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Abstract

We consider the problem of testing for seasonal unit roots in monthly
panel data. To this aim, we generalize the quarterly CHEGY test
to the monthly case. This parametric test is contrasted with a new
nonparametric test, which is the panel counterpart to the univariate
RURS test that relies on counting extrema in time series. All methods
are applied to an empirical data set on tourism in Austrian provinces.
The power properties of the tests are evaluated in simulation experi-
ments that are tuned to the tourism data.
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1 Introduction

While unit roots at the zero frequency are related to concepts such
as trend or mean reversion, testing for seasonal unit roots essentially
means investigating the degree of reversion of seasonal cycles to time-
constant equilibrium patterns. In all unit-root tests on economic time
series of limited length, discriminatory power is notoriously low. Re-
peated observations on series with comparable properties, as they are
given in panel data, may serve convenient in increasing that power.
Compared to the sizeable literature on panel unit roots, tests on sea-
sonal roots in panels have hitherto drawn much less attention. We
just mention the contributions of Otero et al. (2005,2007) as well as
of Ucar and Guler (2007) and of Dreger and Reimers (2004).
Most of this research focuses on the case of quarterly data. In this
paper, we consider the monthly case.

The panel literature tends to describe unit-root tests under the
assumption of homogeneity and independence in the cross-section di-
mension as the ‘first-generation’ tests and tests that admit heterogene-
ity and static cross-section correlation as ‘second-generation’ tests (see
Hlouskova and Wagner, 2006). In this sense, the above authors
already focus on second-generation tests, as seasonal unit roots have
drawn little attention in the age of the first generation. In the follow-
ing, we will adopt the CHEGY test by Otero et al. (2007) and we
will contrast it with a nonparametric test that follows the univariate
RURS test introduced by Kunst (2009) as a seasonal generalization
of the RUR (‘record unit-root’) test by Aparicio et al. (2006). Due to
its construction, the RURS panel test is unlikely to be much affected
by heterogeneity and cross-section correlation.

There is no general agreement on the correct definition of non-
parametric tests. In fact, most unit-root tests contain semiparametric
elements, such as the Phillips-Perron test and its generalizations to
multivariate and panel problems. Truly nonparametric tests tend to
radically digress from the concept of approximating likelihood-ratio
tests based on a backdrop parametric model. They achieve high ro-
bustness to some deviations from usual assumptions, such as strong
breaks and outliers, at the cost of low power in standard situations.
Variance-bounds tests, as considered by Breitung (2002), constitute
an intermediate approach that may deserve attention.

Panels vary a lot with regard to the proportion of their two dimen-
sions. Microeconometric panels may have small time dimension and
an enormous cross-section dimension. By contrast, panels of collected
time series, as they are typical for macroeconometrics, have a fixed
number of cross-section units, usually not more than 10 or 20, and a
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time-series dimension that increases gradually as new information ar-
rives. This distinction affects the focus of asymptotic analysis for panel
tests. While much of the literature considers extending the two dimen-
sions jointly to infinity, in varying proportions, sometimes achieving
asymptotic normal laws, this approach hardly appears justifiable for
panels of time series. For this reason, we view the cross-section di-
mension as fixed and study the small-sample behavior in this respect
by means of simulation.

As a role-model case for seasonal time-series panels, we study a
monthly panel of overnight stays in nine Austrian provinces. Due to
long-run changes in tourists’ preferences, cheaper airfares that permit
spending summer vacations in more distant destinations, a stronger
focus on sports and on sightseeing in cities, the increased female labor
force participation that rules out long-term family stays with children
in rural Austrian regions, and various other reasons, this is a data
set where the distribution over the annual cycle is not constant and
is unlikely to revert to any original pattern. For this reason, one
may presume that it is well described by a model with seasonal unit
roots. We focus on questions such as which unit roots are found at
which frequencies and how these unit-root events are modified by the
application of different tests.

From an estimated structure of autoregressions fitted to the nine
individual series, connected by a covariance matrix of their residuals,
we simulate pseudo-data to study the local power of the panel unit-
root tests. We generally find that power improves at higher frequencies
and that the nonparamatric tests face considerable problems. We also
find that size bias is a persistent feature of panel unit-root tests, even
after using the correction suggested by Pesaran (2007) that is taken
up in the CHEGY test by Otero et al. (2007).

The plan of this paper is as follows. Section 2 expounds the uni-
variate and panel tests that we wish to consider. Section 3 considers
an empirical application to Austrian tourism data. Section 4 reports
some parametric bootstrap simulation to study the size and power
properties of the tests under a design that closely corresponds to the
empirical data set. Section 5 draws some tentative conclusions and
summarizes our results.

2 The testing procedures

2.1 The testing problem

Consider a panel of N real-valued time-series variables that are avail-
able at a monthly frequency for t = 1, . . . , T . Denote the typical
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element as Xjt for j = 1, . . . , N and t = 1, . . . , T . Note that we use
j rather than the conventional i for the individual index, to keep it
apart from i =

√
−1. The testing problem is to determine whether

the autoregressive operators Φj in

Φj(B)Xjt = εjt,

with notation Φj(z) =
∑pj

k=0 φk,jz
k and B denoting the lag operator,

contain roots at the locations exp(ikπ/6) for k = 0, . . . 6. Such au-
toregressive representations of order pj are assumed to exist in the
sense that error processes εjt are white noise for all j. Lag orders and
shapes of the polynomials may vary across the cross-section dimen-
sion. We also allow for a non-diagonal covariance matrix Σ = E (εtε

′

t),
where εt = (ε1t, . . . , εNt)

′. For the applications of the panel versions of
the tests, we however assume that unit-root events are homogeneous
across the cross-section dimension in the sense that existence of a unit
root at a frequency exp(ikπ/6) in any Φj implies the existence for all
j. Additionally, the general construction of our test statistics imposes
the constraint pj ≥ 12.

Thus, for the N variables X1t, . . . , XNt some common structure
holds across the cross-section index j. A customary assumption is
that unit-root events are identical across j, while other time-series
characteristics, including the lag order pj , may vary. Whether the
incidence of a specific unit root in some members of the panel and
absence in others should be classified into the alternative of panel
unit-root tests, is a debated issue in the literature. The answer to this
question decides whether test power in the case of an absent unit root
for some j only is viewed as beneficial. We generally assume that unit-
root events are identical across j, with the argument that otherwise
the problem can be handled more appropriately by univariate tests.

2.2 The monthly HEGY test

Consider a real-valued time-series variable X that is available at a
monthly frequency for t = 1, . . . , T . The testing problem is to deter-
mine whether the autoregressive operator Φ in

Φ(B)Xt = εt (1)

contains roots at the locations exp(ikπ/6) for k = 0, . . . 6. Hylleberg

et al. (1990, HEGY) drew attention to the fact that all of these roots
appear in the polynomial Φ if, under some conditions, in the equivalent
representation

∆12Xt = α′ (Xt−1, . . . , Xt−12)
′+γ′ (∆12Xt−1, . . . ,∆12Xt−p)

′+εt, (2)
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the 12–vector α is a zero vector. We use the symbol ∆12 to denote the
seasonal differencing operator 1 − B12. The condition α = 0 can be
checked by a corresponding least-squares regression and by considering
the F–statistic on α, which, under the null hypothesis α = 0, has an
asymptotic non-standard distribution that differs from the usual F–
distribution with 12 numerator degrees of freedom.

The representation can be made more informative by applying an
additional transformation to the vector of level lags X−

t = (Xt−1, . . . ,
Xt−12)

′. In order to define that transformation matrix, consider the
12–vectors ck, k = 0, . . . , 6, filled by cos(lkπ/6) for l = 1, . . . , 12.
Then, consider the 12–vectors dk, k = 1, . . . , 5, filled by sin(lkπ/6) for
l = 1, . . . , 12. These are used to define a transformation matrix M by

M = (c0, c1, d1, c2, d2, . . . , d5, c6) ,

in this order. The matrix is nonsingular, and (Y −

t )′ = (X−

t )′M can
serve as an alternative regressor to define the specification

∆12Xt = β′Y −

t + γ′ (∆12Xt−1, . . . ,∆12Xt−p)
′ + εt. (3)

Note that γ is identical to (2) and εt is identical to (1) and to (2). In
the form (3), the entries βk in β = (β1, . . . , β12)

′ correspond to unit-
root events as follows. If β1 = 0, there is a unit root at +1, and if β12 =
0, there is a unit root at −1. If β2k = β2k+1 = 0 for any k = 1, . . . , 5,
there is a unit root at exp(ikπ/6). The particular unit-root events
can then be checked empirically by t– and F–statistics, again with
non-standard asymptotic laws. The t– and F–statistics for the tests
on the unit roots at exp (ikπ/6) will be denoted by t0, F1, . . . , F5, t6 in
the following.

In general, we focus on null hypotheses of unit roots and on sta-
tionary alternatives, in most cases represented by βk < 0 for k = 1
and k even, and thus we view the HEGY test as one-sided. For a
digression from that principle to allow for unstable alternatives, see
Section 4. For a summary on all properties of the HEGY statistics,
see Ghysels and Osborn (2001).

2.3 The monthly CHEGY test

The CHEGY or cross-sectionally augmented HEGY test was intro-
duced by Otero et al. (2007) who take up an idea developed by
Pesaran (2007) and apply it to the problem of testing for seasonal
unit roots in quarterly data. They call the test CHEGY-IPS, as it is
historically related to the IPS test by Im et al. (2003). It avoids the
calculation of correction factors for means and variances of the origi-
nal IPS test, however, and hence we will refer to it simply as CHEGY
test.
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Panel unit-root tests are known to be sensitive to cross-section
heterogeneity. In order to tackle this feature, various methods and
corrections to existing methods have been suggested in the literature.
The simple idea of the CHEGY test is to add cross-section averages
of the Y − variables as well as of the seasonal differences as additional
regressors to the basic HEGY regression. Denote these variables as
Ȳ − and as ∆12X̄, respectively. Then, the HEGY regression for the
monthly case reads

∆12Xjt = β′Y −

j,t + γ′
(

∆12Xj,t−1, . . . ,∆12Xj,t−pj

)

′

+β̄′Ȳ −

t + γ̄′
(

∆12X̄t, . . . ,∆12X̄t−pj

)

′

+εjt, (4)

with the noteworthy restriction that the lag order with regard to the
averages is identical to the one for the individual regressors ∆12X.
Note the simultaneous regressor ∆12X̄t.

The parts β̄ and γ̄ are designed to capture the effect of common
factor structures. For small N , the correlation of a single Xjt and
X̄t may be sizeable. However, Otero et al. (2007) show that test
performance is satisfactory in general.

The CHEGY statistics are then defined as arithmetic averages of
individual t– and F–statistics for the βk elements over the N individual
values. Otero et al. (2007) provide simulated significance points
for the quarterly CHEGY test at various values of N and T . We
report some further quantiles tailored to our empirical application
with N = 9 and T = 406 as Table 1, where we also add the cases N = 5
and N = 18 for a comparison. These distributional characteristics are
based on the simulation design of a seasonal random walk ∆12Xjt = εjt

with εjt ∼ N(0, 1) independent across j and on 10,000 replications.
The statistics are calculated for deterministic regressors containing
monthly dummy constants and a linear time trend, and lag orders
pj are determined via BIC. Due to these specifications, our quantiles
differ slightly from the ones given by Otero et al. (2007).

2.4 The monthly RURS test

Various nonparametric tests for unit roots have been considered in
the literature (see Granger and Hallman, 1991, So and Shin,
2001, Aparicio et al., 2006, Choi and Moh, 2007). By the obser-
vation that seasonal unit root tests are essentially unit-root tests on
transforms of the original series, most of these tests can be general-
ized to the seasonal unit root problem. The RURS test by Kunst

(2009) follows the ‘record unit root’ RUR test by Aparicio et al.
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Table 1: Empirical distribution of the CHEGY statistic for T = 406 and
N = 5, 9, 18.

mean 0.05 0.10 0.50 0.90 0.95

N = 5
t0 -2.388 -3.063 -2.908 -2.394 -1.853 -1.699
F1 4.117 2.219 2.569 4.022 5.780 6.327
F2 4.117 2.208 2.577 4.039 5.745 6.265
F3 4.103 2.199 2.549 4.040 5.725 6.274
F4 4.096 2.231 2.570 4.015 5.707 6.244
F5 4.085 2.190 2.551 3.995 5.760 6.276
t6 -1.820 -2.567 -2.409 -1.827 -1.216 -1.039

N = 9
t0 -2.386 -2.895 -2.786 -2.385 -1.998 -1.892
F1 4.122 2.666 2.934 4.076 5.376 5.789
F2 4.127 2.647 2.923 4.080 5.387 5.783
F3 4.110 2.605 2.908 4.060 5.362 5.751
F4 4.118 2.623 2.924 4.071 5.384 5.783
F5 4.112 2.618 2.899 4.064 5.369 5.762
t6 -1.816 -2.370 -2.254 -1.820 -1.366 -1.242

N = 18
t0 -2.389 -2.750 -2.671 -2.390 -2.103 -2.024
F1 4.098 2.927 3.168 4.078 5.055 5.356
F1 4.118 2.953 3.187 4.087 5.094 5.380
F2 4.114 2.932 3.170 4.082 5.088 5.391
F4 4.115 2.972 3.196 4.084 5.082 5.366
F5 4.112 2.951 3.177 4.080 5.090 5.412
t6 -1.815 -2.247 -2.156 -1.818 -1.471 -1.373

Note: Columns correspond to quantiles of the empirical distribution gener-
ated using 10,000 replications of seasonal random walks with N(0, 1) errors.

6



(2006, AES). The main idea of the AES test is to count the occasions
of new records, maxima and minima, in a series, starting from the
beginning of the series and also from the end. Ultimately, the forward
and backward counts are averaged. If the series under investigation is
a random walk, the statistic T−1/2R, where R is the averaged number
of extremum counts and T is the sample size, converges to a nonstan-
dard distribution as T → ∞. If the series is stationary, the statistic
converges to 0.

In the construction of the RURS test, Kunst (2009) suggests to
overcome the problem that the asymptotic distribution is known only
for the case of a pure random walk by conditioning out lagged differ-
ences, in the tradition of the parametric Dickey-Fuller test. In order to
preserve reasonable power properties for the test, the number of lags
for this conditioning step is determined via the BIC criterion within
a restrictive maximum order proportional to T 1/4.

In detail, the transforms Y − are pure unit-root processes if the
original process X is a seasonal random walk, in the sense that a sin-
gle operator of the form 1 + aB + bB2 suffices to transform them to
white noise. For the frequencies 0 and π, these operators are the sim-
ple first-order operators 1 − B and 1 + B, respectively. To cope with
the potential autocorrelation in a seasonally integrated process rather
than a seasonal random walk, each of the transforms is regressed on its

lags, which yields residuals û
(k)
t . Then, new series are defined by ac-

cumulating the residuals, in symbols Z
(k)
t =

∑t
s=1 û

(k)
s . If the original

process is seasonally integrated, the processes Z(k), k = 1, . . . , 12, will
approximate random walks. If it is not integrated at the respective
frequency, they will be stationary.

In a second step, the statistic Jk = T−1/2R(k) is calculated, with T
denoting the sample size and R(k) denoting the number of new maxima
or minima in the series Z(k), where k may vary from 1 to 12 for the
monthly case. This step is repeated for the series backward, with the
ensuing statistics denoted by J ′

k. For all frequencies k 6= 1, 12, this
yields two different statistics with generally very similar values. In the
following, we use the simple average over these two statistics.

In a third step, the forward and backward statistics are averaged
according to

J∗k = 2−1/2(Jk + J ′

k), (5)

with the weight 2−1/2 following the tradition of AES.
The test rejects whenever the count of new records is less than the

5% quantile of the typical distribution for a random walk, that is, the
test is one-sided and rejects the unit-root null if too few new records
are found. In this regard, the RURS test by Kunst (2009) digresses
from the RUR test by AES, which is a two-sided test that rejects
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whenever there are too few record counts—indicative of a stationary
process—or too many—indicative of a process with a deterministic
time trend. Of course, too many records may even be found in the
RURS version, which may be taken as indicating a superlinear trend
in the original data.

In standard situations, the power of such tests is necessarily lower
than that of comparable parametric tests, such as the HEGY test.
Their virtue is that they are resilient to many deviations from the
standard design, such as local outliers, structural breaks, and particu-
larly some nonlinear models whose properties can be analyzed within
the linear I(0)/I(1) framework (see Granger and Hallman, 1991,
for this latter point).

Some simulated quantiles for the RURS test are provided in the
upper panel of Table 2.

2.5 The panel RURS test

The RURS test is robust against seasonal deterministic cycles, and it is
also invariant to heterogeneity across j or to non-diagonal Σ. As long
as dependence in the cross-section dimension does not invalidate laws
of large numbers, an average of the N RURS statistics will, under
the unit-root null at the considered frequency, converge to the first
moment of the RURS null distribution as N → ∞. Of course, for
small N it makes sense to study the null distribution of

J̄∗k = N−1
N

∑

j=1

J
(j)
∗k ,

where J
(j)
∗k denotes the RURS statistic at frequency k for individual se-

ries j. In simulations and bootstrap experiments tuned to actual data,
we found that the distribution quickly condenses around its mode of
around 2.3 as N gets larger. In other words, a value of less than 2
becomes conspicuous for N = 10 in the average, while it would not be
significant for a single series.

The left-sided test based on the average RURS statistic J̄∗k will
be called the RURS-p test in the following. Some simulated quan-
tiles for the RURS-p test are provided in the lower panels of Table
2. Note that empirical means are identical but that the distribution
is much more concentrated than for the univariate RURS statistics.
This concentration becomes sharper as N increases.
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Table 2: Quantiles for the RURS statistics based on T = 406 and for the
RURS-p statistics based on T = 406 and N = 5, 9, 18. Monte Carlo results
from 10,000 replications of seasonal random walks with N(0, 1) errors.

mean 0.05 0.1 0.5 0.9 0.95

RURS
0 2.369 1.613 1.757 2.330 3.047 3.263
π/6 2.329 1.577 1.721 2.295 3.012 3.227
π/3 2.384 1.649 1.757 2.330 3.047 3.263
π/2 2.313 1.784 1.887 2.301 2.766 2.922
2π/3 2.384 1.649 1.757 2.330 3.047 3.298
5π/6 2.330 1.577 1.721 2.295 3.012 3.227
π 2.371 1.613 1.757 2.330 3.047 3.263

RURS-p N = 5
0 2.375 2.022 2.094 2.366 2.667 2.753
π/6 2.335 1.979 2.051 2.330 2.632 2.718
π/3 2.389 2.036 2.108 2.381 2.689 2.775
π/2 2.314 2.058 2.115 2.311 2.513 2.580
2π/3 2.390 2.029 2.108 2.381 2.682 2.768
5π/6 2.335 1.972 2.051 2.323 2.632 2.725
π 2.366 2.008 2.079 2.359 2.660 2.753

RURS-p N = 9
0 2.369 2.095 2.155 2.366 2.589 2.653
π/6 2.329 2.052 2.111 2.326 2.549 2.613
π/3 2.384 2.111 2.167 2.382 2.601 2.665
π/2 2.313 2.129 2.166 2.313 2.462 2.508
2π/3 2.384 2.107 2.167 2.378 2.605 2.669
5π/6 2.330 2.052 2.115 2.326 2.549 2.617
π 2.371 2.103 2.159 2.370 2.585 2.653

RURS-p N = 18
0 2.368 2.179 2.219 2.366 2.520 2.567
π/6 2.328 2.137 2.177 2.324 2.482 2.532
π/3 2.382 2.195 2.233 2.380 2.536 2.581
π/2 2.313 2.179 2.206 2.311 2.419 2.448
2π/3 2.382 2.193 2.233 2.380 2.534 2.579
5π/6 2.328 2.137 2.177 2.326 2.484 2.530
π 2.369 2.173 2.217 2.366 2.524 2.569
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2.6 Deterministic terms

Deterministic terms can affect seasonal time-series models in two re-
spects. Firstly, intercepts and trends in the autoregressive form gen-
erate linear and quadratic trends in the time series if there is a unit
root at +1, like in non-seasonal unit-root models. Second, however,
seasonal dummy constants generate ever-increasing seasonal cycles if
seasonal unit roots are present. In particular, ‘spectral’ transforms of
seasonal dummy constants using M imply expanding seasonal cycles
at specific frequencies. This feature has led to the suggestion of re-
stricting these constants per frequency in multivariate seasonal models
(see Franses and Kunst, 1999).

Within this paper, we add deterministic terms to the basic autore-
gressions as follows. In all HEGY-type tests, a linear time trend and
12 seasonal dummy constants are used as additional regressors. In
the nonparametric tests, linear time trends and seasonal dummy con-
stants are inessential, as they drop out in the test construction due
to the augmenting step, where a constant is used in the regression.
In all artificially generated data, coefficients on dummy constants are
restricted to zero if seasonal unit roots are present and trend coeffi-
cients are restricted to zero if a unit root at +1 is present. This avoids
the generation of systematically unstable or quadratically trending
trajectories that we do not view as realistic.

3 An empirical example

3.1 The data

Data are from the Austrian Wifo data base. They are monthly and
cover the time range January 1970 to October 2008. Variables are the
registered overnight stays in the nine Austrian ‘länder’ (provinces).

Quantities are quite heterogeneous, as are the sizes and popula-
tions of the nine länder. Burgenland and Vorarlberg are the smallest
Austrian provinces, and Lower Austria and Vienna are the largest
ones, according to their populations. A similar heterogeneity applies
to the nature of tourism across the regions. The capital of Vienna
and the city of Salzburg, which is the capital of the province bearing
the same name, attract visitors all around the year, because of cul-
tural activities. The mountainous regions of Tyrol, Vorarlberg, and
to a lesser degree also Carinthia, Salzburg, and Styria, attract winter
tourism due to their skiing facilities. On the other hand, regions like
Burgenland and much of the lowlands of Lower Austria offer no skiing
facilities. Traditionally, Upper and Lower Austria served as summer
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resorts for longer-term stays of German and Viennese inhabitants,
the so-called ‘Sommerfrische’. This form of vacation is in a long-run
decline. Carinthia and Burgenland tend to concentrate on their lakes
and on summer sports, such as swimming and water skiing. Generally,
the picture is quite colorful and heterogeneous, but it is dominated by
a long-term tendency toward more intensive winter tourism and all-
year city tourism and, sadly enough, away from traditional summer
vacation.

Figures 1 and 2 demonstrate these developments. Particularly in
Salzburg, Tyrol, and Vorarlberg has winter tourism overtaken summer
tourism. With the exception of the main tourist cities Vienna and
Salzburg, it appears that Austria on the whole is on its way to a
winter destination.
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Figure 1: Overnight stays in the nine Austrian provinces, on a common scale.
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Figure 2: Overnight stays in January (solid) and in July (dashed) in the nine
Austrian provinces, individual scales.
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Table 3: HEGY statistics for individual series in the panel and CHEGY
statistics for the panel.

Region p t0 F1 F2 F3 F4 F5 t6
Burgenland 2.00 -1.64 0.54 6.37 15.50* 23.08* 31.62* -6.85*
Carinthia 2.00 -1.97 1.15 5.08 7.00* 13.26* 37.78* -7.01*
L. Austria 3.00 -1.51 0.16 7.55* 10.91* 29.74* 41.24* -5.33*
Salzburg 10.00 -3.04 3.27 3.90 5.52 12.16* 33.15* -5.63*
Styria 2.00 -1.13 1.13 2.86 7.69* 11.74* 31.24* -5.96*
Tyrol 1.00 -2.53 2.37 6.18 7.02* 18.42* 38.55* -6.66*
U. Austria 2.00 -1.52 0.90 1.52 12.05* 13.10* 28.90* -6.88*
Vienna 2.00 -2.31 0.76 3.29 6.93* 7.12* 17.63* -5.14*
Vorarlberg 1.00 -2.21 2.06 6.82 6.86* 21.37* 34.59* -6.63*
CHEGY -2.40 5.78 5.95* 7.87* 9.93* 8.21* -2.09

Note: Asterisks denote significance at 5%.

Whether the peak is in summer or in winter, seasonality is strong
for all provinces. Modelling the seasonal structure appears to be cru-
cial for the task of modelling the time series.

3.2 Univariate tests

Table 3 shows the HEGY statistics for the series on the nine provinces,
after applying a logarithmic transformation. For most series, a BIC
search found a small lag order p, the exception is Salzburg. Simu-
lations comparable to the ones reported elsewhere in the paper for
T = 406 give 5% points of -3.43 and -2.92 for the two t–tests and of
around 6.8 for the F–tests, in good correspondence to values reported
in the literature (see, for example, Beaulieu and Miron, 1993).

For none or almost none of the series does the HEGY test reject the
unit-root null at the frequencies 0,π/6, and π/3, i.e. at the long-run
frequency and at the annual and semi-annual seasonal cycles. In short,
seasonality appears to be unit-root stochastic at the longer frequencies.
By contrast, the HEGY tests do reject almost unanimously at the
short frequencies π, 5π/6, 2π/3, and π/2. This means that seasonal
cycles at these frequencies are deterministic or that the contribution
from these frequency components is small.

The latter conjecture is confirmed by spectral estimates that are
presented in Figure 3. Typically, all seasonal frequencies appear as
peaks but the frequencies π/6 and π/3 tend to dominate. Thus, the
traditional parametric HEGY test finds those unit roots that cor-
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respond to the most dominant components of the seasonal cycle. A
different view of the higher seasonal frequencies is that these represent
month-to-month patterns, such as November to December, which are
relatively stable over time, while the importance of January relative
to August, for example, experiences sizeable long-run movements.

0.0 0.1 0.2 0.3 0.4 0.5

Burgenland

0.0 0.1 0.2 0.3 0.4 0.5

Carinthia

0.0 0.1 0.2 0.3 0.4 0.5

Lower Austria

0.0 0.1 0.2 0.3 0.4 0.5

Salzburg

0.0 0.1 0.2 0.3 0.4 0.5

Styria

0.0 0.1 0.2 0.3 0.4 0.5

Tyrol

0.0 0.1 0.2 0.3 0.4 0.5

Upper Austria

0.0 0.1 0.2 0.3 0.4 0.5

Vienna

0.0 0.1 0.2 0.3 0.4 0.5

Vorarlberg

Figure 3: Estimated spectral densities for the series from all Austrian provinces,
individual scales.

3.3 The CHEGY panel test

We implemented the CHEGY panel test that was outlined in Section
2.2. The lag order p is again determined by BIC. Because of the av-
erages as additional regressors, the penalty for larger p increases and
hence lag orders are generally smaller than in the univariate HEGY
tests. This leads to increased F statistics for some provinces and,
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consequently, to CHEGY statistics that are generally above the naive
averages of the individual HEGY statistics. For this reason, the CH-
EGY panel test rejects at 5% for the frequencies π/3 to 5π/6, while it
still supports the unit-root null for the 0 and π frequencies as well as
for π/6. In detail, the F–statistics are provided in the bottom row of
Table 3, to be checked against the 5% significance point provided in
Table 1, which renders all CHEGY statistics significant at 5% except
at 0, π/6, and π.

In summary, the panel test indicates unit-root seasonality at the
Nyqvist and annual frequencies and at the zero frequency—indeed,
this is the non-seasonal traditional unit root—while it rejects unit
roots at all intermediate seasonal frequencies. While these results ap-
pear to be in conflict with univariate tests, note that the rejection at
π/3 is fragile and that the p–values tend to decrease as the frequency
shortens. On the other hand, they re-increase for 5π/6 and particu-
larly at π, where the univariate test rejects but the CHEGY test does
not. The reason are small, and even positively signed, contributions
by Carinthia and Styria. In these two cases, the additional covariates
constructed from cross-section averages eliminate the correlation of
increments and alternating cumulated sums of the levels that is used
as evidence against a unit root at π in the HEGY test.

3.4 The nonparametric tests

Table 4 gives the RURS statistics at all frequencies for the nine Aus-
trian provinces. Quantiles given in the upper panel of Table 2 are
around 1.65, which implies that the null of a seasonal unit root is re-
jected at the frequencies π/2 and π for most cases, otherwise the data
apparently support the null.

This conclusion is confirmed by the average RURS-p statistics.
The corresponding panel of Table 2 for N = 9 shows a simulated 5%
point of 2.1 at all frequencies, thus seasonal unit roots at π/2 and π are
rejected for the panel. At the remaining frequencies, more extrema are
found than would be typical for unit-root processes, which indicates
an expansion of seasonal cycles beyond the random-walk rate. Par-
ticularly at the zero frequency, a growth rate of the series beyond the
constant expansion rate covered by the linear trend—which is elimi-
nated in the construction of the test statistic—is reflected in the high
value of 3.25.
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Table 4: RURS statistics for all countries.

0 π/6 π/3 π/2 2π/3 5π/6 π

Burgenland 3.585 2.976 2.868 1.474 3.621 2.976 1.291
Carinthia 3.119 2.151 2.868 1.887 3.083 2.868 2.079
L. Austria 3.729 3.012 2.581 1.577 3.513 2.581 1.183
Salzburg 3.513 3.119 3.191 1.474 3.693 3.191 1.291
Styria 3.191 2.940 2.223 1.603 3.298 2.223 1.434
Tyrol 3.693 3.513 3.693 1.525 3.693 3.693 1.542
U. Austria 3.047 2.402 2.581 1.784 3.083 2.581 1.398
Vienna 2.653 2.008 2.474 1.810 2.474 2.330 1.613
Vorarlberg 2.761 2.617 2.617 1.577 2.617 2.617 1.398
RURS-p 3.255 2.749 2.788 1.635 3.231 2.784 1.470

4 Post-sample evidence on size and power

4.1 The simulation design

The local power close to the null of seasonal unit roots will be studied
on the basis of a simulation design that is adapted to the tourism data
set that we investigated in the last section. Unrestricted estimates
serve as the alternative design, and a restriction of this structure serves
as the null design. Weighted averages of these two benchmarks, in
other words on an arc between the two models, will also be evaluated.

In detail, autoregressive models of the form

∆12Xt = α′ (Xt−1, . . . , Xt−12)
′ + γ′ (∆12Xt−1, . . . ,∆12Xt−p)

′

+
12

∑

j=1

δjDjt + κt + εt (6)

are fitted to the nine observed series with the lag order p selected by
BIC, and the covariance matrix of the individual error terms is esti-
mated by maximum likelihood. These parameters Σ̂, α̂, γ̂, δ̂, and κ̂ are
then used to simulate the model, with errors drawn from a nine-variate
N(0, Σ̂) distribution. 10,000 replications of this parametric bootstrap
alternative design are generated and all statistics are recorded.

Starting from this ‘realistic’ alternative design, we then shrink the
crucial parameters in α to 0 by multiplying them by a constant τ ∈
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[0, 1], in symbols we simulate the following model:

∆12Xt = τα′ (Xt−1, . . . , Xt−12)
′ + γ′ (∆12Xt−1, . . . ,∆12Xt−p)

′

+τ
12

∑

j=1

δjDjt + τκt + εt. (7)

Thus, the value τ = 0 defines a null model with unit roots, and rejec-
tion frequencies of tests for τ = 0 are size values rather than power.
Note that the deterministic terms are also shrunk toward zero, in or-
der to avoid deterministically unstable models under the null with
quadratic trends and seasonally divergent trends. It is conceivable to
admit a non-zero constant under the null or to shrink coefficients at
different rates but we prefer to keep the design simple.

Note that the implied null design for τ = 0 does not correspond to
the maximum-likelihood estimate under the null. Nevertheless, this
simulation design appears to be more informative on the power of the
tests than a constructed artificial design.

In fact, for the given data the fitted structure is unstable for the
case of Burgenland with regard to its stochastic part, in the sense that
the α part generates unstable modes. The modulus of the unstable
roots only slightly exceeds unity, though, such that trajectories do not
digress visually from the observed data. It is known that stochastic
instability leads to a shift of the distribution of HEGY–type statistics
to their ‘other’ tail and thus to an increased tendency to accept the
null in a one-sided test.

4.2 The parametric tests

It is under these caveats that Table 5 is to be interpreted. The test
is considerably oversized except at the Nyqvist frequency π. The best
power occurs at the highest frequencies, as is to be expected, as these
admit the best information in the sample.

Table 5 demonstrates the local power of the CHEGY procedure ac-
cording to the experimental design expounded above. The simulation
design corresponds to a point in the—generalized, because partially
unstable— alternative of the test, and the column headed τ = 1 shows
that the rejection rate is 100% at all frequencies higher than π/3, while
the test does not reject at all at the annual frequency π/6 and achieves
around 50% rejection at the zero frequency.

Test performance may be unduly affected by the fact that the
generating model is unstable for pseudo-Burgenland at a frequency
close to the annual cycle. For this reason, we repeat the experiment
with replacing the unstable mode at |ζ| > 1 by a stable mode at ζ−1
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Table 5: Rejection frequency of CHEGY test around the null.

τ 0.00 0.20 0.40 0.60 0.80 1.00

unstable unrestricted estimate
t0 0.166 0.063 0.023 0.069 0.221 0.486
F1 0.164 0.020 0.005 0.001 0.000 0.000
F2 0.153 0.050 0.196 0.450 0.716 0.908
F3 0.178 0.315 0.774 0.987 1.000 1.000
F4 0.169 0.645 0.999 1.000 1.000 1.000
F5 0.164 0.994 1.000 1.000 1.000 1.000
t6 0.069 0.979 1.000 1.000 1.000 1.000

stabilized design
t0 0.166 0.062 0.025 0.074 0.231 0.500
F1 0.164 0.036 0.048 0.074 0.108 0.156
F2 0.153 0.050 0.201 0.466 0.735 0.917
F3 0.178 0.316 0.776 0.986 1.000 1.000
F4 0.169 0.646 0.999 1.000 1.000 1.000
F5 0.164 0.994 1.000 1.000 1.000 1.000
t6 0.069 0.979 1.000 1.000 1.000 1.000

and report the results in the lower panel of Table 5. The differences
are small, excepting the frequency π/6. The original design adapted
to the data is indeed unstable but the mode as well as its inverse
are so close to one that power remains small even for the artificially
stabilized design.

In detail, the size bias at τ = 0 turns into a strongly dichotomous
behavior even at τ = 0.2: good power at the high frequencies, a
marked fall in rejection rates at lower frequencies. Strong support for
the null prevails for all τ at and around π/6. The main explanation
is that the design at τ = 1 is not really in the expected alternative.
The stochastic instability occurs at approximately π/6, in other words
an unstable annual cycle. That instability apparently aliases into the
neighboring frequencies at 0 and at π/3.

The power of the panel CHEGY test is to be compared to the
results of a standard HEGY test procedure applied to the individual
states. Table 6 gives such a comparison, where rejection frequencies
are averaged across states. Thus, the distinction among the individu-
als is lost. In fact, we found considerable heterogeneity, in the sense
that some cases have a rejection frequency of 1, while others have low
frequency, at least for τ = 1. Note that the HEGY test has approx-
imately correct size at τ = 0. It is immune to the size distortions of
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Table 6: Average rejection frequency of HEGY test around the null.

τ 0.00 0.20 0.40 0.60 0.80 1.00

unstable unrestricted estimate
t0 0.049 0.236 0.562 0.549 0.362 0.228
F1 0.056 0.040 0.043 0.057 0.155 0.194
F2 0.060 0.069 0.120 0.181 0.268 0.377
F3 0.061 0.131 0.282 0.477 0.675 0.838
F4 0.065 0.273 0.633 0.858 0.947 0.980
F5 0.058 0.558 0.964 0.998 1.000 1.000
t6 0.043 0.403 0.883 0.984 0.999 1.000

stabilized design
t0 0.049 0.236 0.562 0.549 0.363 0.229
F1 0.056 0.042 0.044 0.054 0.070 0.088
F2 0.060 0.069 0.121 0.181 0.269 0.378
F3 0.061 0.131 0.282 0.477 0.675 0.838
F4 0.065 0.273 0.633 0.858 0.947 0.980
F5 0.058 0.558 0.964 0.998 1.000 1.000
t6 0.043 0.403 0.883 0.984 0.999 1.000

the panel CHEGY test. Its power increases more slowly at the high
frequencies, while support for the unit root at the lower frequencies
becomes more fragile.

Again, the general test performance is hardly affected at all by the
fact that one of the countries, Burgenland, is unstable at the annual
frequency, as can be seen from the lower panel of Table 6, which is
roughly identical to the upper panel.

4.3 The nonparametric tests

In this subsection, we report the results of simulation experiments
that investigate the power of the RURS and RURS-p tests. These
experiments are analogous to those for the HEGY and CHEGY tests
reported in the last subsection.

Tables 7 and 8 show that the performance of the nonparametric
tests is generally disappointing. While the generating model is in the
alternative for all τ 6= 0, the procedure rejects for the frequencies π
and π/2 only. The univariate test even fails to reject for these two
frequencies for a substantial portion of the replications, whereas the
HEGY-type tests find the missing roots with a probability close to
unity. Even at π, where the power of the panel RURS-p test appears
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acceptable, is the CHEGY test faster in picking up the information
than the RURS-p test. CHEGY rejection is close to unity at τ =
0.2, whereas the RURS-p test needs τ = 0.4 to attain a comparable
discriminatory power.

Conversely, the nonparametric tests have a considerable size bias
at τ = 0, far beyond the problems encountered by the CHEGY test.
This bias can be reduced, however, by liberalizing the lag-order search,
substituting AIC for BIC, or increasing the upper bound for p.

Thus, the local-power simulation corroborates the findings for the
sample at τ = 1 but it helps to make it more precise. At a point
in the parameter space, where a traditional parametric test tends to
support the alternative for the high seasonal frequencies, will the non-
parametric record-counting test be unable to reject the unit-root null.
A first explanation is that the nonparametric tests, by construction,
process less information than the parametric rivals and thus have less
power. This explanation, however, only suffices for the behavior at
the frequency π, where the difference in power is merely quantitative.
At the intermediate frequencies, however, the difference is qualitative.
The record-counting tests interpret the typical shape change in a role-
model seasonal time series as being composed of a pattern-reverting
deformation at backbone frequencies at π and π/2 and persistent unit-
root cycles at the annual and various intermediate frequencies, where
the HEGY-type tests are more prone to see a substantial amount of
pattern reversion.

Both the univariate and the panel variant were also applied to the
artificially stabilized simulation design that was introduced in the last
subsection. These experiments are reported in the lower panels of
Tables 7 and 8. There are only minor differences between the upper
and lower panels. The local instability in the Burgenland series does
not affect the overall performance of the nonparametric tests.

5 Discussion

We present a generalization of seasonal unit-root tests to monthly
panels, and we illustrate the properties on an empirical data set on
Austrian tourism data. The data set permits us to inspect the size and
power properties of a parametric and a nonparametric test procedure
in a realistic simulation design.

Whereas generally the discriminatory power of the CHEGY test
appears acceptable, it is not immune to size bias due to heterogeneous
dynamic effects in the component time series. The optimum determi-
nation of lag orders continues to be a problem, and it may well be
that alternatives to our BIC search deserve attention.
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Table 7: Average rejection frequency of RURS test around the null.

τ 0.00 0.20 0.40 0.60 0.80 1.00

unstable unrestricted estimate
0 0.031 0.000 0.000 0.006 0.018 0.066
π/6 0.198 0.005 0.006 0.024 0.050 0.141
π/3 0.143 0.010 0.024 0.017 0.064 0.209
π/2 0.074 0.082 0.137 0.205 0.309 0.416
2π/3 0.215 0.006 0.001 0.021 0.042 0.128
5π/6 0.145 0.000 0.000 0.005 0.018 0.077
π 0.040 0.202 0.439 0.632 0.754 0.836

stabilized design
0 0.031 0.000 0.000 0.006 0.018 0.044
π/6 0.198 0.005 0.006 0.024 0.050 0.122
π/3 0.143 0.010 0.024 0.017 0.064 0.177
π/2 0.074 0.081 0.128 0.200 0.295 0.405
2π/3 0.215 0.006 0.001 0.021 0.041 0.106
5π/6 0.145 0.000 0.000 0.005 0.018 0.060
π 0.040 0.204 0.445 0.635 0.762 0.843

Table 8: Rejection frequency of RURS-p test around the null.

τ 0.00 0.20 0.40 0.60 0.80 1.00

unstable unrestricted estimate
0 0.049 0.000 0.000 0.000 0.000 0.001
π/6 0.478 0.000 0.000 0.000 0.000 0.034
π/3 0.296 0.000 0.000 0.000 0.000 0.096
π/2 0.222 0.282 0.486 0.705 0.890 0.974
2π/3 0.479 0.000 0.000 0.000 0.000 0.004
5π/6 0.347 0.000 0.000 0.000 0.000 0.002
π 0.134 0.893 0.997 1.000 1.000 1.000

stabilized design
0 0.049 0.000 0.000 0.000 0.000 0.000
π/6 0.478 0.000 0.000 0.000 0.000 0.026
π/3 0.296 0.000 0.000 0.000 0.000 0.059
π/2 0.222 0.278 0.471 0.697 0.882 0.969
2π/3 0.479 0.000 0.000 0.000 0.000 0.003
5π/6 0.347 0.000 0.000 0.000 0.000 0.001
π 0.134 0.894 0.997 1.000 1.000 1.000
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The discriminatory power of the nonparametric test is lower than
that of the CHEGY test. However, it appears to offer an interesting
alternative in the presence of instabilities. The HEGY-type tests treat
such instabilities in a symmetric fashion to stationary deviations from
the null. By contrast, the record-based test views them as evidence
on trend expansions and finds considerably more records than would
be typical under the null. Thus, the tests may arrive at different
conclusions in realistic data sets, and it may be worth while to apply
both concepts in order to get a more reliable impression of the nature
of seasonal cycles in the data.
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