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Abstract

In this paper we measure extreme loss linkages in financial markets during severe
macroeconomic conditions. Specifically, we employ a count estimator, which is a non-
parametric univariate approach, to compute probabilities of the extreme linkage be-
tween daily S&P500 and German DAX index returns conditioned on extreme levels of
macroeconomic factors (i.e. inflation, industrial production, unemployment and money
supply). According to the results, we conclude that, the factor related to real economy,
i.e. industrial production, has most impact on the extreme loss linkage between US
and German equity markets comparing to the other factors which are more related
monetary policies. Additionally, the same procedure is also implemented to the equity
returns by sector of both markets and we find that industrial production is still the
most dominant macro factor. Health care and utilities sectors are the two sectors least
affected by the severe macroeconomic circumstances.

1 Introduction

There are numerous works and research dedicated to studying rare events and their
co-movement in the financial markets. Nevertheless, with best of our knowledge, few
researchers attempt to link such extreme linkages with macro-related situations. Here,
we post two main questions. First, what are extreme linkages of asset returns during
severe macroeconomic conditions? Second, do such linkages differ from those in an
ordinary period?

∗Charnchai Leuwattanachotinan is a Marie Curie Fellow at Erasmus University Rotterdam. The
research leading to these results has received funding from the European Community’s Seventh Frame-
work Programme FP7-PEOPLE-ITN-2008 under grant agreement number PITN-GA-2009-237984
(project name: RISK). The funding is gratefully acknowledged.
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One excellent work that investigates the extreme linkage in financial market was carried
out by Hartmann, Straetmans, and de Vries (2004). They studied asset market linkages
between and across equity and bond markets in crisis periods but unconditional on
macro factors. Our work here is mainly based on their work with extension to the
situations where the number of macroeconomic factors are stressed.

The remainder of the paper is organised as follows. The next section introduces the
concept of heavy tails and the measure of extreme dependency. Section 3 theoretically
investigates the fat-tailed distribution of macro factors using a standard closed economy
macro model. The equity return and macroeconomic data are described in Section 4.
In Section 5, empirical results of estimating the extreme loss linkage probabilities are
discussed. Section 6 concludes.

2 Heavy Tails and Extreme Dependence Measure

This section is devoted to review some theory of heavy tails and present an estimator
to measure the extreme dependence.

2.1 Fundamentals of Heavy Tails

Suppose that F (x) is a distribution function of a random variable x. F (x) exhibits
heavy tails if its tails vary regularly at infinity. Specifically, for the upper tail, we have

lim
t→∞

=
1− F (tx)

1− F (t)
= x−α, x > 0, α > 0, (1)

where α is a tail index.

Furthermore, random variables whose tails are regularly varying also have an additivity
property, i.e. Feller’s Convolution Theorem (1971, VIII.8). That is, assume that

P{X > x} = 1− F (x) = Ax−α + o(x−α), as x→∞. (2)

Then, if X1 and X2 are i.i.d. with c.d.f. F (x) in (2),

P{X1 +X2 > s} ∼ 2As−α, as s→∞. (3)

If X and Y are two random variables, where P{X > x} ∼ A1x
−α, P{Y > x} ∼ A2x

−γ,
and α > γ, it can be shown that

P{X + Y > s} ∼ As−α, as s→∞. (4)

In other words, the convolution is dominated by the heavier tail.
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2.1.1 Tail Index Estimator

To estimate the tail index α, one may use the Hill (1975) estimator. Suppose that
X1 ≤ X2 ≤ . . . ≤ Xn is the ascending order statistics. Thus, the Hill estimator is the
inverse tail index

γ̂ =
1̂

α
=

1

k

k∑
i=1

log
Xn+1−i

Xn−k
, (5)

where Xn−k is an appropriate threshold which is frequently selected from the sample
data. A suitable threshold or cutoff point can be chosen by using the eye-balling
technique, introduced by Embrechts et al. (1997). More precisely, the cutoff point
is selected where the plot of the estimated tail indices against threshold values is
first relatively stable. Alternatively, the Dekkers-Einmahl-de Haan (1989) (DEdH)
estimator may also be used for estimating the tail index such that

γ̂ =
1̂

α
= 1 +H +

1

2

K/H

H −K/H
, (6)

where

H =
1

k

k∑
i=1

log
Xn+1−i

Xn−k
, K =

1

k

k∑
i=1

(log
Xn+1−i

Xn−k
)2.

It is noted that H is the Hill estimator and if the distribution varies regularly at infinity,
K/2H is an alternative to the Hill estimator.

2.2 Extreme Dependence Measure

To measure the extreme dependence of a bivariate data, we discuss the count measure
which is the core methodology used in the next section. Then, some data transforma-
tion method for the raw data will also be presented.

2.2.1 Count Measure

At first, one may think of using correlation to measure dependence. Nevertheless, it is
known that correlation concept much depends on the multivariate normal distribution
in which it might not a reliable dependence measure for data at the tails (Ang and
Chen, 2002). Moreover, the amount of correlation is also quite not meaningful in the
sense that it tells us nothing about the probability. More detail regarding the pitfalls
of using correlation measure can be found in Embrechts et al. (1999).

Therefore, we directly quantify the extreme dependence in terms of probability by
employing a count measure which does not require any distributional assumption for
the data. Suppose that X and Y are two random variables whose failure regions are
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defined by X > s and Y > s, where s is a constant. Then, it can be shown that the
expected number of market crashes given that at least one market crashes is

E[k|k ≥ 1] = 1 +
P (X > s, Y > s)

1− P (X ≤ s, Y ≤ s)

=
P (X > s) + P (Y > s)

1− P (X ≤ s, Y ≤ s)

= 1 +
P (min[X, Y ] > s)

P (max[X, Y ] > s)

≈ 1 +
#min[X, Y ] > s

#max[X, Y ] > s
, (7)

where k = {1, 2} is the number of market crashes.

From (7), we can notice that the conditional expected number of market crashes is in
fact equal to the summation of marginal probabilities of each random variable divided
by a joint probability. Typically, there are several methodologies that can be used
to estimate the joint distribution such as Copula (a parametric approach) and tail
dependence function (a non-parametric multivariate approach). However, the count
measure will here be used since it is a simpler method that can turn the two-dimensional
problem to a univariate problem of counting the number of times that min[X, Y ] > s
and max[X, Y ] > s; see Hartmann et al. (2010). In other words, the expected number
of market crashes given that at least one market crashes can be approximated just by
counting the number of minimums and maximums of X and Y over a threshold.

2.2.2 Conditional Count Measure

The count measure can be applied to measure the extreme linkages during severe
macroeconomic conditions. It can simply be done by conditioning the probabilities of
X and Y more on thresholds of macroeconomic factors. For example, the expected
number of market crashes given that at least one market crashes when macroeconomic
factor π are simultaneously stressed in both countries can be defined by

E[k|k ≥ 1, πx > a, πy > b] =
P (X > s|πx > a) + P (Y > s|πy > b)

1− P (X ≤ s, Y ≤ s|πx > a, πy > b)
, (8)

where a and b are constant thresholds, and πx and πy are the macroeconomic factor π
of the countries of returns X and Y respectively.

Empirically, we first define thresholds for macroeconomic factors in order to specify
periods of the severe conditions. Consequently, the data of those particular periods
will be extracted for computing conditional extreme linkage probability.
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2.2.3 Eliminating the Effect of Marginal Distributions

To investigate the dependence structure of random variables, it is conventional to
eliminate the effect of their marginal distributions. One way to deal with this is to
transform the raw data to common unit Pareto marginals (Hartmann et al., 2006).
More precisely, suppose that we have the random variables Xi for i = 1, . . . ,M . Then,
Xi can be transformed to X̃i such that

X̃i =
1

1− FX(Xi)
, for i = 1, · · · ,M,

where FXi(Xi) denotes the marginal cumulative distribution function for Xi. After
transformation, each X̃i will obtain the common marginal distribution in which the
dependence structure still remains same as that of Xi. Nevertheless, since the marginal
distributions are unknown, it is suggested to use their empirical counterparts instead.
Hence, we eventually achieve

X̃i =
n+ 1

n+ 1−RXi

,

where RXi = rank(xik, k = 1, · · · , n). In addition, one may use other transformation
methods such as unit Frétchet marginals (see Poon et al., 2004).

3 Macroeconomics with Shocks

In this section, we use a standard closed economy macro model to study how shocks
propel through the macro economy in equilibrium. Both supply and demand shocks
are studied. It is shown how standard assumptions on the shock distribution lead
to a power law distribution explaining the bouts of severe changes and asymptotic
dependency between the various macro factors.

3.1 Demand Side

Current macro models typically entertain a two sector model. One sector is competitive
and the other sector produces differentiated products. The pricing power in the latter
sector determines price setting behavior.

The macro literature has focussed almost exclusively on the Dixit and Stiglitz (1977)
specification for the differentiated goods demand, see e.g. Walsh (2010, ch.8). The
familiar Dixit-Stiglitz (DS) specification with endogenous labor supply is derived from
the following utility function.

U = Z1−θ

[
1

n

n∑
i=1

Qρ
i

]θ/ρ
− 1

1 + γ
L1+γ, (9)
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where Z is the composite good, the Qi are the differentiated goods and L is labor.
To guarantee concavity and allow for zero demand, the parameter ρ is constrained to
ρε(0, 1). Macro literature, see e.g. Walsh (2010, ch.8), mostly uses a continuum of
differentiated goods, here we use a specification with a discrete number n, to facilitate
the computation of the distribution of the various macro factors in equilibrium. We
envision the Z good to be a staple good like agricultural produce, while the Qi goods
capture the production of other goods and services.

The budget constraint reads

wL+ Π(Q) = qZ +
1

n

n∑
i=1

piQi, (10)

where w is the wage rate and q, pi are the goods prices, while Π(Q) are the profits
received from the differentiated goods sector.

The first order conditions for optimality conditions entail

(1− θ)Z−θn−θ/ρ
[

n∑
i=1

Qρ
i

]θ/ρ
− λq = 0,

θ

(
Z

[
∑n

i=1Q
ρ
i ]

1/ρ

)1−θ

n−θ/ρ

[
n∑
i=1

Qρ
i

] 1
ρ
−1

Qρ−1
i − λ 1

n
pi = 0,

−Lγ + λw = 0

and

wL+ Π(Q) = qZ +
1

n

n∑
i=1

piQi.

The first order conditions imply the familiar price and wage ratios

pi
pj

=
Qρ−1
i

Qρ−1
j

,

pi
q

=
θ

1− θ
Z

Qj

p
ρ/(ρ−1)
j

1
n

∑n
i=1 p

ρ/(ρ−1)
i

,

and
w

q
=
(
q−1P

)θ Lγ

(1− θ)1−θ θθ
,

where the price index for differentiated goods is defined as

P =

(
1

n

n∑
i=1

p
ρ/(ρ−1)
i

) ρ−1
ρ

.
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Then the labor supply can be written as

L =

(
(1− θ)1−θ θθ w

q1−θP θ

)1/γ

. (11)

The goods demanded can be expressed as

Z = (1− θ) wL+ Π(Q)

q
(12)

the goods demanded and

Qi = θ
wL+ Π(Q)

pi

(pi
P

)ρ/(ρ−1)
. (13)

3.2 Supply Side

Assume Ricardian technologies for all the goods, where

Z = BN

and
Qi = ANi.

Here A and B are the productivity coefficients while N and Ni are the respective labor
inputs. Both A and B are random variables. These TFP shocks are the familiar supply
side total factor productivity shocks due to innovation and nature.

Suppose that the market for Z is perfectly competitive

Π(Z) = qZ − wN =
(
q − w

B

)
Z = 0,

so that
q = w/B. (14)

3.2.1 DS Differentiated Goods

In the DS specification the differentiated goods profit function reads

Π(Qi) = piQi − wNi =
(
pi −

w

A

)
Qi

=
(
pi −

w

A

)
θ
wL+ Π(Q)

pi

(pi
P

)ρ/(ρ−1)
.

The producer exploits his pricing power, but ignores his pricing effect on the price index
P of the differentiated goods and the consumer income wL + Π(Q).1 Differentiation

1One can easily incorporate this effect as well if desired, see Heijdra and Yang (1993). But for
two reasons we do not follow this route. One may doubt that producers take this macro effect of
their pricing behavior into account. Moreover, it adds little to the insights derived form specifying
the differentiated goods sector.
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gives
∂Π(Qi)

∂pi
=

1

ρ− 1
Qi

{
ρ− 1

A

w

pi

}
.

Exploiting the pricing power therefore implies setting prices

pi =
w

ρA
. (15)

Hence, P = w/ρA as all prices are identical. Total profits in the differentiated goods
sector are

Π(Q) =
1

n

n∑
i=1

Π(Qi) =
1

n

n∑
i=1

(
1− w/pi

A

)
θ [wL+ Π(Q)]

(pi
P

)ρ/(ρ−1)
= (1− ρ) θ [wL+ Π(Q)] .

Solve for the total sectorial profits as

Π(Q) =
(1− ρ) θ

1− (1− ρ) θ
wL. (16)

3.3 Macro Equilibrium

It follows that in equilibrium after substituting the price levels into the labor supply
equation (11)

L =
(
θθ (1− θ)1−θ AθB1−θ

)1/γ
ρθ/γ = ϕρθ/γ, (17)

say, and where

ϕ =
(
θθ (1− θ)1−θ AθB1−θ

)1/γ
.

Furthermore, from (12), (16) and (17)

Z = (1− θ) B

1− (1− ρ) θ
ϕρθ/γ. (18)

Similarly, using (13), (16) and (17)

Qj = θ
A

1− (1− ρ) θ
ρϕρθ/γ.

Hence
1

n

n∑
j=1

Qj = θ
A

1− (1− ρ) θ
ϕρθ/γ+1. (19)

To determine the price level, we also assume a simple quantity type relation for the
money supply process

M = wL. (20)
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3.4 Equilibrium Price Distribution

With the above preparations, we can now derive the implications for the equilibrium
prices, quantities and macro factors. Most macro models consider supply shocks orig-
inating from total factor productivity A and B and demand shocks originating from
the money supply process M or from the markup elasticity ρ, see Smets and Wouters
(2003). We will first look at the implication of such shocks for the prices pi of industrial
production.

From the above (14) combined with (20) and (17), we get that

q =
w

B
=
M

B

1

L
= M

1/ρθ/γ

B
(
θθ (1− θ)1−θ AθB1−θ

)1/γ .
Similarly, using (15) combined with (20) and (17) yields

pi = p =
w

ρA
=
M

ρA

1

L
= M

1/ρθ/γ+1

A
(
θθ (1− θ)1−θ AθB1−θ

)1/γ .
Consider a supply shock A such that A follows a beta distribution:

Pr {A ≤ t} = tβ

on [0, 1] and β > 0. Consider the implication for the distribution of the differentiated
goods Qi. Some calculation reveals

Pr {pi ≤ s} = Pr

M 1/ρθ/γ+1

A
(
θθ (1− θ)1−θ AθB1−θ

)1/γ ≤ s


= Pr

 M/ρθ/γ+1(
θθ (1− θ)1−θ B1−θ

)1/γA−(1+θ/γ) ≤ s


= Pr

{
cA−(1+θ/γ) ≤ s

}
say, where c = M/

[
ρθ/γ+1

(
θθ (1− θ)1−θ B1−θ

)1/γ]
. So that

Pr {pi ≤ s} = Pr
{
cA−(1+θ/γ) ≤ s

}
= Pr

{
c/s ≤ A(1+θ/γ)

}
= Pr

{
(c/s)1/(1+θ/γ) ≤ A

}
= 1− Pr

{
A ≤ (c/s)1/(1+θ/γ)

}
= 1− cβ/(1+θ/γ)s−β/(1+θ/γ)
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with support on [c,∞). The distribution of equilibrium prices is heavy tailed.

Also note that one can then easily obtain that the price changes are also fat tailed dis-
tributed as ratios of random variables that have fat tails are also fat tailed distributed.
Interestingly, if we look at the implication for nominal output of the sector or profits,
we do not get the fat tail implication since

piQi = M
1/ρθ/γ+1

Aϕ
∗ θ A

1− (1− ρ) θ
ρϕρθ/γ

= M
θ

1− (1− ρ) θ

and

Π(Q) =
(1− ρ) θ

1− (1− ρ) θ
wL =

(1− ρ) θ

1− (1− ρ) θ
M.

But if we have demand shocks of the sorts discussed in Smets and Wouters (2003)
regarding ρ, assuming that (recalling that by assumption ρε(0, 1))

Pr {1− ρ ≤ t} = tβ

then

Pr {Π(Q) ≤ s} = Pr

{
(1− ρ) θ

1− (1− ρ) θ
M ≤ s

}
= Pr

{
(1− ρ) θ ≤ s

M
− s

M
(1− ρ) θ

}
= Pr

{[
1 +

s

M

]
(1− ρ) θ ≤ s

M

}
= Pr

{
(1− ρ) ≤ s

θ

1

M + s

}
=

(
s

θ

1

M + s

)β
=

1

θβ

(
1− M

M + s

)β
with support [0, θM

1−θ ]. If θ = 1, only differentiated goods, we have again a heavy upper
tail. The ratio of profits in the change of profits, though, is certainly heavy tailed. To
see this, note that

Pr

{
1

Π(Q)
≤ x

}
= Pr

{
1

x
≤ Π(Q)

}
= 1− Pr

{
Π(Q) ≤ 1

x

}
= 1− 1

θβ

(
1− M

M + 1/x

)β
= 1− 1

θβ

(
1

Mx+ 1

)β
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on [1−θ
θM

,∞). The inverses has tail index β.

Looking at nominal GDP, we get

qZ +
1

n

n∑
i=1

piQi = wL+ Π(Q)

=

[
1 +

(1− ρ) θ

1− (1− ρ) θ

]
wL

=
1

1− (1− ρ) θ
M.

So if we assume again that Pr {1− ρ ≤ t} = tβ, then due to θ in the denominator
1 − (1− ρ) θε[1− θ, 1] and there are no fat tails. But if we assume that for example
that M is exponentially distributed, then the ratio of the money supply and time t
divided by the time t-1 supply is fat tailed, since if

Pr{M ≤ t} = 1− e−t,

then

Pr{ 1

M
≤ s} = Pr{1

s
≤M} = exp(−1/s),

which is a Frechet extreme value distribution with a tail index of one. Note that we
can obtain the distribution of the change as follows (use the last result in the third
step and the exponential distribution for the numerator in the fourth step)

Pr

{
M(t)

M(t− 1)
− 1 ≤ x

}
= EM(t)

[
Pr

{
m(t)

M(t− 1)
− 1 ≤ x

∣∣∣∣M(t) = m(t)

}]
= EM(t)

[
Pr

{
1

M(t− 1)
≤ x+ 1

m(t)

∣∣∣∣M(t) = m(t)

}]
= EM(t)

[
e−

m(t)
1+x

]
=

∫ ∞
0

e−
m

1+x e−mdm

=

∫ ∞
0

e−
2+x
1+x

mdm

=
1 + x

2 + x

= 1− 1

2 + x

which is a Burr distribution with tail index 1 and support [−1,∞).
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3.5 Implication for Systemic Risk

As for a start, consider the asymptotic dependence between the GDP measure

qZ +
1

n

n∑
i=1

piQi = wL+ Π(Q) =
1

1− (1− ρ) θ
M

and industrial output in nominal terms

piQi = M
θ

1− (1− ρ) θ,

where M itself follows a Pareto law

Pr{M ≤ t} = 1− t−α.

This example may be less interesting as M is directly assumed to be fat tailed but
we can use the above ideas to derive the fat tail property endogenously. Given the
assumption on M , we get immediately that

Pr{ 1

1− (1− ρ) θ
M > t} = Pr{M > [1− (1− ρ) θ] t} = [1− (1− ρ) θ]−α t−α

and

Pr{ θ

1− (1− ρ) θ
M > t} = θα [1− (1− ρ) θ]−α t−α.

Since θε(0, 1) we find that

Pr{ 1

1− (1− ρ) θ
M > t,

θ

1− (1− ρ) θ
M > t} = Pr{ θ

1− (1− ρ) θ
M > t}

= θα [1− (1− ρ) θ]−α t−α,

while

1− Pr{ 1

1− (1− ρ) θ
M ≤ t,

θ

1− (1− ρ) θ
M ≤ t} = Pr{ 1

1− (1− ρ) θ
M > t}

= [1− (1− ρ) θ]−α t−α.

Hence, the measure for asymptotic dependence gives

1 +
Pr{ 1

1−(1−ρ)θM > t, θ
1−(1−ρ)θM > t}

1− Pr{ 1
1−(1−ρ)θM ≤ t, θ

1−(1−ρ)θM ≤ t}
= 1 + θα > 1.
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4 Data

The equity return and macroeconomic data are described in this section. Furthermore,
the stressed levels for macro factors are also discussed.

4.1 Equity Returns

Figure 1 illustrates the scatter plot of daily S&P500 and DAX index returns from
January 1973 to June 2012 (10,304 days). From the plot, it can be seen that there are
several extreme returns which are related to some main events. For instance, the pair
of most extreme returns in the left below quadrant represents the well-known Black
Monday co-crash in October 1987. During the credit crisis in 2008, both markets
dramatically slumped on the same day and after a while a large rebound occurred.
Moreover, there is also the event that the German market realised the biggest loss in
the past 40 years, while the US market slightly reacted. That event is pertaining to
the German unification. For the results in next sections, we will particularly consider
the linkage probability of the extreme large loss.

Figure 1: Scatter plot of daily S&P500 and DAX index returns from January 1977 to
June 2012 (10,304 days).

4.2 Macroeconomic Factors

For macroeconomic factors, we consider the following four main indicators.

1. Inflation (Consumer Price Index; CPI)

2. Industrial production output

13



3. Unemployment rate

4. Money supply (M2)

The data are obtained from DataStream inc. at a monthly frequency and all are
seasonally adjusted.1 Table 1 presents the correlations of each factor between two
countries in which we can see that it can be divided into two categories: strong positive
and mild negative correlations.

S&P500 and DAX Index Returns 0.41

US and German Inflation 0.73

US and German Industrial Production Output 0.63

US and German Unemployment Rate -0.29

US and German Money Supply (M2) -0.23

Table 1: Correlations of index returns and macroeconomic factors between US and
Germany.

To begin with, we look at US and German (seasonally adjusted) inflations from January
1970 to December 2012 as illustrated in Figure 2. At first glance, we can observe
that US inflation is relatively higher for the first 15 years while the German CPI has
diminished. In order to condition the return data on inflation of these two countries,
an immediate question arises how can we determine a stressed level for these inflation
data?

Figure 2: US inflation with daily S&P500 index returns (left) and German inflation
with daily DAX index returns (right) from January 1970 to December 2011. The data
are seasonally adjusted.

1the data of all four macro factors except unemployment rate are year-on-year percentage change.
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4.2.1 Constant versus Time-Varying Stressed Thresholds

It is natural to think of the following two alternatives for specifying threshold levels
for a macro factor.

• First and the simplest way is to define thresholds by computing constant lower
and upper (i.e. 5% and 95%) quantiles for the whole period of data. The plots
of US and German inflations with constant 5% and 95% quantile thresholds are
demonstrated in Figure 3 (top row). It can be seen from the figure that if we
define the stressed levels of inflation using these upper constant thresholds, the
data of recent 25 years will be excluded, meaning that several extreme returns
(especially, during the credit crisis) will not be taken into account for investigat-
ing the conditional extreme linkage probability. Most importantly, it is known
that monetary policy related to inflation typically changes over time and those
extremely high levels of inflation in 1970s are unlikely to happen again as the
central banks of both countries has recently targeted more on inflation. Accord-
ingly, using the constant thresholds is therefore rather not suitable and hence it
may be more sensible if we allow thresholds to vary over time.

• Second alternative is to employ N -year moving average 5% and 95% quantile
thresholds. In Figure 3 (bottom row), the US and German inflations with 10-
year moving average thresholds are presented. Clearly, we can see that making
use of moving average allows the thresholds to change over time in which it seems
more reasonable than using the constant thresholds.

• Figures 4, 5 and 6 plot the remaining three macroeconomic factors (industrial
production output, unemployment rate and money supply (M2) respectively)
with constant and 10-year moving average 5% and 95% quantile thresholds.

To this end, two observations are made as below.

• Specifying a window for computing the thresholds is rather subjective. Consid-
ering 5-, 10- and 15-year moving average 5% and 95% quantile thresholds (not
shown in the figure), it can be found that the narrower the window is, the quicker
the thresholds moves.

• The public announcement date of macroeconomic indicators might not have a
significant effect to our study since we are not investigating the impact of an
announcement date to extreme events but merely employing thresholds to specify
the stressed periods of macro factors. Note that, in the US and Germany, the
official macro figures are generally released around two weeks after the end of
every month and the date is not precisely predetermined.
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Figure 3: US (left) and German (right) seasonally adjusted CPI percentage changes
(year-on-year) from January 1970 to December 2011 with constant (top) and 10-year
moving average (bottom) 5% and 95% quantile thresholds.

Figure 4: US (left) and German (right) monthly seasonally adjusted industrial produc-
tion index percentage changes (year-on-year) from January 1970 to December 2011 with
constant (top) and 10-year moving average (bottom) 5% and 95% quantile thresholds.
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Figure 5: US (left) and German (right) monthly seasonally adjusted unemployment
rate from January 1970 to December 2011 with constant (top) and 10-year moving
average (bottom) 5% and 95% quantile thresholds

Figure 6: US (left) and German (right) monthly seasonally adjusted money supply
(M2) percentage changes (year-on-year) from January 1970 to December 2011 with
constant (top) and 10-year moving average (bottom) 5% and 95% quantile thresholds.
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5 Empirical Results

In this section, the estimation results of the tail indices of macro factors are first
presented. Then, we investigate the extreme loss linkages between S&P500 and DAX
returns conditional on stressed macroeconomic factors for both index and sector levels.

5.1 Tail Indices of Macro Factors

We use the DEdH estimator to estimate the tail indices α̂ for monthly US (Figure 7)
and German (Figure 8) macro data (inflation, industrial production, unemployment
rate and money supply (M2)) from January 1973 to June 2012.

For the German data, it is evident that inflation (α̂ ∼ 2.0) obtains a heavier tail than
unemployment rate and money supply (α̂ ∼ 5.0). Interestingly, industrial production
exhibits non-fat tail since the tail index cannot be estimated. The results by the US
data are also similar to those by the German data except money supply that the DEdH
plot looks rather strange due to the extremely sharp money supply change in around
1996 of the raw data.

Figure 7: DEdH plots for four US macro factors: inflation, industrial production,
unemployment rate and money supply (M2). The monthly data ranges from January
1973 to June 2012 (474 months).
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Figure 8: DEdH plots for four German macro factors: inflation, industrial production,
unemployment rate and money supply (M2). The monthly data ranges from January
1973 to June 2012 (474 months).

5.2 Extreme Linkages: Equity Index Returns

We now measure the unconditional and conditional extreme loss linkage probabilities
using the count measure for daily S&P500 and DAX index returns from January 1973
to June 2012 (10,304 days). The raw data are transformed to unit Pareto marginals in
order to eliminate the influence of the marginal distributions.

5.2.1 Unconditional Extreme Linkage

The estimation result of the unconditional (i.e. without conditioning on macroeco-
nomic factors) extreme loss linkage between the US and German daily index returns is
presented in Figure 9. To choose a suitable threshold, we use the eye-balling technique
in which the cutoff point is selected where the plot is first relatively stable. From the
figure, we achieve the linkage probability at around 0.2 which can be interpreted as
“approximately once per 5 market crashes, there will be one co-crash”.

5.2.2 Conditional Extreme Linkage

We here estimate the extreme loss linkage probabilities of the US and German daily
index returns conditional on stressed levels of each of four macro factors (described in
the previous section). Thresholds for a macro factor are computed by using 10-year
moving average 5% and 95% quantiles. Furthermore, we consider to condition the
return data on a macro factor in four cases:
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Figure 9: Unconditional count measure for extreme loss of daily S&P500 and DAX
index returns from January 1973 to June 2012.

1. Above 95% quantile threshold in both countries.

2. Above 95% quantile threshold at least in one country.

3. Below 5% quantile threshold in both countries.

4. Below 5% quantile threshold at least in one country.

In other words, we are investigating the extreme linkage between two markets during
the periods of high and low levels of a macro factor. The stressed periods can also
be categorised as either when it occurs in two countries simultaneously or at least one
country is facing the severe macroeconomic condition. In addition, due to the nature of
macro variables, the daily bivariate returns will be conditioned on 1-month lag macro
data. For example, if the value of a macro factor of this month exceeds a specified
threshold value, the daily returns of the next whole month will be taken into account
for estimating the extreme linkage probability.

Figures 10 demonstrates the scatter plots of daily S&P500 and DAX returns conditional
on four cases of stressed inflations. The corresponding estimates for the extreme linkage
probabilities are also presented in Figure 11. From the figures, we first can observe that
quite a few data are obtained when the returns are conditioned on high inflation in
both countries simultaneously. According to the results, it can be found that in almost
all cases the extreme linkages between US and German equity markets conditional on
stressed inflations are rather close to the unconditional one. The linkage probability
when conditioned on low inflation below 5% quantile thresholds in both countries turns
to be slightly higher than other cases.

Figures 12 to 17 show the resulting estimates of conditioning the returns on each of
the remaining three macro factors: industrial production, unemployment and money
supply. Clearly, conditioning on industrial production results in much higher extreme

20



linkage probabilities than the unconditional one (except in case of above 95% quantile
at least in one country). Considering the returns conditioned on unemployment, the
most impact on the extreme linkage is the case where unemployment is above the
95% quantile threshold at least in one country. Finally, for money supply, we notice
that when conditioning the returns on high money supply above 95% quantile in both
countries, we achieve a very low extreme linkage probability. In addition, we can
see from all the figures that there are some cases that no conditional data at all, for
example, when conditioning the returns on low unemployment in both countries and
on high money supply in both countries.

Table 2 summarises the impact of stressed macroeconomic factors in four scenarios on
the extreme loss linkage probabilities of the daily S&P500 and DAX returns. It can
be seen from the table that industrial production clearly has the most impact on the
extreme linkages in almost all cases except only when it is higher than the 95% quantile
threshold at least in one country. For least impact factors, the results are mixed up
among inflation, unemployment and money supply.

To this end, it is worth mentioning that if we use constant (instead of moving average)
thresholds for macro factors, the estimated extreme linkage probability can be different.
One should bear in mind that a view on the stressed level of a macro factors might
affect the estimation results.

10-year Moving Average Ranking of Macro Factors (when stressed)
Thresholds by the Impact on Extreme Loss Linkages

In Both 1. Industrial Production

Countries 2. Inflation, Unconditional

Above 95% 3. Unemployment

Quantile Threshold At Least in 1. Unemployment, Money Supply

One Country 2. Industrial Production

3. Inflation, Unconditional

1. Industrial Production

In Both 2. Inflation

Below 5% Countries 3. Unconditional

Quantile Threshold 4. Money Supply

At Least in 1. Industrial Production

One Country 2. Unemployment, Money Supply

3. Inflation, Unconditional

Table 2: Ranking of macro factors (when stressed) by the impact on extreme loss
linkages between the US and German equity index returns from from January 1973 to
June 2012.
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Figure 10: Daily S&P500 and DAX index returns from January 1973 to June 2012
conditional on a) high inflation above 10-year moving average 95% quantile threshold
in both countries (top, left) and at least in one country (bottom, left), b) low inflation
below 10-year moving average 5% quantile threshold in both countries (top, right) and
at least in one country (bottom, right).

Figure 11: Count measure for daily S&P500 and DAX index returns from January
1973 to June 2012 conditional on a) high inflation above 10-year moving average 95%
quantile in both countries (top, left) and at least in one country (bottom, left), b) low
inflations below 10-year moving average 5% quantile in both countries (top, right) and
at least in one country (bottom, right).
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Figure 12: Daily S&P500 and DAX index returns from January 1973 to June 2012
conditional on a) high industrial production above 10-year moving average 95% quantile
threshold in both countries (top, left) and at least in one country (bottom, left), b)
low industrial production below 10-year moving average 5% quantile threshold in both
countries (top, right) and at least in one country (bottom, right).

Figure 13: Count measure for daily S&P500 and DAX index returns from January
1973 to June 2012 conditional on a) high industrial production above 10-year moving
average 95% quantile in both countries (top, left) and at least in one country (bottom,
left), b) low industrial production below 10-year moving average 5% quantile in both
countries (top, right) and at least in one country (bottom, right).
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Figure 14: Daily S&P500 and DAX index returns from January 1973 to June 2012
conditional on a) high unemployment rate above 10-year moving average 95% quantile
threshold in both countries (top, left) and at least in one country (bottom, left), b)
low unemployment rate below 10-year moving average 5% quantile threshold in both
countries (top, right) and at least in one country (bottom, right).

Figure 15: Count measure for daily S&P500 and DAX index returns from January 1973
to June 2012 conditional on a) high unemployment rate above 10-year moving average
95% quantile in both countries (top, left) and at least in one country (bottom, left), b)
low unemployment rate below 10-year moving average 5% quantile in both countries
(top, right) and at least in one country (bottom, right).
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Figure 16: Daily S&P500 and DAX index returns from January 1973 to June 2012
conditional on a) high money supply change above 10-year moving average 95% quantile
threshold in both countries (top, left) and at least in one country (bottom, left), b)
low money supply change below 10-year moving average 5% quantile threshold in both
countries (top, right) and at least in one country (bottom, right).

Figure 17: Count measure for daily S&P500 and DAX index returns from January
1973 to June 2012 conditional on a) high money supply change above 10-year moving
average 95% quantile in both countries (top, left) and at least in one country (bottom,
left), b) low money supply change below 10-year moving average 5% quantile in both
countries (top, right) and at least in one country (bottom, right).
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5.3 Extreme Linkages: Equity Returns by Sector

We continue on investigating the extreme loss linkage of US and German equity markets
but now in a sector level. The eight sectors considered are financials, industrials,
materials, consumer goods, consumer services, utilities, health care and telecom. The
results are summarised and analysed as follows.

• Comparing the unconditional extreme linkages among all sectors, we are generally
able to categorise the sectors as three main groups as shown in Table 3. From the
table, we can observe that sectors in the first group achieve the extreme linkage
probability at around 0.20 which is close to that of the index returns. The second
group gets the linkage probability lower, while the last group obtains the lowest
linkage probability.

Sector Extreme Linkage Probability

1. Financials, Industrials, Materials ≈ 0.20

2. Consumer Services, Consumer Goods, Telecom ≈ 0.15

3. Utility, Health Care ≈ 0.12

Table 3: The unconditional extreme loss linkage probabilities for the US and German
equity returns by sector from January 1973 to June 2012.

• For each sector2, it turns out that industrial production is still the most influential
macro factor on the extreme linkage, except for health care sector where the
impact by all four macro indicators are rather close. Furthermore, we can also
notice that inflation (during high stressed level) has more impact in materials,
industrials, telecom and health care sectors than those of the index returns.

• Table 4 demonstrates which sectors are affected most and least for each stressed
macro factor. In general, we can see that three sectors (industrials, financials
and materials), which are in the first group in Table 3, are most affected when
each of four macro factors is stressed. For the least affected sectors, the results
are mixed up but all are in the second and third groups.

6 Conclusion

In this paper, we attempt to associate multivariate extreme value theory with macroe-
conomic circumstances. The contribution is therefore the investigation of the extreme
loss linkage in the financial markets conditional on the stressed levels of macro fac-
tors, where the unconditional linkage probability is also considered for comparison.
The methodology used is the count estimator which is easy to implement for dealing

2To save the space, the figures are not shown here but available upon request.
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Above 95% Below 5%
Macro Factors Quantile Thresholds Quantile Thresholds

Most Impact Least Impact Most Impact Least Impact
Industrials Consumer Services Industrials Health Care

Inflation Materials Consumer Goods Materials Telecom

Consumer Services

Industrials Telecom Industrials Telecom

Industrial Production Financials Health Care Financials Health Care

Materials Consumer Services Materials Utilities

Industrials Health Care Industrials Consumer Services

Unemployment Materials Telecom Financials Telecom

Financials Consumer Services Materials Utilities

Materials Telecom Industrials Utilities

Money Supply Industrials Utilities Materials Health Care

Financials Health Care Consumer Services Consumer Services

Table 4: The impact on the extreme loss linkage for the US and German equity returns
by sector (from January 1973 to June 2012) for each macro factors.

with the estimation of MEVT for bivariate data. More precisely, the count estimator
allows us to measure the extreme linkage by counting the number of minimum and
maximum values of two return series over a threshold. According to the empirical re-
sults, it turned out that when conditioning the daily S&P500 and DAX index returns
on each of four macro indicators (i.e. inflation, industrial production, unemployment
and money supply), where the stressed levels are computed by using 10-year moving
average, industrial production distinctly has more impact on the linkage probabilities
than other macro indicators (i.e. inflation, unemployment and money supply), which
are more related to monetary policies. It should be cautioned that when investigat-
ing the extreme linkage conditional on a macro factor, choosing a stressed level for
macro factors does affect the extreme linkage probability. Further, when determining
the extreme linkages in sector level, we also found that industrial production is still
the most influential macro factor. Industrials, materials and financials sectors are the
three sectors that typically obtain a higher extreme linkage probability than the other
sectors. The extreme linkage of the returns of health care and utilities sectors are likely
to be less affected by stressed macro factors. Nevertheless, inflation tends to have more
impact for some particular sectors than the index, given a high stressed level.

Additionally, macro variables are also theoretically investigated for the heavy tails using
a standard closed economy macro model (Dixit and Stiglitz specification). The result
shows that the nominal output has no fat tail implication, in line with the empirical
results in which its tail indices cannot be estimated. This is interesting since we already
observed that industrial production output has most impact on the extreme linkage of
the US and German equity returns. Further investigation may be carried out.

Clearly, there is still a plenty of room for further research. The methodology may be
improved, or otherwise it is interesting to try other methods for the estimation. Also,
more macro factors may be considered and the analysis is not limited only to the US
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and German equity markets. Other pairs of markets such as emerging and developed
markets would also be very interesting. Finally, this piece of work can be a useful tool
for both policymakers and investors, who much concern about extreme large loss of
their asset portfolios during harsh macroeconomic environment.
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[5] Embrechts, P., Klüppelberg, C. and Mikosch, T. (1997). Modeling Extremal
Events. Springer Verlag, New York.

[6] Embrechts, P., McNeil, A. and Straumann, D. (1999). Correlation: pitfalls and
alternatives. Risk, 12(5): 69-71.

[7] Feller, W. (1971). An Introduction to Probability Theory and its Applications.
New York: Wiley.

[8] Hartmann, P., Straetmans, S. and de Vries, C.G. (2010). Heavy tails and currency
crises. Journal of Empirical Finance, 17: 241-254.

[9] Hartmann, P., Straetmans, S. and de Vries, C.G. (2004). Asset market linkages in
crisis periods. The Review of Economics and Statistics, 86(1): 313-326.

[10] Hartmann, P., Straetmans, S. and de Vries, C.G. (2006). Banking System Stability:
A Cross-Atlantic Perspective. The Risks of Financial Institutions, 133-192.

[11] Hill, B. (1975). A simple general approach to inference about the tail of a distrib-
tuion. Annals of Mathematical Statistics, 3: 1163-1174.

[12] Poon, S.H., Rockinger, M. and Tawn, J. (2004). Extreme Value Dependence in
Financial Markets: Diagnostics, Models, and Financial Implications. The Review
of Financial Studies, 17(2): 581-610.

[13] Smets, F., and R. Wouters (2003). An estimated dynamic stochastic equilibrium
model of the euro area. Journal of the European of Economic Association 1: 1123-
1175.

[14] Walsh, C.E. (2010). Monetary Theory and Policy, M.I.T. Press (Cambridge, MA).

28


