
TI 2013-055/III
Tinbergen Institute Discussion Paper

Parallel Sequential Monte Carlo for
Efficient Density Combination:
The Deco Matlab Toolbox

Roberto Casarin1

Stefano Grassi2

Francesco Ravazzolo3

Herman K. van Dijk4

1 University Ca' Foscari of Venice and GRETA;
2 CREATES, Aarhus University;
3 Norges Bank, and BI Norwegian Business School;
4 Erasmus University Rotterdam, and VU University Amsterdam.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Erasmus University Digital Repository

https://core.ac.uk/display/18509312?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Tinbergen Institute is the graduate school and research institute in economics of Erasmus University
Rotterdam, the University of Amsterdam and VU University Amsterdam.

More TI discussion papers can be downloaded at http://www.tinbergen.nl

Tinbergen Institute has two locations:

Tinbergen Institute Amsterdam
Gustav Mahlerplein 117
1082 MS Amsterdam
The Netherlands
Tel.: +31(0)20 525 1600

Tinbergen Institute Rotterdam
Burg. Oudlaan 50
3062 PA Rotterdam
The Netherlands
Tel.: +31(0)10 408 8900
Fax: +31(0)10 408 9031

Duisenberg school of finance is a collaboration of the Dutch financial sector and universities, with the
ambition to support innovative research and offer top quality academic education in core areas of
finance.

DSF research papers can be downloaded at: http://www.dsf.nl/

Duisenberg school of finance
Gustav Mahlerplein 117
1082 MS Amsterdam
The Netherlands
Tel.: +31(0)20 525 8579

PARALLEL SEQUENTIAL MONTE CARLO FOR EFFICIENT
DENSITY COMBINATION: THE DECO MATLAB TOOLBOX

ROBERTO CASARIN†, STEFANO GRASSI‡, FRANCESCO
RAVAZZOLO], HERMAN K. VAN DIJK‖

† University Ca’ Foscari of Venice and GRETA
‡ CREATES, Department of Economics and Business, Aarhus University

] Norges Bank and BI Norwegian Business School
‖ Erasmus University Rotterdam, VU University Amsterdam and

Tinbergen Institute

ABSTRACT. This paper presents the Matlab package DeCo (Density
Combination) which is based on the paper by Billio et al. (2013) where
a constructive Bayesian approach is presented for combining predictive
densities originating from different models or other sources of informa-
tion. The combination weights are time-varying and may depend on past
predictive forecasting performances and other learning mechanisms. The
core algorithm is the function DeCo which applies banks of parallel Se-
quential Monte Carlo algorithms to filter the time-varying combination
weights. The DeCo procedure has been implemented both for standard
CPU computing and for Graphical Process Unit (GPU) parallel comput-
ing. For the GPU implementation we use the Matlab parallel computing
toolbox and show how to use General Purposes GPU computing almost
effortless. This GPU implementation comes with a speed up of the ex-
ecution time up to seventy times compared to a standard CPU Matlab
implementation on a multicore CPU. We show the use of the package
and the computational gain of the GPU version, through some simula-
tion experiments and empirical applications.

JEL codes: C11, C15, C53, E37.
Keywords: Density Forecast Combination, Sequential Monte Carlo, Par-
allel Computing, GPU, Matlab.

Date: April 8, 2013.
Roberto Casarin’s resarch is supported by the Italian Ministry of Education, University and
Research (MIUR) PRIN 2010-11 grant, and by the European Commission Collaborative
Project SYRTO. Stefano Grassi acknowledges support from CREATES - Center for Re-
search in Econometric Analysis of Time Series (DNRF78), funded by the Danish National
Research Foundation. The views expressed in this paper are our own and do not necessarily
reflect those of Norges Bank.

1

2 DECO MATLAB TOOLBOX

1. INTRODUCTION

Combining forecasts from different statistical models or other sources
of information is a crucial issue in many different fields of science. Sev-
eral papers have been proposed to handle this issue with Bates and Granger
(1969) as one of the first attempt in this field. Initially the focus was on
defining and estimating combination weights for point forecasting. For in-
stance, Granger and Ramanathan (1984) propose to combine forecasts with
unrestricted least squares regression coefficients as weights. Terui and van
Dijk (2002) generalize least squares weights by specifying the weights in
the dynamic forecast combination as a state space model with time-varying
weights that are assumed to follow a random walk process. Recently, re-
search interest has shifted to the construction of combinations of predic-
tive densities (and not point forecasts) as well as to allow for model set
incompleteness (the true model may not be included in the set of models
for prediction) and learning. Further, different model evaluation criteria are
used. Hall and Mitchell (2007) and Geweke and Amisano (2010) propose
to use combination schemes based on Kullback-Leibler score; Gneiting and
Raftery (2007) recommend strictly proper scoring rules, such as the Cumu-
lative Rank Probability Score, in particular, if the focus is on some particular
area, such as extreme tails, of the distribution. Billio et al. (2013) (hereby
BCRVD (2013)) provide a general Bayesian distributional state space rep-
resentation of predictive densities and specify combination schemes that
allow for an incomplete set of models and different learning mechanisms
and scoring rules.

The design of algorithms for a numerically efficient combination remains
a challenging issue (e.g., see Gneiting and Raftery, 2007). BCRVD (2013)
propose a combination algorithm based on Sequential Monte Carlo filter-
ing. The proposed algorithm makes use of a random grid from the set of
predictive densities and runs a particle filter at each point of the grid. The
procedure is computational intensive, when the number of models to com-
bine increases. A contribution of this paper is to present a Matlab package
DeCo (Density Combination) for the combination of predictive densities,
and a simple GUI for the use of this package.

This paper provides, through the DeCo package, an efficient implemen-
tation of BCRVD (2013) algorithm based on CPU and GPU parallel com-
puting. We make use of recent increases in computing power and recent
advances in parallel programming techniques. The focus of the micropro-
cessor industry, mainly driven by Intel and AMD, has shifted from maxi-
mizing the performance of a single core to integrating multiple cores in one
chip, see Sutter (2005) and Sutter (2011). Contemporaneously, the needs of
the video game industry, requiring increasing computational performance,
boosted the development of the Graphics Processing Unit (GPU), which
enabled massively parallel computation.

DECO MATLAB TOOLBOX 3

In the present paper, we follow the recent trend of using GPUs for gen-
eral, non-graphics, applications (prominently featuring those in scientific
computing) the so-called General-Purpose computing on Graphics Process-
ing Unit (GPGPU). The GPGPU has been applied successfully in different
fields such as astrophysics, biology, engineering, and finance, where quan-
titative analysts started using this technology well ahead use by academic
economists, see Morozov and Mathur (2011) for a literature review.

To date, the adoption of GPU computing technology in economics and
econometrics has been relatively slow compared to other fields. There are
a few papers that deal with this interesting topic, see Morozov and Mathur
(2011), Aldrich et al. (2011), Geweke and Durham (2012), and Dziubinski
and Grassi (2013). This is odd given the fact that parallel computing in eco-
nomics has a long history. An early attempt to use parallel computation for
Monte Carlo simulation is Chong and Hendry (1986), while Swann (2002)
develops parallel implementation of maximum likelihood estimation. Creel
and Goffe (2008) discuss a number of economic and econometric problems
where parallel computing can be applied. The low diffusion of this technol-
ogy in economics and econometrics, according to Creel (2005), is mainly
due to two issues, which are the high cost of the hardware as parallel CPU
architectures and to the steep learning curve of dedicated programming lan-
guages as CUDA (Compute Unified Device Architecture), OpenCL, Thrust
and C++ AMP. Table 1 compares different currently available GPGPU ap-
proaches. The recent increase of attention to parallel computing is moti-
vated by the fact that the hardware costs issue has been solved by the intro-
duction of modern GPUs with relatively low cost. Nevertheless, the second
issue remains still open. For example, Lee et al. (2010) report that a pro-
grammer proficient in C, a programming skill that can take some times to
be learned, should be able to code effectively in CUDA within a few weeks.

We aim to contribute to this stream of literature by showing that GPU
computing can be carried out almost without any extra effort using the par-
allel toolbox of Matlab and a suitable approach to Matlab coding of the
algorithms. The Matlab environment allows easy use of GPU programming
without learning CUDA. We emphasize that this paper is not intended to
compare CPU and GPU computing. In fact, we propose the combination
algorithm for both standard parallel CPU and for parallel GPU computa-
tion. Our simulation and empirical exercises show that DeCo GPU version
is faster than standard sequential CPU version up to 70 times.

The structure of the paper is as follows. Section 2 introduces the prin-
ciples of density forecast combinations with time-varying weights and par-
allel Sequential Monte Carlo algorithms. Section 3 presents a parallel Se-
quential Monte Carlo algorithm for density combinations. It also provides
background material on GPU computing in Matlab. Sections 4 and 5 present
simulation comparisons between GPU and CPU. Section 6 reports the re-
sults for the macroeconomic empirical application. Section 7 concludes.

4 DECO MATLAB TOOLBOX

TABLE 1. Comparison of different currently available
GPGPU approaches.

Advantages Disadvantages
CUDA Free Vendor Lock-in
OpenCL Free Difficult to program

Heterogeneous
Thrust Free Vendor Lock-in

Easy to program
C++ AMP Open Standard Currently only Windows implementations exist

Heterogeneous
Free (Express Edition)
Easy to program

Appendix A describes the structure of the algorithm and Appendix B shows
the package graphical interface.

2. TIME-VARYING COMBINATIONS OF PREDICTIVE DENSITIES

2.1. A combination scheme. BCRVD (2013) introduces a general density
combination scheme, which allows for time-varying weights; model set in-
completeness (meaning the true model might not be in the model set); com-
bination weight uncertainty and learning. The authors give a general distri-
butional representation of the combination, provide an effective algorithm
for the sequential estimation of the weights and discuss some alternative
specifications of the combination and of weight dynamics. In the package,
and in the simulation and empirical exercises presented in this paper, we ap-
ply for convenience the Gaussian combination scheme with logistic weights
applied by BCRVD (2013).

Let yt ∈ Y ⊂ RL be the L-vector of observable variables at time t and
ỹt = (ỹ′1,t, . . . , ỹ

′
K,t)

′ ∈ Y ⊂ RKL, with element ỹk,t = (ỹ1k,t, . . . , ỹ
L
k,t)
′ ∈

Y ⊂ RL the typical one-step ahead predictor for yt for the k-th model,
k = 1, . . . , K, in the pool. The combination scheme is specified as:

p(yt|Wt, ỹt) ∝ |Σ|−
1
2 exp

{
−1

2
(yt −Wtỹt)

′Σ−1 (yt −Wtỹt)

}
t = 1, . . . , T , where Wt = (w1

t , . . . ,w
L
t)′ is a weight matrix, with wl

t =
(wl

1,t, . . . ,w
l
KL,t)

′ as the l-th row vector containing the combination weights
for the KL elements of ỹt and for the prediction of yl,t.

The dynamics of the combination weights wlh,t, h = 1, . . . , KL is

wlh,t =
exp{xlh,t}∑KL
j=1 exp{xlj,t}

, withh = 1, . . . , KL

where

p(xt|xt−1) ∝ |Λ|−
1
2 exp

{
−1

2
(xt − xt−1)

′ Λ−1 (xt − xt−1)

}

DECO MATLAB TOOLBOX 5

with xt = vec(Xt) ∈ RKL2 where Xt = (x1
t , . . . ,x

L
t)′. A learning mecha-

nism can also be added to the weight dynamics, resulting in:

p(xt|xt−1,yt−τ :t−1, ỹt−τ :t−1) ∝ |Λ|−
1
2 exp

{
−1

2
(xt − µt)

′ Λ−1 (xt − µt)

}
where µt = xt−1 −∆et and

elK(l−1)+k,t = (1− λ)
τ∑
i=1

λi−1f
(
ylt−i, ỹ

l
k,t−i

)
,

k = 1, . . . , K, l = 1, . . . , L, with λ a discount factor and τ the number
of previous observations used in the learning. We assume f() is an expo-
nentially weighted learning strategy. Note that DeCo package relies on a
general algorithm which can account for different scoring rules, such as the
Kullback-Leibler score (Hall and Mitchell (2007) and Geweke and Amisano
(2010)) and the Cumulative Rank Probability Score (Gneiting and Raftery
(2007)).

The proposed state space representation of the combination scheme pro-
vides a forecast density for the observable variables, conditional on the pre-
dictors and on the combination weights. Moreover, the representation is
quite general, allowing for nonlinear and non-Gaussian combination mod-
els. We use Sequential Monte Carlo algorithms, also known as Particle
Filters, to estimate sequentially over time the optimal combination weights
and the predictive density.

The steps of the density combination algorithms are sketched in the rest
of this section. Let us denote with v1:t = (v1, . . . ,vt) a collection of vectors
vt from 1, . . . , t. Let wt = vec(Wt) be the vector of model weights asso-
ciated with ỹt and θ ∈ Θ the parameter vector of the combination model.
Define the augmented state vector zt = (wt,θt) ∈ Z and the augmented
state space Z = X × Θ where θt = θ, ∀t. The distributional state space
form of the forecast model is

yt ∼ p(yt|zt, ỹt) (measurement density)(1)
zt ∼ p(zt|zt−1,y1:t−1, ỹ1:t−1) (transition density)(2)
z0 ∼ p(z0) (initial density)(3)

The state predictive and filtering densities conditional on the predictive vari-
ables ỹ1:t are

p(zt+1|y1:t, ỹ1:t) =

∫
Z
p(zt+1|zt,y1:t, ỹ1:t)p(zt|y1:t, ỹ1:t)dzt(4)

p(zt+1|y1:t+1, ỹ1:t+1) =
p(yt+1|zt+1, ỹt+1)p(zt+1|y1:t, ỹ1:t)

p(yt+1|y1:t, ỹ1:t)
(5)

respectively, which represent the optimal nonlinear filter (see Doucet et al.
(2001)). The marginal predictive density of the observable variables is then

p(yt+1|y1:t) =

∫
Y
p(yt+1|y1:t, ỹt+1)p(ỹt+1|y1:t)dỹt+1

6 DECO MATLAB TOOLBOX

where p(yt+1|y1:t, ỹt+1) is defined as∫
Z×Yt

p(yt+1|zt+1, ỹt+1)p(zt+1|y1:t, ỹ1:t)p(ỹ1:t|y1:t−1)dzt+1dỹ1:t

and represents the conditional predictive density of the observable given the
past values of the observable and of the predictors.

2.2. A combination algorithm. The analytical solution of the optimal fil-
ter for non-linear state space models is generally not known. Approximate
solutions are needed. We apply a numerical approximation method, that
converges to the optimal filter in Hilbert metric, in the total variation norm
and in a weaker distance suitable for random probability distributions (e.g.,
see Legland and Oudjane (2004)). More specifically we consider a sequen-
tial Monte Carlo (SMC) approach to filtering. See Doucet et al. (2001) for
an introduction to SMC and Creal (2009) for a recent survey on SMC in
economics. We propose to use banks of SMC filters, where each filter, is
conditioned on a sequence of realizations of the predictor vector ỹt. The
resulting algorithm for the sequential combination of densities is defined
through the following steps.

Step 0. Initialize independent particle sets Ξj
0 = {zi,j0 , ω

i,j
0 }Ni=1, j = 1, . . . ,M .

Each particle set Ξj
0 contains N i.i.d. random variables zi,j0 with random

weights ωi,j0 . Initialize a random grid over the set of predictors, by generat-
ing i.i.d. samples ỹj1, j = 1, . . . ,M , from p(ỹ1|y0). We use the sample of
observations y0 to initialize the individual predictors.

Step 1. At the iteration t+1 of the combination algorithm, we approximate
the predictive density p(ỹt+1|y1:t) with the discrete probability

pM(ỹt+1|y1:t) =
M∑
j=1

δỹj
t+1

(ỹt+1)

where ỹjt+1, j = 1, . . . ,M , are i.i.d. samples from the predictive densi-
ties and δx(y) denotes the Dirac mass centered at x. This approximation
is also motivated by the forecasting practice (see Jore et al. (2010)). The
predictions usually come, from different models or sources, in form of dis-
crete densities. In some cases, this is the result of a collection of point
forecasts from many subjects, such as surveys forecasts. In other cases the
discrete predictive is a result of a Monte Carlo approximation of the pre-
dictive density (e.g. Importance Sampling or Markov-Chain Monte Carlo
approximation of the model predictive density).

Step 2. We assume an independent sequence of particle sets Ξj
t = {zi,j1:t, ω

i,j
t }Ni=1,

j = 1, . . . ,M , is available at time t + 1 and that each particle set provides

DECO MATLAB TOOLBOX 7

the approximation

(6) pN,j(zt|y1:t, ỹ
j
1:t) =

N∑
i=1

ωi,jt δzi,jt
(zt)

of the filtering density, p(zt|y1:t, ỹ
j
1:t), conditional on the j-th predictor re-

alization, ỹj1:t. Then M independent SMC algorithms are used to find a new
sequence of M particle sets, which include the information available from
the new observation and the new predictors. Each SMC algorithm iterates,
for j = 1, . . . ,M , the following steps.

Step 2.a. The basic SMC algorithm uses the particle set to approximate the
predictive density with an empirical density. More specifically, the predic-
tive density of the combination weights and parameter, zt+1, conditional on
ỹj1:t and y1:t is approximated as follows

(7) pN,j(zt+1|y1:t, ỹ
j
1:t) =

N∑
i=1

p(zt+1|zt,y1:t, ỹ
j
1:t)ω

i,j
t δzi,jt

(zt)

For the applications in the present paper we use a regularized version of the
SMC procedure given above (e.g., see Liu and West (2001), Musso et al.
(2001) and Casarin and Marin (2009)).

Step 2.b. We update the state predictive density by using the information
coming from ỹjt+1 and yt+1, that is

(8) pN,j(zt+1|y1:t+1, ỹ
j
1:t+1) =

N∑
i=1

γi,jt+1δzi,jt+1
(zt+1)

where γi,jt+1 ∝ ωi,jt p(yt+1|zi,jt+1, ỹ
j
t+1) is a set of normalized weights.

Step 2.c. The hidden state predictive density can be used to approximate
the observable predictive density as follows

(9) pN,j(yt+1|y1:t, ỹ
j
1:t+1) =

N∑
i=1

γi,jt+1δyi,j
t+1

(yt+1)

where yi,jt+1 has been simulated from the combination model p(yt+1|zi,jt+1,

ỹjt+1) independently for i = 1, . . . , N .

Step 2.d. The systematic resampling of the particles introduces extra Monte
Carlo variations, see Liu and Chen (1998). This can be reduced be doing
resampling only when the Effective Sample Size (ESS) is below a given
threshold. The ESS is defined as

ESSjt =
N

1 +N

N∑
i=1

(
γi,jt+1 −N−1

N∑
i=1

γi,jt+1

)2/(
N∑
i=1

γi,jt+1

)2 .

8 DECO MATLAB TOOLBOX

and measures the overall efficiency of an importance sampling algorithm.
At the t + 1-th iteration if ESSjt+1 < κ, simulate Ξj

t+1 = {zki,jt+1, ω
i,j
t+1}Ni=1

from {zi,jt+1, γ
i,j
t+1}Ni=1 (e.g., multinomial resampling) and set ωi,jt+1 = 1/N .

We denote with ki the index of the i-th re-sampled particle in the original
set Ξj

t+1. If ESSjt+1 ≥ κ set Ξj
t+1 = {zi,jt+1, ω

i,j
t+1}Ni=1.

Step 3. At the last step, obtain the following empirical predictive density

(10) pM,N(yt+1|y1:t) =
1

MN

M∑
j=1

N∑
i=1

ωi,jt δyi,j
t+1

(yt+1)

3. PARALLEL SMC FOR DENSITY COMBINATION: DECO

Matlab is a popular software in the economics and econometrics commu-
nity (e.g., see LeSage (1998)), which has recently introduced the support to
GPU computing in its parallel computing toolbox. This allows to use raw
CUDA code within a Matlab program as well as already build functions that
are directly executed on the GPU. Using the build-in functions we show
that GPGPU can be almost effortless where the only knowledge required is
a decent programming skill in Matlab. With a little effort we provide GPU
implementation of the methodology recently proposed by BCRVD (2013).
This implementation comes with a speed up of the execution time up to hun-
dred of times compared to a multicore CPU with a standard Matlab code.

3.1. GPU computing in Matlab. There is little difference between the
CPU and GPU Matlab code: Listings 1 and 2 report the same program
which generates and inverts a matrix on CPU and GPU respectively.

1 iRows = 1000 ; iColumns = 1000 ;% Number o f rows and
columns

2 C_on_CPU = randn (iRows , iColumns) ;% G e n e r a t e Random
number on t h e CPU

3 InvC_on_CPU = i n v (C_on_CPU) ;% I n v e r t t h e m a t r i x

LISTING 1. Matlab CPU code that generate and invert a matrix

1 iRows = 1000 ; iColumns = 1000 ;% Number o f rows and
columns

2 C_on_GPU = gpuArray . r andn (iRows , iColumns) ; % G e n e r a t e
Random number on t h e GPU

3 InvC_on_GPU = i n v (C_on_GPU) ;% I n v e r t t h e m a t r i x
4 InvC_on_CPU = g a t h e r (InvC_on_GPU) ;% T r a n s f e r t h e d a t a

from t h e GPU t o CPU

LISTING 2. Matlab GPU code that generate and invert a matrix

The GPU code, Listing 2, uses the command gpuArray.randn to generate
a matrix of normal random numbers. The build-in function gpuArray.randn
is handled by the NVIDIA plug-in that generates the random number with
an underline raw CUDA code. Once the variable C_on_GPU is created,

DECO MATLAB TOOLBOX 9

standard functions such as inv recognize that the variable is on GPU mem-
ory and execute the corresponding GPU function, e.g. inv is executed di-
rectly on the GPU. This is completely transparent to the user. If further
calculations are needed on the CPU then the command gather(·) transfer
the data from GPU to the CPU, see line 3 of Listing 2. There exist already a
lot of supported functions and this number continuously increases with new
releases.

3.2. Parallel Sequential Monte Carlo. The structure of the GPU pro-
gram, that is very similar to the CPU one, is reported in Appendix A. Before
introducing our programming strategy we explain why the GPGPU comput-
ing has become very competitive for high parallel problems.

The GPU were created initially for 3D rendering, in other words, to cre-
ate a 3D image on a monitor. A representation of a 3D scene in a monitor is
composed of a set of points, known as vertices, that are based on 2D prim-
itives, called triangles. To display this 3D scene, the GPU considers the set
of all primitives as independent structures and computes various properties,
such as lighting and visibility, independently one to another.

In graphical context the majority of these computations are executed in
floating point, so GPUs were initially optimized for performing these types
of computations. Lately, GPUs were extended to double precision calcu-
lation, see Section 4. Since a GPU performs a relatively small set of op-
erations on a specific set of data points (each vertex on the screen), GPU
makers (eg. NVIDIA and ATI) focus mainly on creating hardware that spe-
cializes in these tasks instead of a wide array of operations such as the CPU.
This is a weak and a strong point at the same time, it restricts the set of prob-
lems in which the GPU can be used but allows to perform the specialized
tasks more efficiently then the CPU.

The basic example of a high parallelizable problem is matrix multipli-
cation and, in general, matrix linear algebra. These operations are very
suitable for GPGPU computing because they can be easily divided into the
large number of cores available on the GPU, see Gregory and Miller (2012)
for an introduction.

At first sight our problem does not seem to be easily parallelizable. But a
closer look shows that the only sequential part of the algorithm is the time
iteration, indeed the results of time t+ 1 are dependent on t.

Our key idea is to rewrite in matrix form that part of the algorithm that
iterates over particles and predictive draws in order to exploit the GPGPU
computational efficiency. Following the notation in Section 2, we let M be
the draws from the predictive densities, K the number of predictive models,
L the number of variables to predict, T the sample size, and N the number
of particles. Consider L = 1 for the sake of simplicity, then the code carries
out a matrix of dimension (MN ×K). The dimension could be large, e.g.,
in our simulation and empirical exercises they are (5, 000 · 1, 000 × 3) and
(1, 000 · 1, 000× 12) respectively. All the operations, such as addition and

10 DECO MATLAB TOOLBOX

multiplication, become just matrix operations. GPU, as explained before, is
explicitly designed to carry out these operations.

As an example of such a coding strategy, we describe the parallel version
of the initialization step of the SMC algorithm (see first step of the diagram
in Appendix A and subsection (Step 0) in Section 2). We apply a linear
regression and then generate a set of normal random numbers to set the
initial values of the states. Using a multivariate approach to the regression
problem, we can perform it in just one single, big matrix multiplication and
inversion for all draws. An example of initialization, similar to the one used
in the package, is given in listing 3.1

1 %% B u i l t t h e b lock−d i a g o n a l i n p u t m a t r i c e s y i 1 and vY1
2 y i 1 = [] ; vY1 = [] ;
3 f o r j =1 :M
4 y i 1 = b l k d i a g (yi1 , vYAll (: , : , j)) ;
5 % vYAll (: , : , j) has T rows and K columns
6 vY1 = b l k d i a g (vY1 , vY) ;
7 % vY1 has T rows and 1 column
8 end
9 %% Load on t h e GPU

10 mX1GPU = gpuArray (y i 1) ;
11 vY1GPU = gpuArray (vY1) ;
12 %% I n i t i a l i z e p a r t i c l e s on t h e GPU
13 mOmega10 = i n v (mX1GPU’ ∗ mX1GPU) ∗ mX1GPU’ ∗ vY1GPU ;
14 mMatrix = kron (gpuArray . ones (M, 1) , gpuArray . eye (K)) ;
15 mOmega10 = mOmega10 ’ ∗ mMatrix ;
16 mOmega10 = kron (gpuArray . ones (N, 1) , mOmega10) . . .
17 + 5 ∗ gpuArray . r andn (N ∗ M, K) ;

LISTING 3. Block Regression on the GPU

Listing 3 shows that the predictive densities and the observable variables are
stacked in block-diagonal matrices (lines 1-8) of dimensions (TM ×MK)
and (TM × M) by using the command blkdiag(·), and then transferred
to the GPU by the gpuArray(·) command (lines 10-11). The function
gpuArray.randn(·) is then used to generate normal random numbers on
the GPU and thus to initialize the value of the particles (lines 13-17).

This strategy is carried out all over the program and applied also to the
simulation of the set of particles. For example, listing 4 reports a sample of
the code for the SMC prediction step (see subsection (Step 2.a) in Section
2) for the latent states.

1 mPar t i c l eTemp = S . omega1 ’ + kron (gpuArray . ones (1 , M ∗ N) ,
s q r t (S e t t i n g . Sigma)) . ∗ gpuArray . r andn (K, M ∗ N) ;

LISTING 4. Draws for the latent states

1In the package, we use the following labelling: Setting.iDimOmega for K, Setting.iDraws
for M and Setting.cN for N .

DECO MATLAB TOOLBOX 11

The Kronecker product (fucntion kron(·)) creates a suitable matrix of stan-
dard deviations. We notice that the matrix implementation of the filter re-
quires availability of physical memory on the graphics card. If memory is
not enough to run in parallel all the draws, then it is possible to split the
M draws in k = M

m
blocks of size m and to run the combination algorithm

sequentially over the blocks, and in parallel within the blocks.2

The only step of the algorithm which uses the CPU is resampling (see dia-
gram in Appendix A and subsection (Step 2.d) in Section 2). The generated
particles are copied to the CPU memory and after the necessary calcula-
tions, they are passed back to the GPU. This copying back and forth brings
a computational time cost that can be high in small problems but becomes
much less important as the number of particles and series increases.

4. DIFFERENCES BETWEEN CPU AND GPU MONTE CARLO

GPUs can execute calculations in single and double precision as defined
by the IEEE 754 standard, IEEE (2008). Single precision numbers are only
half the size of double precision and they are more limited in the range of
values represented. If an application requires a high degree of precision,
double precision numbers are the only possibility. We work with double
precision numbers because our applications focus on density forecasting
and precise estimates of statistical quantities, like extreme events that are in
the tails of the predictive distribution, may be very important for economic
and financial decisions.

The GPU card are very fast in single precision calculation but loose
power in double precision. Therefore, some parameters should be set care-
fully to have a fair comparison between CPU and GPU. First, both programs
are to be implemented in double precision. Second, the CPU program has
to be parallel in order to use all available CPU cores. Third, the choice of
the hardware is crucial, see Aldrich (2013) for a discussion. In all our exer-
cises, we use a recent CPU processor, Intel Core i7-3820QM, launched in
2012Q2. This CPU has four physical cores that doubled thank to the Hy-
perThreading technology. Not all users of DeCo might have access to such
up-to-date hardware giving its costs. So we run CPU code also using a less
expensive machine, the Intel Xeon X3430, launched in 2009Q3. To run the
CPU code in parallel, Matlab requires the Parallel Computing Toolbox. We
also investigate performance when such option is switched off and the CPU
code is run sequentially.

The GPU used in this study is a NVIDIA Quadro K2000M. The card
is available at a low cost, but also has low performance because it is de-
signed for a mobile machine (as the suffix M means). A user with a desktop
computer might have access to a more powerful video card, such as, e.g., a

2We run the blocks sequentially because Matlab has not yet a parallel for loop command
for running in parallel the k = M

m blocks of GPU computations. The DeCo parallel CPU
version fixes m = 1 and parallelizes over the k = M blocks.

12 DECO MATLAB TOOLBOX

NVIDIA GTX590 or a NVIDIA Tesla. We refer to Matlab for alternative
cards and, in particular, to the function “GPUBench”.

Finally we shall emphasize that the results of the CPU and GPU version
of the same program are not necessarily the same. It is likely that the GPU
results will be more precise. This is related to the so called fused multiply
add (FMA) operations that GPUs support, see Whitehead and Fit-Florea
(2011). The FMA operation carries along more accurate calculations, un-
fortunately there are currently no CPUs that support this new standard. To
investigate the numerical difference between CPU and GPU, we provide
some numerical integration exercises based on both standard Monte Carlo
integration and Sequential Monte Carlo integration.

4.1. Monte Carlo. We consider six simple integration problems and com-
pare their analytical solutions to their crude Monte Carlo (see Robert and
Casella, 2004) numerical solutions. Let us consider the two integrals of the
function f over the unit interval

µ(f) =

∫ 1

0

f(x)dx, σ2(f) =

∫ 1

0

(f(x)− µ(f))2dx.

The Monte Carlo approximations of the integrals are

µ̂N(f) =
1

N

N∑
i=1

f(Xi), σ̂2
N(f) =

1

N

N∑
i=1

(f(Xi)− µ̂N(f))2

where X1, . . . , XN is a sequence of N i.i.d. samples from a standard uni-
form distribution.

The numerical integration problems considered in the experiments corre-
spond to the following choices of the integrand function:

(1) f(x) = x;
(2) f(x) = x2;
(3) f(x) = cos(πx).

We repeat G = 1000 times each Monte Carlo integration exercise with
sample sizes N = 1500. Finally, we compute the squared difference be-
tween the Monte Carlo and the analytical solution of the integral. The his-
togram of the differences between CPU and GPU results are given in Fig. 1.
The more concentrated the density is on the negative part of the support, the
higher is the precision of the CPU with respect to the GPU. Concentration
on the positive part corresponds to a GPU overperfomance.

The histograms in the first column of Fig. 1 have positive standardized
mean equal to 0.0051, 0.0059 and 0.0079 respectively and positive skew-
ness equal to 0.3201, 0.2924 and 0.3394 respectively. Thus, it seems to
us that GPU calculations are often more precise. From the histograms in
the second column of Fig. 1, one can conclude that differences between
GPU and CPU results are larger for the variance calculation. All histograms

DECO MATLAB TOOLBOX 13

FIGURE 1. Histograms for the CPU-GPU mean square er-
ror differences in the MC estimators of µN(f)
and σ2

N(f) (different columns), for different
choices of f (different rows), using G replica-
tions.

µ̂1500(f) σ̂2
1500(f)

have positive standardized mean equal to 0.9033, 0.8401 and 0.3843 respec-
tively and positive skewness equal to 1.6437, 0.0771 and 1.8660 respec-
tively. Nevertheless, we checked the statistical relevance of the differences
between CPU and GPU and run a two-sample Kolmogorov-Smirnov test on
the cumulative density function (cdf) of the CPU and GPU squared errors.
The results of the tests bring us to reject, at about the 30% level, the null
hypothesis that CPU and GPU squared errors come from the same distri-
bution, in favour of the alternative that CPU squared errors cdf is smaller
than the GPU squared error cdf. Thus, we conclude that CPU and GPU
give equivalent results under a statistical point of view up to a 30% signifi-
cance level. One could expect that differences between GPU and CPU be-
come more relevant for more difficult integration problems and operations
involving division and matrix manipulations.

4.2. Sequential Monte Carlo. We also provide a raw estimate of the main
differences in terms of precision for Sampling Importance Resampling (SIR),
which is a standard Sequential Monte Carlo algorithm, applied to filtering

14 DECO MATLAB TOOLBOX

FIGURE 2. Histogram of the CPU-GPU RMSE differences
for the SMC estimates of the SV.

of the hidden states of a nonlinear state space model with known parame-
ters. We consider a stochastic volatility model

yt = exp

{
1

2
xt

}
εt, εt

i.i.d.∼ N (0, 1), t = 1, ..., T(11)

xt+1 = −0.01 + 0.9xt + ηt+1, ηt+1
i.i.d.∼ N (0, 0.3)(12)

where N (µ, σ) denotes a normal distribution with mean µ and standard
deviation σ. The parameter values are set for a typical weekly financial
time series application (see Casarin and Marin, 2009). In Algorithm 1 we
give the pseudo-code representation of the prediction and filtering steps of
a SMC algorithm for SV model.

Algorithm 1. - SIR Particle Filter -
• At time t = t0, for i = 1, . . . , N , simulate xit0 ∼ p(xt0) and set ωit0 =
1/N
• At time t0 < t ≤ T − 1, given Ξt = {xit, ωit}Ni=1, for i = 1, . . . , N :

(1) Simulate x̃it+1 ∼ N (−0.01 + 0.9xit, 0.3).
(2) Update γit+1 ∝ ωti exp

{
−1

2
x̃it+1

}
exp

{
−1

2
y2t+1 exp{−x̃it+1}

}
.

(3) Normalize γ̃it+1 = γit+1/
∑N

j=1 γ
i
t+1, i = 1, . . . , N

(4) If ESSt < κ sample xit+1, i = 1, . . . , N from {x̃it+1, γ̃
i
t+1}Ni=1 and

set ωit+1 = 1/N , otherwise set xit+1 = x̃it+1 and ωit+1 = γit+1.
(5) Set Ξt+1 = {xit+1, ωt+1}Ni=1.

DECO MATLAB TOOLBOX 15

TABLE 2. GPU computing time (in seconds) for the SMC
filter applied to a SV model, for different ESS
threshold κ (columns). In the second row:
percentage difference respect to the case κ =
0.9999.

κ
0.9999 0.99995 0.99999 0.999995 0.999999

Time 6.906 6.925 6.935 7.008 7.133
Percentage - 0.263 0.393 1.462 3.276

We fix T = 100, N = 1000 and κ = 0.7 and repeat G = 1000 times the
Sequential Monte Carlo exercise. We compute Root Mean Square Errors
(RMSE) between the true values xt, t = 1, ..., T and the simulated ones
using a CPU code or a GPU one. Fig. 2 displays differences between the
CPU and GPU RMSEs, where again the more concentrated the density is
on the negative part of the support, the higher is the precision of the CPU
with respect to the GPU. Concentration on the positive part corresponds
to a GPU overperformance. The skewness of the histogram in 2 is 0.729,
therefore there is a mild evidence in favour of GPU.

The resampling step of the SMC algorithm is performed on CPU and
this may induce a loss of computational efficiency in the parallel GPU im-
plementation of our DeCo package. We provides evidence of this fact for
the simple SV model with known parameter values. Table 2 shows the
GPU computing time for different values of the threshold, i.e. κ = 0.9999,
0.99995, 0.99999, 0.999995, 0.999999. The computational cost increase
with the values of κ and the resampling frequency and the loss of informa-
tion in the particle set increase as well. The potential drawback of a too
low resampling frequency is the degeneracy of the particle set. In the SMC
literature a value of κ about 0.7 is generally considered an appropriate one.

5. DIFFERENCES BETWEEN CPU AND GPU RESULTS II

Following BCRVD (2013) we compare the cases of Unbiased and Biased
predictors and of complete and incomplete model sets using the DeCo code.
We assume the true model isM1 : y1t = 0.1 + 0.6y1t−1 + ε1t with ε1t

i.i.d.∼
N (0, σ2), t = 1, . . . , T and consider four experiments. We apply the DeCo
package and use the GUI interface described in Appendix B to provide the
inputs to the combination procedure.

Complete model set experiments. We assume the true model belongs to
the set of models in the combination. In the first experiments the model
set also includes two biased predictors: M2 : y2t = 0.3 + 0.2y2t−2 + ε2t

andM3 : y3t = 0.5 + 0.1y3t−1 + ε3t, with εit
i.i.d.∼ N (0, σ2), t = 1, . . . , T ,

i = 2, 3. In the second experiment the complete model set includes also two

16 DECO MATLAB TOOLBOX

unbiased predictors: M2 : y2t = 0.125 + 0.5y2t−2 + ε2t andM3 : y3t =

0.2 + 0.2y3t−1 + ε3t, with εit
i.i.d.∼ N (0, σ2), t = 1, . . . , T , i = 2, 3.

Incomplete model set experiments. We assume the true model is not in
the model set. In the third experiment the model set includes two biased
predictors:M2 : y2t = 0.3+0.2y2t−2+ε2t andM3 : y3t = 0.5+0.1y3t−1+

ε3t, with εit
i.i.d.∼ N (0, σ2), t = 1, . . . , T , i = 2, 3. In the fourth experiment

the model set includes unbiased predictors:M2 : y2t = 0.125 + 0.5y2t−2 +

ε2t,M3 : y3t = 0.2 + 0.2y3t−1 + ε3t, with εit
i.i.d.∼ N (0, σ2), t = 1, . . . , T ,

i = 2, 3.
We develop the comparison exercises with both 1000 and 5000 particles.

Tables 3 report the time comparison (in seconds) to produce forecast com-
bination for different experiments and different implementations. Parallel
implementation on GPU NVIDIA Quadro K2000M is the most efficient, in
terms of computing time, for all experiments. The gains are often substan-
tial in terms of seconds (see Tab. 3, panel (a)), up to several hours when
using 5000 particles (see Tab. 3, panel (b)). More specifically, the compu-
tational gain of the GPU implementation over parallel CPU implementation
varies from 3 to 4 times for the Intel Core i7 and from 5 to 7 times for the
Intel Xeon X3430. The overperformance of the parallel GPU implemen-
tation on sequential CPU implementation varies from 15 to 20 times when
considering an Intel Xeon X3430 machine as a benchmark.

Figure 3 compares the weights for exercises 1 and 2. The weights follow
a similar pattern, but there are discrepancies between them for some obser-
vations. Differences are larger for the median value than for the smaller and
larger quantiles. The differences are, however, smaller and almost vanishes
when one focuses on the predictive densities in Figure 4, which is the most
important output of the density combination algorithm. We interpret the re-
sults as evidence of no economic and statistic significance of the differences
between CPU and GPU draws.

Results are similar when focusing on the incomplete model set in Figures
5-6. Evidence does not change when we use 5000 particles.

Learning mechanism experiments. BCRVD (2013) document that a learn-
ing mechanism in the weights is crucial to identify the true model (in the
case of complete model set) or the best model (in the case of incomplete
model set) when the predictors are unbiased, see also left panels in Fig. 3-
5. We repeat the two unbiased predictor exercises and introduce learning
in the combination weights as discussed in Section 2. We set the learn-
ing parameters λ = 0.95 and τ = 9. Table 4 reports the time comparison
(in seconds) when using 1000 and 5000 particles filtered model probability
weights. The computation time for DeCo increases when learning mecha-
nisms are applied, in particular for the CPU. The GPU is from 10 to 50%
slower than without learning, but CPU is from 2.5 to almost 4 times slower
than previously. The GPU/CPU ratio, therefore, increases in favor of GPU

DECO MATLAB TOOLBOX 17

FIGURE 3. GPU and CPU 1000 particles filtered model
probability weights for the complete model set.
Model weights and 95% credibility region for
models 1,2 and 3 (different rows).

Biased Predictors Unbiased predictors

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

GPU
CPU

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

GPU
CPU

0 10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06

GPU
CPU

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

GPU
CPU

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

GPU
CPU

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

GPU
CPU

FIGURE 4. GPU and CPU 1000 particles filtered density
forecasts for the complete model set. Mean and
95% credibility region of the combined predic-
tive density.

Biased Predictors Unbiased predictors

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

GPU
CPU

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

GPU
CPU

18 DECO MATLAB TOOLBOX

FIGURE 5. GPU and CPU 1000 particles filtered model
probability weights for the incomplete model
set. Model weights and 95% credibility region
for models 1,2 and 3 (different rows).

Biased Predictors Unbiased predictors

0 10 20 30 40 50 60 70 80 90 100
0.995

0.996

0.997

0.998

0.999

1

1.001

GPU
CPU

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5
x 10

−3

GPU
CPU

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

GPU
CPU

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

GPU
CPU

FIGURE 6. GPU and CPU 1000 particles filtered density
forecasts for the incomplete model set. Mean
and 95% credibility region of the combined pre-
dictive densities.

Biased Predictors Unbiased predictors

0 10 20 30 40 50 60 70 80 90 100

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

GPU
CPU

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

GPU
CPU

DECO MATLAB TOOLBOX 19

TABLE 3. Density combination computing time in sec-
onds. Rows: different simulation exercises.
Columns: parallel GPU (p-GPU) and paral-
lel CPU (p-CPU-i7) implementations on GPU
NVIDIA Quadro K2000M with CPU Intel
Core i7-3820QM, 3.7GHz; parallel CPU (p-
CPU-Xeon) and sequential CPU (CPU-Xeon)
implementations on Intel Xeon X3430 4core,
2.40GHz. In parenthesis: efficiency gain in terms
of CPU/GPU times ratio.

(a) 1000 Particles
p-GPU p-CPU-i7 p-CPU-Xeon CPU-Xeon
Complete Model Set

1 Biased Predictors 699 2780 5119 11749
(3.97) (7.32) (16.80)

2 Unbiased Predictors 660 2047 5113 11767
(3.10) (7.75) (17.83)

Incomplete Model Set
3 Biased Predictors 671 2801 5112 11635

(4.17) (7.62) (17.34)
4 Unbiased Predictors 687 2035 5098 11636

(2.96) (7.42) (16.94)

(b) 5000 particles
p-GPU p-CPU-i7 p-CPU-Xeon CPU-Xeon
Complete Model Set

1 Biased Predictors 4815 15154 26833 64223
(3.15) (5.57) (13.34)

2 Unbiased Predictors 5302 15154 26680 63602
(2.86) (5.03) (12.00)

Incomplete Model Set
3 Biased Predictors 4339 13338 26778 64322

(3.07) (6.17) (14.82)
4 Unbiased Predictors 4581 13203 26762 63602

(2.88) (5.84) (13.88)

with GPU computation from 5 to 70 times faster depending on the alterna-
tive CPU machine considered. The DeCo codes with learning have some
if commands related to the minimum numbers of observations necessary to
initiate the learning which increases computational time substantially. The
parallelization in GPU is more efficient and these if commands play a mi-
nor role. We expect that the gain might increase to several hundred of times
when using parallelization on cluster of computers.

20 DECO MATLAB TOOLBOX

TABLE 4. Density combination computing time in sec-
onds. Rows: different simulation exercises.
Columns: parallel GPU (p-GPU) and paral-
lel CPU (p-CPU-i7) implementations on GPU
NVIDIA Quadro K2000M with CPU Intel
Core i7-3820QM, 3.7GHz; parallel CPU (p-
CPU-Xeon) and sequential CPU (CPU-Xeon)
implementations on Intel Xeon X3430 4core,
2.40GHz. In parenthesis: efficiency gain in terms
of CPU/GPU times ratio.

p-GPU p-CPU-i7 p-CPU-Xeon CPU-Xeon
(a) 1000 Particles

2 Complete Model Set 755 7036 14779 52647
(9.32) (19.57) (69.73)

4 Incomplete Model Set 719 6992 14741 52575
(9.72) (20.49) (73.08)

(b) 5000 particles
3 Complete Model Set 7403 35472 73402 274220

(4.79) (9.92) (37.04)
4 Incomplete Model Set 7260 35292 73256 274301

(4.86) (10.09) (37.78)

6. EMPIRICAL APPLICATION

As a further check of the performance of the DeCo code, we compare
the CPU and GPU versions in the macroeconomic application developed in
BCRVD (2013). We consider K = 6 time series models to predict US GDP
growth and PCE inflation: an univariate autoregressive model of order one
(AR); a bivariate vector autoregressive model for GDP and PCE, of order
one (VAR); a two-state Markov-switching autoregressive model of order
one (ARMS); a two-state Markov-switching vector autoregressive model of
order one for GDP and inflation (VARMS); a time-varying autoregressive
model with stochastic volatility (TVPARSV); and a time-varying vector au-
toregressive model with stochastic volatility (TVPVARSV). Therefore, the
model set includes constant parameter univariate and multivariate speci-
fication; univariate and multivariate models with discrete breaks (Markov-
Switiching specifications); and univariate and multivariate models with con-
tinuous breaks. These are typical models applied in macroeconomic fore-
casting; see, for example, Clark and Ravazzolo (2012), Korobilis (2011)
and D’Agostino et al. (2011).

DECO MATLAB TOOLBOX 21

TABLE 5. Computing time and forecast accuracy for the
macro-economic application for the GPU (col-
umn GPU) and CPU (column CPU) implemen-
tations. Rows: Time: time in seconds to run the
exercise in seconds; RMSPE: Root Mean Square
Prediction Error; CW: p-value of the Clark and
West (2007) test; LS: average Logarithmic Score
over the evaluation period; CRPS: cumulative
rank probability score; LS p-value and CRPS p-
value: Harvey et al. (1997) type of test for LS and
CRPS differentials respectively.

GDP Inflation
GPU CPU GPU CPU

Time 1249 6923 - -
RMSPE 0.634 0.637 0.255 0.256

CW 0.000 0.000 0.000 0.000
LS -1.126 -1.130 0.251 0.257

p-value 0.006 0.005 0.021 0.022
CRPS 0.312 0.313 0.112 0.112

p-value 0.000 0.000 0.000 0.000

We evaluate the two combination methods by applying the following
evaluation metrics: Root Mean Square Prediction Errors (RMSPE), Kull-
back Leibler Information Criterion (KLIC) based measure, the expected dif-
ference in the Logarithmic Scores (LS) and the Continuous Rank Probabil-
ity Score (CRPS). Accuracy statistics and related tests (see BCRVD (2013))
are used to compare the forecast accuracy.

Table 5 reports results for the multivariate combination approach. For
the sake of brevity, we just present results using parallel GPU and the best
parallel CPU Intel Core i7-3820QM machine. We also do not consider
learning mechanism in the weights. GPU is substantially faster, almost 5.5
times faster than CPU, reducing the computational time of more than 5000
seconds. GPU is therefore performing relatively better in this exercise than
in the previous simulation exercises (without learning mechanisms). The
explanation relies on the larger set of models and the multivariate applica-
tion. The number of simulation has increased substantially and CPU starts
to hit physical limits, slowing down the computation and extending time.
GPU has not binding limits and just double the time of simulation exercises
with a univariate series and the same number of draws and particles.3 This
suggests that GPU might be an efficient methodology to investigate when
averaging large set of models.

3Unreported results show that GPU is more than 36 times faster than sequential CPU im-
plementation on Intel Xeon X3430 4core.

22 DECO MATLAB TOOLBOX

Accuracy results for CPU and GPU combinations are very similar and
just differ after the third decimals, confirming previous intuitions that the
two methods are not necessarily numerical identical, but provide identical
economic and statistical conclusions.4 The combination approach is statis-
tically superior to the AR benchmark for all the three accuracy measures we
implement.

7. CONCLUSION

This paper introduces the Matlab package DeCo (Density Combination)
based on parallel Sequential Monte Carlo simulations to combine density
forecasts with time-varying weights and different choices of scoring rule.

The package is easy to use for a standard Matlab user and to facilitate
promulgation we have implemented a GUI user interface, which just re-
quires a few input parameters. The package takes full advantage of recent
computer hardware progresses and uses banks of parallel SMC algorithms
for the density combination both using multi-core CPU and GPU imple-
mentation.

The DeCo GPU version is faster than the CPU version up to 70 times and
even more for larger set of models. More specifically, our simulation and
empirical exercises were conducted using a commercial notebook with CPU
Intel Core i7-3820QM and GPU NVIDIA Quadro K2000M, and Matlab
2012b version, and show that DeCo GPU version is faster than the parallel
CPU version, up to 5.5 times, when using a i7 CPU machine and the Paral-
lel Computing Toolbox. In the comparison between GPU and non-parallel
CPU implementations, the differences between GPU and CPU time, in-
crease up to almost 70 times, when using a standard CPU processor, such
as quad-core Xeon. At this stage of our research, we do not have extreme
versions of the graphical cards, such as GTX cards, to provide further evi-
dence. All comparisons have been implemented using double precision for
both CPU and GPU versions. If an application allows for lower degree of
precision, for example when the interest is on point forecasting, and the use
of single precision Lee et al. (2010) and Geweke and Durham (2012) doc-
ument massively gains (up to 500 times) to a single-threaded CPU code.
Matlab just works on double precision.

We also document that the CPU and GPU versions do not necessarily
provide the exact same numerical solutions to our problems, but differences
are not economically and statistically significant. Therefore, users of DeCo
might choose between the CPU and GPU versions depending on the avail-
able and preferred clusters.

Finally, Mathworks has recently bought Accelereyes’ Jacket engine, a
library to run Matlab applications in GPU. Mathworks has not yet a “for”

4Numbers for the CPU combination differ marginally from those in Table 5 in BCRVD
(2013) due to the use of a different Matlab version, different generator numbers and parallel
tooling functions. Also in this case, the differences are numerically, but very small and
therefore have not any economic and statistical significance.

DECO MATLAB TOOLBOX 23

loop command for GPU computation in Matlab, but Accelereyes has it. We
expect Mathworks to incorporate this command and DeCo GPU version
will benefit enormously by running some for loops directly in GPU without
to transfer data to the CPU.

REFERENCES

Aldrich, E. M. (2013). Massively parallel computing in economics. Tech-
nical report, University of California, Santa Cruz.

Aldrich, E. M., Fernández-Villaverde, J., Gallant, A. R., and Ru-
bio Ramırez, J. F. (2011). Tapping the Supercomputer Under Your Desk:
Solving Dynamic Equilibrium Models with Graphics Processors. Jour-
nal of Economic Dynamics and Control, 35:386–393.

Bates, J. M. and Granger, C. W. J. (1969). Combination of Forecasts. Op-
erational Research Quarterly, 20:451–468.

Billio, M., Casarin, R., Ravazzolo, F., and van Dijk, H. K. (2013). Time-
varying Combinations of Predictive Densities Using Nonlinear Filtering.
Journal of Econometrics, forthcoming.

Casarin, R. and Marin, J. M. (2009). Online data processing: Comparison
of Bayesian regularized particle filters. Electronic Journal of Statistics,
3:239–258.

Chong, Y. and Hendry, D. F. (1986). Econometric Evaluation of Linear
Macroeconomic Models. The Review of Economic Studies, 53:671 – 690.

Clark, T. and Ravazzolo, F. (2012). The macroeconomic forecasting perfor-
mance of autoregressive models with alternative specifications of time-
varying volatility. Technical report, FRB of Cleveland Working Paper
12-18.

Clark, T. and West, K. (2007). Approximately Normal Tests for Equal
Predictive Accuracy in Nested Models. Journal of Econometrics,
138(1):291–311.

Creal, D. (2009). A survey of sequential Monte Carlo methods for econom-
ics and finance. Econometric Reviews, 31(3):245–296.

Creel, M. (2005). User-Friendly Parallel Computations with Econometric
Examples. Computational Economics, Vol. 26:pp. 107 – 128.

Creel, M. and Goffe, W. L. (2008). Multi-core cpus, Clusters, and Grid
Computing: A Tutorial. Computational Economics, Vol. 32:pp. 353 –
382.

D’Agostino, A., Gambetti, L., and Giannone, D. (2011). Macroeconomic
forecasting and structural change. Journal of Applied Econometrics,
forthcoming.

Doucet, A., Freitas, J. G., and Gordon, J. (2001). Sequential Monte Carlo
Methods in Practice. Springer Verlag, New York.

Dziubinski, M. P. and Grassi, S. (2013). Heterogeneous Computing In Eco-
nomics: A Simplified Approach. Computational Economics, forthcom-
ing.

24 DECO MATLAB TOOLBOX

Geweke, J. and Amisano, G. (2010). Optimal prediction pools. Journal of
Econometrics, 164(2):130–141.

Geweke, J. and Durham, G. (2012). Massively Parallel Sequential Monte
Carlo for Bayesian Inference. Working papers, National Bureau of Eco-
nomic Research, Inc.

Gneiting, T. and Raftery, A. E. (2007). Strictly proper scoring rules, pre-
diction, and estimation. Journal of the American Statistical Association,
102:359–378.

Granger, C. W. J. and Ramanathan, R. (1984). Improved Methods of Com-
bining Forecasts. Journal of Forecasting, 3:197–204.

Gregory, K. and Miller, A. (2012). Accelerated Massive Parallelism with
Microsoft Visual C++. Microsoft Press, USA.

Hall, S. G. and Mitchell, J. (2007). Combining density forecasts. Interna-
tional Journal of Forecasting, 23:1–13.

Harvey, D., Leybourne, S., and Newbold, P. (1997). Testing the equality
of prediction mean squared errors. International Journal of Forecasting,
13:281–291.

IEEE (2008). IEEE 754 - 2008. IEEE 754 - 2008 Standard for Floating-
Point Arithmetic. IEEE.

Jore, A. S., Mitchell, J., and Vahey, S. P. (2010). Combining forecast den-
sities from VARs with uncertain instabilities. Journal of Applied Econo-
metrics, 25(4):621–634.

Korobilis, D. (2011). VAR Forecasting Using Bayesian Variable Selection.
Journal of Applied Econometrics, forthcoming.

Lee, A., Christopher, Y., Giles, M. B., Doucet, A., and Holmes, C. C.
(2010). On the Utility of Graphic Cards to Perform Massively Parallel
Simulation with Advanced Monte Carlo Methods. Journal of Computa-
tional and Graphical Statistics, 19:4:769–789.

Legland, F. and Oudjane, N. (2004). Stability and uniform approximation
of nonlinear filters using the Hilbert metric and application to particle
filters. Annals of Applied Probability, 14(1):144–187.

LeSage, J. P. (1998). Econometrics: Matlab toolbox of econometrics func-
tions. Statistical Software Components, Boston College Department of
Economics.

Liu, J. and Chen, R. (1998). Sequential Monte Carlo methods for dynamical
system. Journal of the American Statistical Association, 93:1032–1044.

Liu, J. S. and West, M. (2001). Combined parameter and state estimation in
simulation based filtering. In Doucet, A., de Freitas, N., and Gordon, N.,
editors, Sequential Monte Carlo Methods in Practice. Springer-Verlag.

Morozov, S. and Mathur, S. (2011). Massively Parallel Computation Us-
ing Graphics Processors with Application to Optimal Experimentation in
Dynamic Control. Computational Economics, pages 1 – 32.

Musso, C., Oudjane, N., and Legland, F. (2001). Improving regularised
particle filters. In Doucet, A., de Freitas, N., and Gordon, N., editors,
Sequential Monte Carlo Methods in Practice. Springer-Verlag.

DECO MATLAB TOOLBOX 25

Robert, C. P. and Casella, G. (2004). Monte Carlo Statistical Methods.
Springer, Berlin, Second Edition.

Sutter, H. (2005). The Free Lunch Is Over: A Fundamen-
tal Turn Toward Concurrency in Software. Dr. Dobb’s Journal,
http://www.gotw.ca/publications/concurrencyddj.htm.

Sutter, H. (2011). Welcome to the Jungle. http://herbsutter.com/welcome-
to-the-jungle/.

Swann, C. A. (2002). Maximum Likelihood Estimation Using Parallel
Computing: An Introduction to MPI. Computational Economics, Vol.
19:pp. 145 – 178.

Terui, N. and van Dijk, H. K. (2002). Combined Forecasts from Linear and
Nonlinear Time Series Models. International Journal of Forecasting,
18:421–438.

Whitehead, N. and Fit-Florea, A. (2011). Precision & Performance: Float-
ing Point and IEEE 754 Compliance for NVIDIA GPUs. NVIDIA Tech
Report, http://developer.download.nvidia.com/assets/cuda/files/NVIDIA-
CUDA-Floating-Point.pdf.

APPENDIX A. FLOW-CHART OF GPU DECO PACKAGE

FIGURE 7. Flow chart of the parallel SMC filter given in Section 2

Transfer the data and initialize
the particle set on GPU (Step 0)At time t = t0

Propagate particle values and
update particle weights on
GPU (Steps 1 and 2.a-2.c)

If ESSt < κ
(Step 2.d)

Transfer back the data
to the CPU (Step 2.d)

Resampling particles
on the CPU (Step 2.d)

Transfer back the data
to the GPU (Step 2.d)

Update the particle
set on GPU (Step 2.d)

t = t + 1

If t < T

Yes

Transfer back data and
finalize calculations

No

Yes

No

APPENDIX B. THE GUI USER INTERFACE

FIGURE 8. The graphical user interface of the DeCo package

The Figure 8 shows the GUI of the DeCo package, that contains all the
necessary inputs for our program. The ListBox loads and displays the avail-
able dataset in the directory Dataset. The figure shows, as example, the
dataset BiasedPred.mat. The number of particles and the block of selected
series are chosen in the edit box “Settings”. The default values are set to 50
for the particles and 10 for the block of series, this is only valid for the GPU.
The box options contains commands for plotting and saving results. The re-
sults are saved in the directory OutputCPU or OutputGPU depending on
the type of calculation chosen. Finally the botton “CPU” starts the corre-
sponding CPU program and the botton “GPU” executes the program on the
GPU. The box "Setting Learning Parameter" allows the user to perform the
calculation with or without learning, see section 5. When the option Learn-
ing is chosen, the edit box allows to set the learning parameter, the default
values are λ = 0.95 and τ = 9.

Some considerations are in order. First, the CPU is already implemented
in parallel form. The user has to start a parallel session in Matlab by typing
the command matlabpool open in the Matlab main window. Please refer
to Matlab online help. Second, the dataset accepted by the program is mat

format and has the following form. It includes two variables, the first one is
defined as vY and it contains a (T × L) matrix of the the variables {yt}Tt=1

to be forecasted, where T is the number of 1-step ahead forecasts and L the
size of observable variables to forecast. The second one is a 4 −D matrix
defined mX with the following dimensions (T,M,L,KL) , where M is
the size of i.i.d. samples from the predictive densities, and KL the number
of 1-step ahead predictive densities. Finally, the user might apply different
learning mechanisms based on other scoring function that the one applied
and discussed in Section 2 should change the function “PFCore.m”.

	Paper.pdf
	1. Introduction
	2. Time-varying combinations of predictive densities
	2.1. A combination scheme
	2.2. A combination algorithm

	3. Parallel SMC for density combination: DeCo
	3.1. GPU computing in Matlab
	3.2. Parallel Sequential Monte Carlo

	4. Differences between CPU and GPU Monte Carlo
	4.1. Monte Carlo
	4.2. Sequential Monte Carlo

	5. Differences between CPU and GPU results II
	6. Empirical Application
	7. Conclusion
	References
	Appendix A. Flow-chart of GPU DeCo package
	Appendix B. The GUI user interface

