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Abstract 

In this paper, we consider a newly-designed automated storage and retrieval system (AS/RS). 

The system consists of an automated crane taking care of movements in the horizontal and 

vertical direction. A gravity conveying mechanism takes care of the depth movement. The aim 

of the research was to facilitate the problem of optimal design and performance evaluation of 

the system. We estimate the crane’s expected travel time for single command cycles. From the 

expected travel time, we calculate the optimal ratio between three dimensions that minimize 

the travel time for a random storage strategy. Finally, we illustrate the findings of the study by 

a practical example. 

1. Introduction 

Although their application is still limited, compact storage systems become increasingly 

popular for storing products (Van den Berg and Gademann 2000 and Hu et al. 2005), with 

relatively low unit-load demand, on standard product carriers. Their advantage is the full 

automation, making it possible to retrieve and store unit loads around the clock, on a relatively 

small floor area. In principle, every load can be accessed individually, although some shuffling 

may be required. They are also used to automatically presort unit loads within the system, so 

that these loads can rapidly be retrieved when they are needed. 

Several compact storage system technologies exist with different handling systems 

taking care of the horizontal, vertical and depth movements. In this paper, we calculate the 

travel time and investigate the optimal dimensions for minimizing the travel time under a 

random storage strategy, for a given storage capacity, of the compact storage system as 

sketched in Figure 1. This system has been designed for several application areas. 
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The compact storage system consists of a storage/retrieval (S/R) machine taking care of 

movements in the horizontal and vertical direction (the S/R machine can drive and lift 

simultaneously). A gravity conveying mechanism takes care of the depth movement. 

Conveyors work in pairs: unit loads on one conveyor flow to the rear end of the rack, in the 

neighboring conveyor unit loads flow to the S/R machine. At the backside of the rack, an 

inexpensive simple elevating mechanism lifts unit loads from the down conveyor to the upper 

conveyor, one at a time. 

[Insert Figure 1 here] 

The innovation of the system is in its cheap construction: no motor-driven parts are used for the 

conveyors and the construction of the lifting mechanisms is simple as well. The unit loads 

move by (controlled) gravity. Potential application areas are also innovative. We have studied 

applications in dense container stacking at a container yard and the Distrivaart project in the 

Netherlands, where pallets are transported by barge shipping between several suppliers and 

several supermarket warehouses. This project has actually been implemented and has resulted 

in a fully automated storage system on a barge (see Figure 2).  

[Insert Figure 2 about here] 

The throughput capacity of the system depends on not only the physical design, the speeds of 

handling systems used, but also on the dimensions of the system and the storage and retrieval 

strategy used. We assume that only single cycles are carried out (in fact, we investigate only 

retrievals, since storage and retrieval are likely to be decoupled in these systems) and that the 

storage strategy is random. This is more or less a worst-case scenario, since in reality pre-

sorting is often possible. Although finding the S/R machine travel time is not too difficult for 

the general case, finding closed-form expressions for the three dimensions that minimize the 

total travel time is more complicated. Analytically, we have been able to find these dimensions 

for the case that the rack is SIT (i.e. length and height of the rack are equal in horizontal and 
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vertical travel time of the S/R machine respectively). For the none-square-in-time (NSIT) case, 

we have to rely on different methods. For a given total storage space, we use the nonlinear 

solver of What’sBest7.0 (LINDO optimization software for Excel users) to find the optimal 

dimensions and the corresponding travel time. After considering a wide range of total storage 

space values, we propose regression formulas for estimating the expected travel time (for 

single-command cycles) and the optimal dimensions. 

This paper is organized as follows. In the next section, we review literature concerning 

travel time models for AS/RS and mention assumptions and notations used in the paper. In 

Section 3, we present the travel time models for estimating the expected single-command travel 

time. In Sections 4 and 5, we find the optimal rack’s dimensions that minimize the travel time. 

We illustrate the results found in Section 5 by an example in Section 6. The effect of fixing one 

dimension on the optimal travel time is mentioned in Section 7. Finally, we conclude and 

propose some potential directions for future research in Section 8. 

2. Literature review, assumptions and notations 

A considerable number of papers exist that analyze AS/RS performance (e.g. estimating 

expected travel time, rack’s dimensions, system throughput, etc.). Figure 3 lists major problem 

characteristics and solution methods used in AS/RS performance models in the literature. The 

following common assumptions are commonly used (see also Bozer and White 1984, 1990, 

1996 Ashayeri et al. 2002, Foley et al. 2004): 

• The S/R machine is capable of simultaneously moving in vertical and horizontal direction 

at constant speeds. Thus, the travel time required to reach any location in the rack is 

approximated by the Tchebyshev metric. In contrast, in manual-pick order-picking 

systems, which use humans to retrieve items from storage area, the travel distance (or, 

equivalently, travel time) is measured by the Euclidean metric. 
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• The rack is considered to have a continuous rectangular pick face, where the depot (also: 

I/O point) is located at the lower left-hand corner. 

In this section, we will review recent publications (i.e. published after 1995) concerning AS/RS 

performance analysis. We will discuss the publications mainly based on the system 

characteristics embedded in the model and solution methods applied. For a general review on 

the design and control of automated material handling systems, we refer to Johnson and 

Brandeau (1996). For an overview of travel time models for AS/RS published before 1995, it is 

advisable to see Sarker and Babu (1995).  

• Storage rack. Storage shape may influence the performance of AS/RS. It is proved that 

under the random storage assignment and with a constant AS/RS speed, the SIT rack is 

the optimal configuration (Bozer and White 1984). However, this is not necessarily true 

for other storage assignments. Pan and Wang (1996) propose a framework for the dual-

command cycle continuous travel time model under the class-based assignment. The 

model is developed for SIT racks using a first-come-first-serve (FCFS) retrieval sequence 

rule. Floy and Frazelle (1991) derive the distribution of dual-command travel time for SIT 

rack with uniform distributed turnover. Recently, Park et al. (2005) propose the 

distribution of the expected dual-command travel time and throughput of SIT racks with 

two storage zones: high and low turnover. Ashayeri et al. (1997, 2002) compute the 

expected cycle time for an S/R machine where racks can be either SIT or NSIT. Park et al. 

(2003a) compute the mean and variance of single and dual-command travel times for 

NSIT racks with turnover-based storage assignment. They also show how to adjust the 

model if the class-based storage assignment is used. In general, AS/RSs have racks of 

equally-sized cells. However, in some cases, a higher utilization of warehouse storage can 

be archived by using unequal sized cells. Lee et al. (1999, 2005) develop travel time 

models for a rack with unequal cells under a random storage assignment, and both single 

and dual-command cycles. They also compare the proposed continuous-rack model with a 
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discrete-rack model (through simulation) and conclude that the differences in expected 

travel times are small. 

• Storage assignment. Using class-based and dedicated storage assignments may lead to a 

substantial saving on the travel time of the S/R machine (see Section 1.3.2). For a two-

class-based storage assignment rack, Kouvelis and Papanicolaan (1995) develop expected 

command cycle time formulas for both single and dual-command cycles. They also 

present explicit formulas for the optimal boundary of the two storage areas in the case of 

single-command cycles. As exact expressions of the throughput are often lengthy and 

cumbersome, Foley et al. (2004) derive formulas bounding and approximating the 

throughput of a mini-load system with exponential distributed pick time and either 

uniform or turnover-based storage assignment. They report that for typical configurations, 

the worst-case relative error for the bounds is less than 4%. 

• S/R machine operational issues. With one shuttle, the S/R machine can at most execute 

two commands (storage and retrieval) in one travel cycle. Single and dual-command 

cycles are studied in most of studies in the literature (for example, single-command cycles 

in Kim and Seidmann 1990, Park et al. 2003a; dual-command cycles in Foley and Frazelle 

1991, Pang and Wang 1996). By using multiple shuttles, the S/R can perform more than 

two commands in one travel cycle, and thus the system performance can be enhanced. 

Meller and Mungwattana (1997) present analytical models for estimating the throughput 

in multi-shuttle AS/RS systems. Potr� et al. (2004) present heuristics travel time models 

for AS/RS with equal-sized cells in height and randomized storage under single- and 

multi-shuttle systems. Almost all studies concerning AS/SR assume that the S/R speed is 

constant. Certainly it is not true in practice (Hwang and Lee 1990), although the impact of 

accelerating and decelerating is limited (especially for large racks). Chang et al. (1995) 

propose a travel time model of S/R machines by considering the speed profiles that exist 

in real-word applications. They consider the system under random storage assignment, 
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single and dual-command cycles. Chang and Wen (1997) extent this travel time model to 

investigate the impact on the rack configuration. The results demonstrate that the optimal 

rack configuration of the single-command cycles is still SIT whereas the dual-command 

cycles may not be. Wen et al. (2001) also adjust the travel time model in Chang et al. 

(1995), but  for the class-based and turnover-based storage assignment. 

• Solution approach. Most of the travel time models were developed based on statistical 

analysis and simulation (for example, Hausman et al. 1976, Graves et al. 1977, Bozer and 

White 1984, Foley et al. 2002, 2004). Lee (1997) uses a single-server model with two 

queues to estimate the throughput of a mini-load system, where the cycle times are 

assumed to be independent, identical, and exponentially distributed (iid) random variables, 

while requests arrive according to a Poisson process. Simulation results in this study show 

that the method performs well and can be easily adapted for other AS/RS. However, Hur 

et al. (2004) claim that the exponential distribution of travel times does not reflect the 

dynamic aspect of the system. They propose to use an M/G/1 queuing model (also with a 

single server and two queues). According to their computational results, the proposed 

approach gives satisfactory results with very high accuracy. Park et al. (1999) study an 

end-of-aisle order-picking system with inbound and outbound buffer positions (a mini-

load system with a horse-shoe front-end configuration). They model the system as a two-

stage cyclic queueing system consisting of one general and one exponential server queue 

with limited capacity. They assume that the S/R machine always executes dual-command 

cycles and that the dual-command cycle times are independent of each other. With known 

results for a two-stage cyclic queueing system, they obtain closed form expressions for the 

stationary probability and the throughput of the system. To compute the mini-load system 

throughput, the distribution of order arrivals is needed (usually the pick time distribution 

is assumed to be exponential or uniform, see for example Bozer and White 1990, 1996, 

Foley and Frazelle 1991). However, this information is not completely available at the 
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designing phase (only partial information is known). Foley et al. (2002) determine upper 

and lower throughput bounds for mini-load systems under several different types of the 

partial information: no information, mean only, and NBUE (i.e. New Better than Used in 

Expectation, roughly it means that the mean pick time of a partially processed bin is 

smaller than the mean pick time from a new bin). 

In the above-mentioned publications, there are only two travel directions are considered 

(vertical and horizontal). However, situations exist where the S/R machine can travel in three 

orthogonal directions simultaneously, i.e. vertical, horizontal and cross-aisle direction. Park 

and Webster (1989b) propose a conceptual model that can help a warehouse planner in the 

design of 3-dimensional, pallet storage systems. Park and Webster (1989a) deal with the 

problem of finding a rule for assigning rack locations to product turnover classes to minimize 

the expected travel time. In these publications, however, the rack dimensions are given or, in 

other words, the problem of determining the optimal rack dimensions is neglected. For the 

AS/RS described in Section 1, the S/R machine can only travel vertically and horizontally. 

However, there is another travel time/direction associated with each travel cycle of the S/R 

machine; it is time needed to convey the load to the pick position or to reveal an empty location 

to store the load. For that reason, we also use the terminology 3-dimensional compact storage 

for our system. We have not found any literature on travel time estimation and/or optimal 

system dimensioning for this or similar AS/RS types. In the following section, we will step by 

step estimate the single-command travel time of the S/R machine for the system that we 

introduced in Section 1.  

3. Travel time estimation 

Besides the common assumptions mentioned in the previous section, we use the following 

explicit assumptions for our travel time model: 
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• The S/R machine operates on a single-command basis (multiple stops in the aisle are not 

allowed). 

• The total storage space, the speed of the conveyor ( cs ), as well as the S/R machine’s 

speed in the horizontal ( hs ) and vertical direction ( vs ), are known.  

• The S/R machine travels simultaneously in the horizontal and vertical direction. In 

calculating the travel time, constant velocities are used for the horizontal and vertical 

travel: no accelerating or decelerating effects. These effects should be taken into account 

for the cases of short travel distances. However, in our model they are reflected (or 

included) in the pick-up/ deposit time. 

• We use random storage. That is, any point within the pick face is equal likely to be 

selected for storage or retrieval. 

• The pick-up and deposit (P/D) time for a given load is known and constant. The P/D time 

is identical for all loads. 

The length (L), the height (H) of the rack and the perimeter (or length 2S) of the conveyor form 

three orthogonal dimensions of the system. Without loss of generality, we suppose that the 

travel time to the end of the rack is always no less than the travel time to the highest location in 

the rack: 
v h

H L
s s

≤ . To standardize the system, we define the following quantities. 

2*
c

c

S
t

s
= : length (in time) of the conveyor. 

h
h

L
t

s
= :  length (in time) of the rack. 

v
v

H
t

s
= :  height (in time) of the rack. 

{ }max , ,h v cT t t t=  
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min , ,h v ct t t
b

T T T
� �= � �
� �

. Note that 0 1b≤ ≤  and 1b =  iff h v ct t t= = . 

a  is the remaining element (besides b  and 1) of the set , ,h v ct t t
T T T
� �
� �
� �

,  thus 0 1b a< ≤ ≤ . 

For determining the optimal dimensions of the rack, we suppose that the total storage space (or 

capacity of the warehouse) V is given. Therefore 2* * *H L S  is a constant.  As a result 

h v ct t t V=  is also a constant. 

Assume that the retrieval location is represented by ( , , )x y z , where ,  X Y and Z  refer to 

the movement directions of the S/R machine and conveyor. We can see that the S/R machine’s 

travel time for single-command cycles (ESC) consists of the following components. 

• Time needed to go from the depot to the pick position and to wait for the pick to be 

available at the pick position (if the conveyor circulation time is larger than the travel time 

of the S/R machine), W . In other words, W  is the maximum of the following quantities: 

− time needed to travel horizontally from the depot to the pick position, 

− time needed to travel vertically from the depot to the pick position, 

− time needed for the conveyor to circulate the load from the current position to the 

pick-up position, R . 

• Time needed for the S/R machine to return to the depot, U . 

• Time needed for picking up and dropping off the load, c  (assumed to be constant). 

Hence, the expected travel time can be expressed as follows: 

( ) ( )ESC E W E U c= + +  (1)  

As c  is a constant, it does not have any influence on the rack layout so from now on we will 

not consider this component.  

As proven by Bozer and White (1984), in the case of a 2-dimensional rack, the travel 

time from a random pick location to the depot can be calculated as: 
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( )
2 1

,
6 2 hE U t

β� �
= +	 

� �

  (2) 

where ( )1v

h

t
t

β β= ≤  is the shape factor of the rack (recall that we assume h vt t≥ ). 

Let ( )F w  denote the mass probability function that W  is less than or equal to w . We 

assume that the , ,x y z  coordinates are independently generated, where: 0 x a< ≤ , 0 y b< ≤  

and 0 1z< ≤  (that is, we consider the ‘normalized’ rack). Similar to the case of 2-dimensional 

racks (see Bozer and White 1984), we have: 

( ) P( ) ( ). ( ). ( )F w W w P X w P Y w P Z w= ≤ = ≤ ≤ ≤  

Furthermore, as we use randomized storage; the location coordinations are uniformly 

distributed. Therefore,  

( )P Z w w≤ = , with 0 1w≤ ≤  

   if 0
( )

1        if  1
w a w a

P X w
a w

≤ ≤�
≤ = � < ≤�

 

and 

   if 0
( )

1        if 1
w b w b

P Y w
b w

≤ ≤�
≤ = � < ≤�

, 

Hence, 

3

2

     if 0

( )        if 
w             if 1

w ab w b

F w w a b w a

a w

� ≤ ≤


= < ≤�
 < ≤�

 

23    if 0
( ) 2       if 

1             if 1
W

w ab w b

f w w a b w a
a w

� ≤ ≤


� = < ≤�
 < ≤�

 

Therefore,  

( )
1 13 2

0 0

3 2
 ( )

b a

w w w b w a

w w
E W T g w wdw T dw dw wdw

ab a= = = =

� �
= = + +	 


� �
� � � �  



 10 

( )
3 2 1

12 6 2
b a

E W
a

� �
� = + +	 


� �
 (3) 

From (1), (2) and (3), it is possible now to find the single-command travel time if we know the 

relative magnitude of each dimension compared to others (i.e. which one is the longest, 

shortest). And therefore the ratio between three dimensions which minimizes the expected 

travel time can be determined. To facilitate the analysis, we distinguish two situations: SIT 

racks (Section 4) and NSIT racks (Section 5).  

4. Optimal dimensions for the square-in-time (SIT) rack  

As shown in Bozer and White (1984): “For 2-dimensional racks, the expected travel time will 

be minimized if the rack is SIT”. Suppose that this type of rack is used we further consider two 

situations:  

• when the conveyor’s length is the largest dimension (Section 4.1),  

• when the conveyor’s length is the shortest dimension (Section 4.2). 

4.1 Conveyor’s length is the largest dimension (SIT_CL) 

In this case, we have cT t= , ( )thus 1a b β= = , h ct at= , v ct at=  and 2 3
ca t V= . From (1) and 

(2): 

( )

( )
2

2
3

1
=

4 2

c

c

E U at

a
E W t

� =

� � � +	 
 � ��

  

2

_
2 1

4 3 2SIT CL c
a

ES tC a
� �

� = + +	 

� �

 (4) 

At this point, our problem turns out to be the following constrained-optimization problem: 

{ }

2

_

2 3

2 1
       ( , )

4 3 2

       ( , ) ,  0 1, 0

SIT CL c c

c c c

a
Minimize f a t ta

subject to D a t a t V a t

� �= + +	 

� �

= = < ≤ ≥
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We use the Lagrangian multiplier method to include the constraint 2 3
ca t V=  in the objective 

function and obtain: ( ) ( )
2

2 32 1, ,
4 3 2c c c
a

L a t t a t Vaλ λ� �= + −+ +	 

� �

, where λ  is the Lagrangian 

multiplier. The critical points of ( ), ,cL a t λ  must be the solutions of the following system: 

( )

( )

( )

3

2
2 2

2 3

2, , 2 00
2 3

, , 2 1
0  3 0

4 3 2
0, ,

0

c
c c

c
c

c

cc

aL a t t a t
a

L a t a
a a t

t
a t VL a t

λ λ

λ
λ

λ
λ

�∂� � �+ + == 	 
 � �∂ 
∂

= ⇔ + + + =� �∂ 
  − =∂
 =

∂� �

3 2

3

3

0.46
0.72

0.89

1.24
a b

c

V

a

t t V

t V

λ� = −


=
⇔ �

= =
 =�

 

It is easy to see that the sufficient condition for the critical point to be the minimum point is 

satisfied (meaning that Hessian matrix H is positive semi-definite at the critical point). Thus, 

this critical point is the minimum point and the optimal value is * 3
_ 1.38SIT CLESC V= . 

We conclude: 

“Given an SIT rack with a total storage capacity V and provided that the conveyor’s 

length ct  is the longest dimension, the estimated travel time of the S/R machine will 

be minimized if : : 0.72 : 0.72 :1v h ct t t ≡  and the optimal travel time is 31.38 V “. 

4.2 Conveyor’s length is the shortest dimension (SIT_CS)  

In this case ( )so 1 , ,h v c ha b T t t t btβ= = = = =  and 3
hbt V= . From (2) and (3) we have: 

( )

( )
2

2
3

1
=

4 2

h

h

E v t

b
E w t

� =

� � � +	 
 � ��

  

2

_

7
=

4 6SIT CS h

b
ESC t

� �
� +	 


� �
  (5) 

At this point, our problem turns out to be the following constrained-optimization problem: 
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{ }

2

_

3

7
       ( , )

4 6

       ( , ) ,  0 1, 0

SIT CS h h

h h h

b
Minimize f b t t

subject to D b t bt V b t

� �
= +	 

� �

= = < ≤ ≥
 

In a fashion similar to SIT racks, we obtain: 

3

3

0.97

0.98  

1.01
c

v h

b

t V

t t V

=�


=�
 = =�

 

The optimal value is * 3
_ 1.42SIT CSESC V= . We can conclude: 

“Given an SIT rack with a total storage capacity V and provided that the conveyor’s 

length ct  is the shortest dimension, the estimated travel time of the S/R machine  will be 

minimized if  : : 1:1: 0.97v h ct t t ≡  and the optimal travel time is 31.42 V “.  

Comparing two situations, we can see the rack where the conveyor’s length is the longest 

dimension provides a shorter expected (single-command) travel time. Therefore, we can draw 

the following general conclusion for the SIT rack: 

Proposition 1 “Given an SIT rack with a total capacity V, the expected travel time of 

the S/R machine will be minimized if : : 0.72 : 0.72 :1v h ct t t ≡  and the optimal travel time 

is *
SITESC =  31.38 V “.  

5. Optimal dimensions for none-square-in-time (NSIT) rack 

For this case, we make a distinction between the following situations: 

• the conveyor’s length is the longest dimension (NSIT_CL),  

• the conveyor’s length is the medium dimension (NSIT_CM), 

• the conveyor’s length is the shortest dimension (NSIT_CS). 

If the conveyor’s length is the longest dimension then we have: ,cT t=  ,h ct at=  

thusv c

b
t bt

a
β� �= =	 


� �
 and 3

cabt V= . From (2) and (3) we have: 
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3 2 3 2 22

_ 2

1 2 11
12 6 2 12 6 2 226NSIT CL c c c

b a b b a ab
ESC at t t

a aa
� � � �� � ++ + + = + + += + 	 
 	 
	 

� � � �� �

 

Similarly, if the conveyor’s length is the medium dimension: ,h v hT t t bt= = , 

( )thus ,bβ = c ht at=  and 3
habt V= :  

3 2 2

_ 1
12 6 6NSIT CM h

b a b
ESC t

a
� �

= + + +	 

� �

 

And if the conveyor is the shortest dimension: , ,h v hT t t at= = ( )thus , c ha t btβ = =  and 

3
habt V= : 

3 2

_ 1
12 3NSIT CS h

b a
ESC t

a
� �

+ += 	 

� �

 

It is easy to see that ( )_ _ _ 0 1, 0NSIT CL NSIT CM NSIT CSESC ESC ESC b a V≤ ≤ ∀ < ≤ ≤ > . It means 

that the systems where the conveyor is the shortest or medium dimension cannot provide a 

better solution compared to the system where the conveyor is the longest dimension. For this 

reason, from now on, we can ignore _NSIT CSESC  and _NSIT CMESC .  

The problem of finding the optimal _NSIT CLESC  turns out to be the following 

constrained-optimization problem: 

{ }

3 2
2

3

3

2 1 1
       ( , , )

12 6 2 2

       ( , , ) ,  0 1, 0, 0

c c

c c c

b b a
Minimize f a b t a t

a

subject to D a b t abt V b a t V

� �+= + + +	 

� �

= = < < ≤ ≥ >
 

It is hard to solve this problem analytically. For this reason, we opt for the numerical 

optimization. For a given total storage capacity, V, we used the nonlinear optimization module 

built in What’sBest to find the optimal dimensions as well as the optimal estimated single cycle 

time of the S/R machine. We carried out an extensive number of experiments (on a very wide 

range of V : from 10 to 2000 cubic time units). From the experimental results found: 
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• The optimal ratio between three dimensions does not depend on the system capacity V: 

_NSIT CLESC  reaches the optimum if : : 0.72 : 0.72 :1v h ct t t ≡ . 

• In order to estimate the relation between the system capacity V and the optimal estimated 

travel time *
_NSIT CLESC , we carried out a regression analysis (on SPSS). In the analysis, the 

total storage capacity varied from 10 to 2000 (cubic time units). We used different curve 

fitting models and found that the optimal estimated travel time is best estimated by the 

following relation: * 3
_ 1.38NSIT CLESC V≈ .  The standard errors of the estimate is less than 

510− . 

• When the system is cubic-in-time (all dimensions are equal in time), it is easy to find that 

* 3
_ _ 1.42cubic in timeESC V= . Interestingly,  *

_ _cubic in timeESC *
_SIT CSESC= .  

• As shown in Figure 4, there is a difference between the overall optimal value and the other 

optimums with some restrictions on the dimensions. However, the gap is very small; the 

difference between the cubic-in-time configuration and the optimal one is: 

( )3 3 31.42 1.38 1.38 *100% 2.90%V V V� �− ≈
� �

.  

• The reason that the cubic-in-time rack is not optimal is that the travel time consists of two 

components (see Section 3). The travel time from the depot to the pick location depends 

on the movement times on all three directions, but the time needed to go back to the depot 

depends only on the vertical and horizontal travel time. 

[Insert Figure 4 here] 

We can make the following conclusion for the NSIT rack: 

Proposition 2 “Given a NSIT rack with a total storage capacity V, the expected travel 

time of the S/R machine will be minimized if : : 0.72 : 0.72 :1v h ct t t ≡  and the optimal 

estimated travel time is 31.38 V “. 
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Figure 4 shows all eligible possibilities (in both section 3 and 4). We can see that the SIT rack 

system (i.e. length and height of the rack are equal) results in the overall optimal configuration: 

it gives the overall shortest estimated single-command cycle time. Now, we are able to state the 

following proposition: 

Proposition 3  Given the 3-dimensional compact AS/RS (as described in Section 1) with 

a total storage capacity V, the expected single-command travel time of the S/R machine 

will be minimized if the system dimensions satisfy : : 0.72 : 0.72 :1v h ct t t ≡  and the 

optimal travel time is 31.38 V . 

6. Effect of fixing one dimension 

As shown above, if all three dimensions are ‘open’, we can find the optimal ratio (with regards 

to minimizing the estimated travel time) between these dimensions. However, in the Distrivaart 

project (see Section 1), we could not freely adjust all these dimensions, due to space limitations 

and equipment standardizations. The previous analysis can also be used to solve the problem 

with space restrictions. If two dimensions are fixed, then the problem is trivial as all 

dimensions are defined (given that we know the total system’s storage capacity). If only one 

dimension is fixed, we can still adjust the others to reduce the estimated travel time. Clearly, 

the resulting optimal travel time can not be shorter than the ‘overall’ optimum (when we have 

three ‘open’ dimensions).  

It is straightforward in this case to determine the expected travel time of the S/R machine 

(e.g. based on formulas (2) and (3)). Figure 5 shows the optimal estimated travel time for 

different values of the conveyor’s length ( ct ). From this figure, we can easily see the effect of 

fixing the conveyor’s length. For example, if 32ct V=  (200% of 3 V ), at best we can design a 

system with an expected travel time of 1.53 3 V  (time units), while the ‘overall global’ 

optimum, 1.38 3 V , is achieved for 31.24ct V= . Similarly, Figures 6 and 7 show the cases 

when the rack’s length and height (in time) are fixed. 
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[Insert Figures 5, 6 and 7 here] 

7. An example 

As an illustrating example, assume that we have to design a 3-dimensional compact system that 

can store 1000 pallets (other data are given in Table 1). The decision problems are: (1) finding 

the optimal dimensions of the system and (2) the best position of the S/R machine so that the 

expected travel time is minimized. The S/R machine either dwells at one end of the rack (A) or 

between two rack parts (B) (referring to Figure 8). 

For situation A: the expected pallet circulation time is cS s . Suppose that the length of 

the conveyors in the left part of the warehouse is (0 )X X S< <  (see Figure 8). As pallets are 

located randomly on the conveyors, in the situation (B) the expected time for a random pallet 

to be circulated from the current position to the position that the S/R machine can pick it up 

(the main rack) is: 

( )22

c c c

X S XX X S X S X
S s S s Ss

τ
+ −� � � �− −� � � �= + =	 
 	 
	 
 	 


� � � �� � � �
,  

where cs  are the conveyor’ speed and S  is the diameter of the conveyors in situation (A). 

X
S

� �
	 

� �

 and 
S X

S
−� �

	 

� �

 are the probabilities that the pallet is located in the left-side and the right-

side of the warehouse respectively. Applying the Cauchy-Schwarz inequality gives 

( ) ( ) 222

2 2c c c

X S XX S X S
Ss Ss s

τ
+ −� �+ − � �= ≥ = . 

[Insert Table 1 here] 

[Insert Figure 8 here] 

This lower bound is tight with equality for 2X S= . Therefore, the optimal position, which 

minimizes the expected single-command travel time, is the middle of the storage rack. 
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We apply the theorem of Section 5 to calculate the optimal dimensions. We have: 

* 31.24 10.11ct V= = (seconds) and *
ht = *

vt
*0.72 ct= 7.26= (seconds). The rack dimensions must 

be multiples of the pallet’s dimensions. Therefore, we choose the ‘practical optimal’ 

dimensions such that they are as closed as possible to the corresponding optimal dimensions 

found and result in a system with a storage capacity of not less than 1000 pallets (the required 

capacity). We obtain the practical optimal dimensions: 10 x 8 x 6.5 (seconds) with an optimal 

expected travel time of 11.17 (seconds).   

8. Concluding remarks 

In this paper, we discuss a 3-dimensional compact system originating from the Distrivaart 

project that consists of rotating conveyors and an S/R machine. We extend Bozer and White’s 

method for 2-dimensional rack systems to find the expected single-command travel time of the 

S/R machine. We found:  

• For a given 3-dimensional compact AS/RS (mentioned above) with a total storage 

capacity V, the optimal rack dimensions are v ht t= 30.89 V= , ct =  31.24 V , and the 

optimal travel time is 31.38 V . Equivalently, the optimal ratio between three dimensions 

is : : 0.72 : 0.72 :1v h ct t t ≡ . 

• The cubic-in-time system (i.e. all dimensions are equal in time) is not the optimal 

configuration (as intuitively we may think). However, it is a good alternative 

configuration for the optimal one as the resulting expected travel time is only about 3% 

away from the optimum. This is in line with the findings by Rosenblatt and Eynan (1989) 

and Chang and Wen (1997) for 2-dimensional SIT racks with single and dual-command 

cycle respectively. They conclude that “The expected travel times are fairly insensitive to 

slight deviations in the optimal rack configuration”. 

A disadvantage of the method is that we assume that the rack is continuous. This simplification 

of reality is only justified if the number of storage positions is sufficiently large (see, for 
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example, Graves et al. 1977 and Lee et al. 1999 ). The quality of the approximation of the real 

travel time depends on this. 

We considered randomized storage only. Clearly, other storage policies (like class-based 

or dedicated storage) could be considered as well. This is an interesting direction for further 

research. Another straightforward extension of the research is to analyze the system when the 

S/R operates in a dual-command basis.  
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 Tables and Figures 

 
 
 
 
 
 
 

Figure 1   A compact S/RS with gravity conveyors for the depth movements 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2   Distrivaart: a conveyor-supported automated compact storage system on a barge 
(source: De Koster and Waals, 2005). 
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Figure 3   Problem characteristics and solution methods used in AS/RS performance models 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4   Comparison between optimal expected travel time of SIT and NSIT racks for 
different values of total storage capacity V  
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Figure 5   Optimal expected travel time when the conveyor’s length is fixed 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6   Optimal expected travel time when the rack’s length (the longer dimension of the 
rack) is fixed 
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Figure 7   Optimal estimated travel time when the rack’s height (the shorter dimension of the 
rack) is fixed 

 

 

 

 

 

 

 

 

 

Figure 8   Possible positions of the S/R machine 

 

 

Table 1   System parameters 

Total system capacity (V) 1000 pallets 
Storage policy Random storage 
Pallet size in seconds  Net  0.4 x 0.4 x 2 
(width x length x height) Gross 0.5 x 0.5 x 2.17 

Operating policy Single-command cycle 
Vertical speed ( vs ) 0.6 (meter per second) S/R 

machine 
Horizontal speed ( hs ) 2 (meter per second) 

Conveyors’ speed ( cs ) 2 (meter per second) 
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