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Abstract

While the net present value (NPV) approach is widely accepted as the right framework

for studying production and inventory control systems, average cost (AC) models are more

widely used. For the well known EOQmodel it can be veri�ed that (under certain conditions)

the AC approach gives near optimal results, but does this also hold for more complex systems?

In this paper it is argued that for more complex systems, like multi-source systems, one has

to be extremely careful in applying the AC approach on intuition alone, even when these

systems are deterministic. Special attention is given to a two-source inventory system with

manufacturing, remanufacturing, and disposal, and it is shown that for this type of models

there is a considerable gap between the AC approach and the NPV aprroach.

Keywords: Net present value, average costs, inventory control, manufacturing, remanufac-

turing, disposal, holding costs.

1 Introduction

Several authors (e.g. Hadley, 1964; Trippi, 1974; Thompson, 1975; Hofmann, 1998; Klein Han-

eveld and Teunter, 1998) have argued that for the EOQ model the average cost (AC) framework

as an approximation to the superior net present value (NPV) framework leads to near optimal

results under the following conditions:

- Products are not moving too slow,

- Interest rates are not too high,

- The customer payment structure does not depend on the inventory policy.

The �rst two conditions have to guarantee that compounded interest does not e�ect the results

too much. That the latter condition is crucial was �rst put forward by Beranek (1966), who's

concern was con�rmed later by Grubbstr�om (1980) and Kim et al. (1984).

The main objections against the average cost approach, as it is usually applied as an approxi-

mation to the net present value approach, are threefold:

1



O1 The time value of money is not explicitly taken into account,

O2 There is no distinction between out-of-pocket holding costs and opportunity costs due

to inventory investment, while other sources of opportunity costs/yields (�xed ordering

costs, product sales) are not taken into account at all.

O3 Initial conditions are not taken into account

Yet, the net present value approach is often rather complicated, so an approximation may still

be preferred.

Several authors have tried to deal with the above problems by showing that a certain transforma-

tion of the holding cost parameters in EOQ-type models gives near optimal results from an NPV

perspective. This, however, shifts the problem to �nding the right transformation. Up to now

only ad hoc solutions have been given that are often very counter-intuitive (see e.g. Beranek,

1966; Corbey et al., 1999). No general principle has been developed to solve the transformation

problem.

This paper intends to systematically analyze the di�erences between the AC and NPV approach

and its consequences for modeling inventory systems. To that end we will analyze a number

of deterministic models with increasing complexity, starting with the standard EOQ model and

moving towards multi-echelon and multi-source models. It is shown that there are basically

two classes of systems: 1. systems for which a transformation of model parameters exists that

is independent of decision variables, such that the AC approach and the NPV approach are

approximately equal, and 2. systems for which such a transformation does not exist.

This paper is further organized as follows: In the next section we propose a general principle that

allows us to handle the NPV approach for deterministic systems in a very simple way. Moreover,

with this principle we can easily compare the AC approach with the NPV approach. We then

show how the NPV approach compares to the AC approach for the EOQ model (Section 3),

multi-echelon systems (Section 4), and multi-source systems (Section 5). The theoretical results

are further illustrated by a small numerical study in Section 6. We end with a summary and

discussion of the main results in Section 7.

2 A general principle for the NPV approach in deterministic

models

We de�ne the Net Present Value (NPV ) as the total discounted cash-
ow over an in�nite

horizon. Additional to the NPV we de�ne the Annuity Stream (AS) as

AS = rfNPV g:

where r denotes the discount rate. The annuity stream is the transformation of a set of discrete

and/or continuous cash 
ows to one continuous stream of cash-
ows, such that the latter has

the same net present value as the original set of cash-
ows. The notion of an annuity stream is

useful, since it can be directly compared with average costs.
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Figure 2.1 Comparison between the average cash-
ow per time unit (C=T ), the anuity stream (AS),

and its linearisation (AS) for T = 4, C = 1, and r = 0:2.

If T denotes the cycling time of a discrete cash-
ow C, with �rst occurrence time T1, then the

annuity stream is given by

AS = rC

1X
n=0

e�r(T1+nT ) =
rCe�rT1

1� e�rT
; (1)

This can be written as the McLaurin expansion in r

AS =
rCe�rT1

1� e�rT
=
C

T
+ C

�
r

�
1

2
�
T1
T

�
+O(r2maxfT; T1g)

�
;

so that we have the following linearisation in r of the annuity stream:

AS =
C

T
+ rC

�
1

2
�
T1
T

�
: (2)

Note that in most practical applications r is small and 0 � T1 � T , so that the above approxi-

mation is quite reasonable.

The �rst term of (2), C=T , denotes the average cash-
ow per time unit, as it would follow from

a standard AC calculation. The second term may be viewed as a �rst order correction term to

account for the time value of money. This is graphically shown in Figure 2.1. Approximately,

the AC approach underestimates the interest component of the annuity stream if T1 � T=2 and

overestimates otherwise. The results of both approaches are the same if T1 � T=2.

The above only holds for discrete cash-
ows, but we can do a similar analysis for continuous

cash-
ows. Suppose a continuous cash-
ow p with rate � that starts at time T1, then the annuity

stream is given by

AS = rp�
R
1

T1
e�rtdt

= rp�e�rT1

= p�[1� rT1 +O(r2T1
2)]
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Figure 3.1 Relevant cash-
ows for the EOQ model with continuous demand.

� p�[1� rT1]: (3)

The way that the AC approach usually deals with the underestimation of the interest component

for cash-
ows related to variable production costs is to add a certain factor to the out-of-pocket

holding cost parameter. This factor is usually taken as the interest rate r times the `value' of

the stocked item. This approach has a number of disadvantages. First, it assumes that the

overestimation is proportional with average inventory. We will show that this does not need

to be the case. In fact, size and timing of cash-
ows are dependent on cycle times rather than

the existence of physical stocks. Second, it only deals with underestimation of the interest

component and not with overestimation, since the value of a stocked item is usually taken to

be positive. Third, this approach only considers the interest components of variable production

costs, while interest components of all other cash 
ows (�xed costs, sales, etc.) are not taken

into account. Finally, it is unclear what is meant by the `value' of a stocked item, since this

depends on the type of decision that has to be made.1

3 From NPV to AC with the EOQ model

First consider the basic EOQ model in an NPV framework (Figure 3.1). Demand for a product

with selling price p is continuous with rate �, generating a continuous cash in
ow of �p per

time unit. Every T periods a batch of Q products is produced against variable cost c per

product and �xed cost K per batch (zero lead time) starting at time t = 0. To keep the

analysis simple and transparent we will not consider out-of-pocket holding costs. Note that in

the AC framework holding costs appear as an approximation to the annuity stream to account

for interest components. We will refer to this holding cost parameter as the `opportunity cost

rate of inventory investment'.

The total annuity stream for this deterministic system consists of the annuity stream due to a)

1Depending on the type of decision that has to be made one could say that a product return has value zero

if it has been obtained for free. At the same time one could say it has value cp � cr, since after remanufacturing

against cost cr it can be sold for cp. As a third option one could say that its value is cm � cr, since this is the

di�erence between manufacturing against cost cm and remanufacturing against cost cr.
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the variable revenues and production costs (ASv)

ASv = r

 
p�

Z
1

0
e�rtdt� cQ

1X
n=0

e�rnT

!

= p��
rcQ

1� e�rT

� (p� c)�� rcQ=2; (4)

and b) the annuity stream due to �xed set-up costs (ASf )

ASf = �r
P
1

n=0Ke�rnT

= � rK
1�e�rT

� �K�=Q� rK=2; (5)

where we have used linearizations (2) and (3) with T1 = 0. Combining (4){(5) we arrive at the

approximated total annuity stream function

AS = (p� c)��K�=Q� rcQ=2� rK=2 (6)

The �rst term in (6) denotes marginal net pro�ts per time unit, and the second term denotes

the average set-up costs per time unit. The other terms are interest components.

The standard AC approach calculates the average pro�t (AP ) function as

AP = (p� c)�� hQ=2�K�=Q; (7)

where h is the holding cost rate to account for the opportunity costs of inventory investment.

Optimizing (7) leads to the well-known EOQ formula, but it is not immediately clear what

the value of h should be. However, if we want that optimizing AP gives the same order size

as optimizing AS we should choose h = rc. Although this value will appeal to most people's

intuition it is important to note that more complicated models, as the ones encountered in

the remainder of the paper, call for more complicated holding cost rates for which an intuitive

explanation is often hard to give.

4 Multi-echelon systems

Consider a two-echelon system consisting of processes i, i 2 f1; 2g, with lead time Li, and

processing cost ci (Figure 4.1). Here, S is a stocking point for serviceable inventory. A production

batch of size Q is initiated every T time units starting at time T1 = 0. As soon as process 1

�nishes process 2 starts. As soon as process 2 �nishes, the batch enters serviceable inventory

(Figure 4.2). Note that production costs are incurred at the beginning of each process and that

product sales only start after the �rst production batch has entered the serviceable inventory,

i.e., at time L1 + L2.
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Figure 4.1 Relevant cash-
ows for the two-echelon system.
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Figure 4.2 The inventory processes of a two-echelon system.
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A formal deduction of ASv gives

ASv = r

 
p�e�r(L1+L2)

r
�
Qc1 +Qc2e

�rL1

1� e�rT

!

� (p� c1 � c2)�� r ((c1 + c2)Q=2 � c2L1�)� rp(L1 + L2)�: (8)

The �rst term in (8) is just the marginal net pro�ts per time unit, whereas the second term

denotes the opportunity costs of inventory investment. The last term represents the opportunity

costs of delayed product sales.

The traditional average cost approach would calculate the average pro�t function as the average

net marginal pro�ts per time unit minus the average holding costs per time unit,

APv = (p� c1 � c2)�� h1L1�� h2L2�� hsQ=2; (9)

where the second term is the average work in process inventory of process 1 charged with

opportunity holding cost rate h1, the third term is the average work in process inventory of

process 2, charged with rate h2, and the fourth term is the average serviceable inventory charged

with rate hs. Equation (9) corresponds to (8) if we employ the following transformation of cost

parameters:

h1 ! r(p� c2)

h2 ! rp

hs ! r(c1 + c2)

The parameter hs can be interpreted intuitively as the interest rate times the total marginal

production costs. The other holding cost rates are less intuitive, but that is not really a problem

since for any value of these parameters the di�erence between NPV and AC will merely be a

constant.

The annuity stream due to �xed set-up costs is

ASf = �r

�
K1 +K2e

�rL1

1� e�rT

�

� �
(K1 +K2)�

Q
� r

�
K1 +K2

2
�
K2L1�

Q

�
:

In the traditional average cost approach opportunity costs of set-ups are never explicitly taken

into account (compare to the EOQ model, where opportunity costs of set-ups are a constant

and can be left out). Here, however, we see that the opportunity costs do depend on the order

size Q and can no longer be discarded. Again, we can map (up to a constant) the average cost

approach to the linearization of the annuity stream by the transformation

K1 ! K1

K2 ! K2(1� rL1)
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Figure 5.1 Schematic representation of a manufacturing/remanufacturing system.

Summarizing, we can say that the traditional average cost approach is still applicable for multi-

echelon structures, as long as the right transformations of model parameters are used. This

however results in a paradoxical situation: Using the average cost approach in order to avoid

an NPV analysis, requires an NPV analysis to �nd the correct transformations. It is comforting

though that for this class of models the traditional average cost models can still be applied.

5 Multi-source systems

Until now we only considered situations in which inventories consist of products that all have

generated the same cash-
ows. Additional problems may arise if inventories consist of products

that have been produced in di�erent ways against di�erent costs. This is the case with products

that can be both newly manufactured and remanufactured from old products. Remanufactured

products have the same functionality and quality as newly produced products and can therefore

be sold at the same market for the same price. In this sense they are indistinguishable and can

be put in the same inventory. However, the cash 
ows generated by manufactured products are

di�erent from remanufactured products, since they follow from di�erent processes with di�erent

costs. In this section we show how this a�ects the di�erence between NPV and AC.

5.1 A system with manufacturing and remanufacturing

Consider a two source system (Figure 5.1), where product demand can be ful�lled both by

manufactured products, with marginal cost cm and �xed set-up cost Km, and remanufactured

products, with marginal cost cr and �xed set-up cost Kr. Manufactured and remanufactured

products have the same quality standards and are sold on the same market against the same price

p. The main di�erence between the manufacturing process and remanufacturing process is that

the latter depends on the 
ow of product returns, which for now is assumed to be deterministic

with rate 
, 0 < 
 < �.

This system was �rst proposed by Schrady (1967) and further analyzed by Richter (1996) and

Teunter (1998). In the above-mentioned papers the system is controlled by subsequently pro-

ducing N manufacturing batches and M remanufacturing batches. For ease of explanation we

assume here that N = M = 1 so that the system is controlled by repeatedly producing one

manufacturing batch of size Qm, succeeded by one remanufacturing batch of size Qr.
2 We as-

2The following analysis is easily extended to arbitrary N andM , but this would only lengthen the mathematical
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Figure 5.2 Relevant cash-
ows for the two-source system without disposal.

0

Qr

Qm

0 Tr T T + Tr time

serviceable inventory

0

Qr

0 T time

remanufacturable inventory

Figure 5.3 The inventory processes of a two-source system.

sume that at time 0 we start with zero inventory of both serviceables and remanufacturables.

Thus, to start up the system and to guarantee a monotonous ordering strategy at the same

time, we have to start with a manufacturing batch of size Qr. The �rst manufacturing batch

of size Qm then occurs at time Tr = Qr=� and the �rst remanufacturing batch occurs at time

T = (Qm + Qr)=�. Continuing this way, manufacturing batches and remanufacturing batches

occur every T time units. Leadtimes are assumed to be zero. Note that, since all returns are

used for remanufacturing, we have Qr = 
T , Qm = (�� 
)T and Qr =



��
Qm. The timing of

all relevant cash-
ows is visualized in Figure 5.2.

The ASv for this system reads

ASv = p�� r

�
Qrcm +

Qmcme
�rTr +Qrcre

�rT

1� e�rT

�

� (p�� cm(�� 
)� cr
)� rcmQm

�
1
2 �



�

�
� r (cm � cr=2)Qr: (10)

Again, the �rst term denotes the total marginal pro�ts and the last two terms denote the total

opportunity costs of inventory investment.

Let's now compare the above expression with the corresponding average pro�t function. Figure

5.3 depicts the inventory process of serviceables and remanufacturables, from which we derive

expressions without gaining additional insight.
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that the long run average inventory of remanufactured products equals QrTr=(2T ) = (
=�)Qr=2,

the long run average inventory of manufactured products equals Qm(T � Tr)=(2T ) = (1 �


=�)Qm=2, and the average inventory of remanufacturable products equals Qr=2. This leads to

the following average pro�t function:

APv = (p�� cm(�� 
)� cr
)� hm
�
1� 


�

�
Qm=2� hr

�

�

�
Qr=2 � hnQr=2: (11)

Clearly, both opportunity costs and average inventory are linear in Qm and Qr so that hm,

hr, and hn can be chosen such that (11) is equivalent to (10). Since the average inventory of

remanufactured products and the average inventory of remanufacturables are both linear in Qr,

either hr or hn is redundant. Naturally we choose hn = 0 because there are no investments in

remanufacturable inventory and thus no associated opportunity cost exist. This gives

hm ! rcm

�
�

��


�
hr ! rcr

�
2� �




�
hn ! 0 :

So, setting hn = 0 leads to di�erent holding cost rates for manufactured and remanufactured

products. This is rather counter-intuitive and may lead to the (false) conclusion that in ful�lling

product demands priority should be given to either manufactured or remanufactured products,

whichever generates more opportunity costs. That this conclusion is false can be clearly seen

when we look at it from an NPV perspective. The �nancial consequences of selling either a

manufactured item or a remanufactured item are exactly the same, since they generate the

same cash in
ow at the same time.

These counter-intuitive results can be avoided by choosing the same holding cost rates for

manufactured and remanufactured products. This gives

hm ! rcm

hr ! rcm

hn ! r(cm � cr) :

What about the set-up costs? The ASf is derived as

ASf = �r

�
Km +

Kme
�rTr +Kre

�rT

1� e�rT

�

� �(�� 
)Km=Qm � 
Kr=Qr � rKm

�
3
2 �



�

�
+ rKr=2; (12)

and we observe that the opportunity costs of set-ups do not depend on the policy parameters.

This however will change in the next section.

Our framework shows that the only way to in
uence the opportunity costs of holding inventories

is to somehow change the timing of the investments cm and cr, for instance by using pull

and push type policies (see van der Laan et al., 1998), or to somehow change the fraction of

(re)manufactured products by using a disposal policy (see e.g. Inderfurth, 1997; van der Laan

and Salomon, 1997). In the next paragraph we extend the manufacturing/remanufacturing

model with the option to dispose product returns.

10



5.2 A system with manufacturing, remanufacturing, and disposal

A number of authors have considered disposal strategies in a manufacturing/remanufacturing

environment in order to optimize total system costs (e.g. Heyman, 1977; Inderfurth, 1997;

Richter,1996; Simpson, 1978; van der Laan, 1997). However, doing so, care should be taken in

the modeling process. Including the disposal option enables to in
uence the throughput of the

manufacturing and remanufacturing process. From Section 3.1 we have learned that when the

throughput of the system depends on policy parameters, the traditional average costs approach

may not be appropriate.

Consider the example of Section 5.1, but instead of remanufacturing all product returns we

decide to use only a fraction U , 0 � U � 1, and continuously dispose a fraction 1 � U . The

unit `cost' related to disposal, cd can be positive (for instance if products contain hazardous

materials, which need to be processed in an environmental friendly manner), or negative (for

instance if product returns have a positive salvage value and can be sold to a third party). De�ne

the decision variable � = U
, then the total amount of disposals during a production cycle of

length T equals (
 � �)T .

The ASv for the situation with continuous disposals is

ASv = p�� (
 � �)cd � r
�
Qrcm + Qmcme�rTr+Qrcre�rT

1�e�rT

�
� (p�� cm(�� �)� cr�� cd(
 � �))

�rcmQm

�
1
2 �

�
�

�
� r (cm � cr=2)Qr :

The parameter cd only appears in the marginal cost term so there are no opportunity costs

associated with product disposal.

If cd > 0, it is more eÆcient from a �nancial point of view to dispose as late as possible. One

could choose to dispose a batch of remanufacturables whenever a certain capacity limit has been

reached. Here, we choose to accumulate the products to be disposed and dispose them all at

once whenever a remanufacturing batch is initiated, i.e. at time Tm, T + Tm, and so on. The

amount disposed at the end of each cycle equals (
 � �)T . The ASv for batch-disposals thus

reads

ASv = p�� r
�
Qrcm + Qmcme�rTr+(Qrcr+(
��)Tcd)e�rT

1�e�rT

�
� (p�� cm(�� �)� cr�� cd(
 � �))

�rcmQm

�
1
2 �

�
�

�
� r (cm � cr=2)Qr + rcd(Qm +Qr)

�

��
2�

�
: (13)

Note the opportunity cost/yield related to disposal, rcd(Qm +Qr)
�

��
2�

�
.

The annuity stream due to (re)manufacturing set-ups is derived as

ASf = �r

�
Km +

Kme
�rTr +Kre

�rT

1� e�rT

�

� �(�� �)Km=Qm � �Kr=Qr � rKm

�
3
2 �

�
�

�
+ rKr=2: (14)
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We observe that the opportunity costs of set-ups depend on the policy parameter �, and can no

longer be ignored (Compare with (12)).

Combining (13) and (14) we �nd that for 0 < � < � the total annuity stream is given by

AS = p�� r

�
Km +Qrcm +

(Km +Qmcm)e
�rTr + (Kr +Qrcr + (
 � �)Tcd)e

�rT

1� e�rT

�
; (15)

which can be approximated by the function

AS = p�� cm(�� �)� cr�� cd(
 � �)

�(�� �)Km=Qm � �Kr=Qr

�rKm � r(Km + cmQm)
�
1
2 �

�
�

�
+ rKr=2� r(cm � cr=2)Qr

+rcd(Qm +Qr)
�

��
2�

�
:

(16)

The traditional AC approach calculates the total average pro�t function as the total marginal

pro�ts, set-up costs, and inventory costs as

AP = p�� cm(�� �)� cr�� cd(
 � �)

�(�� �)Km=Qm � �Kr=Qr

�hm(1�
�
� )Qm=2� hr

�
�
�

�
Qr=2� hn

�

�

�
(Qm +Qr)=2:

(17)

Using the relation Qr =
�

���Qm it is easily veri�ed that we can transform AP into AS (up to a

constant), by using the following transformations of cr, hm, hr, and hn:

cm ! cm + rKm=�

hm ! rcm

hr ! rcm

hn ! r(cm � cr � (1� �=
)cd)

(18)

Clearly, this is a non-linear transformation in the decision variable �, which indicates the con-

siderable gap between the traditional average cost approach and the linearization of the annuity

stream. This is further illustrated by some analytical and numerical results in the next section.

6 Analytical and numerical comparison of alternative transfor-

mations

Consider the inventory system with manufacturing, remanufacturing, and batch-disposal of Sec-

tion 5.2. In this section we investigate how the average cost approach performs with respect to

the linearization of the annuity stream approach, when forcing a linear transformation of the

cost parameters that does not depend on decision variables.

12



Since demand is either ful�lled by manufacturing or remanufacturing and the number of (re)-

manufacturing batches within production cycle T is �xed to one, we have Qr =
�

���Qm. Hence,

for 0 < � � 
 < � expressions (15) { (17) can be transformed into functions of Qm and � only.

For the special case � = 0 similar expressions are derived in the appendix. For all the numerical

examples in this section we use the base-case scenario of Table 1, unless speci�ed otherwise.

parameter � 
 p cm cr cd Km Kr r

value 20 10 20 10 5 5 10 10 0:10

Table 1 Base case scenario

As a performance measure for batch size Q we de�ne the relative di�erence

R(Q) =

"
1�

~AS(Q)
~AS(QAS)

#
� 100%;

where ~AS(:) = AS(:) � (p� � cm(� � 
) � cr
) is the relevant annuity stream and QAS is the

batch-size that maximizes AS(:).

In our analysis we consider two transformations.

Transformation A

An intuitive, though rather naive, transformation is the following:

hm ! rcm

hr ! rcr

hn ! 0

The above choice follows from the (false) intuition that opportunity costs of inventory investment

are (approximately) equal to the interest rate times the average inventory investment. Parameter

cr is chosen according to (18)) to take the opportunity cost of remanufacturing batches into

account:

cm !

�
cm + rKm=�; if � > 0

cm; otherwise
(19)

Transformation B

A seemingly more sophisticated transformation of hm, hr, and hn was proposed by Inderfurth

and Teunter (1998) on the basis of a heuristic argument: \The money tied up in a non-serviceable

item is �cd, since that could have been `earned' by disposing of it. Hence, hn = r(�cd) (...). The

money tied up in a remanufactured item is that tied up in a non-serviceable item plus the cost cr

13



of remanufacturing the item. Hence, hr = r(cr� cd) (...). The money tied up in a manufactured

item is simply the cost cm of manufacturing an item. Hence, hm = rcm." Summarizing:

hm ! rcm

hr ! r(cr � cd)

hn ! �rcd

Parameter cr is chosen according to (19) to take the opportunity cost of remanufacturing batches

into account. Note that for cd = 0 Transformation A and Transformation B are equivalent.

To compare the various approaches, we consider two cases.

Case 1: � = 0

If � = 0 the di�erence between AS and AP is given by

AS �AP =
h
hm � rcm + (hn + rcd)

�

�

�i
Qm=2� rKm=2 (20)

where the last term is just a constant but the �rst term depends on Qm. If Transformation B

is applied the �rst term vanishes, hence the two approaches are equal up to a constant. For

Transformation A however the righthand side of (20) equals

rcd

�

�

�
Qm=2� rKm=2

Thus under Transformation A the two approaches will di�er signi�cantly for large enough jcdj

(see Table 2).

Transform. A Transform. B

cd QAS
m

~AS(QAS
m ) QAS

m R(QAS
m ) QAP

m R(QAP
m ) QAP

m R(QAP
m )

-15 15.1 73.01 15.1 0.0 20.0 1.5 15.1 0.0

-10 16.3 24.94 16.3 0.0 20.0 2.1 16.3 0.0

-5 17.7 -22.97 17.9 0.0 20.0 -0.7 17.9 0.0

0 19.7 -70.67 20.0 0.0 20.0 0.0 20.0 0.0

5 22.4 -118.10 23.1 0.0 20.0 -0.1 23.1 0.0

10 26.6 -165.12 28.3 0.0 20.0 -0.4 28.3 0.0

15 33.8 -211.49 40.0 -0.1 20.0 -0.9 40.0 -0.1

Table 2 Performance of QAS
m and QAP

m under the base-case scenario for � = 0 and various values of cd.

Case 2: � = 


If � = 
 the di�erence between AS and AP is given by

AS �AP =
�
hm
�
1� 


�

�
� rcm

�
1
2 �



�

��
Qm=2
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+
�
hr
�

�

�
� r(2cm � cr) + hn

�
Qr=2� rKm

�
3
2 �



�

�
+ rKr=2 : (21)

Under Transformation A the righthand side of (21) reduces to

r(cr � cm)
�

�

���+ 


�� 


�
Qm=2� rKm

�
3

2
�



�

�
+ rKr=2:

The di�erence will be signi�cant for large enough jcm � crj and/or 
 (see Table 3 and 4).

Transform. A Transform. B

cr QAS
m

~AS(QAS
m ) QAS

m R(QAS
m ) QAP

m R(QAP
m ) QAP

m R(QAP
m )

0 14.2 -28.71 14.1 0.0 28.3 -23.8 1a) -1

5 16.3 -25.00 16.3 0.0 23.1 -6.0 1a) -1

10 19.7 -20.67 20.0 0.0 20.0 0.0 40.0 -26.7

15 26.1 -15.27 28.3 -0.3 17.9 -7.5 28.3 -0.3

20 43.1 - 7.47 1a) -1 16.3 -75.5 23.1 -31.6

Table 3 Performance of QAS
m

and QAP
m

under the base-case scenario for � = 
 and various values of cr.

a) The objective function is an increasing function in Qm.

Transform. A Transform. B


 QAS
m

~AS(QAS
m ) QAS

m R(QAS
m ) QAP

m R(QAP
m ) QAP

m R(QAP
m )

0 19.7 -20.67 20.0 0.0 20.0 0.0 20.0 0.0

5 24.5 -25.27 24.5 0.0 27.5 -0.6 32.1 -3.6

10 16.3 -25.00 16.3 0.0 23.1 -6.0 1a) -1

15 7.0 -28.66 7.1 0.0 12.1 -15.4 1a) -1

19 1.2 -33.42 1.2 0.0 2.1 -16.6 1a) -1

Table 4 Performance of QAS
m

and QAP
m

under the base-case scenario for � = 
 and various values of 
.
a) The objective function is an increasing function in Qm.

Under Transformation B the righthand side of (21) reduces to

r(cr � cm � cd)
�

�

���+ 


�� 


�
Qm=2� rKm

�
3

2
�



�

�
+ rKr=2:

The di�erence will be signi�cant for large enough jcm + cd � crj, 
, and/or jcdj (see Table 3,4,

and 5).

7 Discussion

Although the net present value approach is the more appropriate framework, average cost models

are dominating the �eld of inventory control and production planning. In this paper we have

shown that the traditional average cost approach, which does not make a distinction between

opportunity costs of holding inventories and physical inventory costs, leads to reasonable results
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Transform. A Transform. B

cd QAS
m

~AS(QAS
m ) QAS

m R(QAS
m ) QAP

m R(QAP
m ) QAP

m R(QAP
m )

-15 16.3 -25.00 16.3 0.0 23.1 -6.0 11.5 - 6.1

-10 16.3 -25.00 16.3 0.0 23.1 -6.0 13.3 -2.1

-5 16.3 -25.00 16.3 0.0 23.1 -6.0 16.3 0.0

0 16.3 -25.00 16.3 0.0 23.1 -6.0 23.1 -6.0

5 16.3 -25.00 16.3 0.0 23.1 -6.0 1a) -1

10 16.3 -25.00 16.3 0.0 23.1 -6.0 1a) -1

15 16.3 -25.00 16.3 0.0 23.1 -6.0 1a) -1

Table 5 Performance of QAS
m and QAP

m under the base-case scenario for � = 
 and various values of cd.
a) The objective function is an increasing function in Qm.

for single-source systems, but not necessarily for multi-source systems. The NPV approach does

make a clear distinction between physical inventory costs and opportunity costs, since the two

are not directly related. The latter does not depend on physical stocks at all, but only on the

amount and timing of the investments.

The traditional approach only takes the opportunity costs of holding inventories into account,

but this should not be a general rule. All cash-
ows generate opportunity costs or yields that

cannot be disregarded if the cash-
ows depend on decision parameters. For example, in a

manufacturing/remanufacturing system with disposal the throughput of the (re)manufacturing

process is controlled by a decision variable. In that case also opportunity costs of set-ups and

disposals should be taken into account. Clearly, these opportunity costs have got little to do

with physical inventories.

Main conclusion of this paper is that basically there are two classes of models: a class for which

a holding cost transformation exists that does not depend on decision variables, such that NPV

coincides with AC (up to a constant), and a class for which such a transformation does not

exist. A typical example of the latter class is a system with manufacturing, remanufacturing,

and batch disposal.
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Appendix

If � = 0 there are no cash-
ows related to remanufacturing operations. Hence, expressions (15)

{ (17) are given as

AS = p�� r

 
Km +Qmcm +

�

�

�
Qmcde

�rQm=�

1� e�rQm=�

!
;

AS = p�� cm�� cd
 � �Km=Qm � r(Km + cmQm)=2 + rcd

�

�

�
Qm=2;

and

AP = p�� cm�� cd
 � �Km=Qm � hmQm=2� hn

�

�

�
Qm=2:
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