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Chapter 1

Introduction and outline

The theory of probabilities is basically

only common sense reduced to a calculus.

Pierre Simon Laplace, 1812

The quote above is from Pierre Simon Laplace’s introduction to his seminal work Théorie

analytique des probabilités, in which he lays the groundwork for what is currently known

as Bayesian analysis. He proceeds to describe probability theory, and statistical inference,

as a method that makes one estimate accurately what right-minded people feel by a sort

of instinct, often without being able to give a reason for it. (translation from French: Dale,

1995) This statement contains a profound truth and insight: Probability theory offers

a clean and simple recipe for reasoning under uncertainty which I experienced as eye-

opening when I first learned about it. As my knowledge of probability theory increased,

however, I also realized that in isolation this quote presents things to be much simpler than

they actually are: Reducing common sense to a calculus is extremely difficult to do well

in practice. Translating our common sense into the language of probabilities takes a lot of

practice, and if done accurately it often leads to a calculus without any exact solutions. It

is therefore the task of statisticians and econometricians to find practical ways of reducing

our common sense to calculus, and to devise smart new methods for efficiently doing the

resulting calculations. This work represents my contribution towards these goals.



2 Introduction and outline

1.1 Probabilistic Modeling

Econometrics concerns itself with using data to learn about economic phenomena. In

practice, econometricians usually study data sets consisting of multiple observations of

a particular dependent variable y that is of our main interest, for example the GDP of a

country, and a number of explanatory variables x, for example the population density and

natural resource level of that country. The econometrician’s goal is then to learn about the

economic relationship between x and y. In itself, a list of x’s and y’s is not very useful: it

does not give us any economic insights and it will not allow us to generalize to situations

for which we do not yet have data. Learning can therefore only occur if we first provide

some context to the data. In the field of econometrics, this context usually takes the form

of a probabilistic model.

A model is a mathematical description of a set of (economic) hypotheses about the

relationship between the variables in our data set. Economic theory might for example

provide us with an idea about how the variables in x will influence the variable y. Models

therefore encode our assumptions about the world before we have seen the data, and they

allow us to make the data interpretable: Rather than having a list of numbers that could

have arisen in an infinite number of ways, our data can now be interpreted in the context of

the model. In economics, such models describe at best a rough approximation of reality.

Economies are so complex that we can never hope to observe all relevant information,

or to understand fully all processes that are at work. By allowing uncertainty into our

models we admit that they are imperfect. Probability theory is a language for making

this uncertainty more precise; it allows us to specify exactly how much and what type of

uncertainty we want to incorporate in our models.

Uncertainty typically enters an econometric model in two different ways: The first

is due to our uncertainty about the economic relationship between x and y, and is often

called parameter- or model uncertainty. We may for example be in doubt as to whether

this relationship is linear on nonlinear. Even if we are fairly certain that the relationship

is linear we may not know the slopes of this linear relationship. When constructing a

probabilistic model this type of uncertainty is typically captured by making the model

dependent on a set of unknown parameters which we denote by θ. The second type of
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uncertainty captures the fact that the model is fallible: Even a very good model will not

capture all factors relevant to an economic process, or flawlessly describe its relationship

with these factors. By allowing additional uncertainty into the model we are leaving open

the possibility that something might influence y that the model does not capture. This

type of uncertainty is typically represented by an error term denoted by ε and sometimes

a number of latent random variables denoted by s. These latent variables often describe

important but unobserved aspects of the countries or persons in our data set, and they are

used, for example, in cases where our data is incomplete. The uncertainty in ε and s is

made explicit by assigning to them a distribution, which captures how much and what

type of uncertainty we place in these variables.

It is important to realize that this approach is not the only way to learn from data. In

many particular cases people have used other solutions that are not based on probability

theory or on any formal model. The great advantage of probabilistic modeling however

is that it provides a general framework for reasoning under uncertainty. Probabilistic

models are interpretable and their structure is modular, allowing researchers to mix and

match elements for different applications. An additional advantage is that this approach

separates the knowledge and assumptions encoded in the model from the algorithm that

learns from the data. This way it is clear what part of our conclusions derives from our

modeling assumptions and what part is concluded from the data.

1.2 Likelihood-Based Econometric Inference

Given the context of a probabilistic model, the goal of econometric inference is to learn

from the data what parameter values are plausible. It is therefore important to think about

what information is actually contained in the observed data. For the purpose of the present

work, we can say that all information present in the data is described by the likelihood

function: Our probabilistic model defines a distribution for the dependent variable y,

conditional on the explanatory variables x and the unknown parameters θ, denoted by

p(y|x; θ). If we fix the arguments x and y to their values observed in our data, we are left

with a function of θ only, often denoted as L(θ), called the likelihood function. Loosely

speaking, the likelihood function tells us how well the data is explained by the model for
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any given value of θ.

Although not uncontroversial, it is often claimed that the likelihood function contains

all information present in the data, a statement called the likelihood principle. In practice,

this principle states that two different data sets with the same likelihood function should

lead to the same conclusions (under the same model). Formal arguments in favor of the

likelihood principle were developed by several authors in 1962 (Barnard et al., 1962;

Birnbaum, 1962; Savage, 1962), although the idea is much older, going back to the work

of R.A. Fisher in the 1920s. The likelihood principle is based on Fisher’s more primitive

conditionality principle, which states that our conclusions should only be based on the

experiments that were actually performed in generating our data, not on those that might

have been performed but were not.

Considering that all (or at least most) information in our data is contained in the like-

lihood function, it only seems reasonable to make it the central quantity in learning from

the data and in estimating the unknown model parameters θ. Indeed, likelihood-based in-

ference procedures are currently among the dominant estimation methods used in econo-

metrics. Although various ways of using the likelihood have been proposed, the two most

popular likelihood-based estimation methods are the method of maximum likelihood and

Bayesian analysis.

Using the method of maximum likelihood, the estimated values of the parameters θ

are those that maximize the likelihood:

θ̂ML = arg max
θ

L(θ). (1.1)

In other words, we select the model (as described by θ) for which the observed data is

most likely. The method of maximum likelihood provides a unified approach to estima-

tion which can be applied to (almost) any data set and probabilistic model. Moreover,

the maximum likelihood estimator has some desirable statistical properties such as con-

sistency, asymptotic normality, efficiency, and invariance to changes in parameterization.

This has made it the most popular method of estimation in economics.

Bayesian analysis provides us not just with a point estimate of the parameters, but

with a whole posterior distribution, representing how probable we believe each parameter
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value to be after having seen the data. In order to perform a Bayesian analysis of a

problem, we first need to formulate how probable we believe each parameter value to be

before having seen the data. This is done in the form of a prior distribution, denoted by

p(θ). The posterior distribution is then obtained as

p(θ|y) ∝ p(y|x; θ)p(θ). (1.2)

Here the likelihood plays the role of a weighting function over the hypotheses encoded

by θ. The prior distribution p(θ) represents the weight we assign to each parameter value

before having seen the data. The likelihood then updates these weights multiplicatively

to give the weights we should assign to these parameter values after having seen the data.

This multiplicative weighting by the likelihood may seem arbitrary, but it is the only

coherent way to update the initial weights p(θ); any other method of updating is self-

contradictory (see e.g. Jaynes and Bretthorst, 2003). In cases were the likelihood is much

more informative than the prior, for example because there is a lot of data, the inference

provided by Bayesian analysis is often similar to that given by the method of Maximum

Likelihood.

1.3 Computational Challenges

Bayesian analysis and the method of Maximum Likelihood are both conceptually simple;

their essence can be described by a single equation (equation (1.1) and (1.2) respectively).

However, doing the computations described by these equations can be quite difficult. In

order to compute the likelihood function L(θ) we need to integrate over the error term ε

and any latent random variables s:

L(θ) =

∫ ∫
p(y, ε, s|x; θ)dεds. (1.3)

When using Maximum Likelihood we have to maximize this likelihood function, which

can be difficult. Using Bayesian analysis, we have to integrate over it in order to charac-

terize the posterior distribution. For example, to calculate the posterior expectation of a
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given function of the parameters f(θ) we need to solve the following integral:

E[f(θ)|y] =

∫
f(θ)p(θ|y)dθ. (1.4)

Both integrals (1.3) and (1.4) can often not be solved analytically.

Numerically calculating these integrals is difficult if θ, ε and s are of high dimension.

In fact, inference in general probabilistic models has the NP-hard computational com-

plexity (Cooper, 1990; Bacchus et al., 2003; Dagum and Luby, 1993), which means that

the required amount of computational work grows exponentially with the dimension of

θ, ε and s. In practice this makes exact inference infeasible very quickly in general proba-

bilistic models. This means that in order to be able to perform econometric inference we

either have to use convenient conjugate specifications, or we have to use approximations.

The most common type of approximation used in econometrics is the class of Monte

Carlo methods, but various deterministic approximations also exist. More recently these

two types of approximations have also been successfully combined. Over the last years,

the developments in Monte Carlo methods and approximate Bayesian inference have

opened up many problems to Bayesian inference and Maximum Likelihood estimation,

but the associated computational difficulties are still far from solved.

A result by Dagum and Luby (1993) states that even approximating integrals (1.3) and

(1.4) to a given degree of accuracy is NP-hard in the general case, which means that in fact

no single inference algorithm can exist that will efficiently provide inference for all proba-

bilistic models. Monte Carlo methods may seem to escape this trap, since the accuracy of

sampling based approximations does not directly dependent on the dimensionality, but un-

fortunately sampling from general distributions is NP-hard in itself. Cooper (1990) states

that this ‘suggests that research should be directed away from the search for a general,

efficient probabilistic inference algorithm, and toward the design of efficient special-case,

average-case, and approximation algorithms.’ This is exactly the aim of the present work:

To develop approximate inference algorithms for interesting problems in economics were

likelihood-based econometric inference was previously difficult or infeasible.
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1.4 Outline

We pursue the goals set forth above in five separate chapters, which are all self-contained

and can be read independently. The first two chapters deal with maximum likelihood

estimation: They describe two different settings in which the likelihood is difficult to

evaluate, and they develop deterministic methods to solve this problem. The remaining

chapters take a Bayesian perspective: They represent cases where inference is difficult

either because an elaborate non-conjugate model is used, or simply because there is a very

large amount of data. Here we use a mixture of Monte Carlo methods and deterministic

approximations in order to facilitate inference.

Chapter 2 is based on Abbring and Salimans (2013). In this chapter, we present a

method for efficiently computing the likelihood of a mixed hitting-time model that spec-

ifies durations as the first time a latent Lévy process crosses a heterogeneous threshold.

This likelihood is not generally known in closed form, but its Laplace transform is. Our

approach to its computation relies on numerical methods for inverting Laplace transforms

that exploit special properties of the first passage times of Lévy processes. We use our

method to implement a maximum likelihood estimator of the mixed hitting-time model

in MATLAB. We illustrate the application of this estimator with an analysis of Kennan’s

(1985) strike data.

Chapter 3 is based on Salimans and Fok (2013). Here we propose an efficient al-

gorithm to perform approximate maximum likelihood estimation for non-Gaussian state-

space models of very high dimension. Our approach is based on the Expectation Maxi-

mization [EM] algorithm, where we approximate the expectation step using the Expecta-

tion Propagation [EP] approach introduced by Minka (2001). Using simulation we show

that this methods performs very well in terms of parameter recovery. We also success-

fully apply the algorithm to two empirical cases: (i) the problem of forecasting newspaper

sales across individual outlets; and (ii) forecasting the outcomes of chess matches. Both

applications require the use of a very large non-Gaussian dynamic model.

Chapter 4 is based on Salimans (2012). This chapter concerns regression analyses of

cross-country economic growth data, which are complicated by two main forms of model

uncertainty: the uncertainty in selecting explanatory variables and the uncertainty in spec-
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ifying the functional form of the regression function. Most discussions in the literature

address these problems independently, yet a joint treatment is essential. We present a

new framework that makes such a joint treatment possible, using flexible nonlinear mod-

els specified by Gaussian process priors and addressing the variable selection problem by

means of Bayesian model averaging. Using this framework, we extend the linear model

to allow for parameter heterogeneity of the type suggested by new growth theory, while

taking into account the uncertainty in selecting explanatory variables. Controlling for vari-

able selection uncertainty, we confirm the evidence in favor of parameter heterogeneity

presented in several earlier studies. However, controlling for functional form uncertainty,

we find that the effects of many of the explanatory variables identified in the literature are

not robust across countries and variable selections.

Chapter 5 is based on Salimans and Knowles (2013). Here we propose a general al-

gorithm for approximating nonstandard Bayesian posterior distributions. The algorithm

minimizes the Kullback-Leibler divergence of an approximating distribution to the in-

tractable posterior distribution. Our method can be used to approximate any posterior

distribution, provided that it is given in closed form up to the proportionality constant.

The approximation can be any distribution in the exponential family or any mixture of

such distributions, which means that it can be made arbitrarily precise. Several examples

illustrate the speed and accuracy of our approximation method in practice.

Chapter 6 is based on Salimans et al. (2012). In this chapter, we propose a model for

learning preference rankings for the purpose of making product recommendations. The

model allows us to learn from pairwise preference statements or from (incomplete) rank-

ings over more than two items. We present two algorithms for performing inference in

this model, both with excellent scaling in the number of users and items. The superior

predictive performance of the new method is demonstrated on the well-known sushi pref-

erence data set. In addition, we show how the model can be used effectively in an active

learning setting where we select only a small number of informative items for learning.

Finally, chapter 7 contains a summary of this work in Dutch.



Chapter 2

The likelihood of mixed hitting times

Joined work with Jaap Abbring

2.1 Introduction

Mixed hitting-time (MHT) models are mixture duration models that specify durations as

the first time a latent stochastic process crosses a heterogeneous threshold. They are of

substantial interest because they can be applied to the analysis of optimal stopping de-

cisions by heterogeneous agents. In particular, they can be applied to problems that do

not lead to the mixed proportional hazards model, Lancaster’s (1979) and Vaupel et al.’s

(1979) popular extension of the Cox (1972) proportional hazards model. Examples in-

clude models of job durations, marriage durations, and the entry and exit of firms that are

driven by Brownian motions and more general persistent processes. First hitting time du-

ration models are also increasingly popular in statistics for their structural and descriptive

appeal (Lee and Whitmore, 2006).

This chapter considers likelihood-based empirical methods for an MHT model in

which the latent process is a spectrally-negative Lévy process, a continuous-time pro-

cess with stationary and independent increments and no positive jumps, and the thresh-

old is proportional in the effects of observed regressors and unobserved heterogeneity.

Spectrally-negative Lévy processes include Brownian motions with linear drifts and Pois-

son processes compounded with negative shocks as well-known special cases. Following

empirical practice with mixture duration models such as the mixed proportional hazards
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model, we focus on parametric MHT models, and propose flexible parameterizations that

can approximate arbitrary functional forms by increasing the number of parameters. The

main obstacle in applying standard parametric likelihood methods is that, in general, we

have no explicit expression for the MHT model’s likelihood. However, an explicit expres-

sion for its Laplace transform is generally available. Our approach to likelihood compu-

tation exploits this.

We adapt numerical methods for the inversion of the Laplace transforms of the first

hitting times of Lévy processes to compute the conditional density and survival function

implied by the MHT model. In turn, these are used to construct a likelihood for indepen-

dently censored duration data. In the special case that the latent process is a Brownian

motion, the likelihood can be explicitly expressed as a mixture of inverse Gaussian den-

sities and survival functions. Therefore, we can use this special case as a benchmark for

evaluating the quality of our procedure for computing the likelihood. We show that the

numerical inversion that is required in the general case is sufficiently fast and precise to

make maximum likelihood estimation feasible even if no explicit expression of the likeli-

hood is available.

We implement a maximum likelihood estimator that uses this computational strategy

in MATLAB, and illustrate its application with a reconsideration of Kennan’s (1985) em-

pirical analysis of US contract strike durations. Our strategy for computing the MHT

model’s likelihood can also be used to implement other likelihood-based empirical meth-

ods. For example, it can be combined with data augmentation and Markov chain Monte

Carlo techniques to implement Bayesian estimators of the MHT model.

Abbring (2012) presented the MHT model studied in this chapter, analyzed its empiri-

cal content, and highlighted its close relation to optimal stopping problems in economics.

This chapter operationalizes this model by providing and analyzing feasible methods for

computing its likelihood and its maximum likelihood estimator.

The remainder of this chapter is organized as follows. Section 2.2 reviews the MHT

model and the corresponding characterization of the data presented in Abbring (2012).

Section 2.3 present a method for the computation of this model’s likelihood and its deriva-

tives. Section 2.4 presents flexible model parameterizations and discusses the implemen-

tation of a maximum likelihood estimator. Section 2.5 applies this estimator to strike data.
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Section 2.6 concludes.

2.2 Mixed Hitting-Time Model

2.2.1 Specification

We model the distribution of a random duration T conditional on observed covariates X

by specifying T as the first time a real-valued Lévy process {Y } ≡ {Y (t); t ≥ 0} crosses

a threshold that depends on X and some unobservables V .

A Lévy process is the continuous-time equivalent of a random walk: It has stationary

and independent increments. Bertoin (1996) provides a comprehensive analysis of Lévy

processes. Formally, we have

Definition 1. A Lévy process is a stochastic process {Y } such that the increment Y (t +

∆) − Y (t) is independent of {Y (τ); 0 ≤ τ ≤ t} and has the same distribution as Y (∆),

for every t,∆ ≥ 0.

We take {Y } to have right-continuous sample paths with left limits. Note that Definition

1 implies that Y (0) = 0 almost surely.

An important example of a Lévy process is the scalar Brownian motion with drift,

in which case Y (∆) is normally distributed with mean µ∆ and variance σ2∆, for some

scalar parameters µ ∈ R and σ ∈ [0,∞). The Brownian motion is the single Lévy process

with continuous sample paths. In general, Lévy processes may have jumps. Examples are

compound Poisson processes, which have independently and identically distributed jumps

at Poisson times. More generally, the jump process {∆Y } of a Lévy process {Y } is a

Poisson point process with characteristic measure Υ such that
∫

min{1, x2}Υ(dx) < ∞,

and any Lévy process {Y } can be written as the sum of a Brownian motion with drift and

an independent pure-jump process with jumps governed by such a point process (Bertoin,

1996, Chapter I. Theorem 1). The characteristic measure of {Y }’s jump process is called

its Lévy measure and, together with the drift and variance parameters of its Brownian

motion component, fully characterizes {Y }’s distributional properties.

Throughout the chapter, we will focus on spectrally-negative Lévy processes. These

are Lévy processes of which the characteristic measure Υ has negative support, i.e. Lévy
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processes without positive jumps. Let {Y } be such a process. Then, the (proportional)

mixed hitting-time (MHT) model specifies that T is the first time that Y (t) crosses φ(X)V ,

or

T = inf{t ≥ 0 : Y (t) > φ(X)V }, (2.1)

for some observed covariates X with support X ∈ RK , measurable function φ : X 7→

(0,∞), and nonnegative random variable V , with (X, V ) independent of {Y }. We use

the convention that inf ∅ ≡ ∞; that is, we set T = ∞ if {Y } never crosses φ(X)V . The

assumption that there are no positive jumps greatly facilitates the analysis of hitting times,

because it excludes that the process jumps across the threshold.

The factor V is interpreted as an unobserved individual effect and is assumed to be

distributed independently of X with distribution G on [0,∞]. This explicitly allows for

an unobserved subpopulation {V = ∞} of stayers, on which T = ∞. In addition,

there may be defecting movers: For some specifications of {Y }, T = ∞ with positive

probability on {V <∞}. The distinction between stayers and defective movers can be of

substantial interest (see Abbring, 2002, for discussion). We exclude the two trivial cases

in which T = ∞ almost surely, the case in which the population consists of only stayers

(Pr(V < ∞) = 0) and the case in which all movers defect ({Y } is nonpositive). For

expositional convenience only, we also assume that Pr(V = 0) = 0. Abbring (2012)

provides further discussion.

2.2.2 Characterization

The distribution of T conditional on (X, V ) is fully determined, up to almost-sure equiv-

alence, by its Laplace transform,

LT (s|X, V ) ≡ E [exp (−sT ) I(T <∞)|X, V ] , s ∈ [0,∞),

with I(·) = 1 if · is true, and 0 otherwise. The factor I(T < ∞) makes explicit the

possibility that the distribution of T |X, V is defective. Note that the defect has mass

1− Pr(T <∞|X, V ) = 1− LT (0|X, V ).

Unlike the distribution of T |(X, V ), the Laplace transform LT (·|X, V ) can be ex-
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plicitly given for any specification of the latent process {Y }. This first requires a com-

mon probabilistic characterization of {Y }, in terms of its characteristic function. Bertoin

(1996, Section VII.1) shows that

E [exp (sY (t))] = exp [ψ(s)t] ,

for all s ∈ C with nonnegative real parts, with the Laplace exponent ψ given by the Lévy-

Khintchine formula,

ψ(s) = µ̃s+
σ2

2
s2 +

∫
(−∞,0)

{esx − 1− sxI(x > −1)}Υ(dx). (2.2)

Here, µ̃ ∈ R absorbs any linear drift of {Y }, σ ≥ 0 is the dispersion parameter of

its Brownian motion component; and Υ is the Lévy measure of its jump component,

where Υ satisfies
∫

min{1, x2}Υ(dx) < ∞ and has negative support. The Laplace ex-

ponent ψ of {Y } fully characterizes its distributions, through its characteristic function

E [exp (iuY (t))] = exp [ψ(iu)t] for all u ∈ R.

Equation (2.2) gives the most common parameterization of ψ. It corresponds to the

Lévy-Itô decomposition of {Y } in a Brownian motion with linear drift µ̃t, a compound

Poisson process with jumps in (−∞,−1], and a pure-jump martingale with jumps in

(−1, 0) (Bertoin, 1996, Section I.1). Alternative parameterizations arise if we decompose

the jumps of {Y } in small and large shocks in other ways. These parameterizations all

have the same dispersion parameter σ and Lévy measure Υ, but have different drift pa-

rameters. For example, in the special case that
∫ 1

0
xΥ(dx) < ∞, the compensator term

for the small shocks in (2.2),

∫
(−∞,0)

sxI(x > −1)Υ(dx) =

∫
(−1,0)

xΥ(dx)s,

is a well-defined linear function of s. Therefore, in this case, we can alternatively param-

eterize ψ as

ψ(s) = µs+
σ2

2
s2 +

∫
(−∞,0)

(esx − 1) Υ(dx), (2.3)

where µ ≡ µ̃+
∫

(−1,0)
xΥ(dx). This includes the important special case that

∫
(−∞,0)

Υ(dx) <
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∞, in which {Y } is the sum of a Brownian motion with drift parameter µ and a compound

Poisson process with jumps of all sizes in (−∞, 0). In general, any of the equivalent pa-

rameterizations of ψ can be used in the MHT model’s specification, but some are numer-

ically and statistically more convenient than others; we return to this in Section 2.4.

With ψ determined, we are ready to analyze the Laplace transform LT (·|X, V ). The

Laplace exponent, as a function on [0,∞), is continuous and convex, and satisfies ψ(0) =

0 and lims→∞ ψ(s) =∞. Therefore, there exists a largest solution Λ(0) ≥ 0 toψ(Λ(0)) =

0 and an inverse Λ : [0,∞)→ [Λ(0),∞) of the restriction of ψ to [Λ(0),∞). Theorem 1

of Bertoin (1996, Chapter VII) implies that (see Abbring, 2012)

LT (s|X, V ) = exp [−Λ(s)φ(X)V ] .

The Laplace transform of the distribution of T |X therefore is

LT (s|X) = L [Λ(s)φ(X)] , (2.4)

with L again the Laplace transform of the unobservable’s distribution G.

2.2.3 A Gaussian Example

Suppose that {Y } is a Brownian motion with general drift coefficient µ ∈ R and disper-

sion coefficient σ ∈ (0,∞). Then, we have that ψ(s) = µs+ σ2s2/2, so that Λ(0) equals

ΛBM(0) ≡ min{0,−2µ/σ2} and Λ(s) equals

ΛBM(s) ≡
√
µ2 + 2σ2s− µ

σ2
. (2.5)

Because there are no jumps, there is no ambiguity in the treatment of small and large

jumps, and this parameterization of ψ is unique. In particular, the Lévy-Khintchine rep-

resentations (2.2) and (2.3) of ψ coincide, and µ = µ̃.

In this special case, for positive φ(X)V , the distribution of T |X, V is inverse Gaussian
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(Cox and Miller, 1965, Section 5.4), with Lebesgue density

fBM(t|X, V ) =
φ(X)V

σ
√

2πt3
exp

(
−(φ(X)V − µt)2

2σ2t

)
(2.6)

and survival function

FBM(t|X, V ) ≡ Pr (T > t|X, V )

= Φ

(
φ(X)V − µt

σ
√
t

)
− exp

(
2µφ(X)V

σ2

)
Φ

(
−φ(X)V + µt

σ
√
t

)
.

(2.7)

Here, Φ is the cumulative standard normal distribution function. If µ ≥ 0, then ΛBM(0) =

0 and the distribution of T |X, V is nondefective for positive φ(X)V . If µ < 0, how-

ever, ΛBM(0) = −2µ/σ2 > 0 and the distribution of T |X, V has a defect of size 1 −

exp(2φ(X)V µ/σ2). Note that in this case, σ = 0 is excluded to avoid the trivial outcome

that T =∞ almost surely.

Either way, the MHT model (2.1) specifies a mixed inverse Gaussian distribution for

T |X in this special case. Mixed inverse Gaussian distributions have been used to model

duration data in the statistical literature. For example, Aalen and Gjessing (2001) propose

such a model with parametric mixing over the Brownian motion’s drift coefficient µ. This

chapter extends and adapts this literature with estimators that allow for more general latent

processes and mixing distributions.

2.3 Likelihood Computation

2.3.1 Parameterization

Let ψ, φ and L be specified up to a finite vector of unknown parameters α ∈ A. Assume

that this parameterization is one-to-one, so that α is uniquely determined by (ψ, φ,G). In

the case that lnφ(X) = δ + X ′β for some scalar intercept δ and K × 1 vector of slope

parameters β, for example, this requires the “rank condition” that the support X of X

contains a nonempty open set in RK .

With such a parameterization, under mild additional conditions, Abbring’s (2012) re-

sults imply that α is uniquely determined (“identified”) from the distribution of T |X . In
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particular, it is sufficient that

1. the scales of {Y }, φ(X), and V are appropriately normalized;

2. φ(X) is nondegenerate; and

3. either V has a finite mean or the latent process {Y } is such that 0 < |ψ′(0+)| <∞.

Throughout, we assume that the first two conditions hold, and explicitly note the assump-

tions on L and ψ required to ensure that the third condition holds as well.

The first condition’s scale normalizations are innocuous, but need to be carefully im-

plemented in any estimation procedure. They are needed because the durations T implied

by the first hitting-time specification (2.1) are not affected by rescaling both the latent pro-

cess {Y (t)} and the threshold φ(X)V by the same factor, nor by rescaling the threshold

factors φ(X) and V without changing the threshold itself. Specifically, any two specifi-

cations (ψ, φ,L) and (ψ̃, φ̃, L̃); with ψ̃(s) = ψ(cs), φ̃ = (c/d)φ, and L̃(v) = L (dv) for

some c, d > 0; are observationally equivalent. Stated differently, if (ψ, φ,L) corresponds

to a latent process {Y } and threshold φ(X)V ; and (ψ̃, φ̃, L̃) corresponds to a latent pro-

cess {cY }, an observed threshold factor cφ(X)/d, and an unobserved threshold factor

dV ; then the corresponding first hitting times are the same:

inf {t ≥ 0 : Y (t) > φ(X)V } = inf {t ≥ 0 : cY (t) > (c/d)φ(X)dV }

Identification therefore requires that the scale of two of {Y }, φ(X) and V are normal-

ized. The most convenient way of implementing these two normalizations depends on the

chosen parameterization, and will be discussed as we go.

The second condition ensures that the threshold varies with the regressors on their

support. Such variation is key to the separate identification of the latent process and het-

ereogeneity. Abbring (2012) provides the following simple example of two MHT models

without covariates (φ(X) ≡ 1) that induce the same distribution of T . Both a model

in which {Y } is a Brownian motion with drift and V is degenerate at a single threshold

value (that is, without heterogeneity) and a model in which {Y } is degenerate linear drift

(σ = Υ = 0) and V has an inverse Gaussian distribution lead to an inverse Gaussian

distribution of T .
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The third condition is reminiscent of the conditions for identifiability of the mixed

proportional hazards model. Abbring (2012) provides extensive discussion.

We also require that the parameterization of (ψ, φ,L) is sufficiently smooth to allow

for the application of standard asymptotic theory. The choice of an appropriate parame-

terization of ψ is particularly important. We further discuss this in the context of specific

parameterizations in Section 2.4.

2.3.2 Sampling

We explicitly deal with censoring, which is a common problem in applied duration anal-

ysis. Let {(T ∗1 , X1), . . . , (T ∗N , XN)} be a (complete) random sample from the distribution

of (T,X) induced by the MHT model at the “true” parameter vector α0 ∈ A and some

marginal distribution of X . We do not directly observe this complete sample, but only

a censored version of it: {(T1, D1, X1), . . . , (TN , DN , XN)}. Here, Ti ≡ min{T ∗i , Ci}

is the observed duration and Di ≡ I(T ∗i ≤ Ci) a censoring indicator, for some random

censoring time Ci; i = 1, . . . , N .

For expositional convenience, we focus on a simple type of independent right-censoring

(Andersen et al., 1993). Assume that the complete observations (T ∗i , Ci, Xi) are indepen-

dent across i and that, conditional on Xi, Ci is independent of T ∗i . That is, censoring

times are not informative on the durations of interest. For example, if data are only col-

lected for a deterministic time Ci, then Ci is trivially independent of T ∗i . The independent

censoring assumption ensures that the likelihood of the observed durations Ti conditional

on (Ci, Xi) only depends on the parameters α of the MHT model. We take the marginal

distributions of the (Ci, Xi) to be ancillary, and focus on estimation of α0 by maximizing

this conditional likelihood.

With more general independent right censoring schemes, the resulting estimator re-

mains a valid (but often, partial) likelihood estimator (Andersen et al., 1993). Moreover,

the likelihood, and the corresponding estimator, can easily be adapted to other practically

relevant sampling schemes, such as those involving interval censoring.

In the next section, we first consider the Gaussian special case. This allows us to

discuss some practical details concerning normalizations in a well-understood framework
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in which the likelihood can be explicitly given. Section 2.3.4 then discusses likelihood

computation in the general case.

2.3.3 Gaussian Special Case

Suppose that {Y } is a Brownian motion with drift, so that, by the analysis in Section

2.2.3, T |X has a mixed inverse Gaussian distribution. Because |ψ′(0+)| = |µ| in this

case, identification of α0 can be guaranteed by either assuming that G has finite mean or

that µ 6= 0 (Abbring, 2012).

In this special case, the log likelihood `N(α) of α for (T1, . . . , TN)| {(D1, X1), . . .}

can be constructed using the explicit expression for the density and survival functions of

T |X, V in (2.6) and (2.7):

`N(α) =
N∑
i=1

ln

∫
θBM(Ti|Xi, v)DiFBM(Ti|Xi, v)dG(v), (2.8)

with θBM ≡ fBM/FBM the hazard rate corresponding to fBM. Here, the dependence of

θBM and FBM (through µ, σ, and φ) and G on the parameter vector α is kept implicit.

Under standard regularity conditions, the maximizer α̂N of `N(α) is a consistent and

asymptotically normal estimator of α0. The estimator’s asymptotic covariance matrix can

be estimated in the standard way using either the score or Hessian characterization of the

Fisher information matrix. It is asymptotically efficient under the assumption that the

marginal distribution of X and the censoring times carry no information on α0.

A typical parameterization would specify lnφ(X) = δ + X ′β, and a mixing distri-

bution G that has finite support {v1, . . . , vL}, for some fixed L ∈ N, with parameters

πl ≡ Pr (V = vl) = G(vl)−G(vl−); l = 1, . . . , L. (2.9)

A finite discrete specification of G is popular because of its versatility and computational

convenience; it also appears naturally in Heckman and Singer’s (1984) influential work on

semiparametric estimation of the MPH model. With it, the log likelihood in (2.8) reduces
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to

`N(α) =
N∑
i=1

ln
L∑
l=1

πlθBM(Ti|Xi, vl)
DiFBM(Ti|Xi, vl),

which is easy to compute using (2.6) and (2.7). In this parameterization, the two normal-

izations required can be implemented by setting δ = 0, and setting v1 = 1 with π1 > 0.

In the case that µ 6= 0 is assumed, one of these normalizations can be replaced by a

normalization of µ, such as |µ| = 1.

The maximum likelihood estimator for the Gaussian special case of the MHT model

and its asymptotic distribution are as easy to compute as, say, the maximum likelihood

estimator of the mixed proportional hazards model. In particular, with a computation-

ally convenient specification of G like the discrete example above, explicit expressions

for the likelihood and its derivatives are available; and computation can proceed directly

by a search for a likelihood maximizer using standard numerical methods. The Gaussian

special case shares this feature with many of the models studied in the statistics literature

(Lee and Whitmore, 2006). In the general Lévy case or with general heterogeneity dis-

tributions, however, such explicit expressions are not available, and maximum likelihood

cannot be implemented directly. The next section develops methods for computing the

maximum likelihood estimator and its asymptotic distribution in this general case.

2.3.4 General Case

In general, the density and survival function of T |X are not explicitly known, but can

be computed by numerically inverting their Laplace transforms. We will develop fast

and effective methods for computing the likelihood; its maximizer, the ML estimator;

and its derivatives by adapting existing results for inverting the Laplace transform of the

first hitting time of a Lévy process. We focus on the case with a nontrivial Gaussian

component: σ > 0.

Our approach is based on the work of Rogers (2000), who applies a variant of Abate

and Whitt’s (1992) inversion method to the problem of calculating the first-passage-time

distribution of a spectrally one-sided Lévy process. This approach builds on the fact that

the Laplace transform LT (·|X) = L [Λ(s)φ(X)] of T |X in (2.4) represents a one-to-one
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transformation of the probability density function f(·|X) of T |X ,

L [Λ(s)φ(X)] =

∫ ∞
0

exp(−st)f(t|X)dt. (2.10)

The probability density function f(·|X) can be obtained by inverting this transformation

using Mellin’s inverse formula (see Davies, 2002),

f(t|X) =
1

2πi
lim
N→∞

∫
γN

exp(st)L [Λ(s)φ(X)] ds. (2.11)

Here, the integration is along the path γN : u ∈ [−1, 1] 7→ γ + iNu, which traces out a

straight line in C, parallel to the imaginary axis from γ−iN to γ+iN . Its parameter γ ∈ R

should, in general, be chosen such that it is larger than the real part of any singularity in

the Laplace transform LT (·|X). Because LT (·|X) is analytic for any s with nonnegative

real part, we can choose any γ ≥ 0.

The integral in (2.11) does not generally have an explicit solution, but can be effi-

ciently approximated using numerical methods. A key complication is that our specifica-

tion of LT (·|X) involves the inverse function Λ, which cannot generally be expressed in

closed form. To circumvent this problem, we follow Rogers (2000) and integrate along

the transformed path γ̃N = ψ ◦ ΛBM ◦ γN instead, which traces out a curve in C from

ψ [ΛBM (γ − iN)] to ψ [ΛBM (γ + iN)] (where ◦ denotes function composition). Here,

ψ is again the Laplace exponent of the latent process {Y } and ΛBM the inverse of the

Laplace exponent of its Brownian motion component, for which (2.5) gives an explicit

expression. Note that ΛBM necessarily has the same dispersion parameter σ as ψ, but that

its drift parameter is not uniquely pinned down (because the drift parameter of ψ depends

on the way we deal with small shocks; see Section 2.2.2). Fortunately, the exact value of

the drift parameter of ΛBM plays no role in the argument that follows. It can generally be

set to the drift parameter in the specific parameterization of ψ used; for example, µ̃ in (2.2)

or µ in (2.3). The MATLAB code accompanying this chapter applies to specifications of

ψ with compound Poisson jumps and sets the drift parameter of ΛBM equal to µ in (2.3)

(see Section 2.4).

Rogers (2000) shows that the transformed path γ̃N is close enough to γN , so that we

can integrate along γ̃N in (2.11) instead. This gives an expression for f(·|X) that does not
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involve Λ:

f(t|X) =
1

2πi
lim
N→∞

∫
γ̃N

exp(st)L [Λ(s)φ(X)] ds

=
1

2πi
lim
N→∞

∫
γN

exp [ψ {ΛBM(s)} t]L [ΛBM(s)φ(X)] dψ[ΛBM(s)].

(2.12)

This convenient change of integration path is valid because the differences of the end

points of the curves mapped out by γN and γ̃N converge to zero as N grows large. In

particular, because σ > 0,∣∣∣∣γN(1)− γ̃N(1)

γN(1)

∣∣∣∣ =

∣∣∣∣γ + iN − ψ [ΛBM (γ + iN)]

γ + iN

∣∣∣∣ =

∣∣∣∣ψBM(zN)− ψ(zN)

ψBM(zN)

∣∣∣∣ ,
with zN ≡ ΛBM (γ + iN), converges to zero as N → ∞, since the Laplace exponent

defined in (2.2) is then dominated by the Gaussian drift term. The same result can be

obtained for the other end point γN(−1) if we instead take zN ≡ ΛBM (γ − iN).

Following Abate and Whitt (1992), we can apply the trapezoidal rule to approximate

(2.12) with the infinite sum

S∞(t|X) ≡ h

2πi

∞∑
r=−∞

g(t, r|X), where

g(t, r|X) ≡ exp {ψ [ΛBM (γ + irh)]t)}L [ΛBM(γ + irh)φ(X)]
d

ds
ψ [ΛBM(s)]

∣∣∣
γ+irh

,

(2.13)

where h is the step-size used with the trapezoidal rule. Although simple, the trapezoidal

rule is an effective approximation rule for the current integration problem since the in-

tegrant g(t, r|X) is a nearly periodic function in r. Abate and Whitt (1992) discuss the

error introduced by this integral approximation and they give error bounds for the inver-

sion of Laplace transforms of general CDF’s. Importantly, the approximation can be made

arbitrarily precise by reducing the step size h.

To work with this integral approximation in practice, we truncate the infinite sum in

(2.13) to

SR(t|X) ≡ h

2πi

R∑
r=−R

g(t, r|X),
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and then use extrapolation to approximate the case where R→∞. Because SR(t|X) is a

nearly periodic function in R, the limit limR→∞ SR(t|X) can be efficiently approximated

using Euler summation:

f(t|X) ≈ E(R,M, t|X) ≡
M∑
m=0

2−M
(
M

m

)
SR+m(t|X), (2.14)

for some M,R ∈ N. Abate and Whitt (1992) find that for most probability densities

the error introduced by approximating the limit R → ∞ by an Euler summation is well

estimated by E(R,M + 1, t|X)−E(R,M, t|X). In our case, this estimated error quickly

tends to zero as M is increased, suggesting the approximation is accurate.

The log likelihood function of a sample of complete durations and covariates from an

MHT model with parameters α can be computed by combining the individual approximate

probabilities from (2.14) into the sum of their logarithms,

`N(α) =
N∑
i=1

ln f(Ti|Xi) ≈
N∑
i=1

ln(E(R,M, Ti|Xi)) (2.15)

It is straightforward to extend this approach to independently censored data. The compu-

tation of the log likelihood contribution of a censored observation requires the computa-

tion of the survival function F (·|X) at the censoring time and the corresponding covariate

value. This survival function can be approximated along the lines above, using that the

Laplace transform of F (·|X) can be explicitly expressed in terms of the known transform

LT (·|X) of f(·|X). In particular, using integration by parts, it is easy to show that

1− L [Λ(s)φ(X)]

s
=

∫ ∞
0

exp(−st)F (t|X)dt =
1− LT (s|X)

s
.

With (2.4), this allows us to express a known function of the model’s parameters as the

Laplace transform of the survival function F (·|X), analogously to the expression for the

density in (2.10). This transformation can be numerically inverted to compute the survival

function, and the likelihood contribution of each censored observation, using the strategy

developed for the density. One minor difference is that the Laplace transform of the

survival function may have a singularity at 0 if the durations do not have a (finite) mean;

then, it is necessary to set γ > 0.
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We approximate the score and Hessian of the log likelihood with the analytical first

and second derivatives of the approximate log likelihood function. These exist and are

well behaved because our approximation of the log likelihood function in (2.15) is smooth

in the parameters.

The implementation of this method for computing the likelihood and its derivatives

requires that we set the parameters that control the approximation in (2.14): γ, h, R, and

M . Rogers (2000) provides guidance. We find that his suggestions for γ and h, γ = 11/t

and h = 1/t, for duration t, yield good numerical performance in our case. We will adopt

these as our default settings, together with R = 6 and M = 15, which Rogers claims

provide a good accuracy to speed trade-off. As discussed below, additional accuracy can

be obtained when needed by setting M higher.

2.3.5 Numerical Experiments

We have investigated the accuracy of the proposed likelihood approximation by conduct-

ing a range of numerical experiments. We discuss the results of two of these experiments

here. Both experiments use the default settings for the parameters that control the approx-

imation, unless explicitly stated otherwise.

The first experiment compares direct computations of the log likelihood function of

the mixed inverse Gaussian model using the explicit expression for the density in (2.6)

to its numerical approximations as we vary M . The log likelihood is calculated on the

data set that we use in Section 2.5. This ensures that this experiment provides both a real

life test case and a check on the results we present in that section. The data contain 566

complete strike durations. Because the approximation errors are close to unbiased, the

error in the log likelihood scales with the root of the sample size.

Figure 2.1 plots the average of the absolute approximation error of the log likelihood,

for different values of M , over a large set of model parameters randomly generated at

the scale of their maximum likelihood estimates. We find that this average absolute error

decreases exponentially with M ; this result is robust across the various parameter values

over which the plotted results are averaged. Consistently with Rogers (2000), we see that

M = 15 already provides a decent approximation for most practical purposes. However,
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Figure 2.1: Approximation Error of the Log Likelihood for Various M
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Note: This figure is based on the log likelihood `N (α) of an MHT model with a Brownian motion latent
process and discrete unobserved heterogeneity with three support points for Kennan’s (1985) complete
strike duration data. It plots the average absolute difference between `N (α) and its numerical approximation
over 100 randomly drawn parameter values α, for a range of values of M . The errors are plotted on a
logarithmic scale. The parameters are generated using our method of setting starting values for maximum
likelihood estimation. This method sets the drift and variance parameters equal to their maximum likelihood
estimates for a simple inverse Gaussian model with φ(X)V = 1, which are known in closed form. Starting
values for the support points vl of the heterogeneity distribution are generated by exponentiating draws from
a standard normal distribution. This ensures that the vl vary in level, but are all approximately of the right
scale. All three support points vl receive probability mass 1/3. The parameter β multiplying the covariates
is set to zero. For the current experiment, we found that setting the parameters to their final maximum
likelihood estimates instead produced almost identical results.

because the time required for the calculations grows only linearly in M , an extra thou-

sandfold increase in precision can be obtained at a very low computational cost by setting

M = 20 instead. OnceM > 20, other factors, such as rounding errors, become important,

and the approximation error levels off. We also find that, with M = 20, increasing R or

decreasing the step size h adds very little to the precision of the inversion. The numerical

approximation of the log likelihood takes about 15–20 times as long to calculate as the

analytical expression. However, in absolute terms this is still very manageable: A maxi-

mization of the log likelihood function can be performed in under a minute on a regular

computer for most model specifications.

The second experiment takes a closer look at the numerical approximation of the

density fBM of a basic inverse Gaussian model with parameters such that µ = σ2 =
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Figure 2.2: Approximation Error of the Log Inverse Gaussian Density Function
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Note: This figure plots the absolute difference between the log inverse Gaussian density ln fBM(t|X)

with parameters µ = σ2 = φ(X)V = 1 and its numerical approximation, on a logarithmic scale, against
ln fBM(t|X), for a range of times t.

φ(X)V = 1. We only present results for M = 25, but found very similar results for any

M ≥ 15. For the purpose of maximum likelihood estimation, we care most about the er-

rors in the approximation of the log density, ln fBM. Figure 2.2 plots the absolute error of

this approximation against the log density itself, on a logarithmic scale. The (log-)linear

relation displayed by the graph implies that the absolute error in the approximation of

ln fBM(t|X) roughly equals 10−11/fBM(t|X). Consequently, the approximation error is

generally small, but the approximation breaks down when the density gets very small (say,

fBM(t|X) < 10−10, or ln fBM(t|X) < −23). When estimating the model with maximum

likelihood, we can easily avoid this by setting reasonable starting values for the param-

eters. This ensures that the approximation is sufficiently precise for numerically robust

maximum likelihood estimation.

2.4 Maximum Likelihood Estimation

This chapter is accompanied with MATLAB code that implements a maximum likeli-

hood estimator based on the previous section’s approximate likelihood. We maximize

this likelihood by means of a quasi-Newton algorithm with BFGS updates for the Hessian

(see Nocedal and Wright, 2006). We use the analytical derivatives of the approximate
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likelihood to ensure quick and stable maximization, and to construct asymptotic standard

errors.

We have implemented a range of computationally feasible, flexible parameterizations

of the model. This section’s remainder discusses these parameterizations.

2.4.1 Latent Process

We consider two parameterizations of the latent process {Y }. Both include a Brownian

motion component with σ > 0.

The main specification specifies that {Y } is a convolution of a nondegenerate Brow-

nian motion with drift and a compound Poisson process with a finitely discrete shock

distribution. Because
∫

(−1,0)
xΥ(dx) < ∞ in this case, the Lévy-Khintchine formula

(2.3) now offers the simplest way to parameterize ψ:

ψ(s) = µs+
σ2

2
s2 +

Q∑
q=1

λq (esνq − 1) ,

where µ and σ2 ≥ 0 are the Brownian drift and variance per time unit, and λq is the

Poisson rate at which shocks of size νq < 0 arrive; q = 1, . . . , Q. Equivalently, in this

specification, shocks arrive at a rate λ ≡
∑Q

q=1 λq and are drawn independently from a

distribution with Q points of support (ν1, . . . , νQ) with probabilities (λ1/λ, . . . , λQ/λ).

An alternative is to specify {Y } as a convolution of a nondegenerate Brownian motion

with drift and a compound Poisson process with a gamma shock distribution. In this spec-

ification, shocks arrive at a Poisson rate λ, with their absolute sizes distributed according

to a two-parameter gamma distribution Γν,ρ, with corresponding density

νρ

Γ(ρ)
xρ−1 exp(−νx); ν, ρ > 0;

and Laplace transform

LΓν,ρ(s) =
1

(s/ν + 1)ρ
. (2.16)
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We can again use (2.3), which now gives

ψ(s) = µs+
σ2

2
s2 + λ

{
1

(s/ν + 1)ρ
− 1

}
.

2.4.2 Effect of the Observed Covariates

The threshold is naturally specified to be loglinear in the covariates:

φ(X) = exp(δ +Xβ).

We assume that the N × (K + 1) matrix with sampled observations of (1 X ′) in each row

has full column rank.

2.4.3 Unobserved Heterogeneity

Finally, our procedure for computing the likelihood only depends on the unobserved het-

erogeneity distribution G through its Laplace transform L. Therefore, any distribution

with nonnegative support that admits an explicit expression for its Laplace transform is a

convenient candidate for G. We consider two such specifications.

The main specification is Section 2.3’s finite discrete distribution. The corresponding

Laplace transform is

L(s) =
L∑
l=1

πl exp(−svl).

A simple and low-dimensional alternative is to specify a gamma distribution Γω,τ for

G. Analogously to (2.16), this gives

L(s) =
1

(s/ω + 1)τ
.

2.4.4 Scale Normalizations

Recall from Section 2.3.1 that we need to normalize the scales of two out of ψ, φ, and

L. The MATLAB code currently normalizes the covariate effects φ(X) by setting δ = 0,

and ψ by setting µ = 1. Note that this implicitly assumes that µ > 0. It would be

straightforward to adapt the code to allow more generally for |µ| = 1.
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One of these normalizations can be replaced by a normalization on L. A discrete

unobserved heterogeneity distribution can, for example, be normalized by requiring v1 =

1 and π1 > 0. A gamma distribution can be normalized by setting its scale parameter

ω = 1.

2.5 Strike Durations

The mere existence of nontrivial delays in labor agreements has puzzled economists; du-

ration patterns in their resolution have been studied to learn more about underlying bar-

gaining games and information structures.

Lancaster (1972) analyzes strike durations using a Gaussian MHT model with regres-

sors, but without unobserved heterogeneity. He interprets the gap between the Brownian

motion and the threshold as the level of disagreement, and concludes that this model fits

his data for the United Kingdom well. Others have used proportional hazards models to

study strike durations. Kennan (1985), in particular, shows that the US strike duration

hazard is U -shaped and takes this as evidence against Lancaster’s (homogeneous) MHT

model. He notes that this aspect of the data can be interpreted in terms of heterogeneity in

the conflicts underlying the strikes, but does not subsequently pursue this in his empirical

analysis.

Here, we will investigate whether Kennan’s strike data can be matched well by a

more general MHT model that explicitly takes into account unobserved heterogeneity in

strikes. Such a model comes with Lancaster’s attractive interpretation in terms of a level of

disagreement that may both vary over time and may initially be heterogeneous between

strikes. We will explicitly discuss our estimation results in terms of this interpretation,

with an implicit understanding that it is our modest objective to illustrate our methods

and the descriptive and potential structural appeal of the MHT model, without providing

a fully structural analysis of strike durations.

Kennan’s (1985)’s data cover all contract strikes in US manufacturing in the period

1968–1976 that involved at least a thousand workers, and that were classified to be pri-

marily about “general wage changes”. They include the durations in days of 566 strikes

and, for each strike, a measure of the state of the business cycle in the month it started:
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The residuals of a regression of log industrial production in US manufacturing on linear

and quadratic trend terms and seasonal dummies. We obtained the data in a fixed format

text file strkdur.asc from Cameron and Trivedi’s (2005) web page. We divided all

strike durations by seven, so that they are measured in weeks.

Table 2.1 reports maximum likelihood estimates for a range of Section 2.4’s flexible

parameterizations. All reported estimates are computed using Section 2.3.4’s numerical

methods, with M = 25. To further check these methods and their MATLAB implemen-

tation, we have also computed the same estimates for lower values of M ≥ 15 (not re-

ported), and estimates for the first five specifications using the explicit expressions for the

log likelihood that are available in these cases (not reported). These results are virtually

identical to those reported in Table 2.1.

In all cases, we specify φ(X) = exp(Xβ), with X the scalar business cycle indica-

tor. Columns I–V presents estimates of models with Brownian motion latent processes

and discrete unobserved heterogeneity. Throughout, the drift is normalized to 1 per week

(µ = 1), so that E [T |X, V ] = −L′T (0 + |X, V ) = exp(Xβ)V . By its construction as

a regression residual, X varies around zero and is close to zero on average in the sam-

ple. Consequently, V can be interpreted as the unobserved initial level of disagreement,

measured as the mean number of strike weeks it commands.

The log likelihood substantially improves when adding a second, third and fourth sup-

port point to the distribution of V , between Columns I and IV, but a fifth support point

(Column V) hardly changes the fit and the other parameters’ estimates. The estimates

indicate that there is both substantial heterogeneity in the strikes’ initial levels of dis-

agreement and uncertainty in their evolution over time. The numbers in Column IV imply

that there are four unobserved types of labor conflict, on average commanding respec-

tively 1.10, 3.21, 7.17, and 18.56 strike weeks. Each type’s level of disagreement evolves

with a standard deviation per week just above the unit drift towards agreement.

It is instructive to note that the variance of the latent process drops substantially, from

close to 20 to just over 1, when more heterogeneity is added between Columns I and

IV. Clearly, Column I’s specification falsely attributes heterogeneity in the strikes’ initial

levels of disagreement to uncertainty in their evolution over time.

The estimates of the coefficient β reflect the effect of the business cycle on strike



Table 2.1: Maximum Likelihood Estimates for Kennan’s (1985) Strike Duration Data

I II III IV V VI VII

µ 1 1 1 1 1 1 1
(0) (0) (0) (0) (0) (0) (0)

σ2 19.6592 6.2185 2.0675 1.2272 1.1966 0.5423 5.1469
(3.1752) (0.8702) (0.4433) (0.2423) (0.2224) (0.2808) (0.9768)

λ 0.0186
(0.0183)

ν −5.1321
(2.3211)

β −0.9306 −1.7722 −1.0846 −0.8669 −0.8623 −0.5788 −2.1198
(0.6010) (0.6855) (0.6572) (0.6514) (0.6338) (0.6148) (0.7881)

ω 0.4446
(0.0730)

τ 2.7911
(0.4373)

v1 6.2603 2.5431 1.5369 1.1045 1.0312 0.7546
(0.4688) (0.1993) (0.1508) (0.1213) (0.1644) (0.1602)

v2 8.7509 5.8883 3.2094 1.7564 2.0832
(0.5194) (0.3999) (0.4531) (1.0282) (0.5127)

v3 18.1612 7.1654 3.5180 4.1380
(1.0108) (0.5598) (0.7618) (0.8364)

v4 18.5572 7.3032 7.4121
(0.7028) (0.6467) (0.5533)

v5 18.5749 17.0035
(0.6945) (1.1016)

π1 1 0.3991 0.3534 0.2519 0.1986 0.1978
(0) (0.0439) (0.0335) (0.0380) (0.1160) (0.0398)

π2 0.6009 0.4923 0.2826 0.0981 0.2009
(0.0439) (0.0347) (0.0507) (0.1300) (0.0688)

π3 0.1543 0.3146 0.2561 0.2230
(0.0231) (0.0541) (0.0825) (0.0617)

π4 0.1508 0.2969 0.2379
(0.0191) (0.0646) (0.0609)

π5 0.1503 0.1403
(0.0190) (0.0200)

`N −1658.9 −1588.7 −1583.0 −1576.3 −1576.1 −1575.4 −1594.2

Note: The drift is normalized to 1 per week. All specifications include a single covariate, Kennan’s (1985)
deseasonalized and detrended log industrial production. Asymptotic standard errors are in parentheses.
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durations. In line with Kennan’s (1985) results, strikes that begin in months with low

production last longer. In the MHT model, this is captured by a countercyclical threshold:

In times with low production, in expectation, conflicts command more strike days. One

interpretation is that strike days are less costly in times with low production. The precision

of the estimates of β is low. This is consistent with Kennan’s results. He obtains more

precise results with a binary cyclical indicator constructed from the indicator used here.

For simplicity, we do not follow this lead here.

Column VI reports an estimate of a specification that includes discrete shocks of size

ν at Poisson times. The estimates point to an infrequent shock that sets back just over five

weeks of drift towards agreement. The shock only somewhat improves the likelihood; a

specification without shock, such as those in Columns IV and V, seems to be sufficient.

A very similar result is found with a gamma shock at a Poisson time (not reported).

With this specification, virtually the same estimate of the arrival rate of the shocks is

obtained. Moreover, the estimated gamma shock distribution is close to degenerate at

Column VI’s estimate of the shock size (ν). Specifically, the estimates of the shape (ρ)

and scale (ν) parameters of the gamma distribution are both very large, and their ratio

equals Column VI’s estimated shock size. As expected, the same log likelihood is found.

Finally, Column VII reports estimates of a specification with gamma heterogeneity.

This specification is clearly inferior to that with any amount of discrete heterogeneity.
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Figure 2.3: Aggregate Strike End Hazard Rates
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Note: This graph plots the empirical strike end hazard rate (Data), computed with Epanechnikov kernel
smoothing from Kennan’s (1985) data, and the corresponding hazards implied by estimated MHT and MPH
models. For the MHT model, the ML estimates in Table 2.1 for a specification with a latent Brownian
motion and a discrete unobserved heterogeneity distribution with four support points are used. For the
MPH model, we use ML estimates of a model with the same discrete heterogeneity distribution and a
Weibull baseline. Estimated hazard rates of the unconditional distribution of T are plotted, based on the
estimated distributions of T |X implied by the models and the empirical distribution of the covariate X .

Figure 2.3 plots the aggregate hazard implied by the MHT model’s estimates in Col-

umn IV of Table 2.1. It also plots the hazard implied by estimates a MPH hazard model

with a Weibull baseline and a discrete heterogeneity distribution with four support points.

Note that this MPH specification has exactly the same number of parameters as Column

IV’s MHT specification.1 In both cases, we computed the distribution of T |X implied by

these estimates, integrated over the empirical distribution of X , and computed and plotted

the hazard rate of the resulting distribution. Figure 2.3 also plots the empirical hazard

rate, computed by kernel smoothing the raw data.

The MHT model fits the empirical hazard well. The MPH model’s fit seems to be

slightly worse. This is confirmed by the MPH model’s log likelihood, which, at −1583.4,

is more than seven points lower. Because the Weibull baseline is monotonic, the Weibull

MPH model can only fit the nonmonotonic strike hazard by compensating an increasing

baseline hazard with negative duration dependence due to unobserved heterogeneity. Of

1However, estimates of two of the support points of the heterogeneity distribution converged to the same
value.
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course, usually MPH models with richer specifications of the baseline hazard are esti-

mated and a sufficiently rich specification can fit the empirical hazard arbitrarily well.

2.6 Conclusion

The results in this chapter enable applied researchers to analyze duration data with mixed

hitting-time (MHT) models using standard likelihood-based estimation and inference meth-

ods. The MATLAB code for maximum likelihood estimation that accompanies this chap-

ter can directly be applied to either complete or independently right-censored duration

data, and is easy to adapt to more general censoring schemes. Alternatively, the proce-

dures for likelihood computation provided with this code can be used to implement other

likelihood-based methods. For example, they can be combined with data augmentation

and Markov chain Monte Carlo methods to implement a Bayesian estimator that can flex-

ibly deal with unobserved heterogeneity.

Two types of empirical application of the MHT framework can be distinguished. First,

it can be used as a descriptive framework, much like Cox’s (1972) proportional hazards

model and Lancaster’s (1979) mixed proportional hazards model. Section 2.5’s analysis

of Kennan’s (1985) strike data shows that estimates of the MHT model have descriptive

appeal, with natural interpretations that nicely complement those that could be obtained

from a proportional hazards analysis. Indeed, in statistics, there is increasing interest

in the descriptive analysis of duration data with first hitting time models (Singpurwalla,

1995; Yashin and Manton, 1997; Aalen and Gjessing, 2001; Lee and Whitmore, 2006).

Second, it can be applied to the structural empirical analysis of heterogeneous agents’

optimal stopping decisions. Abbring (2012) presents a range of examples, based on the

type of optimal stopping models that are reviewed and analyzed in Dixit and Pindyck

(1994); Stokey (2009); Kyprianou (2006); Boyarchenko and Levendorskiı̆ (2007). These

include McDonald and Siegel’s (1986) model for the optimal timing of an irreversible

investment; a model of unemployment durations based on Dixit’s (1989) model of entry

and exit, complemented with heterogeneity in transition costs; and a model of job sep-

arations with heterogeneous search. The identification results in Abbring (2012, 2010)

show that data on durations and covariates are informative on the economic primitives
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of such models. The methods developed in this chapter can be applied to measure those

primitives.



Chapter 3

Approximate expectation-maximization

for large non-Gaussian state space

models

Joined work with Dennis Fok

3.1 Introduction

The state-space model has proven to be an extremely flexible model to capture dynamic

patterns in many different situations. In the typical application of the state-space model,

the dependent variable and all state variables are assumed to have a conditional Gaussian

distribution. Computationally efficient implementations of the Kalman filter and smoother

make classical and Bayesian inference in such models relatively straightforward, see e.g.

Durbin and Koopman (2001). Even if the state space is reasonably large and/or the model

is multivariate, computationally efficient inference is still feasible. Things change how-

ever if the distributions are not Gaussian. In this chapter we consider the case where the

dependent variable does not have a conditional Gaussian distribution. For example, the

dependent variable may be a binary or a count variable. When the Gaussian distribution

no longer holds, standard algorithms break down. Alternative approaches to inference

based on Monte Carlo methods are commonly applied in this situation, but in very high

dimensions these fail due to the curse of dimensionality as is discussed in Section 3.4.2.
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We propose an algorithm to perform maximum likelihood estimation of such multivariate

non-Gaussian dynamic models and we explicitly consider the case where the state space

is so large, say in the other of tens of thousands, that sampling-based algorithms are no

longer feasible.

Our approach is based on the Expectation Maximization [EM] algorithm, where we

treat all states as latent variables. The expectation step of the EM algorithm requires

calculating the expectation of the complete data log likelihood over these latent variables,

conditional on the data. In the case of non-Gaussian dependent variables, this step is

not straightforward. We propose to perform the expectation step using the Expectation

Propagation [EP] approach introduced by Minka (2001a). In general, EP yields a good

approximation of the necessary conditional expectation. If the dependent variable has a

Gaussian conditional distribution, EP is exact. Overall, our approach can be seen as a

generalization of EM. In this chapter, we argue and show that the combination of EM and

EP performs very well, even if the dependent variable has a non-Gaussian distribution.

The remainder of this chapter is structured as follows. In Section 3.2 we formalize

the setup of the model. In Section 3.3 we present our approximate Maximum Likelihood

algorithm based on a combination of Expectation Maximization and Expectation Prop-

agation [EM-EP]. We discuss alternative estimation methods for non-Gaussian dynamic

models in Section 3.4. Here we explain the main advantage of our method: it aims to

directly approximate the maximizer of the log-likelihood, while existing approaches ap-

proximate the log-likelihood itself. Our method thereby avoids many of the complications

that arise in approximating the log-likelihood of a truly high dimensional dynamic model.

The quality of our approximate Maximum Likelihood estimator is demonstrated using

simulations in Section 3.5. We empirically illustrate the performance and added value of

our technique by applying the EM-EP algorithm to two practical cases. In Section 3.6,

we consider a model for time series of newspaper sales over a large number of individual

outlets. Here, conditional on state variables, the sales figures are assumed to follow a cen-

sored Poisson distribution. The censoring is caused by the possibility that the newspaper

is sold out. In Section 3.7 we present a dynamic model for forecasting the outcomes of in-

dividual chess matches. In this case the dependent variable is trinomial (white wins, black

wins, or draw). This dependent variable is explained by latent dynamic player-specific
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skill variables. We conclude the chapter in Section 3.8 with a summary and some further

discussion.

3.2 Non-Gaussian dynamic models

In this section we describe our model specification in detail, where we present the setup

of the model in a very general form. We consider a time series of a J-dimensional multi-

variate dependent variable, yt, where t = 1, . . . , T . We denote the elements of the vector

yt by yj,t, j = 1, . . . , J . The distribution function of yj,t is parametrized by the random

variable µj,t, and denoted as p(yj,t|µj,t), where p() denotes a general (conditional) distri-

bution function. Conditional on the µj,t parameters, all observations are independent. For

the estimation approach we present below, we only need to assume that p(yj,t|µj,t) can

easily be evaluated and that all parameters are contained in µj,t. Note that for most cases

the dimension of µj,t will be small, in practice it often has dimension one or two. For ex-

ample, if yj,t is a count variable, p(yj,t|µj,t) could be the Negative Binomial distribution.

In this case µj,t would contain (transformations of) the two parameters of this distribu-

tion. We treat µj,t as latent state variables. All these latent variables are collected in the

vector µt = (µ′1,t, . . . , µ
′
J,t)
′. Next, there may be other state variables that are not directly

related to the distribution of yj,t, we denote the vector of these state variables by βt. These

state variables can be used to model a particular dependence structure among the µj,t, and

therefore yj,t, variables. The development of the complete state vector st = (µ′t, β
′
t)
′ is

specified as

st = at +Btst−1 + Ctet,

et ∼ N(0,Σt),
(3.1)

where at, Bt, Ct, and Σt are deterministic, possibly time varying vectors or matrices. Con-

ditional on these vectors and matrices, the state follows a linear evolution over time with

multivariate Gaussian noise. The model is completed with an assumed Gaussian distribu-

tion for the initial state

s1 ∼ N(m,D), (3.2)
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where m is often set to zero and D to κI with κ a large number. Note that the dependence

among the elements of yt and between yt and its past is completely captured through the

unobserved dynamic state variables denoted by the vector st, that is,

p(yj,t|s1, . . . , sT , {ys,l}(s,l)6=(j,t)) = p(yj,t|s1, . . . , sJ) = p(yj,t|µj,t). (3.3)

In our first empirical application on newspaper sales, we will use a censored Poisson

distribution for p(yj,t|µj,t), where µj,t is one dimensional and exp(µj,t) equals the Poisson

rate. For the chess match application, p(yj,t|µj,t) is a multinomial distribution, where

the probabilities depend on the one dimensional state variable µj,t. In both cases the

dimension of st is very large, that is, in the order of tens of thousands or more.

As is well known in the state space literature, (3.1) allows for all kinds of dynamic

patterns. Many of the parameters are usually pre-specified to obtain a particular structure.

It is for example possible to obtain deterministic state variables, a dynamic factor specifi-

cation, an ARMA specification for µj,t, or a specification with exogenous regressors (see

e.g. Durbin and Koopman (2001)). To show how exogenous variables may be included,

suppose that J = 1 and that the density of y1,t is parametrized by only one parameter. For

the case of K exogenous variables, the state vector would become

st =

µ1,t

βt

 , (3.4)

with βt a K × 1 dimensional vector. A setting with time varying effects of exogenous

variables could be obtained by specifyingµ1,t

βt

 =

a
0

+

0′ x′t

0 I

µ1,t−1

βt−1

+

0′

I

 et. (3.5)

If we set the variance of et to zero we obtain a specification with constant coefficients.

Inference in the model given by (3.1), (3.2), and (3.3) usually consists of three parts.

First of all the interest is in obtaining estimates of the parameters contained in at, Bt, Ct,

and Σt given observed data y = (y1, . . . , yT ). Next the interest is in inference on the

underlying state variables. In Gaussian dynamic models the Kalman filter and smoother
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can be used to calculate filtered estimates, that is, E[sj,t|y1, . . . , yt−1] or smoothed esti-

mates, that is, E[sj,t|y]. In fact in Gaussian models the filtered and smoothed densities

are obtained. The EM-EP algorithm that we present in the next section yields (approxi-

mate) Maximum Likelihood estimates of the parameters and as a natural by-product the

approximate smoothed estimates for the state variables. Filtered estimates can also be

obtained.

3.3 Approximate Expectation Maximization

Let θ denote the vector of all unknowns in (at,Bt,Ct, Σt) defined above. A popular way of

obtaining a maximum likelihood estimate of θ in models with latent variables is by using

the Expectation Maximization [EM] algorithm. Intuitively, the standard EM algorithm is

based on the so-called complete data likelihood, p(y, s; θ), where s = (s1, . . . , sT ). Next,

given some initial value for θ, in the expectation step of the algorithm E[log p(y, s; θ)|y]

is calculated, where the expectation is taken over s. The maximization step yields an

updated estimate of θ by maximizing the expected log complete data likelihood over θ.

Alternating both steps yields the ML estimator of θ.

For our purpose it is important to discuss the formal background of the EM algorithm.

In general, the expectation step can be seen as constructing a lower bound to the marginal

likelihood p(y; θ), see Minka (1998) for this perspective. Next, this lower bound is maxi-

mized in the maximization step. At convergence, the bound is tight and the EM algorithm

therefore yields a (local) maximum of the marginal likelihood function. In the expectation

step, this lower bound on the marginal likelihood is constructed by making use of Jensen’s

inequality, that is,

`(θ) = log p(y; θ) = log

∫
p(y, s; θ)ds

= log

∫
Q(s)

p(y, s; θ)

Q(s)
ds

≥
∫
Q(s) log

p(y, s; θ)

Q(s)
ds

=

∫
Q(s) log[p(y, s; θ)]ds−

∫
Q(s) log[Q(s)]ds,

(3.6)
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where Q(s) can be any probability distribution on the state variables s, as long as it is

positive everywhere on the support of p(y, s; θ). This shows that the log likelihood equals

the conditional expectation of the log complete data likelihood under the distributionQ(s)

plus the entropy of this distribution. The expectation step of the EM algorithm can be seen

as choosing a particular Q(s)

The maximization step of the EM algorithm then proceeds by maximizing this lower

bound over θ, while keeping theQ(s) distribution fixed. If we keepQ(s) fixed, the entropy

term of the bound does not depend on θ. The maximization step therefore amounts to

maximizing the expectation of the log complete data likelihood under the distribution

Q(s).

Finally, we need to choose how to set Q(s) in the expectation step. The optimal

choice for Q(s) is the distribution that would make the bound tight. It is straightforward

to show that this happens if, for a given θ, we setQ(s) equal to the conditional distribution

p(s|y; θ), that is,

∫
Q(s) log

p(y, s; θ)

Q(s)
ds =

∫
p(s|y; θ) log

p(y, s; θ)

p(s|y; θ)
ds

=

∫
p(s|y; θ) log p(y; θ)ds = log p(y; θ). (3.7)

However, this choice makes Q(s) depend on θ and the entropy part could not be ignored

in the maximization step. To approximate this situation as closely as possible, in the i-th

iteration of the EM algorithm we set Q(s) equal to p(s|y; θ̂i) where θ̂i is the (current) best

estimate of θ. In this case the bound is only tight if the log likelihood is evaluated at θ̂i.

Note that as the EM algorithm proceeds, θ̂i converges to the ML estimate and the bound

becomes tight when the evaluation is done at the ML estimate.
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For the model we consider, the complete data log-likelihood is given by

log[p(y, s; θ)] = log[p(s1; θ)] +
T∑
t=2

log[p(st|st−1; θ)] +
T∑
t=1

log[p(yt|st)]

= constant− 1

2
log(|D|)− 1

2
(s0 −m)′D−1(s0 −m)

+
T∑
t=2

− 1

2
log(|CtΣtC

′
t|)−

1

2
(st − at −Btst−1)′(CtΣtC

′
t)
−1(st − at −Btst−1),

(3.8)

where we make use of the fact that all terms that are independent of θ in this function

can be ignored for the purpose of maximum likelihood estimation. Note that this includes

p(yt|st). The i-th iteration of the EM algorithm takes the expectation of (3.8) with respect

to the distribution Qi(s) and maximizes this expectation over θ. In the i-th iteration we

obtain the updated estimate of θ (θ̂i) from

θ̂i = arg max
θ

EQi(s)[log p(y, s; θ)]. (3.9)

Next the distribution Qi(s) is updated to Qi+1(s) based on the value of θ̂i, which is then

used to find a new estimate θ̂i+1. If Qi+1(s) is updated to p(s|y; θ̂i) this process is guaran-

teed to converge to a local maximum of the likelihood functionL(θ). This result continues

to hold when we replace the maximization step (3.9) by a step that increases (but does not

maximize) the expected complete data log likelihood. In particular, instead of performing

a joint maximization it is often more convenient to maximize over several components

of θ in turn, which is called Expectation Conditional Maximization or ECM (Meng and

Rubin, 1993).

The above is only feasible if p(yj,t|µj,t) is a Gaussian distribution function, since

p(s|y; θ) is then also Gaussian. For a general distribution p(yj,t|µj,t), the conditional dis-

tribution p(s|y; θ) will not have a standard form, and exact EM is intractable. However,

using (3.8) we see that the update equation (3.9) only depends on the first two moments of

Q(s), hence any distribution Q(s) with its first two moments similar to those of p(s|y; θ̂i)

yields a sensible update of the estimate θ̂i+1. Based on this finding we propose to update θ

using a distribution Qi+1(s) that approximates the first two moments of p(s|y; θ̂i) as well
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as possible.

We have multiple options for approximating the first two moments of p(s|y; θ̂i). One

is to draw samples from this distribution using MCMC methods and to set the moments

equal to their sample realizations. This method is known as Monte Carlo Expectation

Maximization (Wei and Tanner, 1990) and has the attractive feature that it can be made

arbitrarily accurate by increasing the number of samples. However, we explicitly consider

large scale non-Gaussian models where the dimension of st can be in the order of tens of

thousands. Moreover, the state may have an intricate dependency structure which makes

sampling from p(s|y; θ̂i) too computationally expensive. Another possibility is to directly

minimize the gap between the lower bound and the likelihood in (3.6) with respect to

Q(s) over some class of tractable distributions. This is the approach taken by Ormerod

and Wand (2011) for quasi maximum likelihood estimation in the case of generalized

linear mixed models. This technique is known as Gaussian variational approximation.

Although this is an elegant method that can be hundreds to thousands times faster than

using MCMC methods, the approach outlined by Ormerod and Wand (2011) is not optimal

for application to high-dimensional dynamic models since it does not use the Kalman

filter. In addition, the Gaussian variational approximation for Q(s) does not necessarily

do a good job at approximating the moments of p(s|y; θ̂i). The same can be said about

the methods of Lee and Nelder (2006) and Rue et al. (2009) which are based on a Laplace

approximation to p(s|y; θ̂).

Since the moments of Q(s) determine the final estimate θ̂, we more directly approx-

imate the moments of p(s|y; θ̂i) using a method called Expectation Propagation (Minka,

2001a). Minka (2001a), Minka and Lafferty (2002) and Kuss and Rasmussen (2005),

among others, find that this method often does a better job at approximating the moments

of a distribution than do variational approximations or Laplace approximations. The use

of Expectation Propagation in an EM algorithm is known as EM-EP and was used ear-

lier by Minka and Lafferty (2002), Qi et al. (2004) and Kim and Ghahramani (2006) in

different contexts.
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3.3.1 Expectation propagation

In our EM implementation, we construct Qi+1(s) by approximating the conditional distri-

bution p(s|y; θ̂i) by a multivariate Gaussian using the Expectation Propagation method of

Minka (2001a). The goal is to choose the Gaussian distribution that matches the first two

moments of p(s|y; θ̂i) as closely as possible. For the models we consider, the conditional

distribution is given by

p(s|y; θ̂i) ∝ p(s; θ̂i)p(y|s) = p(s1; θ̂i)
T∏
t=2

p(st|st−1; θ̂i)
T∏
t=1

p(yt|st), (3.10)

where

p(yt|st) =
k∏
j=1

p(yj,t|µj,t). (3.11)

Recall that µj,t is a particular element of the state vector st, see (3.3). The unconditional

distribution p(s; θ̂i) in this expression is Gaussian, but the distribution of the dependent

variable p(yj,t|µj,t) is not, which means that p(s|y; θ̂i) is non-Gaussian. Approximating

the conditional distribution p(s|y; θ̂i) by a Gaussian thus comes down to replacing the

likelihood terms p(yj,t|µj,t) by Gaussian distribution functions in µj,t. Our approximation

will thus be of the following form

Qi(s) ∝ p(s1; θ̂i−1)
T∏
t=2

p(st|st−1; θ̂i−1)
T∏
t=1

k∏
j=1

φ(µj,t;mj,t, vj,t), (3.12)

where the φ(µj,t;mj,t, vj,t) denotes a Gaussian probability density function in µj,t with

mean vector mj,t and covariance matrix vj,t.

The only remaining part of the approximation is to set the parameters mj,t and vj,t in

such a way that the approximating distribution (3.12) closely matches the first two mo-

ments of the exact conditional distribution (3.10). The approach taken in Minka’s (2001a)

Expectation Propagation method is to consider this problem one factor at a time: Suppose

that we have already approximated all but the last likelihood contribution p(yk,T |µk,T ).

Leaving in the exact likelihood contribution would then gives us the following approxi-
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mating distribution

Q̃i(s) ∝ p(s1; θ̂i−1)
T∏
t=2

p(st|st−1; θ̂i−1)

∏T
t=1

∏k
j=1 φ(µj,t;mj,t, vj,t)

φ(yk,T ;mk,T , vk,T ))
p(yk,T |µk,T ) (3.13)

Since the dimension of µk,T is low, we can determine the first two moments of this distri-

bution efficiently by using the Kalman filter and smoother combined with numerical in-

tegration over µk,T . We may then approximate p(yk,T |µk,T ) by that Gaussian distribution

φ(µk,T ;mk,T , vk,T ) which produces an approximation Qi(s) with the exact same first two

moments. Such a Gaussian probability density function always exists and can be uniquely

determined. Moreover, since p(yk,T |µk,T ) only directly influences the moments of µk,T ,

the approximation of this factor will be a function of the only the low-dimensional vector

µk,T even though it conserves the first two moments of the entire state s. After approx-

imating this likelihood contribution, we can then move on to one of the other p(yj,t|µj,t)

that we had already approximated and repeat the procedure as if this was the final fac-

tor. In this fashion, we iteratively set all the approximate likelihood terms, giving the

following algorithm

Algorithm 1 Gaussian Expectation Propagation for State Space Models
Initialize all mj,t to zero and all vj,t to large values
Define Qi(s) ∝ p(s; θ̂i−1)

∏T
t=1

∏k
j=1 φ(µj,t;mj,t, vj,t)

while not converged do
for all j, t do

Find the moments of Q
\j,t
i (s) = Qi(s)/φ(µj,t;mj,t, vj,t) using the Kalman

smoother, denote the mean of µj,t by m\j,tj,t and its covariance by v\j,tj,t

Find the moments of Q̃i(s) = Q
\j,t
i (s)p(yj,t|µj,t) using Gauss-Hermite quadrature,

denote the mean of µj,t by m̃j,t and its covariance by ṽj,t
Set vj,t = [ṽ−1

j,t − (v
\j,t
j,t )−1]−1

Set mj,t = vj,t[ṽ
−1
j,t m̃j,t − (v

\j,t
j,t )−1m

\j,t
j,t ]

end for
end while

Given the final combined approximating distribution Qi(s), the lower bound on the

marginal likelihood (3.6) can then be evaluated explicitly and we can perform the max-

imization step of the EM algorithm. This maximization is straightforward since we are

using a linear and Gaussian specification for the state variables. Given a new estimate
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θ̂i we can then again refine Qi(s) using Expectation Propagation and this is iterated until

convergence.

In an application of the above procedure there may be some practical issues. First,

there is no theoretical guarantee that the procedure for constructing Qi(s) will always

converge (see Minka, 2001a). However, in practice this rarely is a problem, and we have

not encountered any divergence issues within the class of models considered here. If the

likelihood is very far from Gaussian, the convergence of the approximate expectation step

may be improved by using the EP algorithms by Seeger and Nickisch (2011) or Qi and

Guo (2012). Also, although all individual terms φ(µj,t;mj,t, vj,t) are chosen to match the

moment contributions of the exact likelihood terms p(yj,t|µj,t), this does not mean that

the combined approximate distribution Qi(s) exactly matches the first two moments of

p(s|y; θ̂i). For this reason, the maximization step of the EM algorithm is not guaranteed

to improve the likelihood L(θ) as it is with the exact implementation. In order to ensure

convergence, we found that in some cases it can be necessary to replace the update (3.9)

by a damped version

θ̂i = αθ̂i−1 + (1− α) arg max
θ

EQi(s)[log p(y, s; θ)], (3.14)

where α ∈ (0, 1) is a damping constant. For most problems, the EM-EP algorithm or

its damped implementation is an efficient method for finding quasi-maximum likelihood

estimates. However, as with the regular EM algorithm, there also exist problems for which

convergence can be slow. For these problems, it may be more efficient to use gradient

based methods. Note that the gradient of the approximate likelihood at θ̂i can be obtained

analytically as EQi(s)[d/dθ log p(y, s; θ)], evaluated at θ̂i.

The quality of the EP approximation will depend on the particular specification for

p(yj,t|µj,t), with the approximation being exact if this is a Gaussian distribution. Our

experience and that of others suggests that the EP approximation is very accurate for

unimodal distributions (e.g. Kuss and Rasmussen, 2005), but that it can break down when

p(yj,t|µj,t) has multiple modes (see Minka, 2001a). An empirical investigation of the

approximation quality for a unimodal case is performed in Section 3.5.
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3.3.2 Additional approximations

Although the methods outlined above already provide a large reduction in computation

time from exact implementations, it still requires the use of the Kalman Filter to calculate

the moments of Qi(s). For every time t this requires us to store and invert a covariance

matrix Kt = Cov(st|y1, . . . , yt) with dimensionality matching that of st. This may still

become prohibitive if that dimension is very large and if the covariance matrix is not easily

factorizable. An additional approximation can be made here by deleting some of the off-

diagonal elements of Kt before performing a Kalman filtering or smoothing step. Tech-

nically, this comes down to replacing the multivariate normal distribution p(st|st−1; θ̂i) in

(3.12) by a normal distribution with a simpler covariance structure.

In our applications in Sections 3.6 and 3.7 we use an extreme version of this, that is,

we delete all off-diagonal elements of Kt in order to accommodate a state vector with a

dimensionality in the tens of thousands. The loss of accuracy caused by this additional

approximation will depend on the magnitude of the deleted covariance elements. In our

case, these covariances are expected to be fairly small, and the loss of accuracy is accept-

able.

3.3.3 Standard errors

The Expectation Propagation procedure explained in Section 3.3.1 provides us with the

following approximation to the likelihood

p(y; θ) ≈ constant×
∫
p(µ; θ)

T∏
t=1

k∏
j=1

φ(µj,t;mj,t, vj,t)dµ, (3.15)

where µ denotes those elements of the state s that directly influence the distribution

of the observed y, and the φ(µj,t;mj,t, vj,t) are the Gaussian approximations to the true

likelihood terms p(yj,t|µj,t). Since this likelihood approximation is Gaussian, we can

perform the integration efficiently using the Kalman filter. The gradient and Hessian of

the approximate log likelihood can also be obtained using standard state space methods.

The negative inverse of the Hessian can then be used as an approximate estimate of the

asymptotic covariance matrix of our EM-EP estimator.
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Alternatively, the approximate Hessian of the log likelihood can be obtained by ap-

proximating its derivatives directly. The derivative of the true log likelihood log p(y; θ)

with respect to a parameter θi is given by Ep(s|y;θ)[d/dθi log p(y, s; θ)], where log p(y, s; θ)

is the complete data log likelihood (see McLachlan and Krishnan, 1997). In our case, this

derivative can be approximated by EQ(s;θ)[d/dθi log p(y, s; θ)] where Q(s; θ) denotes the

approximation to p(s|y; θ) that is obtained by running Expectation Propagation to conver-

gence. Note that this derivative is zero at the final EM-EP estimate. Since the derivative of

the complete data log likelihood depends on p(s|y; θ) only through its first two moments,

this approximate derivative will be a close approximation to the derivative of log p(y; θ).

By taking a derivative once more we can also get a good approximation to the Hessian

of log p(y; θ). Let χ(θ) = (EQ(s;θ)s
′, vech[EQ(s;θ)ss

′]′)′ denote the p × 1 vector of suf-

ficient statistics of Q(s; θ), and denote the derivative of our lower bound with respect to

θi by gi(θ, χ(θ)) = Eχ[d/dθi log p(y, s; θ)], where Eχ denotes taking an expectation with

respect to the multivariate normal distribution with the moments χ(θ). The element (i, j)

of the Hessian of log p(y; θ) can then be approximated as

d2

dθidθj
log p(y; θ) ≈ d

dθj
gi(θ, χ(θ)) =

∂

∂θj
gi(θ, χ) +

p∑
l=1

∂

∂χl
gi(θ, χ)

dχl
dθj

(3.16)

where dχl/dθj can be calculated numerically by recalculating the EP approximationQ(s; θ)

for values slightly below and above θj . The other quantities can be obtained analytically.

We find that the two different methods of approximating the Hessian give almost iden-

tical results in practice and that both give very close approximations to the Hessian of the

exact log likelihood. In Section 3.5 we investigate the quality of our EM-EP estimator and

its approximate standard errors obtained in this way. In the next section we first discuss

some alternative methods.

3.4 Other likelihood approximation methods

Direct maximum likelihood estimation is not possible for the non-Gaussian dynamic mod-

els we consider (see section 3.2) as the latent effects cannot be integrated analytically

from the data likelihood. The method proposed here is one way of performing this in-
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tegration approximately, but other methods have been proposed in the literature before.

Here we review these alternative methods, and we argue why our method compares pos-

itively with the existing approaches. In Section 3.4.1 we discuss alternative deterministic

approximations to the intractable likelihood, while Section 3.4.2 reviews Monte Carlo

approximations.

3.4.1 Deterministic solutions: Laplace and Variational approxima-

tions

One of the most often used deterministic approximations for dealing with intractable like-

lihoods is the Laplace approximation. This method replaces the exact complete data log-

likelihood log p(y, s; θ) by a second order Taylor approximation in s around its mode

s∗(θ), that is, the approximated log likelihood equals

log p̃(y, s; θ) = log p(y, s∗(θ); θ) +
1

2
[s− s∗(θ)]′H(θ)[s− s∗(θ)], (3.17)

with H(θ) =
∂2 log p(y, s; θ)

∂s∂s′

∣∣∣∣
s=s∗(θ)

. (3.18)

Since the exponent of this Taylor approximation, p̃(y, s; θ), is now a Gaussian in s, we

can easily use it to obtain an approximate likelihood with s integrated out.

l̃(θ) = log

∫
p̃(y, s; θ)ds = log p(y, s∗(θ); θ) +

n log 2π

2
− 1

2
log |−H(θ)| , (3.19)

where the last term is the log determinant of minus the Hessian matrix of log p(y, s; θ) at

its mode. Many popular techniques for approximate maximum likelihood and approxi-

mate Bayesian inference (Tierney and Kadane, 1986; Breslow and Clayton, 1993; Lee and

Nelder, 2006; Rue et al., 2009) all use l̃(θ), or further approximations of this expression,

as their quasi log-likelihood function. More advanced likelihood approximations based on

higher order Taylor expansions have been proposed for different kinds of models (e.g. lin-

ear mixed models: Raudenbush et al., 2000), but these are not applicable to the dynamic

models considered here.

Maximization of (3.19) leads to a QML estimator that has a close relationship to those
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obtained using approximate expectation maximization. Specifically, note that

dl̃(θ, s∗(θ))

dθ
=
∂l̃(θ, s∗(θ))

∂θ
+O(3), (3.20)

since ∂ log p(y, s∗; θ)/∂s∗ = 0 and the remainder only depends on s∗ through the third

derivative of log p(y, s; θ) in s. If p(y, s; θ) is reasonably well approximated by a Gaussian

we expect this third derivative to be small, i.e. the local curvature of log p(y, s; θ) around

its mode should be roughly constant. For this reason, the third order term in (3.20) is often

ignored when fitting models using a Laplace approximation (e.g. Breslow and Clayton,

1993). If the Gaussian approximation in s is reasonable, the maximizer of (3.19) will thus

satisfy the following first order conditions

dl̃(θ)

dθ
≈ ∂l̃(θ)

∂θ
= EQ(s)

∂p(s; θ)

∂θ
= 0, (3.21)

with Q(s) = N [s∗(θ),−H−1(θ)], and where we have made use of the fact that

log p̃(y, s; θ) = log p̃(y; s) + log p(s; θ).

These first order conditions are almost the same as those for exact ML estimation (see

section 3.3), but now the expectation is taken with respect to a second order Taylor ap-

proximation of p(s|y; θ), rather than the exact distribution.

In a recent paper, Ormerod and Wand (2011) suggest approximating the ML estimator

by maximizing the lower bound on the likelihood (3.6) directly. To do this they use

a Gaussian variational approximation, i.e. they specify Q(s) as a general multivariate

normal distribution, with free parameters µ and Σ, and then maximize the lower bound

jointly with respect to θ, µ and Σ. As shown by Opper and Archambeau (2009), the

Gaussian variational approximation is closely related to the Laplace approximation, but

it is nonlocal in the sense that it does not only depend on the shape of p(s|y; θ) at a

single point like the Laplace approximation. Although Ormerod and Wand (2011) do not

take the perspective of expectation maximization, their estimator does obey the first order

conditions given in (3.21), with a Gaussian variational approximation for Q(s), so it too

can be seen as an approximate EM procedure.
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By viewing quasi ML estimation using Laplace approximations and Gaussian varia-

tional approximations in the context of expectation maximization, we can easily compare

them to the method we propose here. As discussed in section 3.3, the first order condi-

tions in (3.21) tell us that the quality of the resulting estimator depends only on how well

Q(s) approximates the first two moments of p(s|y; θ), with the estimator being equal to

the exact ML estimator if the first two moments are matched exactly. Therefore, it seems

natural to construct Q(s) by trying to match these moments directly using EP as proposed

here, rather than by defining Q(s) through an objective function that might not capture

these moments at all. Several studies (Minka, 2001a; Minka and Lafferty, 2002; Kuss

and Rasmussen, 2005; Cseke and Heskes, 2011) show that in practice EP indeed does a

better job of approximating the first two moments of p(s|y; θ) compared to Laplace ap-

proximations or Gaussian variational approximations. For this reason, EM-EP will also

provide a closer approximation to the exact ML estimator. The computational costs of the

deterministic approximations discussed here are comparable.

The difference in quality between EM-EP and other deterministic approximations

becomes especially large when we make additional approximations in the expectation

step, as discussed in section 3.3.2. For EM-EP, these additional approximations amount

to deleting certain off-diagonal elements of the covariance matrix of p(s|y; θ) in each

Kalman filtering step. As long as the solution of (3.21) does not depend on these particu-

lar elements of the covariance (as is the case in our examples), the quality of the estimator

is not affected directly. A similar approximation could be made with other determinis-

tic methods, for example by ignoring off-diagonal elements of the Hessian H(θ) in the

Laplace approximation, but the result would be similar to deleting these elements in the

inverse covariance matrix, or precision matrix, rather than the covariance itself. Delet-

ing these elements in the precision matrix will affect all elements of the corresponding

covariance matrix, which will then deteriorate the estimator. The analysis in Opper and

Archambeau (2009) shows that a similar effect would occur if we would use a restricted

(diagonal) covariance matrix Σ in the Gaussian variational approximation.
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3.4.2 Monte Carlo integration

In the literature a number of Monte Carlo based methods have been proposed to esti-

mate the parameters of (non-linear) non-Gaussian state space models. In case of a lin-

ear model with Gaussian variables, very efficient methods are available to calculate the

likelihood function using the Kalman filter, see, for example, Schweppe (1965), Harvey

(1989), and Durbin and Koopman (2001). Very efficient implementations of the Kalman

filter are available (Koopman, 1993; Koopman et al., 1999), such that large scale mod-

els can straightforwardly be analyzed. In case a Bayesian analysis is preferred, efficient

Markov Chain Monte Carlo algorithms are also available, see Carter and Kohn (1994) and

Frühwirth-Schnatter (2004).

For the case where the measurement variable is non-Gaussian the standard Kalman fil-

ter is not adequate. Kitagawa (1987) proposes to use numerical integration to replace some

of the steps of the Kalman filter. However, this is only feasible for very low-dimensional

problems. Two types of alternative estimation methods have become popular, one based

on Bayesian statistics and one based on classical statistics. Both methods rely on an

approximation of the density p(µ|y, θ). The method popular in classical statistics uses

Importance Sampling (Kloek and van Dijk, 1978) to calculate the log likelihood function,

which is next maximized over the parameters of the model. In importance sampling the

density p(µ|y, θ) is approximated by the (Gaussian) density f(µ|y, θ). For the evaluation

of the log likelihood the identity

p(y|θ) =

∫
p(y|µ, θ)p(µ|θ)
f(µ|y, θ)

f(µ|y, θ)ds, (3.22)

is used. Next one obtains draws µ(l), l = 1, . . . , L from f(µ|y, θ) and calculates

log p̂(y|θ) = log
1

L

∑
l

p(y|µ(l), θ)p(µ(l)|θ)
f(µ(l)|y, θ)

. (3.23)

The suggested methods in the literature differ in the approximation made. Jungbacker

and Koopman (2007) generalize the methods proposed by Shephard and Pitt (1997) and

Durbin and Koopman (1997) by obtaining the approximating density using a Laplace

transformation of the smoothing density p(µ|y, θ). Note that µ is the part of the state
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vector directly influencing y. This approximation requires finding the mode of µ con-

ditional on y. Finding this mode is complex and may require large scale numerical op-

timization. The dimension of this optimization problem is equal to the number of ob-

servations times the dimension of µt. Jungbacker and Koopman (2007) propose an al-

gorithm to find the mode which is based on repeatedly applying the Kalman filter to a

particular linear model. This linear model is constructed using the first and second order

derivatives of p(µ|y, θ), with respect to µ, which are relatively easy to obtain given that

log p(µ|y, θ) = log p(y|µ, θ) + log p(µ, θ) − log p(y|θ). The density p(µ|θ) is Gaussian,

p(y|µ, θ) is analytically available, and p(y|θ) does not depend on µ. Conditional on this

mode, the proposal density is set to be a multivariate normal with expected value equal

to the calculate mode and variance equal to the negative of the inverse of the associated

Hessian matrix.

Alternatively, Richard and Zhang (2007) propose to choose the mean and variance

of the Gaussian approximating distribution f(µ|y, θ) such that the Monte Carlo sampling

variance in (3.23) is approximately minimized. To obtain this mean and variance, Richard

and Zhang (2007) propose to recursively solve a set of auxiliary least squares optimization

problems. They call this procedure Efficient Importance Sampling [EIS]. One can see

EIS as using a global approximation to p(µ|y, θ) instead of a local approximation at the

mode as discussed above. In the context of state space models, Koopman and Nguyen

(2012) further improve the computational efficiency of this method by using Kalman filter

and smoothing methods to facilitate the optimization. Koopman et al. (2011) propose

to use repeated (one-dimensional) numerical integration to improve the performance in

obtaining the optimal mean and variance for the proposal.

The analysis in Salimans and Knowles (2013) shows that the typical implementation

of EIS (setting its importance weights to one) corresponds to fitting a variational approx-

imation similar to the type described in section 3.4.1. It is well known (e.g. Minka, 2005)

that the tails of such an approximation tend to be thinner than the those of the target

distribution. This is not a problem as long as the type of approximating distribution is

extremely close to the target, but it will otherwise lead to infinite variance problems in the

Importance Sampling step. For the truly high dimensional problems we considere here,

the approximation cannot possibly be made accurate enough to avoid these problems,
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making this approach infeasible.

Given a Gaussian approximation f(µ|y, θ) to the true smoothed distribution p(µ|y, θ),

all elements in (3.23) are now relatively easy to calculate, and simulation from f(µ|y, θ)

can be done efficiently using the simulation smoother of Jong and Shephard (1995). The

approximated log likelihood now gives the basis for a Maximum Likelihood estimator.

However, for each evaluation of the log likelihood this entire procedure needs to be re-

peated. In large scale models this procedure can be very time consuming. Moreover, the

estimator of the log likelihood is biased for finite L. This leads to a bias in the parameter

estimates. In fact, in order for the bias to vanish asymptotically L needs to increase with

the sample size. This makes this procedure computationally even more intensive. There

are ways to correct for this bias, however in many cases such bias correction substantially

increases the variance of the estimator. As a result the added value of this bias correction

is unclear. In some cases the performance of the importance sampler can be improved by

using antithetic and control variables, see Durbin and Koopman (1997).

In the Bayesian tradition a similar approximation to the density p(µ|y, θ) is used.

However, now this density is used as a proposal in a Metropolis Hastings sampler. In this

approach the states are sampled together with the parameters, see for example Shephard

and Pitt (1997).

Both approaches crucially rely on the quality of the approximation of p(µ|y, θ) by

f(µ|y, θ). If the approximation is poor, one will need many draws in (3.23) to obtain

a good estimate of the log likelihood or one will have very low acceptance rates in the

Metropolis Hastings sampler. In the latter case, one can choose to apply blocking and

sample µ in blocks (Shephard and Pitt, 1997) this increases the acceptance rate at the cost

of poorer mixing. In the extreme case one may sample one state at a time (Carlin et al.,

1992). However this procedure tends to have very poor mixing in many settings, see also

Carter and Kohn (1994) for evidence on the performance of blocking in Gaussian state

space models. Furthermore, the calculation of the approximating distribution and sam-

pling from this distribution may still be computationally very demanding. In general one

needs some replications of the (linear) Kalman filter and the calculation of the inverse of

large matrices. Especially in the large dimensional cases that we consider, the computa-

tional costs may be excessive: with our examples in Sections 3.6 and 3.7 the state space
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is so large than we cannot even keep the full covariance matrix of p(µ|y, θ) in memory,

which makes forming an truly accurate approximation f(µ|y, θ) impossible. Since sam-

pling methods in high dimensions fail without a very good proposal distribution f(µ|y, θ)

such approaches are not applicable on the scale of the problems that we are interested

in. In practice, importance sampling tends to fail even with comparatively good proposal

densities if the dimension gets high enough, as analyzed by Bickel et al. (2008); Snyder

et al. (2008); Bengtsson et al. (2008); Lee et al. (2011); Beskos et al. (2011) among others.

In general the number of samples required to reach a given accuracy scales exponentially

in the dimension of the state vector, which becomes prohibitive extremely quickly. Note

that our approach only relies on the approximation of the first two moments of multiple

small subsets of µ, rather than having to faithfully approximate the whole distribution.

This makes our approach fundamentally more robust in truly high dimensions.

In general, the importance sampling methods presented above provide a way to ap-

proximate the log likelihood function. However, to obtain this approximation many com-

putations need to be done. The added value of all these computations is not clear. Most

computations are aimed at adequately approximating the log likelihood. However, in the

end we are interested in the parameter estimates and inference on the state variables. So,

we should instead aim to approximate the maximizer of the log likelihood function. It is

not clear how approximation error in the log likelihood function translates to errors in the

maximizer.

In our approach we solve this issue by using the EM-EP algorithm. Our approxi-

mations are such that the approximation error will have a minimal impact on the final

solution. The performance of the EM-EP algorithm depends on the quality of the approx-

imation of the posterior mean and posterior variance of low dimensional subsets of the

state vector. The EP part of the algorithm provides these approximations. In case the

model is Gaussian, the EP algorithm exactly yields the posterior mean and variance, and

our EM-EP algorithm exactly equals the maximum likelihood estimator. If the model is

not Gaussian, EP yields an accurate approximation of the posterior mean and posterior

variance. In other words, our approach is aimed at accurately approximating the solution

instead of the problem.

Another advantage of our approach is that the maximization step of EM-EP is usually
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trivial and does not require the use of the Kalman filter or smoother. This part can be done

very efficiently. In the importance sampling approach one will need to use a numerical

maximization algorithm to optimize the approximated log likelihood function over a (po-

tentially) large set of parameters. At each function evaluation the entire approximation

problem needs to be solved again. If the model is large in terms of parameters, number

of states, or number of observations the IS approach becomes infeasible. Another added

value of our approach is that it is deterministic and the properties of EM are well known.

In the (E)IS approach a problem may be that the Monte Carlo variance in (3.23) may not

exist, that is, it is infinite. In practice such a situation may be very difficult to detect.

3.5 Quality of approximation

In order to assess the quality of our approximate maximum likelihood estimator and its

approximate standard errors, we performed a Monte Carlo study with a simplified version

of the model used in Section 3.6. We consider a dynamic model for a non-normally dis-

tributed dependent variable. The dependent variable has a censored Poisson distribution,

and the dynamics is specified as a random walk on the log Poisson rate. The model reads

yt ∼ Cens. Pois(λt, ξ) (3.24)

log λt ∼ N(log λt−1, σ
2
λ) (3.25)

p(λ1) = 1/λ1(i.e. diffuse on log λt), (3.26)

where Cens. Pois(λt, ξ) denotes a Poisson distribution with rate λt, censored from above

at quantile ξ.

We simulate ten thousand artificial data sets y1, . . . , yT from this model, using T =

500, log λ1 = 2, ξ = 0.9 and σ2
λ = 0.5T−1. These settings where chosen to match

the characteristics of the data set used in Section 3.6. Since the Poisson is a discrete

distribution, these settings correspond to an average censoring percentage of about 12%,

rather than 1− ξ exactly. For each simulated data set we obtained the EM-EP estimate of

log(σ2
λ) and its approximate standard error. The reason for working with log(σ̂2

λ) instead

of σ̂2
λ is that the sampling distribution of the former converges faster to the corresponding
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asymptotic normal distribution. The sampling distribution of the EM-EP estimator is

shown in Figure 3.1. The sampling distribution of the approximate standard error is shown

in Figure 3.2.
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Figure 3.1: Sampling distribution of the QMLE for the censored Poisson model
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Figure 3.2: Sampling distribution of approximate standard error for the censored Poisson model

As can be seen in Figure 3.1, the sampling distribution of the EM-EP estimate is quite
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close to a normal distribution, but with a heavier left tail. This non-normality is most likely

caused by the small sample size, rather than the EM-EP estimation method. Most impor-

tantly, the EM-EP estimator is nearly unbiased in this application. Figure 3.2 shows that

the standard error is slightly underestimated on average, which is again due to the thick

left tail of the sampling distribution. The realized coverage of the asymptotic 95% confi-

dence intervals based on these approximate standard errors is 91%, which means that the

asymptotic confidence intervals are slightly too small. Note that such overconfidence is

common to almost all maximum-likelihood based methods used in small samples. Over-

all, the asymptotic approximation fits the true sampling distribution quite well. This also

means that the EM-EP estimator is quite efficient, otherwise it would have had a larger

standard error than the asymptotically minimal standard error.

3.6 Forecasting newspaper sales

In this section we show the results of our first real-world application of the EM-EP

method. The central problem in this section is demand forecasting for a national news-

paper. We will argue why it is absolutely necessary to apply the EM-EP method, and

we will show that applying the method can lead to a substantial increase in profit for the

newspaper publisher.

Newspaper publishers usually distribute their paper to individual subscribers on a daily

basis. Next to these subscriptions they sell individual newspapers at different outlets, such

as supermarkets, gas stations, kiosks, etc. The sales at each outlet tend to be relatively

small, but there are many outlets such that the total sales of the individual newspapers

tends to be substantial. For the publisher it is important to supply each outlet with the

“correct” number of newspapers. Supplying less than the demand will lead to a stock-out,

supplying too much is also not efficient. To be able to calculate the number of papers to

supply, the publisher needs a model of the demand for newspapers at each outlet. The

demand is influenced by seasonality, special editions of the newspaper, and many other

factors. A dynamic model is likely to fit the demand well, as past sales are very informa-

tive to predict future demand.

For each outlet j and each time point t, the publisher knows how many newspapers
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were supplied, denoted by Wj,t, and how much papers were not sold. This means that the

actual sales, denoted by, Sj,t, can be calculated which of course is related to the demand

(Dj,t) as

Sj,t =

Dj,t if Dj,t < Wj,t

Wj,t if Dj,t ≥ Wj,t.

(3.27)

As mentioned above, the demand per outlet tends to be relatively small so that a count

model is necessary. We specify a Poisson distribution for Dj,t such that the sales are

distributed as a censored Poisson with exogenous censoringWj,t. The log Poisson rate for

store j at time t is given by log λj,t and is assumed to follow a Gaussian linear dynamic

model. This dynamic model may also specify a dependence structure among the log

Poisson rates of outlets.

Given the demand model, the costs of supplying newspapers, the price of a newspa-

per, and the opportunity costs of stock-out it is relatively straightforward to work out the

supply that maximizes the expected profit for each outlet.

3.6.1 Data

We analyze a data set containing sales data on a major newspaper in the Netherlands,

spanning a time period of over two years. During (part of) this time 9000 different outlets

were active selling this newspaper. Most stores sold between 0 and 10 newspapers daily,

with a few larger stores selling an average of up to 50 newspapers daily. At a typical store,

a stock-out occured between 15% and 20% of the time, more frequently for the smaller

outlets than for the larger ones.

In addition to the sales of the newspapers, the data set contains a list of all promotions

and discounts that occured throughout the time period. Also, a list was compiled with all

special news events that led the publisher to increase the supply of newspapers. Finally,

the location of each outlet is available, together with a variable indicating whether this

location was seasonal or not. An example of a seasonal location would be the beach.
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3.6.2 Model

For the purpose of forecasting the newspaper demand we construct a dynamic model with

latent Gaussian variables and a non-Gaussian dependent variable. The most important

characteristics of the distribution of the newspaper sales are that the sales numbers are

discrete and that they are regularly censored from above, i.e. when the newspaper is sold

out. To capture these characteristics we model the newspaper sales with a censored Pois-

son distribution, that is,

Sj,t ∼ Cens. Pois(λj,t,Wj,t), (3.28)

where the sales at store j and time t are censored from above by the supply of newspapers

Wj,t. In order to determine the optimal supply of newspapers, we need to forecast the

demand, or the potential sales, which we denote by Dj,t. The relationship between sales

and demand was given in (3.27), which implies the following model for the demand:

Dj,t ∼ Pois(λj,t). (3.29)

The sales data show persistent shifts over time for the different outlets in our sample, sug-

gesting a dynamic process for the Poisson-rate of the demand λj,t. In addition, the sales

data are positively correlated across stores: on some days the outlets sell many news-

papers on average, for example due to some event in the news, and on other days they

sell very little, for example because it is a very rainy day with few people passing by

the stores. The different stores also share seasonal effects, e.g. they sell more in summer

than in winter and more on Saturday than on Wednesday. These shared effects seem to

influence sales proportionally rather than additively, with larger stores selling more addi-

tional newspapers on Saturday than smaller stores. In order to capture these correlation

patterns, we model the log Poisson rate log λj,t with a dynamic additive factor model.

Multiple specifications were examined, but all models have the following stylized form:

log λj,t = aj,t + bt +
6∑
i=1

I[t = day of week i]cij,t +
n∑
i=1

I[t ∈ Di]dit +

p∑
i=1

I[(t, j) ∈ E i]eit.

(3.30)

We distinguish five different kinds of factors in the above model:
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1. A single factor aj,t for each separate store that applies on all days in the sample.

This factor captures effects such as the shop-size and the trend in the mean sales

level for a particular store.

2. A single factor bt applying to all stores in the sample. This variable captures the

global trend in newspaper sales over stores. We found that this factor seems to

gradually trend down over time, most likely reflecting the loss of newspaper sales

due to online alternatives.

3. Store-specific weekly seasonality factors cij,t for each day of the week. These factors

allow us to model how the sales pattern for a given store departs from the weekly

seasonality of other stores. For example, most stores sell more newspapers on Sat-

urday than on Monday, but this is not true for all stores in the sample. The factors

cij,t are specified to be dynamic in order to capture the fact that the weekly sales

pattern of a store sometimes shift over time.

4. Time specific global factors dit that apply to all stores, but often only on given days

(as indicated by the indicator function I[t ∈ Di]). This type of factor is used to

model the effects of major news events, country-wide promotions, and possible

country-wide unobserved effects. In addition, these factors capture the seasonality

patterns that are common to all stores: for example, almost all stores sell more

newspapers in summer than in winter.

5. Dynamic factors eit that apply to more than one store, but not all (as indicated by

I[(t, j) ∈ E i]). For example, a given factor may only apply to stores at specific

seasonal locations, such as beach, since such stores obviously share some of the

same seasonal effects. Another example is a factor that applies to all outlets in a

particular city, which may sell more as a result of a specific local news event such

as the local football club winning a match.

The individual factors in (aj,t, bt, cij,t, d
i
t, e

i
t) are generally modeled using a random

walk

f ij,t ∼ N(f ij,t−1, σ
2
i ), (3.31)
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where f ij,t denotes one of the individual factors. More general autoregressive specifica-

tions such as those described in Section 3.2 are also possible in our framework, but for

our particular application we found that all persistent effects seem to be modeled well by

a simple one-dimensional random walk. An exception are a small number of factors that

describe unique one-time events as identified by the publisher. Such factors are modeled

as a single independent normal random variables f i ∼ N(mi, vi). The parameters of the

distribution of such one-time factors are elicited from the publisher, while the parameters

of all dynamic factors are estimated from the data.

The initial values of the dynamic factors are modeled as

f ij,0 ∼ N(µi, ηi) (3.32)

By using such an ’informed’ initialization of the Kalman filter, rather than a diffuse ini-

tialization, we are able to shrink all store-specific variables to common values. Doing so

allows us to more quickly provide reasonable forecasts for new stores that are opened.

Since these initial distributions generally apply to multiple factors (e.g. multiple shops)

we can estimate their parameters from the data.

Using this standardized model specification allowed us to write very general computer

code which we used to test many different combinations of factors. Our most succesful

model specifications contained 10-20 different factors. The most important factors turned

out to be related to the size of the newspaper outlet, seasonalities (both yearly and weekly),

and breaking news events.

3.6.3 Inference

The model specified above describes the evolution of a state vector with dimensionality

in the tens of thousands, which is challenging for any inference algorithm. The observa-

tion equation (3.28) is non-Gaussian which means that the model is intractible for exact

likelihood based methods. The conditional distribution of the persistent elements of the

state vector displays strong correlation over time, which makes Monte Carlo inference

very difficult. Efficient simulation smoothers exist, but these can not easily be applied in

this problem, because the likelihood is non-Gaussian and because the state variables are
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also correlated between shops.

The EM-EP algorithm proposed here is able to very quickly provide a good approxi-

mation to the conditional distribution of the state vector using the EP step. This approxi-

mation can then be used to estimate the mean and variance parameters of the model using

the EM step. However, the correlation between shops, induced by their shared factors,

also gives computational problems for our algorithm. The full covariance matrix is too

large to be used in an exact step of the Kalman filter. However, our algorithm is still able to

provide a good approximation to the conditional distribution by deleting these covariance

elements from the covariance matrix before each step of the Kalman filter and smoother.

The shared factors have a support of thousands of shops and are thus quite well deter-

mined from the data compared to the shop-specific factors. This means that the deleted

covariance elements are very small and can safely be ignored. The resulting algorithm

has a runtime in the order of hours, which is fast enough to be used for practical purposes.

For additional speed we can take the approximation one step further and also delete the

other (shop-specific) off-diagonal elements of the covariance matrix before each step of

the Kalman filter. Our experiments indicate that this does not hurt the predictive ability of

the model very much, while further decreasing the computation time to the order of min-

utes. The final result is an algorithm that allows us to quickly make good forecasts using

an advanced high dimensional non-Gaussian dynamic factor model that is imposible to

estimate using conventional methods.

3.6.4 Results

The EM-EP algorithm allows us to quickly and efficiently apply the model presented

above. Besides quasi maximum likelihood estimates of the parameters, the algorithm

also provides smoothed and filtered estimates of the latent factors. These latent factor

estimates allow us to visualize the developments for a shop over time and to forecast

future newspaper demand.

Figure 3.3 shows the development of the smoothed λjt for a typical store. Apparent

are the periodic fluctuations that are due to the weekly seasonality: Like most stores this

particular store sells most of its newspapers on Saturday. In addition, the smoothed λjt
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Figure 3.3: Posterior mean and 95% posterior confidence region for the log rate of the newspaper demand
at a particular store

show a gradual downward trend in the number of sales for this store. This trend is shown

more clearly in Figure 3.4 which shows the development of the base level of sales for this

store.

Figures 3.3 and 3.4 show that the uncertainty in the newspaper demand for this store

is quite large. This observation is typical for the newspaper outlets in our dataset: most

outlets in the sample have only been selling the newspaper for a short period of time, and

the observations are not very informative since the number of newspapers sold is often

quite low (0-3) and censored from above.

By comparing Figures 3.3 and 3.4 we see that the uncertainty in the log rate for the

newspaper demand is largely due to the uncertainty in the ’shop size’ factor for this store.

The outlets in the sample show frequent persistent shifts in the demand for newspapers at

the individual stores, which is why our EM-EP estimate of the variance parameter for this

factor is large. On the other hand, the weekly seasonality in sales seems much more stable,

and is also largely equal across stores, which is why this factor is much more certain.

Using the filtered forecast distribution for the λjt, we can calculate predictive distribu-

tions for the demand Dj,t at each store. By taking into account the number of newspapers

Wj,t that are provided to each store, we can also predict the number of newspaper sold.

The predicted sales have a correlation of 0.78 with the true sales. This correlation is
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Figure 3.4: Posterior mean and 95% posterior confidence region for the ’shop size’ factor of the store

higher than that for the predictive model that the publisher was using, and indicates that

the model has good predictive power. The predictions were approximately unbiased.

Given the predictive distribution for the demand Dj,t, the optimal number of newspa-

pers to deliver (Wj,t) can be determined by maximizing the expected profit. We assume

that profits are linear in both the number of newspapers that are delivered and the number

that are sold. The profit function becomes

π(Dj,t,Wj,t) = αmin(Dj,t,Wj,t)− βDj,t, (3.33)

where α captures both the direct profit from selling a newspaper as well as the expected

long term profit from potentially acquiring a new customer, β consists of the costs made

in printing and delivering the newspaper. Both parameters were elicited in discussions

with the newspaper publisher and by looking at the preferences implied by their current

distribution decisions. The indirect part of the profit in α is substantial. The newspaper

publisher had precise figures for the β parameter.

Given the linear profit function and the log-normal predictive distribution for λjt, the

expected profit will be a unimodal concave function of Wj,t that is easily optimized. Fig-

ure 3.5 shows the expected profit curve together with the predictive distribution for Dj,t.
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We used this optimization procedure to generate out-of-sample delivery decisions Wj,t.

The results show that the proposed model and estimation technique could increase the

publisher’s profits by 10-15 % in comparison with their current predictive system. The

increase in profit comes primarily from delivering fewer newspapers to those stores that

are unlikely to sell all of them.

0 5 10 15
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

P
re

di
ct

ed
 P

ro
ba

bi
lit

y

Number of newspapers
0 5 10 15

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

E
xp

ec
te

d 
P

ro
fit

Figure 3.5: Expected profit as a function of delivered newspapers

3.7 Forecasting chess matches

In this section we apply our EM-EP methodology to a model to predict outcomes of chess

matches. Herbrich et al. (2007) introduce a dynamic latent Gaussian model for assigning

ratings to players in the Xbox Live game Halo 2. Dangauthier et al. (2008) apply this

model to the problem of rating chess players. Their model assumes that the outcome of a

game of chess is determined by the skills of the players which can be described by a single

number. They infer these skills using factored approximate Bayesian inference using

Expectation Propagation as discussed in Section 3.3. However, they do not mention how

to infer the parameters of their model. Here we propose to use approximate Expectation

Maximization to infer these parameters.
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3.7.1 Data: the Deloitte/FIDE chess rating challenge

From February 7 to May 4, 2011 the Deloitte/FIDE chess rating challenge was held at

Kaggle.com1, a platform for hosting statistical prediction competitions. The Deloitte/FIDE

chess rating challenge was a prediction contest sponsored by services company Deloitte

Australia and by the world chess federation FIDE. The aim of the contest was to develop

a statistical system to forecast the results of chess matches. The training data for this

competition contains over 2 million matches played by over 50 thousand players over a

period of 132 months. The objective was to use this data to forecast the results of 100,000

matches that were played in the three months following this period.

The competition attracted 189 teams from all over the world. The competition was

won by the first author, using a combination of techniques including the EM-EP method

discussed in this chapter. Below we present the basic model underlying the winning entry.

The model is largely based on the TrueSkill model of Herbrich et al. (2007). Details on

the exact forecasting approach that was used can be found on the homepage of the first

author.

3.7.2 Model

Let us index observed chess matches by i, with i ∈ [1, . . . , n] and n the number of

matches, index time with t ∈ [1, . . . , T ] and T the number of months in the sample,

and index players by j with j ∈ [1, . . . , k] and k the number of players. We will then

describe player j’s skill by a single number sj,t. This skill is assigned a Gaussian prior

and is assumed to evolve according to a random walk.

sj,1 ∼ N(0, σ2
s)

sj,t+1 = sj,t + νj,t, νj,t ∼ N(0, σ2
ν) (3.34)

For a given match i, let wi denote the index of the player playing white, let bi denote the

index of the player playing black, and let ti denote the time at which this match is played.

1http://www.kaggle.com/c/ChessRatings2
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The outcome of match i (mi) is then modeled as follows

di = swi,ti − sbi,ti + γ + εi, εi ∼ N(0, σ2
ε ),

mi =


player wi wins if di > 1

player bi wins if di ≤ −1

players wi and bi draw if − 1 < di ≤ 1

,
(3.35)

where di can be seen as the performance difference between players wi and bi in this

match, γ is the advantage of playing white, and εi is an error term.

After observing a set of match results m, a factored approximate posterior distribution

for the skills s, the skill innovations ν, and the errors ε can be obtained using Expectation

Propagation (see Dangauthier et al. (2008) for details). This factored approximate poste-

rior corresponds to deleting the off diagonal elements in the Kalman covariance matrix as

explained in Section 3.3.2. The first and second moments of this approximate posterior

can then be used to infer the advantage of playing white (γ), the prior skill variance σ2
s ,

the variance of the skill innovations σ2
ν and the variance of the noise term σ2

ε by approx-

imate Expectation Maximization as described in Section 3.3. The maximization updates

are given as follows

γnew = γold +
1

n

n∑
i=1

E(εi|m)

σ2
ε,new =

1

n

n∑
i=1

E(ε2i |m)− E(εi|m)2

σ2
s,new =

1

k

k∑
j=1

E(s2
j,1|m)

σ2
ν,new =

1

kT

T∑
t=1

k∑
j=1

E(ν2
j,t|m).

(3.36)

3.7.3 Results

The EM-EP algorithm allowed us to estimate the model parameters in minutes, while ex-

act maximum likelihood estimation is intractable because of the lack of conjugacy and

because of the very high dimension of the state space (over 50,000 players per time pe-
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riod). The predictive performance of the model is state-of-the-art as evidenced by our

victory in the Deloitte/FIDE chess rating challenge. As an example of the obtained infer-

ence we present the development of the latent skill of a randomly selected chess player in

Figure 3.6. The figure shows large changes in the inferred skill of this player in months 4

and 9. These events correspond to unexpected wins or draws by this player in matches in

these months.
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Figure 3.6: Filtered expectation and 95% confidence region for the skill of an anonymous chess player

3.8 Conclusion

State-space models have proven to be very useful in many situations. Standard techniques

are available for the fully Gaussian case. These techniques even perform well when the

state space is very large. However, these methods break down when the dependent vari-

able does not have a conditional Gaussian distribution. In this chapter we consider exactly

this case: large non-Gaussian dynamic models.

Our estimation procedure combines the well-known Expectation Maximization [EM]

algorithm with the Expectation Propagation [EP] approach. In the non-Gaussian case, the

Expectation step of the EM algorithm is usually not tractable. The EP approach allows

us to efficiently obtain a good approximation of the needed conditional expectation. We
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show that combination of the two methods, labeled as EM-EP, gives a very flexible and

useful estimation methodology for non Gaussian dynamic models.

Although the EM-EP method relies on approximations, and therefore should be seen

as a quasi Maximum Likelihood procedure, we have shown using simulations that the

method is approximately unbiased and the resulting (asymptotic) standard errors are use-

ful.

Finally, our method also shows to be useful in practice. We have applied the method-

ology to two problems. In the first, we model the time series of sales of newspapers across

9,000 outlets. The combination of the model and the estimation method result in a po-

tential profit increase of about 10 to 15% for the publisher. In the second application, we

model the results of chess matches player by 50 thousand players. In this case the model

and the EM-EP methodology proved to deliver outstanding predictive performance.

We believe that the EM-EP method is a promising estimation method for a wide va-

riety of large scale, non-Gaussian dynamic models. We hope that our discussion in this

chapter and the examples lead others to apply and further improve this methodology.





Chapter 4

Variable selection and functional form

uncertainty in cross-country growth

regressions

4.1 Introduction

Many economic studies aim to determine the driving factors of economic growth. Follow-

ing the seminal work of Kormendi and Meguire (1985) and Barro (1991), an important

tool in this endeavor has been the cross-country growth regression, i.e. the use of re-

gression analysis to determine what variables are correlated with economic growth in a

cross-section of countries. The literature has identified two major problems with this tech-

nique. The first is that there is only a limited number of countries and a potentially very

large number of variables to explain economic growth. The decision of which variables

to include in the regression therefore has a strong influence on the conclusions that are

drawn from the analysis. Since this decision is often guided by nothing but the whim of

the researcher, there is no guarantee that these conclusions are not the product of data

mining and selective presentation of data (see Leamer (1983) and Geweke (2005, sections

8.4 and 8.5)).

The second objection raised against cross-country growth regression is that most stud-

ies unreasonably restrict attention to the set of linear regression models. The linear re-
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gression model complies with the classical Solow model (see Mankiw et al., 1992) which

specifies that log output is an additive linear function of technology, capital and labor.

However, a range of new growth models, collectively known as new growth theory, pose

the existence of multiple steady states in economic growth (see Aghion et al., 1999;

Azariadis and Drazen, 1990; Durlauf, 1993). Although these models typically specify

the growth path of each country to be linear in its variables, the slopes of the growth path

depend on which steady state the country is in. Since the steady state of a country depends

on its initial conditions, such as its level of economic development and human capital, the

process determining economic growth in these models is nonlinear in the regressors. In

addition to new growth theory, some versions of neoclassical growth theories also give rise

to parameter heterogeneity (Binder and Pesaran, 1999; Barro and Sala-i-Martin, 2003).

Both issues have received much discussion in the literature, however only rarely in

the same paper. Yet, a joint treatment of these two sources of model uncertainty is abso-

lutely essential: Variable selection methods do not necessarily select the same variables

under different model specifications, and evidence of nonlinearity may not hold up under

different variable selections. To examine these issues, this chapter presents an integrated

analysis of variable selection and functional form specification in cross-country growth

regressions. We perform this joint treatment by extending the linear growth regression

model to explicitly allow for parameter heterogeneity as suggested by new growth theory,

while simultaneously addressing the variable selection problem by performing Bayesian

model averaging. Estimating the new models on the data sets of Sala-i-Martin et al. (2004)

and Fernandez et al. (2001b) provides evidence of multiple-regime parameter heterogene-

ity of the type predicted by new growth theory and empirically documented by Durlauf

and Johnson (1995) and Liu and Stengos (1999). In addition, we find that many of the

explanatory variables indicated by the literature do not have robust marginal effects across

countries when allowing for a more flexible model specification, contradicting the results

of Minier (2007). Our results offer some new insights into the form of the parameter het-

erogeneity in the growth data and we discuss its connection to phenomena like the natural

resources curse.

The outline of the remainder of this chapter is as follows. Section 4.2 provides a short

review of the existing literature on growth regression. The statistical methodology of the
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chapter is explained in Section 4.3, where we introduce a new set of models that allows

for multiple-regime nonlinearity. In Sections 4.4 and 4.5 we present the estimation results

for these models and compare them with the linear model specification. Finally, Section

4.6 concludes.

4.2 Robustness in growth regressions

The large body of literature on cross-country growth regression started with the work of

Kormendi and Meguire (1985), Grier and Tullock (1989) and Barro (1991). Since then

the literature has identified a large number of variables correlated with economic growth.

However, these variables were not discovered by the analysis of an ever greater amount

of data, but rather by the specification of an ever greater amount of different models,

casting doubt onto the statistical validity of these findings. Attention to this problem was

first raised by the influential paper of Levine and Renelt (1992), who investigated the

robustness of earlier findings to different model specifications by employing a variant of

the extreme bounds analysis of Leamer (1983). This analysis proceeds by estimating the

coefficient of a regressor in many different linear regression models, each controlling for

a different subset of regressors, and analyzing the different results. If the regressor of

interest is found to be significantly different from zero in each regression, with the same

sign, the influence of the regressor is called robust. Otherwise it is called fragile. Levine

and Renelt (1992) (henceforth LR) found that many of the relationships uncovered in

earlier work on growth were in fact fragile.

The paper by LR was followed by many responses from the growth community. Al-

though widely appreciated for bringing attention to the explosion of different model spec-

ifications in the growth literature, its methodology received criticism from several authors.

An influential response was the one by Sala-i-Martin (1997), who argued that the extreme

bounds approach was overly stringent. An important property of the approach is that a

negative result from a single model specification can potentially negate the positive results

from a much larger number of models, even if those other models fit the data much bet-

ter. Sala-i-Martin argued that this property, combined with the large number of different

model specifications, was almost guaranteed to produce the negative results reported by
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LR. As an alternative method of providing robust inference, he proposed to instead look

at the average result of the regressions, with each model receiving a weight proportional

to its data likelihood. His follow-up paper (Sala-i-Martin et al., 2004) further developed

this approach by deriving a new weighting method based on Bayesian model averaging

using a large sample approximation for the model weights. Another contribution using the

concept of model averaging is Fernandez et al. (2001b) who presented a formal Bayesian

analysis without such an approximation.

A second criticism the LR study received is that it unreasonably restricted attention

to the set of linear models, while new growth theory predicts a nonlinear relationship be-

tween growth and the explanatory variables. This criticism was backed up by empirical

evidence provided by Durlauf and Johnson (1995), among many others, who documented

the existence of multiple-regime parameter heterogeneity. By performing a tree regres-

sion, they allocated the countries in their data set to multiple regimes based on initial con-

ditions related to the levels of economic development and human capital of the country.

Liu and Stengos (1999) confirmed these results by estimating a classical semi-parametric

model on the LR dataset, modeling the same kind of multiple-regime nonlinearity. They

found that their nonlinear model improved upon the linear specification. Additional evi-

dence in support of heterogeneity was found by Paap et al. (2005) and Basturk et al. (2012)

who modeled economic growth using mixtures of linear regression models. While these

studies took into account the uncertainty in the functional form of the growth equation,

they considered only small fixed sets of explanatory variables, ignoring the uncertainty in

the variable selection process.

To the author’s knowledge, Minier (2007) and Cuaresma and Doppelhofer (2007) are

the only attempts to date at combining both sources of uncertainty in an analysis of cross-

country growth data. Minier (2007) investigated the influence of nonlinearities in the frag-

ile variables of LR by repeating their analysis, but subsequently introducing quadratic and

interaction terms into the specification as well as allowing for different growth regimes by

splitting the sample according to initial conditions. By doing so, several more variables

relating to fiscal policy appeared robust in her specification compared to the original LR

analysis. However, in determining the robustness of the variables she only looked at the

parameters of the linear terms, ignoring the coefficients of the higher order regressors.
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This ignores the fact that, through the quadratic and interaction terms, the ’robust’ regres-

sors may very well have marginal effects with different signs in different specifications,

which makes her conclusions difficult to compare with the original LR results.

Cuaresma and Doppelhofer (2007) extended the approach of Sala-i-Martin et al. (2004)

to allow for threshold effects in the model specification. Similar to the analyis of Durlauf

and Johnson (1995), they effectively split the sample based on explanatory variables, but

instead of defining the splitting thresholds a priori they estimated them together with the

regression coefficients. Using this approach, they performed Bayesian model averaging

over the subset of variables found to be robustly correlated with growth by Sala-i-Martin

et al. (2004). Contrary to the results of Durlauf and Johnson (1995), Liu and Stengos

(1999) and others they did not find much evidence for nonlinearity. It is worth investigat-

ing whether this is due to their particular model specification or their (limited) considera-

tion of variable selection uncertainty. In addition, a further investigation into the influence

of possible nonlinearities on the variable selection problem is needed.

For a different application, Hoeting et al. (2002) proposed dealing with the functional

form uncertainty by expanding the model space to include a number of different transfor-

mations of the explanatory variables. The variable selection problem can then be solved

by performing Bayesian model averaging in this larger model space. This is a simple and

elegant solution, but Hoeting et al. (2002) do not consider interaction terms between the

variables. In principle, allowing for such interactions is possible using their framework,

but this would lead to an impractically large model space for our current application.

4.3 Statistical Methodology

Following the tradition of the growth literature, as exemplified by Barro (1991), Levine

and Renelt (1992), Sala-i-Martin et al. (2004) and many others, we will consider linear

regression models of the form

yi = α + βi,1xi,1 + βi,2xi,2 + ...+ βi,pxi,p + εi, εi ∼ NID(0, σ2), (4.1)
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where yi is the i-th country’s long term growth rate, with i ranging from 1 to n, {xi,1, ..., xi,p}

is a collection of p explanatory variables, α is an intercept, {βi,1, ..., βi,p} is a collection

of (possibly country-specific) regression coefficients and εi is an error term. Most re-

cent work on growth regressions has focused on the selection of explanatory variables to

include in this model (Fernandez et al., 2001b; Sala-i-Martin et al., 2004) or on the spec-

ification of country-specific parameters (Kalaitzidakis et al., 2000; Minier, 2007; Paap

et al., 2005; Basturk et al., 2012; Maasoumi et al., 2007). A rigorous regression analy-

sis of cross-country growth data should simultaneously take into account both of these

sources of uncertainty, which is the main contribution of the present work. Note that we

do maintain the assumption of homoskedasticity made in these earlier studies in order to

allow for comparison and to single out the influence of model uncertainty on the inference.

Relaxing this assumption would be a logical next step as discussed in section 4.6.

Bayesian analysis is ideally suited for an analysis of model uncertainty as it offers a

systematic method of quantifying this uncertainty that is not offered by classical statis-

tics. Indeed, the majority of the literature dealing with these issues in growth regressions

builds on the Bayesian framework (e.g. Levine and Renelt (1992), Sala-i-Martin (1997),

Fernandez et al. (2001b), Sala-i-Martin et al. (2004), Minier (2007) and many others) as

does this work.

4.3.1 Variable selection

The first problem to be addressed is the selection of explanatory variables to include in

the model. If our data set contains k potential explanatory variables, we have 2k different

possible subsets of regressors to include in our model. We denote the variable selection by

s, a k×1 binary vector, with sj = 1 if the j-th explanatory variable is included in the model

and sj = 0 if it is not. All 2k possible variable selections usually represent reasonable

models for economic growth and we cannot be sure a priori which subset of variables we

should use. We therefore proceed by assigning a prior distribution P(s) to the variable

selection indicator vector s. Given the data y = (y1, ..., yn)′, we can then obtain posterior

variable selection probabilities P(s|y) by applying Bayes’ rule. Our final conclusions

about economic growth can then be obtained by averaging over all variable selections and
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weighing each possible selection by its posterior probability. This procedure is known

as Bayesian model averaging (see Mitchell and Beauchamp, 1988; Raftery et al., 1997)

and was also used by Sala-i-Martin (1997), Fernandez et al. (2001b) and Sala-i-Martin

et al. (2004) to study economic growth. Following these earlier studies, we define our

prior over models by assigning each potential explanatory variable an independent prior

inclusion probability of θ. This gives the following prior distribution for the variable

selection vector s:

P(s|θ) =
k∏
j=1

θsj(1− θ)1−sj . (4.2)

As can be seen from (4.2), the prior probability of a particular variable selection only

depends on its number of included regressors ps =
∑k

j=1 sj . Assigning independent prior

inclusion probabilities leads to a binomial prior on ps:

P(ps|θ) =

(
k

ps

)
θps(1− θ)k−ps , for ps = 1, . . . , k. (4.3)

Common choices for θ are 1/2, as used by Fernandez et al. (2001b), or 7/k as used by

Sala-i-Martin et al. (2004). It is not obvious a priori what a good value for θ should be

and the analysis can be quite sensitive to this value. Ley and Steel (2009) show that a more

robust choice is to specify a Beta-hyperprior on θ. If the hyperprior on θ is Beta(a, b), this

corresponds to a Binomial-Beta distribution on the model size ps:

P(ps) =
Γ(a+ b)

Γ(a)Γ(b)Γ(a+ b+ k)

(
k

ps

)
Γ(a+ps)Γ(b+k−ps), for ps = 1, . . . , k. (4.4)

If our prior on θ is uninformative (i.e. a and b are low), the analysis of Ley and Steel

(2009) suggests that the results of the model averaging should be relatively insensitive

to the exact choice of a and b, which we can confirm for our application. We choose to

express our prior ignorance about θ by choosing a = b = 1 which gives uniform prior

distributions on θ and ps. The resulting prior on s is then given by

P(s) =

∫
P(s|θ)p(θ)dθ =

1

k + 1

(
k

ps

)−1

. (4.5)
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The prior probability of a variable selection is now inversely proportional to the number

of models with the same number of variables. This prior corresponds to the Bayesian

multiplicity adjustment proposed by Scott and Berger (2010).

4.3.2 Prior specification for the regression parameters

The uncertainty due to the unknown β parameters can also be quantified in terms of a

prior distribution. Except for the empty model sj = 0 ∀j, all models contain more pa-

rameters than we have observations (see equation (4.1)). The specification of this prior

distribution will thus have an important effect on our analysis. The earlier studies by Sala-

i-Martin (1997), Fernandez et al. (2001b) and Sala-i-Martin et al. (2004) all assume that

the β parameters are the same across countries. Subject to this constraint, they use the

popular conjugate g-prior introduced by Zellner (1986) to complete the specification. The

advantage of this prior is its analytical tractability and its invariance to the scale of the

regressors. Stacking the {βi,1, ..., βi,ps} parameters into a vector βi, this prior is given by

βi|s, σ2 ∼ N [0, σ2(gX ′sXs)
−1]. (4.6)

where Xs is the n × ps matrix of explanatory variables included in the model and g is a

parameter to be set by the researcher. Note that βi only denotes the coefficients for the re-

gressors that are included in the model. The coefficients that are not included in the model

have a prior unit point mass at zero. Sala-i-Martin et al. (2004) set g = 1/n and then take

an approximation based on the sample size n becoming large. Alternatively, Fernandez

et al. (2001b) set the g parameter to 1/k2, where k is the number of candidate regressors.

They choose this constant because they find it generally leads to good estimation results,

as they show in Fernandez et al. (2001a). We choose g = 1/n to facilitate comparison

with Sala-i-Martin et al. (2004) and because this choice has the intuitively attractive prop-

erty of keeping the scale of the prior variance constant when the sample size changes.

The choice g = 1/n corresponds closely to the unit information prior proposed by Kass

and Wasserman (1995): the information content of the prior is approximately equal to the

information contained in one observation. Another possibility would be to also specify a

hyperprior for g, as was done by Liang et al. (2008) among others. We have chosen to



4.3 Statistical Methodology 79

avoid this extra layer of complexity here.

The assumption that all countries have the same parameters is consistent with the

Solow model, as discussed in the introduction, but not with new growth theory and some

versions of neoclassical growth theory. According to new growth theory, countries end

up in different growth regimes when they are subject to different initial conditions. These

different regimes create nonlinearities in the growth data, as documented by Durlauf and

Johnson (1995), Liu and Stengos (1999), Kalaitzidakis et al. (2000), Minier (2007) and

others. A prior specification that puts 100% probability on the parameters being equal

across countries seems unreasonably dogmatic as it completely rules out such nonlinear-

ities a priori. Here we present one way of allowing for heterogeneity in the parameters.

To facilitate comparison we start out by adopting (4.6) as the marginal prior distribution

for the country specific parameters βi = (βi,1, ..., βi,ps)
′ as in the earlier studies. However,

instead of making the classical assumption that the parameters are equal across countries,

we follow new growth theory in allowing them to vary according to initial conditions.

This is the intuition behind the work of Durlauf and Johnson (1995) and Minier (2007),

who split the sample according to initial output and human capital and find evidence of

parameter heterogeneity between the different groups. A problem with this approach is

that it is not clear a priori at what level the sample should be split or how many of these

splits should be made. This makes it hard to do derive statistical conclusions from such a

procedure, as discussed by Durlauf and Johnson (1995). Instead, we formalize the intu-

ition of new growth theory by introducing prior covariances between the country-specific

parameter vectors

Cov(βi, βj|s, σ2) = ρi,jσ
2(gX ′sXs)

−1, (4.7)

where βi and βj are the vectors of regressor coefficients for countries i and j, and ρi,j is

the prior correlation between the parameters for these two countries. In other words, we

specify a joint multivariate normal prior for all β parameters:

β = (β′1, . . . , β
′
n)′ ∼ N(0, B0),

with B0 = ρ⊗ σ2(gX ′sXs)
−1, (4.8)

where ρ is the n × n matrix of all cross-country correlations ρi,j . New growth theory
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suggests that countries with similar initial conditions are likely to have similar parameters.

We formalize this idea by making ρi,j dependent on a distance measure di,j that captures

how dissimilar the initial conditions of countries i and j are:

ρi,j = exp(−γd2
i,j), (4.9)

where γ is an unknown nonnegative parameter that determines the degree of nonlinearity

in the model. This exponential specification makes sure that all cross-country correlations

ρi,j lie between 0 and 1, with higher correlations for similar countries (low di,j) than for

dissimilar countries (high di,j). For the remainder of this chapter we will assume that

di,j is the Euclidean distance between the vectors of initial conditions for country i and

country j:

di,j = ||ci − cj||, (4.10)

although other distance measures are certainly also possible. Rasmussen and Williams

(2006) offers some guidance on choosing distance measures which will guarantee a positive-

definite correlation matrix.

The vectors of initial conditions ci and cj in equation (4.10) should contain those vari-

ables that determine the growth regime of a country. Of these initial conditions, output

and human capital are believed to be the most important (e.g. Durlauf and Johnson, 1995;

Liu and Stengos, 1999; Minier, 2007). In Section 4.5 we therefore explore different spec-

ifications with ci and cj containing representations of these conditions.

It may seem strange that we do not also allow the intercept α to vary across countries.

However, since the data described in Section 4.3.5 only contain a single data point for each

country, the noise term εi can be interpreted as containing a country-dependent intercept:

εi = ai + ηi, ai ∼ NID(0, ξ), ηi ∼ NID(0, σ2 − ξ), (4.11)

where ai can be seen as the intercept and ηi as the error. We could also introduce a

prior correlation between the country-dependent intercepts ai to express the prior idea

that countries with similar initial output and human capital will have similar levels of

growth, but this would be redundant as we have already expressed this by letting these
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variables enter the model linearly in equation (4.1).

The prior cross-country correlations ρi,j are determined by the γ parameter through

equation (4.9). This parameter is somewhat difficult to interpret directly, but it has a

simple one-to-one relationship with the median of the correlations ρi,j:

ρ̄ = median(ρi,j) = exp(−γd̄2), (4.12)

where d̄ is the median of the distances di,j in equation (4.9). If the median prior correlation

ρ̄ is set to one, then γ is equal to zero, all βi parameters are assumed to be equal and our

model reduces to the linear model specification of Fernandez et al. (2001b) and Sala-i-

Martin et al. (2004). If on the other hand ρ̄ approaches zero, γ grows infinite and the

regression coefficients of the different countries approach complete independence. We

would like to infer the right amount of dependence from the data and we therefore assume

a uniform prior on ρ̄, which implies an exponential prior on γ:

ρ̄ ∼ U(0, 1] ⇔ p(γ) = d̄2 exp(−d̄2γ), for γ ∈ [0,∞). (4.13)

Note that the support for ρ̄ is (0, 1], since ρ̄ is strictly positive (but arbitrarily small) for

finite γ, but that it is exactly equal to one for γ = 0. Similarly, the support for γ is [0,∞),

which is to be contrasted with some textbooks that exclude 0 from the support of the

exponential distribution.

Finally, we finish the prior specification by adopting standard non-informative priors

for the remaining parameters α and σ2 as is often suggested in the literature on Bayesian

model averaging (e.g. Fernandez et al., 2001a):

p(σ2) ∝ 1/σ2

p(α) ∝ 1. (4.14)

Conditional on s and γ, the posterior distributions and proportional marginal data likeli-

hood can now be obtained analytically, details of which can be found in Appendix 4.A.1.

The posterior distribution for σ2 is inverted Gamma and that for β is multivariate Student’s
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t:

σ2|y, s, γ ∼ IG(ν/2, τ/2), ν = n− 1, τ = y′Dy

β|y, s, γ ∼ tnps(ν, µ, S), µ = CDy, S =
τ

ν
(B0 − CDC ′), (4.15)

where n is the number of observations in y, and C is proportional to the prior covariance

between β and y, characterized byCi+pm,j = ρm+1,j[(gX
′
sXs)

−1
i,1x

s
j,1+· · ·+(gX ′sXs)

−1
i,px

s
j,p]

for integers i ≤ p,m < n, j ≤ n, with xsj,p the element (j, p) of Xs. B0 is the prior co-

variance of matrix β as defined in (4.8), and finally D is defined as

D = (K + I)−1 − (K + I)−1ιι′(K + I)−1

ι′(K + I)−1ι
, (4.16)

with ι an n× 1 vector of ones, and K an n× n matrix defined in equation (4.19).

These posterior distributions are conditional on the variable selection s, and the coef-

ficients of the variables that were not included have a posterior unit point mass at zero.

The posterior distributions of σ2 and β averaged over s and γ can be obtained by MCMC

as described in Section 4.3.4.

The proportional marginal likelihood for given (s, γ) is given by

p(y|s, γ) ∝ 1√
ι′(K + I)−1ι

|K + I |−1/2(y′Dy)−(n−1)/2. (4.17)

This expression only gives us a proportionality as p(y|s, γ) is not normalizable because

of our improper priors on α and σ2 in (4.14). Because these parameters are shared by

all models indexed by s, expression (4.17) can nevertheless be used to derive weights for

Bayesian model averaging and to construct Bayes factors comparing different values of

γ.

4.3.3 Gaussian process priors

Thus far we have assumed a parametric model for economic growth and we have specified

prior distributions for the parameters of that model. Another way of looking at this spec-

ification is by looking at the implied prior on the regression function itself. In equation
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(4.1) we decomposed the growth rates into an explainable part and an error term:

yi = fi + εi, with fi = α + βi,1x
s
i,1 + βi,2x

s
i,2 + ...+ βi,psx

s
i,ps , (4.18)

where fi can be interpreted as the latent regression function evaluated at xsi , the i-th

row of the selected explanatory variables Xs. Stacking the fi into an n × 1 vector

f = (f1, f2, . . . , fn)′ and integrating out the β parameters with respect to their prior,

we find that our specification implies the following prior on the regression function:

f |s, α, γ, σ2 ∼ N(αι, σ2K)

Ki,j = K(xsi , x
s
j) = ρi,jx

s
i (gX

′
sXs)

−1xs′j, (4.19)

where ι is an n × 1 vector of ones. Because we have specified a linear model combined

with a Gaussian prior on its regression coefficients, the implied prior on the regression

function is Gaussian as well. This prior is characterized by its mean α and its covariance

function or kernel K(xsi , x
s
j). Note that this covariance function can be evaluated at any

two values of x, not just those that occurred in our finite sample. The covariance function

thus encodes our prior distribution on the entire regression function, not just on its values

for the countries in the sample. Such a distribution over functions is called a stochastic

process, and a stochastic process of which any finite dimensional distribution is a (mul-

tivariate) Gaussian is called a Gaussian process. For this reason, priors of the type used

here are often called Gaussian process priors.

The covariance function K(xsi , x
s
j) captures our prior ideas about the smoothness

properties of the regression function. By adjusting the covariance function we can al-

locate prior probability to many different kinds of nonlinearity, while inference remains

analytically tractable due to the Gaussian nature of the prior. In fact, several well known

methods of nonlinear regression such as smoothing splines and neural networks may be

seen as special cases of Gaussian process priors (see e.g. Rasmussen and Williams, 2006;

MacKay, 1998).

The most well known special case of a Gaussian process prior is of course the stan-

dard linear regression model with a normal prior on the regression coefficients. If the
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prior covariance matrix of the regression coefficients in such a model is given by C, the

covariance kernel on the regression function is the linear covariance kernel:

Klin(x
s
i , x

s
j) = xsiCx

s′
j. (4.20)

The linear or ’dot product’ kernel has the defining property that it only allocates prior

probability to linear regression functions, which means that the posterior of the regres-

sion function will always be linear. The most popular kernel for performing nonlinear

regression using Gaussian process priors is the squared exponential covariance kernel

Ksq.exp.(x
s
i , x

s
j) = exp(−λ||xsi − xsj||2), (4.21)

where λ is a parameter that controls the smoothness of the regression function.

Many more useful types of covariance functions have been proposed in the literature.

A review of the most popular ones can be found in Rasmussen and Williams (2006, Ch.

4). In practice, almost any function can be used as a covariance kernel, with the only

restriction that the function has to be positive semi-definite, i.e. that it produces positive

semi-definite covariance matrices. Interestingly, this means that the sum of two covari-

ance kernels is always a valid covariance kernel, as is their product. In fact, the covariance

function used in our analysis (4.19) is the product of a linear kernel Klin(x
s
i , x

s
j) with se-

lected regressors xs and a squared exponential kernelKsq.exp.(ci, cj) with initial conditions

c. By adapting the covariance function (4.19), the approach presented here can easily be

modified to allow for many different kinds of nonlinearity. Note that the marginal like-

lihood in equation (4.17) is already expressed in terms of the kernel matrix K, so it can

easily be used to do Bayesian model averaging with general Gaussian process priors. A

starting point in specifying alternative covariance functions may be the method of Koop

and Poirier (2004), who explicitly discuss the specification of variants of commonly used

classical semi-parametric methods in this form.
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4.3.4 Posterior inference

Conditional on γ and the selection of variables s to include in the regression, the marginal

data likelihood (4.17) and the parameter posterior distributions (4.15) can be calculated

analytically. However, considering all possible subsets of explanatory variables, the full

model space now contains 267 ≈ 1.5∗1020 different models for the SDM data with k = 67,

which makes it impossible to explicitly average over all candidate models. Fortunately, the

work by Fernandez et al. (2001b) and Sala-i-Martin et al. (2004) suggests that the posterior

probability mass is typically concentrated in a relatively small fraction of these models,

making it feasible to simulate from the posterior distribution over models. To accomplish

this, we use the MC3 methodology of Madigan and York (1995), which is a Metropolis-

Hastings algorithm on the model space. The MC3 algorithm uses a uniform proposal

distribution on the model space containing the current model and all models obtained by

adding or removing a regressor. By using the stochastic Metropolis-Hastings acceptance

criterion, the algorithm is ensured to have the posterior distribution over models as its

stationary distribution. After each MC3 step, we draw a new proposal value for γ from its

prior in an independence chain Metropolis-Hastings step.

4.3.5 Data

We estimate the new nonlinear models on the data sets of Fernandez et al. (2001b) (FLS)

and Sala-i-Martin et al. (2004) (SDM). Both data sets contain growth data on a cross

section of countries, along with a number of explanatory variables. The FLS data set

contains 72 countries and 41 explanatory variables, while the SDM data consist of 88

countries and 67 explanatory variables. All explanatory variables in these data sets were

measured at the beginning of the sample period (1960) in order to avoid endogeneity

problems, with the exception of the variables related to war, inflation and the openness

of the economy. The economic growth rates for the countries in these data sets were

computed over the period 1960-1992 (FLS) and 1960-1996 (SDM) respectively. The

data sets contain countries in different stages of development and with a wide geographic

dispersion. The explanatory variables cover a wide range of different factors, including

data on economic development, social issues, health, geography, politics, education and
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more. The FLS and SDM data sets contain a number of the same countries and do not

represent independent data. However, by examining both data sets we can assess the

sensitivity of our findings in Section 4.4 to the size of the data set and to data revisions

(see Ciccone and Jarocinski, 2010). For further discussion of the data as well as a list of

sources we refer the reader to Fernandez et al. (2001b) and Sala-i-Martin et al. (2004).

4.4 Model selection and parameter heterogeneity

In Section 4.3 we specified a nonlinear model capable of capturing the parameter hetero-

geneity caused by differences in the initial conditions for the countries in our sample. Of

these initial conditions, output and human capital are believed to be the most important

(e.g. Durlauf and Johnson, 1995; Liu and Stengos, 1999; Minier, 2007). In the SDM and

FLS data sets initial output is captured by the log of the GDP per capita for each country.

Both data sets contain 3 different variables that represent the human capital of a country:

the primary schooling enrollment rate, the higher education enrollment rate and the public

education expenditure as a fraction of GDP. We estimate several different specifications of

the model from Section 4.3 that include different subsets of these variables in the vector

of initial conditions c. Before inclusion, each of these variables is standardized to have

unit variance to remove any effects of scaling, as is common practice in the application of

Gaussian process priors (Rasmussen and Williams, 2006).

For each specification of the initial conditions, eleven million draws were generated

from the posterior distribution over models and over γ, of which the first million were

discarded as burn-in. The remaining draws contained around half a million unique mod-

els, depending on the specification of the initial conditions. This number was roughly

the same for the SDM and FLS data: although the SDM data contain more explanatory

variables they also contain more observations which leads to a higher concentration of

posterior model probability. By numerically integrating out γ from the likelihood for

these specifications we can compare the exact proportional posterior probabilities of these

models to the number of times they were sampled (see Ley and Steel, 2009). The cor-

relation between these measures is extremely close to one, indicating convergence of the

sampling procedure. In addition, the trace plots for γ, ρ̄, the model size, and the different
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variable inclusion indicators support this conclusion.

For each specification of the initial conditions c, we perform a formal test of the non-

linear model specification (that is γ > 0) against the linear model (γ = 0) by constructing

a Bayes Factor:

BF =
p(y|nonlinear model)
p(y|linear model)

=
p(y)

p(y|γ = 0)
=

p(γ = 0)

p(γ = 0|y)
, (4.22)

where the last ratio is known as the Savage-Dickey density ratio (Dickey, 1971; Verdinelli

and Wasserman, 1995). The numerator in this ratio is known a priori from (4.13) and is

equal to d̄2. The posterior density in the denominator p(γ = 0|y) has to be estimated

by Monte Carlo methods. Since there is a one-to-one relationship between γ and ρ̄,

the Savage-Dickey density ratio can equivalently be stated as p(ρ̄ = 1)/p(ρ̄ = 1|y) =

1/p(ρ̄ = 1|y), the inverse of the posterior density at ρ̄ = 1.

Calculation of the Bayes Factor above thus comes down to evaluating the posterior

density p(γ = 0|y), or p(ρ̄ = 1|y). These densities can be calculated accurately using the

method of Chib and Jeliazkov (2001), which uses an additional MCMC run with γ fixed to

0. By using this method, we can avoid the difficulties that occur when using kernel density

estimation to determine a probability density on the boundary of its support. Details of

our use of this method can be found in Appendix 4.A.2. We use this method to compute

Bayes factors for each nonlinear specification against the linear model, for both the SDM

and FLS data sets. The results are presented in Table 4.1. Note that all Bayes factors are

computed against the same linear model, which means that the results can also be used to

compare the different nonlinear specifications against each other: if model 1 has a Bayes

factor of 2.4 against the linear model and model 2 has a Bayes factor of 1.2, the Bayes

factor of model 1 against model 2 is equal to 2.4/1.2 = 2. The Bayes factors in Table 4.1

can thus also be interpreted as the relative evidence in favor of each different specification

of the initial conditions.
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Initial conditions Relative evidence Relative evidence
on SDM data on FLS data

GDP 43 4.5
primary schooling 24 52
GDP & primary schooling 44 34
GDP & higher education 42 1.8
GDP & education expenditure 1.1 0.70

Table 4.1: Bayes Factors nonlinear models vs linear model

Although there are some differences in the results for the two data sets, we can con-

clude that the model with the most support from the data is the nonlinear model with GDP

and primary schooling as initial conditions. The nonlinear models with only GDP, only

primary schooling, and GDP & higher education as initial conditions also do better than

the linear model. The nonlinear model with GDP & education expenditure receives about

the same support from the data as the linear model specification. A reason for this result

may be that education expenditure is not a good predictor of education outcomes.

Overall, the Bayes factors in Table 4.1 provide evidence in support of parameter het-

erogeneity. This result is consistent with the conclusions of Durlauf and Johnson (1995)

and Liu and Stengos (1999) who have documented this type of nonlinearity before.

One might suspect that the nonlinear models have an unfair advantage in this com-

parison since they always include an (indirect) influence of the variables selected for the

initial conditions, while the linear models do not. However, restricting the linear models

to always include these variables does not substantially increase their posterior probabil-

ity. In addition, we find that the posterior distribution for γ is quite insensitive to changes

in the prior distribution over models. The evidence in favor of nonlinearity presented in

Table 4.1 is robust to many different settings of g and of the hyperprior on θ. We do find

that the magnitude of the Bayes factors diminishes somewhat for very small values of g.

For example, choosing g = 1/k2 (as per Fernandez et al., 2001b) with GDP and primary

schooling as initial conditions gives us a Bayes factor of 3 on the SDM data, rather than

the 44 reported in Table 4.1. However, by constructing Bayes factors comparing different

values of g, we find that such small values of g receive very little support from the data.
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4.5 Posterior results

Since the nonlinear model with GDP and primary education as initial conditions is most

supported by the data, we now characterize the posterior distribution under this specifica-

tion. To avoid redundancy we only consider the SDM data. The corresponding posterior

distributions for the median cross-country correlation ρ̄ and for the model size are dis-

played in Figures 4.1 and 4.2. A summary of the posterior of the regression coefficients is

given in Table 4.2. The posterior distribution of some regression coefficients is discussed

more deeply in Section 4.5.2.

Figure 4.1: Posterior distribution ρ̄ Figure 4.2: Posterior distribution model size

The posterior distribution of the median correlation ρ̄, displayed in Figure 4.1, shows

that the data support a median cross-country correlation of around 0.5 for the SDM data.

The posterior density is low for both very small values of ρ̄ as well as very large values,

indicating that the regression coefficients are most likely not independent, but also not

equal across countries.

The posterior correlation between ρ̄ and the model size is -0.12, which is due to the

fact that those draws with ρ̄ very close to one have a somewhat smaller model size than

the other draws. Using the methodology of George and McCulloch (1997) we find that

10 million draws is enough to cover about 60% of the posterior model probability. More

importantly, the posterior statistics remain stable as we increase the number of draws,

which indicates that the Monte Carlo sample is large enough.
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4.5.1 Posterior summary of regression coefficients

The posterior distribution of the regression coefficients β is a mixture of multivariate

Student’s t densities, depending on the sampled γ and variable selections, and can be ob-

tained analytically from equation (4.15). The characteristics of this posterior distribution

are summarized in Table 4.2. The first column of the table lists the posterior inclusion

probability of each variable, i.e. the sum of the posterior probabilities of all models in-

cluding that variable. Conditional on the inclusion of each regressor, the table lists the

posterior expectation and posterior standard deviation of the average parameter for that

regressor, computed by averaging over all countries. This gives us a sense of the average

directional effect of each explanatory variable and facilitates comparison with the earlier

studies. Using the terminology of the preceding literature, a regressor can be considered

robust if the bulk of the posterior mass of its average parameter lies either above or be-

low zero. In order to determine this, the posterior confidence for the sign of the average

parameter of each regressor is reported, which Sala-i-Martin et al. (2004) called the ’sign

certainty probability’. Also reported is the expected fraction of countries with a parameter

of this sign, which can be computed by summing the probabilities of each country having

a parameter of the reported sign, and dividing by the number of countries. The individual

probabilities in this sum can be obtained from the marginals of the posterior distribution

given in (4.15). Finally, the table contains the number of countries that have at least a 90%

posterior probability of having a parameter of this sign, which is obtained similarly.

The reported regressors are ordered according to posterior inclusion probability. The

variables that were found to be ’significant’ by Sala-i-Martin et al. (2004) are printed in

bold face to facilitate comparison. They consider a variable significant if its posterior

inclusion probability is above 7/k, the prior inclusion probability in their specification.

In their results, most of these variables also have a sign certainty probability above 0.975

and are thus considered ’robust’. Our prior inclusion probability is random, but a similar

distinction can be made between the variables with above average posterior inclusion

probability and those with below average posterior inclusion probability. In Table 4.2

these two groups of variables are separated by a horizontal line. All variable names used

match those in Sala-i-Martin et al. (2004). Further description of these variables as well
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as their source can be found in Table 1 of their paper.

Table 4.2: Parameter estimates regressors

Posterior mean Posterior E fraction Number of countries

Posterior avg. parameter stnd. dev. Sign of countries with > 90% prob

inclusion conditional on average certainty with parameter of having a param.

Variable probability inclusion parameter probability of this sign of this sign

Investment Price 0.911 -9.11e-5 4.90e-5 0.975 0.774 34

East Asian Dummy 0.814 0.0120 0.0078 0.943 0.757 16

Fertility in 1960s 0.749 -0.0060 0.0146 0.635 0.565 10

Life Expectancy in 1960 0.649 0.0007 0.0004 0.962 0.755 30

Political Rights 0.644 -0.0009 0.0014 0.739 0.564 11

Fraction of

Tropical Area
0.570 -0.0093 0.0059 0.942 0.714 14

GDP in 1960 (log) 0.545 -0.0076 0.0052 0.930 0.701 26

Malaria

Prevalence in 1960s
0.449 -0.0046 0.0079 0.712 0.609 8

Fraction Population

Less than 15
0.412 0.1154 0.0651 0.964 0.708 20

Higher Education 1960 0.333 -0.1333 0.0606 0.991 0.768 33

Openness

measure 1965-74
0.333 -0.0003 0.0055 0.522 0.493 5

Public Investment Share 0.332 -0.0003 0.0477 0.510 0.514 17

Primary

Schooling in 1960
0.257 0.0341 0.0126 0.998 0.774 41

Fraction GDP in Mining 0.237 0.0322 0.0291 0.865 0.692 6

Terms of Trade

Growth in 1960s
0.221 0.0330 0.0501 0.749 0.597 4

Spanish Colony 0.220 -0.0060 0.0068 0.815 0.662 0

Ethnolinguistic

Fractionalization
0.212 -0.0067 0.0064 0.857 0.648 3

Fraction Confucian 0.208 -0.0034 0.0348 0.533 0.500 0

Socialist Dummy 0.197 -10.35e-5 0.0076 0.496 0.464 0

Air Distance

to Big Cities
0.197 7.28e-8 9.11e-7 0.538 0.474 0

Latin American Dummy 0.194 -0.0051 0.0087 0.751 0.635 0

Fraction Spent

in War 1960-90
0.177 -0.0056 0.0098 0.720 0.538 12

Fraction

Population Over 65
0.161 -0.1522 0.1543 0.847 0.567 20

Years Open 1950-94 0.154 0.0028 0.0078 0.634 0.554 0

British Colony Dummy 0.147 0.0024 0.0038 0.731 0.605 4

Population Density

Coastal in 1960s
0.142 2.19e-7 4.63e-6 0.521 0.533 7

African Dummy 0.141 -0.0088 0.0083 0.854 0.685 13

Fraction Muslim 0.140 0.0057 0.0071 0.794 0.628 7

Population Density 1960 0.131 8.54e-6 1.18e-5 0.768 0.637 5
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Table 4.2: Parameter estimates continued

Posterior mean Posterior E fraction Number of countries

Posterior avg. parameter stnd. dev. Sign of countries with > 90% prob

inclusion conditional on average certainty with parameter of having a param.

Variable probability inclusion parameter probability of this sign of this sign

Real Exchange

Rate Distortions
0.128 -6.96e-5 5.18e-5 0.839 0.659 4

Fraction Buddhist 0.125 0.0069 0.0132 0.710 0.593 18

Fraction Speaking

Foreign Language
0.125 0.0058 0.0051 0.879 0.690 6

Fraction Protestants 0.116 -0.0159 0.0120 0.926 0.725 23

European Dummy 0.110 -0.0169 0.0152 0.883 0.659 8

Public Education Spending

Share in GDP in 1960s
0.107 0.2405 0.2102 0.872 0.599 22

Civil Liberties 0.104 -0.0108 0.0082 0.912 0.689 14

Fraction Catholic 0.102 -0.0082 0.0090 0.816 0.647 9

Land Area 0.099 -7.96e-10 1.18e-9 0.691 0.549 0

Gov. Consumption

Share 1960s
0.089 -0.0035 0.0472 0.554 0.521 0

Fraction Population

In Tropics
0.085 -0.0045 0.0081 0.706 0.589 0

Nominal Government

GDP Share 1960s
0.084 -0.0453 0.0327 0.920 0.714 9

Fraction of Land Area

Near Navigable Water
0.075 -0.0049 0.0067 0.773 0.612 0

Tropical Climate Zone 0.073 -0.0038 0.0080 0.684 0.582 0

Government Share

of GDP in 1960s
0.073 -0.0012 0.0494 0.511 0.508 0

Absolute Latitude 0.073 -4.68e-5 0.0003 0.534 0.502 0

Interior Density 0.068 -3.82e-5 2.52e-5 0.807 0.638 21

Capitalism 0.062 -3.56e-5 0.0014 0.519 0.514 0

Size of Economy 0.062 7.67e-5 0.0016 0.521 0.513 0

Oil Producing

Country Dummy
0.060 -0.0012 0.0093 0.558 0.545 0

Population Growth

Rate 1960-90
0.059 0.1366 0.3676 0.651 0.553 0

War Particpation

1960-90
0.055 0.0010 0.0029 0.635 0.554 0

Terms of Trade Ranking 0.055 -0.0117 0.0153 0.764 0.625 0

Timing of Independence 0.052 -0.0003 0.0020 0.553 0.510 0

Population in 1960 0.051 -3.8e-9 4.47e-8 0.522 0.496 0

Primary Exports 1970 0.049 -0.0037 0.0086 0.669 0.596 0

Fraction Othodox 0.049 -0.0046 0.0200 0.600 0.545 0

Average

Inflation 1960-90
0.045 6.73e-5 0.0001 0.690 0.584 0

Fraction Hindus 0.041 -0.0046 0.0184 0.592 0.525 0
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Table 4.2: Parameter estimates continued

Posterior mean Posterior E fraction Number of countries

Posterior avg. parameter stnd. dev. Sign of countries with > 90% prob

inclusion conditional on average certainty with parameter of having a param.

Variable probability inclusion parameter probability of this sign of this sign

Square of

Inflation 1960-90
0.041 2.17e-7 2.10e-6 0.597 0.534 0

English Speaking

Population
0.039 -0.0075 0.0126 0.729 0.601 0

Hydrocarbon

Deposits in 1993
0.039 0.0003 0.0004 0.784 0.622 9

Religion Measure 0.039 0.0007 0.0079 0.543 0.523 0

Defense Spending Share 0.037 0.0022 0.0927 0.490 0.488 0

Revolutions and Coups 0.035 -0.0054 0.0071 0.781 0.632 0

Colony Dummy 0.032 0.0011 0.0065 0.558 0.531 0

Outward Orientation 0.032 9.34e-5 0.0028 0.515 0.504 0

Landlocked

Country Dummy
0.022 -0.0071 0.0050 0.931 0.685 19

The results of our model averaging confirm the general conclusion of Fernandez et al.

(2001b) and Sala-i-Martin et al. (2004), indicating the importance of a number of the same

variables. Most of these variables also have average parameter estimates of the same

sign as those in the earlier studies. However, we also find some important differences.

The most striking difference is that in the earlier studies there was a very strong positive

correlation between inclusion probability and sign certainty. For example, in the analysis

of Sala-i-Martin et al. (2004) the twenty variables with the highest inclusion probability

are also the twenty variables with the highest sign certainty. In our analysis this is very

different: a number of variables have a high inclusion probability despite having low sign

certainty and several variables with high sign certainty have a low posterior inclusion

probability. On average, the sign certainty in our analysis is decreased compared to the

results of SDM and FLS. This difference is a direct result of allowing the coefficients

of the variables to differ over countries. In the linear model specification only those

variables that have a similar effect across countries are likely to be included, while in

our specification also variables with heterogeneous effects can have predictive power.

In addition to a reduced sign certainty for the average parameters, the two last columns

of the table show that the parameter estimates for each country individually are much less
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certain than under the linear model specification and that the expected signs of the param-

eters may differ strongly over countries. This means that many of the variables found to be

robust in earlier studies do not have robust marginal effects across countries and variable

selections under our model specification. Although this is to be expected when allowing

the variables to be country-dependent, it contradicts the findings of Minier (2007) who

finds that allowing for nonlinearity makes the parameter estimates more robust. However,

as already discussed in Section 4.2, those results are based on only the linear components

of the model and not on the full marginal relationships which makes comparison difficult.

The variable with the highest posterior inclusion probability in our analysis is the in-

vestment price. The importance of this variable was also apparent in the earlier studies

of Fernandez et al. (2001b) and Sala-i-Martin et al. (2004). This variable is also one of

the few with a high sign certainty: a high price for investment goods depresses economic

growth. The dummy for East Asian countries also has a high posterior inclusion proba-

bility and sign certainty. The influence of this dummy variable reflects the high rate of

economic growth in this region during the sample period. This dummy variable has a high

correlation with the fraction of the population that is Confucian, which also belongs to the

significant variables of Fernandez et al. (2001b) and Sala-i-Martin et al. (2004). In their

linear specifications this variable has a positive parameter with high sign certainty, while

the posterior mean of its average parameter is negative in our analysis (with low sign cer-

tainty). This can be explained by the extremely high posterior inclusion probability of the

East Asian dummy in our analysis: the majority of models with the Confucian variable

also include the East Asian variable. In the analysis of Sala-i-Martin et al. (2004) the

inclusion probability for the latter is a little lower (0.82) and it is not part of the explana-

tory variables considered by Fernandez et al. (2001b). When we look at the subset of our

models that exclude the East Asian dummy, we recover the positive posterior mean found

in these earlier studies. When both variables are included, the Confucian variable seems

to enter with a negative sign. These two variables are good examples of the importance of

geographic location to economic growth, as are the variables for the fraction of tropical

area, the Spanish Colony dummy, the air distance to big cities and the Latin American

dummy. Also consistent with the earlier studies are the findings that education (primary

schooling, higher education), investment (investment price, public investment share) and
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health (life expectancy, Malaria prevalence) are important to economic growth.

4.5.2 Parameter posterior means

Since the parameters in our specification are allowed to vary with GDP and primary

schooling, the posterior means of the parameters are functions of these initial conditions.

These posterior mean functions are summarized in Table 4.2, but this summary does not

fully describe the heterogeneity present in the posterior mean functions of the parameters.

To offer a more detailed look at this heterogeneity, this section shows and discusses the

full posterior mean functions of selected regression coefficients, conditional on inclusion

of the regressor. The variance around these posterior mean functions is reasonably high

in most cases, so the comments below are mostly illustrative.

Figure 4.3: GDP in 1960 Figure 4.4: Investment Price

The first posterior mean function shown is that for the initial log GDP per capita.

Figure 4.3 shows that the marginal effect of initial GDP on growth is largely negative, but

that as initial GDP rises the marginal effect rises with it. This shows that the nonlinearity

in this variable, found in several earlier studies, does not come only from its interaction

with the other variables but also through its direct relationship with economic growth.

This is consistent with the results of Liu and Stengos (1999) who find that initial GDP

has an additive nonlinear effect on growth. The negative sign of the posterior mean of

this coefficient provides evidence for the conditional convergence hypothesis. All else

being equal, poor countries grow more rapidly than rich countries, and the marginal ef-

fect of initial GDP grows larger as initial income moves down. This suggests that very
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poor countries catch up rapidly, ceteris paribus, and that this effect slows down as they

get richer. However, as Quah (1993) points out, this does not necessarily imply that the

income distribution over countries will eventually collapse into a single point. The neg-

ative effect of initial GDP on growth may also be explained by a model where the cross

sectional income distribution is fixed, but the individual countries experience reversion to

the mean around their long term growth rates.

The price of investment goods is the variable with the highest posterior inclusion prob-

ability in our analysis, with a negative posterior mean coefficient for all countries and a

high sign certainty for the average effect over countries. Despite the uniformity in the

sign of the posterior mean, Figure 4.4 still suggests strong parameter heterogeneity for

this variable. In particular, the marginal benefit of a decrease in investment price seems to

be much greater if a country has good primary schooling. This finding is consistent with

several earlier studies on the effect of foreign direct investment on growth (Borensztein

et al., 1998; Bengoa and Sanchez-Robles, 2003) that find that foreign direct investment

only boosts a country’s long term growth if a sufficient level of human capital is present.

Apparently, this human capital is needed to fully take advantage of an increase in physical

capital and technology.

Figure 4.5: Air distance to big cities Figure 4.6: Openness measure 1965-74

The air distance to big cities variable measures the minimal log distance of a country

to either New York, Rotterdam or Tokyo. The idea behind the construction of this variable

is that a smaller distance to these cities is a proxy for better access to the American,

European and Japanese markets. Earlier studies (e.g. Moreno and Trehan, 1997) find that
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being close to a big market promotes economic growth through trade and technological

spillovers. Figure 4.5 suggests that this effect is only beneficial for the richer half of the

countries in our sample.

The same pattern can be seen for the Openness measure 1965-74, which represents

the ratio of exports plus imports to GDP, averaged over 1965 to 1974. The posterior mean

coefficient of this variable is increasing in both initial GDP and primary schooling, as can

be seen in Figure 4.6. These findings are consistent with those of Yanikkaya (2003) who

finds that having a closed economy with trade barriers might well be better for developing

countries. They are also consistent with theoretical work that indicates that economic

integration may be detrimental for certain individual countries, even if it is beneficial on

average (see Grossman and Helpman, 1991; Rivera-Batiz and Xie, 1993). However, we

cannot discount the possibility that this variable is also correlated with some unobserved

aspect of a country’s institutions. For this reason we should be careful in interpreting the

estimated relationship as causal.

Figure 4.7: Fraction GDP in mining Figure 4.8: Oil producing country dummy

The fraction of GDP in mining is an important variable with high posterior inclu-

sion probability in our analysis, as well as in the analysis of Sala-i-Martin et al. (2004).

The SDM data set contains a few countries with high mining activity and high economic

growth. The most notable example is Botswana, a country in Southern Africa that derives

over half of its GDP from the mining of diamonds. Another example is Chile, one of

the richest countries in Latin America, that also derives a large part of its income from

mining. However, many other countries with high mining activity have experienced very
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low growth. This phenomenon is known as the ’natural resources curse’ (see Sachs and

Warner, 2001) and can be explained by the rent-seeking behavior of countries with large

endowments of natural resources. Figure 4.7 suggests that this contradiction may be ex-

plained by parameter heterogeneity. While the posterior mean of this parameter is positive

for some countries, it is negative for others. Countries with high primary schooling en-

rollment rates seem to be less affected by the natural resources curse than countries with

low enrollment rates. This result seems plausible as poor schooling is often cited as one

of the mediating factors of the natural resources curse (e.g. Papyrakis and Gerlagh, 2004;

Wood and Berge, 1997). The same pattern of parameter heterogeneity can be seen in

Figure 4.8 for the oil producing country dummy, where the countries with high primary

schooling enrollment rates also grew faster than those with low enrollment rates. It is

important to note that this pattern is not apparent if we use higher education in the initial

conditions instead of primary schooling, however this may be because there are simply no

countries in the sample with high mining activity or oil production and high enrollment

rates for higher education. The heterogeneity in the effect of natural resources is a striking

example of nonlinearity in economic growth and deserves further research.

4.6 Conclusion

A rigorous regression analysis of cross-country economic growth data should jointly take

into account the model uncertainty present in the variable selection problem as well in the

functional form specification. Although both sources of model uncertainty have separately

received much attention in the literature, joint treatments are unfortunately very rare. This

chapter presents such an integrated analysis.

We address the model uncertainty relating to the functional form of the regression

function by introducing a new flexible growth regression model based on a Gaussian pro-

cess prior. The new model explicitly allows for parameter heterogeneity as suggested by

new growth theory, while nesting the linear model specification as a special case. We

solve the variable selection problem by performing Bayesian model averaging with the

new model using different sets of explanatory variables. As argued earlier by Fernandez

et al. (2001b) and Sala-i-Martin et al. (2004), this approach provides a theoretically sound
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and practical way of considering a large class of different variable selections.

A formal model comparison provides evidence supporting the existence of parameter

heterogeneity, consistent with the conclusions of Durlauf and Johnson (1995) and Liu and

Stengos (1999) who have documented this type of nonlinearity before. The results do not

support the conclusions of Minier (2007) who finds that allowing for nonlinearity makes

the parameter estimates more robust to the variable selection. In addition, our results show

that many of the explanatory variables do not have robust partial correlations to growth

across countries.

The proposed method enables us to perform Bayesian model averaging over general

Gaussian process priors, and can easily be adapted to allow for many different kinds of

nonlinearity in the functional form of the regression function. By changing the covariance

kernel used in the analysis, we can allocate prior probability to different forms of non-

linearity. Rasmussen and Williams (2006) provide an overview of the most commonly

used covariance functions in the Gaussian process literature. Another starting point is the

work of Koop and Poirier (2004), who explain how to specify variants of commonly used

classical semi-parametric methods in a form compatible with the framework presented

here. Exploring these different specifications is a promising direction for future research.

In particular, it would be worthwhile to compare different types of nonlinear covariance

functions to see which particular new growth theories are supported by the data and which

are not.

Another possible extension of this work would be to allow for heteroskedasticity in the

regression models. The assumption of homoskedasticity was made here to allow compar-

ison with the earlier studies (Fernandez et al., 2001b; Sala-i-Martin et al., 2004; Minier,

2007) and because there is no strong evidence that the considered data are heteroskedas-

tic. However, relaxing this assumption would be a logical next step. A possible starting

point for an extension in this direction is the work of Giordani et al. (2009) who present a

regression model allowing for both nonlinearity and heteroskedasticity.
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4.A Appendix

4.A.1 Marginal likelihood and posterior distributions

The specification presented in section 4.3 is similar to the standard conjugate Bayesian

specification for linear regression models, but with some subtle differences. For com-

pleteness we therefore present the derivations of the marginal likelihood and posterior

distributions for this specification here. We derive all results in terms of the kernel matrix

K defined in section 4.3.3 so that these results can easily be used to do Bayesian model av-

eraging with general Gaussian process priors, simply by changing the covariance function

of the prior.

Our starting point is the (improper) full joint distribution of the data and all model

parameters, conditional on the distance parameter γ and the variable selection s:

p(y, α, β, σ2|s, γ) = p(y|α, β, σ2, s)p(α)p(β|σ2, s, γ)p(σ2). (4.23)

Using the decomposition on the right-hand side, we can easily integrate out β from this

expression in the same way we integrated out these parameters in section 4.3.3. Doing so

yields

p(y, α, σ2|s, γ) = p(y|α, σ2, s, γ)p(α)p(σ2)

∝ |Σ|−1/2 exp[−0.5(y − αι)′Σ−1(y − αι)]× 1× 1

σ2
, (4.24)

where ι is an n× 1 vector of ones and Σ = σ2(K + I) is the covariance matrix of y, with

the kernel matrix K as defined in equation (4.19).

The next step is to decompose the above expression into a univariate normal density

function in α, multiplied by a function that does not depend on α:

p(y, α, σ2|s, γ) ∝
√
ι′Σ−1ι exp

(
−1

2
ι′Σ−1ι

[
α− ι′Σ−1y

ι′Σ−1ι

]2
)

× 1√
(ι′Σ−1ι)|Σ|

exp

(
−1

2
y′
(

Σ−1 − Σ−1ιι′Σ−1

ι′Σ−1ι

)
y

)
× 1× 1

σ2

∝ p(α|y, σ2, s, γ)p(y, σ2|s, γ). (4.25)
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The first term in this decomposition gives us the posterior distribution of α, conditional

on σ2:

p(α|y, σ2, s, γ) = N

(
ι′Σ−1y

ι′Σ−1ι
,

1

ι′Σ−1ι

)
= N

(
ι′(K + I)−1y

ι′(K + I)−1ι
,

σ2

ι′(K + I)−1ι

)
. (4.26)

Since the first term in (4.25) is a proper density function, α can now easily be integrated

out by simply dropping this term from the expression. Doing this, and now explicitly

writing Σ = σ2(K + I), we are left with

p(y, σ2|s, γ) ∝
(

1

σ2

)1+(n−1)/2
1√

(ι′(K + I)−1ι)|K + I |

× exp

(
− 1

2σ2
y′
[
(K + I)−1 − (K + I)−1ιι′(K + I)−1

ι′(K + I)−1ι

]
y

)
.(4.27)

This expression can be recognized as the kernel of an inverse Gamma probability density

function in σ2, giving it the following posterior distribution:

σ2|y, s, γ ∼ IG(ν/2, τ/2), ν = n− 1, τ = y′(K + I)−1y − (y′(K + I)−1ι)2

ι′(K + I)−1ι
. (4.28)

The normalizing constant of (4.27) gives us the proportional marginal likelihood:

p(y|s, γ) ∝ τ−ν√
(ι′(K + I)−1ι)|K + I |

. (4.29)

Note that these expressions only depend on the kernel matrix K. The analysis presented

here can thus very easily be used to do Bayesian model averaging with general Gaussian

process priors, simply by changing the covariance function.

For the purpose of deriving the posterior distribution for β = (β′1, . . . , β
′
n)′, first define

Zs =


xs1 0

xs2
. . .

0 xsn

 , (4.30)

with xsi the i-th row ofXs, and recall the normal prior distribution p(β|σ2, s, γ) = N(0, σ2B0)
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specified in section 4.3. The full conditional distribution of β then follows from standard

results (see Greenberg, 2008, pp. 45):

p(β|y, α, σ2, s, γ) = N(β̄1, σ
2B1)

B1 = (Z ′sZs +B0)−1

β̄1 = B1Z
′
s(y − αι) (4.31)

The conditional posterior mean of β depends linearly on α, which means that we can

easily integrate α out with respect to its posterior distribution given in equation (4.26):

p(β|y, σ2, s, γ) =

∫
p(β|y, α, σ2, s, γ)p(α|y, σ2, s, γ)dα

= N(β̄2, σ
2B2)

β̄2 = B1Z
′
s

(
y − ι′(K + I)−1y

ι′(K + I)−1ι
ι

)
B2 = B1 +

B1Z
′
sιι
′ZsB1

ι′(K + I)−1ι
(4.32)

The expression above is hard to work with directly as it is defined in terms of B1 which

is the inverse of a matrix of dimension nps × nps. However, we can simplify things by

making use of the Woodbury matrix identity (Woodbury, 1950) to perform this inversion,

and then realizing that ZsB0Z
′
s = K. This gives us

β̄2 = CDy, B2 = B0 − CDC ′, (4.33)

with

D = (K + I)−1 − (K + I)−1ιι′(K + I)−1

ι′(K + I)−1ι
, (4.34)

and where C is proportional to the prior covariance between β and y, characterized by

Ci+pm,j = ρm+1,j[(gX
′
sXs)

−1
i,1x

s
j,1+· · ·+(gX ′sXs)

−1
i,px

s
j,p] for integers i ≤ p,m < n, j ≤ n.

Finally, we can integrate out the variance parameter σ2 from p(β|y, σ2, s, γ) with re-

spect to its posterior distribution (4.28) to give a multivariate Student’s t posterior distri-
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bution for β:

p(β|y, s, γ) =

∫
p(β|y, σ2, s, γ)p(σ2|y, s, γ)dσ2

= tnps(ν, β̄2,
τ

ν
B2) (4.35)

4.A.2 Bayes factor calculation

In Section 4.4 we formally compare the proposed model with the linear model by means

of a Bayes factor. Since the new model is equivalent to the linear model when we set its

γ parameter equal to zero, this Bayes factor is given as follows:

BF =
p(y)

p(y|γ = 0)
=

p(γ = 0)

p(γ = 0|y)
. (4.36)

This equality is known as the Savage-Dickey density ratio (Dickey, 1971; Verdinelli and

Wasserman, 1995). Here, the numerator is equal to d̄2, as given by equation (4.13).

Calculation of the Bayes factor thus comes down to determining the posterior density

p(γ = 0|y). Since 0 is on the boundary of the support of γ, and since the posterior den-

sity at this point is very low, this density cannot be estimated accurately using standard

kernel density estimation. In order to do determine this density accurately, we use the

methodology of Chib and Jeliazkov (2001). The central equality used in this method is

p(γ∗|y) =
E1 α(γ, γ∗|y, s)q(γ, γ∗)

E2 α(γ∗, γ|y, s)
, (4.37)

where y denotes the data, s the selection of explanatory variables, q(γ, γ∗) is the probabil-

ity density of proposing a move from γ to γ∗ in the Metropolis-Hastings algorithm, and

α(γ, γ∗|y, s) is the conditional probability of accepting such a proposal. The first expec-

tation E1 is taken with respect to the posterior distribution p(γ, s|y) and can be evaluated

using the samples from the main MCMC run. The second expectation E2 is taken with

respect to the distribution p(s|y, γ∗)q(γ∗, γ), which is evaluated by running an additional

MCMC chain, keeping γ fixed to γ∗. In our case, this second chain is run conditional on

γ = 0, which eliminates any problems caused by having a low posterior density at this

point.
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An alternative and conceptually simpler method of obtaining the Bayes factor is to

perform inference in a mixture containing the linear model and the nonlinear model, and

to allow the Markov chain to mix between the two. (see for example Carlin and Chib,

1995; Green, 1995) Since the linear model is obtained for γ = 0, this is equivalent to

using the following prior on γ:

p(γ) = wδ(0) + (1− w)d̄2 exp(−d̄2γ), for γ ∈ [0,∞), (4.38)

where δ(0) is a unit point mass at γ = 0 and w and 1 − w are the mixture weights. The

Bayes factor can then be determined by running MCMC as described in Section 4.3 and

counting the number of times that the linear model (γ = 0) is selected (and correcting

for the mixture weights). This method is less efficient than the method based on Chib and

Jeliazkov (2001) and requires tuning: the w parameter in the mixture weights has to be set

to a suitably high value to make sure that the linear models are visited often enough. In

turn, the proposal density for γ then has to be tuned since sampling from the prior (as in

Section 4.3) would lead to many rejected proposals for γ = 0. After the necessary tuning

we were able to use this method to confirm that the results presented in Section 4.4 are

correct.

Finally, we could compare the linear and nonlinear models by constructing partial

Bayes factors (O’Hagan, 1995). Partial Bayes factors work by splitting the data in an

estimation set and a test set, and using the posterior obtained from the estimation set as a

prior to form a Bayes factor on the test set. This approach was used in an earlier version

of this chapter and the results are in line with those for the full Bayes factor. Details can

be obtained from the author upon request.



Chapter 5

Fixed-form variational posterior

approximation through stochastic linear

regression

Joined work with David Knowles

5.1 Introduction

In Bayesian analysis the posterior distribution is often of non-standard form. To obtain

quantities of interest under such a distribution, such as moments or marginal distribu-

tions, we typically need to use Monte Carlo methods or approximate the posterior with

a more convenient distribution. A popular method of obtaining such an approximation is

structured or fixed-form Variational Bayes, which works by numerically minimizing the

Kullback-Leibler divergence of an approximating distribution in the exponential family to

the intractable target distribution (Attias, 2000; Beal and Ghahramani, 2006; Wainwright

and Jordan, 2003). For certain problems, algorithms exist that can solve this optimization

problem in much less time than it would take to approximate the posterior using Monte

Carlo methods (see e.g. Honkela et al., 2010). However, these methods usually rely on

analytic solutions to certain integrals and need conditional conjugacy in the model specifi-

cation, i.e. the full conditionals of the posterior distribution must be standard exponential

family distributions for these methods to be applicable. This makes this class of methods
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limited in the types of approximations and posteriors they can handle.

We show that solving the optimization problem of fixed-form Variational Bayes is

equivalent to performing a linear regression with the sufficient statistics of the approxi-

mation as explanatory variables and the (unnormalized) log posterior density as the de-

pendent variable. Inspired by this result, we present an efficient stochastic approximation

algorithm for solving this optimization problem. In contrast to earlier work, our approach

does not require any analytic calculation of integrals, which allows us to extend the fixed-

form Variational Bayes approach to problems where it was previously not applicable. Our

method can be used to approximate any posterior distribution, provided that it is given

in closed form up to the proportionality constant. The type of approximating distribution

can be any distribution in the exponential family or any mixture of such distributions,

which means that our approximations can in principle be made arbitrarily precise. While

our method somewhat resembles performing stochastic gradient descent on the variational

objective function in parameter space (Paisley et al., 2012; Nott et al., 2012), the linear

regression view gives insights which allow a more computationally efficient approach.

Section 5.2 introduces fixed-form variational posterior approximation, the optimiza-

tion problem to be solved, and the notation used in the remainder of the chapter. In

Section 5.3 we provide a new way of looking at variational posterior approximation by

re-interpreting its optimization problem as a linear regression problem. We propose a

stochastic approximation algorithm to perform the optimization in Section 5.4. In Sec-

tion 5.5 we discuss how to assess the quality of our posterior approximations and how

to use the proposed methods to approximate the marginal likelihood of a model. These

sections represent the core of the ideas behind this chapter.

To make our approach more general and computationally efficient we provide a num-

ber of extensions in two separate sections. Section 5.6 discusses modifications of our

stochastic approximation algorithm to improve efficiency. Up to this point, all sections

assume that our posterior approximation is in the exponential family. This is generalized

to mixtures of exponential family distributions in Section 5.7. Section 5.8 gives some

examples of using our method in practice. Here we show that despite its generality, the

efficiency of our algorithm is highly competitive with more specialized approaches. Fi-

nally, Section 5.9 concludes.
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5.2 Fixed-form Variational Bayes

Let x be a vector of unknown parameters and/or latent random effects for which we have

specified a prior distribution p(x), and let p(y|x) be the likelihood of observing a given

set of data y. Upon observing y, we can use Bayes’ rule to obtain our updated state of

belief, the posterior distribution:

p(x|y) =
p(x, y)

p(y)
=

p(y|x)p(x)∫
p(y|x)p(x)dx

. (5.1)

An equivalent definition of the posterior distribution is

p(x|y) = arg min
q(x)

Eq(x)

[
log

q(x)

p(x, y)

]
= arg min

q(x)
D[q(x)|p(x|y)], (5.2)

where the optimization is over all proper probability distributions q(x), and where

D[q(x)|p(x|y)] denotes the Kullback-Leibler divergence between q(x) and p(x|y). The

KL-divergence is always non-negative and has a unique minimizing solution q(x) =

p(x|y) almost everywhere, at which point the divergence is zero. Note that the solution of

(5.2) does not depend on the normalizing constant p(y) of the posterior distribution, but

that we do obtain it as a by-product of solving D[q(x)|p(x|y)] = 0.

The posterior distribution given in (5.1) is the exact solution of the variational opti-

mization problem in (5.2), but except for certain special cases it is not very useful by itself

because it is of non-standard form. This means that we do not have analytical expressions

for the posterior moments of x, or for the marginals p(xi|y) of the multivariate posterior

distribution, nor can we determine the normalizing constant p(y). One method of solving

this problem is to approximate these quantities using Monte Carlo simulation. A different

approach, which we will pursue here, is to restrict the optimization problem in (5.2) to

a reduced set of more convenient distributions Q. If p(x, y) is of conjugate exponential

form, choosing Q to be the set of factorized distributions q(x) = q(x1)q(x2) . . . q(xk)

often leads to a tractable optimization problem that can be solved efficiently using an

algorithm called Variational Bayes Expectation Maximization (VBEM, Beal and Ghahra-

mani, 2002). Such a factorized solution is attractive because it makes the variational

optimization problem easy to solve, but it is also very restrictive: it requires a conjugate
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exponential model and prior specification and it assumes posterior independence between

the different blocks of parameters xi. This means that this factorized approach can be

used with few models, and that the solution q(x) may be a poor approximation to the

exact posterior (see e.g. Turner et al., 2008).

A different approach to simplifying the variational optimization problem is to restrict

the solution set Q to only include distributions of a certain parametric form qη(x), where

η denotes the vector of parameters governing the shape of the posterior approximation.

This approach is known as structured or fixed-form Variational Bayes (Honkela et al.,

2010; Storkey, 2000; Saul and Jordan, 1996). Usually, the posterior approximation is

chosen to be a specific member of the exponential family of distributions:

qη(x) = exp[T (x)η − U(η)]ν(x), (5.3)

where T (x) is a 1 × k vector of sufficient statistics, U(η) takes care of normalization,

and ν(x) is a base measure. The k × 1 vector η is often called the set of natural param-

eters of the exponential family distribution qη(x). Using this approach, the variational

optimization problem in (5.2) reduces to a parametric optimization problem in η:

η̂ = arg min
η

Eqη(x)[log qη(x)− log p(x, y)]. (5.4)

If our posterior approximation is of a standard form, the Eq(x)[log q(x)] term in (5.4)

can often be evaluated analytically. If we can then also determine Eq(x)[log p(x, y)] and

its derivatives with respect to η, the optimization problem can be solved using gradient-

based optimization or fixed-point algorithms. Posterior approximations of this type are

often much more accurate than a factorized approximation, but the requirement that qη(x)

is of standard form is still restrictive, as is the requirement of being able to evaluate

Eq(x)[log p(x, y)]. In addition, existing optimization algorithms for fitting this type of

approximation can be much slower than the EM type algorithms used for factorized ap-

proximation, reducing somewhat their advantage with respect to Monte Carlo methods.

In the next section, we develop an algorithm that can efficiently solve the variational

optimization problem for almost any type of approximating distribution qη(x) and exact

posterior p(x|y). The only requirements we impose on log p(x, y) is that it is given in
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closed form. The main requirement on qη(x) is that we can sample from it. For simplic-

ity, Sections 5.3 and 5.6 will also assume that qη(x) is in the exponential family. Section

5.7 will then show how we can extend this to include mixtures of exponential family dis-

tributions. By using these mixtures and choosing qη(x) to be of a rich enough type, we

can in principle make our approximation arbitrarily precise.

5.3 Variational Bayes as linear regression

For notational convenience we will write our posterior approximation in the following

adjusted form:

q̃η̃(x) = exp[T̃ (x)η̃]ν(x), (5.5)

where we have removed the normalizerU(η), and we have replaced it by adding a constant

to the vector of sufficient statistics, i.e. T̃ (x) = (1, T (x)) and η̃ = (η0, η
′)′. If η0 is equal

to −U(η), equation (5.5) describes the same (normalized) distribution function as does

equation (5.3). If η0 is different from U(η) it describes a rescaled (unnormalized) version

of this distribution function.

To work with q̃η̃(x), we use the unnormalized version of the KL-divergence, which is

given by

D[q̃η̃(x)|p(x, y)] =

∫
q̃η̃(x) log

q̃η̃(x)

p(x, y)
dν(x)−

∫
q̃η̃(x)dν(x) (5.6)

=

∫
exp[T̃ (x)η̃][T̃ (x)η̃ − log p(x, y)]dν(x)−

∫
exp[T̃ (x)η̃]dν(x)

At the minimum this gives η0 = Eq[log p(x, y) − log q(x)] as shown in Appendix 5.A.1,

which is the usual bound on the log evidence. The other parameters η have the same

minimum as in the normalized case.

Taking the gradient of (5.6) with respect to the natural parameters η̃ we have

∇η̃D[q̃η̃(x)|p(x, y)] =

∫
q̃η̃(x)[T̃ (x)′T̃ (x)η̃ − T̃ (x)′ log p(x, y)]dν(x). (5.7)
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Setting this expression to zero in order to find the minimum gives

η̃ =

[∫
q̃η̃(x)T̃ (x)′T̃ (x)dν(x)

]−1 [∫
q̃η̃(x)T̃ (x)′ log p(x, y)dν(x)

]
, (5.8)

or in its normalized form

η̃ = Eq[T̃ (x)′T̃ (x)]−1Eq[T̃ (x)′ log p(x, y)]. (5.9)

Note that we have implicitly assumed that the Fisher information matrix, Eq[T̃ (x)′T̃ (x)] is

non-singular, which will be the case for any identifiable approximating exponential family

distribution q. Our key insight is to notice the similarity between (5.9) with the maximum

likelihood estimator for linear regression. Recall that in classical linear regression we

have that the dependent variable {yn ∈ R : n = 1, .., N} is distributed as N(Y |Xβ, σ2I)

where X is the N ×D design matrix, β is the D× 1 vector of regression coefficients and

σ2 is the noise variance. The maximum likelihood estimator for β is then

β̂ = (X ′X)−1X ′Y (5.10)

To see the relation between (5.9) and (5.10), associate the design matrix X with the

sufficient statistics T̃ , the dependent variable Y with the unnormalized log posterior

log p(x, y), and the regression coefficients β with the vector of natural parameters η̃. If

we then consider Monte Carlo estimates of the expectations in (5.9) the analogy is very

fitting indeed. A similar analogy is used by Richard and Zhang (2007) in the context of

importance sampling. Appendix 5.A.3 discusses the connection between their work and

ours.

Note that in equation (5.9), unlike equation (5.10), the right-hand side depends on

the unknown parameters. This means that equation (5.9) in itself does not constitute a

solution to our variational optimization problem. The next section introduces a stochastic

approximation algorithm to perform this optimization.
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5.4 A stochastic approximation algorithm

The link between variational Bayes and linear regression in itself is interesting, but it

does not yet provide us with a solution to the variational optimization problem of equa-

tion (5.4). We propose solving this optimization problem using the stochastic approxi-

mation algorithm presented below. The basic idea is to draw a single sample from our

posterior approximation q(x) at a a time, and then to update this approximation using

equation (5.9), while taking small enough steps to ensure convergence of the algorithm.

Algorithm 2 Stochastic Optimization for Fixed-Form Variational Bayes

Require: An unnormalized posterior distribution p(x, y)
Require: A type of approximating posterior qη(x)
Require: The total number of iterations N

Initialize η to a first guess, for example by matching the prior p(x)
Initialize C = Eqη [T̃ (x)′T̃ (x)], or a diagonal approximation of this matrix
Initialize g = Cη
Initialize C̄ = 0
Initialize ḡ = 0
Step-size w = 1/

√
N

for t = 1 : N do
Set η = C−1g
Simulate a draw x∗ from the current approximation qη(x)
Set ĝt = T̃ (x∗)′ log p(x∗, y), or another unbiased estimate of Eqη [T̃ (x)′ log p(x, y)]

Set Ĉt = T̃ (x∗)′T̃ (x∗), or another unbiased estimate of Eqη [T̃ (x)′T̃ (x)]
Set g = (1− w)g + wĝt
Set C = (1− w)C + wĈt
if t > N/2 then

Set ḡ = ḡ + ĝt
Set C̄ = C̄ + Ĉt

end if
end for
return η̂ = C̄−1ḡ

Algorithm 2 is inspired by a long line of research on stochastic approximation, starting

with the seminal work of Robbins and Monro (1951). In fact, up to first order it can be

considered a relatively standard stochastic gradient descent algorithm. At each iteration,

we have ηt = C−1
t gt, where we use the subscript t to indicate the values of η, C and g

during iteration t of Algorithm 2. We then update ηt to

ηt+1 = [(1− w)Ct + wĈt]
−1[(1− w)gt + wĝt] = [Ct + λĈt]

−1[gt + λĝt],
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where ĝt and Ĉt are the stochastic estimates generated during iteration t, w is the step-size

in our algorithm, and λ = w/(1− w) is the effective step-size as it usually defined in the

stochastic approximation literature. To characterize this update for small values of λ we

perform a first order Taylor expansion of ηt+1 around λ = 0, which gives

ηt+1 = ηt − λC−1
t (Ĉtηt − ĝt) +O(λ2). (5.11)

Comparison with equation (5.7) shows that the stochastic term in this expression (Ĉtηt −

ĝt) is an unbiased estimate of the gradient of the KL-divergence D[qηt(x)|p(x, y)]. Up

to first order, the update equation in (5.11) thus represents a stochastic gradient descent

step, pre-conditioned with the C−1
t matrix. Since this pre-conditioner is independent of

the stochastic gradient approximation at iteration t, this gives a valid adaptive stochastic

gradient descent algorithm, to which all the usual convergence results apply (see e.g.

Amari, 1997).

If we take small steps, the pre-conditioner C−1
t of equation (5.11) will be close to the

Riemannian metric EqtĈt = Eqt [T (x)′T (x)] used in natural gradient descent algorithms

like that of Honkela et al. (2010). For certain exponential family distributions this metric

can be calculated analytically, which would suggest performing stochastic natural gradient

descent optimization with updates of the form

ηt+1 = ηt − λ
(
ηt − Eqt [T (x)′T (x)]−1[T (x∗)′ log p(x∗, y)]

)
,

where the Eqt [T (x)′ log p(x, y)] term is approximated using Monte Carlo, but Eqt [T (x)′T (x)]

is calculated analytically. At first glance, our approach of approximating Eqt [T (x)′T (x)]

using Monte Carlo only seems to add to the randomness of the gradient estimate, and using

the same random numbers to approximate both Eqt [T (x)′ log p(x, y)] and Eqt [T (x)′T (x)]

leads to biased pre-conditioned gradient approximations at that (although that bias dis-

appears as λ → 0). However, it turns out that approximating both terms using the same

random draws in fact increases the efficiency of our algorithm dramatically. This reason

for this is similar to the reason that the optimal estimator in linear regression is given by

(X ′X)−1X ′y and not E[X ′X]−1X ′y: by using the same randomness for both the X ′X

and X ′y terms, a large part of the noise in their product cancels out.
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A particularly interesting example of this is when the true posterior distribution is of

the same functional form as its approximation, say p(x, y) = exp[T̃ (x)ξ], in which case

Algorithm 2 will recover the true posterior exactly in 2(k+1) iterations, with k the number

of sufficient statistics in q and p. Assuming the last k+1 samples xi, i = 1, ..., k+1 gener-

ated by our algorithm are unique (which holds almost surely for continuous distributions

q), we have

η̂ =

(
k+1∑
i=1

T̃ (xi)
′T̃ (xi)

)−1 k+1∑
i=1

T̃ (xi)
′ log[p(xi, y)]

=

(
k+1∑
i=1

T̃ (xi)
′T̃ (xi)

)−1 k+1∑
i=1

T̃ (xi)
′T̃ (xi)ξ = ξ. (5.12)

If the algorithm is run for additional iterations after the true posterior is recovered, the

approximation will not change. This is to be contrasted with other stochastic gradient

descent algorithms which have non-vanishing variance for a finite number of samples,

and is due to the fact that our regression in itself is noise free: only its support points

are stochastic. This exact convergence will not hold for cases of actual interest, where p

and q will not be of the exact same functional form, but we generally still observe much

improvement when using Algorithm 2 instead of more conventional stochastic gradient

descent algorithms. A deeper analysis of the variance of our stochastic approximation is

given in Appendix 5.A.4.

Contrary to most applications in the literature, Algorithm 2 uses a fixed step size

w = 1/
√
N rather than a declining one in updating our statistics. The analyses of Robbins

and Monro (1951) and Amari (1997) show that a sequence of learning rates wt = ct−1 is

asymptotically efficient in stochastic gradient descent as the number of iterations N goes

to infinity, but this conclusion rests on very strong assumptions on the functional form of

the objective function (e.g. strong convexity) that are not satisfied for the problems we

are interested in. Moreover, with a finite number of iterations N , the effectiveness of a

sequence of learning rates that decays this fast is highly dependent on the proportionality

constant c. If we choose c either too low or too high, it may take an extremely long time

to reach the efficient asymptotic regime of this learning rate sequence.

Nemirovski et al. (2009) show that a more robust approach is to use a constant learning
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ratew = 1/
√
N and that this is optimal for finiteN without putting stringent requirements

on the objective function. In order to reduce the variance of the last iterate with this non-

vanishing learning rate, they propose to use an average of the last L iterates as the final

output of the optimization algorithm. The value of L should grow with the total number of

iterations, and is usually chosen to be equal to N/2. Remarkably, they show that such an

averaging procedure can match the asymptotic efficiency of the optimal learning sequence

wt = ct−1.

For our particular optimization problem we have observed excellent results using con-

stant learning rate w = 1/
√
N , and averaging starting half-way into the optimization.

Note that we perform this averaging on the statistics g and C, rather than on the parame-

ters η = C−1g, which is statistically more efficient for our application. Using this set-up,

g and C are actually weighted MC estimates where the weight of the j-th MC sample

during the t-th iteration (j ≤ t) is given by w(1−w)t−j . Since w ∈ (0, 1), this means that

the weight of earlier MC samples declines as the algorithm advances, which is desirable

since we expect q to be closer to optimal later in the algorithm’s progression.

If the initial guess for η is very far from the optimal value, or if the number of steps

N is very small, it can sometimes occur that the algorithm proposes a new value for η

that does not define a proper distribution, for example because the η values correspond

to a negative variance. This is a sign that the number of iterations should be increased:

since our algorithm becomes a pre-conditioned gradient descent algorithm as the number

of steps goes to infinity, the algorithm is guaranteed to converge if the step size is small

enough. In addition, note that the exact convergence result presented in equation (5.12)

suggests that divergence is very unlikely if qη(x) and p(x, y) are close in functional form:

choosing a good type of approximation will thus also help to ensure fast convergence.

Picking a good first guess for η also helps the algorithm to converge more quickly. For

very difficult cases it might therefore be worthwhile to base this guess on a first rough

approximation of the posterior, for example by choosing η to match the curvature of

log p(x, y) at its mode. For all our applications we found that a simple first guess for

η and a large enough number of iterations was sufficient to guarantee a stable algorithm.
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5.5 Marginal likelihood and approximation quality

The stochastic approximation algorithm presented in the last section serves to minimize

the Kullback-Leibler divergence between qη(x) and p(x|y), given by

D(qη|p) = Eqη
[
log

qη(x)

p(x|y)

]
= Eqη

[
log

qη(x)

p(x, y)

]
+ log p(y),

which shows that we need to know the marginal likelihood p(y) (the normalizing con-

stant of the posterior) in order to evaluate this Kullback-Leibler divergence. As discussed

before, we do not need to know this constant in order to minimize D(qη|p) as p(y) does

not depend on η, but we do need to know it if we want to determine the quality of the

approximation, as measured by the final KL-divergence. In addition, the constant p(y) is

also essential for performing Bayesian model comparison or model averaging.

When our algorithm has converged, we have the following identity

log p(x, y) = η̂0 + log qη(x) + r(x),

where r(x) is the ‘residual’ or ‘error term’ in the linear regression of log p(x, y) on the

sufficient statistics of qη(x). The intercept of the regression is

η̂0 = Eqη [log p(x, y)− log qη(x)] ,

the usual VB lower bound on the marginal likelihood. Exponentiating this term yields

p(x, y) = exp(η̂0)qη(x) exp(r(x)),

which we need to integrate with respect to x in order to find the marginal likelihood p(y).

Doing so gives

p(y) = exp(η̂0)Eqη [exp(r(x))]. (5.13)

At convergence we have that Eqη [r(x)] = 0. Jensen’s inequality then tells us that

Eqη [exp(r(x))] ≥ 1,
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which shows that η̂0 is indeed a lower bound on the log marginal likelihood as we claimed

earlier. If our approximation is perfect, the KL-divergence is zero and r(x) is zero almost

everywhere. In that case the residual term vanishes and the lower bound will be tight,

otherwise it will underestimate the true marginal likelihood. The lower bound η̂0 is often

used in model comparison, which works well if the KL-divergence between the approxi-

mate and true posterior distribution is of approximately the same size for all models that

are being compared. However, if we compare two very different models this will often not

be the case, and the model comparison will be biased as a result. In addition, as opposed

to the exact marginal likelihood, the lower bound gives us no information on the quality

of our posterior approximation. It would therefore be useful to obtain a better estimate of

the marginal likelihood.

One approach to doing this would be to evaluate the expectation in (5.13) using Monte

Carlo sampling. Some analysis shows that this corresponds to approximating p(y) using

importance sampling, with qη(x) as the candidate distribution. It is well known that this

estimator of the marginal likelihood may have infinite variance, unless r(x) is bounded

from above. In general, we cannot guarantee the boundedness of r(x) for our approach,

so we will instead approximate the expectation in (5.13) using something that is easier to

calculate.

At convergence, we know that the mean of r(x) is zero when sampling from qη(x).

The variance of r(x) can easily be estimated using the mean squared error of the regres-

sions we perform during the optimization, with relatively low variance. We denote our

estimate of this variance by s2. The assumption we will then make in order to approximate

log p(y) is that r(x) is approximately distributed as a normal random variable with these

two moments. This leads to the following simple estimate of the log marginal likelihood

log p(y) ≈ η̂0 +
1

2
s2.

That is, our estimate of the marginal likelihood is equal to its lower bound plus a correc-

tion term that captures the error in our posterior approximation qη(x). Similarly, we can
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approximate the KL-divergence of our posterior approximation as

D(qη|p) ≈
1

2
s2.

The KL-divergence is approximately equal to half the mean squared error in the regression

of log p(x, y) on the sufficient statistics of the approximation. This relationship should not

come as a surprise: this mean squared error is exactly what we minimize when we do a

linear regression. Our experiments indicate that this approximation of the KL-divergence

can be quite accurate (see Section 5.8.3), especially when the approximation qη(x) is

reasonably good.

Note that the scale of the KL-divergence is highly dependent on the amount of curva-

ture in log p(x|y) and is therefore not easily comparable across different problems. If we

scale the approximate KL-divergence to account for this curvature, this naturally leads to

the R-squared measure of fit for regression modeling:

R2 = 1− s2

Varq[log p(x, y)]

The R-squared measure corrects for the amount of curvature in the posterior distribution

and is therefore comparable across different models and data sets. In addition it is a well-

known measure and easily interpretable. We therefore propose to use the R-squared as

the measure of approximation quality for our variational posterior approximations. Al-

though we find the R-squared to be a useful measure for the majority of applications, it

is important to realize that it mostly contains information about the mass of the posterior

distribution and its approximation, and not directly about their moments. It is therefore

possible to construct pathological examples in which the R-squared is relatively high, yet

the (higher) moments of the posterior and its approximation are quite different. This may

for example occur if the posterior distribution has very fat tails.

The discussion up to this point represents the core of the ideas behind this chapter. To

make our approach more general and computationally efficient we now provide a num-

ber of extensions in two separate sections. Section 5.6 discusses modifications of our

stochastic approximation algorithm to improve efficiency, and Section 5.7 generalizes the

exponential family approximations q(x) used so far to include mixtures of exponential
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family distributions. Some examples of using our method in practice are given in Sec-

tion 5.8. Finally, Section 5.9 concludes.

5.6 Extensions I: Improving algorithmic efficiency

Algorithm 2 approximates the regression statistics Eqη [T̃ (x)′ log p(x, y)] and Eqη [T̃ (x)′T̃ (x)]

by simply drawing a sample x∗ from qη(x) and using this sample to calculate

ĝt = T̃ (x∗)′ log p(x∗, y) (5.14)

Ĉt = T̃ (x∗)′T̃ (x∗) (5.15)

This works remarkably well because, as Section 5.4 explains, using the same random

draw x∗ to form both estimates, part of the random variation in η = C−1g cancels out.

However, it is certainly not the only method of obtaining unbiased approximations of the

required expectations, and in this section we present alternatives that often work even

better. In addition, we also present alternative methods of parameterizing our problem,

and we discuss ways of speeding up the regression step of our algorithm.

5.6.1 Making use of conditional independencies

For most statistical problems, the log posterior can be decomposed into a number of ad-

ditive factors, i.e. log p(x, y) =
∑N

j=1 log φj(x, y). The optimality condition in equation

(5.9) can then also be written as a sum:

η̃ =
N∑
j=1

Eq[T̃ (x)′T̃ (x)]−1Eq[T̃ (x)′ log φj(x, y)]

This means that rather than performing one single linear regression we can equivalently

perform N separate regressions.

η̂ =
N∑
j=1

η̂j (5.16)

η̂j = Eq[T̃ (x)′T̃ (x)]−1Eq[T̃ (x)′ log φj(x, y)] (5.17)
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The practical benefit of this is that these separate regressions are often of much lower

dimension: We know that element i of η̂j will only be non-zero if the i-th sufficient

statistic T̃i(x) has non-zero partial correlation to log φj(x, y). Since the separate factors

log φj(x, y) often involve only a subset of the variables in x, this means that we can omit

many of the sufficient statistics in performing each regression. That is, we have

η̂jR = Eq[T̃R(x)′T̃R(x)]−1Eq[T̃R(x)′ log φj(x, y)]

with T̃R(x) the relevant subset of T̃ (x), and η̂jR the corresponding subset in η̂j . The

remaining elements in η̂j will be zero. By performing these lower dimensional regressions

we can reduce the variance of the stochastic approximation algorithm, as well as reduce

the overhead needed to store and invert C = Eq[T̃ (x)′T̃ (x)].

In those rare cases where there are no conditional independencies in the posterior and

we have to use the full C matrix, computing C−1 explicitly (which is O(k3), with k the

number of sufficient statistics) is not recommended, but if desired then C−1 should be up-

dated each iteration using rank-one updates (i.e. using the matrix inversion lemma) which

costO(k2). Similar low cost updates could be used to maintain Cholesky decompositions

since C is symmetric, which is a numerically stable and efficient option. In very high

dimensions one could also use conjugate gradients to solve C−1g approximately, using

the current variational parameters η for a warm start.

5.6.2 Using the gradient of the log posterior

Using the Frisch-Waugh-Lovell theorem (Lovell, 2008), we can remove the constant from

the sufficient statistics T̃ (x) and rewrite the optimality condition (5.9) in its normalized

form (this is shown for our particular application in Appendix 5.A.1):

η̂ = Covq[T (x), T (x)]−1 Covq[T (x), log p(x, y)]. (5.18)

Furthermore, using the properties of the exponential family of distributions, we know that

Covq[T (x), T (x)] = ∇ηEqη [T (x)] (5.19)
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and

Covq[T (x), log p(x, y)] = ∇ηEqη [log p(x, y)] (5.20)

Both Eqη [T (x)] and Eqη [log p(x, y)] can be approximated without bias using Monte Carlo.

By differentiating these Monte Carlo approximations we can then obtain unbiased esti-

mates of their derivatives. This is easy to do as long as the pseudo-random draw x∗ from

qη(x) is a differentiable function of the parameters η, given our random number seed z∗.

x∗ = f(η, z∗), with z∗ such that x∗ ∼ qη(x) (5.21)

ĝ = ∇η log p(f(η, z∗), y) = ∇ηf(η, z∗)∇x log p(x∗, y) (5.22)

Ĉ = ∇ηT (f(η, z∗)) = ∇ηf(η, z∗)∇xT (x∗) (5.23)

By using the same random number seed z∗ in both Monte Carlo approximations we once

again get the beneficial variance reduction effect described in Section 5.4. Empirically, we

find that using gradients often leads to a more efficient stochastic optimization algorithm.

For some applications the posterior distribution will not be differentiable in some of the

elements of x, for example when x is discrete. In that case the stochastic approximations

presented here may be combined with the basic approximation of Section 5.4.

Note that for many samplers ∇ηf(η, z∗) is not defined, e.g. rejection samplers. How-

ever, for the gradient approximations it does not matter what type of sampler is actually

used to draw x∗, only that it is from the correct distribution. A correct strategy is therefore

to draw x∗ using any desired sampling algorithm, and then proceeding as if we had used

a different sampling algorithm for which ∇ηf(η, z∗) is defined. For example, we may

calculate expression (5.21) as if we had used an inverse-transform sampler to sample x∗,

for which we have

∇ηf(η, z∗) = −∇ηΦη(x
∗)

φη(x∗)

with Φη(x
∗) the CDF and φη(x∗) the pdf of the sampler.

5.6.3 Using the Hessian of the log posterior

When we have both first and second order gradient information for log p(x, y) and if we

choose our approximation to be multivariate Gaussian, i.e. qη(x) = N(m(η), V (η)), we
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have a third option for approximating the statistics used in the regression. For Gaus-

sian q(x) and twice differentiable log p(x, y), Minka (2001b) and Opper and Archambeau

(2009) show that

∇mEq[log p(x, y)] = Eq[∇x log p(x, y)] (5.24)

and

∇VEq[log p(x, y)] =
1

2
Eq[∇x∇x log p(x, y)] (5.25)

where∇x∇x log p(x, y) denotes the Hessian matrix of log p(x, y) in x.

For the multivariate Gaussian distribution we know that the natural parameters are

given as η1 = V −1m and η2 = V −1. Using this relationship, we can derive Monte

Carlo estimators ĝ and Ĉ using the identities (5.19, 5.20). We find that these stochastic

approximations are often even more efficient than the ones in Section 5.6.2, provided that

the Hessian matrix of log p(x, y) can be calculated cheaply.

5.6.4 Using analytic expectations where possible

In many cases it is possible to calculate the contributions of some of the factors log φi(x)

to the stochastic approximations C and g analytically, while for others it is not. For

example, this occurs when part of log p(x, y) (most often the prior) is conjugate to the

posterior approximation qη(x). Even for some non-conjugate factors it might be possible

to calculate certain expectations analytically. Using these exact expectations rather than

their stochastic estimates can help reduce the variance of the approximations as well as

reduce the time required to compute them, both of which increase the efficiency of the

optimization procedure.

5.6.5 Subsampling the data: double stochastic approximation

The stochastic approximations derived above are all linear functions of log p(x, y) and its

first and second derivatives. This means that these estimates are still unbiased even if we

take log p(x, y) to be a noisy unbiased estimate of the true log posterior, rather than the

exact log posterior. For most statistical applications log p(x, y) itself is a separable addi-

tive function of a number of independent factors, i.e. log p(x, y) =
∑N

i=1 log φi(x). These
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log φi(x) terms can be the likelihood contributions of individual observed data points,

but they can also arise through conditional independencies between the x variables in

the posterior. Using this fact we can construct an unbiased stochastic approximation of

log p(x, y) as

log p̃(x, y) =
N

K

K∑
j=1

log φj(x) (5.26)

where the K factors log φj(x) are randomly selected from the total N factors. This ap-

proach was previously proposed for online learning of topic models by Hoffman et al.

(2010). Since log p̃(x, y) has log p(x, y) as its expectation, performing stochastic approx-

imation based on p̃(x, y) converges to the same solution as when using p(x, y), provided

we resample the factors in log p̃(x, y) at every iteration. By subsampling the K � N fac-

tors in the model the individual steps of the optimization procedure become more noisy,

but since we can calculate p̃(x, y) faster than we can p(x, y), we can perform a larger

number of steps in the same amount of time. If the number of factors in the posterior is

especially large, this tradeoff often favors using subsampling. This principle has been used

in many successful applications of stochastic gradient descent, see e.g. Bottou (2010).

5.6.6 Linear transformations of the regression problem

It is well known that classical linear least squares regression is invariant to invertible

linear transformations of the explanatory variables. We can use the same principle in our

stochastic approximation algorithm to allow us to work with alternative parameterizations

of the approximate posterior q(x). These alternative forms can be easier to implement or

lead to more efficient algorithms, as we show in this section.

In classical linear least squares regression, we have an N × D matrix of explanatory

variables X , and an N × 1 vector of dependent variables Y . Instead of doing a linear

regression with these variables directly, we may equivalently perform the linear regression

using a transformed set of explanatory variables X̃ = XK ′, with K any invertible matrix

of sizeD×D. The least squares estimator β̃ = (X̃ ′X̃)−1X̃ ′Y of the transformed problem

can then be used to give the least squares estimator of the original problem as β̂ = K ′β̃:

β̂ = K ′(KX ′XK ′)−1KX ′Y = (KX ′X)−1KX ′Y = (X ′X)−1X ′Y.
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Using the same principle, we can rewrite the optimality condition of equation (5.9) as

η̃ = Eqη [K(η)T̃ (x)′T̃ (x)]−1Eqη [K(η)T̃ (x)′ log p(x, y)], (5.27)

for any invertible matrixK, which may depend on the variational parameters η. Instead of

solving our original least squares regression problem, we may thus equivalently solve this

transformed version. When we perform the linear regression of equation (5.27) for a fixed

set of parameters η, the result will obviously be identical to that of the original regression

with K(η) = I, as long as we use the same random numbers for both regressions. How-

ever, when the Monte Carlo samples (‘data points’ in our regression) are generated using

different values of η, as is the case with the proposed stochastic approximation algorithm,

the two regressions will not necessarily give the same solution. If the true posterior p(x|y)

is of the same functional form as the approximation qη, the exact convergence result of

Section 5.4 holds for any invertible K(η), so it is not immediately obvious which K(η) is

best for general applications.

We hypothesize that certain choices of K(η) may lead to statistically more efficient

stochastic approximation algorithms for certain specific problems, but we will not pursue

this idea here. What we will discuss is the observation that the stochastic approximation

algorithm may be easier to implement for some choices of K(η) than for others, and that

the computational costs are not identical for all K(η). In particular, it is worth noting

that the transformation K(η) allows us to use different parameterizations of the varia-

tional approximation. Let qφ be such a reparameterization of the approximation, let the

new parameter vector φ(η) be an invertible and differentiable transformation of the orig-

inal parameters η, and set K(η) equal to the inverse Jacobian of this transformation, i.e.

K(η) = [∇ηφ(η)]−1. Using the properties of the exponential family of distributions, we

can then show that

K(η) Covqφ [T (x), h(x)] = ∇φEqφ [h(x)], (5.28)

for any differentiable function h(x). Using this result, the stochastic approximations of
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Section 5.6.2 for the transformed regression problem are found to be

x∗ = f(φ, z∗), with z∗ such that x∗ ∼ qφ(x) (5.29)

ĝ = ∇φ log p(f(φ, z∗), y) (5.30)

Ĉ = ∇φT (f(φ, z∗)). (5.31)

These new expressions for ĝ and Ĉ may be easier to calculate than the original ones (5.21),

and the resulting Ĉ may have a structure making it easier to invert in some cases. A par-

ticularly striking example of this occurs when we use a Gaussian approximation in combi-

nation with the stochastic approximations of Section 5.6.3, using the gradient and Hessian

of log p(x, y). In this case we may work in the usual natural parameterization, but doing

so gives a dense matrix Ĉ with dimensions proportional to p2, where p is the dimension of

x. For large p, such a stochastic approximation is expensive to store and invert. However,

using the stochastic approximations above, we may also parameterize our approximation

in terms of the mean m and variance V , and work with these parameters directly. Doing

so leads to the following sparse regression algorithm, as derived in Appendix 5.A.2.
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Algorithm 3 Stochastic Approximation for Gaussian Variational Approximation

Require: An unnormalized, twice differentiable posterior distribution p(x, y)
Require: The total number of iterations N

Initialize the mean and variance of the approximation (m,V ) to a first guess, for exam-
ple by matching the prior p(x)
Initialize z = m, P = V −1 and a = 0
Initialize z̄ = 0, P̄ = 0 and ā = 0
Step-size w = 1/

√
N

for t = 1 : N do
Set V = P−1 and m = V a+ z
Generate a draw x∗ from N(m,V )
Calculate the gradient gt and Hessian Ht of log p(x, y) at x∗

Set a = (1− w)a+ wgt
Set P = (1− w)P − wHt

Set z = (1− w)z − wx∗
if t > N/2 then

Set ā = ā+ gt
Set P̄ = P̄ −Ht

Set z̄ = z̄ + x∗

end if
end for
Set V = P̄−1 and m = V ā+ z̄
return m,V

Instead of storing and inverting the full C matrix, this algorithm uses the sparsity

induced by the transformation K(η) to work with the precision matrix P instead. The

dimensions of this matrix are equal to p, rather than its square, providing great savings.

Moreover, while the C matrix in the original parameterization is always dense, P will

have the same sparsity pattern as the Hessian of log p(x, y), which may reduce the costs

of storing and inverting it even further for many applications. An example using this

algorithm can be found in Section 5.8.1.

5.7 Extensions II: Using mixtures of exponential family

distributions

So far, we have assumed that the approximating distribution qη(x) is a member of the

exponential family. Here we will relax that assumption. If we choose a non-standard

approximation, this most likely means that certain moments or marginals of qη(x) are
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no longer available analytically, which should be taken into account when choosing the

type of approximation. However, if we can at least sample directly from qη(x), it is

often still much cheaper to approximate these moments using Monte Carlo than it would

be to approximate the corresponding moments of p(x|y) using MCMC or other indirect

sampling methods. We have identified two general strategies for constructing useful non-

standard posterior approximations which are discussed in the following two sections.

5.7.1 Hierarchical approximations

If we split our vector of unknown parameters x into p non-overlapping blocks, our ap-

proximating posterior may be decomposed as

q(x) = q(x1)q(x2|x1)q(x3|x2, x1) . . . q(xp|xp−1, . . . , x1).

If we then choose every conditional posterior q(xi|xi−1, xi−2, . . . , x1) to be of a standard

form, we can easily sample from the joint q(x), while still having much more freedom

in capturing the dependence between the different blocks of x. In practice, such a con-

ditionally standard approximation can be achieved by specifying the sufficient statistics

of each standard block q(xi|xi−1, xi−2, . . . , x1) to be a function of the preceding elements

xi−1, xi−2, . . . , x1. This leads to a natural type of approximation for hierarchical Bayesian

models, where the hierarchical structure of the prior often suggests a good hierarchical

structure for the posterior approximation.

If every conditional q(xi|xi−1, xi−2, . . . , x1) is in the exponential family, the joint may

not be if the normalizing constant of q(xi|xi−1, xi−2, . . . , x1) is a non-separable function

of xi−1, xi−2, . . . , x1 and the variational parameters. However, because the conditionals

are still in the exponential family, our optimality condition still holds separately for the

variational parameters of each conditional with only slight modification. In that case

we therefore propose applying the optimization procedures separately to each of these

conditionals. Without loss of generalization, consider the case where our posterior ap-

proximation consists of two factors: q(x) = qη1(x1)qη2(x2|x1). In its normalized form
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(see Section 5.6.2), the optimality condition for the first factor is then given as

η1 = Varq[T (x1)]−1 Covq[T (x1), log p(x, y)− log qη2(x2|x1)],

where T (x1) denotes the sufficient statistics of qη1(x1). The optimality condition for the

second block is

η2 = Eq(x1)[Varq(x2|x1)(T (x2))]−1Eq(x1)[Covq(x2|x1)(T (x2), log p(x, y)− log qη1(x1))],

where T (x2) denotes the sufficient statistics of qη2(x2|x1). By making use of the condi-

tional independencies discussed in Section 5.6.1 we can often simplify these expressions

further for given problems.

Using this type of approximation, the marginals q(xi) will generally be mixtures of ex-

ponential family distributions, which is where the added flexibility of this method comes

from. By allowing the marginals q(xi) to be mixtures with dependency on the preceding

elements of x, we can achieve much better approximation quality than by forcing them

to be of a standard form. A practical example of this in a hierarchical Bayesian model is

given in Section 5.8.2.

5.7.2 Using auxiliary variables

Another method of constructing flexible posterior approximations is by using the condi-

tionally standard approximation of Section 5.7.1, but by letting the first block of variables

be a vector of auxiliary variables z, that are not part of the unknowns x. Doing this, the

posterior approximation has the form

q(x, z) = q(z)q(x|z).

The factors q(z) and q(x|z) should both be of standard form, which allows the marginal

approximation q(x) to be a general mixture of exponential family distributions, like a mix-

ture of normals for example. If we use enough mixture components, the approximation

q(x) could then in principle be made arbitrarily close to p(y|x). This mixture approxima-
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tion can then be fitted by performing the standard KL-divergence minimization:

η̂ = arg min
η

Eqη [log qη(x)− log p(x, y)] (5.32)

From (5.32) it becomes clear that an additional requirement of this type of approximation

is that we can integrate out the auxiliary variables z from the joint q(x, z) in order to eval-

uate the marginal density q(x) at a given point x. Fortunately this is easy to do for many

interesting approximations, such as discrete mixtures of normals or continuous mixtures

like Student’s t distributions. Also apparent from equation (5.32) is that we cannot use this

approximation directly with the stochastic approximation algorithms proposed in the last

sections since q(x) is itself not part of the exponential family of distributions. However,

we can rewrite (5.32) as

η̂ = arg min
η

Eqη [log qη(x, z)− log p̃(x, y, z)], (5.33)

with p̃(x, y, z) = p(x, y)qη(z|x), and

qη(z|x) =
qη(x|z)qη(z)∫
qη(x|z)qη(z)dz

.

Equation (5.33) now once again has the usual form of a KL-divergence minimization

with an approximation (qη(x, z)) in the exponential family. By including the auxiliary

variables z in the ‘true’ posterior density, we can thus once again make use of our efficient

stochastic optimization algorithms. Note that including z in the posterior did not change

the marginal posterior p(x|y) which is what we are interested in. A practical example of

this approach, using an approximation consisting of a mixture of normals, can be found

in Section 5.8.3.

5.8 Examples

We demonstrate our proposed methodology on three problems from the literature.
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5.8.1 Binary probit regression

Binary probit (and logistic) regression is a classic model in statistics, also referred to as

binary classification in the machine learning literature. Here we take a Bayesian approach

to probit regression to demonstrate the performance of our methodology relative to ex-

isting variational approaches. We have N observed data pairs (yi ∈ {0, 1},xi ∈ RP ),

and we model y|x as P (y = 1|x,w) = φ(w′x) where φ(.) is the standard Gaussian cdf

and w ∈ RP is a vector of regression coefficients, for which we assume an elementwise

Gaussian prior N(0, 1). This is in fact a model for which existing approaches are straight-

forward so it is interesting to compare the performance. Of course the major benefit of

our approach is that it can be applied in a much wider class of models.

We use data simulated from the model, with N = 100 and P = 5, to be able to

show the performance averaged over many datasets (1000 in fact). We compare Algo-

rithm 3 to the VBEM algorithm of Ormerod and Wand (2010) which makes use of the

fact that the expectations required for this model can in fact be calculated analytically.

We choose not to do this for our method to investigate how effective our MC estimation

strategy can be. For completeness we also compare to variational message passing (VMP,

Winn and Bishop, 2006), a message passing implementation of VBEM, and expectation

propagation (EP, Minka, 2001b), which is known to have excellent performance on binary

classification problems (Nickisch and Rasmussen, 2008). These last two alternatives are

both implemented in Infer.NET (Minka et al., 2010) a library for probabilistic inference

in graphical models, where we implement the first two methods ourselves in MATLAB.

Since this experiment is on synthetic data we are able to assess performance in terms of

the method’s ability to recover the known regression coefficients w, which we quantify as

the root mean squared error (RMSE) between the variational mean and the true regression

weights, and the “log score”: the log density of the true weights under the approximate

variational posterior. The log score is useful because it rewards a method for finding good

estimates of the posterior variance as well as the mean, which should of course be central

to any approximate Bayesian method.

The results, shown in Figure 5.1 and 5.2, demonstrate that our method is able to out-

perform the standard analytic VBEM algorithm in terms of speed accuracy tradeoff. The
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improvement in the RMSE is noticeable, but the difference in log score is dramatic, show-

ing that Algorithm 3 gives significantly better estimates of the variance that VBEM. In fact

our results are very similar to those of EP, which obtained an RMSE of 0.261 and log score

of 0.079, but took an average of 18.2 milliseconds per run (note the system set ups are not

completely comparable: EP was run on a laptop rather than a desktop, and Infer.NET is

implemented in C# rather than Matlab). As expected VMP gave consistent results with

VBEM: a RMSE of 0.268 and a log score of −4.85. The average R-squared obtained

by our variational approximation was 0.97, indicating a close fit to the exact posterior

distribution.
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Figure 5.1: RMSE approximate posterior mean - Stochastic Linear Regressions v.s. VBEM
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Figure 5.2: Log-Score of approximate posterior - Stochastic Linear Regressions v.s. VBEM

5.8.2 A stochastic volatility model

Stochastic volatility models for signals with time varying variances are considered ex-

tremely important in finance. Here we apply our methodology to the model and prior

specified in Girolami and Calderhead (2011). The data we will use, from Kim et al.

(1998), is the percentage change yt in GB Pound v.s. US Dollar exchange rate, modeled

as:

yt = εtβ exp(vt/2).

The relative volatilities, vt are governed by the autoregressive AR(1) process

vt+1 = φvt + ξt+1, with v1 ∼ N [0, σ2/(1− φ2)].

The distributions of the error terms are given by εt ∼ N(0, 1) and ξt ∼ N(0, σ2). The

prior specification is as in Girolami and Calderhead (2011):

p(β) ∝ β−1, (φ+ 1)/2 ∼ Beta(20, 1.5), σ2 ∼ Inv-Gamma(5, 0.25)
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Following Section 5.7.1 we use the hierarchical structure of the prior to suggest a hierar-

chical structure for the approximate posterior:

qη(φ, σ
2, β, v) = qη(φ)qη(σ

2|φ)qη(β, v|φ, σ2).

The prior of φ is in the exponential family, so we choose the posterior approximation

qη(φ) to be of the same form:

qη[(φ+ 1)/2] = Beta(η1, η2).

The prior for σ2 is inverse-Gamma, which is also in the exponential family. We again

choose the same functional form for the posterior approximation, but with a slight modi-

fication in order to capture the posterior dependency between φ and σ2:

qη(σ
2|φ) ∼ Inv-Gamma(η3, η4 + η5φ

2),

where the extra term η5φ
2 was chosen by examining the functional form of the exact full

conditional p(σ2|φ, v).

The conditional prior p[log(β), v|φ, σ2] can be seen as the diffuse limit of a multivari-

ate normal distribution. We therefore also use a multivariate normal conditional approxi-

mate posterior:

qη[(log(β), v)|φ, σ2] = N(m,V ),

with

V −1 = P (φ, σ2) + η6 and m = V −1η7

where P (φ, σ2) is the precision (inverse covariance) matrix of p[(log(β), v)|φ, σ2], η6 is a

T × T matrix, and η7 is a T × 1 vector. Furthermore, an analysis following Opper and

Archambeau (2009) shows that only a relatively small number of the elements of η6 will

be non-zero: all elements on the diagonal of η6 and all elements in the column and row

belonging to log(β).

Using the GB Pound vs US Dollar exchange rate data, the approximation above has

almost 2000 free variational parameters to be optimized. This seems like a problemat-
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ically large number, but is easily feasible by using algorithm 3 to fit qη[log(β), v|φ, σ2]

and the algorithm using only gradients (Section 5.6.2) to fit qη(φ) and qη(σ2|φ). Expecta-

tions and normalizing constants for qη[log(β), v|φ, σ2] can be calculated efficiently using

the Kalman filter and smoother (see e.g. Durbin and Koopman, 2001). For the current

application we therefore only need to sample φ and σ2 each iteration, and not β and v.

We compare the results against the “true” posterior, provided by a very long run of the

MCMC algorithm of Girolami and Calderhead (2011).
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Figure 5.3: Exact and approximate posterior for the stochastic volatility model - β parameter
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Figure 5.4: Exact and approximate posterior for the stochastic volatility model - φ parameter
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Figure 5.5: Exact and approximate posterior for the stochastic volatility model - σ2 parameter

As can be seen from Figures 5.3, 5.4 and 5.5, the posterior approximations are nearly

exact. The posterior approximation for β seems especially good (Figure 5.3), which is

due to β being in the last block of the hierarchical posterior approximation. Similarly, the

posterior approximations for the latent volatilities v (not shown) are also indistinguishable

from the exact posterior.

Initializing qη(φ) and qη(σ2|φ) to the prior, the above results can be obtained using

500 iterations of our algorithm, with a single (φ, σ2) sample per iteration. Using these

settings, the single-threaded Matlab implementation of our stochastic optimization algo-

rithm requires just under a second to complete on a 3Ghz processor. This is more than two

orders of magnitude faster than the running time required by advanced MCMC algorithms

for this problem.

Our approach to doing inference in the stochastic volatility model shares some similar-

ities with the approach of Liesenfeld and Richard (2008). They fit a Gaussian approxima-

tion to the posterior of the volatilities for given φ, σ2, β parameters, using the importance

sampling algorithm of Richard and Zhang (2007), which is based on auxiliary regressions

somewhat similar to those in Algorithm 2. They then infer the model parameters using

MCMC methods. The advantage of our method is that we are able to leverage the infor-

mation in the gradient and Hessian of the posterior, and that our stochastic approximation

algorithm allows us to fit the posterior approximation very quickly for all volatilities si-
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multaneously, while their approach requires optimizing the approximation one volatility

at a time. Unique to our approach is also the ability to concurrently fit a posterior ap-

proximation for the model parameters φ, σ2, β and have the approximate posterior of the

volatilities depend on these parameters, while Liesenfeld and Richard (2008) need to re-

construct their approximation every time a new set of model parameters is considered. As

a result, our approach is significantly faster for this problem.

5.8.3 A beta-binomial model for overdispersion

Albert (2009, Section 5.4) considers the problem of estimating the rates of death from

stomach cancer for the largest cities in Missouri. This cancer mortality data is available

from the R package LearnBayes, and consists of 20 pairs (nj, yj) where nj contains the

number of individuals that were at risk in city j, and yj is the number of cancer deaths

that occurred in that city. The counts yj are overdispersed compared to what one could

expect under a binomial model with constant probability, so Albert (2009) assumes the

following beta-binomial model with mean m and precision K

P (yj|m,K) =

(
nj
yj

)
B(Km+ yj, K(1−m) + nj − yj)

B(Km,K(1−m))
,

where B(·, ·) denotes the Beta-function. The parameters m and K are given the following

improper prior

p(m,K) ∝ 1

m(1−m)

1

(1 +K)2
.

The resulting posterior distribution is non-standard and extremely skewed. In order to

ameliorate this, Albert (2009) proposes to use the reparameterization

θ1 = logit(m), and θ2 = log(K).

The form of the posterior distribution p(θ|n, y) still does not resemble any standard distri-

bution, so we will approximate it using a finite mixture of L bivariate Gaussians. In order

to do this, we first introduce an auxiliary variable z, to which we assign a categorical
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approximate posterior distribution with L possible outcomes.

log qη(z) = δ(z = 1)η1 + δ(z = 2)η2 + · · ·+ δ(z = L)ηL,

where δ(.) is the indicator function.

Conditional on z, we assign θ a Gaussian approximate posterior

qη(θ|z = i) = N(µi,Σi)

By adapting the true posterior as described in Section 5.7.2, we can fit this approximate

posterior to p(θ|n, y). We do this by using the basic algorithm of Section 5.4. The re-

gression statistics C and g used in the resulting algorithm depend linearly on the indicator

vector δ(z∗ = i), which denotes whether or not component iwas used to sample θ∗ in each

iteration. Rather than using this indicator function directly, we use its Rao-Blackwellized

version E[δ(z∗ = i)|θ∗], where θ∗ are the sampled parameters. The resulting stochastic

estimates will have the same expectation as when using δ(z∗ = i) itself, but with lower

variance at no additional computational cost.

We fit these approximations using a varying number of mixture components L and

examine the resulting KL-divergence from the true posterior density. Since this is a low

dimensional problem, we can obtain this divergence very precisely using quadrature meth-

ods. This also allows us to assess the accuracy of the KL-divergence approximation de-

rived in Section 5.5. Finally, we present a contour plot that visually shows that a good

approximation can indeed be obtained using a large enough number of mixture compo-

nents.

Figures 5.6 and 5.7 show that we can indeed approximate this skewed and fat-tailed

density very well using a large enough number of Gaussians. The R-squared of the mix-

ture approximation with 8 components is 0.997. Also apparent is the inadequacy of an

approximation consisting of a single Gaussian for this problem, with an R-squared of

only 0.82. This clearly illustrates the advantages of our approach which allows us to use

much richer types of approximations than was previously possible. Furthermore, Fig-

ure 5.6 shows that the KL-divergence of the approximation to the true posterior can be

approximated quite accurately using the measure developed in Section 5.5, especially if
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the posterior approximation is reasonably good.
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Figure 5.6: KL-divergence between the variational approximation and the exact posterior density for an
increasing number of mixture components.
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Figure 5.7: Contour plots of posterior approximations using 1-8 mixture components, with the exact pos-
terior at the bottom-right.
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5.9 Conclusion and future work

We have introduced a stochastic optimization scheme for variational inference inspired

by a novel interpretation of linear regression of the target log density against the sufficient

statistics of the approximating family. Our scheme allows very generic implementation

for a wide class of models since in its most basic form only the unnormalized density

of the target distribution is required, although we have shown how gradient or even Hes-

sian information can be used if available. The generic nature of our methodology would

lend itself naturally to a software package for Bayesian inference along the lines of In-

fer.NET (Minka et al., 2010) or WinBUGS (Gilks et al., 1994), and would allow inference

in a considerably wider range of models. Incorporating automatic differentiation in such

a package could clearly be beneficial. Automatic selection of the approximating family

would be very appealing from a user perspective, but could be challenging in general.

Variational inference usually requires that we use conditionally conjugate models:

since our method removes this restriction several possible avenues of research are opened.

For example, for MCMC methods collapsed versions of models (i.e. with certain pa-

rameters or latent variables integrated out) sometimes permit much more efficient infer-

ence (Porteous et al., 2008) but adapting variational methods to work with collapsed mod-

els is complex and requires custom per model methodology (Teh et al., 2007). However,

our methods is indifferent to whether the model is collapsed or not, so it would be straight-

forward to experiment with different representations of the same model.

We have shown it is straightforward to extend our methodology to use hierarchical

structured approximations and more flexible approximating families such as mixtures.

This closes the gap considerably relative to MCMC methods. Perhaps the biggest selling

point of MCMC methods is their asymptotic limits: in practice this means simply run-

ning the MCMC chain for longer can give greater accuracy, an option not available to a

researcher using variational methods. However, if we use a mixture approximating fam-

ily then we can tune the computation time vs. accuracy trade off simply by varying the

number of mixture components used. Another interesting direction of research along this

line would be to use low rank approximating families such as factor analysis models.

It should be noted that it is possible to mix our method with VBEM, for example



5.A Appendix 139

using our method for any non-conjugate parts of the model and VBEM for variables that

happen to be conjugate. This is closely related to the non-conjugate variational message

passing (NCVMP) algorithm of Knowles and Minka (2011) implemented in Infer.NET,

which aims to fit conjugate models while maintaining the convenient message passing

formalism. Note that NCVMP only specifies how to perform the variational optimization,

not how to approximate required integrals: in Infer.NET where analytic expectations are

not available quadrature or secondary variational bounds are used, unlike the Monte Carlo

approach proposed here.

5.A Appendix

5.A.1 Unnormalized to normalized optimality condition

The unnormalized optimality condition in (5.8) is

η̃ =

[∫
q̃η̃(x)T̃ (x)′T̃ (x)dν(x)

]−1 [∫
q̃η̃(x)T̃ (x)′ log p(x, y)dν(x)

]
. (5.34)

Clearly we can replace q̃ by its normalized version q(x) = q̃/Z(η) since the normalizing

terms will cancel. Recalling T̃ (x) = (1, T (x)) and η̃ = (η0, η
′)′ we then have

 1 E[T ]

E[T ′] E[T ′T ]

−1 E[Y ]

E[TY ]

 =

 η0

η

 (5.35)

where Y := log p(x, y). Rearranging gives

 E[Y ]

E[TY ]

 =

 1 E[T ]

E[T ′] E[T ′T ]

 η0

η

 (5.36)

Solving for η0 easily gives

η0 = E[Y ]− E[T ]η (5.37)

η = (E[T ′T ]− E[T ′]E[T ])
−1

(E[TY ]− E[T ]E[Y ]) (5.38)

= Cov(T )−1 Cov(T, Y ) (5.39)
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5.A.2 Derivation of Gaussian variational approximation

For notational simplicity we will derive our stochastic approximation algorithm for Gaus-

sian variational approximation (Algorithm 3) under the assumption that x is univariate.

The extension to multivariate x is conceptually straightforward but much more tedious in

terms of notation.

Let p(x, y) be the unnormalized posterior distribution of a univariate random vari-

able x, and let q(x) = N(m,V ) be its Gaussian approximation with sufficient statistics,

T (x) = (x,−0.5x2)′. In order to find the mean m and variance V that minimize the KL-

divergence between q(x) and p(x|y) we solve the transformed regression problem defined

in Equation (5.27), i.e.

η̃ = Eqη [K(η)T̃ (x)′T̃ (x)]−1Eqη [K(η)T̃ (x)′ log p(x, y)

= C−1g

where

K(η) = [∇ηφ(η)]−1,

with φ = (φ1, φ2)′ = (m,V )′ the usual mean-variance parameterization and where the

natural parameters are given by η = (V −1m,V −1)′. Recall identity (5.24) which states

that

∇φ1Eqφ [h(x)] = Eqφ [∇xh(x)],

with φ1 = m the first element of the parameter vector φ, and g(x) any differentiable

function. Similarly, identity (5.25) reads

∇φ2Eqφ [h(x)] = −1

2
Eqφ [∇x∇xh(x)],

with φ2 = V the second element of the parameter vector. Using these identities we find



5.A Appendix 141

that the regression statistics for this optimization problem are given by

C := K(η) Covqφ [T (x), T (x)] = ∇φEqφ [T (x)]

= Eqφ [∇xT (x)] = Eqφ

1 −x

0 −1
2

 =

1 −Eqφ [x]

0 −1
2

 ,
and

g := K(η) Covqφ [T (x), log p(x, y)]

= ∇φEqφ [log p(x, y)]

⇒

g1

g2

 =

 Eq[∇x log p(x, y)]

−1
2
Eq[∇x∇x log p(x, y)]


Now since η = C−1g we have

Pm
P

 :=

η1

η2

 =

1 −Eqφ [x]

0 −1
2

−1 g1

g2


⇒ η2 = P = −2g2 = Eq[∇x∇x log p(x, y)]

η1 = Pm = g1 + P−1Eq[x] = Eq[∇x log p(x, y)] + P−1Eq[x]

where Pm and P are the natural parameters (mean times precision and precision) of the

approximation. Thus the quantities we need to stochastically approximate are

a := Eq[∇x log p(x, y)]

H := Eq[∇x∇x log p(x, y)]

z := Eq[x]

so we have P = H and m = P−1a+ z.
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5.A.3 Connection to Efficient Importance Sampling

It is worth pointing out the connection between fixed-form variational Bayes and Richard

and Zhang’s (2007) Efficient Importance Sampling (EIS) algorithm. Although these au-

thors take a different perspective (that of importance sampling) their goal of approximat-

ing the intractable posterior distribution with a more convenient distribution is identical

to the goal of variational Bayes. Specifically, Richard and Zhang (2007) choose their

posterior approximation to minimize the variance of the log-weights of the resulting im-

portance sampler. This leads to an optimization problem obeying a similar fixed-point

condition as in (5.9), but with the expectation taken over p(x|y) instead of q(x). Since

sampling from p(x|y) directly is not possible, they evaluate this expectation by sampling

from q(x) and weighting the samples using importance sampling. In practice however,

these ‘weights’ are often kept fixed to one during the optimization process in order to

improve the stability of the algorithm. When all weights are fixed to one, Richard and

Zhang’s (2007) fixed-point condition becomes identical to that of (5.9) and the algorithm

is in fact fitting a variational posterior approximation.

The connection between EIS and variational Bayes seems to have gone unnoticed until

now, but it has some important consequences. It is for example well known (e.g. Minka,

2005; Nickisch and Rasmussen, 2008; Turner et al., 2008) that the tails of variational pos-

terior approximations tend to be thinner than those of the actual posterior unless the ap-

proximation is extremely close, which means that using EIS with the importance-weights

fixed to one is not to be recommended for general applications: In case the posterior ap-

proximation is nearly exact, one might as well use it directly instead of using it to form

another approximation using importance sampling. In cases where the approximation is

not very close, the resulting importance sampling algorithm is likely to suffer from infi-

nite variance problems. The literature on variational Bayes offers some help with these

problems. Specifically, de Freitas et al. (2001) propose a number of ways in which vari-

ational approximations can be combined with Monte Carlo methods, while guarding for

the aforementioned problems.

Much of the recent literature (e.g. Teh et al., 2007; Honkela et al., 2010) has focused on

the computational and algorithmic aspects of fitting variational posterior approximations,
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and this work might also be useful in the context of importance sampling. Algorithmically,

the ‘sequential EIS’ approach of Richard and Zhang (2007) is most similar to the non-

conjugate VMP algorithm of Knowles and Minka (2011). As these authors discuss, such

an algorithm is not guaranteed to converge, and they present some tricks that might be

used to improve convergence in some difficult cases.

The algorithm presented in this chapter for fitting variational approximations is prov-

ably convergent, as discussed in Section 5.4. Furthermore, Sections 5.5 and 5.6 present

multiple new strategies for variance reduction and computational speed-up that might also

be useful for importance sampling. In this chapter we will not pursue the application of

importance sampling any further, but exploring these connections more fully is a promis-

ing direction for future work.

5.A.4 Choosing an estimator

As discussed in Section 5.4, the particular estimator used in our stochastic approximation

is not the most obvious choice, but it seems to provide a lower variance approximation

than other choices. In this section we consider three different MC estimators for approxi-

mating (5.9) to see why this might be the case.

The first separately approximates the two integrals and then calculates the ratio:

η̂1 =

(
1

S

∑
r

T̃ (xr)
′T̃ (xr)

)−1
1

S

∑
s

T̃ (xs)
′ log p(xs, y), xr, xs ∼iid q(x), (5.40)

with S the number of Monte Carlo samples. The second approximates both integrals

using the same samples from q

η̂2 =

(
1

S

∑
s

T̃ (xs)
′T̃ (xs)

)−1
1

S

∑
s

T̃ (xs)
′ log p(xs, y), xs ∼iid q(x). (5.41)

Note that only this estimator is directly analogous to the linear regression estimator. The

third estimator is available only when the first expectation is available analytically:

η̂a = Eq
[
T̃ (x)′T̃ (x)

]−1 1

S

∑
s

T̃ (xs)
′ log p(xs, y), xs ∼iid q(x). (5.42)
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We wish to understand the bias/variance tradeoff inherent in each of these estimators. To

keep notation manageable consider the case with only k = 1 sufficient statistic1 and let

a(x) = T̃ (x)′T̃ (x) = T̃ (x)2 (5.43)

b(x) = T̃ (x) log p(x, y) (5.44)

We can now write the three estimators of η more concisely as

η̂1 =
1
S

∑
r b(xr)

1
S

∑
s a(xs)

, xr, xs ∼iid q(x) (5.45)

η̂2 =
1
S

∑
s b(xs)

1
S

∑
s a(xs)

, xs ∼iid q(x) (5.46)

η̂a =
1
S

∑
s b(xs)

E[a]
, xs ∼iid q(x) (5.47)

Using a simple Taylor series argument it is straightforward to approximate the bias and

variance of these estimators. We first consider the bias. Consider the multivariate Taylor

expansion of f : RK → R around the point ȳ ∈ RK :

f(y) ≈ f(ȳ) + (y − ȳ)′f ′(ȳ) +
1

2
tr((y − ȳ)(y − ȳ)′∇2f(ȳ)) (5.48)

From this we can derive expressions for the expectation of f(y):

E[f ] ≈ f(ȳ) +
1

2
tr(Cov(y)f ′′(ȳ)) (5.49)

where we have chosen to perform the Taylor expansion around the mean ȳ = E[y]. For

the first estimator let y = 1
S

∑
s a(xs) and f(y) = 1/y, then we find

E[η̂1] = E

( 1

S

∑
s

a(xs)

)−1
E[b] (5.50)

≈
(

1

E[a]
+

Var(a)

SE[a]3

)
E[b] (5.51)

= E[η] +
Var(a)E[b]

SE[a]3
(5.52)

1These results extend in a straightforward manner to the case where k > 1
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since Var(y) = Var(a)/S. We see that the bias term depends on the ratio Var(a)/E[a]2,

i.e. the spread of the distribution of a relative to its magnitude.

Now for the second estimator let

y =

 1
S

∑
s a(xs)

1
S

∑
s b(xs)

 (5.53)

so that η2 = f(y) = y2
y1

. Note that Cov(y) = 1
S

Cov([a, b]′) and

∇2f(y) =

 2y2
y31

− 1
y21

− 1
y21

0

 (5.54)

Putting everything together we have

E[η̂2] ≈ η +
Var(a)Eb
SE[a]3

− Cov(a, b)

SE[a]2
(5.55)

Note that we recover the expression for Eη̂1 if Cov(a, b) = 0, which makes sense because

if we use different randomness for calculating E[a] and E[b] then a, b have 0 covariance in

our MC estimate. Finally the analytic estimator is unbiased:

Eη̂a = η (5.56)

We now turn to the variances. The analytic estimator is a standard MC estimator with

variance

Var(η̂a) =
Var(b)

SE[a]2
(5.57)

Consider only the linear terms of the Taylor expansion:

f(y) ≈ f(ȳ) + (y − ȳ)′f ′(ȳ) (5.58)
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Substituting this into the formula for variance gives

Var[f(y)] = E[(f(y)− E[f(y)])(f(y)− E[f(y)])′] (5.59)

≈ E[f ′(ȳ)′(y − ȳ)(y − ȳ)′f ′(ȳ)] (5.60)

= f ′(ȳ)′Var(y)f ′(ȳ) (5.61)

We will calculate the variance of the second estimator and derive the variance of the first

estimator from this. Again let y be as in (5.53). Note that Var(y) = Cov(a, b)/S. We find

Var η̂2 ≈
1

S

(
E[b]2 Var a

E[a]4
− 2

E[b] Cov(a, b)

E[a]3
+

Var b

E[a]2

)
(5.62)

The final term is equal to that for the analytic estimator. The second term is not present

in the variance of the first estimator, since then a and b have no covariance under the

sampling distribution, i.e.

Var η̂1 ≈
1

S

(
E[b]2 Var a

E[a]4
+

Var b

E[a]2

)
(5.63)

The first term is always positive, suggesting that η̂1 is dominated by the analytic estimator.

Summarizing these derivations, we have

bias(η̂1) ≈ Var(a)E[b]

SE[a]3

bias(η̂2) ≈ Var(a)E[b]

SE[a]3
− Cov(a, b)

SE[a]2
. (5.64)

Note that the first term is shared, but the first estimator does not have the covariance term

as a result of the independent sampling in approximating the numerator and denominator.

In contrast η̂a is unbiased. Now consider the variances

Var(η̂1) ≈ 1

S

(
E[b]2 Var(a)

E[a]4
+

Var(b)

E[a]2

)
(5.65)

Var(η̂2) ≈ 1

S

(
E[b]2 Var(a)

E[a]4
− 2

E[b] Cov(a, b)

E[a]3
+

Var(b)

E[a]2

)
(5.66)

Var(η̂a) =
Var(b)

SE[a]2
(5.67)
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All three estimators have the same final term (the variance of the “analytic” estimator).

Again the second estimator has an additional term resulting from the covariance between

a and b which we find is typically beneficial in that it results in the variance of η̂ being sig-

nificantly smaller. It is worth recalling that the mean squared error (MSE) of an estimator

is given by

E[(η − η̂)2] = Var(η̂) + bias(η̂)2. (5.68)

Since both the variance and bias are O(1/S), the variance contribution to the MSE is

O(1/S) whereas the bias contribution is O(1/S2), so the variance is actually a greater

problem than the bias. From these expressions it is still not immediately obvious which

estimator we should use. However, consider the case when the target distribution p is in

the same exponential family as q, i.e. when log p(x, y) = T̃ (x)λ. It is then straightforward

to show that

bias(η̂1) ≈ λVar(T̃ 2)

SE[T̃ 2]2
, Var(η̂1) ≈ 2

λ2 Var(T̃ 2)

SE[T̃ 2]2
(5.69)

bias(η̂2) ≈ 0, Var(η̂2) ≈ 0 (5.70)

bias(η̂a) = 0, Var(η̂a) =
λ2 Var(T̃ 2)

SE[T̃ 2]2
(5.71)

We see that in this case for η̂2 the positive and negative contributions to both the bias and

variance cancel. While this result will not hold exactly for cases of interest, it suggests that

for exponential families which are capable of approximating p reasonably well, η̂2 should

perform significantly better than η̂1 or even η̂a. If q and p are of the same exponential

family, it is actually possible to see that η̂2 will in fact give the exact solution in k +

1 samples (with k the number of sufficient statistics), while the other estimators have

non-vanishing variance for a finite number of samples. This means that the approximate

equality in (5.70) can be replaced by exact equality. Using k+1 samples xi, i = 1, ..., k+1,

assumed to be unique (which holds almost surely for continuous distributions q), we have

η̂2 =

(
k+1∑
i=1

T̃ (xi)
′T̃ (xi)

)−1 k+1∑
i=1

T̃ (xi)
′T̃ (xi)λ = λ (5.72)
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That is, the algorithm has recovered p(x, y) exactly with probability one. If we assume we

know how to normalize q, this means we also have p(x|y) exactly in this case. Note that

we recover the exact answer here because the p(x, y) function evaluations are in them-

selves noise free, so the regression analogy really corresponds to a noise free regression.

It is instructive to consider a toy example: fitting an exponential distribution p(x) =

λe−λx, about the simplest possible demonstration of the exact fitting phenomenon shown

in (5.72). We assume that we are unaware that p happens to be normalized. Our variational

approximation has T̃ = [1, x]′ and rate η, i.e. q(x) = ηe−ηx. Note that this is an example

where it is straightforward to calculate

Eq[T̃ (x)′T̃ (x)] =

 1 −η−1

−η−1 η−2


We test the three estimators in (5.40), (5.41) and (5.42) when the true exponential rate is

λ = 1.5, and sampling from the optimal q distribution with η = 1.5. The results confirm

that η̂2 finds the exact rate using just S = 2 MC samples, as predicted by (5.72). We

would expect η̂a to be unbiased, and this is borne out by the results shown in Figure 5.8.

The estimator η̂1 has both poor bias and such large variance that it often gives an invalid

negative rate if fewer than 10 MC samples are used. While this is clearly a very simple

example it hopefully emphasizes the potential benefit to be gained from using estimators

related to η̂2.
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Figure 5.8: Comparison of three estimators for fitting a variational posterior q to a simple exponential
distribution p. 50 repeats were used to estimate the mean and variance of the estimator: the thick line shows
the mean and the thin lines show± one standard deviation. The x-axis indicator the number of MC samples,
S, used. As expected in this case η̂2 gives the correct solution of 1.5 using S ≥ 2 samples.





Chapter 6

A preference ranking model for making

product recommendations

Joined work with Ulrich Paquet and Thore Graepel. Most of the work towards this chapter

was done during an internship at Microsoft Research, Cambridge, UK.

6.1 Introduction

With the advent of the internet, online product recommendation systems have become big

business. Companies like Amazon, Netflix, and Microsoft all depend on online product

recommendations to drive a significant part of their sales: We all recognize Amazon’s

“customers who bought x also bought y” advertisements that are shown after a customer

makes a purchase. Other well-known but less obvious examples of recommendation sys-

tems include the “you may know these people: ” messages on Facebook and LinkedIn,

the personalized news feed of Google news, or personalized online radio channels such as

Last.FM. These recommender systems are very interesting from a research perspective: A

user’s purchasing history, demographics, and interactions with a website provide a small

but diverse data set from which we can learn about that person’s tastes and preferences.

Building a statistical model that efficiently takes this information into account and that can

use it to make useful recommendations is a great challenge. We can recommend Jannach

et al. (2010) for a more elaborate introduction on the topic.

Research on recommender systems received a major boost when the Netflix prize was
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held between 2006 and 2009: a million dollar contest for developing a model to accurately

predict the ratings Netflix’ customers give to the movies they watch. Besides providing

a monetary incentive to work on this problem, the contest also provided a large data set

and benchmark problem for the research community. A comprehensive summary of the

contest and a discussion of its impact on research can be found in Paterek (2012).

During the Netflix prize period recommender systems research was mostly focused on

explicit feedback in the form of ratings. Later research also explored using implicit binary

feedback such as observed purchases or clicks. Often, however, real world data sources

lie in between these extremes. Explicit ratings of items are rare and hard to obtain, but

often our information is richer than a simple binary signal such as click/non-click. For

example, users may express relative value judgments in comparing two different products,

or they may provide a partial preference ranking over available items. Such rankings can

be explicit such as lists of favorite songs, or inferred from implicit information such as

the play counts for these songs. To make efficient use of such information, we propose

in this chapter a new bilinear factor model that maps latent user preferences to observed

pairwise comparisons or rankings over items. Since feedback is relative to other items,

this modeling approach is more robust than models of user preferences on an absolute

scale. Yet it makes more efficient use of available data compared to methods that only

allow for binary feedback. Research also shows that people find it easier to formulate

their preferences in such a relative way (Jaeger et al., 2008, among others). An additional

advantage is that modeling preference rankings directly leads to a ranking of items to be

recommended to users, which is the end goal of most recommendation systems.

We present the new user preference model in Section 6.2. The basis of our model is

formed by a bilinear factor model, similar to the type of models that were successful in

the Netflix prize. Rather than relying upon absolute feedback, however, we couple this

model with a likelihood function that takes into account the relative feedback provided by

a user. Performing inference with this model is discussed in Section 6.3. Here we develop

both an efficient Gibbs sampling algorithm that can be parallelized to allow for very large

data sets, and a deterministic approximation method that is a hybrid of two different types

of approximation algorithms: Expectation Propagation and Variational Bayes Expecta-

tion Maximization. In Section 6.4 we present two applications of our model. The first
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application is recommendation of games on Microsoft’s Xbox Live Marketplace. The 35

million users of this service do not explicitly state their preferences with respect to the

games in the Marketplace catalog, but we do observe their interaction with these games.

We interpret their playing time for each game as revealing a preference ranking over the

games the user owns, and we use this to allow our model to recommend games that the

user does not yet own. In our second example we apply our model to the ranking of sushi

items. We use the publicly available data set of Kamishima and Akaho (2006) in order

to be able to compare our approach to competing methods. This data set describes the

stated preferences over different types of sushi for 5,000 Japanese survey correspondents.

The new model outperforms the previous state of the art on this problem. In Section 6.5

we discuss the potential of the model to guide a more active learning strategy, where

we actively and selectively ask the user for relative feedback on different items. Finally,

Section 6.6 concludes.

6.2 The Model

The classic problem adressed by recommender systems is to predict the level of satis-

faction or utility a given user i will receive from purchasing a given product j. One of

the most popular approaches taken to model this problem is to assign a vector of latent

variables (also called features or factors) to both the users and the items, and to take the

utility for each user/item combination to be the inner product of these user and item vec-

tors. Inferring the latent user and item factors then comes down to constructing a low

rank approximation to the user-item-utility matrix. For this reason this class of models

is known as matrix factorization in the recommender systems literature. Factorizing a

matrix is closely related to calculating its singular value decomposition, so this class of

methods is also sometimes referred to as SVD (singular value decomposition). Koren

et al. (2009) provide an introduction to this class of methods. The model presented here

also falls in the class of matrix factorization methods and is most closely related to the

Bayesian approaches of Stern et al. (2009) and Paquet et al. (2011).

In our model, as in other matrix factorization models, each of the N users and M

items are represented with low-rank factors: user i with a latent K × 1 feature vector ui,
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and item j with a latent K×1 feature vector vj . These feature vectors represent the latent

characteristics of the users and items. As some items are predominantly more popular

than others, each item is also given a univariate bias parameter bj .

The user and item features are combined into a latent score or utility si,j ,

si,j ∼ N(u′ivj + bj, 1) , (6.1)

which represents how much user i likes item j.

The relative ordering of a set of scores determines a user’s preference of one item over

the next. If user i prefers items j1 � j2 (� meaning “is preferred to”), we require that

si,j1 > si,j2 . We interpret our relative feedback data as observations on a number of these

pairwise comparisons between the different latent scores si,j . For each user, we denote

these comparisons by Ci, a sparsely filled matrix of dimension M ×M , with elements

cij,j′ = 1 if si,j > si,j′

cij,j′ = −1 if si,j < si,j′

cij,j′ = empty if unknown . (6.2)

These observed preferences can be explicitly provided by the user in the form of a ranking

or a number of pairwise preference statements, or they can be inferred from the behavior

of the user, for example by ordering the time spent interacting with different items. Sec-

tion 6.4 gives example applications, where we use the model to learn stated preferences

over sushi items and inferred preferences over Xbox games. Importantly, if the prefer-

ences are expressed as a transitive ranking of items, one might always find a set {si,j} that

is consistent over the ranked items j, and hence consistent with user i’s observations Ci.

The data likelihood is then given by

p(C|S) =
N∏
i=1

∏
(j,j′)∈ci

I
[
cij,j′(si,j − si,j′) > 0

]
, (6.3)

where I[true] = 1 and I[false] = 0.

We assign independent normal priors to the user and item vectors, as well as the bias
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terms, with

ui ∼ N(β,B) , for i = 1, . . . , N

vj ∼ N(γ,Γ) , for j = 1, . . . ,M

bj ∼ N(0, ψ) , for j = 1, . . . ,M . (6.4)

Although very popular in the machine learning literature, this type of factor model has

not been discussed much in the marketing or economics literature. The main difference

between this type of model and the more commonly used discrete choice models in econo-

metrics (e.g. the probit and logit variants) is that the model is symmetric: both the pref-

erences of the users and the characteristics of the items are latent, and have to be inferred

from the data, whereas the more common approach in economics is to infer only the user’s

preferences, while the item’s characteristics are observed and thus fixed.

In order to relate the model presented here to the more well-studied choice models of

econometrics, it is instructive to examine the distribution of the utilities S, conditional on

the item characteristics V , b. For convenience, we collect the relevant terms from (6.1)

and (6.4) above:

si,j = bj + v′jui + εi,j, where εi,j ∼ N(0, 1) (6.5)

ui ∼ N(β,B). (6.6)

If we condition on the vj, bj terms, the model above can be recognized as a relatively

standard mixed probit model: (6.5) is the standard probit model, where vj can be inter-

preted as a vector of explanatory variables, and where bj is an item-dependent intercept.

Equation 6.6 then represents the multivariate normal mixing distribution over the subject

parameters ui. If we would replace the standard normal distribution on εi,j with a type-

1 extreme value distribution, we would recover the popular mixed logit specification as

discussed by Revelt and Train (1998) and many others in the marketing literature.

Alternatively, we can integrate out the user parameters ui over their prior distribution

to obtain the conditional distribution of the M × 1 vector of utilities Si for user i given
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V , b:

Si = b+ V β + ηi, where

ηi|V , b. ∼ N(0,V BV ′ + IM), (6.7)

where the item features are stacked into anM×N matrix V , and the biases into anM×1

vector b. Conditional on V , b, equation 6.7 can then be recognized as a standard multi-

nomial probit model, with V the matrix of explanatory variables and β their coefficients.

The covariance matrix of the utility errors ηi in this model has a low-rank factor structure,

as is common for this type of models (see e.g. Yai et al., 1997).

The comparison to mixed probit and multinomial probit models allows us to better

understand the preference model presented here. The difference between our model and

these standard models is that in our case the “explanatory variables” vj are latent instead

of observed, but our model still shares many of the properties of the more standard probit

models. In particular, our model does not have the independence of irrelevant alterna-

tives (IIA) property. For additional analysis of this type of discrete choice models see

Train (2003). Furthermore, note that although our model is very flexible in modeling

the characteristics of the items, the user’s mean utilities are still linear functions of the

continuous attributes of the items. This means that the model cannot represent arbitrary

monotone preferences, as is possible with a nonparametric approach such as the one used

by Geweke (2012).

For the applications in this chapter, we set the prior means of ui and vj to zero for

all i, j, and their prior covariance matrices to π IK . This leaves us with two scalar prior

parameters π and ψ. These parameters are set manually for our examples, but can also

be inferred from the data, as explained in Paquet et al. (2011). For brevity we do not

consider this here. We set the feature dimensionality K to a default value of 20. As

with other applications of matrix factorization we find that the results are generally better

for large values of K than for small values, but that the improvement levels off as K is

increased. Since the computational work demanded continues to grow at least linearly in

K, a value between 10 and 100 is recommended for most applications.

A graphical representation of the full Bayesian network of our model is given in Figure
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Figure 6.1: The proposed Bayesian factor model for learning preference rankings

The next section discusses how to obtain the posterior distribution of the parameters

U ,V , b conditional on the observed preferences.

6.3 Bayesian Inference

The model proposed in the last section does not admit a closed form posterior distribution

for the parameters U ,V , b that we need in order to make recommendations. We there-

fore propose two strategies for approximating this posterior distribution: a Gibbs sam-

pling algorithm to generate samples from the posterior distribution, and a deterministic

approximation algorithm that minimizes local divergence measures between the poste-

rior distribution and a factored approximation. The performance and scaling of these two

algorithms is evaluated on real world data in Section 6.4.

6.3.1 Gibbs Sampling

We can generate correlated samples from the posterior distribution using a Gibbs sam-

pling algorithm that iteratively samples from the conditional distributions p(ui|V , b,S),

p(vj, bj|U ,S) and p(si,j|si,/j,ui,vj, bj,Ci), for all i, j, where si,/j denotes the vector of

all scores for user i excluding the j-th. The conditional distributions p(ui|V , b,S) and

p(vj, bj|U ,S) are Gaussian and have been used by several authors before. See Paquet
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et al. (2011) for their precise form. The full conditionals p(si,j|si,/j,ui,vj, bj,Ci) are

univariate truncated normal, which follows from the Gaussian conditional prior (6.1) and

the truncating likelihood (6.3).

The si,j are most efficiently updated by first performing a forward pass over all scores

for a given user i, sampling the scores si,j in the order of the observed preference ranking,

followed by a backward pass sampling in the reversed order. (Observe that we do not have

to sample those si,j for which we have no feedback.) We find that this updating schedule

does a good job of sampling the relative differences between the scores, but that it is slow

in changing the overall level of the scores. To further improve the mixing of the Gibbs

sampling algorithm we therefore follow the forward and backward pass by an additional

Monte Carlo step that simultaneously shifts all scores for a given user, while leaving the

stationary distribution of the Markov chain invariant. The update equation for this step is

given as

si,j ← si,j + di, with j = 1, . . . , Li

di ∼ N(f̄i − s̄i, L−1
i ) , (6.8)

with Li the number of items for which user i has provided feedback, s̄i the mean sampled

score for those items, and where f̄i the mean of the predicted scores for those items:

f̄i =
1

Li

∑
j

u′ivj + bj.

Since sampling the scores using the steps outlined here is relatively quick compared to

sampling U ,V and b, we find that the most efficient implementation of Gibbs sampling

resamples S multiple times per iteration.

6.3.2 Hybrid VB/EP posterior approximation

The Gibbs sampling algorithm outlined in the last section is relatively fast and can be ap-

plied at quite a large scale, however for very large data sets a deterministic approximation

of the posterior distribution may provide a better tradeoff between accuracy and computa-

tional cost. An additional advantage of such a deterministic approximation is that it con-
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verges to a single mode of the posterior distributions and that it can be represented more

compactly than the Gibbs sampling approximation, which reduces the computational cost

of generating new recommendations for users given the posterior approximation. We de-

velop a new algorithm to construct such a deterministic approximation, making use of

Expectation Propagation (EP) (Minka, 2001a) for the ranking likelihood (6.3) and Varia-

tional Bayes for the latent factor model. EP provides an excellent approximation for the

unimodal posterior resulting from the truncated Gaussian in (6.3), whereas Variational

Bayes picks and locally approximates the posterior mode resulting from the product fac-

tor in (6.1) as described in Lim and Teh (2007) among others.

We approximate the posterior distribution p(U ,V , b|C) with a fully factorized Gaus-

sian

q(U ,V , b) =
∏
i,k

q(ui,k)
∏
j,k

q(vj,k)
∏
j

q(bj), (6.9)

although our inference algorithm can also be used with a Gaussian approximation that

preserves some of these dependencies, e.g. q(U ,V , b) =
∏

j q(vj, bj)
∏

i q(ui). In order

to optimize this approximate posterior distribution we first approximate the likelihood

term p(C|S) by a product of univariate Gaussian density functions in si,j , i.e.

q(C|S) =
∏
i,j

φ(si,j;µi,j, σ
2
i,j), (6.10)

with φ(·) a Gaussian pdf, which we initialize to have infinite variance. The parameters of

the likelihood approximation, µi,j and σ2
i,j are then set using EP. This EP step starts with

the construction of a Gaussian ’pseudo prior’ on the si,j:

q(si,j) ∝ φ(si,j;µ
∗
i,j, σ

2∗
i,j)/φ(si,j;µi,j, σ

2
i,j),

µ∗i,j = Eqsi,j and σ2∗
i,j = Varq si,j, (6.11)

where the expectations Eq are taken with respect to the current posterior approximation

q(U ,V , b). Under the pseudo prior q(si,j), the algorithm for determining the approximate

likelihood terms φ(si,j;µi,j, σ
2
i,j) is a special case of algorithm 1 as presented in Chapter 3,

where the pairwise restrictions of (6.3) form the non-Gaussian likelihood terms. We refer

the reader to that chapter for additional information. This approximation step is also very
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similar to the approach taken by Dangauthier et al. (2008), whose work can be consulted

for additional details.

After the EP step, we optimize the posterior approximation using Variational Bayes,

i.e. we choose our posterior approximation to solve

max
q(U ,V ,b)

Eq log q(C|S)p(U ,V , b)− log q(U ,V , b) , (6.12)

under the restriction that q(U ,V , b) is of the form specified in (6.9). This constrained op-

timization problem can be solved efficiently using the Variational Bayes Expectation Max-

imization (VBEM) algorithm. Since our pseudo likelihood terms q(C|S) are now i.i.d.

Gaussian, the update equations for the optimization are identical to those used in earlier

factor models with absolute feedback (see Lim and Teh (2007) for their exact form). This

approach shares some characteristics with other works using variational approximations

in which the si,j are assumed unobserved (e.g. Paquet et al., 2011), however, note that

with our approach the expectations with respect to si,j in (6.12) follow from q(U ,V , b)

and the model in (6.1) rather than from a separate posterior approximation on the si,j as is

more commonly used. By avoiding this explicit approximation of p(S|C), the posterior

approximation q(U ,V , b) gains in accuracy without increasing computational cost. The

VBEM and EP steps are repeated until convergence. For typical applications with a small

to medium number of comparisons per user we find that around 50 iterations is usually

sufficient.

6.3.3 Parallel Computation

For many real world applications of recommendation algorithms, both the number of users

as well as the number of items is very large, necessitating the use of parallel computation

to speed up inference. Both algorithms described above can be completely parallelized

over users when updating S and U , and over items when updating V and b, which is

an important advantage over the message passing algorithm used in Stern et al. (2009)

for a similar problem. Since in our applications the number of items is relatively small

compared to the number of users, we found it most efficient to distribute the users and

their feedback over multiple threads. Within each thread, S and U can then be updated
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without requiring any communication across threads. Every update of V and b then

requires each thread to submit the sufficient statistics for the update of these variables

and to receive the updated values. Since the number of items is relatively low this adds

very little overhead and it allows us to speed up inference almost linearly with the number

of available computate nodes. Using this strategy for spreading the computation across

compute nodes we were able to perform inference very quickly on massive data sets.

6.4 Recommendation

We now present two real world applications of our model and compare its performance

against alternative methods.

6.4.1 Xbox marketplace

The motivating application for the current work is the recommendation of games on Mi-

crosoft’s Xbox Live Marketplace. The 35 million users of this service do not explicitly

state their preferences with respect to the games in the Marketplace catalog, but we do

observe their interaction with these games. Specifically we observe how much time each

user spends playing each game. The old recommendation engine used for this service

only used this data to infer which user owned which game and then interpreted ownership

as positive feedback and non-ownership as negative feedback. This works quite well in

predicting whether or not a user owns a game, however this is not the task that we are

trying to solve: we want to generate good recommendations for games the user does not

yet have. Specifically, a recommendation is good if a user is happy with the recommended

game after buying it. The users do not provide this type of feedback explicitly, but if a

user is happy with the recommended game we expect him or her to spend a lot of time

playing it. Our statistical problem thus comes down to predicting the time a user spends

playing a game, conditional on owning it. We could model this play time directly, but

this is hard to do as different users can have very different behaviour: some users own

many games and play multiple hours a day, while others own only a few and play only

once a week. Furthermore, modeling the play time on an absolute scale is unnecessary

since we only need a ranking of predicted play times to generate our recommendations.
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A more robust approach is thus to model the time a user spends on a game relatively to

how much the user spends on other games. We do this by constructing a ranking from the

observed play time and we use this to infer user preferences using the model presented in

section 6.2.

We evaluate our model for this task by collecting a data set containing all Xbox Live

Marketplace users that own at least five games. Of the games each user owns we select

two into a holdout set and we use the rest for model estimation. We then use the model to

predict whether each user spends more time playing the first holdout game or the second

holdout game. The model is able to pick the correct game in 72% of the cases, which is a

small but meaningful improvement over a simple benchmark based on popularity.

In addition, we can check that our probabilistic model is appropriate by comparing

the confidence of these predictions to the empirical fraction of correctly predicted games.

Figure 6.2 shows that these two measures correspond quite closely, but that our more con-

fident predictions are somewhat overconfident, which may be due to our approximation

of the posterior distribution. Overall our model seems reasonably well calibrated and the

probabilistic model works well in modeling the ranking of play time.
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Figure 6.2: Xbox games: Posterior predicted probability versus correctly predicted fraction, obtained using
the deterministic approximation
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6.4.2 Learning Sushi preferences

In order to compare the new algorithms to existing methods we evaluate them on the

publically available sushi preference data of Kamishima and Akaho (2006). This data

set was generated by asking 5,000 Japanese survey correspondents to order a subset of

100 sushi types according to their preferences. Each correspondent provided two such

ordered lists containing 10 different sushi types. Kamishima and Akaho (2006) evaluate

their collaborative ranking approach by estimating their model on list ’B’ and using the

model to predict the order of list ’A’. They measure the performance of their method by the

average Spearman correlation between the predicted and realized rankings. We use this

measure to compare the performance of the new method to the ’Nantonac’ algorithm of

Kamishima and Akaho (2006), and also to compare our two inference algorithms against

each other. Using this measure, we found that the maximum predictive accuracy was

reached after about 1000 draws of the Gibbs sampler after a burn-in period of 100 draws,

or after 50 iterations of the VB/EP algorithm. After that, additional draws or iterations no

longer significantly changed the accuracy of the predictions. The corresponding results

are shown in Table 6.1 below.

Table 6.1: Prediction accuracy of different methods on Sushi preference data

METHOD SPEARMAN COR. TEST

NEW FACTOR MODEL, GIBBS 0.56
NEW FACTOR MODEL, VB/EP 0.54
NANTONAC (KAMISHIMA AND AKAHO, 2006) 0.49

The results in Table 6.1 show that the new method compares favorably to that of

Kamishima and Akaho (2006): The Gibbs sampling version of the new algorithm im-

proves the Spearman correlation of the predictions with the test set by 0.07 in compari-

son with the Nantonac method, while the deterministic posterior approximation gives an

improvement of 0.05. The relatively small performance difference between the Gibbs

sampling inference algorithm and the deterministic posterior approximation suggests that

the latter is the more practical choice for real world applications, taking into account its

benefits discussed in Section 6.3.2.
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6.5 Active Learning

In order to improve our recommendations we may actively ask users to provide explicit

feedback on certain items. This is most commonly done on an absolute rating scale,

i.e. by asking the users to rate items. However, some studies indicate that people are

better able to formulate their preferences in a relative way, by ranking multiple items, see

e.g. Jaeger et al. (2008). Such relative preference statements can be used directly by the

model presented in Section 6.2.

Asking the user for feedback is costly as it will take time for the user to think about

his or her preferences. In addition, users may find it difficult to provide a full ranking of

a very large list of items, so the number of items we can enquire about is limited. When

selecting this limited number of items we should take into account that not every item will

be equally informative.

The question of how to optimally select the items to present to the user for feedback

has been well studied in the field of Marketing, in the context of optimal design of con-

joint analyses. Specifically, Vermeulen et al. (2007) consider optimal design of rank-order

conjoint experiments, and Sandor and Wedel (2005) and Yu et al. (2009) discuss optimal

design with heterogeneous respondents, both of which are relevant to the current applica-

tion.

This problem has also received a lot of attention in the Machine Learning literature

(Cohn et al., 1996; Roy and McCallum, 2001; Blum and Langley, 1997; Settles, 1994) un-

der the name of active learning. In comparison, the machine learning literature puts more

emphasis on incremental design of experiments and on the accompanying computational

issues, both of which are also quite important for the current application.

In order to select informative items for user feedback, we must first decide on how to

measure this information. In our approach to active learning / optimal design, we follow

MacKay (1992) in defining the amount of information contained in a data point as the

entropy reduction in our posterior distribution that we can expect upon conditioning on

that data point. By maximizing the expected entropy reduction in our posterior we can

then select the most informative items to present to the user for feedback. Kessels et al.

(2006) discuss multiple other measures of information that can be used. The entropy of a
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distribution is closely related to the D-error that Goos and Vandebroek (2004) propose to

minimize, and we expect our results to be similar when using other popular measures of

information.

Since the posterior distribution of the model given in Section 6.2 is not available in

closed form, we cannot maximize the expected entropy reduction exactly. However, we

can get an estimate of the amount of information in each possible observation by making

use of posterior approximations. In doing so we will focus on the entropy reduction

in the posterior distribution of the user parameters q(ui), which – due to their greater

number – are generally much more uncertain than the parameters of the items. To derive

an expression for the approximate entropy reduction after obtaining a new observation,

we assume a factorized posterior approximation over U ,V , b and S, optimized using a

fictional Variational Bayes procedure similar to that of Lim and Teh (2007). Our aim

here is not to develop another inference algorithm, but rather to develop a rough sense

of the entropy in the true posterior distribution. The Variational Bayes EM algorithm

uses the following update equation for the approximate posterior distribution on the user

parameters:

q(ui) = N(µ,Σ), with (6.13)

Σ =

[
1

π
IK +

∑
j

Eq
[
vjv

′
j

]]−1

µ = Σ

[∑
j

Eq [vj (si,j − bj)]

]
(6.14)

Note that these equations do not make any reference as to how the posterior approxima-

tion q(V , b) is determined, since our intent here is not to provide a complete inference

algorithm. The entropy of this approximate posterior distribution q(ui) is given by

H(q(ui)) ∝ 0.5 log |Σ| . (6.15)

After adding a new item l to the ranking of the user we can use equation (6.14) to update

the approximate posterior distribution q(ui) to q′(ui) = N(µ′,Σ′), while keeping q(V , b)
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fixed. The new entropy of q′(ui) is then given by

H(q′(ui)) ∝ 0.5 log |Σ′| = −0.5 log |Σ−1 + Eqvlv′l|

∝ H(q(ui))− 0.5 log(1 + Eqv′lΣvl) (6.16)

The most informative item is that item l, for which the difference in the entropy ex-

pressions derived here is largest. The approximation presented here is crude, but the

conclusion from equation (6.16) is clear: in order to maximize the information gain, or

entropy reduction, we should ask the user to rank that item for which the parameter vector

vl has the highest posterior expected Mahalanobis norm ‖vl‖Σ with respect to the covari-

ance matrix of the current posterior approximation. This has the effect of selecting items

that are most informative for exactly those elements of the user vector ui of which we are

most uncertain. Comparing our model to a standard linear regression model, one could

say that we should select those items that have high leverage with respect to our most

uncertain regression coefficients. Note that for the approximate entropy (6.16) it does not

matter what other item we compare the new item l to, or even whether we have a complete

ranking with the new item or just a partial ranking. While this is obviously a very crude

approximation, it still gives us a useful rule for actively selecting cases in our data set as

is shown below.

We evaluate this active selection strategy using the sushi preference data, and we com-

pare the resulting prediction accuracy with that obtained under random selection of cases

from the data set. For each user the data set contains a ranking of 10 items of sushi to

be used for model estimation, and a testing set of another 10 items to be used for eval-

uation. We actively select a subset from the estimation set for each user by starting out

with an empty selection set and subsequently adding that sushi item that minimizes the

expected entropy in Equation (6.16). We then use the resulting selection of data to predict

the ranking of the test set. For comparison, we do the same while selecting randomly

from the remaining sushi items at each iteration. We display the accuracy of the resulting

predictions for different numbers of selected items from a minimum of 3 to the maximum

of 10. As can be seen from Figure 6.3 the active selection method leads to faster learning

of the correct preferences than random selection.
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Note that the performance measures of the two selection methods in Figure 6.3 con-

verge as the number of selected data points increases because both methods select from

the same limited set of 10 data points: at the far right of the graph both methods use the

same (full) data set of 10 data points. For a small number of data points the performance

of the active selection method improves much faster than under random selection, indicat-

ing the practical value of such an active learning strategy for real life applications, where

the user typically only provides feedback on a relatively small fraction of items.
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Figure 6.3: Sushi: Prediction accuracy obtained using active versus random selection of estimation data

6.6 Conclusion

We have proposed a Bayesian factor model to learn user preferences for the purpose of

product recommendation. Learning rankings of preferred items with this model can be

done quickly and efficiently at large scale, using the two inference algorithms we have

developed. The accuracy of our model was demonstrated on a real world data set and

was shown to improve upon existing methods. In addition, we have shown that the model

can also be used effectively for active preference elicitation. By actively selecting product

comparisons to present to the user, we can uncover the user’s preferences without requir-

ing large amounts of feedback. This makes the process of preference elicitation much less

burdensome on the user, and it can dramatically improve prediction accuracy for real life
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applications.



Chapter 7

Nederlandse samenvatting

Kansrekening is slechts gezond verstand

gereduceerd tot calculus.

Pierre Simon Laplace, 1812

Het citaat hierboven is afkomstig uit het baanbrekende werk van Pierre Simon Laplace,

Théorie analytique des probabilités, waarin hij de basis legt voor wat tegenwoordig be-

kend staat als Bayesiaanse analyse. In dit werk beschrijft hij kansrekening en statistiek

als methodes die men nauwkeurig laat maken wat weldenkende mensen instinctief aan-

voelen, vaak zonder hier een reden voor te kunnen geven. Deze beschrijving bevat een

diep inzicht: Kansrekening biedt een strak en eenvoudig recept dat voorschrijft hoe we

logisch kunnen redeneren onder onzekere omstandigheden. Dit inzicht is wat mij aantrok

tot de econometrie toen ik hier voor het eerst mee in aanraking kwam. Naar mate mijn

kennis van kansrekening toenam, kwam echter ook steeds meer het besef dat dit citaat

op zichzelf de dingen te eenvoudig voorstelt: Gezond verstand vertalen naar de wiskunde

is in de praktijk vaak erg lastig. Net als bij het maken van een goede vertaling uit het

Nederlands naar een vreemde taal, kost ook het vertalen van ideeën in de taal van kan-

sen veel oefening. Een bijkomend probleem is dat de wiskunde behorende bij een goede

vertaling vaak te lastig is om exact op te lossen. Het is dan ook de taak van statistici en

econometristen om praktische manieren te vinden voor het omzetten van gezond verstand

naar kansrekening, en om slimme nieuwe manieren te verzinnen om vervolgens de resul-

terende wiskundige problemen op te lossen. Dit proefschrift bevat mijn bijdrage hiertoe.
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7.1 Probabilistische modellering

Econometristen houden zich bezig met de vraag hoe data gebruikt kan worden om te

leren over de economie. In de praktijk komt dit neer op het bestuderen van data sets,

bestaand uit meerdere observaties van een bepaalde afhankelijke variabele y waarin we

geı̈nteresseerd zijn, bijvoorbeeld het bruto binnenlands product van een land, en een aantal

verklarende variabelen x, bijvoorbeeld de bevolkingsdichtheid en de beschikbaarheid van

grondstoffen in dat land. Het doel van de econometrist is dan om iets te leren over de

economische relatie tussen x en y. Op zichzelf is een lijst met een aantal x en y waarden

niet erg nuttig: het geeft ons geen economische inzichten en het zegt niets over situaties

waarvan we nog geen data hebben. Het leren uit data kan daarom pas plaats vinden als we

eerst de context van deze data bepalen. In de econometrie bestaat deze context meestal uit

een probabilistisch model.

Een model is een wiskunde beschrijving van een aantal (economische) hypotheses

over de relatie tussen de variabelen in een data set. Zo’n model is vaak afkomstig uit

de economische theorie. Een model beschrijft wat we van de wereld weten voordat we

de data hebben gezien, en op deze manier maakt het model de data interpreteerbaar: In

plaats van een grote lijst met getallen kunnen we onze data nu interpreteren in de context

van een model. Een economisch model beschrijft op zijn best een ruwe benadering van

de werkelijkheid. Economiën zijn zo complex dat we nooit over alle relevante informatie

kunnen beschikken, of alle onderliggende processen kunnen begrijpen. Door onzekerheid

toe te laten in onze modellen geven we toe dat ze niet perfect zijn. Kansrekening is een

taal om deze onzekerheid precies te maken; het laat ons specificeren hoeveel en wat voor

type onzekerheid we precies in onze modellen willen opnemen. Zulke modellen met

onzekerheid noemen we probabilistische modellen.

Een econometrisch model bevat meestal twee vormen van onzekerheid: De eerste

is onzekerheid over de economische relatie tussen x en y, wat we parameter of model

onzekerheid noemen. Het kan bijvoorbeeld voorkomen dat we niet weten of deze relatie

lineair of niet-lineair is, en zelfs als we aannemen dat een relatie lineair is dan weten

we vaak nog niet met welke coëfficiënt. Dit type onzekerheid drukken we vaak uit in

onze modellen door ze afhankelijk te maken van een aantal onbekende parameters die we
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noteren als θ.

Het tweede type onzekerheid is een onderkenning dat een model fouten maakt: Zelfs

een erg goed model zal nooit alle relevante factoren van een economisch proces bevatten,

of de precieze relatie tussen deze variabelen en de afhankelijke variabele kunnen beschrij-

ven. Door extra onzekerheid in het model op te nemen laten we de mogelijkheid bestaan

dat iets de afhankelijke variabele y beı̈nvloedt dat we niet in het model hebben opgeno-

men. Dit type onzekerheid wordt doorgaans beschreven door een foutenterm waarvoor we

meestal het symbool ε gebruiken. Ook bevat een model vaak een aantal latente variabelen

die we s noemen. Zulke latente variabelen beschrijven vaak belangrijke maar verborgen

aspecten van de landen of personen in onze data set, en worden bijvoorbeeld gebruikt in

situaties waarin onze data incompleet is. De onzekerheid in ε en s maken we expliciet

door aan hen een kansverdeling toe te kennen, die beschrijft hoe veel en wat voor type

onzekerheid we aan deze variabelen verbinden.

Het is belangrijk om stil te staan bij het feit dat dit niet de enige manier is om uit data

te leren. In veel situaties worden andere oplossingen gebruikt, die niet op probabilistische

modellen zijn gebaseerd, zoals bijvoorbeeld in de klassieke nonparameterische econome-

trie. Het grote voordeel van probabilistische modellering is echter dat het een duidelijk en

wijd toepasbaar recept oplevert voor het redeneren onder onzekerheid. Probabilistische

modellen zijn inzichtelijk en hun structuur is modulair, wat onderzoekers de mogelijk-

heid geeft om elementen uit eerdere modellen te hergebruiken en de combineren voor het

analyseren van verschillende vraagstukken. Een bijkomend voordeel is dat deze manier

van redeneren een scheiding aanbrengt tussen de kennis en aannames die we hebben (het

model) en het uiteindelijke algoritme dat we gebruiken om van de data te leren. Op deze

manier blijft het duidelijk wat we uit de data kunnen concluderen, en welke van onze

conclusies het resultaat zijn van het model.

7.2 Op aannemelijkheid gebaseerde econometrie

In de context van een probabilistisch model is ons doel om uit de data te leren welke

van de mogelijke parameterwaarden aannemelijk zijn. Het is daarom belangrijk om na

te denken over welke informatie de data eigenlijk bevat. Wat betreft de zienswijze van
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dit proefschrift kunnen we zeggen dat alle informatie in een data set is beschreven door

de aannemelijkheidsfunctie: Een probabilistisch model geeft ons een kansverdeling voor

de afhankelijke variabele y, gegeven de verklarende variabelen x en de waarden van de

parameters θ, wat we kunnen schrijven als p(y|x; θ). Als we de waarden van x en y in

deze uitdrukking vastleggen op de waarden die we hebben waargenomen in onze data set,

hebben we een functie over die alleen van de parameters θ afhankelijk is. Deze functie

schrijven we meestal als L(θ) en noemen we de aannemelijkheidsfunctie. Simpel gezegd

is het de aannemelijkheidsfunctie die ons zegt hoe goed de data door het model wordt

verklaard als de parameters gelijk zijn aan θ. De stelling dat de aannemelijkheidsfunc-

tie alle informatie in de data beschrijft noemen we het aannemelijkheidsprincipe. In de

praktijk betekent dit principe dat twee verschillende data sets met dezelfde aannemelijk-

heidsfunctie tot dezelfde statistische conclusies zouden moeten leiden (onder het zelfde

model).

Uitgaande van het aannemelijkheidsprincipe is het logisch dat de aannemelijkheids-

functie de basis vormt voor het leren uit data van de parameterwaarden θ. Hoewel ook

andere methodes gebruikt worden, is veel van de moderne econometrie inderdaad op aan-

nemelijkheid gebaseerd. De twee meest gebruikte methodes voor het werken met aanne-

melijkheid zijn de methode van de maximale aannemelijkheid en Bayesiaanse analyse.

Als we de methode van maximale aannemelijkheid gebruiken, dan wordt onze schat-

ting van de parameters θ gegeven door die waarden die corresponderen met het maximum

van de aannemelijkheidsfunctie:

θ̂ML = arg max
θ

L(θ). (7.1)

In andere woorden, we selecteren het model (beschreven door θ) waarvoor onze data het

meest aannemelijk is.

In tegenstelling tot de meest aannemelijke schatter geeft Bayesiaanse analyse ons niet

alleen een puntschatting van de parameters, maar een hele posterior verdeling of nadicht-

heid, die weergeeft hoe waarschijnlijk elke parameterwaarde is nadat we de data hebben

gezien. Om een Bayesiaanse analyse van een probleem te maken moeten we eerst for-

muleren hoe waarschijnlijk we elke parameterwaarde vinden voordat we de data hebben
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gezien. Dit doen we in de vorm van een prior of voordichtheid, geschreven als p(θ). De

nadichtheid wordt dan verkregen met de volgende formule:

p(θ|y) ∝ p(y|x; θ)p(θ). (7.2)

De aannemelijkheidsfunctie neemt hier de rol aan van een wegingsfunctie over the hy-

potheses die door θ worden beschreven. De voordichtheid p(θ) beschrijft het gewicht

dat we aan elke parameterwaarde toekennen voordat we de data hebben gezien. De aan-

nemelijkheidsfunctie werkt deze gewichten dan bij door ze te vermenigvuldigen met de

aannemelijkheid. Het resultaat zijn de gewichten die we geven aan de parameterwaar-

den nadat we de data hebben gezien. Deze manier van het vermenigvuldigend bijwerken

van de gewichten lijkt vrij willekeurig, maar het is de enige consistente manier om van de

oorspronkelijke gewichten p(θ) naar nieuwe gewichten p(θ|y) te gaan; elke andere manier

van het bijwerken van de gewichten is in strijd met zichzelf, zoals uitgelegd door onder

anderen Jaynes en Bretthorst (2003).

7.3 Rekenkundige uitdagingen

Bayesiaanse analyse en de meest aannemelijke schatter volgen beiden een simpel concept;

hun essentie wordt beschreven door slechts een enkele vergelijking (vergelijkingen 7.1 en

7.2). Echter, het daadwerkelijke rekenen met deze vergelijkingen is vaak erg lastig. Om

de aannemelijkheidsfunctie L(θ) uit te rekenen moeten we integreren over de fouten ε en

de latente variabelen s:

L(θ) =

∫ ∫
p(y, ε, s|x; θ)dεds. (7.3)

Om de meest aannemelijke schatter te verkrijgen moeten we deze functie dan ook nog

eens maximaliseren, wat zeer lastig kan zijn. Voor een Bayesiaanse analyse moeten we

extra integraties doen over de parameters θ om te nadichtheid goed te beschrijven. Bij-

voorbeeld, om de verwachting van een functie f(θ) onder de nadichtheid uit te rekenen
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moeten we de volgende integraal oplossen:

E[f(θ)|y] =

∫
f(θ)p(θ|y)dθ. (7.4)

Beide integralen (7.3) en (7.4) kunnen meestal niet analytisch worden uitgerekend.

Ook het numeriek uitrekenen van de integralen is lastig als θ, ε en s van erg hoge

dimensie zijn. Dit rekenkundige probleem heeft de NP-moeilijk complexiteit (Cooper,

1990; Bacchus et al., 2003; Dagum en Luby, 1993), wat betekent dat de hoeveelheid

rekenwerk exponentieel toeneemt met de dimensie van θ, ε en s. In de praktijk betekent

dit dat het exact uitrekenen van de aannemelijkheidsfunctie snel onmogelijk wordt voor

algemene probabilistische modellen. Om in de praktijk met deze modellen te kunnen

werken moeten we daarom benaderingen gebruiken.

Het meest gebruikte type benadering in de econometrie is de Monte Carlo methode,

maar er bestaan ook meerdere deterministische benaderingen. Recentelijk worden deze

twee types van benadering ook succesvol gecombineerd, zoals bijvoorbeeld in hoofdstuk 5

van dit proefschrift. De laatste jaren zijn door de ontwikkelingen in Monte Carlo methodes

en andere benaderingsmethodes veel problemen oplosbaar geworden met Bayesiaanse

analyse en de methode van maximale aannemelijkheid, maar de rekenkundige problemen

zijn nog lang niet opgelost.

Dagum en Luby (1993) bewijzen dat zelfs het benaderen van (7.3) en (7.4) met een

zekere nauwkeurigheid de NP-moeilijk complexiteit heeft in het algemene geval, wat be-

tekent dat er niet één enkel algoritme kan bestaan dat snel en efficiënt schattingen kan

maken voor alle probabilistische modellen. Het lijkt of Monte Carlo methodes aan deze

val ontsnappen, aangezien de nauwkeurigheid van een Monte Carlo benadering niet di-

rect van de dimensionaliteit afhangt, maar het simuleren van algemene kansverdelingen is

helaas NP-moeilijk op zichzelf. Cooper (1990) zegt daarom dat dit ‘suggereert dat onder-

zoek moet worden weggeleid van de zoektocht naar algemene, efficiënte probabilistische

algoritmes, en moet worden gestuurd naar het ontwerp van efficiënte algoritmes voor spe-

ciale gevallen, gemiddelde gevallen, en benaderingsmethodes.’ Dit is precies het doel van

dit proefschrift: Het ontwikkelen van benaderingsalgoritmes voor het oplossen van inte-

ressant specifieke problemen in de econometrie, waarvoor op aannemelijkheid gebaseerde
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econometrische analyse vooralsnog niet mogelijk was.

7.4 Overzicht

Het hierboven gestelde doel wordt gerealiseerd in vijf aparte hoofdstukken, die op zich-

zelf staan en apart gelezen kunnen worden. De eerste twee hoofdstukken gebruiken de

methode van de maximale aannemelijkheid: Hier worden twee toepassingen besproken

waarbij de aannemelijkheidsfunctie moeilijk uit te rekenen is. In deze hoofdstukken ont-

wikkelen we deterministische algoritmes om de aannemelijkheidsfunctie te benaderen.

De overige hoofdstukken zijn geschreven vanuit het Bayesiaanse perspectief: De toepas-

singen die hier worden besproken leiden tot rekenkundige uitdagingen doordat er geavan-

ceerde modellen worden gebruikt of doordat er grote hoeveelheden data worden geanaly-

seerd. In deze hoofdstukken gebruiken we een combinatie van Monte Carlo methodes en

deterministische benaderingen.

Hoofdstuk 2 is gebaseerd op het werk van Abbring en Salimans (2013). Hier presen-

teren we een nieuwe methode om de aannemelijkheidfunctie uit te rekenen voor mixed

hitting-time modellen: duurmodellen gebaseerd op de tijd die het kost voor een latent

Lévy proces om een heterogene drempelwaarde te overschrijden. De aannemelijkheids-

functie voor dit soort modellen is niet beschikbaar in analytische vorm, maar de Laplace

transformatie van de aannemelijkheidsfunctie is wel bekend. Door gebruik te maken van

speciale eigenschappen van Lévy processen, ontwikkelen we een algoritme dat deze Lap-

lace transformatie kan inverteren om zo de aannemelijkheidsfunctie te verkrijgen. Dit

algoritme gebruiken we om de meest aannemelijke schatter uit te kunnen rekenen voor

mixed hitting-time modellen. Deze schattingsmethode gebruiken we vervolgens voor een

analyse van de stakingsdata van Kennan (1985).

Hoofdstuk 3 is gebaseerd op het werk van Salimans en Fok (2013). Hier ontwikkelen

we een algoritme voor het benaderen van maximale aannemelijke schatters voor dynami-

sche modellen van extreem hoge dimensie, toegepast op data die niet normaal verdeeld is.

Onze methode is gebaseerd op het Expectation Maximization [EM] algoritme, waar we de

Expectation stap benaderen met gebruik van het Expectation Propagation [EP] algoritme

van Minka (2001). Met behulp van simulatiestudies laten we zien dat deze methode er
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goed in slaagt om de parameters van een dynamisch model terug te schatten uit de data.

Verder passen we onze methode succesvol toe op twee problemen uit de praktijk: (i) Het

voorspellen van aantallen verkochte kranten over verschillende individuele winkels; en

(ii) het voorspellen van de uitkomsten van schaakwedstrijden. Voor beide toepassingen

gebruiken we dynamische modellen van extreem hoge dimensie, zonder normale verde-

ling.

Hoofdstuk 4 is gebaseerd op het werk van Salimans (2012). In dit hoofdstuk kijken

we naar regressie analyses van economische groeidata in een cross-sectie van landen. Dit

soort regressie analyses worden bemoeilijkt door twee soorten modelonzekerheid: De on-

zekerheid in het selecteren van verklarende variabelen en de onzekerheid over de vorm van

de regressiefunctie. De meeste beschouwingen in de literatuur bekijken deze problemen

los van elkaar, terwijl het juist essentieel is deze twee vormen van onzekerheid samen te

behandelen. In hoofdstuk 4 ontwikkelen we een nieuwe methode die zo’n analyse moge-

lijk maakt, met gebruik van flexibele niet-lineaire modellen gespecificeerd door Gaussian

process prioren, en met gebruik van Bayesian model averaging voor de selectie van de

verklarende variabelen. Met deze methode breiden we het vaak gebruikte lineaire mo-

del uit, zodat het kan omgaan met de parameter heterogeniteit die wordt voorspeld door

de new growth theory literatuur, terwijl tegelijkertijd de onzekerheid in de selectie van

verklarende variabelen wordt behandeld. Met het in acht nemen van deze onzekerheid,

onderbouwt onze analyse het bewijs voor parameter heterogeniteit zoals gepresenteerd

in een aantal eerdere studies. Als we tegelijkertijd aandacht besteden aan de onzeker-

heid in de vorm van de regressiefunctie, vinden we echter dat een aantal van de effecten

van verklarende variabelen uit de literatuur niet robuust zijn over verschillende landen en

selecties van variabelen.

Hoofdstuk 5 is gebaseerd op het werk van Salimans en Knowles (2013). Hier ontwik-

kelen we een algemeen algoritme voor het benaderen van lastige Bayesiaanse nadichthe-

den. Het algoritme minimaliseert de Kullback-Leibler afstand tussen een benadering in

de exponentiële familie van kansverdelingen en de echte nadichtheid. Onze methode kan

worden gebruikt voor het benaderen van willekeurige nadichtheden, onder voorwaarde

dat de nadichtheid in analytische vorm beschikbaar is (op de normalisatie na). Elke wil-

lekeurige kansverdeling uit de exponentiële familie kan worden gebruikt voor het vormen
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van de benadering, en zelfs het gebruik van mengsels van zulke verdelingen is mogelijk.

Dit betekent dat de benadering extreem nauwkeurig gemaakt kan worden. De snelheid en

nauwkeurigheid van onze methode demonsteren we met behulp van diverse voorbeelden

uit de praktijk.

Hoofdstuk 6 is gebaseerd op het werk van Salimans et al. (2012). In dit hoofdstuk

ontwikkelen we een model voor het ontdekken van de voorkeuren van consumenten in de

vorm van rangschikkingen over meerdere producten. Dit model kan vervolgens worden

gebruikt voor het aanraden van nieuwe producten aan deze consumenten. Het model

kan worden toegepast op door de consument uitgesproken voorkeuren in vergelijkingen

tussen twee producten, of op (incomplete) lijsten van favoriete producten. We presenteren

twee methodes voor het schatten van dit model. Beide methodes werken efficiënt voor

toepassingen met veel producten en gebruikers. De nauwkeurigheid van de voorspellingen

uit het model demonstreren we op de veel gebruikte Sushi dataset van Kamishima en

Akaho (2006). Ten slotte laten we zien hoe het model gebruikt kan worden om actief data

te verzamelen, en op deze manier goede aanbevelingen te geven in gevallen waar weinig

data beschikbaar is.
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