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E C O N O M E T R I C A  

VOLUME46 January, 1978 NUMBER1 

BAYESIAN ESTIMATES OF EQUATION SYSTEM PARAMETERS: 
AN APPLICATION OF INTEGRATION BY MONTE CARLO' 

Monte Carlo (MC) is used to draw parameter values from a distribution defined on the 
structural parameter space of an equation system. Making use of the prior density, the 
likelihood, and Bayes' Theorem it is possible to estimate posterior moments of both 
structural and reduced form parameters. The MC method allows a rather liberal choice of 
prior distributions. The number of elementary operations to be performed need not be an 
explosive function of the number of parameters involved. The method overcomes some 
existing difficulties of applying Bayesian methods to medium size models. 

The method is applied to a small scale macro model. The prior information used stems 
from considerations regarding short and long run behavior of the model and from 
extraneous observations on empirical long term ratios of economic variables. Likelihood 
contours for several parameter combinations are plotted, and some marginal posterior 
densities are assessed by MC. 

1. INTRODUCTION 

IN RECENT YEARS several Bayesian methods of estimating parameters of simul- 
taneous equation systems have been introduced (see, e.g., Drkze [5], Zellner [21], 
Harkema [ I l l ,  Rothenberg [17 and 181, and Richard [16], and the references 
cited there). An important motive for research in this area is the analysis of 
economic policy problems from a decision theoretic point-of-view. It appears that 
in this context Bayesian estimates are more satisfactory than classical ones. The 
analysis of these problems requires the use of numerical methods, for, in order to 
obtain analytically tractable results, restrictions have to be imposed which are less 
attractive from an economic point of view (see Rothenberg [17, pp. 139-1441 
and Harkema [ll]).  

The application of numerical methods appears to be hampered by the amount 
of computational work involved (see Rothenberg [17, p. 1401). However, the 
numerical work for several econometric problems is restricted to the computation 
of first and second order moments, e.g., analysis of economic policy problems 
based on a quadratic loss function (see Zellner [21, Chapter I l l) ,  or MELO 
estimators of ratios of parameters (see Zellner [22]). 

Usually, standard numerical integration methods, like Cartesian product rules 
based on Gaussian or Newton-Cotes quadrature formulas, are used. We propose 
a Monte Carlo method, which enables one to compute the moments mentioned 
above in the following way. One starts with specifying a so-called importance 
function. This is a density function defined on the space of structural parameters, 
or on the space of a subset of these parameters in case part of the integration is 

Earlier versions of this paper were presented, a.o., at the World Meeting of the Econometric 
Society, Toronto, 1975; at CORE, Louvain, and at the First European Congress on Foundations and 
Applications of Bayesian Methods, Fontainebleau, 1976. The authors are indebted to J. Drtize, R. 
Harkema, J. F. Richard, and A. Zellner for valuable comments and to an anonymous referee for 
several useful suggestions. 
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carried out analytically. It should have convenient Monte Carlo properties, in 
the sense that it is not difficult to generate drawings from such a distribution. In 
addition, the importance function should be an approximation of the posterior 
density. In some cases the prior density can be used. Making use of the prior 
density, the likelihood of a given sample, and Bayes' Theorem it is possible to 
obtain estimates of the posterior moments of both structural and reduced form 
parameters. In case the numerical accuracy of these estimates (wliich can also be 
estimated) is not satisfactory, one performs a second round of Monte Carlo using 
the preliminary estimates of the first round as moments of a new importance 
function. We name this technique: posterior moments computed by means of a 
Monte Carlo method (PMMC). We also use a Monte Carlo technique to derive 
marginal posterior distributions for some particularly interesting parameters. In 
fact, their approximations can be interpreted as moments of certain functions of 
the parameters. 

The important advantage of Monte Carlo is that a large number of posterior 
moments can be estimated at a reasonable computational effort and that estimates 
of the numerical accuracy of these results are obtained in a simple way. There are 
several indications that Monte Carlo is computationally efficient in problems with 
many dimensions, say, more than five or six. 

Since Monte Carlo is a sampling method, the error goes to zero as N-', where N 
is the number of points where the integrand f is evaluated. Haber [9, p. 51.51 
comments on this as follow^:^ 

This convergence does not seem to be very rapid until we note that neither the 
dimensionality s of the integration region, nor any specification of the degree of smooth- 
ness off, entered into the determination of the error estimate. All that is required off  is 
that the integrals entering into the quantity 5Cf)exist and are finite-f need not even be 
continuous. In this situation no deterministic error bound is available at all. By Bahvalov's 
theorem, even if we assumed that f E C;, the best that we could say about the error of any 
nonprobabilistic quadrature formula would be that it is and if s, is, say, 5 ,  this is 
much slower convergence than is given by the Monte Carlo method. 

This comparison is a simplification in two respects. On the one hand more 
sophisticated methods of integration require amendments to the statements made 
above. On the other hand, in most cases uwill be an increasing function of s. To 
what extent u will increase with s is, in general, unknown and will depend on the 
properties of the integrand. The same holds for the improvements that can be 
obtained by employing more sophisticated integration methods. This explains 
why it is so difficult to give general conclusions. Some of our own experiments with 
a nine-dimensional integrand suggest that the advantage of Monte Carlo is a real 
one. For expository reasons, however, we prefer to present a three-dimensional 
example. 

By using a numerical method, we get rid of the restrictions on the prior 
distribution imposed by the use of analytical techniques; therefore, a liberal 
choice of prior distributions is possible. To demonstrate this we used prior 
information of two types in our example. Firstly, we experimented with prior 

'Haber uses the symbol a2Cf)for the variance of the integrand and CI for the class of functions of s 
real variables of whose first order partial derivatives exist. 
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distributions on structural parameters; in most cases the larger part of prior 
information will pertain to structural parameters. Secondly, we used prior infor- 
mation on short term and long term multipliers. Also, it was possible to handle a 
case of nonlinear dependence between two structural parameters. 

In Section 2 we describe the model assumptions and the class of prior distribu- 
tions considered. The method we used is formally described in Section 3. Sections 
4 and 5 deal with an illustration (prior specification and posterior moments, 
respectively). In Section 6 problems of numerical precision are discussed and 
illustrated. In Section 7, we investigate the information conveyed by the likeli- 
hood contours of structural parameters and by the marginal posterior densities of 
some interesting parameters. Section 8 contains concluding remarks. 

2. MODEL AND CLASS OF PRIOR DISTRIBUTIONS 

Our starting point is the standard version of a linear simultaneous equation 
system 
(2.1) YT+ZB = U 

where the matrix Y consists of n observations on G current endogenous variables 
and the matrix Z of n observations on K predetermined variables; r is a G x G 
matrix and B a K x G matrix of constants, some of which are known a priori; U is 
a matrix of disturbances. The system (2.1) is supposed to satisfy the following 
assumptions: (1) Irl#0; (2) the n rows of U are independently and identically 
distributed as N(0,Z) ,  where Z is positive-definite3 symmetric matrix; (3)2 has 
full column rank; (4) the row vectors z,', u:, u:+~,. . . ,u: are independently 
distributed for any s, t = 1, . . . ,n with s 4 t. 

These assumptions enable us to specify the likelihood function of (2.1): 

(2.2) l (r ,  B, X I  Y, z  ~) XI-^ n/lr/jn 
x exp (-4 tr [ ( n r ' h r f  (B-B)'z'z(B -8))X1]}  

where the ex onent has been rewritten and I? = (2 '2)- '2 '  Y, 8= -fiT, and 
n h  =(Y-z R,Y(Y-Z&). 

We next define a rather wide class of prior distributions on the elements of T,B, 
and 2.We distinguish four types of structural parameters. 

1. Some parameters are supposed to be known exactly a priori. These may 
include the unit diagonal elements of r following from normalization and a 
number of zero elements implied by identifying restriction^.^ (We follow the 
classical approach to the identification problem.) No sample information can 
change our prior information on these parameters, so that no posterior computa- 
tions are needed. Hence, we substitute these known parameter values in our 

This means that (2.1) is not supposed to contain identities. Possible identities may be removed by a 
preliminary substitution procedure; see Rothenberg [17,Chapter 4, Appendix B]. A simple solution is 
to ignore the identities, except in the Jacobian //r//"(see Rothenberg and Leenders [19,Section 71). 

No problem arises when one wants to introduce more complicated restrictions, such as general 
linear restrictions, nonlinear restrictions, or restrictions across equations. 
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likelihood function. This will be done throughout the paper without further 
discussion. 

2. The so-called constant terms. We assume that each of the equations in (2.1) 
contains a nonzero constant term. We arrange these in a vector denoted by @. 
Since usually little is known a priori, we assume a (locally) uniform prior. As a 
consequence we can handle these parameters by analytical integration. 

3. The elements of the variance-covariance matrix, 2. We shall assume that 
little is known a priori and that our prior information is adequately described by 
the expression 121-f'G'1)(compare Zellner [21, p. 225 and 226]).' 

4. All remaining elements of r and B, that is, all elements which are a priori 
unknown, apart from the constant terms. We arrange these in a vector denoted by 
the symbol 8. Prior distributions of the elements of 8 will be discussed later. 

Assuming independence, we can summarize our prior density by 

where p(8) is the prior density of 8, to be specified later. Combining the prior 
density (2.3) and the likelihood (2.2) one obtains, according to Bayes' Theorem, 
the joint posterior density. 

The computational burden can be considerably reduced by handling @ and 2 
by analytical procedures. So we eliminate 2 and @ from the posterior distribution. 
This is performed in two steps. We firstly integrate the posterior density with 
respect to the elements of 2 ,  which yields the joint marginal distribution of (8, @). 
This distribution is, except for p(8) and / /T//"  of the generalized Student t form (see 
Dickey [3j or Zellner [21, p. 273 and Appendix B51). As a second step we 
eliminate the elements of @ by integrating this distribution with respect to @. 
According to a theorem by Dickey [3] we then obtain for the marginal posterior of 
8 : 

where 

Here B and Z have been partitioned according to B'  = [@ i Bi], Z = [Li Z1], 
where L is a column vector of unit elements and N =I- L L ' / ~ .  Note that r a n d  B1 
depend on 8 but not on @. 

3. POSTERIOR MOMENTS COMPUTED BY A MONTE C A R L 0  METHOD 

Starting from the marginal posterior of 8, given in (2.4), we want to find 
posterior moments of the structural parameters. For the time being we disregard 
the constant terms. Hence, all moments to be computed are expectations of 
functions of 8, g(8), say. Notice, that g(8) may be a scalar, a vector, or a matrix. 

Alternatively, one may specify an inverted-Wishart function. In this case one also has to specify a 
matrix H of prior parameters; see Zellner [21,p. 3951. This leads to slight modification in the K 

function defined in (2.5) below. 



5 BAYESIAN ESTIMATES 

The existence of these moments depends on both the likelihood and the prior 
distribution of 8. If the existence conditions are satisfied, such expectations are 
given by 

where the region of integration is a subspace of the parameter space. 
A simple sufficient condition for the existence of the moments considered is that 

all integrals required are defined on bounded regions and have integrands of 
bounded variation. Recall the assumption that Irl# 0. Then it is easily seen that K 

is bounded on any bounded region if h is positive definite.6 The bounded region 
condition can always be satisfied by choosing truncated prior distributions. For the 
structural parameters this is obvious. For the reduced form parameters it can be 
met by choosing the truncation in such a way that the prior density is zero on an 
open set containing all values of 8, where Irl=0. This condition implies that 
llrll>0 in the region of integration. The extension to other functions of 8 such as 
long term multipliers is obvious. Examples of these conditions are discussed in 
Section 4. 

Next, we consider the computation of the moments just defined by means of a 
Monte Carlo procedure. Let I ( $ )be a density function defined on the parameter 
space, to be called importance function. The choice of I ( 8 )will be discussed below. 
Let M ( 8 ) be defined by 

This function is defined on the region where I (8)>  0. Then the numerator of (3 .1)  
can be written as 

(3 .3 )  !M(B)I(B) d0 =E[M(O)]  

where the expectation is taken with respect to I (8) .The denominator is obtained 
by taking g ( 8 )= 1. 

Now, by means of standard Monte Carlo procedures (see, for instance, Ham- 
mersley and Handscomb [do]), parameter values 8 are drawn at random from the 
distribution with density I(8) . For each drawn value of 8, the function M ( 8 ) is 
evaluatedS7Let e l , 02,. . . , 8 ,  be our sequence of random drawings. Then we have 
approximately 

for sufficiently large n. This is the basic formula of our method. 

'The latter condition may cause problems in large models if the number of observations is small. 
This problem is well known from classical estimation (see, e.g., Fisher [7]).The most natural Bayesian 
way to solve the probelm is by specification of a proper prior distribution on H (compare footnote 5). 
Finally, the possibility that g~ is bounded but not of bounded variation does not seem to be realistic 
in the type of problems we consider. 

One may have to scale M(8)in order to avoid overfiow. This can be done by scaling the data or by 
means of a preliminary optimization applied to M(8).  
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Next, we discuss the choice of the importance function I(@). Obviously, the first 
requirement is that it should have convenient Monte Carlo properties; that is, 
generating random drawings Oi should be relatively simple. Many standard 
distributions satisfy this requirement. Among the univariate families of distribu- 
tions we mention the uniform, exponential, Gamma, Beta, Normal, and Student t 
families. For details see Naylor [14]and the references cited there. If multivariate 
densities can be factored as products of independent marginal densities or 
marginal and conditional densities, the above families provide a large number of 
possibilities. The most obvious choices are the multivariate Normal and Student t 
families. 

The second requirement for the choice of I(@) is that the variance (+'of M(0) 
(with respect to I(0))should be kept small. If one takes a uniform I(0), one obtains 
a few drawings for which M(0) is important and a large number of drawings for 
which M is very close to zero. So, even if one has drawn a sample of several 
thousands of drawings, the right hand side of (3.4) may mainly depend on a very 
few values M(Oi)which are not close to zero. This explains both why in this case 
one obtains an unreliable estimate and also why I(0) is called importance function. 
It serves to select as many important drawings as possible. The same conclusion 
may also be reached in a more formal way. The sample size n required to obtain a 
given amount of accuracy is proportional to (+',as is easily seen from (3.4). 

Now, for every estimation problem we have one function K ,  one function p, but 
as many functions g as the number of moments we want to compute plus the zero 
order moment required for the denominator of (3.1). So two different strategies 
may be chosen: (i) find a density I for each g to reduce var M a s  much as possible; 
(ii) find a density Iwhich is proportional to a good approximation of the posterior 
kernel ~ p .  

The second approach has several advantages. First, ~p is a kernel of a density 
while g ~ pis not. (In some cases g may change sign in the region of integration.) So 
it is probably simpler to find a density which is a good approximation. Second, 
finding a density I which is a good approximation to a function which is not very 
well known may be difficult. For that reason it seems preferable if one can confine 
oneself to solving such a problem only once. Third, if the posterior density is not 
too far from normal we may start with a rough approximation to the posterior 
distribution and use the so obtained posterior moments as moments of a mul- 
tivariate Normal (or Student) importance function in the second stage. If the prior 
density is informative and not conflicting with the likelihood, it may be used as 
importance function in the first stage. Finally, it should be noted that if the sample 
is not extremely small and if the prior density is not very informative the variation 
of K will be much greater than that of either g or p. For that reason one also may 
start to maximize K and to evaluate the Hessian of log K at the maximum as a basis 
for constructing a normal approximation to K which may serve as importance 
function in the Monte Carlo procedure.8 

This concludes the introduction of the PMMC method. More details will be 
commented upon in the discussion of the illustration. 

We are indebted to A. Zellner for this suggestion. 
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4. ILLUSTRATION: MODEL AND PRIOR INFORMATION 

For illustration purposes we shall make use of a small scale demand-oriented 
macroeconomic model described by ~ o h n s t o n ~  [12,p. 2691. The structural 
equations read as follows: 

where Ct represents consumer expenditure, Yt total expenditure, I, investment, 
Zt exogenous expenditure. The interpretation of the parameters will play an 
important role when specifying the prior distributions. It is seen that PI is the 
marginal propensity to consume with respect to total expenditure, P2the short run 
marginal propensity to spend on investment goods (not the fixed accelerator), and 
y2 an adjustment parameter of investment. It seems reasonable to assume that 
these three parameters satisfy 

The determinant of r,which is not allowed to vanish, equals 1-PI -P2. The 
short term income multiplier (STM) of Z, is given by ~ ~ ~ = d Y r / a Z ~ =  
1/(1- -&). Evidence from many investigations suggests that 7r33 is positive 
and not extremely high, say less than a fixed number vl  to be specified in Section 5. 
So we obtain the prior restriction 

The lower bound both in (4.5) and in (4.6) below is implied by the conditions (4.4) 
and the positivity restrictions on the multipliers. 

We also investigated the long term multiplier (LTM) of autonomous expendi- 
ture with respect to total expenditure. We shall assume that it is positive and less 
than v2 (to be specified in Section 5). So our restriction is 

These restrictions imply that the stability condition of the final form is satisfied. 
Though the present model is not very realistic and the conclusions must be 
handled with caution, it is interesting to investigate the implied dynamic charac- 
teristics and verify their a priori acceptability (see also Dhrymes [2, p. 5421). 

For the importance function we started to choose the prior densities. This 
worked well in two out of three cases.1° In the third case we applied a two-stage 

Lyttkens [13]used the same model to compare estimates based on several estimation techniques. 
Some of his results will be commented upon below. 

'"As was pointed out to us by J. F. Richard, this result may not be representative. The accordance 
between two of our priors and our likelihood seems to be greater than usual. 
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procedure: we took the prior in the first stage and the resulting rough approxima- 
tion of the posterior in the second stage. 

The generating process of a sequence of a priori acceptable values of (PI, P2, y2) 
runs as follows. Monte Carlo is used to draw a sequence of values of structural 
parameters and these are tested for some or all of the restrictions (4.4)-(4.6).11 If a 
value of (PI, P2, y2) does not pass such a test, a new value is drawn and tested. So 
the restrictions may be used to truncate the prior densities (and the importance 
functions). 

The prior distributions we use differ widely with respect to the amount of prior 
information incorporated. We start with a rather weak prior, viz., a uniform 
distribution on the unit region specified by (4.4). We also experimented with prior 
distributions reflecting somewhat stronger information. On the basis of various 
results stated in the empirical literature, we specify a prior 95 per cent interval" 
for the marginal propensity to consume as .2 <PI< .8. With respect to yz we do 
not know very much, except that it will be positive, less than 1and probably not 
close to 1;so we specify 0 < y2< .8as a prior 95 per cent interval. The short term 
marginal propensity to spend on investment goods is not very well known, but its 
long term analogue appears to show a fairly good empirical stability. So we specify 
.05 < &/(I -y2)< .25 as a prior 95 per cent interval. 

We make use of both the Normal and the Beta family of prior distributions. The 
generating process of a sequence of normal drawings runs as follows. Draw at 
random a value of pl from Nt.5, .0225), a value of y2 from N(.4, .04), and a value 
of the auxiliary variable u from N(.15, .0025). Then compute P2 from P2= 
(1-y2)u. The Beta family has the property that the range of the parameter is 
restricted to the interval [0, 11. To specify parameters for the Beta distributions 
corresponding with the prior 95 per cent intervals specified above, we made use of 
the tables of Pearson [IS].This resulted in the choice sf B(5,5) for PI,B(2,3)for 
YZ, and B(7,40) for Pzl(1- 72). 

In the case of the uniform prior, the prior density differed too much from the 
posterior to be acceptable as importance function. The function K, defined in (2.5) 
for the Johnston model, has a sharp peak on a small subregion of the unit interval. 
Only two per cent of the number of drawings had a K-value exceeding 13.6 per 
cent (e-') of the maximum value of K. The remaining drawings got a negligible 
weight, and a large number of drawings would be necessary to obtain a reasonable 
degree of accuracy. So we used the two-stage procedure mentioned above. In the 
second stage we experimented with Normal and Cauchy densities as importance 
function. The rather thick tails of the latter prevent explosive behavior of the ratio 
~ p / l .We took the posterior moments of the first stage with a uniform distribution 
to specify the parameters13 of I(0). The second order moments from the first stage 

11 The results of Lyttkens [13,p. 3621 satisfy (4.4) and (4.5) in all cases; the FIML estimates satisfy 
(4.6); the fix-point estimates imply a negative LTM, while the limited information techniques lead to 
relatively large LTM values (even 28.33 for 2SLS). 

12 Moreprecisely: a 95 per cent "highest prior density" interval (compare Zellner [21,p.271). Note 
that the intervals were slightly modified for the case of the Beta distribution. 

13 Of course, the Cauchy density has no moments of order> 1.In fact, we drew from a multivariate 
Normal distribution with the moments mentioned in the text and divided each vector of drawings by an 
independent drawing from an N(0, 1) distribution. 
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were multiplied by a factor k >1in order to enlarge the region from which most of 
the drawings were made. The optimal value of k was experimentally determined 
as one which yields the smallest coefficient of variation of the weights K ~ / I .This 
was reached by the Cauchy type with a k value of 1.5. 

Another variance reduction technique, the antithetic variable method, was tried 
in combination with importance sampling. This did not yield satisfactory results. 
The probable reason was lack of symmetry of both the K function for the Johnston 
model and the (truncated) importance function (prior densities). 

5. NUMERICAL POSTERIOR MOMENTS'~ 

Prior and posterior means and standard deviations were computed for the 
structural parameters (PI, P2, y2), for the reduced form parameters (apart from 
the constant terms), and for the long term multiplier. The three prior distributions 
discussed in Section 4 were used. Furthermore, we investigated the sensitivity of 
the results with respect to changes in q1 and 72 of the restrictions (4.5) and (4.6). 

Tables I and I1 show some results for the posterior moments of the structural 
and reduced form parameters and the LTM. The restriction (4.5) with q1 = 100 
was applied. The FIML point estimates have been presented for comparison. The 
results based on the Normal and Beta priors are virtually the same. In a number of 

TABLE I 

Prior Distribution PI  P z  Y z  

Classical FIML estimatesb 0.458 0.089 0.363 
(0.095) (0.035) (0.066) 

Uniform (stage 2) 0.341 0.054 0.372 
(0.121) (0.034) (0.144) 

Normal 0.432 0.079 0.401 
(0.073) (0.025) (0.113) 

Beta 0.428 0.076 0.407 
(0.076) (0.025) (0.128) 

t ~ h enumbers within brackets are standard deviations. 
Lyttkens results [13,p. 3611 are slightly different. 

TABLE I1 
REDUCED FORM^ AND LTM POSTERIOR MEANS AND STANDARD DEVIATIONS 

Prior Distribution r 2  I r 3  I r 2 z  r32 rz3 q 3 = S T M  LTM 

F I M G N o  prior 
Uniform (stage 2) 

Normal 

0.37 
0.25 

(0.20) 
0.38 

1.01 
0.66 

(0.41) 
0.94 

0.43 
0.41 

(0.16) 
0.47 

0.20 
0.11 

(0.10) 
0.18 

0.80 
0.67 

(0.34) 
0.84 

2.21 
1.77 

(0.50) 
2.12 

2.49 
1.99 

(1.16) 
2.44 

Beta 
(0.17) 
0.37 

(0.33) 
0.92 

(0.12) 
0.47 

(0.08) 
0.17 

(0.27) 
0.85 

(0.41) 
2.09 

(0.64) 
2.41 

(0.18) (0.34) (0.14) (0.08) (0.30) (0.41) (0.67) 

a See the notes to Table I. The row indices 2 and 3 of r refer to 1-1,and Z, the column indices 1,2, 3 to C,I, Y, respectively. 

14The authors are indebted to Mr. A. S. Louter of the Econometric Institute for valuable advice and 
assistance in preparing the necessary computer programs. 
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cases the results based on the two informative priors are somewhere between the 
FIML point estimates the posterior results based on the uniform prior. This is 
due to the skewness of the K function, which stretches out into the negative 
quadrant of (PI,P2), due to the factor Ilrll".The standard deviations are much 
smaller in the cases where an informative prior has been used, as was to be 
expected. In addition, Table I1 shows the importance of prior information for the 
posterior standard deviations, in particular that of the LTM. Note, however, that 
restriction (4.6) was not used in this case. 

Next, we investigated the sensitivity of the posterior moments with respect to 
restrictions (4.5) and (4.6) for various values of q1 and q2. If one uses the 
informative Normal and Beta prior distributions, the results are not sensitive. In 
case of the uniform prior the structural and reduced form posteriors are not 
sensitive (provided that (4.5) is maintained for ql  = loo), but the posterior 
standard deviation of the LTM is (see Table 111). 

TABLE 111 

SENSITIVITYANALYSISOF STM AND LTM FOR RESTRICTIONS~ 

LTM<q2, with STM< 10 STM LTM n l / n b  

a A uniform prior on (PI ,  P2, y2) is used, with importance sampling. 
b .  

n IS the number of drawings, which passed the restrictions; nl is the number of rejected drawings. 

We are interested in the trade-off between the level of numerical precision of 
Monte Carlo (MC) estimators of integrals and the number ( n )  of drawings 
performed. For example, the results for the first order posterior moments, 
presented in Tables I and 11, are based on 1500 drawings. We want to know the 
accuracy of these results, and we want to obtain an idea about the number of 
drawings sufficient for a given level of accuracy. 

MC estimators make use of mean values of a random sample; compare equation 
(3.4). For sufficiently large n, they possess the property of approximate normality, 
under the usual conditions of the Central Limit Theorem (Cramer [I,Ch. 16 and 
171) and the existence conditions of the moments, discussed in Section 3. 
Therefore an asymptotically valid 95 per cent confidence interval for a 1per cent 
relative error in the MC estimate indicates a required number of drawings in the 
following way. Let H be an MC estimator for the value of an integral and let a2 
denote the variance of each drawing; then 
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When one imposes 

with a 95 per cent confidence level, it follows that 

is a sufficient number of drawings. This result illustrates the importance of 
variance reduction (compare Section 3). 

In our case, we deal with MC estimators of ratios of integrals, as shown in 
equation (3.1). The coefficient of variation of this ratio is derived as follows. Let ti 
be an MC estimator of the ith element of the numerator of (3. I), and let to be an 
MC estimator of the denominator. So we have in our case H= tilto. Under certain 
regularity conditions (CramCr [I,pp. 353-3591), we have 

and for the coefficient of variation (squared) one obtains 

var H var ti var to Jvar ti var to 
(6.5) -- -T+-- 2p(ti, to) H~ ti t i  ti . to 

Some numerical results for the structural parameters (PI, P2, y2) and the short and 
long term multiplier are presented in Tables IV and V. 

The results show clearly that the coefficients of variation of the first order 
PMMC estimates are much smaller than the coefficients of variation of the 
numerator of such estimates, due to the substantial correlation between 
numerator and denominator. It is interesting to observe that a good importance 
function (as used in stage 2) decreases the correlation between numerator and 
denominator (which is plausible), but this is more than offset by the decrease in the 
variation coefficients of numerator and denominator. It is also seen from Table IV 
that the coefficients of variation for the denominator (for which the importance 
function was constructed) are not considerably smaller than the corresponding 
coefficients of variation for the numerator. This justifies our decision to work with 
one importance function for all integrals. 

Table V shows the number of required drawings at the prescribed level of 
accuracy. Notice that if one is satisfied with a two per cent relative error, the 
numbers have to be divided by four. This is also so if one is satisfied with a 68 per 
cent confidence level. In fact a round of 1500 drawings was performed, which gave 
reasonably accurate results, except in the case of a uniform prior without 
importance sampling. 

Special attention should be given to P2, which has a posterior mean of 0.054 if 
the prior is uniform. In fact, most economists would be satisfied to have an interval 
estimate with an interval width of 0.01 of such a parameter. But this interval is 
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TABLE IV 
SQUARED VARIATIONCOEFFICIENTS(TIMES n )  OF FIRSTORDER PMMC ESTIMATESAND 

CORRELATION COEFFICIENTS OF NUMERATOR AND DENOMINATOROF SUCH ESTIMATES 
OF (81.82. rz. STM, LTM)a 

Coefficient of Variation 
(squared) for: P I  P2 Y z  STM LTM 

Uniform Prior (Stage 1) 

Uniform Prior (Stage 2) 

Normal Prior 

Beta Prior 


Coefficient of Varlatlon 
(squared) of Numerator for Y ,  STM LTM 

Uniform Prior (Stage 1) 

Uniform Prior (Stage 2) 

Normal Prior 

Beta Prior 


Correlation Coefficient of 
Numerator and Denominator 6 ,  0 ,  Y, STM LTM 

Uniform Prior (Stage 1) 0.96 0.86 0.97 0.97 0.80 
Uniform Prior (Stage 2) 0.84 0.62 0.84 0.90 0.41 
Normal Prior 0.99 0.96 0.97 0.98 0.97 
Beta Prior 0.99 0.96 0.97 0.98 0.97 

Coefficient of Variation 

(squared) of Denominator for: all parameters 


Uniform Prior (Stage 1) 35.62 
Uniform Prior (Stage 2) 0.64 
Normal Prior 3.40 
Beta Prior 3.63 

a Based on 80,000drawings 

TABLE V 


REQUIRED NUMBER ( ~ 1 , 0 0 0 )OF DRAWINGSFOR A ONE PER CENT ACCURACYOF 

PMMC ESTIMATES"~ 


Prior Distribution P I  P2 y2 STM LTM 

Uniform Prior (Stage 1) 510 1,920 378 299 3,140 
Uniform Prior (Stage 2) 40 138 34 24 525 
Normal Prior 14 48 32 18 30 
Beta Prior 14 48 38 18 30 

;The numbers are rounded off in thousands. 

The accuracy is based on a (asymptotically valid) 95 per cent confidence interval estimate. 
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eighteen times as large as the interval required in Table V. So for this level of 
accuracy we may divide n by 1 8 ~  =324 so that 426 drawings would suffice, instead 
of the 1500 we actually used in computing Table I or the 138,000 (of Table V) 
required to reach the one per cent relative accuracy discussed in the beginning of 
this section. 

Finally, we mention a much simpler way to get some idea about the accuracy of 
the results. One may always print the results at, say, in, in,  and 2n and check the 
stability in the answers. 

7. MESSAGES OBTAINED FROM LIKELIHOOD CONTOURS 

AND MARGINAL POSTERIOR DENSITIES 

Up to now, we concentrated on the computation of first and second order 
posterior moments. These are useful distribution characteristics for normal and 
near normal distributions, but their value is doubtful for multimodal or very skew 
distributions. Furthermore, many researchers are reluctant to include prior 
information in the estimation of parameters of a model, because of the (supposed) 
subjectiveness of such information. For these reasons, the analyst, who has 
confined himself to computing low order moments, may feel the need to obtain 
some messages from the material which warn him in cases where the likelihood 
surface is multimodal or very skew, or exhibits nonlinear ridges.15 

Some of these problems can be detected by a careful study of the shape of the 
likelihood function. In our opinion it is a good strategy to start with computing 
full-information maximum-likelihood estimates. Numerical optimization 
routines usually indicate such problems as flat segments of the likelihood function 
and secondary maxima. The flat likelihood function reflects near-identification, or 
multicollinearity or both.16 Furthermore the Jacobian of the transformation from 
the structural disturbances to the dependent variables usually introduces skew- 
ness in the likelihood function. 

In order to gain some insight into the likelihood function of the Johnston model, 
we plotted likelihood contours for several parameter combinations of the well- 
known, concentrated likelihood function 

obtained by algebraic maximization of equation (2.2) of Section 2 with respect to 
q5 and 2.Note that 

Three graphs of the likelihood surface of the Johnston model are presented for the 
following combinations: (PI, P2), (PI, y2), and (P2, yz) (see Figures 1A, lB ,  and 

15 If the ridges are linear (or near-linear) and relatively flat they are reflected by large correlation 
coefficients, which can easily be found by the moment approach, but are not presented here to save 
space. 

l6 in many cases it is difficult to distinguish between these phenomena. For illustrations, see 
Goldfeld and Quandt [S] and Fair and Jaffee [6]. 
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FIGURE1B-Likelihood contoursof (PI, y2lP2=0.09). 

1C). These contours are conditional with respect to the third parameter, which is 
fixed at its FIML value. The figures are sufficiently suggestive about the shape of 
the contours. They reveal that the only prior restriction which plays a serious role 
in the analysis is P2>0. 

One can assess the influence of the prior information from the shape of the 
posterior densities.17 These posterior densities are obtained in the same run as the 
posterior moments. In fact, if appropriate functions g(0) are defined, they are 
posterior moments. The posterior probability P(a  <P2< b), for example, is 
obtained by (3.1) with 

= O  otherwise. 

It may be estimated by the method described in Section 3. And, provided that the 
intervals (a, b) are small enough, the marginal posterior density of p 2evaluated at 

17Alternatively one may compute higher order moments; compare Van Dijk and Kloek [20]. 
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FIGURE1C-Likelihood contoursof (P2, y Z I ~ l  =0.46). 

$(a+b ) is approximately given by 
P(a<Pz<b)

(7.3) b - a  
The marginal posterior densities of the structural parameter P2 and of the STM 

and LTM parameters are presented in Figure 2. The prior information used has 
been described in Section 4. Figure 2 reveals that the posteriors based on the 
uniform prior are skewed to the right as was to be expected because of the 
Jacobian. The significance of the restriction pz >0 is clearly seen in the marginal 
posterior density of P2 for the uniform prior.18 The Normal prior shifts the mean 
of the posterior densities somewhat to the right. The STM and LTM posterior 
densities indicate very small probabilities for STM and LTM values greater than 4. 
This is in contrast to several results obtained by classical estimators. 

This section gives some procedures to get an overall picture of the functions to 
be integrated. Not all aspects, however, could be covered and, obviously, more 
work is needed in this area. 

18The effect on the marginal posterior densities of P I  and y2 was much less pronounced. Figures for 
marginal posterior densities of these parameters are therefore omitted. 
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I : E(P2) = 0.055, s.d. = 0.034 
I '  

II : E(P2) = 0.080, s.d. = 0.025 

1 2 3 STM 

1 2 3 4 LTM 

FIGURE2-Marginal posterior densities of P,, STM, and LTM, with a uniform prior (I) and a normal 
prior (11). 
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8. CONCLUDING REMARKS 

In this paper we applied Monte Carlo methods in order to obtain estimates of 
posterior moments of structural and reduced form parameters of simultaneous 
equation systems. The MC methods allow the analyst to make use of several types 
of exact and stochastic prior information. The MC methods carry a computational 
workload in high dimensional problems (say, more than five), which appears to be 
efficient, compared to other methods. In addition, estimates of numerical errors 
can directly be obtained. Our illustrative example was a small equation system, 
which served to indicate different ways of using prior information in a Bayesian 
analysis of a simultaneous equation system. The approach is general enough, 
however, to be used in the context of other types of models. 

We also used Monte Carlo methods in order to compute marginal posterior 
distributions of some particularly interesting parameters. It is a problem in any 
numerical integration technique to obtain accurate results in cases of flat tails of 
the posterior densities. It seems a sensible strategy first to obtain posterior 
moments, especially in cases of high dimensionality. In such cases summarizing 
quantities are called for, as a rule (compare Dickey [4]). 

It may be possible to apply this numerical method to medium size models. Such 
a possibility has been a subject of doubt in the Bayesian literature (see Rothenberg 
[17, p. 1531 and Richard [16, p. 101). It seems then a good strategy to use partly 
analytical integration methods and partly the Monte Carlo methods. Such a 
principle of reducing the computational workload, by using analytical integration 
whenever possible, is often advocated (see, e.g., Hammersley and Handscomb 
[ lo,  p. 741). Here we will mention two examples.'g 

(i) We eliminated the constant terms and the Z:matrix by integration from the 
posterior distributions of the structural and reduced form parameters. It is 
possible to evaluate the moments of these parameters by using analytical integra- 
tion methods and numerical results of the Monte Carlo methods (see Van Dijk 
and Kloek [20]). Then one can use the posterior moments in some prediction and 
decision problems. 

(ii) In case the researcher has prior information, which allows him to restrict his 
attention to the estimation of subsystems of equation systems, he may use Drkze's 
[S]limited information analysis to derive a posterior density for the parameters of 
the subsystem. Next, one uses Monte Carlo methods to evaluate posterior 
moments of the subsystem parameters using prior information of several types. 

Finally, we want to emphasize that Monte Carlo methods are a branch of 
experimental mathematics (compare Hammersley and Handscomb [ lo,  p. 21). 
Although we are satisfied with the results reported in this paper, much experimen- 
tation is still needed before a final answer about the usefulness of Monte Carlo 
methods in Bayesian simultaneous equation estimation is possible. 

Erasmus University, Rotterdam 

Manuscript received June, 1975;final revision received December, 1976. 

l9 The second example was suggested to us by J. DrBze. 
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