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An earlier paper [Kloek and Van Dijk (1978)] is extended in three ways. First, Monte Carlo 
integration is performed in a nine-dimensional parameter space of Klem’s model I [Klein 
(1950)]. Second, Monte Carlo is used as a tool for the elicitation of a uniform prior on a finite 
region by making use of several types of prior information. Third, special attention is given to 
procedures for the construction of importance functions which make use of nonlinear 
ootimi7ntinn methods. 

1. Introduction 

In a previous paper [Kloek and Van Dijk (1978)] we proposed integration 
by Monte Carlo as a tool for finding posterior moments and posterior 
densities. In this paper we report about further experience in this area. In 
comparison to the previous paper, the analysis is extended in three ways. 

First, there is a difference in dimension. The Monte Carlo approach is now 
applied to Klein’s model I [Klein (1950)], which implies that we compute 
nine-dimensional integrals numerically; the dimensionality of the previous 
paper was only three. 

Second, we demonstrate how Monte Carlo can play a helpful role in the 
specification of prior distributions. We specify uniform priors on finite 
regions in the space of structural parameters and make use of four types of 
information. These include: 

(i) information on signs of structural parameters and short-run and long- 
run multipliers: 

(ii) information on upper bounds of the absolute values of structural 
parameters, and of short-run and long-run multipliers; 

(iii) information on the stability of the system; 

(iv) information on the length of the period of oscillation. 

*This paper started as a revision of Van Dijk and Kloek (1978). In the course of the work our 
ideas developed to such an extent that the final result is an almost completely new paper, We 
are indebted to a referee for a number of very useful suggestions. We also wish to thank A.8 
Louter and G. den Broeder of the Econometric Institute for their help in preparing the 
necessary computer programs. 
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The order of the priors is chosen in such a way that u priori implausible 
implications of one prior are (partially) corrected in the next one. In a sense 
one may speak of elicitation of a prior of economically interesting structural 
parameters by looking at the implied prior multipliers and dynamic 
characteristics. 

Third, we partially revise the suggestions for the specification of 
importance functions given in the previous paper. In particular, we 
emphasize that it is better to start with maximizing the log posterior density 
and to use (minus the inverse of) its Hessian evaluated at the optimum for 
describing the covariance structure, than with integration based on an 
importance function which is a very rough approximation of the posterior 
density. In this context it is a handicap that the posterior of our example 

(based on a uniform prior) is not twice continuously differentiable at the 
posterior mode. For that reason we experiment with two types of 
approximate priors which have the desired differentiability property. In 
addition, improvements in the accuracy of the posterior results are 
investigated by comparing the use of different members of the family of 
multivariate Student densities. 

The plan of the paper is as follows. Section 2 deals with prerequisites such 
as model specification, prior information as far as this is a routine operation, 
and a few results of our previous paper. Section 3 discusses the specification 
of prior densities of the interesting parameters. In section 4 we treat the 
problem of constructing importance functions. Posterior results of Klein’s 
model I are discussed in section 5. Our conclusions are given in section 6. 
The appendix gives some details on the use of information contract curves, 
which are used as a tool in the construction of importance functions. 

2. Prerequisites 

This section deals with such prerequisites as the model, the likelihood and 
the prior information with respect to the constant terms and the covariance 

matrix. The statistical model is the same as that in our previous paper. It can 
be summarized as follows. Our starting point is the well-known linear 
simultaneous equation model 

Yr+XB=U, (1) 

where Y is an n x G matrix of observations on G current endogenous 
variables and X an n xK matrix of observations on predetermined 
variables. The rows of U are assumed to be independently normally 
distributed with a covariance matrix 

c 0 

[ 1 0 0’ 
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where C (a non-singular G, x G, matrix) corresponds to the stochastic 
equations. The prior density of the constant terms (PO) is uniform and the 
prior density of C is proportional to IClh, where k= -&(G, + 1) and G, is the 
number of stochastic equations [see, e.g., Zellner (1971)]. As a consequence, 
analytical integration with respect to &, and C is possible. Identification is 
treated in the traditional way; for an alternative approach, see Kiefer (1979). 
As a result we have a number of exactly known parameters (not only 
identifying zeros, but also normalizing unities) which are substituted in the 
likelihood function. The remaining parameters are summarized in a vector 9. 
As a consequence we can write 

r=r(e), B=B(P,,e). 

Prior densities for 6’ (the so-called interesting parameters) will be specified in 
section 3 below. These are all uniform, but the regions differ. 

The posterior density of (6,/&,x) is obtained by combining the likelihood 
function of the linear simultaneous equation system and the prior density by 

means of Bayes theorem. Using an analytical integration procedure with 
respect to C and &,, one obtains the posterior density of 8, marginal with 
respect to 1 and /I,,. It is denoted by’ 

P’@l voeq KX)P(~), (2) 

where p(O) is the prior density of 8. We note that Ilrll”, the nth power of the 

absolute value of the determinant of r, is a factor in the K-function; this 
factor is the cause of considerable skewness of the posterior density in one 
direction. 

Next, we briefly introduce Klein’s model I. This is important for the 
interpretation of the parameters to be estimated. Also, the exact part of the 
prior information is implied. The structural equations of Klein I read 

C=cc,P+cc,P_, fa,W+a,+u,, 

I=B,P+PJ-1 -B&1 +84+u2, 

w, =y,x+y,x_, +73t+1/4+uj, 

X=C+I+G, 

P=&-w,-‘I; 

K=K_,+I, 

w=w,+w,. 

‘The precise formula for the K-function can be found in Kloek and Van Dijk (1978, eq. (2.5)). 
There is a subtle difference with the concentrated likelihood, explained in section 7 of that paper. 
In our case this difference is numerically important. Details of the analytical integration steps 
have been spelled out in Van Dijk and Kloek (1977). 
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Consumption expenditure (C) is structurally dependent on profits (P), profits 
lagged one year (P_ i) and on total wages (IV). Net investment expenditure 
(I) depends on profits, profits lagged and on the capital stock at the 
beginning of the year (K_ i); note the minus sign before f13 in the investment 
equation. Finally, private wage income (IV,) depends on net private product 

at market prices (X), the same variable lagged (X_ i) and on a trend term 
(t). The model is closed by four identities, which provide links with three 
exogenous variables: the government wage bill (IV,), government nonwage 
expenditure, including the net foreign balance, (G) and business taxes (T). 
The model counts seven jointly dependent variables (C, I, IV,, X, P, K, W) 
and eight predetermined variables (1, Pm r, X_,, K_ I, G, 7; W,, t). All 
variables (except I and t) are measured in constant dollars. 

For a more detailed exposition of the model the reader is referred to Klein 
(1950). Note however that the use of the symbols Y for net national income 

and G for government nonwage expenditure is not uniform in the literature 
on Klein’s model I. We shall use Y( =X - T + W,) for net national income 
and follow the notation of Theil, Boot and Kloek (1965). Klein (1950) uses G 

for government expenditure including wages (= G + W, in our notation). 
Other authors, e.g., Rothenberg (1973) use Y instead of X for net private 
product. This notational point is relevant for the interpretation of a number 
of reduced and final form multipliers. For details, see section 5. 

3. Prior densities 

In this section we shall specify a number of prior densities of 0 and 
demonstrate how Monte Carlo may be used to investigate the implied prior 
information with respect to the reduced form parameters, the stability 
characteristics of the model and the final form parameters (if these exist). 
Our starting point is the vector 0’ which equals (c(,, u2, c(~, /Ii, f12, p3, pi, y2, 

y3); compare the preceding section. 
Our first and simplest prior for this vector is uniform on the nine- 

dimensional unit region’ minus the region where //r// ~0.01. The latter region 
has been subtracted in order to guarantee that the implied prior moments of 
the multipliers exist. The reason for choosing such a uniform prior is that it 
is easy to understand and to specify. Suppose, for example, that the most 
important theoretical information on some parameter CI is that it is positive, 
but that one has no idea whether it will be close to zero or closer to 0.5, say. 
So one wants to specify a prior with the following properties: (i) the implied 
prior probability on the interval (-0.5, 0) should be zero or small; (ii) the 
implied prior probability on (0, 0.5) should be substantial; (iii) the prior 
density on (0, 0.5) should be constant or at least approximately constant. It 

2We use the term unit interoal for the interval (0,l) and the term unit region for a Cartesian 
product of unit intervals. 
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is impossible to specify a normal or Student prior which simultaneously has 
these three properties. The simplest way to avoid this problem is to specify a 
uniform prior on (0, b) , where b is given some appropriate value. In that 
interval the likelihood determines the posterior. It goes without saying that 
such a prior need not reflect in all detail the betting odds one might be 
willing to accept. 

Next we investigate the implications of our prior information for the 
multipliers and dynamic characteristics of the model. We obtained the 
implied prior means and standard deviations of these functions of 0 by 
drawing Q vectors from the nine-dimensional standard uniform distribution. 

Each e vector was checked with respect to the condition /IT/j>O.Ol. In case 
this condition was not satisfied, the vector was rejected and replaced by a 
new vector. Each experiment was stopped when 2,500 6, vectors satisfying the 
constraint were obtained. For each e vector we computed the implied 

reduced form parameters or short-run multipliers (SRM) and some other 
characteristics, to be discussed below. These were the basis for the 
computation of implied prior means and second-order moments. 

The reduced form equations form a system of linear difference equations. 
The roots of the characteristic polynomial of this system summarize the 
dynamic properties of the system [see Theil and Boot (1962)]. Dependent on 
these roots the system may be damped or explosive, and oscillating or 
monotone. For each of these four states we computed the prior probabilities 
implied by the specified structural prior density. In case the system is 
oscillating one may compute the period of oscillation, and in case the system 
is damped one may compute the final form parameters or long-run 
multipliers (LRM). 

As a next step we modified our first prior in several ways by adding sets of 
extra constraints. The constraint of prior 1 was maintained in all stages. The 
sets of extra constraints, which were introduced partly one at a time and 
partly in various combinations, will now be described: 

(1) The system is assumed to be stable. So we only accepted vectors 0 
satisfying 1DRTl-c 1, where DRT is the dominant root of the 
characteristic polynomial. In the present example this is of the third 

degree; for computational aspects, see Uspensky (1948). 
(2) The long-run effects in the structural equations CI, +cx,, pi +b2, y1 +yZ are 

all assumed to be in the unit interval. 
(3) The SRM’s are assumed to be less than five in absolute value (with an 

exception for the reduced form equation of K, where an upper bound of 
ten was adopted) and to have the correct sign (positive for effects of W, 
and G, negative for effects of T). 

(4) The same constraints as mentioned in 3 were applied to the LRM’s. 
(5) The period of oscillation is assumed to be between three and ten years. 
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This is in accordance with the observed length of business cycles in the 
period 1890-1920; see Historical statistics of the U.S. (1975). 

In table 1 we show the prior means and standard deviations for eight 
different priors, which were obtained by combining the sets of extra 
constraints in several ways. The priors of p3 and y3 hardly reacted on the 
constraints. The means and standard deviations of the remaining parameters 

decreased, with one exception (the mean of yi in prior 2). The parameters 
most affected by the constraints were c~i, fil and y2. 

Table 1 

Prior means and standard deviations of structural parameters. 

Sets of 
extra 

Prior constraints xl a, u3 

1 No 

2 1 

3 2 

4 L2 

5 2,3 

6 1,2,3 

I 1,2,3,4 

8 1,2,3,4,5 

0.51 0.51 
(0.28) (0.28) 

0.41 0.43 
(0.29) (0.28) 

0.34 0.33 
(0.23) (0.23) 

0.27 0.33 
(0.21) (0.23) 

0.27 0.36 
(0.20) (0.24) 

0.25 0.34 
(0.20) (0.23) 

0.25 0.33 
(0.20) (0.22) 

0.26 0.33 
(0.20) (0.22) 

0.51 
(0.28) 

0.37 
(0.26) 

0.50 
(0.28) 

0.45 
(0.27) 

0.46 
(0.27) 

0.43 
(0.27) 

0.40 
(0.25) 

0.39 
(0.24) 

0.50 
(0.29) 

0.41 
(0.28) 

0.34 
(0.24) 

0.29 
(0.21) 

0.27 
(0.20) 

0.27 
(0.20) 

0.27 
(0.20) 

0.27 
(0.20) 

0.50 
(0.29) 

0.36 
(0.26) 

0.34 
(0.24) 

0.29 
(0.21) 

0.37 
(0.24) 

0.30 
(0.21) 

0.30 
(0.21) 

0.29 
(0.21) 

0.50 
(0.29) 

0.49 
(0.29) 

0.50 
(0.29) 

0.50 
(0.30) 

0.50 
(0.29) 

0.50 
(0.30) 

0.53 
(0.27) 

0.55 
(0.27) 

0.50 
(0.28) 

0.66 
(0.26) 

0.34 
(0.23) 

0.42 
(0.24) 

0.35 
(0.23) 

0.41 
(0.24) 

0.41 
(0.24) 

0.42 
(0.24) 

0.50 
(0.29) 

0.33 
(0.24) 

0.33 
(0.24) 

0.26 
(0.20) 

0.33 
(0.24) 

0.27 
(0.20) 

0.27 
(0.20) 

0.28 
(0.20) 

0.50 
(0.29) 

0.49 
(0.30) 

0.50 
(0.29) 

0.50 
(0.29) 

0.50 
(0.29) 

0.50 
(0.29) 

0.49 
(0.29) 

0.49 
(0.29) 

In table 2 we show the prior means and standard deviations for the 

multipliers of W,, T and G in the reduced and final form equations for 
national income (Y), the dominant root and the period of oscillation, and the 
prior probabilities for the four states of the system. If only structural extra 
constraints are introduced (priors 1 and 3) the prior means of the SRM’s 
have the correct signs but very large standard deviations. (Obviously, these 
standard deviations are very sensitive for the lower bound of Ilrll.) 
Accordingly the probabilities of explosive behavior are substantial. If the 
DRT constraint (1) is introduced (priors 2 and 4) the standard deviations are 
moderate, but only if the SRM constraints (3) are introduced the standard 
deviations are of acceptable size. In the same way the standard deviations of 
the LRM’s are very large in priors 2, 4 and 6 where the LRM constraints (4) 
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Table 2 

313 

Prior means and standard deviations of selected multipliers: period of oscillation and 
dominant root; prior probabilities of states. 

Sets of Short-run effects on Y Damped Explosive 
extra 

Prior constraints W, T G Oscil- Mono- Oscil- Mono- 
latory tone latory tone 

1 No 

2 1 

3 2 

4 1,2 

5 2,3 

6 1,2,3 

7 1,2,3,4 

8 1,2,3,4,5 

2.08 - 2.36 1.98 
(9.20) (15.64) (12.46) 

1.98 -2.82 2.17 
(1.43) (1.96) (1.55) 

2.65 -2.91 2.85 
(6.77) (10.46) (9.49) 

2.24 -2.55 2.40 
(1.47) (1.69) (1.53) 

2.11 -2.34 2.24 
(0.88) (0.95) (0.84) 

1.97 -2.20 2.08 
(0.82) (0.88) (0.76) 

1.87 -2.16 2.01 
(0.73) (0.87) (0.72) 

1.86 -2.18 2.02 
(0.73) (0.86) (0.71) 

0.22 

0.96 

0.52 

0.98 

0.66 

0.98 

0.98 

0.98 

0.01 0.46 

0.04 0 

0.02 0.32 

0.02 0 

0.02 0.29 

0.02 0 

0.02 0 

0.02 0 

0.31 

0 

0.14 

0 

6.03 

0 

0 

0 

Sets of Long-run effects on Y 
extra Period of 

Prior constraints W, T G oscillation IDRTI 

2 1 2.39 -2.51 2.35 6.82 0.78 
(20.33) (13.63) (20.72) (8.48) (0.17) 

4 1,2 2.87 - 2.83 2.95 7.37 0.74 
(11.46) (5.01) (11.44) (8.30) (0.18) 

6 1,2,3 2.61 - 2.66 2.69 7.32 0.74 
(11.34) (4.91) (11.32) (7.96) (0.18) 

7 1,2,3,4 1.96 -2.22 2.04 6.60 0.72 
(0.88) (0.76) (0.80) (6.71) (0.18) 

8 1,2,3,4,5 1.94 - 2.22 2.02 5.71 0.72 
(0.88) (0.76) (0.80) (1.42) (0.18) 

were not applied, while priors 7 and 8 have acceptable standard deviations 
for the LRM’s. In the same way, the standard deviations of the period of 

oscillation are large until it is constrained in prior 8. 

We conclude this section by making five remarks: 

(i) As a byproduct of our integration procedure we obtained marginal 
prior densities of the structural parameters. These were either uniform or 
skew. They are not shown for space considerations. 
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(ii) A disadvantage of the truncated priors is that one might fail to detect 
specification errors. This problem can easily be solved by carrying out 
sensitivity analysis on larger intervals than the unit interval, but this subject 
is outside the scope of the present paper. It should be added that the Monte 
Carlo approach can very well be applied in cases of smooth priors. Some 
simple examples can be found in Kloek and Van Dijk (1978). The only 
problem, in our opinion, is the difficulty of specifying such priors. 

(iii) In monotone cases the period of oscillation was not computed. So the 
distributions of the period of oscillation as shown should be interpreted as 
conditional distributions, the condition being that the system is oscillating. 
Since the period of oscillation is positive by definition, it follows from the 
large standard deviations that the implied prior densities in the cases of 
priors 2, 4, 6 and 7 are very skew. This was the motivation for introducing 
set of constraints (5). 

(iv) Our priors 1 and 2 admit the possibility that the long-run marginal 
propensity to consume from profit income is in the interval (1, 2). Few 
economists would accept such an outcome. Similar things can be said about 
the sums pi + p2 and yi + y, in the other equations. This explains set of 
constraints (2). If one of these constraints was violated we made use of the 

following computational device. Start with an auxiliary vector 8” and test 

whether the above mentioned sums are larger than one. If cc: + CX~ > 1 (say), 
then take x1=1-a”,, c~~=l-r$, otherwise take ai=%“,, a,=@. The 
reduction of computation time due to this device was substantial. 

(v) The approach of presenting results for several priors was advocated, in 
a somewhat different context, by Learner (1978). The above examples shoti 
that Monte Carlo may be a useful tool to find out the consequences of 
specifying a structural prior. In addition, the possibility is demonstrated to 
combine prior information of different types. 

4. Construction of importance functions 

Let g(H) be a function of the structural parameters. Then in our 
integration by Monte Carlo approach the posterior mean of g(8) is 
computed as 

(3) 

apart from a normalizing constant which is computed separately. Here I(. ) 
is the density of a distribution from which vectors ZZi, tZ2,. . .,O, are drawn, 
p’(. ) is the posterior density and N is the number of drawings. The density I 
(the so-called importance function) is supposed to have convenient Monte 
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Carlo properties and to be an approximation of the posterior density. For an 
explanation, see Kloek and Van Dijk (1978, sect. 3). 

If the posterior density is multivariate and unimodal the most obvious 
choice for the functional form of the importance function is the multivariate 
Student family with the multivariate normal density as a limiting case. A 
multivariate Student density may be written as 

where 

and where p is the center of the distribution, T/ a positive 
the degrees of freedom parameter and s the dimension of 0. 

Random s-vectors Qi, e2,. . ., 0, distributed according to 

(4) 

definite matrix, 3. 

(4) are generated 

as follows. One starts to generate an s-vector ui of independent standard 
normally distributed random variables. Efficient techniques for this step can 
be found in Atkinson and Pearce (1976). Then ui is premultiplied by a matrix 
A which satisfies l/=AA’. We obtained A from the eigenvalues and 
eigenvectors of V but it is also possible to construct a triangular matrix A by 
a Cholesky technique; see e.g. Bard (1974). Finally, one draws a vector u’~ of 

A independent standard normal variables and obtains the s-vector fli from 

Bi = p + Aui(/l/w;wi)‘. (5) 

The scalar in the last term can be deleted in case the importance function is 
multivariate normal. 

If we adopt the multivariate Student density as a functional form for the 
im.portance function, we need a way to specify its parameters. If the sample is 
sufficiently large and certain conditions are satisfied, the likelihood function 
is approximately normally distributed. The same holds for the posterior 
density if the prior is locally uniform on a neighborhood of the maximum 
likelihood estimate. So it seems reasonable to take for p the ML estimate of 
8 and for I/ its estimated asymptotic covariance matrix, possibly multiplied 
by a scalar 4. Alternatively, one may take for ,n the posterior mode of 0 and 
for I’ minus the inverse of the Hessian of the log posterior density, evaluated 
at the posterior mode, possibly multiplied by 4. 

In the case of Klein’s model I the FIML estimate is unacceptable in view 
of our prior information. Neither does the K-function possess a maximum in 
the interior of the unit region. The consequence is that our log posterior 
density for prior 1 is not differentiable at the posterior mode. The same holds 
for the other priors, but for simplicity we focus our attention on prior 1. So 
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we considered several other ways to find a p and V for our importance 
function. 

(i) Sequential Monte Carlo. We started with rough estimates of the 
posterior mean and covariance matrix for p and c and applied the Monte 

Carlo approach in an iterative fashion. The posterior results of the first stage 
were used to construct the importance function of the second stage, and so 
on. This is the procedure we advocated in Kloek and Van Dijk (1978). Now 
we have more experience with it and we have found that the convergence is 
often slow, sometimes very slow. The explanation for this phenomenon is as 
follows. If the importance function is a poor approximation of the posterior 
density, the variation in the ratios p’(Qi)/l(di) for i= 1,. .., N may be very 
large. As a result, formula (3) is dominated by a small number of large values 
of p’(e,)/Z(o,) and hence the approximation error may be large, unless the 
sample size N is excessively large. This is particularly the case for the second- 
order moments. And if the posterior covariance matrix is not well 
approximated, the same phenomenon appears again in the next stage. Given 
this conclusion we looked for alternative approaches, which will be described 
now. 

(ii) Exuct posterior mode. Given our uniform prior and the fact that the K- 
function has no interior maximum in the a priori acceptable region, the exact 
posterior mode is on the boundary of that region. It turns out that it can be 
obtained by maximizing K under the equality constraint fil =O. The Hessian 
of -log K, evaluated in that point, is positive definite and hence its inverse 
can be used for I/: But this may not be the rule in similar cases. 

(iii) Normal approximation of prior. We approximated our prior by an 
N(B,, V,) density with means and standard deviations as specified in the third 
line of table 1. The covariances of the pairs (a,, a,), (pl,flZ), (y1,y2) were set 
at - l/36 (this follows from the constraints of the type x1 + a, < 1) and the 

remaining covariances were taken to be zero. We then obtained an 
information contract curve by maximizing 

lnK(B)-_~(O-Bo)‘V,‘(O-n,), (6) 

for a sequence of values for the scalar k. This procedul-c is similar to the 
approach suggested by Dickey (1975) and Learner (1978). (The former uses 
the term ‘curve dtcolletage’.) We chose a value for k such that the resulting 
approximate posterior mode was just inside the unit region. Additional 
details concerning this approach are given in the appendix. 

(iv) Uniform prior with polynomial transitions. In this case we return to 

the idea of the uniform prior but we replace the discontinuities in the density 
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by fifth-degree polynomials in order to obtain a log posterior with 
continuous derivatives of the first and second orders. An example of such a 

polynomial transition is 

D(r)=0 if rs-1, 

3 5 15 1 
=-Y5-8r3+16r+Z 

16 
if -ISril, (7) 

= 1 if 1 5 r. 

where r=a/6, a denotes an arbitrary parameter and 6 a small positive 

number. Formula (7) approximates the zero-one transiton at a=O. [Recently, 
the same polynomial was used by Tishler and Zang (1979) in the context of 
switching regressions.] The polynomial for the one-zero transition at c(= 1 
can easily be derived. We experimented with several values of 6 and obtained 
the modes of the corresponding posterior densities by numerical 
optimization. 

We computed posterior moments of 19 (based on prior 1) by means of (3) 
using Student importance functions (4) with E. = 1, 42 = 1, while we used the 
approaches (i)-(iv) described above to find p and I/: For each case we 
computed the coefficients of variation as described in Kloek and Van Dijk 
(1978, sect. 6). The results for the cases (ii)- are shown in the first three 
lines of table 3. The lower half gives comparable results for I. = 5, 4’ = 2. For 
the exact posterior mode (ii) the results were not very good. A tentative 

Table 3 

Variation coefficients (X J’N) of the posterior means of 0 and of the reciprocal of the 
normalizing constant.” 

Approach 

Case 1: i=l. &=l 

(ii) Exact posterior mode 1.64 1.13 0.15 1.72 0.53 0.65 0.68 1.01 0.84 2.46 
(iii) Normal approximation 2.22 2.13 0.17 2.34 0.63 0.62 0.50 0.75 0.70 3.28 
(iv) Polynomial transitions 1.18 0.89 0.11 1.83 0.31 0.42 0.40 0.53 0.51 1.68 
(v) Normal approximationb 1.25 0.91 0.11 1.58 0.32 0.48 0.52 0.65 0.53 1.71 

Case 2: i=5, 42=2 

(ii) Exact posterior mode 1.80 0.85 0.13 2.04 0.38 0.56 0.65 0.66 0.70 2.38 
(iii) Normal approximation 1.78 1.23 0.14 1.91 0.41 0.50 0.49 0.77 0.59 2.59 
(iv) Polynomial transitions 1.21 0.78 0.10 1.42 0.31 0.53 0.55 0.76 0.48 1.53 
(v) Normal approximationb 0.97 0.66 0.07 1.19 0.26 0.36 0.35 0.41 0.50 1.08 

“The computations reported here were based on prior 1 and N = 10,000. The reciprocal of the 
normalizing constant is obtained by substituting g = 1 in (3). 

%econd step. 

El4 B 
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explanation is that this approach disregards our prior .information in the 
stage of importance function construction. For the normal approximation 
(iii) the results are sometimes better, but more often even worse. The 
problem with normal prior densities is that they are very informative in an 
undesired way. (We already discussed this point in section 3 for a one- 
dimensional example. The multivariate case creates more complications.) As 
a consequence, the resulting approximate posterior contained larger 
approximation errors than desired. In this respect the uniform prior with 
polynomial transitions (iv) with 6=0.1 gave better results. 

(v) Two-step normal approximation of prior. Finally we combined in a sense 
the approaches described under (i) and (iii), as follows. First we computed 
posterior moments using the importance function described under (iii). Then 
we used the resulting posterior mean vector and covariance matrix as the 
moments of a new normal approximate prior, and used this as the starting 
point for again applying approach (iii). In this way the sample information is 

used twice, so that the first-step prior implicitly becomes less informative. 
Note that we only used this approach to construct an importance function. 
Our original prior was maintained in the posterior density ~‘(6~). It is seen 
from table 3 that the results improved considerably compared with approach 
(iii). In case l(i= 1, @= 1) it appears that (iv) is equally good or slightly 
better than (v); in case 2 (jL=5, @‘=2) (v) seems to be preferable. 

This leads us to the problem of the optimal values of 4 and L We 
computed a large number of cases but the results are ambiguous. The 
surfaces of the variation coefficients, interpreted as functions of 4 and A, 
appear to be rather flat. It is clear that i= 1, 4’= 1 is not an optimal 
combination, but for values of iL between 2 and 15 there is no clear optimum 
value; neither is there for I$’ values between 1.8 and 2.4. It should be added 
that we did not compute the variation coefficients of the variation 
coefficients. It might be the case that the latter are much less reliably 
computed than the posterior means. 

Since (iv) is simpler to compute than (v), it is, as far as our presently 
available evidence goes, to be preferred. More experience is needed, however, 

before more definitive conclusions are possible. 
This concludes our discussion of the importance functions we constructed 

for Klein’s model. We add some remarks which may be applicable in more 
general situations. If the posterior density is bimodal or multimodal, the 
most appropriate specification seems to be a mixture of multivariate Student 
densities. (One might also consider the use of mixtures in case of a unimodal 
but very skew posterior.) A complication of this approach is that the 
normalizing constants of (4) can no longer be disregarded. In order to 
identify regions where the ratio p’(Oi)/Z(Oi) is large, one might try to apply 
cluster analysis. More research on this topic is needed. 
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5. Posterior results 

In this section we present the posterior means and standard deviations of 
the structural parameters 8 (table 4), the short-run multipliers (table 5), the 
long-run multipliers (table 6), the period of oscillation and the dominant root 
(table 7). Furthermore we present the posterior probabilities of the states of 
the system (table 8) and the marginal posterior densities of the structural 
parameters (fig. 1) and of the multipliers in the reduced form and final form 
equations for national income (fig. 2). The dotted vertical lines in the figures 

Table 4 

Posterior means and standard deviations of structural parameters 

FIML (no prior) -0.23 0.39 0.80 -0.80 1.05 0.15 0.23 0.28 0.23 
(0.58) (0.30) (0.04) (0.84) (0.42) (0.05) (0.09) (0.06) (0.06) 

Prior 2 0.12 0.19 0.79 0.06 0.64 0.15 0.34 0.23 0.19 
(0.08) (0.08) (0.04) (0.06) (0.10) (0.03) (0.05) (0.05) (0.04) 

Prior 8 0.24 0.06 0.72 0.14 0.56 0.20 0.37 0.24 0.19 

(0.08) (0.04) (0.05) (0.09) (0.12) (0.05) (0.04) (0.04) (0.05) 

Table 5 

Posterior means and standard deviations of short-run multipliers 

(SRM). 

Prior information C I W1 P Y K 

SRM values of government wage expenditure (W,) 

FIML (no prior) 0.81 -0.31 0.12 0.38 1.50 -0.31 

Prior 2 1.24 0.06 0.44 0.86 2.30 0.06 
(0.12) (0.06) (0.10) (0.11) (0.16) (0.06) 

Prior 8 1.35 0.14 0.55 0.95 2.49 0.14 
(0.17) (0.11) (0.12) (0.17) (0.26) (0.11) 

SRM values of business taxes (T) 

FIML (no prior) 0.24 0.41 0.15 -0.51 -0.36 0.41 

Prior 2 -0.23 -0.08 -0.11 -1.21 -1.32 -0.08 
(0.15) (0.08) (0.07) (0.13) (0.20) (0.08) 

Prior 8 -0.58 -0.22 -0.29 -1.51 -1.81 -0.22 
(0.22) (0.16) (0.13) (0.22) (0.34) (0.16) 

SRM values of government non-wage expenditure (G) 

FIML (no prior) 0.01 -0.38 0.15 0.48 0.62 -0.38 

Prior 2 0.58 0.07 0.57 1.09 1.65 0.07 
(0.14) (0.07) (0.13) (0.12) (0.19) (0.07) 

Prior 8 0.87 0.19 0.76 1.31 2.06 0.19 
(0.19) (0.14) (0.14) (0.21) (0.30) (0.14) 
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Table 6 

Posterior means and standard deviations of long-run multipliers (LRM). 

Prior information C I W, P Y K 

LRM values of government wage expenditure (W,) 
FIML (no prior) 1.57 0 0.82 0.76 2.57 1.28 

Prior 2 1.87 0 1.06 0.81 2.87 3.86 
(0.16) (0.10) (0.09) (0.16) (2.37) 

Prior 8 1.63 0 0.99 0.64 2.63 2.39 
0.16) (0.10) (0.09) (0.16) (0.67) 

LRM values of business taxes (T) 
FIML (no prior) -0.30 0 -0.16 - 1.14 - 1.30 -1.94 

Prior 2 -0.73 0 -0.41 - 1.32 - 1.73 -6.27 
(0.23) (0.12) (0.11) (0.23) (3.43) 

Prior 8 -0.67 0 -0.41 - 1.27 - 1.67 -4.74 
(0.20) (0.12) (0.09) (0.20) (1.33) 

LRM values of government non-wage expenditure (G) 
FIML (no prior) 0.96 0 1.02 0.94 1.96 1.59 

Prior 2 1.38 0 1.35 1.03 2.38 4.90 
(0.14) (0.11) (0.10) (0.14) (2.79) 

Prior 8 1.25 0 1.37 0.89 2.25 3.30 
(0.13) (0.10) (0.09) (0.13) (0.88) 

Table 7 

Posterior moments of the period of oscillation and the 
modulus of the dominant root. 

Period of 
oscillation W*l 

FIML (no prior) 34.83 0.76 
Prior 2 15.06 (2.90) 0.84 (0.08) 
Prior 8 9.61 (0.37) 0.77 (0.08) 

Table 8 

Posterior probabilities of states. 

Prior Oscillating Monotone 

2 0.9999 0.0001 
8 0.9927 0.0073 
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SRM's LRM's 

1.90 2.30 2.49 3.30 2.10 2.63 2.87 3.30 

2 

;f 

T 

8 

a 

-2.70 -1.81 -1.32 -1.00 -2.30 -1.73 -1.67 -1.10 

w2 

1. 25 1.65 2.06 2.85 1.85 2.25 2.38 2.75 

Fig. 2. Posterior densities of multipliers in reduced and final form equations of national income. 
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indicate the means. In all tables we give the FIML results (with asymptotic 
standard errors in table 4) for comparison. In all cases we confine ourselves 
to presenting the results based on priors 2 and 8. The reason is that the 
differences between the results for priors 1 through 7 for the structural 
parameters and SRM’s and for priors 2, 4, 6 and 7 for the LRM’s were very 
small. We shall discuss this point in more detail below. All results presented 
are based on N = 30,000. For the construction of the importance functions we 
made use of an approximate prior, which was uniform with polynomial 
transitions; compare the preceding section, approach (iv). The results for 
prior 2 were based on A= 5, (b2 = 2 and those for prior 8 on /2= 3, 4’ = 2. In 
a typical run for a given prior and a given importance function we compute 
29 posterior means, 137 posterior second moments and 302 posterior 
probabilities. The computer time for such a run on a DEC 2050 computer 
varies from approximately 45 minutes CPU time for results based on prior 2 
to approximately 75 minutes for results based on prior 8. This demonstrates 
the feasibility of the approach. 

We start to observe that the FIML estimates of Z, and fil have wrong 
signs. When analyzing this phenomenon it is found that three factors play a 
role. First, the data reveal collinearity of P and P-i, which implies that the 
fit of the investment equation, for example, does not deteriorate much if pi 
decreases while p2 increases at the same time. Second, there is a positive 
correlation between the residuals of the consumption and investment 
functions. If the covariance matrix C is postulated to be a diagonal matrix 
the wrong signs are not observed [Klein (1950)]. This hypothesis is, however, 
strongly rejected in a likelihood ratio test [x2(3)=28.46]. Third, the 
Jacobian, 

is less than or equal to unity in the unit region but equals 1.60 in the FIML 

point. Recall that a factor llrll” occurs in the likelihood function and in the K 
function. Note that in 3SLS, where the Jacobian factor is absent but the 
nondiagonal elements of C are present, /?I has a wrong sign but only 
marginally so (?, = -0.013) [Theil (1971)]. If pi is restricted to be zero, c(i 
gets the correct sign and this hypothesis is not rejected in a likelihood ratio 
test [x2(1)=3.20]. So, there is no conflict between the sample information 
and our prior information which states that c~i and pi should be non- 
negative. If we compare the FIML asymptotic standard errors and the 
posterior standard deviations of the structural parameters (table 4) we see 
that this prior information plays a large role. 

Once we have accepted the prior information that all elements of 0 are in 
the unit region, the extra constraints (1, 2, 3 and 4), introduced in section 3, 
turn out not to be restrictive. Given prior 1 the posterior probability that the 
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system is explosive is 0.021. Given prior 2 the long-run effects in the 

structural equations are all in the unit interval (table 4). In this respect it 
should be noted that the relevant covariances are all negative. All SRM’s 
(table 5) and LRM’s (table 6) amply satisfy the upper bound constraints. 
They also satisfy the sign constraints, though some are close to zero. In 
these cases the posterior densities (not shown here in order to save space) 
turn out to be skew so that the probability of wrong signs is extremely small, 
even under prior 1. This explains why the differences between the posteriors 
are very small. 

The only set of extra constraints which adds substantial information to the 
sample is set (5), which says that the period of oscillation should be between 3 
and 10 years. It is seen in tables 5 through 8 and in figs. 1 and 2 that this 
set, introduced in prior 8, influences almost every parameter. In particular, if 

CQ and p2 are relatively large (which corresponds to negative or small 
positive values of x1 and pl) the lags become large and this, in turn, implies 
long periods of oscillation (compare tables 4 and 7) and relatively small 
absolute values of most of the SRM’s (table 5). 

So we have observed that the prior constraints on the period of oscillation 
have rather large effects. The question arises whether this information is 
acceptable. The posterior mean and standard deviation of the period of 
oscillation under prior 2 (table 7) suggest that the hypothesis of a ten-year 
period is acceptable, but closer inspection of the marginal posterior density 
(not shown) reveals that the distribution is positively skew and the posterior 
probability that the period is ten years or less equals 0.024. This suggests 
rejection of the prior constraint. 

When considering these results we were tempted to look for specification 

errors and accordingly to respecify the model. But we deliberately refrained 
from doing so for three reasons. First, the main purpose of this paper is to 
demonstrate that the integrations can be done and how they are done. 
Second, so far Bayesian statistics lacks a well developed standard battery of 
diagnostic checks as has been developed for instance in the context of time- 
series analysis. Third, the available data set corresponding to Klein’s model I 
(21 annual observations per variable) is rather limited if one would consider 
to use the traditional diagnostic tests. 

6. Conclusions 

(1) In this paper we have demonstrated the feasibility of nine-dimensional 
numerical integration by means of Monte Carlo in the context of Bayesian 
posterior analysis. A condition is that an importance function can be found 
which is a reasonable approximation of the posterior density. This was the 
case in the present examples. 

(2) We have also given some guidelines for the construction of importance 



U.K. ran Dijk and 7: Kloek, Buyesian analysis using Monte Carlo integration 325 

functions. In particular, we have emphasized the importance of optimization 
in the initial stage, since integration based on an importance function which 

is a poor approximation tends to give very unreliable results. If the latter 
approach is repeated in an iterative fashion, one may encounter very slow 
convergence. We confined ourselves to using multivariate Student densities. 

The search for more flexible alternatives is an area for future research. 
(3) Finally, we have shown how Monte Carlo may be used as a tool for 

elicitation of prior information. In our particular example we investigated 
how our initial prior information on structural parameters was modified by 
specifying prior information on multipliers and the period of oscillation. In 

particular, we confined ourselves to prior information which is uniform on a 
region in a space of nine structural parameters. The bounds of this region 
consist of inequality constraints on (functions of) these structural parameters. 
Many more examples can be thought of in cases where other types of prior 
information are available. A practical restriction is that for some types of 
prior information generating random variables by means of Monte Carlo 
may require complicated computer programs. There is ample room for 
experimentation in this area. 

Appendix 

In this appendix we present some numerical results on the information 
contract curves discussed in section 4. The first approach is to combine the 
normal approximation of the uniform prior, denoted by hJ(U,, (l/k)&), with 
a normal approximation of the likelihood based on the FIML point estimate 
and the corresponding asymptotic covariance matrix. In this case one can 
make use of formula (5.27) in Learner (1978). Computationally this 

expression is simple. 
The second approach is to combine the normal approximation to the prior 

with the exact K-function. Then (6) is maximized numerically with respect to 

0 for several values of k by means of a variable metric method [see Broyden 
(1972)], and the references cited there]. Given the availability of good 
software these optimizations take only a few seconds CPU-time on modern 
computers. Therefore the second approach is computationally easy as well 
(though somewhat more time consuming than the first). It may have the 
advantage of being a more accurate approximation to the posterior. 

Six information contract curves have been drawn in fig. 3 for three- 
parameter combinations for the case of prior 1. The dotted line indicates that 
the first approach has been used. The drawn line indicates the use of the 
exact approach. We have chosen the moments of prior 3 of section 3 as 
moments of the normal approximation to the uniform prior on the unit 
region. The more obvious choices of 0.5 as prior mean for each element of 0, 
were rejected because this turned out to be informative in an undesired way. 
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Fig. 3. Information contract curves for (iyj, q), (a,, 8,) and (/j,, /j2). 
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Table 9 

Three points on three information contract curvesa 

Q 
R 
s 
Posterior means 

(prior 1) 

0.30 0.12 0.78 0.01 0.68 0.17 0.29 0.25 0.21 
0.18 0.19 0.76 0.01 0.65 0.16 0.33 0.23 0.22 

0.11 0.19 0.79 0.01 0.69 0.16 0.34 0.22 0.19 
0.12 0.19 0.79 0.06 0.64 0.15 0.34 0.23 0.19 

“The third information contract curve on which S is situated is not drawn in fig. 3 since it is 
very close to the second approach. The posterior means are given for comparison. 

The FIML estimate e^ is given for comparison. In table 9 the cases Q, R and 
S represent points (on three information contract curves) which are just 

inside the unit region. The case of the asymptotic approximation to the K 
function is represented by Q, the exact approach by R and the two-step 
approach with exact K function, discussed in section 4, is represented by S. 
These points have been drawn in fig. 3. Summarising the results, the 
available evidence indicates that the exact approach is more accurate than 
the asymptotic approach [compare c(, =0.30 and 3, =0.18 with E(u,)=0.12] 
and secondly that a two-step approximation procedure is better than a one- 
step, since the normal approximation to a uniform prior is still informative 
in an undesired way (the point R is pulled too far towards 0, for the case of 
q). Finally, note that the constraint fil >O is binding and that the mode of 
the marginal posterior density is zero in this case. 

References 

Atkinson, AC. and M.C. Pearce, 1976, The computer generation of Beta, Gamma and Normal 
random variables, Journal of the Royal Statistical Society A 139, 431-448. 

Bard, Y.. 1974, Nonlinear parameter estimation (Academic Press, New York). 
Broyden, C.G., 1972, Quasi-Newton methods, in: W. Murray, ed., Numerical methods for 

unconstrained optimization (Academic Press, London). 
Dickey, J., 1975, Bayesian alternatives to the F-test and least squares estimate in the normal 

linear model, in: SE. Fienberg and A. Zellner, eds., Studies in Bayesian econometrics and 
statistics (North-Holland, Amsterdam). 

Historical statistics of the United States, Colonial times to 1970, Bi-centennial edition, 1975 
(U.S. Bureau of the Census, Washington, DC). 

Kiefer, N.M., 1979, Limited information analysis of two small underidentitied macroeconomic 
models, Report 7929 (Center for Mathematical Studies in Business and Economics, 
University of Chicago, Chicago, IL). 

Klein, L.R., 1950, Economic fluctuations in the United States, 1921-1941 (Wiley, New York). 
Kloek, T. and H.K. van Dijk, 1978, Bayesian estimates of equation system parameters, An 

application of integration by Monte Carlo, Econometrica 46, l-19. Reprinted in: A. Zellner, 
ed., 1980, Bayesian analysis in econometrics and statistics, Essays in honor of Harold Jeffreys 
(North-Holland, Amsterdam). 

Learner, E.E., 1978, Specification searches (Wiley, New York). 



328 HX. van Dijk and 7: Kloek, Bayesian analysis using Monte Carlo integration 

Rothenberg, T.J., 1973, Efficient estimation with a priori information (Yale University Press, 
New Haven, CT). 

Theil, H., 1971, Principles of econometrics (Wiley, New York). 
Theil, H. and J.C.G. Boot, 1962, The final form of econometric equation systems, Review of the 

International Statistical Institute 30, 136-152. Reprinted in: A. Zellner, ed., 1968, Readings in 
economic statistics and econometrics (Little, Brown and Co., Boston, MA). 

Theil, H., J.C.G. Boot and T. Kloek, 1965, Operations research and quantitative economics 
(McGraw-Hill, New York). 

Tishler, A. and I. Zang, 1979, A switching regression method using inequality conditions, 
Journal of Econometrics 11, 2599274. 

Uspensky, J.V., 1948, Theory of equations (McGraw-Hill, New York). 
Van Dijk, H.K. and T. Kloek, 1977, Predictive moments of simultaneous econometric models, A 

Bayesian approach, in: A. Aykac and C. Brumat, eds., New developments in the applications 
of Bayesian methods (North-Holland, Amsterdam). 

Van Dijk, H.K. and T. Kloek, 1978. Posterior analysis of Klein’s Model I, Report 7824/E 
(Econometric Institute, Erasmus University Rotterdam, Rotterdam). 

Zellner, A., 1971, An introduction to Bayesian inference in econometrics (Wiley, New York). 


