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Abstract

Clinical trials are the main source of information for the efficacy and safety evaluation of medical treatments. Al-

though they are of pivotal importance in evidence-based medicine, there is a lack of usable information systems

providing data-analysis and decision support capabilities for aggregate clinical trial results. This is partly caused by

unavailability (i) of trial data in a structured format suitable for re-analysis, and (ii) of a complete data model for ag-

gregate level results. In this paper, we develop a unifying data model that enables the development of evidence-based

decision support in the absence of a complete data model. We describe the supported decision processes and show

how these are implemented in the open source ADDIS software. ADDIS enables semi-automated construction of

meta-analyses, network meta-analyses and benefit-risk decision models, and provides visualization of all results.
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1. Introduction

Two kinds of decision support systems for evidence-based medicine can be distinguished: rule-based systems

for supporting operational decisions of practising physicians and strategic decision support systems. The rule-based

systems represent clinical knowledge and include inference rules for aiding professional decision making in clinical

practice. They have been in existance since the 1970s [1]. The most common of these are Computerized Physician

Order Entry (CPOE) systems which contain evidence-based rules that enable issuing warnings when an inappropriate

combination of medicines is prescribed. To the best of our knowledge, there are no established systems that inform

strategic (rather than operational) decisions such as identifying the best treatment practices based on the consideration

of benefit-risk trade-offs.

Strategic health care decision making, with or without a supporting system, depends heavily on the availability of

unbiased evidence from controlled clinical trials [2]. One of the core activities and sources of information in evidence-

based medicine is the systematic review [3], a literature review that attempts to identify and synthesize all empirical
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evidence that fits pre-specified eligibility criteria in order to answer a specific research question [4]. Currently the

process of systematic review is extremely labor intensive and error prone due to the lack of a comprehensive source of

clinical trials, the inaccuracy of literature searches, interpretation issues, tedious manual data extraction and, impor-

tantly, the duplication of effort that is necessary for every review [5]. The emergence of clinical trial registries [6] and

the move towards a more open clinical research community [7, 8], as well as the initiatives of the Cochrane foundation

[9] to share and update meta-analysis data sets offer opportunities for more efficient approaches to evidence synthesis.

Still, to date there is no single complete collection of performed clinical trials and outcome data, and importantly none

of the available sources store results in a format that is suited for re-analysis [6, 10].

Thus, although suitable methods for evidence-based strategy decision support exist [11–14], evidence-based deci-

sion making is difficult to implement because of the substantial effort required to systematically review the literature

for relevant studies and to manually extract the data from these studies, which has to be done on a case by case

basis. Even when a relevant published systematic review exists, evidence-based decision making including multiple

(possibly conflicting) objectives is difficult and in practice often done ad hoc due to a lack of supporting information

technology. In addition, sometimes it will be necessary to incorporate additional studies to the body of evidence

present in the systematic review, e.g. in the regulatory context where the manufacturer sponsors studies to prove the

efficacy and safety of a newly developed drug. Moreover, the analyses reported in the published systematic review

may not be valid for the decision at hand, so re-analysis of the included clinical trials may be needed. Text-based

reports of systematic reviews do not support such use cases. There do exist methods for automated extraction of trial

design and results from the literature, but although the field is rapidly evolving [see e.g. 15], their accuracy is not yet

sufficient to be directly used in systems supporting strategic decisions.

In this paper, we present ADDIS (Aggregate Data Drug Information System, http://drugis.org/addis), an

open source evidence-based drug oriented strategy decision support system. It is an integrated software application

that provides decision support for strategic decisions such as guideline formulation, marketing authorization, and reim-

bursement. ADDIS stores aggregate clinical trial results with a unifying data model, and implements semi-automated

evidence synthesis and benefit-risk modeling. These use cases were derived from direct discussion with experts from

pharmaceutical industry, regulatory authorities, and academia, and from their feedback to early prototypes of the sys-

tem. Before the models can be applied, trial results must be available in the system; for this, we present an assisted

procedure for importing study designs from an existing database. The evidence synthesis and decision models of

ADDIS allow decision makers to visualize and understand the available evidence and the trade-offs between different

treatment options, thus addressing information overload and reducing the complexity of strategy decisions informed

by clinical evidence. We stress that ADDIS does not aim at operational decision support, but aids in strategic decision

making and provides a platform for computational methods in clinical trial informatics. In addition, the generation

of the models cannot be completely automated: some steps require decisions from a domain expert, but can be sup-

ported by ADDIS as will be shown in this paper. To the best of our knowledge, ADDIS is the first system to allow

on demand generation and use of the evidence synthesis and decision support models in a suitable way for strategic
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decision making.

We start by discussing existing systems and standards for clinical trial design and results in Section 2. The unifying

data model is presented in Section 3. After that, in Section 4, we present ADDIS and the assisted procedures of study

import and generation of evidence synthesis and benefit-risk models. In Section 5 we summarize our principal findings

and propose directions for future research.

2. Background

Several systems and standards dealing with clinical trial information exist. We provide an overview of these

systems and standards in Sections 2.1 and 2.2, respectively. Subsequently, in Section 2.3, we briefly describe the

current state of methods for extraction of information from predominantly text-based sources of clinical trial designs

and results. Finally, Sections 2.4 and 2.5 give an overview of the most relevant evidence synthesis and decision

modeling approaches for strategic decision making.

2.1. Clinical trial information systems

In this section we briefly summarize the information systems that deal with clinical trials information, first those in

operational management of trials and the regulatory environment, then the dissemination to the scientific community

through publication in journals and registration, and finally how the results are summarized in systematic reviews.

2.1.1. Operational management and regulatory submission

Operational management refers to the administrative and data-gathering activities for a single trial. The operational

management of clinical trials can be automated by using a Clinical Trial Management System (CTMS). Until circa

2000, the management and data collection of the vast majority of clinical trials were paper-based activities [16], but

the use of a CTMS has quickly become the norm [17, 18]. The automation of operational management is now a mature

field, and increasingly standardized (see also Section 2.2). However, CTMSs are data-centric single study systems

that are focused on enabling the efficient operation of the trial and, often, submission of data to the US Food and Drug

Administration (FDA). As of yet these systems do not enable cross-study analyses, data integration and data sharing.

After drug development, the pharmaceutical company compiles the evidence collected from clinical trials (and

other research) into an electronic dossier that is submitted to the regulators who decide upon its market authorization.

The dossier, especially the clinical trial results, forms the basis on which regulators assess the benefit-risk profile of a

new drug. Submissions to the European Medicines Agency (EMA) and most other regulatory agencies worldwide are

mainly text-based, containing aggregate-level results of clinical trials based on the applicant’s statistical analyses. The

FDA, on the other hand, requires an electronic submission of individual patient data to be able to perform independent

analyses [19], and is currently building JANUS, a standards-based clinical data repository specifically designed for

the integration of data [20].
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2.1.2. Results dissemination

Pharmaceutical companies and clinical research organizations may choose to publish the results of clinical trials

in peer-reviewed scientific articles that do not include the underlying data set. Abstracts of publications are indexed

in databases such as PubMed (http://pubmed.com/), which includes over 20 million citations from over 5,000

journals, of which more than 600,000 were published in 2009 [PubMed, 2011-05-02]. Although large in size, PubMed

contains only a selected subset of the biomedical literature [21]. Abstract databases include meta data that might be

incomplete due to being provided by external parties; for example, to achieve high sensitivity in searching for clinical

trials in PubMed, restricting the search to the ‘clinical trial’ publication type is too restrictive [22], and a broader query

is recommended [4]. The Cochrane CENTRAL database of clinical trials is dedicated to indexing reports of clinical

trials only, and contains references to 645,086 publications of clinical trials, of which 286,418 have been published

since 2000 [Cochrane Library, 2011-05-02].

Until recently journal publications were the only non-confidential source of trial designs and results. This led to

insufficient or inaccurate trial reporting and publication bias [23] as e.g. over half of the clinical trials supporting

successful new drug submissions made to the FDA had still not been published 5 years after the medicines’ market

approval [24]. Publication bias is a serious problem that can lead to incorrect conclusions in a systematic review.

As early as in 1986 the registration of trials in advance was proposed as a solution to publication bias [25]. In

1997 the US became the first country to make trial registration a legal requirement, leading to the development of the

ClinicalTrials.gov registry [26]. In 2004, both the World Health Organization (WHO) and the International Committee

of Medical Journal Editors (ICMJE) released statements in support of the prospective registration of clinical trials.

This policy has been widely adopted [27] and now assures that the existence of in any case most (recent) trials is

known [6]. Registries primarily focus on providing a record of trials for enabling patient recruitment and investigator

accountability. Various organizations, including the WHO, have called for a full disclosure of the trial protocol

(including amendments) and results [7, 8, 28–32], but only the US have adopted legislation that requires registering

results in ClinicalTrials.gov [10, 33]. Study protocols can be retrieved from ClinicalTrials.gov in a (semi-structured)

XML format [34], while the retrieval of results is only possible in a text-based format. Other registries provide

protocol information as semi-structured text, and do not include results.

In order to unify trial registration worldwide the WHO Registry Network was established in 2007. Twelve national

and international registries are now part of the network. The European Union clinical trials registry, EudraCT, was

opened to the public only recently, on 22 March 2011 [35], and is not part of the WHOs Registry Network. Table 1

gives an overview of the WHO primary registries, ClinicalTrials.gov, and EudraCT. ClinicalTrials.gov is by far the

largest registry, containing more than 8 times the number of trials recorded in the second largest registry (EudraCT).

2.1.3. Systematic review

Evidence-Based Medicine (EBM) tries to use the best available evidence in assessing the benefits and risks of a

treatment [2]. The most frequently implemented methods to assess the available evidence are the systematic review
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Register Studies Results

ClinicalTrials.gov (United States) 106,649 yes (3,441)

EudraCT, the European Union Clinical Trials Register 12,990 no

ISRCTN register (international) 9,645 no

Japan Primary Registries Network 6,193 no

Australian New Zealand Clinical Trials Registry 5,221 no

The Netherlands National Trial Register 2,728 no

Clinical Trials Registry - India 1,704 no

Chinese Clinical Trial Register 1,319 no

Iranian Registry of Clinical Trials 1,291 no

German Clinical Trials Register 482 no

South Korea Clinical Research Information Service 108 no

Cuban Public Registry of Clinical Trials 105 no

Sri Lanka Clinical Trials Registry 60 no

Pan African Clinical Trial Registry 48 no

Table 1: ClinicalTrials.gov, EudraCT, and the 12 WHO primary registries. The ‘studies’ column indicates the number of registered trials (per 2

May 2011) and the ‘results’ column whether the registry also enables results publication.

and meta-analysis of published research results [3]. Systematic reviews are usually presented in a textual format

without the underlying dataset. Given the effort required to perform a systematic review, fragmented reports regarding

an indication are common [36]. The rapidly growing number of systematic reviews published each year [37] has led to

the ‘overview of reviews’ or ‘umbrella review’ to summarize the results of the existing reviews for an indication [38].

Umbrella reviews generally merely repeat the pooled summaries of treatment effects from the original reviews, but it

has been argued that they may lead to misleading and inconsistent conclusions [36].

The flagship of systematic reviewing is the Cochrane Library, kept up-to-date by the non-commercial Cochrane

Collaboration (http://www.cochrane.org/). It is composed of three main components: the CENTRAL literature

database of trial publications [39], the Cochrane Database of Systematic Reviews [40], and software for conducting

and reporting on meta-analyses (http://ims.cochrane.org/revman). The Cochrane Library provides reviews of

effects of healthcare interventions generated and updated by medical researchers, which are on average regarded to be

of better quality than the corresponding studies published in traditional journals [41]. Compared with the traditional

journal publications that usually provide data in tables or figures, the Cochrane Reviews incorporate descriptions and

results of the original studies, while the software enables making odds-ratio diagrams that can also include the newest

studies. However, the available datasets are not complete and they are structured according to the reviews rather than

the included studies. Moreover, due to the inaccessibility of clinical trials information, systematic reviews are static
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entities that only reflect the state of knowledge at the time of the literature search.

2.2. Standards and data models

The information systems discussed above, especially those in operational management, are enabled by standards

and data models that have been developed over the last two decades. Two main standardization bodies in the field

are the Clinical Data Interchange Standards Consortium (CDISC) and Health Level 7 (HL7). The CDISC devel-

ops vendor-neutral and freely available standards that enable information system interoperability in the operational

management and regulatory submission of clinical trials. HL7 develops standards that apply broadly to clinical and

administrative data in health care, and thus do not focus on any specific clinical domain. The foundation of HL7

standards development work is the Reference Information Model (RIM), a high level object model of the health care

domain. Several standards are derived from the RIM, such as V3 Messages for the meaningful interchange of data

between health care systems, GELLO for rule-based decision support, and the Clinical Document Architecture for

semantically structured documents. HL7 also maintains the Arden Syntax that enables rule-based expert systems that

support operational decision making in health care.

The Biomedical Research Integrated Domain Group (BRIDG) project aims at bringing together the common

elements of their various standards to a shared view of semantics of the domain of protocol-driven research and its

associated regulatory artifacts [42]. The model is intended to be implementation independent in the sense that it

models the problem domain, and not any specific solution. For example, unlike some other CDISC standards it does

not specify the format in which to submit data to the FDA. The BRIDG model is subdivided into several sub-domain

views: the protocol representation, study conduct, adverse event and regulatory perspectives. While the operational

aspects of clinical trials are well covered by these perspectives, a data analysis perspective is currently missing as

there is no adequate standard for statistical analysis.

The ClinicalTrials.gov registry has developed their own model, the Data Element Definitions (DED) [43, 44].

They allow the reporting of aggregated outcome data and statistical analyses to some extent, but the semantic depth

of the information is limited as most fields are free text. For example, since eligibility criteria are free text fields,

searching for a trial relevant to a specific patient condition is inaccurate [45].

The Human Studies Database (HSDB) project aims to share fully machine understandable representations of study

design information between institutions [46]. To enable this, they develop the Ontology of Clinical Research (OCRe),

which defines the concepts that should be queried across the individual institutions’ databases. The creators of OCRe

have argued that while the BRIDG model accurately captures the operational semantics of clinical trials, its modeling

of many aspects relevant to cross-study analyses is weak [46]. The main contributions of OCRe at this time are

a study design topology [47], the ERGO formal machine readable representation of eligibility criteria [45], and a

model of study outcomes that separates the phenomena of interest from the variables that code them [46]. It also

contains a study design representation derived from BRIDG [46]. While OCRe is a promising effort, it is still far from

comprehensively representing study design and lacks results completely.
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Model Study design Aggregate results Semantic depth Completeness

BRIDG ++ - +/- +

DED +/- +/- - +

OCRe + - + -

OBX + +/- +/- +

Table 2: Approximate scoring of data models on several dimensions relevant to automated processing of aggregate clinical trials results. ‘Study

design’ is the extent to which complex study designs can be accurately represented, ‘aggregate results’ refers to the inclusion of aggregate results

and description of the means by which they were derived, ‘semantic depth’ refers to the level of semantic structure achieved (e.g. contrast the

text-based eligibility criteria in the DED to the ERGO model used in OCRe), while ‘completeness’ refers to the extent to which the model in its

current state achieves its stated goals. Note that these dimensions are difficult to assess and the assigned ratings are subjective.

The Ontology Based Extensible Conceptual Model (OBX) is another ontology for representing clinical trials

[48, 49]. It is specifically aimed at making available the results of immunology studies for data re-use and re-analysis.

The OBX also incorporates study design representation ideas from BRIDG and the ClinicalTrials.gov DED [48].

While it appears successful in developing a broadly applicable data model for biomedical studies, and also includes

results, it would appear that the objections raised by HSDB researchers about the depth of modeling in BRIDG also

apply to OBX, and the results are represented in a way similar to the ClinicalTrials.gov DED.

We rate the four major models in Table 2 on how well they represent study design and aggregate results, as well

as their semantic depth and completeness. Table 3 gives a summary of the main goal as well as the strengths and

weaknesses of each model. One common property of all models is that they rely on an external terminology for their

clinical content. Controlled terminologies (synonymously: controlled vocabularies, coding systems) of clinical terms

are an important first step in the application of information technology to medicine [50]. Controlled terminologies

predate information technology, e.g. the International Classification of Diseases (ICD) was already introduced in

1893. The ICD formally codes diseases and enables, for example, the assessment of disease incidence from medical

records. Other terminologies fill other niches, for example the Medical Subject Headings (MeSH) [51] is used to

index the medical literature (e.g. PubMed meta data is coded in MeSH), and the Medical Dictionary for Regulatory

Activities (MedDRA) is used for coding safety data (e.g. adverse events). Many of these specialized terminologies

are organized into a strict hierarchy, which means that some specific terms may fit in multiple places [50]. The

Systematized Nomenclature of Medicine, Clinical Terms (SNOMED CT) terminology is an important attempt to

create a clinical terminology with comprehensive coverage [52]. It currently contains around 311,000 concepts and

800,000 terms [53]. It also goes beyond a simple hierarchical structure and provides the logical relationships that hold

between terms; over 1.3 million such relationships are currently modeled [52, 53]. The Unified Medical Language

System (UMLS) [54, 55] ‘Metathesaurus’ brings together over 60 biomedical terminologies and their relationships.

The ICD, SNOMED CT and MeSH are among the integrated terminologies.
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Model Purpose Strengths Weaknesses

BRIDG Operational management,

regulatory submission

Standardization process,

practical applications

No aggregate data, limited

depth of modeling (some as-

pects)

DED Limit publication bias, en-

able disclosure of results

Completeness, working sys-

tem, US trials required to reg-

ister (data available)

Limited semantic structure

OCRe ‘Computable’ representation

of human studies

Broad scope, semantic depth Not finished, not im-

plemented, results not

represented

OBX Make available data from im-

munology studies

Balance of the depth of mod-

eling and the practical feasi-

bility, working system

Limited depth of modeling

(some aspects)

Table 3: The purpose of each of the data models as well as their strengths and weaknesses from the perspective of enabling automated evidence

synthesis and decision support.

2.3. Data extraction

The free-text nature of clinical trial publications is an important obstacle to the application of data mining and other

automated knowledge discovery and decision aid uses [5]. There are many existing approaches to extract some of this

data from abstracts or full texts of journal articles or health records, as reviewed in [56, 57]. However, the potential

benefits are currently not fully realized due to lack of directly applicable tools [56] and text mining approaches for

supporting research [57].

Text mining of articles describing clinical trials could support researchers in performing a systematic review.

Information extraction, on the one hand, attempts to create structured datasets from unstructured text by identifying

entities and relationships between entities in the text. Most current approaches focus on the abstract rather than the

full text as it provides a more controlled environment, and they tend to focus on only a few information elements [15].

The ExaCT system [15] assists systematic reviewers in extracting 21 key trial characteristics from full text articles.

The system is accurate enough to save a considerable amount of time in extracting these elements, but systematic

reviewers do have to verify the extracted information manually. Text analytics, on the other hand, identifies patterns

in large collections of texts in order to classify documents and unlock relationships between documents. Text analytics

can help systematic reviewers in structuring large sets of search results from abstract databases (e.g. PubMed) and

increase the efficiency of finding the relevant clinical trials. However, to be able to reliably perform evidence synthesis

and decision modeling based on the extracted clinical trials data, a higher level of accuracy and generality is needed

than is currently offered by text mining methods. Thus, although automated methods can lower the workload, manual
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data extraction remains necessary.

2.4. Evidence synthesis

The most commonly applied evidence synthesis method is pair-wise meta-analysis, in which a number of studies

comparing the same pair of treatments A and B are synthesized to assess their relative performance δAB on a specific

outcome [58]. For example, do more depressed patients respond to treatment with paroxetine than with fluoxetine

(both antidepressants)? Or, do more patients treated with paroxetine experience nausea during the studies than those

treated with fluoxetine? The observed treatment differences δ̂AB
i in the individual studies i are used to estimate the

overall difference δAB. Network meta-analysis, a recent extension of pair-wise meta-analysis, synthesizes evidence on

the relative effects of a whole network of treatments simultaneously [59–61]. It incorporates both direct and indirect

evidence on the relative effects, and allows a statistical analysis of evidence consistency [61–63]. Except for the

possible inconsistency between direct and indirect evidence, the assumptions underlying network meta-analysis are

the same as those underlying pair-wise meta-analysis [64]. The method has gained acceptance, and applications are

being published in top medical journals [e.g. 65, 66]. However, application of the method has so far remained the

work of a select few experts, as model specification is difficult and no automated tools are available. Many other

evidence synthesis methods exist [67], but pair-wise and network meta-analysis are by far the most important ones for

decision support.

2.5. Decision models

Although evidence synthesis is an important tool for evidence-based medicine as it helps to summarize the avail-

able evidence, it does not help the decision maker to take into account the trade-offs of the risks of a treatment and

its related benefits. There is an increasing interest in evidence-based multi-criteria decision models [68, 69] taking

into account efficacy and safety of alternative treatments. The target domains of model-based decisions include mar-

keting authorization for new drugs, development of guidelines concerning recommended treatments, and prescription

decisions such as which anti-depressant to subscribe, for example, in a setting where besides efficacy specific safety

issues are also of interest, e.g. dizziness could be life-threatening given the specific patient’s occupation. Many such

decisions have to take into account trade-offs between different decision criteria (e.g. efficacy and safety), and can

be aided through multi-criteria decision models [70] or application-specific ways of mapping benefits and risks to

a single scale [71]. Multi-criteria decision models can structure the decision problem and make trade-offs between

the alternative medical treatments explicit. In general, Multi-Criteria Decision Analysis (MCDA) methods compare

m alternatives on n criteria. The performance of each of the alternatives is measured in terms of the criteria, and

explicit trade-offs (preferences) between the criteria may be specified by the decision maker. The decision is aided by

finding the optimal alternative (choice problem), by ranking the alternatives from best to worst, or by classifying the

alternatives into discrete classes, such as good, acceptable and bad alternatives [72]. An inverse approach, in which

typical preferences that favor each of the alternatives are derived using the decision model, is also possible [73].

9
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There exists benefit-risk models based on point estimates of the criteria measurements [13, 74]. However, taking

into account decision uncertainty is necessary in the medical context as the data might not distinguish the alternatives

with sufficient certainty to make an informed decision. In that case, a decision has to be postponed until more or

higher quality information becomes available. Therefore, we focus on stochastic methods, where the performances

are measured using probability distributions rather than with point estimates. Stochastic methods based on single

studies [11, 75] model the ‘absolute’ treatment effects and use those as performance measures (e.g. the binomial

success probability of a treatment response can be modeled using a Beta distribution for each of the treatments).

Using absolute measures has the advantage that the observed differences in performance have an immediate clinical

implication, and thus eliciting preferences from the decision maker is relatively easy. For example, one could ask

‘Would you consider improving the probability of treatment response from 0.73 to 0.80 to be more important than

reducing the probability of the side effect dizziness from 0.12 to 0.09?’. However, the generalizability of a model using

absolute measures is questionable, as the absolute treatment effect and the incidence of side effects depends heavily

on the design and specific population of the study. Models based on evidence synthesis [14] are preferable from this

perspective, as measurements would be based on relative effects estimated using all available studies. Thus, such a

method is more robust and generalizable, but the relative scales make the interpretation of the clinical implications

more difficult [76]. A hybrid approach, in which the (relative) measurements are derived using evidence synthesis,

but framed in clinically meaningful (absolute) terms using (assumed or estimated) baseline risk for the population of

interest may be the best one [14].

So far, only benefit-risk models based on Stochastic Multi-criteria Acceptability Analysis (SMAA) [73, 77, 78]

allow taking into account the full uncertainty surrounding the measurements from clinical trials as well as imprecise

preferences, while enabling the comparison of m ≥ 2 treatments on n ≥ 2 outcomes through Monte Carlo simulation.

A two-dimensional visual approach (also based on Monte Carlo simulation) may be preferable if m = 2 and n = 2

[75]. This model is based on standard cost-effectiveness analysis techniques, and we shall refer to it as the “Lynd &

O’Brien” model. Both methods enable the inverse approach, where the preferences supporting specific decisions are

derived using the model.

3. The unifying data model

We developed a unifying data model to enable evidence-based decision support methods based on either individual

studies or evidence synthesis. As discussed before, the most important methods are pair-wise meta-analysis, network

meta-analysis, and stochastic multi-criteria benefit-risk assessment. The data model is aimed at supporting these use

cases. As was shown in Section 2.2, several worthwhile data modeling efforts are underway. Unfortunately none of

them have the needed level of modeling to be directly applicable to our use cases. It is clear that while very precise

representations (such as are being created for OCRe) will be needed for the reuse of clinical trial data for general

purposes, they will not translate directly to the application of evidence synthesis.
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Figure 1: The current and future flow of information into the ADDIS system, and the role of the unifying data model in supporting evidence

synthesis and decision support. The dashed rectangle indicates the scope of the functionality currently implemented by ADDIS. The solid arrows

show the current situation, while dotted arrows indicate how future developments will benefit ADDIS.

In addition, the data model is intended to be a well defined data extraction target to enable health strategy decision

support. Data extraction is currently based on manual and assisted import from clinical trial registries and journal

publications, and in the future on automated rule-based import from structured databases or semi-automated data

extraction from the medical literature. This vision is shown in Figure 1. The data model is not intended to fully model

clinical trials, as we believe BRIDG and OCRe are better positioned to eventually fill this gap. Rather, there is a need

for a unifying data model that captures the invariants of the domain from the perspective of evidence synthesis. Such

a data model provides clear requirements for more fine-grained models, a target for text mining and (sub-)domain-

specific rules for data conversion, and a basis on which to build decision support systems. Thus, our data model

represents the structure of trials only to a limited extent and appropriate (domain-specific) mapping is required to

enable its use. Mapping rules from more fine-grained data models such as OCRe can be developed once these models

have matured. The unifying data model is described below and illustrated in Figure 2. In the text, we will refer to

entities in the domain model using capitalized words (e.g., Study and OutcomeMeasure).

Clinical trials are represented by the class Study. The data model may also apply to other studies with human

populations, such as observational studies, but it was primarily designed to represent clinical trials. Each Study is

identified by a name (e.g., “Coleman et al. 2001” or “NCT00296517”). A Study considers a single (therapeutic)

Indication. Each Indication is identified by a definition (e.g., “Depression” or “Type 2 Diabetes”). A Study consists of

(two or more) Arms. An Arm within the context of a clinical trial can be seen as a group of patients within a Study who

all receive the same medical Treatment. Within a Study there can exist different Arms for the same medical Treatment

(e.g., receiving different dosages). Each Treatment is identified by a definition (e.g., “Placebo”, a simulated medical

intervention, “Fluoxetine”, an anti-depressant, or “Rosiglitazone”, an anti-diabetic).

An OutcomeMeasure is identified by a definition, referring to an endpoint (e.g., “Responders on the HAM-D
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Figure 2: The unifying data model for common types of aggregate analysis of clinical studies in UML2 class notation.

rating scale” or “Change from baseline triglycerid levels (mg/dL)”) to be measured in studies, or an adverse event

(e.g., “Headache”, “Nausea” or “Chest pain”) that can occur in studies. An OutcomeMeasure has a beneficial direction

(higher is better or lower is better). There are two Types of OutcomeMeasures in terms of how they are measured: rate

or continuous (see below). A Study can have (zero or more) OutcomeMeasures and an OutcomeMeasure can apply

to (zero or more) Studies. Such a combination is called a StudyOutcomeMeasure (identified by the OutcomeMeasure

and Study). Note that the BRIDG model discussed before also uses the term StudyOutcomeMeasure in this context.

A Measurement refers to a combination of a StudyOutcomeMeasure and an Arm within the same Study. Each such

combination can have at most one Measurement. A Measurement has a sample size (e.g. 98 patients). The sample size

is associated with the Measurement and not with the Arm, as the relevant sample size depends on the way the outcome

measure is analyzed, and may change over time due to patients dropping out of the study. Each Measurement is either

a RateMeasurement or a ContinuousMeasurement, depending on the type of OutcomeMeasure the measurement refers

to. A RateMeasurement describes the number of individuals in the Arm for whom the OutcomeMeasure occurred. A

ContinuousMeasurement describes the result by a mean and a standard deviation (two real numbers).

The entities described above form the core of the unifying data model. Generation of evidence synthesis and

decision models is based on Studies, Arms, Treatments, OutcomeMeasures, and Measurements. In addition, the data

model includes Characteristics for more descriptive information. The Characteristics are identified by a name (e.g.

for StudyCharacteristics “Study size”, “Group allocation”, “Treatment blinding” or “Patient eligibility criteria”, for

ArmCharacteristics “Arm size”, “Dosing” or “Gender distribution”, for OutcomeCharacteristics “Is primary outcome”

or “Assessment time”) and include the type of the characteristic. The type is used for validating the values input for

the actual characteristic values, and is useful in generating Graphical User Interface (GUI) components for input of
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Figure 3: An example instantiation of the unifying data model as UML2 object diagram. The example instantiation depicts one Study including two

Arms with two different Treatments. For both of the arms, a measurement on one OutcomeMeasure is shown. For the Arm, StudyOutcomeMeasure,

and Study, there is each one Characteristic presented together with the associated value.

characteristic values. The object diagram in Figure 3 includes an example instantiation of the data model.

If the characteristics are left out, the data model contains the minimal information for generation of the evidence

synthesis and decision models described in the previous section. The minimal representation makes it easier to import

data to a system implementing it, and increases applicability of the model from being specific to a certain subfield

(e.g. cancer treatments) to being general for all. However, the minimality causes the data model to be specific for the

chosen types of analysis models. If, for example, meta-regression techniques should be applied, the data model would

need to be extended accordingly. We allow descriptive extensions by including the characteristics. The characteristics

also serve for storing the information that is unnecessary for analysis model generation, but necessary for expert

judgment on which studies should be included in the analysis (e.g. based on the type of dosing). They also serve for

specialization of the data model in that, if the need arises, new ones can be added without breaking the functionality

of analysis model generation.
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4. ADDIS decision support system

The unifying data model together with a semi-automated analysis generation system are implemented in the open

source decision support software ADDIS1. It provides an easy interface to enter, import and manage study design

and outcome information from clinical trials, and is specifically aimed at supporting the user in creating (network)

meta-analyses and (multi-criteria) benefit-risk models. The main components of the software are:

• Implementation of the unifying clinical trial data model,

• GUI for managing trials and analyses,

• Semi-automated import of studies from ClinicalTrials.gov,

• GUI ‘wizards’ for semi-automated generation of analyses,

• External packages for computing the analyses,

• GUI components for results visualization, and

• Links to external databases (PubMed, ATC database, drug compendium).

ADDIS integrates an external network meta-analysis library2 [79] and JSMAA [80] for computation of SMAA benefit-

risk models. The ADDIS data format is represented by an XML schema3 that instantiates the unifying data model.

Evolution of the format is supported by versioned XML schemas that are forward-compatible through XSL trans-

formations (XSLT). ADDIS supports the coding of drugs with their Anatomical Therapeutic Chemical Classification

System (ATC) code and uses them to link to drug compendia. The ATC codes can be filled in automatically by ADDIS

through integration with an online database, when given the compound name. A coding system for outcome measures

and adverse events will be integrated in the future. A number of study characteristics are supported by default in AD-

DIS to enhance the user experience. For studies, these include the study title, randomization, treatment blinding, the

study objective, the in- and exclusion criteria, the start and end date of the study, PubMed IDs of relevant publications

and several others.

4.1. Study import from ClinicalTrials.gov

The ClinicalTrials.gov registry is by far the most comprehensive clinical trials registry in the world, currently

containing information on over 100,000 trials (see Table 1). ClinicalTrials.gov has a simple and easy to use interface

to programmatically search for trials and retrieve their protocols in XML format (according to their own DED) [34].

Unfortunately, the results are currently not available as XML and it is unclear when this will be remedied.

1 http://drugis.org/addis. Screen casts are based on version 1.6, http://drugis.org/addis1.6.
2http://drugis.org/mtc
3http://drugis.org/files/addis-1.xsd
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Figure 4: Example screens from the study input/import wizard. The top screen shows how study characteristics are input. Most of these are

matched automatically from the source text. The bottom screen shows that endpoints must be mapped to entities in the database by the user.
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In ADDIS, we use this XML interface to semi-automatically import studies from ClinicalTrials.gov. The user

inputs the NCT-ID of the trial that should be imported, and the software will retrieve the XML, from which it auto-

matically fills in fields. For example, many of the study characteristics, such as randomization and treatment blinding

are matched from DED fields using simple rules. However, those fields that form the core of our data model, such as

the indication, treatments and outcome measures, have to be manually mapped to entities in the database. This is so

because accurately mapping the free-text descriptions given in the ClinicalTrials.gov records would require (1) deep

semantic modelling of the entities in our database, and (2) natural language processing of incredibly high accuracy.

While both fields are rapidly evolving, neither of these problems have a fully satisfactory solution at the moment. This

mapping step is critically important to the correctness of subsequent analyses and thus inaccurate automatic mapping

could degrade the decision makers’ trust in the system. Hence, for the time being, the mapping is deliberately left

to the user. Figure 4 shows examples of the user interface for study import. The original source text is preserved as

a note that is kept with the relevant field, and the user can also enter additional notes. Due to the lack of an XML

interface for study results, those have to be entered manually, and can not be linked to the source text.

4.2. Evidence synthesis

ADDIS assists generation of pair-wise and network meta-analyses in a step-wise fashion; the process is presented

in Figure 5. To start, the user needs to select an indication. Based on the selected indication, the system selects and

presents all outcome measures included in the different available studies in the system considering the indication.

After the user selects the desired outcome measure for analysis, the system selects the studies and their included

treatments based on the selected (indication, outcome measure) tuple, and constructs the evidence graph. The graph

is presented visually and has the vertices labelled with treatment definitions and the edges labelled with the number

of studies including that comparison (see Figure 6). The user can pick the treatments to be compared. For a pair-wise

analysis, exactly two treatments have to be selected, and for network meta-analysis two or more treatments can be

selected. The software will not allow the user to continue unless the selected treatments form a connected graph.

Following the treatment selection, the system presents the set of studies together with their characteristics, and non-

desired studies can be easily removed by the user on a case by case basis. The chosen treatments and studies must

form a connected evidence graph. Finally, if studies include a specific treatment in more than one arm (e.g. in various

doses), the user must choose which arm to use in the analysis (see Figure 7).

Visualization of results is of crucial importance for applicability of methods used in evidence-based medicine.

ADDIS provides visualization of the odds ratios, mean differences, risk ratios, and risk differences of standard meta-

analyses in terms of forest plots (Figure 8). The network meta-analysis rank probabilities are presented as bar charts

as shown in Figure 9.

4.3. Benefit-Risk models

The creation of benefit-risk models in ADDIS can be based on either an individual study or (previously created)

meta-analyses. The user first selects an indication, and chooses whether to base the analysis on a single study or

16



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Figure 5: The process of meta-analysis creation as an activity diagram. The activities on the right-hand side are automated in the system, and the

steps on the left require input and conscious decisions from the user. The process is identical for pair-wise and network meta-analysis, except that

for pair-wise meta-analysis the number of treatments is restricted to exactly two.
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Figure 6: An evidence graph for a network meta-analysis. The treatments are the vertices, and the number of studies for each comparison label the

edges (e.g., six studies compare fluoxetine and paroxetine). The green treatments are included in the analysis, the grey ones excluded.

Figure 7: If several matching arms are available, the user must select an appropriate one based on the arm’s characteristics. If the available arms

are not appropriate, the user can go back to exclude the study.
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Figure 8: Visualization of standard meta-analysis results as a forest plot [81]. Here, odds-ratios (95% confidence intervals) are plotted on a

logarithmic scale, with the pooled estimate shown last.

Figure 9: Network meta-analysis results. The table gives (posterior) odds-ratios (95% credibility interval) for all treatments relative to each other.

The bar chart visualizes the (posterior) probability for each treatment to be best, second-best, etc. given the analysis model and the data.
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Figure 10: Criteria selection screen for construction of a benefit-risk model with synthesized evidence.

evidence synthesis. If the analysis is based on a single study, the system selects studies belonging to the selected

indication and allows the user to choose one. Then, the user is presented with the available criteria (outcome measures

in the selected study) and alternatives (arms in the selected study), and may select two or more of each to include in

the benefit-risk model. If the analysis is based on evidence synthesis, the available criteria are the outcome measures

for which a (network) meta-analysis exists within the selected indication. If multiple analyses exist for an outcome

measure, one must be chosen. The available alternatives are the intersection of the sets of treatments included in the

selected analyses. Two or more criteria and alternatives can be selected to include in the benefit-risk model. The final

step in the creation of a benefit-risk model based on evidence synthesis is shown in Figure 10.

Benefit-risk decision models were already broadly discussed in Section 2.5. ADDIS supports decision makers

using several different methods (see Table 4). These methods are organized along three axes: the number of alter-

natives, the number of criteria and the number of clinical trials in the evidence base. For a single-criterion decision

between two alternatives based on a single study, standard statistical methods are sufficient. When there are several

studies, pair-wise meta-analysis [58] can be used to pool the evidence, and for more than two alternatives network

meta-analysis is needed [62]. When two criteria (e.g. one benefit and one risk) and two alternatives are to be consid-

ered, the “Lynd & O’Brien” model [75] based on either a single study or two meta-analyses (one for each criterion)

can be used. For more than two alternatives or criteria Stochastic Multi-criteria Acceptability Analysis (SMAA) based
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criteria 1 2 ≥ 2

treatments

2 PMA L&O (S/PMA/NMA) SMAA (PMA/NMA)

≥ 2 NMA SMAA (S/NMA) SMAA (S/NMA)

Table 4: Supported methods. Abbreviations: S = Single-study, PMA = Pair-wise meta-analysis, NMA = Network meta-analysis, L&O = Lynd &

O’Brien benefit-risk, SMAA = SMAA-based benefit-risk.

models are available [11, 14]. The SMAA methods used are described in [73, 77] and their computational details in

[82]. These can be based on either a single study, pair-wise meta-analyses (limited to 2 alternatives), or network

meta-analyses (for ≥ 2 alternatives).

The results of a “Lynd & O’Brien” benefit-risk analysis are visualized both through plotting points from the prob-

ability distributions of incremental benefit and risk on the benefit-risk plane, and through the benefit-risk acceptability

curve [75]. The SMAA models are visualized using the JSMAA visualization components and tables, showing the

rank acceptabilities (Figure 11) to indicate how likely the alternatives are to obtain a certain rank (from best to worst)

and the central weights to indicate what preferences typically support specific alternatives.

5. Discussion

In this paper we introduced ADDIS, a decision support system for evidence-based medicine. ADDIS was devel-

oped in the context of a scientific project aimed to enable better use of information technology in the transfer and

analysis of clinical trials design and results. The long term vision was developed in collaboration with a steering

group composed of experts from the pharmaceutical industry, academia and the regulatory environment. Short term

plans were developed with our ‘customer’, a regulatory assessor who oversaw the development. The design was fur-

ther informed by several (completed and ongoing) case studies, such as a study of the benefit-risk profiles of second

generation anti-depressants. Although the software has been presented to and used by experts in the field, no formal

validation or usability studies have been conducted so far.

We presented a unifying data model for aggregate trial results, which is at the core of ADDIS. The model en-

ables semi-automated generation of evidence synthesis and benefit-risk models implemented in ADDIS. All these

components together allow for re-usable, re-analyzable repositories of trials and analyses to be maintained and shared

among users. The value of the unifying data model is not to model the domain in detail, but to provide a uniform

basis for automated evidence synthesis and decision modeling. As such, specific decision support systems may use

domain specific information to further assist the decision maker. ADDIS makes use of some domain knowledge to

support its primary goal: to enable the direct and indirect assessment of the comparative benefits and risks of different

drugs based on all available evidence from clinical trials. For example, Arms always have a Dosing characteristic,

and studies have a fixed list of characteristics that are relevant for clinical trials comparing the efficacy and safety of
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Figure 11: SMAA benefit-risk analysis results. The bars indicate the probability that each treatment is the best, second best, etc., given the

preferences specified by the decision maker. In this case, the results indicate that there is a lot of uncertainty regarding which alternative is the best,

but sertraline and paroxetine are somewhat more likely to be than venlafaxine and fluoxetine.
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drugs.

Multiple data models have been proposed for comprehensively storing information on the design and outcomes

of clinical trials, e.g. the ClinicalTrial.gov DED and the CDISC standards. The minimal unifying data model imple-

mented in ADDIS is not competing with these, but rather provides a target for conversion from them in order to enable

semi-automated generation of evidence synthesis and decision models operating on the trial results. Traditionally the

systematic reviewing process to perform a (network) meta-analysis takes a considerable amount of time and effort.

While ADDIS does not address this problem directly, it does provide a uniform platform for analysis and data sharing

that obviates the need for repeated data extraction.

To the best of our knowledge, ADDIS is the first system to implement decision models that are directly and

explicitly based on the (synthesis of) clinical trials results. By making the involved trade-offs and the link between

trial results and decision model recommendations visible, ADDIS can enable more transparent strategic health care

decision making. ADDIS can also help in improving the reporting of systematic reviews since the included trials

are represented explicitly, rather than only in data tables pre-processed for the purpose of evidence synthesis. The

decisions made in mapping the data and applying the evidence synthesis models are thus clearly represented.

5.1. Limitations and future work

The decision modeling in ADDIS is based on the assumption that a structured database of relevant clinical trials

is available. However, to acquire such a database is a difficult and time consuming. The initial phase of development

has focused on drug regulation – a use case for which it is reasonable to assume that the data will be provided in

whatever format requested. For other use cases, such as guideline formulation, this assumption is not justified. If the

data is not available in a suitable format, a systematic review will have to be performed and the data input into ADDIS

mostly manually, although the ClinicalTrials.gov import functionality can reduce the required work. However, once

the input is done, the data is more valuable than the same set of trials extracted for e.g. Cochrane RevMan, as they can

be reused for different types of analyses. To make ADDIS a useful tool for a wider audience, functionality that further

increases the efficiency of systematic reviewing should be added, possibly by implementing automated information

extraction methods.

Until now, approximately 100 clinical trials were entered for the case studies. To assess the usefulness of ADDIS in

various medical domains more trials should be entered. However, as their input is mostly manual, this is an expensive

and time-consuming process. Also, as the trial database gets larger, the study selection step for evidence synthesis can

get cumbersome with the current implementation. More intelligent study matching/filtering (e.g. with the different

characteristics) should be explored for lowering the user’s work load. This may require explicit modeling of some of

the aspects that are currently stored as plain text, such as the patient eligibility criteria.

The scope of the unifying data model could be extended to support other types of evidence synthesis, such as meta-

regression and stratified analyses. These possible extensions may introduce covariates at different levels, e.g. the time

at which an outcome measure was assessed, the dosage level for a treatment, the baseline severity of illness in an arm,
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the length of the placebo washout phase of a study, or within-arm correlation of two or more outcome measures. As

such, it will be a challenge to introduce these rather complex distinctions without making the generation of (network)

meta-analyses impossible.

ADDIS enables generation of benefit-risk decision models that use aggregate level, possibly synthesized, clinical

trial data as part of their input. However, health care decisions can include evaluation dimensions not reported in

clinical trials (e.g. convenience of administration or storage), which consequently can not be included in ADDIS. Also,

economical decision models applied in health technology assessment often do take into account the primary clinical

endpoints of interest with high quality evidence, but seldom include high-quality adverse event sources [69]. We

acknowledge that adverse event reporting in general is inferior to clinical endpoint reporting due to various reasons.

These include the rareness of some adverse events, the fact that most clinical trials are powered to show efficacy

(which typically requires smaller sample size than detecting adverse events) and inconsistent reporting of adverse

event data [83]. Decision models based on evidence synthesis can help improve the included evidence on adverse

events, but it may be necessary to include other evidence sources to consider the rarest events. To consider these and

other use cases, future research should address semi-automated generation of a wider range of decision models and

their implementation in ADDIS.

Role of the funding source

This study was performed in the context of the Escher project (T6-202), a project of the Dutch Top Institute

Pharma. The funding source had no direct involvement with the research presented in this paper.
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