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Abstract

Dual scaling is a multivariate exploratory method equivalent to correspondence
analysis when analysing contingency tables. However, for the analysis of rating
data different proposals appear in the dual scaling and correspondence analysis
literature. It is shown here that a peculiarity of the dual scaling method can be
exploited to detect differences in response styles. Response styles occur when re-
spondents use rating scales differently for reasons not related to the questions, often
biasing results. A spline-based constrained version of dual scaling is devised which
can detect the presence of four prominent types of response styles, and is extended
to allow for multiple response styles. An alternating nonnegative least squares al-
gorithm is devised for estimating the parameters. The new method is appraised

both by simulation studies and an empirical application.?
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1 Introduction

A major issue in questionnaire-based research is the presence of response styles. A re-
sponse style, sometimes also known as response bias or scale usage heterogeneity, can be
described as systematic bias due to a respondent’s tendency to respond to survey items
regardless of its content (Van Rosmalen, Van Herk, & Groenen, 2010). Paraphrasing,
a response style is the manner in which a person uses a rating scale, an example being
extreme response style where the respondent, for no substantial reason, prefers to use the
endpoints of the Likert scale more often than the intermediate rating categories.

Response styles can invalidate statistical analyses since they are completely con-
founded with the substantial information contained in the data and hence biases results
in non-trivial ways (Baumgartner & Steenkamp, 2001). Advanced methods, such as the
latent-class multinomial logit model of Van Rosmalen et al. (2010), the multidimensional
ordinal IRT model of De Jong and Steenkamp (2010), or the ordinal regression model
with heterogeneous thresholds of Johnson (2003), have been developed to deal with the
data analysis when response style contamination is relevant. None of these appear to
have achieved much popularity in practice.

Existing models often require a substantial investment of resources for its implemen-
tation, estimation and/or interpretation. As an alternative, the method presented in this
paper results in a data set cleaned of the effects of response styles so that any analyses ap-
propriate for the continuous nature of this cleaned data can be conducted. Furthermore,
this method has three additional purposes, namely to (i) determine whether different re-
sponse styles are present in categorical data; (ii) identify the respondents associated with
each response style; and to (iii) classify the identified response styles into four different
types. Software which implements the method in the R software environment (R Core
Team, 2012) are available from the first author.

The proposed method is a variant of dual scaling (DS) for rating data (Nishisato,
1980a), also referred to as successive categories data in the DS literature. DS is an
exploratory multivariate method, akin to correspondence analysis or CA (e.g. Greenacre,
2007). In the special case of rating data, DS however differs from CA in a manner
that implicitly caters for response styles by including parameters for the Likert scale
categories in an innovative way. These parameters allow for the detection of frequent
(or infrequent) usage of certain ratings since the optimal scores assigned by DS to these
parameters depend on how often each rating occurs in the data. The new method builds

on this aspect of DS by including monotone spline functions to model the response styles



and by allowing for multiple response styles through latent classes.

The next section focuses on a closer discussion of response styles. Section 3 intro-
duces spline functions for modelling response styles, explains the new methodology and
details an alternating least squares algorithm for solving an extended version of the dual
scaling problem. A simulation study is conducted in Section 4 to assess the strengths

and weaknesses of the method. Finally, an application (Section 5) is presented.

2 Overview of Response Styles

It is assumed that the process of formulating a response to a survey item requires the
respondent to map a latent opinion, preference or some similar concept to a Likert scale.
For example, the respondent may be asked how much she agrees with a certain statement
using a scale with categories ranging from “1 — Totally Disagree” to “5 — Totally Agree.”
During the cognitive process of formulating the answer, the respondent first forms an
opinion about the survey item and subsequently needs to decide how to transform or
map this opinion to the presented rating scale (see for example Weijters & Baumgartner,
2012). The mathematical properties of this response mapping from the latent to the
Likert scale determines whether a respondent exhibits a response style or not.

Specifically, a response style can be defined as a monotone nonlinear response mapping
(Van de Velden, 2007). If this transformation is linear, no response style is present.
Consequently, once a method is available to estimate response mappings the presence of
response styles can be assessed by looking at the curvature properties of the estimated
mappings. These steps are carried out in subsequent sections. In the case where Likert
scales are used these transformations are step functions, but for the moment it is more
intuitive to consider continuous transformations.

Four different response styles are considered here, as depicted in Figure 1. This figure
shows different possible inverse mappings from the rating supplied by the respondent
on the horizontal axis to the respondent’s true latent opinion on the vertical axis. The
inverse transformations are shown since these must be estimated from the observed data.

The different styles can be characterized by which parts of the latent opinion scale is
stretched and which parts are shrunk. These are shown by the rug plots on the respected
axes in Figure 1. The rug on the horizontal axis partitions the axis into intervals of
equal length, with each interval receiving a rating on the Likert scale. Here a seven-point
scale is employed. The rug on the vertical axis shows the effect that the response style

transformation has on the intervals of equal length. Assuming that the respondent’s true
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Figure 1: Examples of (inverse) response style functions mapping the true item content
scale (vertical axis) into the observed measurement scale (horizontal axis).

latent opinion comes from a uniform distribution, these transformations characterize the
following four response styles:

o Acquiescence (ARS) shrinks the lower part of the latent scale and stretches the

upper part indicating that higher ratings are favoured (panel (a));
e Disacquiescence (DRS) in contrast favours lower ratings by stretching and shrinking
the lower and upper parts of the latent scale respectively (panel (b));

e Midpoint responding (MRS) reflects a tendency to frequent the middle categories

of the rating scale (panel (c)); and

e FExtreme responding (ERS) in contrast means that the endpoints of the rating scale

is used more often than the middle categories (panel (d)).

A critical concept is that the boundaries dividing the latent preference scale into
the different rating categories, that is the tick marks on the vertical axes in Figure 1,
determines which response style is present. If these boundaries are equally spaced, no
response style is present. Any significant deviations however give cause to believe that a
response style is present.

The methodology outlined in the next section makes use of these boundaries to provide

an estimate of the response mappings of groups of individuals.

3 Methodology

Consider the situation where a set of m objects or survey items are being rated on a
g-point Likert scale, enumerated as 1 to q. Due to the ordinality this is sometimes known
as successive categories data (Nishisato, 1980b, 1994). It is supposed that n individuals

are asked to rate the objects according to their preference. Objects may receive equal



ratings, and it is assumed that there exists a fixed but unknown preference structure for
the set of objects, such as a population mean. Let X denote the n x m data matrix.
The next subsection discusses using dual scaling for analysing successive categories
data in general, making use of the method’s relationship with correspondence analysis.
Monotone quadratic splines for modelling response styles are introduced in Section 3.2.
Subsequently the dual scaling method is modified to utilise these splines together with
latent classes to allow for multiple response styles. An alternating non-negative least
squares algorithm is described for fitting the model in Section 3.4. Selecting the number
of latent response style groups (Section 3.5) and creating a data set purged of the effects

of response styles (Section 3.6) are also discussed.

3.1 Dual Scaling of Successive Categories Data

Dual scaling (DS) is a multivariate exploratory statistical technique which is equivalent to
correspondence analysis (CA) when analysing contingency tables (Van de Velden, 2000).
For such cases it is used to visualise departures from the independence assumption in
the two-way contingency table in a low dimensional space, akin to principle components
analysis (PCA) for continuous data (Nishisato, 1980a; Greenacre, 2007). However, for
the successive categories data dealt with here there are important differences.

Both DS and CA deal with non-contingency table data by typically applying the
standard procedure to a specific recoding of the data, designed to transform the data
into a form that resembles a contingency table (Greenacre, 2007). This recoding requires
the original data matrix X to be transformed before analysis, and for successive categories
data in particular the recoding schemes differ in an important way. The usual CA method
uses a doubling of columns (that is, adding an additional column to X for each object)
to construct scales with “positive” and “negative” poles before applying ordinary CA
(see Greenacre, 2007). However Nishisato (1980b) proposes the following alternative
method. This involves augmenting rating scale category thresholds or boundaries to the
data, which increases the number of columns from m to m 4+ ¢ — 1, and then converting
this to rank-orders. Although Nishisato’s original DS formulation focuses on a so-called
dominance matrix (see Nishisato, 1980a), it has been shown that DS applied to these
rank-orders are equivalent to doubling the rows (instead of the columns) of the matrix of
rankings before applying CA (Van de Velden, 2000; Torres & Greenacre, 2002).

The method is perhaps best illustrated by an example. Consider transforming the

following data matrix X, where three objects A, B and C are rated by n = 4 respondents



on a 5-point Likert scale (thus, ¢ = 5). The first step requires augmenting 4 (= g — 1)
columns to X, one column for each of the boundaries between the pairs of adjacent
ratings. Let the boundaries be called by, ..., by, where b, falls between ratings 1 and 2,
and so forth up to by which falls between categories 4 and 5. It suffices to assign scores

midway between the rating categories to each boundary, to arrive at the augmented data

matrix:
A B C A B C b by by by
4 3 1 4 3 1 15 25 35 4.5
2 2 5 2 2 5 15 25 35 4.5
X — :Xaug — (1)
3 2 2 3 2 2 15 25 35 4.5
1 5 4 1 5 4 15 25 35 45

Secondly, each row is converted to rankings, starting with a lowest rank of 0 and a
highest rank of 6 (= m + ¢ — 2) in this case. For ties the total ranking assigned to the
tied objects are distributed equally. This yields the following result for the example:

A B C Dby by by by
5 3 0 1 2 4 6

15 15 6 0 3 4 5

Xaug = T = (2)
4 15 15 0 3 5 6
6 4 1 2 3 5

Note that in general T has n rows and m + ¢ — 1 columns. DS also requires construction
of the matrix S that would have resulted if ¢ was the lowest and not the highest rating

of the Likert scale. This is easily achieved as
S=(m+q—2)11 —T. (3)

Using the CA formulation of DS of Van de Velden (2000), a row-doubled ratings matrix

F, :2n x (m+ q — 1) is constructed as

r - (3) 0

This matrix is subjected to CA, which assigns optimal scores in the vectors a and b to

the rows and columns of F, respectively (assuming a one-dimensional solution). This



is achieved by minimising a least squares criterion L(a,b) through the singular value
decomposition (SVD) (Van de Velden, Groenen, & Poblome, 2009). In the present context
L is given by

La,b) = cl[F, — 5 (m+q —2)(11 +ab)? (5)

where c is a proportionality constant, 1 denotes vectors of ones of the appropriate lengths
and $(m + ¢ — 2)11" centres the rankings in F,. For identifiability a constraint such as
|lal]| =1 is imposed. The method is discussed in more detail in Section 3.3.

Note that an important consequence of the data recoding scheme is that the dual
scaling procedure provides coordinates for the boundaries. The effect of the boundaries
is to retain the information on how different the original ratings assigned to the objects
were before the rankings were constructed. The coding scheme also imposes ordinality
on the object and the boundary scores in b by constructing rankings.

The optimal scores assigned to the boundaries can be used to detect response styles
since they estimate the thresholds of the response mapping of the group of respondents,
as was discussed in relation to Figure 1. Intuitively optimal scores assigned to the bound-
aries work as follows. If a specific rating category j is used very often, the boundaries
bj—1 and b; will often receive rankings which differ substantially since the category is
often filled. Consequently, the optimal scores assigned will differ significantly, indicating
that respondents use the category very often. The same reasoning illustrates that when
rating j is used very infrequently, the optimal scores for b;_; and b; will be very similar.
Therefore, when a group of respondents have the same response mapping, the method
will be able to tell which type that mapping is.

In Section 3.3 latent classes will be introduced for the boundary scores which allows
for multiple response styles. First, however, using monotone quadratic splines with the

dual scaling method is discussed.

3.2 Modelling Response Styles by Monotone Quadratic Splines

From Figure 1 it is evident that the four response styles considered can be completely
described in terms of its curvature properties. By dividing the horizontal axes into two
equal lower and upper parts, the four response styles are characterized by either concavity
or convexity in the lower and upper parts of its domain. This is summarised in Table 1.
For inferential and response style classification purposes it will prove useful to pa-
rameterize the response style transformations considered here. The family of monotone

quadratic splines with a single interior knot is ideal for this purpose as it combines two



Response style Lower Curvature | Upper Curvature
No Response Style None None
Acquiescence Convex Convex
Disacquiescence Concave Concave
Extreme Responding Concave Convex
Midpoint Responding Convex Concave

Table 1: Curvature properties of the four response styles.

quadratic polynomial functions in the adjacent intervals of the domain, subject to con-
tinuity and differentiability restrictions at the interior knot. These splines are either
concave, convex or linear in the lower and upper halves of the domain and therefore
reproduce all the curves described in Figure 1 and Table 1.

The splines have three non-constant basis functions (the so-called I-spline basis) de-
rived by appropriately integrating the basis functions of the M-spline basis (see Ramsay,
1988). A quadratic monotone spline with a single interior knot ¢ € [L, U] and intercept
w is of the form

fa) =t Y] ) ©

In the proposed model t = L + 0.5(U — L) is chosen to lie halfway between the lower
and upper limits L and U respectively. Monotonicity requires that a; > 0 for ¢ = 1,2, 3.
The basis functions My, My and M3 are constructed to ensure continuity and first-order

differentiability at ¢, and their formulae are as follows (Ramsay, 1988):

2t(x—L)— (22— L?)

WMa—D)—(@22L2)  yp < g <t
Mi(z | t) = (=
1, ift <2 <U;
(z—L)* if L <ux<t

My | ) = § CO T
(tj-_[[,l + 2U (z—t)— (2% —t?) ift<az< U,

(U—t)(U—-L)
0, if L<uxz<t,

Mg(.ﬁU | t) = (z—t)2 .
GEEE ift<axz<U,

The spline functions are built into the column scores b in (5) by using the (¢ — 1) x 4
design matrix M to collect the basis functions corresponding to u, ay, as and ag respec-

tively. The basis functions are evaluated at the midpoints between rating categories, for
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Figure 2: The three I-spline basis functions for quadratic monotone splines with a single
interior knot ¢.

example at 1.5, 2.5 up to 6.5 for a 7-point Likert scale. Hence b can be written as

b1 b1
() () 0

with b; the m-vector of unrestricted object scores and by the (¢ — 1)-vector of spline-
restricted boundary scores. The spline parameters are collected in o = (p, g, (g, 043)/.
The basis functions M, My and Mj in (7), as depicted in Figure 2, are piecewise
quadratic, with only two of them nonconstant in each of the intervals [L, ¢) and [t, U].
This is convenient because it means the second derivative of f, and hence the curvature,
depends only on two parameters in each interval. Rescaling without loss of generality so
that L = 0 and U = 1, the curvature of f (not necessarily defined at ¢t = 1/2) is given by

d? () —8ay +4ag, if0<z<1/2; ©)
[ x f—
da? —dan +8as, if1/2<z<1;

The function f(x) is either convex, concave or linear in a given interval depending on
whether the second derivative (9) is positive, negative or zero respectively, which does
not depend on z. In fact, assuming that a; and a3 are larger than zero, the curvature
can be measured solely in terms of the ratios as/ay and ay/as, referred to henceforth as

the curvature parameters. For example, the requirement for convexity in both the lower
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Figure 3: Classifying response styles graphically using the curvature properties of mono-
tone quadratic splines.

and upper domain is

d? L@ > HL<z<t
——flr) >0 ¢ ’ - ’ (10)
dx 2<?, ift<a<U.

Problems can however occur with this analysis when either or both of a; and a3 are zero.
In such cases a continuity adjustment may need to be made.

It is possible to rewrite Table 1 wholly in terms of the curvature parameters, but more
importantly using the curvature parameters it is possible to visualize the curvature of an
estimated response style in a single plot. Figure 3 illustrates the situation by plotting
as/ag against as/aq, as well as incorporating the response style classification regions
derived from Table 1. When both curvature parameters equal two, no response style is
present. Due to the fact that both curvature parameters has the range [0, 00), a more
symmetric plot is arrived at by using the base-2 logarithmic transform and centring —

this is illustrated in Section 5.

3.3 Dual Scaling Method for Multiple Response Styles

To allow for multiple response styles, I see that suppose that each of the n individuals
belongs to one of K response style groups, the exact membership being unknown. Let the
n x K matrix G contain as columns the group indicator vectors {g; }%_,, each indicating

which individuals belong to that specific group. The column scores {by}}_ | are of the
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same form as b in Equation (8), but are now group-specific by replacing by with bgy =
May,. This allows for the different groups to have different response mappings by letting
the spline parameters oy = (/Lk,O{UmOZQk,O[gk), vary between groups. The object scores
b; and the row scores a remain fixed across all response style groups.

The group membership G needs to be estimated, together with the 2n-vector a of
optimal scores for the individuals and the column score vectors by, of length (m + ¢ — 1)
contained in the K columns of B. It is required for monotonicity that a;, > 0 for all
i and k. The loss function in Equation (5) must be adjusted to allow for the multiple
response styles as well as for the spline restrictions. This constrained dual scaling method

for the detection of response styles can be formulated as

min L(a,B, G)
a,B,G
: b; .
subject to by = and o, >0,i=1,2,3, k=1,2,..., K. (11)
2k

The adjusted loss function (compare Eq. (5)) is

K
1 I !
L(a,B,G) = c[F, — S(m+¢—2)(11' + Y Dg,ab,)|. (12)

k=1

Again, c is a proportionality constant, and the diagonal matrices Dg, are contructed as

0 diag(gy)

Hence, through using the {Dg, }, in (12), individuals are associated with the corre-
sponding b; for their group. Experience suggests that L typically decreases as more
groups are added (that is when K increases). Therefore, when considering how the value
of L changes for different values of K in a scree plot, it is convenient to standardise these
values to the unit interval [0, 1].

An algorithm for minimising L is discussed in the next section.

3.4 An Alternating Nonnegative Least Squares Algorithm

Solving the optimisation problem in (11) requires finding a, B and G under the appro-
priate restrictions. The approach discussed here alternates over two steps:

1. The algorithm combines alternating least squares (ALS) and nonnegative least
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squares (NNLS; Lawson & Hanson, 1974) to approximate the optimal a and B for
a given group membership matrix G. This involves fixing the value of a, estimating
the optimal B with NNLS, and then updating a by ordinary least squares (OLS)
based on the estimate of B. This ALS process is repeated for a given G until
numerical convergence is observed.

2. For fixed a and B, G is updated by a K-means type algorithm given the values
determined for a and B. This step simply allocates each individual sequentially
to the group which minimises the loss function.

The algorithm alternates between steps one and two until the loss function L changes
by less than a small positive constant. Note that starting values for both a and G
are required. Also, such block-relaxation algorithms may suffer from local minima, and
therefore multiple random starts are required.

The optimisation process is described in more detail in Algorithm 1. The formulation
is for a single starting configuration of G, and needs to be repeated for multiple such
configurations. Parameters that need to be specified include n,, the number of (random)
starts used for a, the maximum number of iterations maxit, and maxitg for the ALS and
K-means phases respectively, and also the numerical tolerances ¢; > 0 and e; > 0 for

these two steps.

3.5 Selecting the Number of Response Style Groups

To select the number of groups K, a scree plot of the loss function for different values
of K can be used. The aim is to choose the smallest K such that larger values do not
significantly reduce the loss. This method was introduced by Cattell (1966) and has been
widely adopted. The dual scaling method also separates individuals based on the shape
of the response transformations and rating frequencies in the groups. This supplementary
information can be helpful for choosing K in cases where the scree plot is not conclusive.

This will be illustrated in the empirical application of Section 5.

3.6 Purging Response Styles

Once the estimates a, B and G have been obtained, these can be used to create a version
of the original data X which is purged of response styles. All that is needed is to use the
splines estimated for each response style group to assign optimal scores to the rating scale.
Then these scores are substituted in X by replacing every rating with the appropriate

optimal score.
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Algorithm 1 Alternating Nonnegative Least Squares Algorithm

1: set + =0, h = 0 and n,, maxit,, maxitg, €¢; > 0 and e > 0
2: initialise Gy, set F¥ = F, — 1(m + ¢ — 2)11’
3: while L;,_1 — Lj, > ¢5 and h < maxitg do

4: construct ng from Gy, according to Equation (13)

5: for all j = 1,2,...,n, do (iterate over different starts for a)

6: if ¢ =0 and h = 0, generate a starting configuration a; for a

7 while Li—l,j — Lij > ¢ and 1 < maxit, do

8: update (indices i and h are omitted for readability)

9: wy; < (a/DP a;)~1/2 for all k

10: (Vikj, Varj) Qw%I(Fj)'ngaj for all k

11: by (aja;) ™t Yo, w Vi

12: Oy < argming,, [|wp; Moy — v ||* s.t. oupj, ok, sy > 0 for all
k

13: boxj < May; for all k so that by; = (by;, bay;)’

14: aj #H(Zkl(:l b}fjbijZk)_l Zszl ngF:bkj

15: 141+ 1

16: calculate L;; = L(a;, B;, Gy)

17: end while

18: end for

19: if n, > 1, set (a;, B1) < argming,, ;) Li; and n, < 1

20: update h < h+ 1 and Gj_; to Gj by reassigning each individual to the group
which minimises L

21: calculate L, = L(a;, B, Gy)
22: end while
23: return a = a;, B = B; and G = Gy, and repeat for different starting values Gy
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Determining the optimal scores for the ratings requires constructing a design matrix
from the spline basis functions evaluated at the rating categories 1 to q. Let this matrix
be M*. The optimal scores are simply determined as M*ay. In Section 4.3 a simulation
experiment is conducted to assess how accurately this method can reproduce a known

underlying correlation structure from contaminated data.

4 Simulation Results

4.1 Simulation Model

The simulated data was generated in a three-step procedure. First, the true underly-
ing preference structure for the m objects is obtained by simulating m random numbers
from a U(0, 1)-distribution. These are gathered into the m-vector p. Second, individual
preferences are generated by simulating n times from each of m truncated normal distri-
butions respectively centred at the elements of p. The individual preferences are given by
6; = p+e;, with g;,4 = 1,...,n, representing the individuals deviation from the mean.

Truncation is done at 0 and 1 so that response styles can be defined on the closed
interval [0, 1]. Note that the use of truncation avoids overflow problems at the lower and
upper ends of the response style mapping, and hence improves on the original approach
of Van de Velden (2007). The truncated normal draws are done independently and with
error variance o2, which is an important parameter because it determines how pronounced
the multi-modality of the mixture of truncated normals over [0, 1] is.

The resultant true preferences are randomly divided into different response style
groups. Finally, these data are discretised to m categorical variables with ¢-point Likert-
scales, according to the cut points on [0, 1] implied by the chosen K response styles.
These response styles are parameterised to come from the family of monotone quadratic
splines outlined in Section 3.2.

In the simulations, choices must be made regarding the following: the number of
objects m, the number of rating categories ¢, the underlying standard deviation o, the
number of response styles K, as well as their shapes defined by ay, k = 1,..., K, the

sample size n and how this is divided among the K groups, namely nyx, k =1,..., K.

4.2 Assessing Classification Performance

The first simulation study assesses the classification accuracy of the dual scaling method.

It is assumed in this experiment that the number of groups K is known beforehand.
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Figure 4: Response styles used in the simulation study.

For each of the experimental conditions, 50 simulated data sets were constructed and the
dual scaling method applied. For each data set estimation was based on 15 random starts
for G, and for each of these starts the ALS procedure was initialised from 50 different
random configurations for the row scores a.

The 108 experimental conditions consisted of the following. The number of objects m
was varied over 10, 20 and 30 items. The rating scales employed were either ¢ = 5 or 7-
point scales. Sample sizes of n = 200, 1000 and 5000 respectively were used. The number
of groups K were either 3 or 5. For each of these K, it was assumed that one of the groups
has a linear response mapping (that is, a group with no response style). The additional
K — 1 groups exhibited response styles through nonlinear mappings. For K = 3, these
additional groups were acquiescence and extreme responding, since Baumgartner and
Steenkamp (2001) found that these are most prevalent in survey data. For K = 5, groups
for disacquiescence and midpoint responding were also added. The corresponding spline
functions used to simulate from are shown in Figure 4. The sample of n respondents
was assigned to the groups by allocating either 20%, 50% or 80% of respondents equally
among the K — 1 response style groups. These percentages represent the amount of
contamination in the simulated data. The remaining percentage of respondents was
assigned to the group exhibiting no response style. The latent standard deviation o was
fixed at 0.1 for all experiments.

To assess the classification performance of the method, the adjusted Rand index as

well as the percentage correctly classified (the so-called hit rate) were computed. The



16

adjusted Rand index (ARI) of Hubert and Arabie (1985) assesses the similarity between
two partitions, adjusted for chance correspondences between these partitions. The upper
limit of the ARI is one, and indicates perfect agreement. An ARI of zero indicates that
the method does not improve on random assignment, with all positive values indicating
an improvement. Negative ARI values are also possible, and indicate poorer performance
than random assignment. The ARI is in general lower than the hit rate, and can be
considered as a more objective measure of performance.

For each of the 108 experimental conditions, Tables 2 and 3 show the average values
over the 50 simulated data sets. It is apparent that the sample size n does not have a
large influence on the ARI and hit rate. The number of groups K is very important for
performance when the contamination percentage is low (20%). This is because for K =5
groups the 20% of contaminated data points must be divided into 4 groups instead of 2
when K = 3, which results in groups with very low proportions ny/n of the total sample.
The low performance here is somewhat compensated for by using more items, such as
m = 30, but for K =5 groups even more items are needed. In general, using more items
increases the classification accuracy. Using a larger number of rating categories ¢ also
increases performance, but mostly so with fewer groups (K = 3). The method improves
on random assignment — especially in cases with higher response style prevalence and 20

or more items the improvement is substantial.
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Table 2: Average adjusted Rand index for 50 simulations at the different parameter settings.
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Table 3: Average hit rates for 50 simulations at the different parameter settings.
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4.3 Recovering Underlying Structure through Data Cleaning

The simulation model of Section 4.1 assumes that, given the expected value of the object
scores m, the objects are independently distributed as truncated normal distributions.
Although the true correlation matrix between the objects thus is the identity matrix I,
the observed correlations after the response style contamination is often inflated. To
show improvement, the cleaned data derived as in Section 3.6 should have correlations
resembling independence more closely. A visual example is given in Figure 5 for simulated
data (m = 20, K = 3 similar to the conditions used in Tables 2 and 3), where the colours
indicate the magnitude of the Pearson correlations. It is evident that the response styles
artificially inflate the correlations. When ¢ = 7, the cleaned data to some extent succeeds

in removing the spurious correlations, but when ¢ = 5 the situation is not much improved.

The conditions under which the cleaned data can be expected to provide a better rep-
resentation of the underlying correlation matrix was studied further through simulations.
For the different values of K, n,q, and the proportion of response style contamination
used in Section 4.2, 50 simulated data sets were constructed and cleaned through the
dual scaling method. Here m = 20 was fixed for simplicity. For each of these data sets,
the root mean square error (RMSE) between I and the empirical Pearson correlation

matrix for the contaminated data was calculated, where

RMSE(V, W) = \/z > (v — wiy)? (14)

for commensurable matrices V and W. Similarly, the RMSE comparing I with the
empirical Pearson correlations of the cleaned data can be computed. A reduction in the
RMSE when using the cleaned data as opposed to the contaminated data indicates that
the cleaned data has a correlation structure which matches the true correlation structure
more closely.

A two-sample Wilcoxon test, also known as the Mann-Whitney test, (e.g. Rice, 2007)
was used to test the null hypothesis that the RMSE is equal for the contaminated and
cleaned data against the one-sided alternative that the RMSE for the contaminated data
is greater than that of the cleaned data. The results are quite clear: when ¢ = 7 the
null hypothesis is always rejected (p < 0.001) in favour of the alternative, whilst when
g = 5 the null hypothesis cannot be rejected even once (all p > 0.2). It can therefore

be deduced that when a sufficient number of rating categories ¢ are used, the correlation
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Figure 5: The effect of response styles on the underlying uncorrelated objects: estimated
Pearson correlations before and after contamination, as well as after cleaning the data.
The number of items is ¢ = 5 for (a) — (¢) and ¢ = 7 for (d) — (f) .
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structure of the cleaned data is more representative of the true underlying structure of
the data.

A related question concerns the performance of the method in the presence of a
nontrivial correlation structure. To impose such a structure whilst retaining truncated
normal marginal distributions for the objects, a copula is used (note that the truncated
multivariate normal distribution does not guarantee truncated normal marginals). A
copula is a multivariate distribution function C'(uq,us,...,u,;) with uniform marginals
(Hofert & Méchler, 2011). According to Sklar’s theorem (Sklar, 1959; Hofert & Méchler,
2011) a multivariate distribution function F’ with marginals {F}}72; can be constructed
as

F(xy,2z9,...,2m) = C(Fi(x1), Fa(xa), ..., Fpn(zm)). (15)

The marginal truncated normal distributions can be achieved by the inverse probability
integral transform. The dependence structure between the variables is solely determined
by the copula. Here two independent Clayton copula (Clayton, 1978) functions will be
used to impose a correlation structure in terms of Kendall’s 7, a well-known measure of
rank correlation (see Kendall, 1938; Hofert & Méchler, 2011). The structure induced here
for m = 20 is as follows: the first 10 objects are correlated with 7 = 0.2, independent
of the other 10 objects which are correlated with 7 = 0.35. These 7 values amount to
Pearson correlations of approximately p = 0.3 and p = 0.5 respectively (an approximate
relationship is p & sin(77/2) - see Kendall and Gibbons (1990)). It is also possible to
introduce negative correlations by using 1 — U instead of U in the inverse probability inte-
gral transform. In the application here these reversals are made randomly with differing
probability . The theoretical correlations given by Kendall’s 7 for one such copula is
illustrated in Figure 6.

The difference in RMSE can again be used to evaluate the effect of the data cleaning
on the correlation structure, now using Kendall’s 7 since the Clayton copula’s use this
measure directly. A simulation study was conducted for m = 20 objects with the other
parameters varying as before. For each combination of the parameters, the RMSE was
calculated for 50 randomly generated data sets according to the copula model described
above. Then for each data set the constrained dual scaling model was fit as before, and
a cleaned data set constructed. The difference in the RMSE for the contaminated data
as compared to the cleaned data was recorded.

Table 4 presents the average reduction in RMSE as a result of cleaning the data
with the dual scaling procedure. As before the two-sample Wilcoxon test was performed.

Significant improvements were found in all cases except those printed in italic in Table 4.
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Figure 6: An example of the correlation structure imposed by the Clayton copula’s, in
terms of Kendall’s 7.

It is apparent that the cleaned data improves the RMSE in all cases, except where both
g and K are small and the proportion of contamination is moderate (50%) to large
(80%). Except for these circumstances, the constrained dual scaling method improves

the estimation of the true correlation structure by removing the response styles effects.
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n = 200 n = 1000 n = 5000 n = 200 n = 1000 n = 5000
RS% v= 05 075 1.0 05 075 1.0 05 075 1.0 05 075 1.0 05 075 1.0 0.5 0.75 1.0
20% 0.08 0.09 0.33 005 003 0.35 0.02 00l 0.36 0.67 0.71 0.45 0.63 0.77 0.44 0.69 0.74 0.48
K =3 50% 0.10 -0.09 -0.07 -0.09 -0.1} -0.24 -0.07 -0.02 -0.15 0.64 0.70 0.83 0.70 0.70 0.86 0.64 0.69 0.87
80% 041 -0.37 -0.44 -0.34 -0.41 -0.47 -0.38 -0.43 -0.46 0.60 0.65 0.81 0.64 0.66 0.79 0.61 0.66 0.8

20% 0.09 0.19 050 014 0.19 055 014 0.15 054 0.75 0.85 0.47 0.70 0.82 0.48 0.70 0.79 0.4
K=5 50% 0.12 0.15 0.8 0.2 0.14 021 0.13 0.4 026 0.71 0.75 0.93 0.70 0.76 0.94 0.70 0.76 092
80% 0.10 0.12 0.07 0.7 0.11 0.2 0.08 0.11 0.10 0.70 0.72 0.85 0.68 0.72 0.85 0.68 0.72 0.85

Table 4: Average proportional improvement in the RMSE when comparing the cleaned to the contaminated data. A two-
sample Wilcoxon test for no difference in the RMSE was performed, against the alternative hypothesis that the cleaned data
significantly reduces the RMSE. Significant improvements (at the 95% level) was observed for all tests except those shown
in italic print.
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5 Application

To illustrate the method applied to empirical data, consider data obtained from an un-
named multinational food and beverage conglomerate regarding an investigation of prod-
uct perceptions for 20 similar products. The products include in-house products as well
as those of competitors. Data were collected from n = 268 panelists, who supplied Likert
scores for 7 attributes of these products. Each product is rated on all 7 items or ques-
tions, so that there are 140 items collected in a data matrix with 268 rows and m = 140
columns. The Likert scale ranges from 1 (“low”) to 9 (“high”), and hence ¢ = 9.

The first step is to select K by inspecting the loss function through a scree plot.
Consideration is also given to the curvature properties of the splines as well as how well
the method separates groups of panelists who exhibit different distributions of rating scale
use. It is expected that once spurious clusters are added at least two of the estimated
response curves will be very similar, and/or that two groups will on aggregate use the
rating scale in a very similar fashion. For each of K = 1,2,...,8 groups, the algorithm
was run from 50 different random starts for the grouping matrix G, where appropriate.
Also, 50 random starts for the alternating least squares (ALS) part of the algorithm was
used.

Figure 7 shows the resulting (rescaled) scree plot. There does not seem to be a clear
“elbow” in the plot, although it is apparent K = 3,4 and 5 are the options requiring
closer scrutiny. As K increases beyond 5 not much improvement in the loss function is
observed.

The response mappings for the solutions K = 1,...,8 are displayed in Figure 8.
In these plots the horizontal axis contains the original rating scale, while the vertical
axis denotes the optimal scores assigned to the Likert scale. The area of the bubbles
superimposed on the transformation plots indicate how often each rating category is
used, aiding in the interpretation. A first observation is that (strictly, almost) all the
detected response mappings have the characteristic convex shape of acquiescence. This
means that all panelists have a tendency to use positive ratings frequently. The groups
differ with respect to the intensity of the acquiescence.

Furthermore, the range of optimal scores that is assigned to each group, namely
Zf’zl a;, in terms of the spline parameters set out in Sections 3.2 and 3.3, depends on
the within-group variability of rating scale use. Groups where individual panelists’ rating
scale use show more variability from the group’s aggregate rating scale use are assigned

optimal scores with a wider range. Hence the method treats such groups, i.e. groups
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Figure 7: Scree plot for the panelist’s ratings.

containing more individualistic respondents, as more informative as opposed to groups
with more uniform response behaviour.

A closer look at the distribution of the rating scale use in the identified groups reveal
that all groups in the solutions K = 3,4 and 5 show visually different distributions, except
the black and green groups when K = 5. The relative frequencies with which each rating
is used in each of the groups when K = 4 and 5 is shown in the barplots in Figure 9.
It is obvious that the black and green groups when K = 5 have very similar aggregate
behaviour. This is however not immediately apparent from the spline functions displayed
in Figure 8, which assign different optimal scores to these groups.

A more formal comparison can also be made by using the Kullback-Leibler (KL; e.g.
Lehmann & Casella, 1998) divergence between the distributions of different groups —
this is also known as entropy distance. It is an asymmetric measure of the dissimilarity
between two density functions, the reference density f and another density g, defined
as Efllog(f(X)/g(X))]. When f = g, the entropy is zero. Assessing the pairwise KL
divergence for all pairs of groups (and using both f and g as reference) show that indeed
the above mentioned two groups when K = 5 diverge the least among all pairs — see
Table 5. Since the method is designed to detect groups with different aggregate rating
scale use it can be concluded that the addition of a fifth group is spurious and therefore
K =4 is selected.
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Black Red Green Blue Cyan

Black - 0.158 0.009 0.187 0.234
Red 0.161 - 0.138 0.699 0.701
Green 0.008 0.134 - 0.224 0.297
Blue 0.166 0.606 0.202 -  0.053
Cyan 0.231 0.680 0.317 0.065 -

Table 5: The Kullback-Leibler divergence between the groups when K = 5, based on the
rating scale use per group. The distributions of the groups in the rows are treated as the
respective reference distributions, f.
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Figure 9: Relative aggregate frequencies of rating scale use in the identified groups when
K =5.

Consider the results for K = 4 groups. These four groups consist of 67, 71, 69
and 61 panelists respectively. The rating scale usage of these groups are displayed in
Figure 10 panels (a) — (d). Figure 11 displays the optimal scores assigned to the ratings
in the different groups as well as their curvature chart. The curvature chart includes an
approximate 95% confidence ellipse constructed for the parameter estimates of 5000 data
sets simulated under the assumption that no response styles exist. Any group falling
outside this band therefore has a significantly nonlinear response mapping and hence a
response style.

The first group (black in previous plots) represents acquiescence as mainly ratings 6
to 9 are used by panelists. There is a slight boundary effect, as also with the other groups,
in that a 9 is used less often than an 8. Because the categories 6 to 9 are frequently used,
the optimal scores assigned to these are close to zero. The most meaningful optimal
scores are assigned to the lower categories since when these are used it contains more
information for this group of panelists. Overall the information provided by this group is
low since the range of optimal scores assigned is very narrow. This is because the group
members display low variability with respect to their rating scale use. This is evident from

Figure 10 (e), which plots the frequency with which each rating is used per individual.
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Figure 10: (a) - (d): Relative frequencies of rating scale use for the chosen solution
K = 4; and (e) - (h) Variability of rating scale use within these groups, with each line
representing a single individual.

The second group (red) represent a more extreme acquiescence where 7 to 9 are often
used. The range of assigned optimal scores, and hence information, is similarly narrow,
but shifted further to the left since the upper categories are used even more frequently.
Since the response mapping is concave in the lower part of the domain there is a slight
deviation from acquiescence towards an extreme response style.

The green and blue groups both exhibit a mix of acquiescence and midpoint respond-
ing. This is evident from the relative frequencies in Figure 10 and the curvature chart
in Figure 11 (b). In these groups generally ratings 4 to 8 are preferred. Based on the
range of optimal scores assigned to them these consist of the panelists providing the most
information. Especially the green group is endowed with the most meaningful spread
of optimal scores, and can be seen in Figure 10 (g) to exhibit the most within-group
variation.

Finally, consider the optimal scores assigned to the items as displayed in Figure 12.
It is evident that Product R, and to a lesser extent Products N, D, E and F, received the

lowest ratings. In contrast, Product P was the best performing one. By using a cleaned
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Figure 11: (a) Optimal scores assigned to the K = 4 response style groups, from rating 1
(left) to rating 9 (right). (b) Curvature plot similar to Figure 3 for the four groups, with
the axes now transformed to obtain a more symmetrical plot. The ellipse in the centre is
an approximate 95% confidence ellipse for no response style.

data set constructed by replacing the ratings by optimal scores further analyses can be

conducted which are less influenced by the presence of the response styles.

6 Conclusions

A method that relies on the properties of dual scaling for successive category data to
detect response styles in categorical data was presented. It combines newly suggested
spline models for four main types of response styles with the original dual scaling method
to construct optimal scores for the boundaries between rating categories. These optimal
scores are sensitive to the presence of response styles. The method was adapted to
allow for multiple response style groups by utilizing a k-means type procedure, which is
combined with a constrained alternating least squares algorithm using nonnegative least
squares to fit the model.

Both the ability of the method to detect reponse styles and the improvement in corre-
lation structure that results from a cleaned data set where ratings are replaced by optimal

scores were studied. It was found that using 30 or more items and a rating scale of 7 or
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more categories yields great improvements in the classification of individuals to different
response style groups. When fewer rating categories are used other factors become im-
portant, such as the extent to which response styles are present in the data. Also, when
using a 7-point scale or more, the resulting cleaned data provide a more accurate descrip-
tion of the true substantial content in the data, after accounting for different repsonse
styles. The use of the method to identify respondents who provide similar amounts of
information in their repsonses to a survey was illustrated on an empirical data set.

The number of response style groups to retain was selected on the grounds of a scree
plot of the loss function, combined with the distribution of rating scale use in the different
response style groups. It remains to be seen whether a more formal selection method can
be derived. Other grounds for further research include alternatives for or additional
restriction to the spline functions, and whether more freedom is needed by allowing for

differences between the m object scores in different groups.
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