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Abstract

The capacitated vehicle routing problem is to find a routing schedule describing the order
in which geographically dispersed customers are visited to satisfy demand by supplying goods
stored at the depot, such that the traveling costs are minimized. In many practical applica-
tions, a long term routing schedule has to be made for operational purposes, often based on
average demand estimates. When demand substantially differs, constructing a new schedule
is beneficial. The vehicle rescheduling problem is to find a new schedule that not only min-
imizes the total traveling costs but also minimizes the costs of deviating from the original
schedule. In this paper two mathematical programming formulations of the rescheduling
problem are presented as well as two heuristic methods, a two-phase heuristic and a modi-
fied savings heuristic. Computational and analytical results show that for sufficiently high
deviation costs, the two-phase heuristic generates a schedule that is on average close to opti-
mal or even guaranteed optimal, for all considered problem instances. The modified savings
heuristic generates schedules of constant quality, however the two-phase heuristic produces

schedules that are on average closer to the optimum.

Keywords: Vehicle routing, vehicle rescheduling problem, operational planning

1 Introduction

The capacitated vehicle routing problem (CVRP) is a classical problem in operations re-

search. Consider a depot where goods are stored and a set of locations which have nonneg-
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ative demand for the goods. A set of vehicles of finite capacity is available to transport the
goods from the depot to the customers. The vehicles start and end their routes at the depot.
Costs are incurred for traveling from one location to another. The CVRP is to find a routing
schedule that describes the sequence of locations that is visited by every vehicle, in such a
way that the total traveling costs are minimized. The CVRP is known to be an NP-hard
problem.

Because the CVRP has many practical applications, a wide scala of solution methods
can be found in the literature. The branch-and-cut scheme of Baldacci et al. (2004) seems
presently to be the most successful at solving CVRP instances of up to 100 customer loca-
tions. Using this scheme, CVRP instances of up to 50 locations can consistently be solved to
optimality while this can only be done for specific problem instances including more customer
locations. For larger problem instances, many heuristic algorithms have also been developed
that are able to find good solutions with greater speed. An overview of exact and heuristic
algorithms can be found in Fisher (1995), Toth and Vigo (2002), Laporte (1992 and 2007)

and Laporte et al. (2000) amongst others.

In the classical CVRP, demand is deterministic and known. A situation that often occurs
in practice is that demand only becomes apparent at a late moment. For example, in the retail
industry it is very common that the orders of the individual stores are placed only a few days,
sometimes even just one day, before delivery. In situations of frequent periodic deliveries,
it is beneficial for operational processes to determine the moment of delivery before the
orders are placed. It is for instance very costly, if at all possible, to roster delivery handling
personnel one day before they are needed. It is therefore very common to determine a long
term schedule, henceforward master schedule, that serves as a schedule for every periodic
delivery over a certain period of time in which multiple deliveries are made.

Such a master schedule is made before demand realizations become apparent. As a result
the master schedule will not always be feasible as for instance high demand might cause the
capacity of a vehicle to be insufficient to make deliveries to all locations on its route planned
in the master schedule. In such cases the master schedule needs to be deviated from. More-
over, low demand may lead to inefficient use of vehicle capacity, such that lower traveling
costs might be obtained by deviating from the master schedule. The construction of a new

schedule when demand realizations become known, will be referred to as rescheduling.

In the literature, rescheduling is mainly considered in conjunction with designing a master
schedule. A very popular method for rescheduling is the one proposed by Bertsimas (1992).

In this method, the master schedule is used until a vehicle arrives at a location where its cargo



is depleted. Next it returns to the depot to refill. Finally it resumes the master schedule
where it left off. When the demand distribution is known and when this rescheduling method
is used, the expected costs of a master schedule can easily be calculated. Furthermore, this
method allows for simple upper and lower bounds to be calculated for the expected costs
of the master schedule. The main application area of the rescheduling method proposed by
Bertsimas is when demand is not learned prior to the arrival of a vehicle at the depot. For
situations where the demand realization is known prior to the dispatching of the vehicles,
more efficient schedules can be obtained when using a different method of rescheduling. As
the rescheduling problem itself also has many practical applications, the main focus of our
paper will be to model and solve the rescheduling problem, disregarding the construction of
a master schedule.

To minimize the traveling costs that are incurred after rescheduling, a CVRP can be
solved using the demand realization to construct a new feasible routing schedule. This
may, however, result in increased costs at the customer side of the network. For instance,
when personnel is hired for handling deliveries, and deliveries arrive late, personnel is first
idle followed by working overtime, increasing labor costs significantly. Furthermore, as also
Bertsimas and Simchi-Levi (1996) recognize, stability in a distribution network is crucial;
implementing new schedules may confuse drivers and regularity and personalization of ser-
vice will not be guaranteed. The importance of rescheduling to practice, is also recognized
by Li et al. (2007 and 2009). Given an assignment of vehicles to trips, they designed a model
to reassign the vehicles to trips when one of the vehicles breaks down. Costs are incurred
when trips are delayed. The main application of this model is in passenger transportation,
where traveling costs and capacity constraints do not play an important role. In our paper
the negative effects at the customer side of rescheduling are modeled by costs incurred when
deviating from the master schedule. The vehicle rescheduling problem (VRSP) is to find
the optimal trade-off between the traveling costs and the costs of deviation, while satisfying
the capacity constraints. A new schedule has to be constructed that minimizes the total

traveling costs as well as the total deviation costs.

Another option to compensate for fluctuating demand is stabilizing demand by keeping
inventory. However, this may be impossible in practice by lack of storage space. Furthermore,
as Haughton (1998) concludes, the benefits of demand stabilization strategies do not generally
outweigh the costs.

In this paper a model is presented for the rescheduling problem where demand is known
before vehicles are dispatched. We have encountered this situation in several retail chains.

This allows for solution methods yielding more efficient schedules than methods based on



models where demand is assumed not to be known, as these models are typically used in the
literature. Note that most literature on rescheduling is aimed at constructing the master
schedule rather than designing a good model and finding accompanying solution methods for
the rescheduling phase. Examples of this are the L-Shaped integer method to find the optimal
master schedule by Laporte et al. (2002), a tabu search heuristic by Gendreau et al. (1996),

a rollout algorithm by Secomandi (2001) and an evolutionary algorithm by Tan et al. (2007).

In the following section, the VRSP is presented. Two mixed integer linear formulations
are included. They are extensions of mixed integer linear formulations for the CVRP, a
closely related problem. In fact, the CVRP is a specific case of the VRSP and which implies
that the VRSP is also an NP-hard problem. Heuristics will have to be used to find solutions
for the VRSP in practical applications. Two heuristic algorithms are proposed: First the
two-phase heuristic is introduced. This is a heuristic that makes use of specific properties of
the VRSP model. An analytical bound on the difference between of the generated solution
and the optimal solution is presented for this algorithm. Furthermore the modified savings
algorithm is described. This is a basic extension to the VRSP setting of the savings algorithm
proposed for the CVRP by Clarke and Wright (1964). The two-phase heuristic is mainly
proposed for its potential to produce good solutions whereas the modified savings algorithm
is presented as a comparative heuristic that is able to produce reasonably good solutions
with great speed and that is easy to adapt to future extensions to the VRSP. Finally the
sensitivity of the VRSP model to the value of certain parameters is investigated and the
performance of the two heuristics is analyzed by comparing their solutions with each other
and by comparing their solutions to the optimal solutions that are found using a direct

implementation of the VRSP.

2 The vehicle rescheduling problem formulation

In this section VRSP is presented. First a description of this problem is given and the
notation that will be used throughout the paper is introduced. This is followed by two
alternative mixed integer linear formulations of the VRSP. These formulations are based on
the most commonly used and most successful formulations of the capacitated vehicle routing

problem (CVRP) in the literature.

2.1 Problem description

Consider a directed complete graph G = (V, F). The set of nodes V = {0, 1, ...,n} correspond

to a single depot 0 and the customers V' = {1,...,n}. For every edge (i,j) € E traveling



costs ¢;; > 0 are given that satisfy the triangle inequality. We suppose that an unlimited
number of vehicles of capacity Q > 0 is at our disposal. Furthermore, for every location
i € V' the demand g¢; is given such that @ > ¢; > 0. The vehicles will be used to supply
demand. In this paper only none trivial problem instances will be discussed, it is assumed
that 3¢y cojq; > 0.

A route r C F is defined as a cycle in G including the depot. For ease of notation we let
every route r be accompanied by an ordered subset v’ C V’. This allows us to represent a
route r = {(0,41), ..., (i, 0)} by 7" = {41, ...,9x}. A route is called feasible when the capacity
of a vehicle allocated to drive this route is sufficient to contain the demand of all the locations
on that route, > ;... ¢; < Q. The set including all feasible routes will be denoted by R.

A routing schedule S is a collection of edge-disjoint routes such that all customers are
included in exactly one route. Hence, for routes r1,...,rp,, S = /-, r; where r;(\r; =0
for i, =1,....,m and i # j. A schedule S is called feasible when all routes it includes are
feasible. The set of all feasible schedules is $.

The classical CVRP,a problem that is closely related to the VRSP, can now be defined

as finding a feasible schedule that minimizes the total traveling costs:

(CVRP) min > ¢ (1)
(2,7)€S8

To define the VRSP we need the following additions to the CVRP. First of all, assume
that a master schedule S), is available. Note that this master schedule need not be feasible
as capacity restrictions might be violated by demand realizations. The VRSP is to create a
new feasible schedule Si that not only minimizes the traveling costs but also takes costs of
deviating from the master schedule into account. It is now left to define a deviation and the
accompanying deviation costs.

A deviation is defined per location. We say that the new schedule does not deviate for
location [ when all locations visited prior to [ on the route in both the master and the
new schedule are the same and that it deviates otherwise. To be more precise, suppose
location [ is visited on route rj; in the master schedule Sy, ras is accompanied by 7}, =

{,L'JM M l

Tty ol

z{cw }. In the new schedule Sg, [ is visited on route rg, which is accompanied
by rfp = {iff, .l 1, .. i®}. When v = w and i = iff, ... i = i the new schedule
does not deviate for location [; otherwise it does deviate. Therefore, if location [ deviates,
it immediately follows that all subsequent locations on the same route also deviate. As an
example, suppose 1, = {1,2,3,4,5,6} and r = {1,2,4,5,7,6}. The new schedule does not

deviate for locations 1 and 2, but it does deviate for all locations 3 through 7 (we know that

location 3 is moved to another route and 7 is moved from another route).



Whenever a new schedule deviates for location ¢ € V’, costs u; > 0 are incurred. Let us
therefore define the following function describing the incurred deviation costs for location i

given an master and a new schedule, Sy, and Sg respectively:

) u;, if Sk deviates from Sj; for location i;
U(SMaSRaZ) = (2)
0, otherwise.

It is now possible to fully define the VRSP as finding a feasible schedule S such that it

minimizes the total traveling and deviation costs for a given master schedule Sy;:

(VRSP) min] > cij+ > U(Sur, Sy i) 3)
(i,7)€SR eV’

Note that the CVRP is a particular instance of the VRSP when u; = 0 Vi € V'. As
CVRP is NP-hard, so is VRSP.

2.2 Mixed integer linear formulations

To solve the VRSP, a mixed integer linear formulation can be used. Existing CVRP formu-
lations can easily be extended to VRSP formulations. As sophisticated algorithms exist to
solve the classical CVRP, they might be easily extended to incorporate the new features in
a VRSP formulation to find a solution to this problem.

Perhaps the most commonly used formulation of the CVRP is the two index vehicle
flow formulation. An extension of this yields an insightful version of the VRSP. A second
formulation of the VRSP is based on the two commodity flow formulation of the CVRP.
Although this formulation is less insightful, it is a powerful formulation of which direct
implementation yields better results than using the the two index vehicle flow formulation
of the VRSP. Computational results of using a direct implementation of this formulation are

presented.

2.2.1 A two index vehicle flow formulation

The two index vehicle flow formulation of the CVRP was originally proposed by Laporte
et al. (1985). Using this, solutions can be found by means of advanced branch-and-cut
methods.

This formulation makes use of a function b(W) for W C V’, denoting the minimum num-
ber of vehicles that are needed to satisfy the demand of all customers in W. Calculating
b(W) reduces to solving a bin-packing problem, however it can be shown that the CVRP

Yiew i

formulation remains valid when replacing b(W) by [=5*—]. Furthermore denote the com-

plement of any set W C V'’ by W. For the two index vehicle flow formulation, let &;; € {0,1}



indicate whether edge (¢, j) is used or not.
A master schedule Sy is given. Introduce an indicator variable y; € {0,1} for i € V',
which takes value 1 when location ¢ deviates and 0 otherwise.

The two index vehicle flow formulation of the VRSP is given by:

(VF) min Z cij&ij + Z Ui Y (4)

(i.4)EE i€V’

Yoot Y. Gy=2(keV) (5)

ieV\{k} JEV\{k}
> & =2(W) (YW C V) (6)
iEW,jeEW
1—&; <y (V(i,j) € Sm,j e V') (7)
ngyk (V(Zaj)7(]ak)€SM7k€V,) (8)
& €{0,1} (i,j) € E 9)
yi € {0,1} i € 1% (10)

Constraints (5) ensure that every location is visited and departed from. Constraints (6)
represent the generalized subtour constraints. They ensure that all created routes visit the
depot and that the capacity constraints are not violated. A more detailed discussion of
modeling the subtour elimination constraints can be found in Laporte (1986). The objective
function }°(; - i ¢i;&i; together with constraints (5),(6) and (9), give a correct formulation
of the CVRP.

Constraints (7) are defined to force a variable y; to take value 1 whenever edge (i,7) is
used in the master schedule but not used in the solution of the VRSP. To complete the VRSP
formulation, (8) ensure that whenever a location 4 is said deviates and therefore y; = 1, then
j also deviates and y; = 1.

Finally note that in the literature it is common to assume symmetric traveling costs
cij. If this is the case, G can be defined as an undirected graph and this effectively halves
the number of decision variables in most mixed integer linear CVRP formulations. This
can obviously also be done for VRSP formulations, however this yields a more cumbersome

notation.



Lemma 1. The integer program by (VF) is a correct formulation of the VRSP for a given

master schedule Sy .

Proof. To prove Lemma 1, first it will be shown that any solution to the VRSP can be
transformed to a solution of (VF') and secondly the reverse will be shown.

First observe that any schedule S} that is a solution to the VRSP can easily be trans-
formed into a solution to (VF). Take &;; = 1 when (7, j) € S}, and 0 otherwise. Furthermore,
let y; = 1 when location j deviates in the schedule S% and 0 otherwise. Note that since
(4), (5), (6) and (9) give a correct formulation of the CVRP, the chosen values of ¢ satisfy
them. Next take (i,7), (4,k) € Sp. Consider constraint (7). When location k deviates, the
constraint is trivially satisfied as y, = 1. When location k does not deviate, edge (7, k) is
used and &;; = 1. which implies that (7) is again satisfied. Now consider constraint (8).
When location k deviates, the constraint is trivially satisfied as y; = 1. If location k does
not deviate, this implies that not only edge (j, k) € S}, but also (¢, j) € Sj. Therefore y; =0
and (8) is also satisfied in this case. Inspection shows that for this choice of £ and y it
holds that Z(z‘,j)esg cij + 2iev U(Sm, S5y 1) = 3o jyer Cis&ij + 2ievs uiyi- Therefore an
optimal solution of the VRSP can be transformed into a solution of (VF) with equal costs.
The optimal value of the VRSP is thus at least the optimal value of (VF).

Let the optimal solution to (VF) be given by (£*,y*). This solution can be transformed
into a solution of the VRSP as follows. Let Sr = {(i,7)[§;; = 1}. As £* satisfies (5), (6) and
(9), it follows that Sg € S and that 3, cq, Cij = > ¢ jyep Cii&lj- It is now left to show
that the total deviation costs of Sg, >,y U(Swn, Sr, 1), are equal to > ..y ugy;. This is
the case when for uj > 0 it holds that y; = 1 if and only if location £k deviates in Sg.

First it will be proven that for k € V/ with u, > 0, if y; = 1 then location k deviates
in Sg. Suppose that there exists an y; = 1 while location k does not deviate in Sg, for
(4, k) € Sy Consider the solution (£*,y') such that y; = 0 for all locations where yf =1
while location 7 does not deviate in Sk, and y; = y; otherwise. This solution does not violate
any constraints. In particular the value of element y; does not cause violation of (7) and (8)
as both &7, = 0 and y§ = 0. Moreover, it decreases the objective value as ug > 0. Therefore
a minimum is attained for the new solution (£*,y’), contradicting the optimality of (£*,y*).
We conclude that for k € V’ with ug > 0, when y; = 1, location k deviates for the solution
Sk.

Next it will be proved that for k& € V' with u; > 0, that y; = 1 if location k deviates in
Sg. Suppose that location k deviates for Sg while y; = 0, for (j,k) € r € Sps. When j = 0,
k is the first location on route r. This implies that (0,%) ¢ Sg and by construction it must
hold that &;, = 0 contradicting (7). For the first location k on any route, when location k

deviates in Sg it follows that yF = 1. When j € V', k is not the first location to be visited on



route . As location j is visited prior to location k, observe that when j deviates in Sg then
y; = 1. If location k deviates for Sk this implies that either (j, k) ¢ Sr and by construction
it must hold that &;; = 0, contradicting (7), or there exists a location ¢ deviating in Sg for
(4,7) € Snr such that y; = 1, contradicting (8). It follows that for uy > 0, y; = 1 if location
k deviates for the solution Sg.

Summarizing, for uj > 0 it holds that y; = 1 if and only if location k deviates in Sg.
It indeed follows that > .o cij + > iev U(Sm, Sro8) = 3¢ jyep Cij + & 2icys Wil
Therefore an optimal solution of the (VF) can be transformed into a solution of VRSP with
equal costs. The optimal value of the VRSP is at most the optimal value of (VF). Hence,
by the previous result, the optimal value of the VRSP is equal to the optimal value of the
(VF). O

2.2.2 A two commodity flow formulation

As stated in Laporte (2007), the most successfully implemented formulation of the CVRP is
the two commodity flow formulation, introduced by Baldacci et al. (2004). It lends itself to
be solved using advanced branch-and-cut methods as is done in Baldacci et al. (2004). It
can also be extended to a VRSP in a similar way as the two index vehicle flow formulation.

To simplify notation, assume symmetric costs c;;. Let n+1 represent a copy of the depot
and let G = (V, E) be an the undirected graph where V.=V J{n+1} and E = {(,)|i,] €
V,i< j}. A route can now be seen as an ordered subset 7 C E such that the induced
subgraph G‘(F) is a path from 0 to n 4+ 1. Note that as 7 is an ordered subset, the edges are
traversed in a particular order.

For all (4,§) € E, let &; take value 1 to indicate the use of edge (i,7) and 0 otherwise.
Next define the variables z;; € Ry and z;; € Ryfor all (4,5) € E. These are flow variables
that might be interpreted as the load of a vehicle z;; and the remaining capacity z;; when
traversing edge (i, j).

For a given master schedule Sy, the two commodity flow formulation is:

(CF) min Z cij&ij + Z Uiy (11)

(i,j)eE eV’

Z(.Tji — l‘ij) = 2%’ (VZ S V/) (12)

eV

jev’ iev’



ijO:QZ§Oj_Zqi

jev’ jEV! iev’

S a1 =Q ) &y

JjeEV! Jjev’

Tij + x5 = Q&; (V(i,j) € E)
S+ Y, LGi=2(VieV)
JEV,i<j JEV i>j
l_fij < Yi (V(],Z) S SMaZ <j7.j € V/)

y; <wyr (V(i,5),(j, k) € Sm, ke V')

&‘j S {0, 1} (’L,]) cFk

Zij € IR+ (7’73) ek

zj; € Ry (1,7) € B

yie{0,1}ieV’
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(14)

(15)

(24)

The set of constraints (12)-(15), (22) and (23) ensure that any solution x defines a correct
flow pattern. By (12) the difference of both the vehicle load and the remaining capacity
between inflow and outflow at a customer location is equal to the demand. Constraints (13)-
(15) make sure that the in and outflow of the depot and its copy are matching when taking
into account the amount of goods that are delivered per customer. Note that ) jevs oj is
the number of vehicles that are used. Constraints (16) ensure that there is either no flow
through edge (7, j) when this edge does not belong to any route and that the total load and
empty space defined for this edge is exactly @ otherwise. That exactly two edges incident to

any customer are used, is ensured by constraints (17). The objective function Z(i) feE cij&ij



together with constraints (12)-(17) and (21)-(23), gives a correct formulation of the CVRP.
Finally the VRSP formulation is completed as (18)-(20) and (24) force y; to take value 1
whenever location 7 is interpreted to deviate and 0 otherwise.

As indicated in Baldacci et al. (2004), the set of solutions to the CVRP corresponds
to the set of solutions of the two commodity flow formulation of the CVRP. A solution
that describes a set of disjoint paths from node 0 to node n + 1 can straightforwardly be
interpreted as a routing schedule. It is possible however that an optimal solution describes
paths from 0 to 0, or from n + 1 to n + 1. In this case a simple transformation can be made
without increasing the objective value to find paths from 0 to n + 1. For paths from 0 to
0 or from n + 1 to n + 1 the corresponding flow variables x can not be interpreted as the
load of a vehicle or remaining capacity at an edge. These observations also hold in the two

commodity flow formulation of the VRSP.

Lemma 2. The integer program (CF) is a correct formulation of the VRSP for a given

master schedule Sy .

The proof of lemma 2 is analogue to that of lemma 1 and is therefore omitted. Observe
that although the graph on which the problem is defined is in this case undirected, applying
induction on the locations in an arbitrary route as is done in the proof of lemma 1 gives the

desired result nonetheless.

3 Solution methods

The mixed integer linear formulations can not easily be solved using standard mixed integer
programming software like CPLEX. Only small instances of the problem can be solved di-
rectly within reasonable computation times. This is already apparent as the VRSP can be
considered to be an extension of the CVRP to which this comment also applies, as remarked
in the introduction. For practical purposes, larger problem instances need to be considered.
Therefore, two heuristics are presented in this section. They will be able to find a good

feasible solution to large problem instances of the VRSP with limited computational effort.

3.1 Two-phase rescheduling heuristic

The main idea behind the two-phase heuristic is to start with the possibly infeasible master
schedule Sj; and modify it to make it feasible. In the first phase of the heuristic, a set of
edges is removed from the master schedule such that a set of locations V}, C V’ no longer has
any incident edges. The complement of V},, denoted by V;, = V/\V}, is the set of locations

that still have edges incident to them. Next, what remains of the master schedule will be

11



completed again by adding edges such that all locations in V}, are visited and the resulting

schedule S}Z;ZP is feasible.

3.1.1 Phase 1: removing edges

When removing edges from Sj; the main criterion is to limit the total deviation costs that
are incurred in the resulting schedule SE¥ of the heuristic. For any route r € Sy, edges are
removed in reverse order of traversal until the total demand of the locations that still have
incident edges to them in 7 does not exceed ). Note that the edge between the last location
on a route and the depot is always removed.

The result of this procedure is a set of edges S representing an incomplete schedule as a
rooted tree with root node 0. The total demand of the locations on any path from the root
to a leaf is less than or equal to Q. All locations in the set Vj, have incident edges in S%
and the other locations in V'\V}, do not.

Figure 1 shows an example of a network of a single depot and several customers. The solid
and dashed lines combined show the original schedule. The numbers next to the customers
correspond to a realization of demand, the vehicles have a capacity of 10 units of demand.
After execution of the edge removal procedure, the dashed lines correspond to edges that are

removed.

Figure 1:

[l Distribution Center
@ Original Customers

A& Removed Customers

—— Original Edges

—— Removed Edges

3.1.2 Phase 2: Adding edges

In this phase, edges are added to the incomplete schedule S}, such that it becomes a feasible

schedule SEP. This is done at minimal additional traveling costs. The problem that needs

12



to be solved can therefore be defined as:

STE — i 25
RS =erg min Z cij (25)
(i,7)€S

In principal this is a restricted version of a CVRP. It is restricted in the sense that all
edges (i, ) € S§ need to be used. This can be solved using any CVRP algorithm that allows
for certain edges to be included beforehand. For instance a method based on the two index
vehicle flow formulation of the CVRP can be used by replacing §;; with 1 for all (¢,7) € S%.

For implementation of problem (25) in standard CVRP software edges may not be pre-
defined to be used in a solution. The nature of the heuristic or the software package used
might prevent this. Note that (25) can be reformulated as an unrestricted CVRP using ar-
tificial customer locations, as follows. Contract all paths from root to leaf in S into nodes.
Let V&g be the set of these contracted nodes. The costs of using edges connecting any two
vertices in Vi, | J{0} remain unchanged. For ¢ € V., let co; be equal to the costs of traversing
the edge starting at the depot and ending at the first location on the path contracted into
i. Similarly for j € V5 ([J{0} let ¢;; be the costs of traversing the edge starting at the last
location on the path contracted into ¢ and ending at location j. Furthermore, for ¢ # 0 and
Jj € Vg let ¢ = o0.

Let g; for i € V[, be the total demand of the locations on the path contracted into i.
Clearly, after the first phase of the heuristic, the demand ¢; for i € V\ does not exceed the
vehicle capacity (). The demand for the locations in V}, does not change.

Consider a solution to the CVRP problem defined on the complete graph with the set of
customer locations Vi |V}, with demand and costs as defined above. As the costs of using
an edge between any location in V}, and any vertex in V. is infinite, in an optimal schedule
any node in V., will be preceded only by the depot. A feasible schedule to the VRSP is
now found by expanding back all the contracted nodes.

The problem that has to be solved in the second phase of the heuristic is obviously an
NP-hard problem as it can be reformulated into an unrestricted CVRP. In this reformulation,
there are as many artificial nodes defined as there were routes in the master schedule and
there are locations that need to deviate. Fortunately, in most practical cases we encountered
only a small subset of the customer locations need to deviate limiting the size of the CVRP
in the second phase. For solving the CVRP any specialized exact algorithm or heuristic can
be used.

Before presenting a bound on the difference between the solution generated by the two-

phase heuristic and the optimal solution, some properties of its solutions are presented.
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3.1.3 Properties of the two-phase heuristic

Consider the problem of finding a feasible schedule that minimizes the total deviation costs

when a master schedule S); is given:

U* = rélelgliew U(Sn, S, 1) (26)

In the next lemma it is shown that the deviation costs of the schedule obtained by the
two phase heuristic are equal to U*. This implies that in order to find U*, one can apply the
procedure described in the first phase of the heuristic, which does not require the construction

of a schedule.

Lemma 3. The two-phase heuristic produces a schedule S};P such that the total deviation

costs are minimized:

> U, SEF i) =U" (27)
eV’

Proof. Since SE¥ is a feasible solution for finding the schedule with the minimum deviation
costs, U* <>, v, U(Swr, STP 7). As any location i € V}, keeps its place in the master route
in the new schedule Sgp it holds that location ¢ does not deviate in S}%P and therefore for all
i€ Vi, U(Swm, SEP, i) = 0. Observe that as V' =V, |JV} we have Y, U(Sy, SR, 1) =
Zie% U(Sa, SEF i) + ZieVI’% U(Sw,SEF i) < ZieVI’% u;. This provides us with an upper
bound on the costs of using schedule SE7.

Next it will be proven that Zievfg u; < U*. Denote by Sy« the schedule for which U* is
attained and let V= be the set of locations that deviate in this schedule. It will be shown
that V}, C Vy«. Consider a location j € Vj; and the route r = {i1,...,4, J, ..., it} € Sy- and
denote rar = {i1,...,4}. If j does not deviate in Sy+, none of the locations in 7}, deviate
and it must hold that Zz’ergw ¢i + ¢; < Q. However, this contradicts the construction of V},

hence we can conclude that Zievj’{ u; < U*. This yields the desired result. O

For certain values of the parameters, the schedule that minimizes the total deviation
costs achieves the optimal value for the VRSP. This is in particular the case when the costs
of deviating are very large relative to the costs of traveling. In such a case in particular the

two-phase heuristic produces the optimal schedule for the VRSP.
Lemma 4. Let Uiy = Mingeys Ui, Cmin = Ming j)e g cij and let S},’:P be the schedule produced

by the two-phase heuristic. If wmin > 3 ;e [coi+cio] — (n+ f%})cmin then the schedule

STE s optimal.

Proof. For any schedule Sg that is a solution to the VRSP, let the costs be decomposed into
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two parts, the traveling costs Zr = }_(; /e, Ci; and the deviation costs Ur = >,y U(Sar, Sk, i)
respectively. Note that the costs of using the schedule S};P can also be decomposed into Z}:’;P
and U*.

Observe that ZE" < 3,y [coi+cio] and, as [%1 is a lower bound on the number of

vehicles that are needed, Zg > (n + f%})cmm where cpin = ming jyep cij. Therefore:

%))

Dicv: €

0 ~|)Cmin > ng —Zr (28)

> leoi +eio) = (n+ [

icv!

Note that for any schedule Sp with at least one more deviation than Sgp it holds that

Ur > U* + tumin. From this it follows for tmin > > .2y [coi + cio] — (n + f#l)cmm,
that:

Up>U*+ ZtF — 7 (29)

Therefore for all Sk with at least one more deviation than S};P it holds that:

ZEP 1 U* < Zp +Ugr (30)

Finally, note that for any schedule with an equal number of deviations as SLF, (30) is
always satisfied. This proves the optimality of SEP for all wmin > Y ey [coi + cio] — (n +

)

min -

Tight Example:

To show that the bound on wuy;, cannot be improved, consider the following tight exam-
ple. The example is an instance with two locations, all distances are symmetric and equal,
co1 = cp2 = c12 = c¢. The master schedule consists of a return trip to location one and a
separate return trip to location two. The demand realizations are such that ¢; + g2 < @Q
and the two routes might feasibly be merged. Furthermore, let us = upi,. Three feasible
schedules exist. The master schedule can be used as a solution to the rescheduling problem,
this schedule will be referred to as S7 and yields total costs 4c. A second option is to have
only one route, first visiting location 1 and then location 2, this schedule will be referred to
as So and yields the total costs of 3¢ + upmin. The last option is the reverse of Sy and can
be disregarded in this discussion as the costs of using this schedule will never be lower than
the costs of using Ss. The two-phase heuristic will produce schedule S;. This schedule will

be optimal if and only if wmin > ¢ =3,y [cos + cio] — (n + [W])cmm.
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For specific problem instances the relative difference between the traveling costs and the
deviation costs need not be high for the two-phase heuristic to produce the optimal solution.
However, it is not possible to provide a general guarantee for small relative differences. For
the problem instances used for the computational results, numeric values are presented to
give insight in the necessary magnitude of the difference in costs for the two-phase heuristic
to produce optimal schedules.

The difference of the costs when applying the schedule produced by the two-phased
heuristic as opposed to using the optimal solution in the worst case scenario, can offer
insight in the performance of the heuristic. In the next lemma an upperbound is given
on the relative difference between the costs of the optimal solution and those of using the

two-phase heuristic.

Lemma 5. The costs of using the routing schedule produced by the two-phased heuristic S};P

is at most min{ qn(in , (QQE(;% + 1} times the costs of the optimal schedule S}, for the VRSP,

Piev' @
n

where qmin = Minjev q;, § = , Cmax = MAX(j jyeE Cij Nd Cmin = MiNg jyek Cij-

Proof. Note that for ease of notation we use symmetric traveling costs c;; in this analysis.
An analogue proof can be given when traveling costs are not symmetric.

Let the traveling costs and deviation costs of SIEP be given by Z};P and U™ respectively.
Similarly, let the traveling and deviation costs of S} be given by Zj and Uj. Furthermore

ZEP+U” Q
Z3p+U;, = qmin

let Z* = mingeg Z(ij)es cij. To prove the theorem, it is first shown that

Zg"+U" < _2Qcmax 1
ZH+Uy; — (Q+Q)cmin :

In Simchi-Levi et al. (1997) it is proven that for a CVRP with unequal demands it holds

and secondly that

that ZZjeV/ cojq; < QZ*. Now observe that:

@ 4 (31)

min

ztr <2 Z co; <
eV’

Z C0iqi <

ey

Which implies that:

ZEP Ut _ g (27U Q

dmin 32
Zp+ Uy = ZFU" " g (32)
Next, as (%] is a lower bound on the number of vehicles that are used, it follows
that:
ZTP U* ZTP U* 2 max 2 max 2 max
7 +U* <7 +U* < S tl< S 1 = Doy
R + R + (Tl + |— 16(5/ -|)Cmin (Tl + 7Z€QV )Crnin (Q + Q)CEHIH>
33

Here the strict inequality follows from ‘ZT*;)’ < ¢+ 1 for a,b,c > 0. This concludes the
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proof.

Tight Example:

Note that this bound can not be improved upon, by considering the following tight example.
Consider a problem instance of n locations and let an arbitrary master schedule be given.

Now let demand be given by ¢; = @ for all ¢ € V’'. Obviously there is only one feasible

ZEPyu* — 1= Q. :min{ Q 2QCmax 1}.

hedule, hen &
sC edu e, ence ZI*%JFU;:} Gmin Qmin ’ (Q+q)011\i1\

3.2 DModified savings heuristic

The savings algorithm due to Clarke and Wright (1964) is a very insightful algorithm that
has been widely used to solve the CVRP problem. This algorithm has great flexibility in in-
corporating features like time window constraints which play a crucial role in many practical
applications. Moreover this algorithm can easily be adapted to incorporate the features of
the VRSP. In the modified savings algorithm, the schedule is created in a constructive man-
ner as opposed to using Sy, as a basis to remove edges from like in the two-phase heuristic.
This allows for greater freedom and flexibility in designing a schedule.

The savings algorithm starts by assigning a vehicle to serve every individual customer.
The initial schedule consists of n routes from the depot to a customer and back. The costs
of this schedule are then of course 2 Z?Zl coj. Routes will be merged to improve these costs
until no further improvement can be found using merges or until any further merges will
render the schedule infeasible (for instance because capacity constraints are violated). If the
last location on a route is ¢ and the first on another route is j, a merge between these routes
is obtained by traveling directly from i to j instead of returning and starting from the depot.
The savings of such a merge is s;; = ¢;0 + coj — ;5.

Let S™ be the schedule after m merges. Furthermore let S7 be the schedule resulting from
merging the routes ending at location 7 and starting at location j when the current schedule
is S™. For the modified savings algorithm the rescheduling costs need to be incorporated.
These should be calculated and added to s;;. This has to be done for the initial values as

well as after every merge. Define the rescheduling savings in iteration m as:

ujj = Z U(Swm, Sij,1) — Z U(Sn,5™,) (34)

iev’ eV’
Denote A as the set of all pairs (7,7) such that the route ending with customer i can
feasibly be merged with customer j. It must hold for all pairs (4,7) in A that: ¢ and j are

on different routes; Customers i and j are the last and first location on a route respectively;
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A merge between the route ending with ¢ and the route starting with j must not violate the

capacity constraint. The algorithm is given by:

Step 1: Construct SY in which every customer is visited by an individual vehicle. Initialize

A=F.
Step 2: For all (i, j) € E' calculate s;; and uf}, let the total savings be S;; = s;; + v} and

let m=0.
While max; jyea Sij > 0
Step 8: Merge the route ending with ¢ and the route starting with j for (i,5) =
arg max; j) Si; resulting in schedule Smtl set m =m + 1.
Step 4: Update A.
Step 5: Calculate v} for all (4, j) € A.

Step 6: Calculate S;; = s;; +uf? for all (4, j) € A.

Observe that the algorithm finds a feasible solution in polynomial time.

4 Computational results

In this section, the results of numerical experiments are presented. They will provide insight
into the sensitivity of the model to different values of the deviation costs. Furthermore, the
performance of the proposed heuristics is evaluated empirically, by applying them to a range
of test cases and comparing the results.

In this section, randomly generated test cases are used. For every problem instance, first
an master schedule Sy, is generated based on some demand realization. Next a new demand
realization is generated and rescheduling will yield a new feasible schedule. Unless stated

otherwise, the following settings are used for the generation of individual problem instances:
e 1 customer locations are randomly generated, uniformly distributed over a square ge-
ographical area with sides of length 20 units and a depot in the center.

e The costs of traveling from one location to another is equal to the Euclidean distance

between both.
e All vehicles have a capacity of 30 units.

e Demand for the master problem is normally distributed with mean 5 and standard

deviation 1.5, truncated from below to 1 and from above to 30.

e Demand for the new schedule is normally distributed with standard deviation 1.5. The

demand average is equal to 1.5 times the realization for the master schedule.
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The deviation costs will be specified for every individual experiment.

These numbers are inspired by a practical case in a retail chain with recurrent sales
actions. The specific demand structure ensures the necessity to deviate from the original
schedule. The algorithms are tested on cases where deviation will indeed be necessary as
demand has typically increased. The original schedule is generated using a direct implemen-
tation of the CVRP using a two commodity flow formulation (Baldacci et al. 2004) yielding
an optimal schedule.

All tests are performed on an Intel(R) Core(TM)2 Duo CPU E8400, 2.99 GHz, 3.21
GB of RAM. For all solutions that are found by direct implementation of a mixed integer

programming formulation, ILOG CPLEX 10.1 is used.

4.1 Model parameter sensitivity

For large deviation costs uymi, with respect to the traveling costs, by lemma 4, the optimal
schedule is a schedule with the minimum number of deviating locations. It is very interesting
to see what the value of i, must at least be in situations that are not necessarily worst
case, to ensure the optimal schedule to have the minimal number of deviations. Not only
does this give insight into the cost structure of deviating, also observe that from this value
of umin and higher, the two-phase heuristic is guaranteed to produce the optimal solution.
For these experiments let all u; = u.

As an example, consider a single randomly generated case of 25 customer locations, n =
25. This case exhibits behavior that is representative for that of all simulated cases. Figure 2
depicts properties of optimal schedules of the VRSP for this case using different values u for
the deviation costs. These optimal schedules are found using a direct implementation of the
two commodity flow formulation of the VRSP. The graph on the left shows the number of
deviations and the graph on the right shows the total traveling costs of the optimal schedule.
Notice that when u = 0, all locations deviate, however as u grows slightly above 0, a new

schedule is found with less deviations but with equal traveling costs.

Figure 2:
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The figure indeed supports the notion that large u forces the optimal schedule to have a
decreased number of deviations. The figure shows that in this particular case the minimum
number of deviations is 4 and is obtained for u greater or equal to 4.25. Obviously this value

of 4.25 is meaningless unless related to the traveling costs.

To give a more general impression, let us relate the critical level u, the level from which
onward the optimal solution of the VRSP is the schedule with the minimum number of
deviations, with the average traveling costs of all edges used in the original schedule ¢y;.
For the example depicted in Figure 2 ¢j; = 4.13, which can be considered very close to the
critical level u of 4.25. For the 100 generated cases 40% of the critical u values lie below
0.5¢ps, 71% of the critical values even lie below ¢ and 87% lies below 1.5¢,. Observe that
47% of the critical levels do not differ more than 50% of the value of ¢,;.

The schedules with minimal traveling costs in the example case, have traveling costs
137.1. Among these schedules the best in terms of number of deviations, is a solution with
10 deviations. The schedule with minimal number of deviations, 4, has traveling costs 151.7.
Comparing these schedules, observe that in this case, 6 less locations need to deviate at the
expense of an increase in traveling costs of 10.6%. For the 100 generated cases, the average
increase in traveling costs between the schedule with minimal traveling costs and the schedule
with minimal number of deviations is 9.7%, with standard deviation 5.3 percent points. It
might therefore be argued that when the benefits of having a schedule with minimal number
of deviations outweighs the costs of traveling close to an additional 9.7% units distance, it
may be a good idea to minimize the number of deviations. In this case the VRSP can be

solved using the two-phase heuristic.

4.2 Algorithm performance

To evaluate the performance of the two-phase heuristic and the modified savings heuristic,
they are used to find solutions for multiple test cases. For these cases, the deviation costs are
randomly generated using a normal distribution with mean equal to 0.75 times the average
length of the edges used in the original schedule, the standard deviation is equal to 0.5 times
this average length. The deviation costs are truncated from below at 0. These parameters
were chosen such that it is unlikely that the generated instances either revert to standard
CVRP because all u are near or equal to 0, or that they are sufficiently high that the two-
phase heuristic is guaranteed optimal.

In implementing the two-phase heuristic, the second phase is performed using a two com-
modity flow formulation of the CVRP. This is solved to optimality by a direct implementation

of the model in. Obviously, the running time of the two-phase heuristic can be improved by
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using sophisticated heuristics in this phase.

To obtain some insight in the quality of the solutions obtained by using the heuristics,
they are used on small test cases. In these small cases, the optimal solutions can be found
using a direct implementation of the VRSP in. The optimal solutions are then used as a
benchmark.

Table 1 shows the results of computational experiments for instances of different size.
For each value n representing the number of customer locations generated in a test case,
100 simulations were performed. For each individual generated instance of the VRSP, an
optimal solution was found as well as solutions using the two-phase heuristic and the modified
savings, respectively. The column C'Drp shows the average cost difference in percentages of
the schedule produced with the two-phase heuristic with respect to the optimal schedule over
all 100 instances, the standard deviation of the difference is included in between brackets.
Likewise, C' Dpss shows the average cost difference and standard deviation for the schedules
produced with the modified savings heuristic. Note that these costs include both the traveling
costs and the deviation costs. Next, the column Crp.jrs shows the number of instances out
of the 100, in which the costs of two-phase heuristic provided a schedule with lower costs
than the modified savings heuristic and the column C7p~ ;s shows it the other way round.
Finally, Tope, Trp and Thrs shows the average time in seconds it took the algorithms to
finish all 100 cases. The standard deviation of the time to find the optimal solution varies
between 1 and 3 times the average, for the two phased heuristic it is between 1 and 2 times
the average and for the modified savings algorithm the standard deviation is 0. Note that
for every individual case, solving it to optimality took the most amount of time and using

the modified savings algorithm took the least amount of time.

Table 1:
n  CDrp CDys Crp<ms  Crp>ms — Topt Trp  Tus
10 0.7(2.1) 16.2(16.0) 75 5 0.034 0002 0.000
15 1.1(2.2) 15.9(12.3) 87 7 0.455 0.009 0.000
20 1.1(1.7) 17.1(11.2) 91 5 1580  0.025  0.000
25  1.8(24) 15.8(8.5) 98 2 9.327  0.134  0.000
30 1.4(1.9) 16.9(8.4) 98 1 95.987  0.283  0.000

Although the difference in costs between the two-phase heuristic and the optimum seems
to be increasing, the costs are on average not more than 2% above the optimum for instances
of every considered size. This differs significantly from the performance bound that has been
derived earlier. Furthermore, the costs of the modified savings algorithm are on average more
than 15% above the optimum for instances of every considered size. Observe from columns
Crp<ms and Crpsprg, that the two-phase heuristic more often produces schedules with

lower costs than the schedules of the modified savings algorithm than the other way around.
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Also, as the size of the instances increases, the number of times in which the two-phase
heuristic performs better increases as well. We see that for these choices in generating u, the
two-phase heuristic performs better than the modified savings heuristic in terms of costs.
From the columns indicating running times it can obviously be concluded that using
heuristic methods reduces the solution time significantly with respect to solving it to opti-
mality using a direct implementation of the VRSP. Furthermore, the running time of the
two-phase heuristic significantly increases as the size of the instances grows. This was to be
expected as in the second phase an NP-hard problem of increasing size is solved to optimal-

ity. The modified savings algorithm always terminated within a millisecond.

Solving the VRSP to optimality using a direct implementation has not been done for
problem instances including more than 30 customer locations. The computation time in-
creases exponentially as is also supported by table 1. As practical problems most often
include more than 30 customer locations, heuristics are typically used to find feasible solu-
tions. It is therefore interesting to see how the results of using the two proposed heuristics
compare on larger instances. First of all it is of interest whether or not the relative difference
in costs of the generated schedules gets smaller for larger instances. Similarly it is of interest
to see if the number of times that the two-phase heuristic outperforms the modified savings
heuristic does not decrease.

For the same reason the VRSP is not solved to optimality, the master schedule will not be
generated by solving a CVRP instance to optimality. The master schedule will be generated
using the standard savings algorithm. Note that using an inefficient master schedule with
respect to traveling costs, might affect the performance of the two-phase heuristic. When
rescheduling using an inefficient master schedule, the traveling costs might be considerably
reduced at the expense of some unnecessary deviations. In such cases, the two-phase heuristic
will not perform well as it never generates unnecessary deviations. Therefore, for the test
cases using the saving algorithm to generate the original schedule, also test cases of 20 and
30 locations are generated to compare to the test cases where the master is generated by
solving a CVRP to optimality. Table 2 shows the results of the test cases where the savings
algorithm is used. Columns T'C'rp and TC);g show the average costs and standard deviation
over the same 100 instances for the two-phase heuristic and the modified savings algorithm.
The interpretation of the last four columns are analogue to that of table 1.

For the test cases where the master schedule was generated by solving a CVRP to opti-
mality, the modified savings algorithm constructed schedules with costs that were on average
less than 15% above the costs of the schedules produced by the two-phase heuristic. When

the master schedule is generated by applying the standard savings algorithm, this difference
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Table 2:

n TCrp TCums Crp<ms  Crp>ms Trp Tns
20 128.9(17.0) 154.0(17.2) 97 3 0.032 _ 0.000
30 175.6(18.3)  209.5(18.4) 100 0 0.324  0.000
40 220.8(18.0)  263.4(15.7) 100 0 1.652  0.000
50 263.1(20.3)  309.7(19.5) 100 0 14.042  0.000

is on average roughly 19%. However there is no clear indication that this difference varies as
the size of the test cases vary. For larger test cases the two-phase heuristic outperforms the
modified savings heuristic for every individual case. Therefore we again conclude that for
this configuration in generating u, the two-phase heuristic performs better than the modified
savings heuristic in terms of costs.

With respect to the running times, again data supports that the running time of the two-
phase heuristic increases exponentially as the number of customer locations increase. The
CVRP that has to be solved in the second phase on average includes more locations. Also
for the larger problem instances the modified savings algorithm always terminated within a

millisecond.

5 Concluding remarks

In this paper, the negative effects of deviating from a master schedule have been incorporated
in the scheduling process. Insight has been obtained on the behavior of the optimal solution
of the VRSP for different values of the deviation costs relative to the traveling costs.

Two mixed integer linear formulations have been presented. Using these formulations
the VRSP can be solved to optimality using direct implementation. Computational results
have shown that this can consistently be done for problem instances of up to 30 locations.

Two heuristics have been presented to solve instances of the VRSP including up to 50
customer locations, that find good solutions within a small amount of computation time.
The two-phase heuristic makes use of specific properties of the VRSP to find a solution. For
sufficiently high deviation costs, this algorithm generates a schedule that is on average close
to optimal or even guaranteed optimal, for all considered problem instances. For general
problem instances, an analytical bound on the difference between the solution generated by
the two phase heuristic and the optimum is presented. However, numerical results indicate
that this analytical upper bound is extremely far from the actual difference. As in the
second phase of the heuristic an instance of the CVRP, an NP-hard problem, has to be
solved for the locations that need to be rescheduled, the computation time heavily depends
on the minimum number of locations that need to deviate. For larger problem instances, the

second phase can be performed using a heuristic to solve the CVRP.
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The second heuristic that is presented is the modified savings heuristic. Although com-
putation times are extremely low, the performance in terms of total costs is worse than that
of the two-phase heuristic. The modified savings algorithm can easily be extended to incor-
porate additional features like time-window constraints that play a great role in practical

applications.
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