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Abstract

The capacitated vehicle routing problem is to find a routing schedule describing the order

in which geographically dispersed customers are visited to satisfy demand by supplying goods

stored at the depot, such that the traveling costs are minimized. In many practical applica-

tions, a long term routing schedule has to be made for operational purposes, often based on

average demand estimates. When demand substantially differs, constructing a new schedule

is beneficial. The vehicle rescheduling problem is to find a new schedule that not only min-

imizes the total traveling costs but also minimizes the costs of deviating from the original

schedule. In this paper two mathematical programming formulations of the rescheduling

problem are presented as well as two heuristic methods, a two-phase heuristic and a modi-

fied savings heuristic. Computational and analytical results show that for sufficiently high

deviation costs, the two-phase heuristic generates a schedule that is on average close to opti-

mal or even guaranteed optimal, for all considered problem instances. The modified savings

heuristic generates schedules of constant quality, however the two-phase heuristic produces

schedules that are on average closer to the optimum.

Keywords: Vehicle routing, vehicle rescheduling problem, operational planning

1 Introduction

The capacitated vehicle routing problem (CVRP) is a classical problem in operations re-

search. Consider a depot where goods are stored and a set of locations which have nonneg-
∗Corresponding author: spliet@ese.eur.nl
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ative demand for the goods. A set of vehicles of finite capacity is available to transport the

goods from the depot to the customers. The vehicles start and end their routes at the depot.

Costs are incurred for traveling from one location to another. The CVRP is to find a routing

schedule that describes the sequence of locations that is visited by every vehicle, in such a

way that the total traveling costs are minimized. The CVRP is known to be an NP-hard

problem.

Because the CVRP has many practical applications, a wide scala of solution methods

can be found in the literature. The branch-and-cut scheme of Baldacci et al. (2004) seems

presently to be the most successful at solving CVRP instances of up to 100 customer loca-

tions. Using this scheme, CVRP instances of up to 50 locations can consistently be solved to

optimality while this can only be done for specific problem instances including more customer

locations. For larger problem instances, many heuristic algorithms have also been developed

that are able to find good solutions with greater speed. An overview of exact and heuristic

algorithms can be found in Fisher (1995), Toth and Vigo (2002), Laporte (1992 and 2007)

and Laporte et al. (2000) amongst others.

In the classical CVRP, demand is deterministic and known. A situation that often occurs

in practice is that demand only becomes apparent at a late moment. For example, in the retail

industry it is very common that the orders of the individual stores are placed only a few days,

sometimes even just one day, before delivery. In situations of frequent periodic deliveries,

it is beneficial for operational processes to determine the moment of delivery before the

orders are placed. It is for instance very costly, if at all possible, to roster delivery handling

personnel one day before they are needed. It is therefore very common to determine a long

term schedule, henceforward master schedule, that serves as a schedule for every periodic

delivery over a certain period of time in which multiple deliveries are made.

Such a master schedule is made before demand realizations become apparent. As a result

the master schedule will not always be feasible as for instance high demand might cause the

capacity of a vehicle to be insufficient to make deliveries to all locations on its route planned

in the master schedule. In such cases the master schedule needs to be deviated from. More-

over, low demand may lead to inefficient use of vehicle capacity, such that lower traveling

costs might be obtained by deviating from the master schedule. The construction of a new

schedule when demand realizations become known, will be referred to as rescheduling.

In the literature, rescheduling is mainly considered in conjunction with designing a master

schedule. A very popular method for rescheduling is the one proposed by Bertsimas (1992).

In this method, the master schedule is used until a vehicle arrives at a location where its cargo
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is depleted. Next it returns to the depot to refill. Finally it resumes the master schedule

where it left off. When the demand distribution is known and when this rescheduling method

is used, the expected costs of a master schedule can easily be calculated. Furthermore, this

method allows for simple upper and lower bounds to be calculated for the expected costs

of the master schedule. The main application area of the rescheduling method proposed by

Bertsimas is when demand is not learned prior to the arrival of a vehicle at the depot. For

situations where the demand realization is known prior to the dispatching of the vehicles,

more efficient schedules can be obtained when using a different method of rescheduling. As

the rescheduling problem itself also has many practical applications, the main focus of our

paper will be to model and solve the rescheduling problem, disregarding the construction of

a master schedule.

To minimize the traveling costs that are incurred after rescheduling, a CVRP can be

solved using the demand realization to construct a new feasible routing schedule. This

may, however, result in increased costs at the customer side of the network. For instance,

when personnel is hired for handling deliveries, and deliveries arrive late, personnel is first

idle followed by working overtime, increasing labor costs significantly. Furthermore, as also

Bertsimas and Simchi-Levi (1996) recognize, stability in a distribution network is crucial;

implementing new schedules may confuse drivers and regularity and personalization of ser-

vice will not be guaranteed. The importance of rescheduling to practice, is also recognized

by Li et al. (2007 and 2009). Given an assignment of vehicles to trips, they designed a model

to reassign the vehicles to trips when one of the vehicles breaks down. Costs are incurred

when trips are delayed. The main application of this model is in passenger transportation,

where traveling costs and capacity constraints do not play an important role. In our paper

the negative effects at the customer side of rescheduling are modeled by costs incurred when

deviating from the master schedule. The vehicle rescheduling problem (VRSP) is to find

the optimal trade-off between the traveling costs and the costs of deviation, while satisfying

the capacity constraints. A new schedule has to be constructed that minimizes the total

traveling costs as well as the total deviation costs.

Another option to compensate for fluctuating demand is stabilizing demand by keeping

inventory. However, this may be impossible in practice by lack of storage space. Furthermore,

as Haughton (1998) concludes, the benefits of demand stabilization strategies do not generally

outweigh the costs.

In this paper a model is presented for the rescheduling problem where demand is known

before vehicles are dispatched. We have encountered this situation in several retail chains.

This allows for solution methods yielding more efficient schedules than methods based on

3



models where demand is assumed not to be known, as these models are typically used in the

literature. Note that most literature on rescheduling is aimed at constructing the master

schedule rather than designing a good model and finding accompanying solution methods for

the rescheduling phase. Examples of this are the L-Shaped integer method to find the optimal

master schedule by Laporte et al. (2002), a tabu search heuristic by Gendreau et al. (1996),

a rollout algorithm by Secomandi (2001) and an evolutionary algorithm by Tan et al. (2007).

In the following section, the VRSP is presented. Two mixed integer linear formulations

are included. They are extensions of mixed integer linear formulations for the CVRP, a

closely related problem. In fact, the CVRP is a specific case of the VRSP and which implies

that the VRSP is also an NP-hard problem. Heuristics will have to be used to find solutions

for the VRSP in practical applications. Two heuristic algorithms are proposed: First the

two-phase heuristic is introduced. This is a heuristic that makes use of specific properties of

the VRSP model. An analytical bound on the difference between of the generated solution

and the optimal solution is presented for this algorithm. Furthermore the modified savings

algorithm is described. This is a basic extension to the VRSP setting of the savings algorithm

proposed for the CVRP by Clarke and Wright (1964). The two-phase heuristic is mainly

proposed for its potential to produce good solutions whereas the modified savings algorithm

is presented as a comparative heuristic that is able to produce reasonably good solutions

with great speed and that is easy to adapt to future extensions to the VRSP. Finally the

sensitivity of the VRSP model to the value of certain parameters is investigated and the

performance of the two heuristics is analyzed by comparing their solutions with each other

and by comparing their solutions to the optimal solutions that are found using a direct

implementation of the VRSP.

2 The vehicle rescheduling problem formulation

In this section VRSP is presented. First a description of this problem is given and the

notation that will be used throughout the paper is introduced. This is followed by two

alternative mixed integer linear formulations of the VRSP. These formulations are based on

the most commonly used and most successful formulations of the capacitated vehicle routing

problem (CVRP) in the literature.

2.1 Problem description

Consider a directed complete graph G = (V,E). The set of nodes V = {0, 1, ..., n} correspond

to a single depot 0 and the customers V ′ = {1, ..., n}. For every edge (i, j) ∈ E traveling
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costs cij ≥ 0 are given that satisfy the triangle inequality. We suppose that an unlimited

number of vehicles of capacity Q ≥ 0 is at our disposal. Furthermore, for every location

i ∈ V ′ the demand qi is given such that Q ≥ qi > 0. The vehicles will be used to supply

demand. In this paper only none trivial problem instances will be discussed, it is assumed

that
∑

j∈V ′M
c0jqj > 0.

A route r ⊂ E is defined as a cycle in G including the depot. For ease of notation we let

every route r be accompanied by an ordered subset r′ ⊆ V ′. This allows us to represent a

route r = {(0, i1), ..., (ik, 0)} by r′ = {i1, ..., ik}. A route is called feasible when the capacity

of a vehicle allocated to drive this route is sufficient to contain the demand of all the locations

on that route,
∑

i∈r′ qi ≤ Q. The set including all feasible routes will be denoted by R.

A routing schedule S is a collection of edge-disjoint routes such that all customers are

included in exactly one route. Hence, for routes r1, ..., rm, S =
⋃m

i=1 ri where ri
⋂
rj = ∅

for i, j = 1, ...,m and i 6= j. A schedule S is called feasible when all routes it includes are

feasible. The set of all feasible schedules is S.

The classical CVRP,a problem that is closely related to the VRSP, can now be defined

as finding a feasible schedule that minimizes the total traveling costs:

(CVRP) min
S∈S

∑
(i,j)∈S

cij (1)

To define the VRSP we need the following additions to the CVRP. First of all, assume

that a master schedule SM is available. Note that this master schedule need not be feasible

as capacity restrictions might be violated by demand realizations. The VRSP is to create a

new feasible schedule SR that not only minimizes the traveling costs but also takes costs of

deviating from the master schedule into account. It is now left to define a deviation and the

accompanying deviation costs.

A deviation is defined per location. We say that the new schedule does not deviate for

location l when all locations visited prior to l on the route in both the master and the

new schedule are the same and that it deviates otherwise. To be more precise, suppose

location l is visited on route rM in the master schedule SM , rM is accompanied by r′M =

{iM1 , ..., iMv , l, ..., iMk }. In the new schedule SR, l is visited on route rR, which is accompanied

by r′R = {iR1 , ..., iRw, l, ..., iRm}. When v = w and iM1 = iR1 , ..., i
M
v = iRw, the new schedule

does not deviate for location l; otherwise it does deviate. Therefore, if location l deviates,

it immediately follows that all subsequent locations on the same route also deviate. As an

example, suppose r′M = {1, 2, 3, 4, 5, 6} and r′R = {1, 2, 4, 5, 7, 6}. The new schedule does not

deviate for locations 1 and 2, but it does deviate for all locations 3 through 7 (we know that

location 3 is moved to another route and 7 is moved from another route).
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Whenever a new schedule deviates for location i ∈ V ′, costs ui ≥ 0 are incurred. Let us

therefore define the following function describing the incurred deviation costs for location i

given an master and a new schedule, SM and SR respectively:

U(SM , SR, i) =

 ui, if SR deviates from SM for location i;

0, otherwise.
(2)

It is now possible to fully define the VRSP as finding a feasible schedule SR such that it

minimizes the total traveling and deviation costs for a given master schedule SM :

(VRSP) min
SR∈S

[
∑

(i,j)∈SR

cij +
∑
i∈V ′

U(SM , SR, i)] (3)

Note that the CVRP is a particular instance of the VRSP when ui = 0 ∀i ∈ V ′. As

CVRP is NP-hard, so is VRSP.

2.2 Mixed integer linear formulations

To solve the VRSP, a mixed integer linear formulation can be used. Existing CVRP formu-

lations can easily be extended to VRSP formulations. As sophisticated algorithms exist to

solve the classical CVRP, they might be easily extended to incorporate the new features in

a VRSP formulation to find a solution to this problem.

Perhaps the most commonly used formulation of the CVRP is the two index vehicle

flow formulation. An extension of this yields an insightful version of the VRSP. A second

formulation of the VRSP is based on the two commodity flow formulation of the CVRP.

Although this formulation is less insightful, it is a powerful formulation of which direct

implementation yields better results than using the the two index vehicle flow formulation

of the VRSP. Computational results of using a direct implementation of this formulation are

presented.

2.2.1 A two index vehicle flow formulation

The two index vehicle flow formulation of the CVRP was originally proposed by Laporte

et al. (1985). Using this, solutions can be found by means of advanced branch-and-cut

methods.

This formulation makes use of a function b(W ) for W ⊆ V ′, denoting the minimum num-

ber of vehicles that are needed to satisfy the demand of all customers in W . Calculating

b(W ) reduces to solving a bin-packing problem, however it can be shown that the CVRP

formulation remains valid when replacing b(W ) by d
∑

i∈W qi

Q e. Furthermore denote the com-

plement of any set W ⊆ V ′ by W . For the two index vehicle flow formulation, let ξij ∈ {0, 1}
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indicate whether edge (i, j) is used or not.

A master schedule SM is given. Introduce an indicator variable yi ∈ {0, 1} for i ∈ V ′,

which takes value 1 when location i deviates and 0 otherwise.

The two index vehicle flow formulation of the VRSP is given by:

(VF) min
∑

(i,j)∈E

cijξij +
∑
i∈V ′

uiyi (4)

∑
i∈V \{k}

ξik +
∑

j∈V \{k}

ξkj = 2 (k ∈ V ′) (5)

∑
i∈W,j∈W

ξij ≥ 2b(W ) (∀W ⊆ V ′) (6)

1− ξij ≤ yj (∀(i, j) ∈ SM , j ∈ V ′) (7)

yj ≤ yk (∀(i, j), (j, k) ∈ SM , k ∈ V ′) (8)

ξij ∈ {0, 1} (i, j) ∈ E (9)

yi ∈ {0, 1} i ∈ V ′ (10)

Constraints (5) ensure that every location is visited and departed from. Constraints (6)

represent the generalized subtour constraints. They ensure that all created routes visit the

depot and that the capacity constraints are not violated. A more detailed discussion of

modeling the subtour elimination constraints can be found in Laporte (1986). The objective

function
∑

(i,j)∈E cijξij together with constraints (5),(6) and (9), give a correct formulation

of the CVRP.

Constraints (7) are defined to force a variable yj to take value 1 whenever edge (i, j) is

used in the master schedule but not used in the solution of the VRSP. To complete the VRSP

formulation, (8) ensure that whenever a location i is said deviates and therefore yi = 1, then

j also deviates and yj = 1.

Finally note that in the literature it is common to assume symmetric traveling costs

cij . If this is the case, G can be defined as an undirected graph and this effectively halves

the number of decision variables in most mixed integer linear CVRP formulations. This

can obviously also be done for VRSP formulations, however this yields a more cumbersome

notation.
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Lemma 1. The integer program by (VF) is a correct formulation of the VRSP for a given

master schedule SM .

Proof. To prove Lemma 1, first it will be shown that any solution to the VRSP can be

transformed to a solution of (V F ) and secondly the reverse will be shown.

First observe that any schedule S∗R that is a solution to the VRSP can easily be trans-

formed into a solution to (VF). Take ξij = 1 when (i, j) ∈ S∗R and 0 otherwise. Furthermore,

let yj = 1 when location j deviates in the schedule S∗R and 0 otherwise. Note that since

(4), (5), (6) and (9) give a correct formulation of the CVRP, the chosen values of ξ satisfy

them. Next take (i, j), (j, k) ∈ SM . Consider constraint (7). When location k deviates, the

constraint is trivially satisfied as yk = 1. When location k does not deviate, edge (j, k) is

used and ξjk = 1. which implies that (7) is again satisfied. Now consider constraint (8).

When location k deviates, the constraint is trivially satisfied as yk = 1. If location k does

not deviate, this implies that not only edge (j, k) ∈ S∗R but also (i, j) ∈ S∗R. Therefore yj = 0

and (8) is also satisfied in this case. Inspection shows that for this choice of ξ and y it

holds that
∑

(i,j)∈S∗R
cij +

∑
i∈V ′ U(SM , S∗R, i) =

∑
(i,j)∈E cijξij +

∑
i∈V ′ uiyi. Therefore an

optimal solution of the VRSP can be transformed into a solution of (VF) with equal costs.

The optimal value of the VRSP is thus at least the optimal value of (VF).

Let the optimal solution to (VF) be given by (ξ∗, y∗). This solution can be transformed

into a solution of the VRSP as follows. Let SR = {(i, j)|ξ∗ij = 1}. As ξ∗ satisfies (5), (6) and

(9), it follows that SR ∈ S and that
∑

(i,j)∈SR
cij =

∑
(i,j)∈E cijξ

∗
ij . It is now left to show

that the total deviation costs of SR,
∑

i∈V ′ U(SM , SR, i), are equal to
∑

i∈V ′ uiy
∗
i . This is

the case when for uk > 0 it holds that y∗k = 1 if and only if location k deviates in SR.

First it will be proven that for k ∈ V ′ with uk > 0, if y∗k = 1 then location k deviates

in SR. Suppose that there exists an y∗k = 1 while location k does not deviate in SR, for

(j, k) ∈ SM . Consider the solution (ξ∗, y′) such that y′i = 0 for all locations where y∗i = 1

while location i does not deviate in SR, and y′i = y∗i otherwise. This solution does not violate

any constraints. In particular the value of element y′k does not cause violation of (7) and (8)

as both ξ∗jk = 0 and y′j = 0. Moreover, it decreases the objective value as uk > 0. Therefore

a minimum is attained for the new solution (ξ∗, y′), contradicting the optimality of (ξ∗, y∗).

We conclude that for k ∈ V ′ with uk > 0, when y∗k = 1, location k deviates for the solution

SR.

Next it will be proved that for k ∈ V ′ with uk > 0, that y∗k = 1 if location k deviates in

SR. Suppose that location k deviates for SR while y∗k = 0, for (j, k) ∈ r ∈ SM . When j = 0,

k is the first location on route r. This implies that (0, k) 6∈ SR and by construction it must

hold that ξjk = 0 contradicting (7). For the first location k on any route, when location k

deviates in SR it follows that y∗i = 1. When j ∈ V ′, k is not the first location to be visited on
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route r. As location j is visited prior to location k, observe that when j deviates in SR then

y∗j = 1. If location k deviates for SR this implies that either (j, k) 6∈ SR and by construction

it must hold that ξjk = 0, contradicting (7), or there exists a location i deviating in SR for

(i, j) ∈ SM such that yi = 1, contradicting (8). It follows that for uk > 0, y∗k = 1 if location

k deviates for the solution SR.

Summarizing, for uk > 0 it holds that y∗k = 1 if and only if location k deviates in SR.

It indeed follows that
∑

(i,j)∈SR
cij +

∑
i∈V ′ U(SM , SR, i) =

∑
(i,j)∈E cij + ξ∗ij

∑
i∈V ′ uiy

∗
i .

Therefore an optimal solution of the (VF) can be transformed into a solution of VRSP with

equal costs. The optimal value of the VRSP is at most the optimal value of (VF). Hence,

by the previous result, the optimal value of the VRSP is equal to the optimal value of the

(VF).

2.2.2 A two commodity flow formulation

As stated in Laporte (2007), the most successfully implemented formulation of the CVRP is

the two commodity flow formulation, introduced by Baldacci et al. (2004). It lends itself to

be solved using advanced branch-and-cut methods as is done in Baldacci et al. (2004). It

can also be extended to a VRSP in a similar way as the two index vehicle flow formulation.

To simplify notation, assume symmetric costs cij . Let n+1 represent a copy of the depot

and let Ĝ = (V̂ , Ê) be an the undirected graph where V̂ = V
⋃
{n+ 1} and Ê = {(i, j)|i, j ∈

V̂ , i < j}. A route can now be seen as an ordered subset r̃ ⊂ Ê such that the induced

subgraph Ĝ(r̃) is a path from 0 to n+ 1. Note that as r̃ is an ordered subset, the edges are

traversed in a particular order.

For all (i, j) ∈ Ê, let ξij take value 1 to indicate the use of edge (i, j) and 0 otherwise.

Next define the variables xij ∈ R+ and xji ∈ R+for all (i, j) ∈ Ê. These are flow variables

that might be interpreted as the load of a vehicle xij and the remaining capacity xji when

traversing edge (i, j).

For a given master schedule SM , the two commodity flow formulation is:

(CF) min
∑

(i,j)∈E

cijξij +
∑
i∈V ′

uiyi (11)

∑
j∈V̂

(xji − xij) = 2qi (∀i ∈ V ′) (12)

∑
j∈V ′

xj0 =
∑
i∈V ′

qi (13)
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∑
j∈V ′

xj0 = Q
∑
j∈V ′

ξ0j −
∑
i∈V ′

qi (14)

∑
j∈V ′

xn+1j = Q
∑
j∈V ′

ξ0j (15)

xij + xji = Qξij (∀(i, j) ∈ Ê) (16)

∑
j∈V̂ ,i<j

ξij +
∑

j∈V̂ ,i>j

ξji = 2 (∀i ∈ V ′) (17)

1− ξij ≤ yj (∀(i, j) ∈ SM , i < j, j ∈ V ′) (18)

1− ξij ≤ yi (∀(j, i) ∈ SM , i < j, j ∈ V ′) (19)

yj ≤ yk (∀(i, j), (j, k) ∈ SM , k ∈ V ′) (20)

ξij ∈ {0, 1} (i, j) ∈ Ê (21)

xij ∈ R+ (i, j) ∈ Ê (22)

xji ∈ R+ (i, j) ∈ Ê (23)

yi ∈ {0, 1} i ∈ V ′ (24)

The set of constraints (12)-(15), (22) and (23) ensure that any solution x defines a correct

flow pattern. By (12) the difference of both the vehicle load and the remaining capacity

between inflow and outflow at a customer location is equal to the demand. Constraints (13)-

(15) make sure that the in and outflow of the depot and its copy are matching when taking

into account the amount of goods that are delivered per customer. Note that
∑

j∈V ′ ξ0j is

the number of vehicles that are used. Constraints (16) ensure that there is either no flow

through edge (i, j) when this edge does not belong to any route and that the total load and

empty space defined for this edge is exactly Q otherwise. That exactly two edges incident to

any customer are used, is ensured by constraints (17). The objective function
∑

(i,j)∈E cijξij
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together with constraints (12)-(17) and (21)-(23), gives a correct formulation of the CVRP.

Finally the VRSP formulation is completed as (18)-(20) and (24) force yi to take value 1

whenever location i is interpreted to deviate and 0 otherwise.

As indicated in Baldacci et al. (2004), the set of solutions to the CVRP corresponds

to the set of solutions of the two commodity flow formulation of the CVRP. A solution

that describes a set of disjoint paths from node 0 to node n + 1 can straightforwardly be

interpreted as a routing schedule. It is possible however that an optimal solution describes

paths from 0 to 0, or from n+ 1 to n+ 1. In this case a simple transformation can be made

without increasing the objective value to find paths from 0 to n + 1. For paths from 0 to

0 or from n + 1 to n + 1 the corresponding flow variables x can not be interpreted as the

load of a vehicle or remaining capacity at an edge. These observations also hold in the two

commodity flow formulation of the VRSP.

Lemma 2. The integer program (CF) is a correct formulation of the VRSP for a given

master schedule SM .

The proof of lemma 2 is analogue to that of lemma 1 and is therefore omitted. Observe

that although the graph on which the problem is defined is in this case undirected, applying

induction on the locations in an arbitrary route as is done in the proof of lemma 1 gives the

desired result nonetheless.

3 Solution methods

The mixed integer linear formulations can not easily be solved using standard mixed integer

programming software like CPLEX. Only small instances of the problem can be solved di-

rectly within reasonable computation times. This is already apparent as the VRSP can be

considered to be an extension of the CVRP to which this comment also applies, as remarked

in the introduction. For practical purposes, larger problem instances need to be considered.

Therefore, two heuristics are presented in this section. They will be able to find a good

feasible solution to large problem instances of the VRSP with limited computational effort.

3.1 Two-phase rescheduling heuristic

The main idea behind the two-phase heuristic is to start with the possibly infeasible master

schedule SM and modify it to make it feasible. In the first phase of the heuristic, a set of

edges is removed from the master schedule such that a set of locations V ′R ⊂ V ′ no longer has

any incident edges. The complement of V ′R, denoted by V ′M = V ′\V ′R, is the set of locations

that still have edges incident to them. Next, what remains of the master schedule will be
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completed again by adding edges such that all locations in V ′R are visited and the resulting

schedule STP
R is feasible.

3.1.1 Phase 1: removing edges

When removing edges from SM the main criterion is to limit the total deviation costs that

are incurred in the resulting schedule STP
R of the heuristic. For any route r ∈ SM , edges are

removed in reverse order of traversal until the total demand of the locations that still have

incident edges to them in r does not exceed Q. Note that the edge between the last location

on a route and the depot is always removed.

The result of this procedure is a set of edges S′R representing an incomplete schedule as a

rooted tree with root node 0. The total demand of the locations on any path from the root

to a leaf is less than or equal to Q. All locations in the set V ′M have incident edges in S′R

and the other locations in V ′\V ′M do not.

Figure 1 shows an example of a network of a single depot and several customers. The solid

and dashed lines combined show the original schedule. The numbers next to the customers

correspond to a realization of demand, the vehicles have a capacity of 10 units of demand.

After execution of the edge removal procedure, the dashed lines correspond to edges that are

removed.

Figure 1:

3.1.2 Phase 2: Adding edges

In this phase, edges are added to the incomplete schedule S′R such that it becomes a feasible

schedule STP
R . This is done at minimal additional traveling costs. The problem that needs
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to be solved can therefore be defined as:

STP
R = arg min

S∈S|S′R⊂S

∑
(i,j)∈S

cij (25)

In principal this is a restricted version of a CVRP. It is restricted in the sense that all

edges (i, j) ∈ S′R need to be used. This can be solved using any CVRP algorithm that allows

for certain edges to be included beforehand. For instance a method based on the two index

vehicle flow formulation of the CVRP can be used by replacing ξij with 1 for all (i, j) ∈ S′R.

For implementation of problem (25) in standard CVRP software edges may not be pre-

defined to be used in a solution. The nature of the heuristic or the software package used

might prevent this. Note that (25) can be reformulated as an unrestricted CVRP using ar-

tificial customer locations, as follows. Contract all paths from root to leaf in S′R into nodes.

Let V ′CR be the set of these contracted nodes. The costs of using edges connecting any two

vertices in V ′R
⋃
{0} remain unchanged. For i ∈ V ′CR let c0i be equal to the costs of traversing

the edge starting at the depot and ending at the first location on the path contracted into

i. Similarly for j ∈ V ′R
⋃
{0} let cij be the costs of traversing the edge starting at the last

location on the path contracted into i and ending at location j. Furthermore, for i 6= 0 and

j ∈ V ′CR let cij =∞.

Let qi for i ∈ V ′CR be the total demand of the locations on the path contracted into i.

Clearly, after the first phase of the heuristic, the demand qi for i ∈ V ′CR does not exceed the

vehicle capacity Q. The demand for the locations in V ′R does not change.

Consider a solution to the CVRP problem defined on the complete graph with the set of

customer locations V ′CR

⋃
V ′R with demand and costs as defined above. As the costs of using

an edge between any location in V ′R and any vertex in V ′CR is infinite, in an optimal schedule

any node in V ′CR will be preceded only by the depot. A feasible schedule to the VRSP is

now found by expanding back all the contracted nodes.

The problem that has to be solved in the second phase of the heuristic is obviously an

NP-hard problem as it can be reformulated into an unrestricted CVRP. In this reformulation,

there are as many artificial nodes defined as there were routes in the master schedule and

there are locations that need to deviate. Fortunately, in most practical cases we encountered

only a small subset of the customer locations need to deviate limiting the size of the CVRP

in the second phase. For solving the CVRP any specialized exact algorithm or heuristic can

be used.

Before presenting a bound on the difference between the solution generated by the two-

phase heuristic and the optimal solution, some properties of its solutions are presented.

13



3.1.3 Properties of the two-phase heuristic

Consider the problem of finding a feasible schedule that minimizes the total deviation costs

when a master schedule SM is given:

U∗ = min
S∈S

∑
i∈V ′

U(SM , S, i) (26)

In the next lemma it is shown that the deviation costs of the schedule obtained by the

two phase heuristic are equal to U∗. This implies that in order to find U∗, one can apply the

procedure described in the first phase of the heuristic, which does not require the construction

of a schedule.

Lemma 3. The two-phase heuristic produces a schedule STP
R such that the total deviation

costs are minimized:

∑
i∈V ′

U(SM , STP
R , i) = U∗ (27)

Proof. Since STP
R is a feasible solution for finding the schedule with the minimum deviation

costs, U∗ ≤
∑

i∈V ′ U(SM , STP
R , i). As any location i ∈ V ′M keeps its place in the master route

in the new schedule STP
R it holds that location i does not deviate in STP

R and therefore for all

i ∈ V ′M , U(SM , STP
R , i) = 0. Observe that as V ′ = V ′M

⋃
V ′R we have

∑
i∈V ′ U(SM , STP

R , i) =∑
i∈V ′M

U(SM , STP
R , i) +

∑
i∈V ′R

U(SM , STP
R , i) ≤

∑
i∈V ′R

ui. This provides us with an upper

bound on the costs of using schedule STP
R .

Next it will be proven that
∑

i∈V ′R
ui ≤ U∗. Denote by SU∗ the schedule for which U∗ is

attained and let VU∗ be the set of locations that deviate in this schedule. It will be shown

that V ′R ⊆ VU∗ . Consider a location j ∈ V ′R and the route r = {i1, ..., il, j, ..., ik} ∈ SU∗ and

denote rM = {i1, ..., il}. If j does not deviate in SU∗ , none of the locations in r′M deviate

and it must hold that
∑

i∈r′M
qi + qj ≤ Q. However, this contradicts the construction of V ′R,

hence we can conclude that
∑

i∈V ′R
ui ≤ U∗. This yields the desired result.

For certain values of the parameters, the schedule that minimizes the total deviation

costs achieves the optimal value for the VRSP. This is in particular the case when the costs

of deviating are very large relative to the costs of traveling. In such a case in particular the

two-phase heuristic produces the optimal schedule for the VRSP.

Lemma 4. Let umin = mini∈V ′ ui, cmin = min(i,j)∈E cij and let STP
R be the schedule produced

by the two-phase heuristic. If umin ≥
∑

i∈V ′ [c0i +ci0]−(n+d
∑

i∈V ′ qi

Q e)cmin then the schedule

STP
R is optimal.

Proof. For any schedule SR that is a solution to the VRSP, let the costs be decomposed into
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two parts, the traveling costs ZR =
∑

(i,j)∈SR
cij and the deviation costs UR =

∑
i∈V ′ U(SM , SR, i)

respectively. Note that the costs of using the schedule STP
R can also be decomposed into ZTP

R

and U∗.

Observe that ZTP
R ≤

∑
i∈V ′ [c0i+ci0] and, as d

∑
i∈V ′ qi

Q e is a lower bound on the number of

vehicles that are needed, ZR ≥ (n+ d
∑

i∈V ′ qi

Q e)cmin where cmin = min(i,j)∈E cij . Therefore:

∑
i∈V ′

[c0i + ci0]− (n+ d
∑

i∈V ′ qi

Q
e)cmin ≥ ZTP

R − ZR (28)

Note that for any schedule SR with at least one more deviation than STP
R it holds that

UR ≥ U∗ + umin. From this it follows for umin ≥
∑

i∈V ′ [c0i + ci0] − (n + d
∑

i∈V ′ qi

Q e)cmin,

that:

UR ≥ U∗ + ZTP
R − ZR (29)

Therefore for all SR with at least one more deviation than STP
R it holds that:

ZTP
R + U∗ ≤ ZR + UR (30)

Finally, note that for any schedule with an equal number of deviations as STP
R , (30) is

always satisfied. This proves the optimality of STP
R for all umin ≥

∑
i∈V ′ [c0i + ci0] − (n +

d
∑

i∈V ′ qi

Q e)cmin.

Tight Example:

To show that the bound on umin cannot be improved, consider the following tight exam-

ple. The example is an instance with two locations, all distances are symmetric and equal,

c01 = c02 = c12 = c. The master schedule consists of a return trip to location one and a

separate return trip to location two. The demand realizations are such that q1 + q2 ≤ Q

and the two routes might feasibly be merged. Furthermore, let u2 = umin. Three feasible

schedules exist. The master schedule can be used as a solution to the rescheduling problem,

this schedule will be referred to as S1 and yields total costs 4c. A second option is to have

only one route, first visiting location 1 and then location 2, this schedule will be referred to

as S2 and yields the total costs of 3c + umin. The last option is the reverse of S2 and can

be disregarded in this discussion as the costs of using this schedule will never be lower than

the costs of using S2. The two-phase heuristic will produce schedule S1. This schedule will

be optimal if and only if umin ≥ c =
∑

i∈V ′ [c0i + ci0]− (n+ d
∑

i∈V ′ qi

Q e)cmin.
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For specific problem instances the relative difference between the traveling costs and the

deviation costs need not be high for the two-phase heuristic to produce the optimal solution.

However, it is not possible to provide a general guarantee for small relative differences. For

the problem instances used for the computational results, numeric values are presented to

give insight in the necessary magnitude of the difference in costs for the two-phase heuristic

to produce optimal schedules.

The difference of the costs when applying the schedule produced by the two-phased

heuristic as opposed to using the optimal solution in the worst case scenario, can offer

insight in the performance of the heuristic. In the next lemma an upperbound is given

on the relative difference between the costs of the optimal solution and those of using the

two-phase heuristic.

Lemma 5. The costs of using the routing schedule produced by the two-phased heuristic STP
R

is at most min{ Q
qmin

, 2Qcmax
(Q+q̄)cmin

+ 1} times the costs of the optimal schedule S∗R for the VRSP,

where qmin = minj∈V ′ qj, q̄ =
∑

i∈V ′ qi

n , cmax = max(i,j)∈E cij and cmin = min(i,j)∈E cij.

Proof. Note that for ease of notation we use symmetric traveling costs cij in this analysis.

An analogue proof can be given when traveling costs are not symmetric.

Let the traveling costs and deviation costs of STP
R be given by ZTP

R and U∗ respectively.

Similarly, let the traveling and deviation costs of S∗R be given by Z∗R and U∗R. Furthermore

let Z∗ = minS∈S
∑

(i,j)∈S cij . To prove the theorem, it is first shown that ZT P
R +U∗

Z∗R+U∗R
≤ Q

qmin

and secondly that ZT P
R +U∗

Z∗R+U∗R
≤ 2Qcmax

(Q+q̄)cmin
+ 1.

In Simchi-Levi et al. (1997) it is proven that for a CVRP with unequal demands it holds

that 2
∑

j∈V ′ c0jqj ≤ QZ∗. Now observe that:

ZTP ≤ 2
∑
i∈V ′

c0i ≤
2

qmin

∑
i∈V ′

c0iqi ≤
Q

qmin
Z∗ (31)

Which implies that:

ZTP
R + U∗

Z∗R + U∗R
≤

Q
qmin

(Z∗ + U∗)

Z∗ + U∗
≤ Q

qmin
(32)

Next, as d
∑

i∈V ′ qi

Q e is a lower bound on the number of vehicles that are used, it follows

that:

ZTP
R + U∗

Z∗R + U∗R
≤ ZTP

R + U∗

Z∗ + U∗
<

2ncmax

(n+ d
∑

i∈V ′ qi

Q e)cmin

+1 ≤ 2ncmax

(n+
∑

i∈V ′ qi

Q )cmin

+1 =
2Qcmax

(Q+ q̄)cmin
+1

(33)

Here the strict inequality follows from a+b
c+b < a

c + 1 for a, b, c > 0. This concludes the
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proof.

Tight Example:

Note that this bound can not be improved upon, by considering the following tight example.

Consider a problem instance of n locations and let an arbitrary master schedule be given.

Now let demand be given by qi = Q for all i ∈ V ′. Obviously there is only one feasible

schedule, hence ZT P
R +U∗

Z∗R+U∗R
= 1 = Q

qmin
= min{ Q

qmin
, 2Qcmax

(Q+q̄)cmin
+ 1}.

3.2 Modified savings heuristic

The savings algorithm due to Clarke and Wright (1964) is a very insightful algorithm that

has been widely used to solve the CVRP problem. This algorithm has great flexibility in in-

corporating features like time window constraints which play a crucial role in many practical

applications. Moreover this algorithm can easily be adapted to incorporate the features of

the VRSP. In the modified savings algorithm, the schedule is created in a constructive man-

ner as opposed to using SM as a basis to remove edges from like in the two-phase heuristic.

This allows for greater freedom and flexibility in designing a schedule.

The savings algorithm starts by assigning a vehicle to serve every individual customer.

The initial schedule consists of n routes from the depot to a customer and back. The costs

of this schedule are then of course 2
∑n

j=1 c0j . Routes will be merged to improve these costs

until no further improvement can be found using merges or until any further merges will

render the schedule infeasible (for instance because capacity constraints are violated). If the

last location on a route is i and the first on another route is j, a merge between these routes

is obtained by traveling directly from i to j instead of returning and starting from the depot.

The savings of such a merge is sij = ci0 + c0j − cij .

Let Sm be the schedule aftermmerges. Furthermore let Sm
ij be the schedule resulting from

merging the routes ending at location i and starting at location j when the current schedule

is Sm. For the modified savings algorithm the rescheduling costs need to be incorporated.

These should be calculated and added to sij . This has to be done for the initial values as

well as after every merge. Define the rescheduling savings in iteration m as:

um
ij =

∑
i∈V ′

U(SM , Sm
ij , i)−

∑
i∈V ′

U(SM , Sm, i) (34)

Denote A as the set of all pairs (i, j) such that the route ending with customer i can

feasibly be merged with customer j. It must hold for all pairs (i, j) in A that: i and j are

on different routes; Customers i and j are the last and first location on a route respectively;
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A merge between the route ending with i and the route starting with j must not violate the

capacity constraint. The algorithm is given by:

Step 1: Construct S0 in which every customer is visited by an individual vehicle. Initialize

A = E′.

Step 2: For all (i, j) ∈ E′ calculate sij and um
ij , let the total savings be Sij = sij + um

ij and

let m=0.

While max(i,j)∈A Sij ≥ 0

Step 3: Merge the route ending with i and the route starting with j for (i, j) =

arg max(i,j) Sij resulting in schedule Sm+1, set m = m+ 1.

Step 4: Update A.

Step 5: Calculate um
ij for all (i, j) ∈ A.

Step 6: Calculate Sij = sij + um
ij for all (i, j) ∈ A.

Observe that the algorithm finds a feasible solution in polynomial time.

4 Computational results

In this section, the results of numerical experiments are presented. They will provide insight

into the sensitivity of the model to different values of the deviation costs. Furthermore, the

performance of the proposed heuristics is evaluated empirically, by applying them to a range

of test cases and comparing the results.

In this section, randomly generated test cases are used. For every problem instance, first

an master schedule SM is generated based on some demand realization. Next a new demand

realization is generated and rescheduling will yield a new feasible schedule. Unless stated

otherwise, the following settings are used for the generation of individual problem instances:

• n customer locations are randomly generated, uniformly distributed over a square ge-

ographical area with sides of length 20 units and a depot in the center.

• The costs of traveling from one location to another is equal to the Euclidean distance

between both.

• All vehicles have a capacity of 30 units.

• Demand for the master problem is normally distributed with mean 5 and standard

deviation 1.5, truncated from below to 1 and from above to 30.

• Demand for the new schedule is normally distributed with standard deviation 1.5. The

demand average is equal to 1.5 times the realization for the master schedule.
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The deviation costs will be specified for every individual experiment.

These numbers are inspired by a practical case in a retail chain with recurrent sales

actions. The specific demand structure ensures the necessity to deviate from the original

schedule. The algorithms are tested on cases where deviation will indeed be necessary as

demand has typically increased. The original schedule is generated using a direct implemen-

tation of the CVRP using a two commodity flow formulation (Baldacci et al. 2004) yielding

an optimal schedule.

All tests are performed on an Intel(R) Core(TM)2 Duo CPU E8400, 2.99 GHz, 3.21

GB of RAM. For all solutions that are found by direct implementation of a mixed integer

programming formulation, ILOG CPLEX 10.1 is used.

4.1 Model parameter sensitivity

For large deviation costs umin with respect to the traveling costs, by lemma 4, the optimal

schedule is a schedule with the minimum number of deviating locations. It is very interesting

to see what the value of umin must at least be in situations that are not necessarily worst

case, to ensure the optimal schedule to have the minimal number of deviations. Not only

does this give insight into the cost structure of deviating, also observe that from this value

of umin and higher, the two-phase heuristic is guaranteed to produce the optimal solution.

For these experiments let all ui = u.

As an example, consider a single randomly generated case of 25 customer locations, n =

25. This case exhibits behavior that is representative for that of all simulated cases. Figure 2

depicts properties of optimal schedules of the VRSP for this case using different values u for

the deviation costs. These optimal schedules are found using a direct implementation of the

two commodity flow formulation of the VRSP. The graph on the left shows the number of

deviations and the graph on the right shows the total traveling costs of the optimal schedule.

Notice that when u = 0, all locations deviate, however as u grows slightly above 0, a new

schedule is found with less deviations but with equal traveling costs.

Figure 2:

19



The figure indeed supports the notion that large u forces the optimal schedule to have a

decreased number of deviations. The figure shows that in this particular case the minimum

number of deviations is 4 and is obtained for u greater or equal to 4.25. Obviously this value

of 4.25 is meaningless unless related to the traveling costs.

To give a more general impression, let us relate the critical level u, the level from which

onward the optimal solution of the VRSP is the schedule with the minimum number of

deviations, with the average traveling costs of all edges used in the original schedule c̄M .

For the example depicted in Figure 2 c̄M = 4.13, which can be considered very close to the

critical level u of 4.25. For the 100 generated cases 40% of the critical u values lie below

0.5c̄M , 71% of the critical values even lie below c̄M and 87% lies below 1.5c̄M . Observe that

47% of the critical levels do not differ more than 50% of the value of c̄M .

The schedules with minimal traveling costs in the example case, have traveling costs

137.1. Among these schedules the best in terms of number of deviations, is a solution with

10 deviations. The schedule with minimal number of deviations, 4, has traveling costs 151.7.

Comparing these schedules, observe that in this case, 6 less locations need to deviate at the

expense of an increase in traveling costs of 10.6%. For the 100 generated cases, the average

increase in traveling costs between the schedule with minimal traveling costs and the schedule

with minimal number of deviations is 9.7%, with standard deviation 5.3 percent points. It

might therefore be argued that when the benefits of having a schedule with minimal number

of deviations outweighs the costs of traveling close to an additional 9.7% units distance, it

may be a good idea to minimize the number of deviations. In this case the VRSP can be

solved using the two-phase heuristic.

4.2 Algorithm performance

To evaluate the performance of the two-phase heuristic and the modified savings heuristic,

they are used to find solutions for multiple test cases. For these cases, the deviation costs are

randomly generated using a normal distribution with mean equal to 0.75 times the average

length of the edges used in the original schedule, the standard deviation is equal to 0.5 times

this average length. The deviation costs are truncated from below at 0. These parameters

were chosen such that it is unlikely that the generated instances either revert to standard

CVRP because all u are near or equal to 0, or that they are sufficiently high that the two-

phase heuristic is guaranteed optimal.

In implementing the two-phase heuristic, the second phase is performed using a two com-

modity flow formulation of the CVRP. This is solved to optimality by a direct implementation

of the model in. Obviously, the running time of the two-phase heuristic can be improved by
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using sophisticated heuristics in this phase.

To obtain some insight in the quality of the solutions obtained by using the heuristics,

they are used on small test cases. In these small cases, the optimal solutions can be found

using a direct implementation of the VRSP in. The optimal solutions are then used as a

benchmark.

Table 1 shows the results of computational experiments for instances of different size.

For each value n representing the number of customer locations generated in a test case,

100 simulations were performed. For each individual generated instance of the VRSP, an

optimal solution was found as well as solutions using the two-phase heuristic and the modified

savings, respectively. The column CDTP shows the average cost difference in percentages of

the schedule produced with the two-phase heuristic with respect to the optimal schedule over

all 100 instances, the standard deviation of the difference is included in between brackets.

Likewise, CDMS shows the average cost difference and standard deviation for the schedules

produced with the modified savings heuristic. Note that these costs include both the traveling

costs and the deviation costs. Next, the column CTP<MS shows the number of instances out

of the 100, in which the costs of two-phase heuristic provided a schedule with lower costs

than the modified savings heuristic and the column CTP>MS shows it the other way round.

Finally, Topt, TTP and TMS shows the average time in seconds it took the algorithms to

finish all 100 cases. The standard deviation of the time to find the optimal solution varies

between 1 and 3 times the average, for the two phased heuristic it is between 1 and 2 times

the average and for the modified savings algorithm the standard deviation is 0. Note that

for every individual case, solving it to optimality took the most amount of time and using

the modified savings algorithm took the least amount of time.

Table 1:

n CDTP CDMS CTP<MS CTP>MS Topt TTP TMS

10 0.7(2.1) 16.2(16.0) 75 5 0.034 0.002 0.000
15 1.1(2.2) 15.9(12.3) 87 7 0.455 0.009 0.000
20 1.1(1.7) 17.1(11.2) 91 5 1.580 0.025 0.000
25 1.8(2.4) 15.8(8.5) 98 2 9.327 0.134 0.000
30 1.4(1.9) 16.9(8.4) 98 1 95.987 0.283 0.000

Although the difference in costs between the two-phase heuristic and the optimum seems

to be increasing, the costs are on average not more than 2% above the optimum for instances

of every considered size. This differs significantly from the performance bound that has been

derived earlier. Furthermore, the costs of the modified savings algorithm are on average more

than 15% above the optimum for instances of every considered size. Observe from columns

CTP<MS and CTP>MS , that the two-phase heuristic more often produces schedules with

lower costs than the schedules of the modified savings algorithm than the other way around.
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Also, as the size of the instances increases, the number of times in which the two-phase

heuristic performs better increases as well. We see that for these choices in generating u, the

two-phase heuristic performs better than the modified savings heuristic in terms of costs.

From the columns indicating running times it can obviously be concluded that using

heuristic methods reduces the solution time significantly with respect to solving it to opti-

mality using a direct implementation of the VRSP. Furthermore, the running time of the

two-phase heuristic significantly increases as the size of the instances grows. This was to be

expected as in the second phase an NP-hard problem of increasing size is solved to optimal-

ity. The modified savings algorithm always terminated within a millisecond.

Solving the VRSP to optimality using a direct implementation has not been done for

problem instances including more than 30 customer locations. The computation time in-

creases exponentially as is also supported by table 1. As practical problems most often

include more than 30 customer locations, heuristics are typically used to find feasible solu-

tions. It is therefore interesting to see how the results of using the two proposed heuristics

compare on larger instances. First of all it is of interest whether or not the relative difference

in costs of the generated schedules gets smaller for larger instances. Similarly it is of interest

to see if the number of times that the two-phase heuristic outperforms the modified savings

heuristic does not decrease.

For the same reason the VRSP is not solved to optimality, the master schedule will not be

generated by solving a CVRP instance to optimality. The master schedule will be generated

using the standard savings algorithm. Note that using an inefficient master schedule with

respect to traveling costs, might affect the performance of the two-phase heuristic. When

rescheduling using an inefficient master schedule, the traveling costs might be considerably

reduced at the expense of some unnecessary deviations. In such cases, the two-phase heuristic

will not perform well as it never generates unnecessary deviations. Therefore, for the test

cases using the saving algorithm to generate the original schedule, also test cases of 20 and

30 locations are generated to compare to the test cases where the master is generated by

solving a CVRP to optimality. Table 2 shows the results of the test cases where the savings

algorithm is used. Columns TCTP and TCMS show the average costs and standard deviation

over the same 100 instances for the two-phase heuristic and the modified savings algorithm.

The interpretation of the last four columns are analogue to that of table 1.

For the test cases where the master schedule was generated by solving a CVRP to opti-

mality, the modified savings algorithm constructed schedules with costs that were on average

less than 15% above the costs of the schedules produced by the two-phase heuristic. When

the master schedule is generated by applying the standard savings algorithm, this difference
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Table 2:

n TCTP TCMS CTP<MS CTP>MS TTP TMS

20 128.9(17.0) 154.0(17.2) 97 3 0.032 0.000
30 175.6(18.3) 209.5(18.4) 100 0 0.324 0.000
40 220.8(18.0) 263.4(15.7) 100 0 1.652 0.000
50 263.1(20.3) 309.7(19.5) 100 0 14.042 0.000

is on average roughly 19%. However there is no clear indication that this difference varies as

the size of the test cases vary. For larger test cases the two-phase heuristic outperforms the

modified savings heuristic for every individual case. Therefore we again conclude that for

this configuration in generating u, the two-phase heuristic performs better than the modified

savings heuristic in terms of costs.

With respect to the running times, again data supports that the running time of the two-

phase heuristic increases exponentially as the number of customer locations increase. The

CVRP that has to be solved in the second phase on average includes more locations. Also

for the larger problem instances the modified savings algorithm always terminated within a

millisecond.

5 Concluding remarks

In this paper, the negative effects of deviating from a master schedule have been incorporated

in the scheduling process. Insight has been obtained on the behavior of the optimal solution

of the VRSP for different values of the deviation costs relative to the traveling costs.

Two mixed integer linear formulations have been presented. Using these formulations

the VRSP can be solved to optimality using direct implementation. Computational results

have shown that this can consistently be done for problem instances of up to 30 locations.

Two heuristics have been presented to solve instances of the VRSP including up to 50

customer locations, that find good solutions within a small amount of computation time.

The two-phase heuristic makes use of specific properties of the VRSP to find a solution. For

sufficiently high deviation costs, this algorithm generates a schedule that is on average close

to optimal or even guaranteed optimal, for all considered problem instances. For general

problem instances, an analytical bound on the difference between the solution generated by

the two phase heuristic and the optimum is presented. However, numerical results indicate

that this analytical upper bound is extremely far from the actual difference. As in the

second phase of the heuristic an instance of the CVRP, an NP-hard problem, has to be

solved for the locations that need to be rescheduled, the computation time heavily depends

on the minimum number of locations that need to deviate. For larger problem instances, the

second phase can be performed using a heuristic to solve the CVRP.

23



The second heuristic that is presented is the modified savings heuristic. Although com-

putation times are extremely low, the performance in terms of total costs is worse than that

of the two-phase heuristic. The modified savings algorithm can easily be extended to incor-

porate additional features like time-window constraints that play a great role in practical

applications.
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