSON
ALL* ALLSTATE CP JPM* JP MORGAN CHASE
AMGN* AMGEN KO* COCA COLA CO
AOL AOL TIME WARNER LEH* LEHMAN BROS
ATI ALLEGHENY TECH LTD* LIMITED BRANDS
AVP AVON PRODS INC LU* LUCENT TECH
AXP* AMER EXPRESS CO MAY* MAY DEPT STORES
BA* BOEING CO MCD* MCDONALDS CORP
BAC* BANK OF AMERICA MDT* MEDTRONIC INC
BAX* BAXTER INTL INC MEDI MEDIMMUNE INC
BCC* BOISE CASCADE MER* MERRILL LYNCH
BDK* BLACK & DECKER MMM* 3M COMPANY
BHI* BAKER HUGHES INC MO* ALTRIA GROUP
BMY* BRISTOL MYERS SQ MRK* MERCK & CO
BNI* BURL NTHN SANTA MSFT* MICROSOFT CP
BUD* ANHEUSER BUSCH MWD MORGAN STANLEY
C* CITIGROUP NSC* NORFOLK SOUTHERN
CCU* CLEAR CHANNEL NSM* NATL SEMICONDUCT
CI* CIGNA CORP NXTL* NEXTEL COMMS
CL* COLGATE PALMOLIV ONE* BANK ONE CORP
CPB* CAMPBELL SOUP CO ORCL* ORACLE CORP
CSC COMPUTER SCIENCE PEP* PEPSICO INC
CSCO* CISCO SYSTEMS PFE* PFIZER INC
DAL* DELTA AIR LINES PG PROCTER & GAMBLE
DD* DU PONT CO ROK* ROCKWELL AUTOMAT
DIS* WALT DISNEY CO RSH RADIOSHACK
DOW DOW CHEMICAL CO RTN RAYTHEON CO
EK* EASTMAN KODAK S* SEARS ROEBUCK
EMC* EMC CORP SBC* SBC COMMS
EP EL PASO CORP SLB* SCHLUMBERGER LTD
ETR* ENTERGY CP SLE* SARA LEE CORP
EXC EXELON CORP SO* SOUTHERN CO
F FORD MOTOR CO T* AT&T CORP
FDX FEDEX CORP TOY* TOYS R US CORP
G* GILLETTE CO TXN* TEXAS INSTRUMENT
GD* GENERAL DYNAMICS TYC* TYCO INTL
GE* GENERAL ELEC CO UIS* UNISYS CORP
GM* GENERAL MOTORS USB US BANCORP
GS GOLDM SACHS GRP UTX* UNITED TECH CP
HAL* HALLIBURTON CO VIAb VIACOM CL B
HCA HCA INC VZ VERIZON COMMS
HD* HOME DEPOT INC WFC* WELLS FARGO & CO
HET* HARRAHS ENTER WMB* WILLIAMS COS INC
HIG* HARTFORD FINL WMT* WAL-MART STORES
HNZ* H J HEINZ CO WY WEYERHAEUSER CO
HON* HONEYWELL INTL XOM EXXON MOBIL
HPQ* HEWLETT-PACKARD XRX* XEROX CORP
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Table 1: Mean and variance of the realized (co-)variance

Frequency Realized Variance Realized Covariance Realized Variance Realized Covariance
Mean Variance Mean Variance Mean Variance Mean Variance

Daily 7.386 1763 1.568 93.58

Panel A: Standard Panel B: Subsampling

130 minutes 7.369 689.7 1.394 31.94 7.849 1083.8 1.458 36.63
65 minutes 7.324 624.3 1.357 22.46 7.329 755.2 1.409 22.52
30 minutes 7.311 563.5 1.316 16.48 7.228 601.7 1.394 16.30
15 minutes 7.463 545.8 1.307 14.46 7.384 565.2 1.381 14.26
10 minutes 7.614 547.2 1.305 13.25 7.533 557.5 1.349 13.05
5 minutes 7.912 531.7 1.239 11.49 7.856 550.3 1.254 11.18
3 minutes 8.193 527.6 1.136 10.34 8.165 539.0 1.140 10.12
2 minutes 8.525 537.1 1.025 9.60 8.509 541.8 1.029 9.47
1 minute 9.494 597.0 0.826 8.73 9.494 597.0 0.826 8.73

Panel C: lead-lag, q = 1, dl = 1 Panel C: lead-lag, q = 1, dl = 1 − l/(q + 1)

130 minutes 7.476 883.3 1.442 48.93 7.422 758.6 1.418 36.73
65 minutes 7.412 747.1 1.422 35.60 7.368 667.0 1.389 26.27
30 minutes 7.344 654.7 1.386 25.32 7.329 595.6 1.351 18.97
15 minutes 7.221 577.7 1.357 18.95 7.342 552.7 1.332 15.51
10 minutes 7.227 565.7 1.363 16.98 7.420 545.6 1.334 14.23
5 minutes 7.310 550.5 1.362 14.94 7.611 532.3 1.300 12.67
3 minutes 7.431 562.5 1.377 13.62 7.812 538.3 1.257 11.56
2 minutes 7.514 550.7 1.360 12.50 8.020 536.3 1.193 10.70
1 minute 7.556 501.1 1.223 10.70 8.525 533.4 1.025 9.47

Notes: The table shows mean and variance of the realized (co-)variance at various sampling frequencies for 78 constituents of the
S&P100 index from April 16, 1997, through May 27, 2004 (1788 trading days). For the variance the mean reflects the average of
all realized variances taken over 78 stocks and 1788 trading days. For the variance of the variance the average is taken over the
78 sample variances of the (realized) variances. For the covariance the mean reflects the average of all realized covariances taken
over all 3003 combinations and 1788 trading days. The variance of the covariance is the average taken over 3003 sample variances
of the (realized) covariances. Panel A contains results for the ‘standard’ realized covariance matrix as given in (1). In Panel B
subsampling is used, implying that for example the 10-minute window is laid over the data in 10 different ways rather than just
one as in Panel A. Subsequently each day the average is taken over the 10 resulting estimates. In panels C and D a single lead and
lag are added to the variance and covariances according to (2) with q = 1, with weights dl = 1 and dl = 1− l/(q + 1), respectively.
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Table 2: Optimal decay parameters

Frequency Standard Subsampling 1 lead, 1 lag
α∆ LogL α∆ LogL α∆ LogL

Panel A: Total Returns
Daily 0.0070 −300, 492 0.0070 −300, 492 0.0070 −300, 492

130 minutes 0.0119 −276, 376 0.0131 −275, 282 0.0111 −276, 939
65 minutes 0.0149 −274, 580 0.0162 −273, 335 0.0137 −274, 782
30 minutes 0.0204 −273, 747 0.0216 −272, 419 0.0179 −273, 519
15 minutes 0.0273 −273, 802 0.0297 −272, 587 0.0231 −273, 186
10 minutes 0.0329 −274, 121 0.0365 −273, 068 0.0273 −273, 261
5 minutes 0.0481 −275, 004 0.0556 −274, 322 0.0375 −273, 774
3 minutes 0.0678 −275, 975 0.0840 −275, 551 0.0493 −274, 407
2 minutes 0.1025 −276, 985 0.1232 −276, 631 0.0643 −275, 164
1 minute 0.2106 −278, 971 0.2106 −278, 972 0.1255 −276, 723

Panel B: Excess Returns
Daily 0.0070 −298, 480 0.0070 −298, 480 0.0070 −298, 480

130 minutes 0.0119 −274, 455 0.0133 −273, 255 0.0112 −275, 033
65 minutes 0.0151 −272, 712 0.0165 −271, 296 0.0138 −272, 907
30 minutes 0.0208 −271, 926 0.0222 −270, 457 0.0183 −271, 669
15 minutes 0.0282 −272, 100 0.0308 −270, 784 0.0238 −271, 381
10 minutes 0.0342 −272, 516 0.0384 −271, 384 0.0282 −271, 522
5 minutes 0.0514 −273, 562 0.0607 −272, 841 0.0393 −272, 157
3 minutes 0.0757 −274, 663 0.0966 −274, 183 0.0529 −272, 925
2 minutes 0.1178 −275, 675 0.1415 −275, 299 0.0713 −273, 751
1 minute 0.2468 −277, 537 0.2468 −277, 537 0.1440 −275, 393

Notes: The table shows the decay rates (α∆) that maximize the log-likelihood of the model in
(10) and (9) for daily returns and (10) and (11) for intraday returns. In Panel A the model
is estimated for total returns, whereas in Panel B the model is estimated for excess returns
(stock returns minus S&P500 index returns). The second and third columns show the optimal
decay rates and accompanying log-likelihood values when the covariance updates are based on
the standard realized (co-)variances obtained from (1), the fourth and fifth column when the
updates are based on subsampling, and the final two columns when a single lead and lag of the
covariance is added to the contemporaneous (realized) covariance, according to (2) with q = 1
and Bartlett weights dl = 1 − l/(q + 1).

23



Table 3: Out-of-sample total performance

Target return portfolio MVP
Frequency µ σ SR σ

Daily 8.842 14.828 0.596 13.997

Panel A: Standard
130 minutes 10.238 13.134 0.780 12.463
65 minutes 10.116 12.871 0.786 12.157
30 minutes 8.159 12.993 0.628 12.165
15 minutes 8.823 13.120 0.673 12.211
10 minutes 8.288 13.299 0.623 12.381
5 minutes 8.564 13.685 0.626 12.683
3 minutes 8.484 13.916 0.610 12.836
2 minutes 7.671 14.176 0.541 13.062
1 minute 7.889 14.439 0.546 13.325

Panel B: Subsampling

130 minutes 9.231 13.026 0.709 12.241
65 minutes 8.747 12.869 0.680 12.073
30 minutes 8.000 12.878 0.621 12.098
15 minutes 8.145 13.055 0.624 12.214
10 minutes 8.393 13.223 0.635 12.325
5 minutes 8.456 13.611 0.621 12.606
3 minutes 8.213 13.898 0.591 12.820
2 minutes 8.121 14.090 0.576 12.986
1 minute 7.889 14.439 0.546 13.325

Panel C: 1 lead and 1 lag

130 minutes 10.230 13.114 0.780 12.435
65 minutes 10.250 12.867 0.797 12.156
30 minutes 9.071 12.807 0.708 12.013
15 minutes 8.410 12.888 0.653 12.054
10 minutes 7.808 13.014 0.600 12.151
5 minutes 8.536 13.283 0.643 12.354
3 minutes 8.502 13.551 0.627 12.567
2 minutes 8.049 13.797 0.583 12.754
1 minute 8.055 14.098 0.571 12.994

Notes: The table shows the out-of-sample performance of the overall
minimum variance portfolio, with weights given in (5), and the min-
imum variance portfolio given a annualized target level of return of
10%, with weights given in (7), constructed using rolling covariance
matrix forecasts based on various sampling frequencies and based on
different ways to measure the realized covariance matrix (standard,
subsampling and using a single lead and lag with Bartlett weights).
Columns 2 to 4 show the return, standard deviation and Sharpe ratio
of the target return portfolios, and column 5 shows the variance of
the global minimum variance portfolio (MVP).
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Table 4: Out-of-sample relative performance

Target return portfolio MTEP
Frequency µ TE IR TE

Daily 0.523 4.772 0.110 4.754

Panel A: Standard
130 minutes 0.450 4.549 0.099 4.532
65 minutes 0.284 4.513 0.063 4.480
30 minutes 0.085 4.477 0.019 4.426
15 minutes 0.574 4.516 0.127 4.461
10 minutes 0.751 4.666 0.161 4.588
5 minutes 0.892 4.986 0.179 4.918
3 minutes 1.845 5.230 0.353 5.176
2 minutes 2.326 5.421 0.436 5.404
1 minute 1.393 5.790 0.241 5.777

Panel B: Subsampling

130 minutes 0.562 4.258 0.132 4.230
65 minutes 0.497 4.200 0.118 4.169
30 minutes 0.618 4.214 0.147 4.181
15 minutes 0.492 4.306 0.211 4.266
10 minutes 0.932 4.419 0.339 4.362
5 minutes 1.610 4.753 0.413 4.694
3 minutes 2.103 5.090 0.417 5.048
2 minutes 2.214 5.306 0.241 5.287
1 minute

Panel C: 1 lead and 1 lag

130 minutes 0.175 4.581 0.038 4.564
65 minutes 0.320 4.503 0.071 4.476
30 minutes 0.409 4.439 0.092 4.400
15 minutes 0.621 4.400 0.141 4.353
10 minutes 0.627 4.475 0.140 4.415
5 minutes 0.716 4.584 0.156 4.505
3 minutes 1.570 4.772 0.329 4.706
2 minutes 1.954 4.965 0.394 4.911
1 minute 2.164 5.330 0.406 5.314

Notes: The table shows the out-of-sample performance of the over-
all minimum tracking error portfolio, with weights given in (5), and
the minimum variance portfolio given an annualized target level of
return of 5%, with weights given in (7), constructed using rolling
covariance matrix forecasts based on various sampling frequencies
and based on different ways to measure the realized covariance ma-
trix (standard, subsampling and using a single lead and lag with
Bartlett weights). Columns 2 to 4 show the excess return, tracking
error and Information Ratio of the target return portfolio, and col-
umn 5 shows the ex-post tracking error of the minimum tracking
error portfolio (MTEP).

25



Table 5: Out-of-sample α’s

Target return portfolio Minimum risk portfolio
α α

Frequency Mean St.Dev SR/IR SR/IR Mean St.Dev σ/TE σ/TE

Panel A: Total Returns
Daily 0.001 0.003 0.507 0.482 0.004 0.002 13.770 13.669

130 minutes 0.069 0.037 0.534 0.626 0.014 0.002 12.534 12.229
65 minutes 0.087 0.107 0.262 0.640 0.018 0.003 11.937 11.945
30 minutes 0.035 0.020 0.436 0.519 0.024 0.003 11.986 11.972
15 minutes 0.097 0.130 0.261 0.603 0.034 0.005 12.061 12.034
10 minutes 0.352 0.034 0.554 0.561 0.042 0.006 12.220 12.207
5 minutes 0.312 0.086 0.434 0.597 0.047 0.005 12.471 12.466
3 minutes 0.223 0.189 0.471 0.578 0.080 0.030 12.592 12.556
2 minutes 0.215 0.194 0.452 0.526 0.107 0.076 12.797 12.755
1 minute 0.361 0.116 0.478 0.516 0.124 0.076 13.002 12.971

Panel B: Excess returns
Daily 0.041 0.004 0.357 −0.031 0.006 0.001 4.858 4.871

130 minutes 0.004 0.006 0.167 0.122 0.008 0.003 4.593 4.581
65 minutes 0.002 0.002 0.298 0.161 0.008 0.004 4.595 4.554
30 minutes 0.002 0.009 0.181 0.096 0.011 0.005 4.512 4.477
15 minutes 0.001 0.001 0.376 0.198 0.012 0.006 4.516 4.483
10 minutes 0.004 0.012 0.203 0.312 0.012 0.006 4.630 4.629
5 minutes 0.001 0.002 0.395 0.234 0.010 0.005 4.814 4.949
3 minutes 0.009 0.010 0.239 0.348 0.010 0.005 4.970 5.220
2 minutes 0.024 0.041 0.269 0.373 0.011 0.005 5.095 5.514
1 minute 0.031 0.028 0.453 0.184 0.015 0.006 5.249 5.864

Notes: The table shows the out-of-sample performance of the overall minimum volatility portfolio, with
weights given in (5), and the minimum variance portfolio given an annualized target level of return of 5%,
with weights given in (7), constructed using rolling covariance matrix forecasts based on various sampling
frequencies and based on the ‘standard’ realized covariance matrix. Panel A shows results for total returns
and Panel B for excess returns (stock returns minus S&P 500 returns). The optimal decay parameters
are determined by optimizing portfolio performance using a moving window period of 250 days. Columns
2 and 3 report the mean and standard deviation of the resulting estimates of α∆. Column 4 shows the
Sharpe ratio (panel A) or the Information ratio (panel (B) for the resulting portfolios. Column 5 shows
the SR/IR for portfolios constructed with decay parameters for the conditional covariance matrix that
are estimated by maximizing the log-likelihood over the complete out-of-sample period.
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