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Planning stability in a product recovery system
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Abstract. Recovery of used products is an issue of growing importance due to
customer expectations and environmental regulation. As a consequence, companies
need to adapt their material management taking into account inbound flows of
used products. Corresponding inventory control models have been proposed in
literature. In this paper we address the issue of planning stability in a product
recovery context. To this end, we consider rolling horizon planning for a stock point
facing stochastic demand and product returns. We analyze the impact of the return
flow on planning stability and compare the system behaviour with a traditional
production environment. We show that structural results derived for traditional
inventory models remain valid in a product recovery context. Moreover we discuss
counterintuitive effects resulting from interaction between planning stability and
stock levels.

Zusammenfassung.In den letzten Jahren besteht aufgrund gesetzlicher Bestim-
mungen und gestiegenem Umweltbewußtsein in der Bevölkerung zunehmend die
Tendenz, daß Unternehmen ihre Produkte nach deren Gebrauch vom Kunden zu-
rücknehmen.DieProduktionsplanungund -steuerungderUnternehmenmußdiesen
Produktr̈uckflüssen angepaßt werden. In der Literatur sind für verschiedene kreis-
laufwirtschaftliche Probleme optimale Lagerhaltungspolitiken abgeleitet worden.
Dieser Beitrag beschäftigt sich mit der Planungsstabilität in einem kreislaufwirt-
schaftlichen Basismodell, wo alle zurückkommenden Produkte aufgearbeitet wer-
den m̈ussen. Insbesondere wird der Einfluß der Produktrückflüsse auf die Sta-
bilit ät untersucht und ein Vergleich mit der Stabilität eines traditionellen Lagerhal-
tungsmodells durchgeführt. Eswird aufgezeigt, daßbeideModelle imwesentlichen
dieselben strukturellen Eigenschaften besitzen.
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1 Introduction

Enhanced producer responsibility is one of the consequences of growing environ-
mental concern in recent years. Legislation and environmentally conscious cus-
tomers increasingly force manufacturers to take back their products after use. As
alternatives are sought to waste disposal and incineration, efforts are made to re-
integrate used products into industrial production processes. Besides mandatory
recovery quotas and a ‘green’ image there are also economic drivers for recovering
used products. Reuse of products may lead to savings in material, manufacturing
and disposal costs. Examples from practice include reusable packages, electronic
scrap recycling, and car part remanufacturing. Themanagement of thematerial flow
concerned with the recovery of returned products, which is opposite to the usual
supply chain flow, is considered in the recently emerged field of ‘reverse logistics’
[2].

One of the issues in this area is production and inventory management. The
major task in this field is to develop appropriate planning and control methods
in order to integrate the return flow of used products into the producers’ material
management. Difficulties arise because of the considerable uncertainties in timing,
quantity, and quality of the return flow which is often hard to influence by the
producer. One of the consequences of this lack of control is an increase of the stock
levels in the entire system.

Several inventorymodelsandcontrol policies for product recovery systemshave
been proposed in literature. In an early paper Simpson [15] considers the trade–off
betweenmaterial savingsdue to reuseversusadditional inventory carrying costs and
provesoptimalityof a threeparameterpolicy tocontrol order, repair, anddisposal for
the casewithout fixedcosts and leadtimes. Inderfurth [9] shows this policy to remain
optimal in the case of fixed and identical leadtimes for repair and procurement.
Fleischmann andKuik [3] consider another variant of thismodel excluding disposal
and prove average cost optimality of an(s, S)-policy. In continuous reviewmodels
(s,Q)-type-policies have been discussed, see, e.g., Heyman [7], Muckstadt and
Isaac [14], and Van der Laan et al. [17,18]. A more detailed literature review is
given by Fleischmann et al. [2].

In most practical situations the stochastic environment is taken into account
by a rolling horizon planning framework. Then, the replenishment decisions, i.e.
production and remanufacturing orders, are determined on the basis of a quasi-
deterministic modeling together with a periodic updating of all relevant parameters
and subsequent replanning activities. Rolling horizon planning leads to replanning
activities caused by permanent processing of new information in successive plan-
ning cycles. Consequently, formerly fixed order decisions are replanned in later
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periods. This discontinuity in order releases is known as the nervousness syndrome
(see [19]).

In the recovery context the question arises as to how system nervousness is
influenced by the integration of product returns into the material management.
Since uncertainty in the planning process rises by incorporating product returns
one may expect planning stability to decrease, similar to the impact of increasing
demanduncertainty in traditional inventory systems (see, e.g., [1], [4]). In this paper
we address this intuitive relation more systematically.

Lack of planning stability often generates a considerable amount of short- and
medium-term adjustment efforts as well as a general loss of planning confidence.
In particular, in a multi-stage production environment nervousness on the top level
is propagating throughout the system. Since in many cases the consequences of
replanning activities cannot be valued in terms of costs, we treat planning stability
as an additional attribute for assessing inventory control systems, similar to the
attribute of customer service. Therefore, we have to define a general quantitative
stability measure. A systematic development of nervousness measures is given in,
e.g., [1], [8], and [11]. We can distinguish short-term planning instability, which
measures nervousness with respect to only the first period’s order decision, and
long-term planning instability, where all replenishment decisions over the entire
planning horizon are compared. Moreover, it is common to differentiate between
quantity adjustments, which is known as quantity-oriented instability, and changes
in order setups, i.e. either cancelling a previously planned order or introducing an
additional setup in a new planning cycle. The latter kind of nervousness is called
setup-oriented instability. In this paper, we examine setup stability, because inmany
practical situations it is the fixed effort caused by replanning an order decision that
hinders the execution of a planning process, independent of the specific quantity
adjustment.

Up to now the issue of planning stability hasmainly been treated in ‘traditional‘
production and inventorymanagement systemswhere control rules such as(R,S)-,
(s, nQ)- or (s, S)- policies are used. In [8] the performance of the(s, S)- and
(s, nQ)- policy for uniformly and exponentially distributed demand with respect to
a short-termsetup-orientedplanning stability is analyzed. In [1] short-termsetup- as
well as quantity-oriented stability of orders for more general demand distributions
are examined for(s, S)-, (s, nQ)- and(R,S)- policies. In [4] the long-term setup-
oriented stability performance of an(s, S)- policy is analyzed for general demand
distributions. Finally, [5] deals with setup stability for a simple modified order-up-
to-levelS-policy in a product recovery system.

In this paper we analyze the impact of product recovery on stability in a basic
model. Insights from this model, which allows for a detailed analysis, may pro-
vide a basis for addressing more complex situations in future research. The most
basic characteristic distinguishing inventory management in a reuse context from
traditional settings is the existence of an exogenous item in-flow. This is also the
common core of the recovery models mentioned above. Given this key element
of a recovery environment we explicitly address the influence of return flows on
planning stability in this paper. We consider a model of one inventory point where
serviceable items are stored. For this model, which was introduced by Fleischmann
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and Kuik, we provide an analysis of setup stability of the optimal policy. In In-
derfurth and Jensen [10] an MRP-framework for this model can be found. Within
this so-called MRRP (Materials Requirements and Recovery Planning) approach
the replenishment decisions are not only planned on basis of forecasted customer
demand, but also take into account the projected returns of used products. Our
analysis is closely related to that of traditional stability analysis, in particular to
the work of Heisig [4]. We show how these results change by integrating a product
return flow.

The remainder of the paper is organized as follows. In Section 2 we introduce
and formalize the examined recoverymanagement problem. In Section 3 ameasure
for nervousness under rolling planning conditions is given. In Section 4 we derive
analytical expressions for the setup stability of production and recovery decisions.
In Section 5 we present a numerical example showing the influence of several
system parameters. In particular, we study the impact of the return flow on stability.
Section 6 summarizes our results and gives directions for further research.

2 The product recovery system

In this section we introduce the product recovery system considered and give a
formal definition of the corresponding mathematical model and notation. As dis-
cussed in the introduction we address the impact of recoverable product returns
on planning stability. To this end, we consider a traditional single item inventory
systemwith an additional in–flowof used items. Returned items undergo a recovery
process (which we denote by remanufacturing in the sequel, although other pro-
cesses such as repair or cleaning and testing are also included) and can then be used
as an alternative to new production to satisfy demand. Figure 1 gives a graphical
representation of this system. As examples one may think of reusable packages,
such as crates and containers, or spare parts disassembled from used equipment,
such as in the electronics and automotive industries [16]. Moreover, as pointed out
before this situation is at the core of most other, more complex product recovery
systems including, e.g., additional stock points or control options. Typically, recov-
ery of used products is significantly cheaper than regular production. Therefore, the
major challenge in this context concerns the tradeoff between the savings potential
and the uncertain availability of the recovery source. To model the above system
we assume that demand and returns are given by independent stochastic processes.

demand

serviceable
stock

remanufacturing

production

Product
returns

Fig. 1.A basic product recovery system
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Orders for remanufacturing and production are placed on a periodic review basis.
Any unsatisfied demand is backordered. For ease of notation we assume that all
orders are delivered instantaneously (leadtimes can be incorporated in the standard
way by appropriately redefining the inventory position, under the condition that the
remanufacturing leadtime does not exceed the manufacturing leadtime; see [3]).
As indicated above, remanufacturing is implemented as a push process, i.e. at the
beginning of each period all products returned during the previous period are re-
manufactured. Production orders are the decision variables to control the system.
We use the following notation. Let

Dt = demand in periodt;
Rt = returns in periodt;
Nt = Dt − Rt, net demand in periodt ,

where (Nt)t∈IN is an i.i.d. sequence of random variables distributed as a ran-
dom variableN with continuous distribution functionΦ, densityφ, and expected
valueIE[N ]. Since our model does not include a disposal option we assume that
IE[N ] > 0 since the inventory level would increase to infinity otherwise. Under
these circumstances, Fleischmann andKuik [3] have shown average cost optimality
of a stationary(s, S)–policy for production under a fixed plus convex cost structure.
Therefore, we assume in the sequel that production orders are placed according to
a stationary(s, S)–rule. Let

Ot = remanufacturing order size in periodt;
Zt = net stock at the beginning of periodt after remanufacturing,

before production;
Qt = production order size in periodt;
Yt = net stock at the beginning of periodt after remanufacturing

and production;
s = production reorder level;
S = production order upto level.

Then the system dynamics are described by

Ot = Rt−1
Zt = Yt−1 − Nt−1

Qt =

{
0 if Zt > s

S − Zt else

Yt = Zt + Qt .

It is worth noting that these relations are the same as in a traditional(s, S)–
inventory system up to the difference that the (net) demand may be negative. In
particular,(Yt)t∈IN forms a discrete time Markov process on[s,∞). Note that in
contrast with traditional inventory systems the net inventory is unbounded from
above, as a consequence of the stochastic return flow. More specifically,(Yt)t∈IN

is a random walk, which is ergodic due to the conditionIE[N ] > 0 (see [3] for a
formal proof). Therefore,(Yt) admits a limiting stationary distribution, which we
denote byFY . Furthermore, letY denote a corresponding random variable.
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Asdiscussedbefore,weaddressplanningstabilitybyanalyzing theperformance
of the above system in a rolling planning horizon setting, such as in a typical MRP
environment. We refer to Inderfurth and Jensen [10] for a general discussion of
an MRP–framework including product recovery. Moreover, we remark that Heisig
[5] analyzed planning stability in the above system for the special case of a simple
order-upto-S policy for production orders. In what follows we extend this approach
to the more general case of an(s, S)–policy.

Hence, let us assume that at the beginning of each period a planning cycle
of T + 1 periods is started, whereT is some fixed planning horizon. That is,
remanufacturing and production orders are planned for the current plus the nextT
periods. Orders for the current period are released immediately, whereas planned
orders for future periods are only preliminary and may be updated in later periods.
Conversely, in each period the orders for the current plus the nextT −1 periods are
updates of previous plans. We denote byQ̂i

t (Ô
i
t) the production (remanufacturing)

order size in periodt as planned in periodi. Analogously,Ẑi
t (Ŷ

i
t ) denotes the net

stock at the beginning of periodt before (after) production as planned in periodi.
Finally, letN̂ denote the projected net demandper period andD̂ andR̂ the projected
(gross) demand and returns per period, respectively. Note that these projections
need not necessarily coincidewith the corresponding expected values. In particular,
settingR̂ = 0 is a common choice alternative tôR = IE[Rt]. These two cases are
referred to as reactive and proactive recovery planning, respectively [10].

Tosumup,at thebeginningofeachperiodtasequenceofplannedproductionor-
ders(Qt, Q̂

t
t+1, Q̂

t
t+2, ..., Q̂

t
t+T ) and remanufacturing orders(Ot, Ô

t
t+1, Ô

t
t+2, ...,

Ôt
t+T ) is generated (see also Figure 2). The system dynamics are analogous to the

above except that demand and returns are replaced by their projected values. Hence,

Ôt
t+i = R̂

Ẑt
t+i = Ŷ t

t+i−1 − N̂

Q̂t
t+i =

{
0 if Ẑt

t+i > s

S − Ẑt
t+i else

Ŷ t
t+i = Ẑt

t+i + Q̂t
t+i

for i = 1, ..., T (where we definêZt
t = Zt and analogously forYt, Qt, andOt).

Planning stability then characterizes the variation ofQ̂i
t andÔ

i
t as a function of

i, in other words, the difference between subsequent planning updates. We define
this notion more rigorously in the next section. Here, we conclude by noting that
successive planned orderŝQt

t+1 andQt+1 (Ôt
t+1 andOt+1) may differ whenever

Nt (Rt) deviates from its projected valuêN (R̂).

3 Measuring planning stability

In Figure 2 the above relations are summarized for two successive planning cycles.
Here,qt

j (q̂
t
j) may represent both the (planned) production or remanufacturing de-

cision in periodj for planning cyclet. The production/remanufacturing orderqt

is released immediately while future decisions are only preliminary. After period
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periodt:

periodt + 1:

q̂t
t+2 · · · q̂t

t+T

D̂, R̂D̂, R̂

qt q̂t
t+1

D̂, R̂ D̂, R̂

qt+1 q̂t+1
t+2 · · · q̂t+1

t+T q̂t+1
t+T+1

D̂, R̂ D̂, R̂D̂, R̂D̂, R̂

✻
Zt

✻
Ẑt

t+1 Ẑt
t+2

✻ ✻
Ẑt

t+T

Dt, Rt

✲

✲

Zt+1

✻
✲ Ẑt+1

t+2

✻ ✻
Ẑt+1

t+T Ẑt+1
t+T+1

✻

❄

Fig. 2.Decisions and influences in a product recovery system for two consecutive planning
cycles

t has passed, a subsequent planning cyclet + 1 starts. A change of the planned
replenishmentmay only occur if actual net demandDt−Rt differs from its forecast
D̂ − R̂. Then, the actual inventory positionZt+1 deviates from its planned value
Ẑt

t+1 as calculated in the previous planning cycle. Updating the starting inventory
Zt+1 and applying the(s, S)-policy generates an adjusted sequence of order re-
leases as depicted in Figure 2.

In the sequel, webriefly summarize concepts from literature formeasuring planning
stability (see e.g. [1], [4], [8] [11], [12], and [13]). In consecutive planning cycles
each period is scheduledT times allowing for a replanning of former replenish-
ment decisions. This is related with nervousness in the planning process. Changes
may be caused by additional planning information as well as by realizations of the
stochastic variables of the system. Nervousness, in general, arises when a formerly
fixed order decision for a certain period is replanned in a later planning cycle, i.e.
if we find for anyj andv:

qt
j �= qt+v

j for j ≥ t ≥ v > 0. (1)

This kind of instability can be characterized as planned orders nervousness. Since
we consider a stationary inventory policy (i.e. control parameters change neither
across periods nor across planning cycles) it is sufficient to determine the nervous-
ness for two arbitrary successive planning cycles as shown in Figure 2, i.e. setting
v = 1 in (1). Then, a measure of nervousnessν can be defined as (see e.g. [4])

ν =

T∑
i=1

|δ(qt
t+i) − δ(qt+1

t+i )|

T
, (2)

whereδ(q) = 0, for q = 0, andδ(q) = 1 otherwise. Since the setup decisions
in cyclet andt + 1 depend on the stochastic stock level and (net) demand,ν is a
random variable. The measure of setup stability is now given by

π = IE[1 − ν]. (3)
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The formalized measure of nervousnessν in (2) is characterized by relating the
number of periods with changed setups to the total number of periods that can be
compared. Thusν andπ are restricted to the value space[0, 1] where the value
π = 0 refers to maximum nervousness, while extreme setup planning stability is
characterized byπ = 1. Since this measure takes into account all comparable order
decisions over the entire stability horizon it is calledlong-term planning stability.
As a special case,short-term planning stabilityis obtained forT = 1 (see e.g. [8]).
The measure in (2) can be applied to determine the setup stability on both stages
in our product recovery system. Withqt

t+i = Qt
t+i in (2) we can measure stability

on production stage, and by settingqt
t+i = Rt

t+i we get setup stability for the
remanufacturing stage.
In a steady-state situation considering two successive planning cycles the initial
inventoryZt at the beginning of cyclet, the planned orderŝqt

t+i(i = 1, ..., T ), and
(with an additional stochastic influence fromDt −Rt) the replenishment sequence
in planning cyclet + 1 (qt+1; q̂t+1

t+i , i = 2, ..., T ) are random variables. Stability
can be interpreted as the average probability that the setup decisions do not change
from planning cyclet to cyclet + 1, i.e.

π =
1
T

[
IP{δ(q̂t

t+1) = δ(qt+1)} + IP{δ(q̂t
t+2) = δ(q̂t+1

t+2)} +

... + IP{δ(q̂t
t+T ) = δ(q̂t+1

t+T )}
]
. (4)

In order to calculate setup stability for production and remanufacturing orders as
indicated in (4) we have to determine the sequence of these setups. This is done in
the next section. Moreover, we derive a general expression forπ.

4 Stationary stability analysis

In this sectionweanalyze the planning stability of the product recoverymodel intro-
duced in Section 2. As discussed in the previous section, expected planning stability
in steady state is determined by the planned order decisions generated in two con-
secutive planning cycles. In order to evaluate the stability measureπ introduced
in the previous section we analyze the structure of the planned order sequences
(Qt, Q̂

t
t+1, Q̂

t
t+2, ..., Q̂

t
t+T ) and(Ot, Ô

t
t+1, Ô

t
t+2, ..., Ô

t
t+T ) in more detail.

We first address the production orders. Consider the planning cycles starting
in periodst andt + 1, respectively. To computeπ we need to take into account
the planned orderŝQj

i for j = t, t + 1 andi = t + 1, ..., t + T (see (2)). From
the transition rules as discussed in Section 2 we have thatQ̂t

t+i for i ≥ 1 equals 0
whenever the following condition holds

Ẑt
t+i > s ⇐⇒ Ŷ t

t+i−1 − N̂ > s ⇐⇒ Ẑt
t+i−1 − N̂ + Q̂t

t+i−1 > s .

Hence, we obtain by induction that the smallestτ ≥ 1 for whichQ̂t
t+τ > 0 satisfies

(τ − 1)N̂ ≤ Yt − s < τN̂ . Therefore, the first order after periodt is planned for
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periodt + τ where

τ = τ(Yt) = �Yt − s

N̂
 . (5)

In the sameway we find that the next order is planned for periodt+τ + lwhere

l = � Ŷ
t
t+τ − s

N̂
 = �S − s

N̂
 , (6)

whereŶ t
t+τ = S follows from the definition ofτ . Note thatl characterizes the

expected coverage of theminimum order sizeS−s or, in other words, the expected
time between ordering. Subsequently, the same step is repeated until the end of the
planning horizon is reached. Summing up,we find that in the planning cycle starting
inanarbitrary periodtproductionordersaftertareplanned for theperiodst+τ+k·l
for k ∈ IN until the end of the planning horizon. Ifτ > T then no order is planned
during the entire planning horizon.

Applying this structural result to the planning cycle starting in periodt + 1
yields that the first order aftert+1 is planned in periodt+1+ �(Yt+1 − s)/N̂ =
t+ 1 + �(Yt −Nt − s+Qt+1)/N̂. In addition, we now have to take into account
the decision for periodt+1, i.e.Qt+1. We have thatQt+1 > 0 ⇔ Yt −Nt −s ≤ 0.
Combining both results yields that the smallestθ ≥ 1 for whichQ̂t+1

t+θ > 0 is given
by

θ = θ(Yt, Nt) = 1 + max{0, �Yt − Nt − s

N̂
} . (7)

Thereafter, orders are again planned everyl periods until the end of the planning
horizon. Hence, in this planning cycle orders are planned for periodst + θ + k · l
for k ∈ IN .

The above considerations show that the planned order sequences generated in
each planning cycle have a fairly simple, regular structure. Planning updates in
subsequent planning cycles result in a shift of (stochastic) lengthτ −θ of the entire
planned order sequence.We point out that the same structure is found for traditional
(s, S) production systems without product recovery [4]. However, the range of
possible values forτ andθ are different in both cases. In traditional production
systems we have thatτ ≤ l andθ ≤ τ + 1. Both relations do not hold in our
product recovery system since the net demand in a given period may be negative
and the net stock may exceedS. Moreover, the probability distributions ofτ and
θ do, of course, depend on the product returns. We investigate this dependence in
more detail in the next section.

Furthermore, it is worth noting that forS − s < N̂ we havel = 1, i.e. an order
is planned for every period after the first setup and the above formulas reduce to
the results for a base stock system [5].

Finally, note that forS − s >> N̂ we may approximateτ andθ by

τ(Y ) ≈ Y − s

N̂
and θ(Y,N) ≈ 1 +

Y − N − s

N̂
.
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Hence, we have in this case that

IE[(τ(Y ) − θ(Y,N))2] ≈ IE[
(N̂ − N)2

N̂2
] =

Var[N ]
IE[N ]2

. (8)

Hence, the expected squared length of the shift of the order sequence during a
planning update is approximately equal to the squared coefficient of variation of the
net demand per period. Note that this expression is increasing in both the expected
value and the variance of the returns per period. This gives a first indication of the
impact of the product returns on the planning updates.

We can now use the above results to evaluate the stability measureπ introduced
in the previous section. To this end, we introduce some additional notation as
follows. LetVt := Yt − s for all t. ThenVt ∈ [0,∞) for all t. Moreover, recall
from Section 2 thatYt admits a stationary limiting distribution. Hence, the same
holds forVt and we denote the limiting distribution byFV . Moreover, letV be a
corresponding random variable.

Furthermore, forτ, θ = 1, ...T + 1 we define the stability quotientβτ
θ as the

number of periods with identical setup decisions in two subsequent planning cycles
with first setups in periodsτ andθ divided by the length of the planning horizon
T . Note thatβτ

θ equals the planning stabilityπ for fixed values ofτ andθ (see (2)).
While there is no simple closed form expression for the stability quotients these
values can easily be computed by enumeration. Forτ > T + 1 we setβτ

θ = βT+1
θ

andanalogously forθ > T+1. Integrating over the randomvariablesτ = τ(Y )and
θ = θ(Y,N) we can now derive the following general expression for the expected
planning stability in steady state.

π =
∫ ∞

s

∫ ∞

−∞
β

τ(y)
θ(y,n)dΦ(n)dFY (y)

=
∞∑

τ=1

∫
(s+(τ−1)N̂ , s+τN̂ ]

[ ∞∑
θ=1

∫
[y−s−(θ−1)N̂ , y−s−(θ−2)N̂)

βτ
θ dΦ(n)

+
∫

[y−s+N̂,∞)
βτ

1 dΦ(n)

]
dFY (y)

=
∞∑

τ=1

∫
(s+(τ−1)N̂ , s+τN̂ ]

[ ∞∑
θ=1

βτ
θ

∫ y−s−(θ−2)N̂

y−s−(θ−1)N̂
φ(n) dn

+βτ
1

∫ ∞

y−s+N̂

φ(n) dn
]
dFY (y)

=
∞∑

τ=1

∫
((τ−1)N̂ , τN̂ ]

[ ∞∑
θ=1

βτ
θ

∫ v−(θ−2)N̂

v−(θ−1)N̂
φ(n) dn

+βτ
1

∫ ∞

v+N̂

φ(n) dn
]
dFV (v) (9)
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Note thatπ is independent of the reorder levels just as in traditional production
systems. Therefore,s can be chosen according to cost and service considerations
without influencing planning stability. In the next section we compute the value of
π in an example and analyze its dependence on the system parameters.

We conclude this section by briefly considering the planning stability of the re-
manufacturing decisions. Since we consider a push–strategy where all items avail-
able are remanufactured at the beginning of each period and sinceRt is stationary
we have thatÔt

t+i = R̂ for all t and alli ≥ 1. Hence, two consecutive planning
cycles can only differ with respect to the remanufacturing order in the first period.
This is analogouswith a base–stock policy in a traditional production systemwhere
an order is placed in each period except for the case of no demand. The specific
value of the remanufacturing oriented planning stability in our model depends on
the choice ofR̂. For R̂ = 0 (reactive strategy, compare Section 2) the stability
measure equals(IP{Rt = 0} + T − 1)/T = (T − 1)/T . In all other cases we
obtain maximum stability(IP{Rt > 0} + T − 1)/T = 1.

5 Numerical example

In this section we illustrate the dependence of planning stability on the different
system parameters in a numerical example. In order to obtain easily tractable ex-
pressions we assume both demand and returns to be exponentially distributed. For
traditional inventory systems the specific form of the demand distribution has been
found to have a rather limited effect on the properties of the stability function (see,
e.g., [1,4]). While the overall level of planning stability tends to decrease for a
growing coefficient of variation, qualitative properties remain largely unchanged.
Onemayexpect a similar robustnessof the stability function in our product recovery
system.

In Section 5.1 below we derive an analytic expression of the aforementioned
stability measure for the case of exponentially distributed demand and returns.
In Section 5.2 we evaluate this measure for different parameter settings. Finally,
Section 5.3 focuses on the impact of the return volume specifically.

5.1 The stability function for exponentially distributed demand and returns

For exponentially distributed demand and returns the probability density of net
demandN is of the form

φ(n) =




µλ
µ+λ e−λn for n ≥ 0
µλ

µ+λ eµn for n < 0
(10)

whereIE[D] = 1
λ , andIE[R] = 1

µ are the expected demand and returns, respec-
tively. As discussed in Section 2, we assume thatµ > λ. DefiningQ := S − s as
the minimum order lot size the stationary distribution ofV can now be written as
(see Appendix A)
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FV (v) =
∫ v

−∞
fV (x)dx + 1v≥Q pQ ,

with fV (v) =

{
0 for v < 0

ce−(µ−λ)v for v ≥ 0

and pQ =
µ − λ

µ(2 − e−λQ) ,

where c := pQ[λ + µ(1 − e−λQ)].

Using these expressions, the stability measureπ is given as follows (see Appendix
B). We distinguish two cases.

Case A: Forl ≤ T we have

π =
cN̂

µ + λ
+

pQ

µ + λ

[
βl

1µe
−λQ +

l∑
θ=2

βl
θµcλe

−λ(Q−(θ−1)N̂)

+βl
l+1[µ + λ − µ(1 − cλ)e−λ(Q−lN̂)

− λeµ(Q−lN̂)] +
T+1∑

θ=l+2

βl
θλcµe

µ(Q−(θ−1)N̂) + βl
T+1λcT e

µQ

]
(11)

Case B: Forl > T we have

π =
cN̂

µ + λ
+

pQ

µ + λ

[
βT+1

1 µe−λQ +
T+1∑
θ=2

βT+1
θ µcλe

−λ(Q−(θ−1)N̂)

+ βT+1
T+1(µ + λ − µe−λ(Q−TN̂))

]
(12)

where

cN̂ := c

{
T∑

τ=1

[
βτ

1 cµe
−µτN̂ +

τ∑
θ=2

βτ
θ cµcλe

−(µτ−λ(θ−1))N̂

+βτ
τ+1

2
µ − λ

(λcµ(1 − cλ) − µcλ)e−(µ−λ)τN̂

+
T+1∑

θ=τ+2

βτ
θ cµcλe

−(µ(θ−1)−λτ)N̂ + βτ
T+1cT cλe

λτN̂

]

+ βT+1
1 cT +

T+1∑
θ=2

βT+1
θ cT cλe

λ(θ−1)N̂ + βT+1
T+1

2λ
µ − λ

e−(µ−λ)TN̂

}

andcµ := (eµN̂ − 1), cλ := (1 − e−λN̂ ), andcT := e−µTN̂ .

The distinction betweenT ≤ l andT > l is necessary sinceFV has a positive
probability mass atv = Q. In the first caseQ lies in the intervalτ = l whereas in
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the second caseQ belongs toτ = T +1. Thus the second term in (11) differs from
the second one in (12).

Observe that planning stability only depends on the lot size parameterQ = S−
s, the length of the stability horizonT +1, and the demand and return expectations
D̄, R̄ and forecastŝD, R̂ in this case. We recall that the forecasts may, in general,
deviate from the corresponding expectations. However, since our main goal is to
analyze the impact of product returns on stability, we now assume both values to
coincide, in order to avoid overlapping effects. Hence, in the remainder of this
section we set̄D = D̂, R̄ = R̂, and consequentlyIE[N ] = N̂ .

5.2 Numerical evaluation of the stability measure

Wenow illustrate the influence ofQ,T andD̂ as well asR̂ on the planning stability
in a number of numerical examples. We use mainly the same parameter setting
as in [4], except for a larger (net) demand expectation. The parameter values are
summarized in Table 1. We useT = 1 to represent short-term considerations, and
T = 50 for an ‘infinite’ planning horizon.

First, we examine the impact ofQ andT on stability, and compare the results for
our recovery model and for traditional inventory models. To this end, we consider
a conventional(s, S)–inventory model with exponentially distributed demand and
a demand intensity that is equal to the expected net demand in the recovery model,
i.e. D̂ = 10. Figures 3 and 4 show the shape of the stability function for both
models.

We observe that the results are fairly similar for both cases. Moreover, the
stability level in the recovery model tends to be lower than in the traditional model
in most cases. ForQ → ∞ stability tends to 100 % in both models, because
almost no setup takes place. While stability also reaches 100 % forQ → 0 in
the traditional model we observe significantly smaller values ofπ in the recovery
model in the case of a small planning horizon. The shorter the planning horizon the
lower the resulting stability level. This different behaviour of the stability function
can be explained as follows. ForQ ≤ D̂ a setup occurs in almost each period in
the traditional model. Only if the realized demand is very small, there is no setup
in the first period of the second planning cycle (see [4]). In particular, a setup is
planned for each period in the first planning cycle. In contrast, there may be some
periods without planned setups in cyclet (as well as in cyclet+ 1) in the recovery
model, due to the unbounded initial stock. Therefore, the level of stability is lower,
in particular for small planning horizons.

Furthermore we find for both models that the shape of the stability function
is continuous forl > T , whereas it is discontinuous forl ≤ T at the points

Table 1.Parameter settings Figure 4

D̂ R̂ T
20 10 1, 8, 50
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Fig. 3. Stability function in traditional model (for different planning horizons)
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Fig. 4. Stability function in recovery model (for different planning horizons)

whereQ corresponds to multiples of the expected (net) demand. For instance, for
T = 8 the stability functions are continuous forQ > 80, and discontinuous in
Q = 10, 20, ...., 80. Moreover, stability reaches (local) minima in the points of
discontinuity. In the traditional model it can be shown analytically that stability
admits a global minimum atQ = D̂ for the short-term case, and atQ = 2D̂ for
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T > 1. Note that this can also be observed in Figure 3. For the recovery model in
Figure 4 minimal stability is reached for values ofQ approachingN̂ either from
below (T = 1) or from above (T > 1).

In general, wehave found thatminimal stability is alwaysattained for lot sizes in
the interval(N̂ , 2N̂). For example, for̂D = 30, R̂ = 10 theminimum isattained for
Q = 29.5with a stability level of 51.1 %. It is never reached for lot sizes which are
equal to or larger than twice as big as the expected net demand. For an explanation
consider the sequence of setups forN̂ < Q ≤ 2N̂ . After the first planned setup
we find a planned production order for every second period, i.e in cyclet setups in
periodst+ τ +2n (whereτ depends on the initial stock), and in cyclet+1 setups
occur int+θ+2n (with n ∈ IN ). Thus forτ = θ we find identical order decisions
in both planning periods. In all other cases the planned setups deviate significantly
and in the worst case may differ in each period. Therefore, the stability level for
l = 2 is rather low. For larger lot sizes there are no planned order sequences that
differ in all periods, since for increasingQ the number of periods with no setups
increases in both planning cycles.

Considering the impact ofT on π in Figures 3 and 4 we find that stability
increases with a growing planning horizon ifQ < D̂, orQ < N̂ , respectively. For
larger lot sizes there are some cases where stability increases for a longer planning
horizon in the traditional model, but in general it is reduced (see also [4]). This
general tendency can also be observed in the recovery model for sufficiently large
planning horizons. If we consider the shape of the stability function forT = 8 and
T = 50 in Figure 4, then we find that an increase of the planning horizon leads to a
lower stability level for all lot sizesQ > N̂ . However, the shape of the short-term
stability differs significantly for the traditional model and the recovery system: in
the traditional model stability is maximal forT = 1, whereas in the recoverymodel
T = 1 leads to a rather small and, for large values ofQ, even minimal stability
level.

5.3 The impact of the return volume on planning stability

Let us now consider the impact of the expected returns on stability. To this end,
Figure 5 shows planning stability as a function ofR̂. Table 2 summarizes the
corresponding parameter settings. The result is somewhat counterintuitive. For
small return rates we find that planning stability decreases asR̂ increases. This
is what one may expect since the return intensity increases the variability of the net
demand per period. However, for largêR planning stability increases as the return
rate increases. For̂R close toD̂ stability even converges to 1. To understand this
effect it is useful to consider the expected stock level (see Fig. 6). For high return
rates the average stock level increases exponentially inR̂, similar to the expected
queue length in a single server queue. The high stock level implies that there are
very few production orders scheduled, and hence that the system is very ‘stable’
fromasetupperspective. In thisway, product returns can increaseplanning stability,
however at the expense of high stock levels. Note that this result holds for arbitrary
distributions of demand and returns, because the average stock increases in general
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Table 2.Parameter settings Figures 5 and 6

Q D̂ T
30 20 1, 8, 50

for large return rates, i.e.̄R → D̄.

InFigure5weobserve for theshort-termperspective that thestability level in the
recovery model (witĥR > 0) is larger than stability in the traditional model (with
R̂ = 0) for return/demand-ratios larger than 75 %. For smaller return intensities
stability is lower than in the case of no product returns. For larger planning horizons
we find the same relation already for smaller return ratios. ForT = 8 andT = 50
stability in the recovery model is larger if̂R/D̂ > 50%.

In Section 4 in (8) we have given an indication of the influence of returns
on planning updates. We have seen that the shift of the order sequence during a
planning update is increasing in both the expected value and the variance of the
returns per period. Notice that (8) only considers the difference betweenτ andθ. In
Figure 5 we find that stability increases with risingR̂. Though (8) indicates that the
expected difference between both planning cycles increases. However the absolute
values ofτ andθ also increase with rising return rate. Therefore, we find a long
period with non-setup decisions in both planning cycles. This finally leads to a high
level of stability for large return rates, even though (8) may suggest the opposite.

We have also examined the adjustment ofQ as a function of the return rate. To
this end, we have used an EOQ-approximation to set the value forQ depending
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on the return volume. However, this adjustment does not change the shape of the
stability function as shown in Figure 5 significantly. We remark that similar results
have been reported for traditional inventory models (see Jensen [12]).

Finally, we have variedQ andR̂ simultaneously. Figure 7 shows the shape of
the stability function forT = 8, D̂ = 30,Q = 0, 5, 10, ..., 40 andR̂ = 0, ..., 29.9.
For the sake of clarity the function is plotted in the form of continuous lines across
the discontinuities for larger lotsizes. The ‘jumps’ are clearly visible, in particular
for moderate return rates. For example, forQ = 20 the stability function is discon-
tinuous atR̂ = 10, 20, 23 1

3 , 25, 26, 26 2
3 ,... As discussed above, one observes again

thatπ tends to decrease in̂R for Q ≤ D̂ − R̂ and to increase otherwise. Finally, it
is worth noting that the caseQ = 0 corresponds with a simpleS-policy as in [5],
for which the stability function is continuous.

6 Conclusions

In this paper we have addressed planning stability of production and remanufactur-
ing setups in a basic product recovery system. We have derived both analytic and
numerical results.

First of all, we have shown that the sequence of planned orders generated in
each planning cycle has largely the same structure as in a traditional inventory
system. The main difference concerns a possibly larger initial stock level in the
product recovery environment.
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Furthermore, we have analyzed the impact of the product return flow on plan-
ning stability, specifically. We have shown that for moderate return rates stability
tends to be decreasing in the return rate. This is in line with results from con-
ventional inventory models where stability has been shown to be decreasing in the
coefficient of variation of demand.However, for large return rateswe have observed
a tradeoff between growing demand variability and a rising stock level. Somewhat
counterintuitively high return rates, implying high net demand variability, therefore
result in high planning stability – though at the expense of high stock levels.

The impact of other system parameters on stability has been found to be largely
in parallel with conventional inventory models. In particular, setup stability is not
affected by the value of the reorder points, but only by the minimum lot size
Q = S − s and the length of the stability horizonT .

Depending on the relation between the expected time between ordering and the
planning horizon, the stability function is either continuous in the lot size parameter
or has cyclical patterns with peaks of nervousness for lot sizes equal to a multiple
of the forecasted net demand per period. Furthermore, stability admits a minimum
for a reorder quantity equal to the forecasted net demand (ifT = 1), or for a lot size
in the interval(N̂ , 2N̂) (if T > 1). The latter result slightly differs from the case
of a traditional(s, S)–inventory model where long-term stability always admits its
minimum for a lot size equal to twice the expected demand per period.

Finally, the planning horizon influences planning stability as follows. For small
lot sizes, i.e.Q ≤ N̂ , the level of stability is increasing in the planning horizon.
For larger lot sizes the picture is less clear. In general, we found stability to be
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decreasing in the planning horizon, except for the case of a very short horizon,
where stability turns out to be rather low as compared to a traditional model, in
particular for larger lot sizes.

As discussed before, the recovery system considered in this paper is a very
basic one. The analysis may be extended in several directions. First of all, we have
assumedall returnedproducts tobe recovered immediately.Alternativemodelshave
been proposed in literature that encompass an additional stock of returned products
(see, e.g., [14,9,17,18]). In this case, the timing of the recovery process may be
adjusted according to lot sizing or postponement considerations. In general, one
does not find aneasily implementable optimal policy structure for thesemodels, due
to a growing dimensionality of the underlying Markov processes.(s,Q)–heuristics
have been proposed for controlling both the production and the remanufacturing
process. Postponing the recovery process also influences planning stability. On the
one hand, nervousness in the recovery process itself can be expected to behave
as in a conventional(s,Q)–system rather than an order up–to–S system as in our
model above. Furthermore, one may expect nervousness in the production process
to increase, since the output of the recovery process becomes more irregular. A
more thorough analysis of these effects appears worthwhile.

Second, we have not considered the option of disposing of excessive returns. In
contrast, some of the aforementioned models in literature include such a disposal
option.Forexample, amixed ‘order–upto–dispose-downto’ hasshown tobeoptimal
under certain conditions (see [15,9]). In general, there is again no simple optimal
policy structure. Sincewe have seen that the unboundedness of the stock level plays
an important role for determining planning stability in our model one may expect
that introducing a disposal option has a significant impact on stability. In particular,
stability for high return rates can be expected to decrease, since disposal reduces the
‘dampening’ effect of a rising stock level. We refer to Heisig [6] for initial results
on this issue.

Third, we have assumed demand and returns to be independent processes. In
many practical situations returns may rather depend on previous demand. In this
case, assuming independence between demand and returns essentially means to
ignore some part of the information that is available on future returns. The impact
of this omission very much depends on the specific context. In general, one may
expect demand information to be important for returns forecasting in cases of highly
irregular demand (e.g. due to seasonal peaks) and rather short market sojourn times.
Durable products such as electronics equipment or cars are typically only returned
after several years. In this case, variability in the market sojourn time is large
compared to the inventory system’s average time between ordering. Therefore,
exploiting the correlation between demand and returns may primarily be useful
for updating the return rate during a product lifecycle rather than for controlling
individual orders. Therefore, we conclude that assuming independent demand and
returns is at least a good approximation in many cases, which yields a simple and
easily implementable control policy.

In our numerical example we have assumed demand and returns to be expo-
nentially distributed, in order to allow for easily tractable expressions. We recall
that results for traditional inventorymodels suggest the specific form of the demand
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distribution to have a fairly limited impact on the properties of the stability function
(see [1], [4], [12]). While a growing coefficient of variation, in general, results in a
higher overall level of nervousnessqualitative results remain largely unchanged.We
expect a similar behaviour for product recovery systems. Nevertheless, addressing
alternative net demand distributions in future research may be worthwhile.

Future research may also address alternative stability aspects like quantity-
oriented stability or additional uncertainties such as stochastic lead times. However,
since stability analysis under these conditions turns out to be fairly intractable for
traditional inventory models one may expect similar difficulties for the case of
recovery systems.

To sumup, systemnervousnessmay be a reason for additional considerations in
determining inventory control rules and control parameters. Similar to service level
constraints, the additional factor of planning stability can be included in inventory
control by using analogous stability constraints. The results in this paper illustrate
how lot sizing in a product recovery systemmaybeadjusted to take suchmanagerial
constraints into account.

Appendix A. Stationary inventory distribution

In this appendix we determine an explicit expression for the stationary distribution
of the net stock level for the case of exponentially distributed demand and returns.
Hence, letDt andRt be exponentially distributed for eachtwith parametersλ and
µ, respectively. Note that our assumptionIE[N ] > 0 impliesλ < µ. Moreover,
recall thatVt = Yt − s whereYt denotes the net stock at the beginning of period
t after remanufacturing and production as defined in Section 2. As discussed in
Section2, theexistenceanduniquenessof a stationarydistributionFV of theprocess
(Vt) on [0,∞) follow from the fact that(Vt) is an ergodic random walk (see [3]).
Hence, it suffices to determine the explicit form ofFV . We do so by considering
the stationarity equation of the process(Vt).

As before, letΦ(n) = IP{N ≤ n} denote the distribution of the net demand
in an arbitrary period andφ(n) the corresponding density function. Assuming
exponential distributions forDt andRt yields

φ(n) =




µλ
µ+λ e−λn for n ≥ 0
µλ

µ+λ eµn for n < 0

and (A.1)

Φ(n) =




1 − µ
µ+λ e−λn for n ≥ 0

λ
µ+λ eµn for n < 0 .

Furthermore, forx ≥ 0 andv ∈ IR let

q(x, v) = IP{Vt+1 ≤ v | Vt = x} .
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Inserting the transition probabilities ofVt yields

q(x, v) =
∫ v

0
φ(x − u)du + 1v≥Q(1 − Φ(x)) ,

where1v≥Q denotes the indicator function of the conditionv ≥ Q. Stationarity of
FV with respect to(Vt) implies

FV (v) =
∫ ∞

0
q(x, v)FV (dx) ∀v ∈ IR . (A.2)

Suppose thatFV can be written in the form

FV (v) =
∫ v

0
fV (x)dx + 1v≥Q pQ ,

where the first term denotes an absolutely continuous part and the second term
denotes a probability mass atv = Q. Then (A.2) is equivalent with∫ v

0
fV (x)dx + 11v≥Q pQ =

∫ ∞

0
[
∫ v

0
φ(u − x)dx + 11v≥Q(1 − Φ(u)) ]fV (u)du

+pQ[
∫ v

0
φ(Q − x)dx + 11v≥Q(1 − Φ(Q))] ∀v ∈ IR .

Lettingv → Q yields

pQ =
∫ ∞

0
(1 − Φ(u))fV (u)du + pQ(1 − Φ(Q)) (A.3)

and therefore∫ v

0
fV (x)dx =

∫ v

0
[
∫ ∞

0
φ(u − x)fV (u)du + pQφ(Q − x)]dx ∀v ∈ IR ,

and further

fV (x) =
∫ ∞

0
φ(u − x)fV (u)du + pQφ(Q − x) ∀x ∈ IR . (A.4)

Solving (A.3) forpQ and inserting into (A.4) yields the following integral equation
for fV

fV (x) =
∫ ∞

0
(φ(u − x) +

φ(Q − x)
Φ(Q)

(1 − Φ(u)) fV (u) du ∀x ∈ IR .

(A.5)

Wecan rewrite this condition further by using (A.1). To this endwemust distinguish
two cases, namelyx ≤ Q andx > Q. Let us first assume thatx ≤ Q. Then (A.5)
yields

fV (x) =
µλ

µ + λ

[
e−µ x

∫ x

0
eµ ufV (u)du

+ eλ x

∫ ∞

x

e−λ ufV (u)du (A.6)

+ eλ x

∫ ∞

0
e−λ Q µe−λ u

λ + µ(1 − e−λ Q)
fV (u)du

]
∀x ≤ Q.
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Repeatedly differentiating this equation leads to the following differential equation
for fV

f ′′′
V (x) = (λ − µ)f ′′

V (x) ∀x ≤ Q. (A.7)

Moreover, we find that inserting (A.1) into (A.5) forx > Q leads to the same
differential equation. Hence (A.7) must hold for allx ≥ 0. Clearly, the general
solution of (A.7) has the form

fV (x) = a + b x + c e(λ−µ) x

with some constantsa, b andc. Sincelimx→∞ fV (x) must equal zero we get that
a = b = 0. Moreover, using (A.4) and (A.3) and the fact that

∫ ∞
0 fV (x)dx + pQ

must equal one yields the value of the constantc. In this way we finally get

FV (v) =
∫ v

−∞
fV (x)dx + 1v≥Q pQ ,

with pQ =
µ − λ

µ(2 − e−λQ)

and fV (v) =

{
0 for v < 0

ce−(µ−λ)v for v ≥ 0

where c = pQ[λ + µ(1 − e−λQ)] .

B Stability function

In this sectionwe compute an explicit expression for the expected planning stability
π for the case of exponentially distributed demand and returns. Recall from (9) that
we have the general expression

π =
∞∑

τ=1

∫
((τ−1)N̂ , τN̂ ]

[ ∞∑
θ=1

βτ
θ

∫ v−(θ−2)N̂

v−(θ−1)N̂
φ(n) dn

+βτ
1

∫ ∞

v+N̂

φ(n) dn
]
dFV (v)

Using the fact thatβT+k
θ = βT+1

θ for all k ≥ 1 and all θ (and analogous for
θ ≥ T + 1) and taking into account the form of the stationary distribution ofV
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derived in Appendix A we can rewriteπ as follows.

π =
T∑

τ=1

∫ τN̂

(τ−1)N̂

[
βτ

1

∫ ∞

v

φ(n) dn +
T+1∑
θ=2

βτ
θ

∫ v−(θ−2)N̂

v−(θ−1)N̂
φ(n) dn

+βτ
T+1

∫ v−TN̂

−∞
φ(n) dn

]
fV (v)dv

+
∫ ∞

TN̂

[
βT+1

1

∫ ∞

v

φ(n) dn +
T+1∑
θ=2

βT+1
θ

∫ v−(θ−2)N̂

v−(θ−1)N̂
φ(n) dn

+βT+1
T+1

∫ v−TN̂

−∞
φ(n) dn

]
fV (v)dv

+ pQ

[
βl

1

∫ ∞

Q

φ(n) dn +
T+1∑
θ=2

βl
θ

∫ Q−(θ−2)N̂

Q−(θ−1)N̂
φ(n) dn

+βl
T+1

∫ Q−TN̂

−∞
φ(n) dn

]

We can evaluate the integrals in this formula by inserting the expressions for the
distribution ofN andV derived in Appendix A. Fora < b we get

∫ b

a

φ(n)dn =




µ
µ+λ (e−λa − e−λb) for 0 ≤ a < b

1 − µ
µ+λ e−λb − λ

µ+λe
µa for a < 0 ≤ b

λ
µ+λ (eµb − eµa) for a < b < 0

and therefore∫ ∞

v

φ(n)dn =
µ

µ + λ
e−λv

∫ v−(θ−2)N̂

v−(θ−1)N̂
φ(n)dn

=




µ
µ+λ e−λ(v−(θ−1)N̂)(1 − e−λN̂ ) for θ ≤ v + 1

1 − µ
µ+λ e−λ(v−(θ−2)N̂) − λ

µ+λe
µ(v−(θ−1)N̂) for v + 1 < θ ≤ v + 2

λ
µ+λ eµ(v−(θ−1)N̂)(eµN̂ − 1) for v + 2 < θ

∫ v−TN̂

−∞
φ(n)dn =

λ

µ + λ
eµ(v−TN̂)
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and further, setting̃c := c/(µ + λ)

∫ τN̂

(τ−1)N̂

∫ ∞

v

φ(n)fV (v)dndv = c̃ e−µτN̂ (eµN̂ − 1)

τN̂∫
(τ−1)N̂

v−(θ−2)N̂∫
v−(θ−1)N̂

φ(n)fV (v)dndv

=




c̃ (1 − e−λN̂ )(eµN̂ − 1)eλ(θ−1)N̂e−µτN̂ for θ ≤ τ

2c̃
µ−λ e−(µ−λ)τN̂ (λe(µ−λ)N̂ + (µ − λ)e−λN̂ − µ) for θ = τ + 1

c̃ (1 − e−λN̂ )(eµN̂ − 1)eλτN̂e−µ(θ−1)N̂ for θ ≥ τ + 2

∫ τN̂

(τ−1)N̂

∫ v−TN̂

−∞
φ(n)fV (v)dndv = c̃ e−µTN̂ (1 − e−λN̂ )eλτN̂

∫ ∞

TN̂

∫ ∞

v

φ(n)fV (v)dndv = c̃ e−µTN̂

∫ ∞

TN̂

∫ v−(θ−2)N̂

v−(θ−1)N̂
φ(n)fV (v)dndv = c̃ (1 − e−λN̂ )e−µTN̂eλ(θ−1)N̂

∫ ∞

TN̂

∫ v−TN̂

−∞
φ(n)fV (v)dndv =

2c̃ λ
µ − λ

e−(µ−λ)TN̂

We can now put all these results together. For ease of notation we setcµ :=
(eµN̂ −1), cλ := (1−e−λN̂ ), andcT := e−µTN̂ . We need to distinguish two cases
concerning the relation ofl andT . (Note that the distinction only affects the last
term.)

Case A: Forl ≤ T we have

π = c̃

{
T∑

τ=1

[
βτ

1 cµe
−µτN̂ +

τ∑
θ=2

βτ
θ cµcλe

−(µτ−λ(θ−1))N̂

+ βτ
τ+1

2
µ − λ

(λcµ(1 − cλ) − µcλ)e−(µ−λ)τN̂

+
T+1∑

θ=τ+2

βτ
θ cµcλe

−(µ(θ−1)−λτ)N̂ + βτ
T+1cT cλe

λτN̂

]
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+ βT+1
1 cT +

T+1∑
θ=2

βT+1
θ cT cλe

λ(θ−1)N̂ + βT+1
T+1

2λ
µ − λ

e−(µ−λ)TN̂

}

+
pQ

µ + λ

[
βl

1µe
−λQ +

l∑
θ=2

βl
θµcλe

−λ(Q−(θ−1)N̂)

+ βl
l+1(µ + λ − µ(1 − cλ)e−λ(Q−lN̂) − λeµ(Q−lN̂))

+
T+1∑

θ=l+2

βl
θλcµe

µ(Q−(θ−1)N̂) + βl
T+1λcT e

µQ

]

Case B: Forl > T we have

π = c̃

{
T∑

τ=1

[
βτ

1 cµe
−µτN̂ +

τ∑
θ=2

βτ
θ cµcλe

−(µτ−λ(θ−1))N̂

+ βτ
τ+1

2
µ − λ

(λcµ(1 − cλ) − µcλ)e−(µ−λ)τN̂

+
T+1∑

θ=τ+2

βτ
θ cµcλe

−(µ(θ−1)−λτ)N̂ + βτ
T+1cT cλe

λτN̂

]

+ βT+1
1 cT +

T+1∑
θ=2

βT+1
θ cT cλe

λ(θ−1)N̂ + βT+1
T+1

2λ
µ − λ

e−(µ−λ)TN̂

}

+
pQ

µ + λ

[
βl

1µe
−λQ +

T+1∑
θ=2

βl
θµcλe

−λ(Q−(θ−1)N̂)

+ βl
T+1(µ + λ − µe−λ(Q−TN̂))

]
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