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Abstract

Unexpected events, such as accidents or track damages, can have a sig-
nificant impact on the railway system so that trains need to be canceled
and delayed. In case of a disruption it is important that dispatchers quickly
present a good solution in order to minimize the nuisance for the passengers.
In this paper, we focus on adjusting the timetable of a passenger railway op-
erator in case of major disruptions. Both a partial and a complete blockade
of a railway line are considered. Given a disrupted infrastructure situation
and a forecast of the characteristics of the disruption, our goal is to deter-
mine a disposition timetable, specifying which trains will still be operated
during the disruption and determining the timetable of these trains. With-
out explicitly taking the rolling stock rescheduling problem into account, we
develop our models such that the probability that feasible solutions to this
problem exists, is high. The main objective is to maximize the service level
offered to the passengers. We present integer programming formulations
and test our models using instances from Netherlands Railways.
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1 Introduction and Motivation

Due to unexpected events, trains do not always run on time. Examples of such
events are accidents, rolling stock breakdowns, track damages and bad weather
conditions. When a disruption occurs, the timetable, rolling stock schedule and
crew roster are not feasible anymore and need to be adjusted. The goal of the
models developed in this research is to decide which trains of the normal timetable
are still operated during the disruption and to determine the timetable of these
trains.

Train delays, such as longer dwell times at stations in peak hours, and large
disruptions, such as partial or complete blockades of a track segment, have a differ-
ent impact on the timetable and require a different solution approach. Literature
on disruption management is more scarce than literature on train rescheduling
and delay management (see for instance Corman et al. (2009) and Dollevoet et al.
(2012) for models that deal with small timetable deviations). We focus on large
disruptions, which we define as the situation in which all or half of the tracks of
a segment are blocked for at least one hour. Large disruptions occur on average
about three times a day in the Netherlands.

We denote with a complete blockade the situation in which all tracks of a
segment are blocked and no trains can be operated on this segment. Trains at
either side of the blocked segment need to reverse at a station before the blockade
and take over a train in the opposite direction. If only part of the tracks is blocked,
the situation is denoted as a partial blockade and limited traffic is still possible.
As a consequence of a complete or a partial blockade trains cannot be operated
anymore according to the normal timetable and a rescheduled disposition timetable
needs to be determined. An important feature of the problem is the uncertainty
involved. It is difficult to predict the characteristics of the disruption, such as
the duration and the impact on the infrastructure, at the moment the disruption
occurs. This, as well as the limited time available to calculate a solution, adds to
the complexity of the problem.

Jespersen-Groth et al. (2009) describe the general disruption management pro-
cess of passenger railway transportation companies in Europe. The three main sub-
problems of the disruption process (timetable adjustment, rolling stock reschedul-
ing and crew rescheduling) are discussed in detail. The current practice at Nether-
lands Railways, the main passenger railway operator in the Netherlands, is that
modifying the timetable, rescheduling the rolling stock and rescheduling the crew
are done consecutively. Figure 1 shows a graphical representation of the current
solution approach.

The first step is timetable adjustment. This is done using a set of disruption sce-
narios. Scenarios exist for different segments of the railway network. The scenarios
specify which trains are canceled and how the timetable is adjusted accordingly.
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In general, they do not allow train delays. A scenario exactly corresponding to
the disrupted situation can be implemented immediately. However, it is not pos-
sible to design a scenario for each potential disruption. This means that possibly
different scenarios need to be combined or that a scenario needs to be adjusted
to correspond to the current situation. Hence, the disruption scenarios are not
optimal for most situations and we expect that by dynamically computing the
disposition timetable the service offered to the passengers during large disruptions
can be improved.

Once the timetable is adjusted, the rolling stock and crew need to be resched-
uled. ? and Potthoff et al. (2010) discuss models for rolling stock and crew
rescheduling at NS. Algorithmic support tools to reschedule the rolling stock and
crew according to the disposition timetable are tested and implemented. Tests with
these tools in different settings have shown that they can provide good solutions
within a short computation time.

We would like to take an overall decision, deciding about a feasible timetable,
rolling stock schedule and crew roster simultaneously. However, in disruption
management only limited time is available and this approach is too time con-
suming. Therefore, we cannot calculate solutions for each problem on a detailed
level. In this research, we aim to determine a basic disposition timetable such that
the probability that feasible solutions to the rolling stock and crew rescheduling
problems do exist is high, without explicitly taking these problems into account.
This alternative solution approach is shown in Figure 2. An advantage of this
approach is that modifications to the timetable can already be communicated to
the passengers once the basic plan is determined. In the current solution approach
the three subproblems are solved sequentially and feasibility in later stages is not
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guaranteed. Hence, the communication of the final timetable modifications has
to be postponed until the rolling stock and crew rescheduling problems are solved
as well. The period directly after the start of the disruption involves a lot of un-
certainty about which trains can still be operated. Because this causes passenger
dissatisfaction, it is important to communicate the new timetable to the passengers
as soon as possible.

The contribution of this paper is threefold. First, we formulate integer pro-
gramming models for adjusting a timetable in case of partial and complete block-
ades. By using these models a trade-off can be made between different objectives
of the railway operator, namely canceling and delaying trains. Second, we solve
these formulations to optimality and we present numerical results on real-world
instances. Third, we show that by delaying some trains with a few minutes, the
number of cancelations can be significantly reduced compared to current practice.

The remainder of this paper is organized as follows. Section 2 provides a more
detailed description of the problem we consider. Some literature on related topics
is discussed in Section 3. In Section 4 the integer programming formulations for
a partial blockade and a complete blockade are presented. We test our models
using real-world data from NS. The computational results are given in Section 5.
Section 6 gives some conclusions and ideas for further research.

2 Problem Description

The railway disruption process consists of three phases. In the first phase the
transition from the normal timetable to the disposition timetable takes place, in
phase two the disposition timetable is operated, and phase three is the transition
phase from the disposition timetable back to the normal timetable.

Let the utilization of the network be defined as the amount of trains running
at a specific moment. Figure 3 shows the utilization of the railway network during
the different phases. Before the disruption occurs the utilization is at the normal
level. In the first phase the utilization needs to be decreased to attain an utilization
level that can be retained during the disruption. During phase two the disposition
timetable is operated and, though at a lower level than in the normal timetable,
the utilization level is stable again. Phase three covers the recovery from the
utilization level of the disposition timetable to the utilization level of the normal
timetable.

The first transition phase is more complex than the third phase because trains
start to queue up immediately when a disruption occurs. In this phase, decisions
need to be taken quickly while a high level of uncertainty is involved. Moreover,
the decisions taken in this phase can be crucial in the remainder of the disruption
process. The transition phase from the disposition timetable back to the normal
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Figure 3: Utilization during the three phases of the disruption management pro-
cess.

timetable is relatively easy as more time is available to make the decisions and less
uncertainty is involved.

In this research, we focus on the second phase. As input for our models,
we use the normal timetable and a forecast of the impact and the duration of
the disruption. The output is a disposition timetable, denoting which trains are
operated and determining their arrival and departure times.

The type and duration of the disruption are important factors when determin-
ing the time horizon and the problem area that we take into account. It involves
a trade-off between solution quality and computation time. If the problem area
considered is small, feasibility of the timetable outside the problem area is not
ensured. However, if the problem area is large, the computation time might be too
long. The same reasoning holds for the time horizon. We define a core problem
and limit the time horizon and problem area. Note that because of the uncertainty
of the duration of the disruption longer time horizons do not yield strictly better
solutions. Similarly, because we do not want to deviate too much from the normal
schedule, it is not preferred to change the timetable of trains running in another
part of the country.

We focus on determining a static disposition timetable for the second phase of
the disruption process. The disruption measures we include are canceling trains,
delaying trains and reversing trains at stations adjacent to the blockade. These
disruption measures influence the order of the trains and the passing times of the
trains at the stations. In highly occupied railway networks, such as the Dutch
railway network, canceling trains is necessary to obtain a feasible disposition
timetable. In case of a complete blockade, we also have to determine at which
stations the trains reverse and which trains at these stations are taken over by
trains in the opposite direction.

We consider two train types: long distance trains, which stop only at major
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stations, and regional trains, which stop at all stations. Operating regional trains
means that all stations along a route are served on a regular basis. However, long
distance trains usually have a larger capacity and long-distance passengers face
a large delay if only regional trains are operated. Because we want to distribute
the effects of the disruption evenly over the different passenger groups, we aim to
operate both long distance and regional trains in the disposition timetable.

In the normal timetable, several train series are operated per hour. Each train
series connects an origin station to a destination station with a certain frequency
and stopping pattern. We divide train series into train sub series, where each train
sub series contains all trains of a train series that run in the same direction at the
same moment of the hour (for instance, a train series with two trains per hour in
each direction is divided into four train sub series).

We consider canceling train sub series instead of trains, because the former
results in a cyclic disposition timetable that is easier to communicate to the pas-
sengers. Besides, canceling trains of different train series adds to the complexity
of the rolling stock rescheduling problem, because usually the same rolling stock
type is used for trains of the same train series. For the same reason, we want to
balance the number of trains in each direction. For instance, we prefer the situ-
ation in which in both directions some trains are canceled to the situation where
half of the trains in one direction is canceled and no trains in the other direction
are canceled. Moreover, we want to distribute the number of canceled trains in
each direction evenly over time.

At the moment the second phase starts only a limited number of rolling stock
units are available at the stations. This means that at the start of the planning
horizon the number of trains that can leave the station is restricted, and that
additional trains can only leave once trains coming from the other direction have
arrived. Inventory constraints are formulated to take this into account.

From a practical point of view a solution in which trains run regularly may be
required. This means that the time between each pair of two consecutive trains
of the same type and in the same direction needs to be equal. The deviations
from the normal timetable may be larger, but it results in a disposition timetable
that is easy to communicate to the passengers. In Section 4, we present both
the standard models for a partial and a complete blockade and the modifications
needed to obtain regular disposition timetables. A comparison of the solutions
obtained with these models is provided in Section 5.

The main objective of our model is to maximize the service level offered to the
passengers. This means minimizing the number of canceled trains and the delays of
the operated trains. Besides, passengers prefer a timetable in which the operated
trains are distributed evenly over time. We use a weighted objective function to
take these criteria into account.
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3 Literature Review

In the last decades, the growing demand for passenger railway transportation and
the increased level of competition among railway companies have led to more
interest in the problem of generating good railway timetables from scratch. Lusby
et al. (2011) present a recent survey on literature in the field of train timetabling,
train dispatching, train platforming, and train routing problems.

Caprara et al. (2002) focus on the timetable problem for a single, one-way track
linking two major stations, with a number of intermediate stations in between.
They formulate the problem as a directed multigraph and present an arc based
multicommodity flow formulation. Caprara et al. (2002) assume that the timetable
is repeated on a daily basis. However, in most European countries cyclic timetables
are operated. In a cyclic timetable a train for a certain destination leaves each
station at the same time every hour. The Periodic Event Scheduling Problem
(PESP), introduced by Ukovich and Serafini (1989), is generally used to construct
cyclic timetables from scratch. Kroon and Peeters (2003) and Liebchen and
Möhring (2007) extent the general model with variable trip times, line planning
and vehicle scheduling.

PESP models work on a macroscopic level. They focus on the most important
properties of the timetable and do not take large amounts of detailed information
that is only locally relevant into account. In microscopic models a large number
of possible train paths for each train have to be considered simultaneously, which
makes such models computationally intractable. Caimi et al. (2011) present a
new model for the problem of generating conflict-free timetables on a microscopic
level that drastically reduces the computation time for solving such problems to
optimality.

Contrary to the increased interest in timetable generation, the literature on
timetable adjustment during large disruptions is still limited. The situation of a
partial blockade is considered in Brucker et al. (2002). A rescheduling problem
is presented for the situation where one track of a two track segment is closed
due to construction work. Given fixed subsequences of trains for each direction
outside the construction site, a polynomial algorithm is used to find a joint feasible
sequence. A local search algorithm is used to obtain an optimal schedule with
minimal lateness. However, the authors only focus on timetable adjustment, and
they do not consider canceling trains and do not take inventory constraints into
account.

D’Ariano et al. (2008) and Corman et al. (2009) consider a model which decides
on a detailed level about rerouting and reordering of trains when conflicts occur
in the timetable. The sequences and routes of trains are consecutively determined
by a branch-and-bound and a local search algorithm. In Törnquist and Persson
(2007) rescheduling trains during disturbances is considered. The authors take
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track sections consisting of multiple parallel tracks into account. A MIP formula-
tion is presented that decides about the tracks the trains use and the order of the
trains, while minimizing the total final delay.

A field related to disruption management is delay management. Delay manage-
ment models decide about the connections that are maintained in case of delays
and the order in which trains pass junctions. Schöbel (2007) present a graph based
integer programming formulation of this problem which minimizes passenger delay.
Schachtebeck and Schöbel (2010) include headway and capacity constraints, and
use reduction techniques and heuristic solution procedures to solve the model. An
extension of the classical delay management model taking re-routing of passengers
into account is described in Dollevoet et al. (2012).

4 Mathematical Formulations

In this section we first present the integer programming formulations for a partial
blockade and a complete blockade. Next, we describe the modifications that are
needed to obtain a regular disposition timetable.

4.1 Partial Blockade

The model for a partial blockade decides which trains are canceled in case only
one track of a two track segment is available, and how many minutes non-canceled
trains are delayed. Hence, two disruption measures are applied: canceling trains
and delaying trains. Non-blocked segments can have multiple tracks and we specify
beforehand which tracks each train uses. We assume that the track allocation of
the trains in the disposition timetable is the same as the track allocation in the
normal timetable.

We consider a number of stations at each side of the blocked segment. Let the
two directions in which the trains can run between these stations be denoted by
A and B, and the two stations at the end of the blocked segment by sA and sB

(station sA is the first station at the blocked segment trains in direction A pass,
and sB is the first station at the blocked segment trains in direction B pass).

The problem can be formulated using an event-activity network (see Schachte-
beck and Schöbel (2010) for an application of such a network in delay manage-
ment). An event-activity network is a directed graph N = (E,A). The set of
events consists of the arrival and departure events of the trains at the stations
e ∈ E and of two inventory events IA0 and IB0 , one for each station at the border of
the problem area. The inventory events denote the number of trains available at
the start of the second phase. The activity types a ∈ A of the network are listed
below.
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• Train activities a ∈ Atrain can either be driving activities between departure
events from stations and the arrival events at successor stations, or dwell
activities between arrival and departure events at the same station.

• Headway activities a ∈ Ahead represent the limited capacity of the track seg-
ments and the stations. They model the minimum safety time between two
trains running on the same track, either for two trains in the same direction
or for two trains in the opposite direction, and the minimum headway time
between two trains that dwell at the same platform of a station.

• Inventory activities a ∈ Ainv connect an inventory event with the departure
events from this station, and the arrival events of trains at stations at the
border of the problem area with the departure events of other trains from the
same stations. The latter are used to determine for each train that arrives at
its last station whether it takes over the service of another train and which
train this is.

An example of an event-activity network for the situation of a partial blockade
is shown in Figure 4. The boxes represent the arrival and departure events and the
gray area represents the partially blocked segment. Train activities are represented
by solid arcs, headway activities by dashed arcs and inventory activities by dash
dotted arcs. For two trains in the same direction, the figure shows only the headway
activities at the stations. The headway activities at the track segments are similar.
They are defined between two departure or two arrival events. In case the trains
use the same track and cannot pass each other, the order in which the trains
depart from a station needs to be the same as the order in which they arrive at
the successor station.

For each event e ∈ E, qe denotes the time assigned to event e in the normal
timetable and the variable xe the time of event e in the disposition timetable. A
maximum on the delay of each event in the disposition timetable is specified by d.
The minimum duration of activity a ∈ A is denoted by La.

dep deparr arr arr

dep deparr arr arr

dep dep deparr arr

Station 1 Station 2 Station 3 Station 4

dep

dep

arr

IA
0

IB
0

Figure 4: Example of an event-activity network for a partial blockade.
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To model the limited track capacity, we use for the headway activities (e, f) ∈
Ahead the binary variables

λef =

{
1 if event e takes place before event f ;
0 otherwise.

Limiting the number of events and activities in the network can shorten the
computation times. In Figure 4, the trains have both an arrival and a departure
event at each station. However, if a train does not have a scheduled stop at
a station in the timetable or the dwell time has to be very short (i.e. in the
timetable the arrival and departure time at this station are the same), we create
only one event at this station. This reduces the number of events in the network
considerably. Similarly, we limit the number of activities by only defining headway
and inventory activities between two trains that are not too far apart from each
other in the normal timetable. Headway activities are defined between two events
if the difference between the times assigned to these events does not exceed the
minimum headway time plus the maximum allowable delay. This means that no
headway activities are defined if d = 0. An inventory activity between two trains
is defined if the departure time of the departing train plus the maximum allowable
delay is at least La minutes later than the arrival time of the arriving train, and
does not exceed La + 60. Besides, inventory events are constructed between the
inventory event and the departing events of the first two trains of each train sub
series.

Next, we introduce the additional notation needed to formulate the problem.
The set of train sub series is given by v ∈ V and ordered by increasing departure
time of the trains from the first station in the problem area. The train sub series
to which event e belongs is denoted by πe ∈ V . We introduce ηin(e) and ηout(e)
as the sets of arcs into node e and out of node e. Besides, V = V A ∪ V B with
V A the subset consisting of all train sub series in direction A and V B the subset
consisting of all train sub series in direction B.

To decide whether all or no trains of a train sub series are canceled, we introduce
for each train sub series v ∈ V the binary variable

yv =

{
1 if train sub series v is canceled;
0 otherwise.

To balance the number of trains in both directions the integer variable δ, spec-
ifying the absolute difference between the number of canceled train sub series in
each direction, is used. The variable µ, specifying the maximum time between
two operated trains in the same direction, is used to balance the trains over time.
To assign the correct value to this variable, we need for each train sub series the
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event representing the start of the first train in the problem horizon that belongs
to this sub series, denoted by εv. Constraints are defined to determine the time
between each pair of departing train sub series in the same direction. The integer
programming formulation of the event-activity network is presented below.

minα1

∑
v∈V

yv + α2

∑
e∈E

(xe − qe) + α3µ+ α4δ (1)

xe − qe ≥ 0 ∀e ∈ E (2)
xe − qe ≤ d ∀e ∈ E (3)
xf − xe ≥ La ∀a = (e, f) ∈ Atrain (4)

xf − xe +M(1− λef ) ≥ La ∀a = (e, f) ∈ Ahead (5)
λef + λfe + yπe + yπf

≥ 1 ∀(e, f) ∈ Ahead (6)

xεw − xεv −M(yv − yw −
∑
u∈V A

v<u<w

(1− yu)) ≤ µ ∀v, w ∈ V A (7)

xεw − xεv −M(yv − yw −
∑
u∈V B

v<u<w

(1− yu)) ≤ µ ∀v, w ∈ V B (8)

|
∑
v∈V A

yv −
∑
v∈V B

yv| ≤ δ (9)

yv ∈ {0, 1} ∀v ∈ V (10)
λef ∈ {0, 1} ∀(e, f) ∈ Ahead (11)
xe ∈ N ∀e ∈ E (12)
δ, µ ∈ N (13)

The objective function (1) is a weighted objective function that minimizes the
number of canceled train sub series and the delays of the trains that are not can-
celed, that balances the number of trains in both directions and that distributes
the operated trains evenly over time. Constraints (2) and (3) ensure that the time
assigned to an event in the disposition timetable cannot be earlier than the time
assigned to it in the normal timetable and that the delay of an event does not
exceed the maximum allowable delay. Constraints (4) make sure that the duration
of the train activities is respected. Constraints (5) and (6) are the headway con-
straints. They specify that either at least one of the events has to be canceled, or
that one of the headway constraints between the two events has to be respected.
Constraints (7) and (8) are used to balance the number of non-canceled trains over
time, and constraint (9) is used to balance them in each direction.

For constraints (7) and (8) we use the order in which trains depart from the
first station in the normal timetable, because this reduces the complexity of the
model considerably. In our experiments this order is the same as the order in
which the trains depart from the first station in the disposition timetable (only in
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a few cases, if the track layout allows so, a (fast) long distance train overtakes a
(slow) regional train along the way). Besides, because we set a maximum on the
delay of each event, the order of two trains can only change if their start times in
the normal timetable are close to each other. In general, for such pairs constraints
(7) and (8) are non-binding. This justifies the use of the start order of the normal
timetable.

Constraint (9) is a non-linear constraint. Because we want to solve an IP
model, we replace it by constraints (14) and (15).∑

v∈V A

yv −
∑
v∈V B

yv ≤ δ (14)∑
v∈V B

yv −
∑
v∈V A

yv ≤ δ (15)

We add constraints to model (1)-(13) that specify that both long distance and
regional trains need to be operated. Let k ∈ K denote the set of train types, and
σv ∈ K the train type of train sub series v. Constraints (16) and (17) describe
that in both directions at least one train of each train type is operated per hour.∑

v∈V A,σv=k

(1− yv) ≥ 1 ∀k ∈ K (16)∑
v∈V B ,σv=k

(1− yv) ≥ 1 ∀k ∈ K (17)

Inventory constraints are defined for the limited number of rolling stock units
available at the start of the second phase. The minimum turn around time between
an arrival from one direction and a departure in the other direction is denoted by
t. Let Eorig ⊂ E contain all origin events denoting the departure of trains from
the first station in the problem area and Edest ⊂ E all destination events denoting
the arrival of trains at the last station in the problem area. A departing train can
get its rolling stock either from the inventory or from a train that has arrived at
least t minutes before the time this train needs to depart. We introduce for all
inventory activities a ∈ Ainv the binary variables

za =

{
1 if activity a is canceled;
0 otherwise.

Constraints (18)-(21) are the inventory constraints.∑
a∈ηout(e)

(1− za) ≤ I0 ∀e = I0 (18)∑
a∈ηin(e)

(1− za) = 1− yπe ∀e ∈ Eorig (19)
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∑
a∈ηout(e)

(1− za) ≤ 1− yπe ∀e ∈ Edest (20)

xf − xe +Mza ≥ La ∀a = (e, f) ∈ Ainv (21)

Constraints (18) concern the limited start inventories. Constraints (19) connect
each departing train either to the inventory or to an arriving train. Constraints
(20) specify that each arriving train can take over the service of at most one
departing train. The minimum turn around time is modeled by constraints (21).
In case of a strict distinction between the rolling stock unit types that can be used
for each train type, an inventory event has to be constructed for each train type.
These events represent the number of units available for the different train types,
and inventory activities are only defined for two trains of the same type.

4.2 Complete Blockade

The model presented in this section decides which trains are canceled in case of a
complete blockade and determines the delays of the non-canceled trains. In case
of a complete blockade no traffic is possible on the blocked segments, and we can
consider the situation at each side of the blocked segment separately. Below, the
model for side A of the blockade is presented. The model for side B of the blockade
is similar.

No traffic is possible on the blocked segment and trains need to reverse at
station sA, the last station before the blockade at side A. We create pairs of trains,
each pair containing one train in direction A and one train in direction B. The
train in direction A takes over the service of the train in direction B once it has
arrived at station sA and waited at least the minimum turn around time t.

We introduce an additional type of activities as compared to the network pre-
sented in the previous section: turn around activities a ∈ Aturn. Turn around
activities connect two events at the blocked segment. Arcs originate at events that
represent an arrival of a train at station sA and terminate at events that represent
a departure of a train from station sA. Because different rolling stock types are
used for long distance and regional trains, trains of one train type can usually not
take over the service of a train of a different train type. Therefore, we only define
pairs consisting of two trains of the same type.

To obtain a cyclic disposition timetable, we specify turn around activity types.
Two turn around activities are of the same type if the trains in direction A belong
to the same train sub series and the trains in direction B belong to the same train
sub series. Let w ∈ W denote the set of activity types and γa ∈ W the activity
type to which turn around activity a belongs.

Trains that turn around at a station adjacent to the blockade and take over the
service of a train in the other direction have to use the same track until the first
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dep deparr arr

dep deparr arr

dep deparr arr

Station 1 Station 2 Station 3

IA
0

Iu

Figure 5: Example of an event-activity network for a complete blockade.

station at which trains can change track. Let the number of available tracks at this
station be given by c. To model the limited capacity at the turn around station we
define a capacity event Ic, capacity activities a ∈ Acap between this event and the
arrival events of trains at the first station at which trains can change track, and
capacity activities between two trains in the opposite direction at the first station
at which trains can change tracks.

No constraints are added to model the capacity of the stations at the border of
the problem area (i.e. the stations at which the inventory activities have to hold).
This could be done with constraints similar to the ones described above for the
limited capacity of the turn around station but would result in an increase in the
size of the event-activity network and computation time. Besides, the limited start
inventories and the requirement that trains needs to be balanced equally over time
ensure that the number of trains that are at these stations at the same time is
limited. Hence, the limited capacity is implicitly taken into account in the model.

An example of an event-activity network for this model is shown in Figure 5.
Station 3 is the last station before the blockade and station 2 is the first station at
which trains can change track. The solid arcs represent train activities, the dashed
arcs headway activities, the dotted arcs turn around activities, the dash dotted
arcs inventory activities, and the dash dot dotted arcs capacity activities. To limit
the number of turn around and capacity activities similar we use rules similar to
the ones described in the previous section for the inventory constraints.

Balancing the number of trains in each direction is ensured by the definition of
train pairs and does not have to be included in the objective function. As before,
the variable µ denotes the maximum time interval between two trains departing in
the same direction. The objective function of the integer programming formulation
of the event-activity network for a complete blockade is defined as

minα1

∑
w∈W

zw + α2

∑
e∈E

(xe − qe) + α3µ. (22)

Constraints similar to constraints (2)-(13) and (16)-(21) are used to define the
train, headway and inventory activities, assign the correct value to the parameter
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µ and ensure that of each type one train is operated per hour. In addition, we
define constraints for the turn around and capacity activities. With Eturn ⊂ E we
denote all events representing an arrival or a departure at station sA (in Figure
5 these are all events at Station 3). To decide which turn around activities are
canceled, we use for all turn around activity types w ∈ W the binary variables

zw =

{
1 if turn around activities of type w are canceled;
0 otherwise.

Constraints (23) and (24) ensure that each train belongs to at most one oper-
ated turn around activity, and constraints (25) concern the minimum time of the
turn around activities.∑

a∈ηin(e)

(1− zγa) ≤ 1 ∀e ∈ Eturn (23)∑
a∈ηout(e)

(1− zγa) ≤ 1 ∀e ∈ Eturn (24)

xf − xe +Mzγa ≥ La ∀a = (e, f) ∈ Aturn (25)

The events representing an arrival or departure at the stations at which trains
can change track are denoted by Ecap ⊂ E. Constraints (26)-(29) are used for
the limited capacity at the blocked segment. These constraints are similar to the
inventory constraints (18)-(21). At the start of the second phase c trains can enter
the segments between the station at which trains can change track and the station
at the blockade, thereafter trains can only enter when another train has left.∑

a∈ηout(e)

(1− za) ≤ c ∀e = Ic (26)∑
a∈ηin(e)∩Acap

(1− za) = 1− yπe ∀e ∈ Ecap (27)∑
a∈ηout(e)∩Acap

(1− za) ≤ 1− yπe ∀e ∈ Ecap (28)

xf − xe +Mza ≥ La ∀a = (e, f) ∈ Acap (29)

4.3 Regular Disposition Timetable

Good passenger service can also be defined in terms of regular train connections:
in both directions regional trains run two, three or four times per hour and pass
each station at equal time intervals. To obtain a regular disposition timetable, we
do not define a delay for each event but a delay for each train sub series (xv) and
consider only regional trains. Besides, instead of the maximum time between two

15



operated trains in the same direction µ we use the exact time between each two
operated trains µ. In addition to constraints (7) and (8), the following constraints
are added to model (1)-(13) to ensure that the variable µ takes the correct value.

xεw − xεv +M(yv + yw +
∑
u∈V A

v<u<w

(1− yu)) ≥ µ ∀v, w ∈ V A (30)

xεw − xεv +M(yv + yw +
∑
u∈V B

v<u<w

(1− yu)) ≥ µ ∀v, w ∈ V B (31)

The model can easily be extended to the case where both long distance and
regional trains are operated by defining variables µk for each train type k ∈ K.
The main objective of the model is to minimize µ. The second, less important
term in the objective function minimizes the train delays. Minimizing the number
of canceled trains and balancing the operated trains in both directions are not
included in the objective function. The former is implicitly taken into account
by minimizing µ and by the definition of µ the difference between the number of
operated trains in each direction is always zero.

Regular disposition timetables are easy to communicate to the passengers.
However, they deviate more from the normal timetable because only regional trains
are operated and delays are penalized less. This has two disadvantages. First, it
is more difficult to work with such timetables when we want to take aspects of
the rolling stock rescheduling problem into account. Second, the impact of the
disruption outside the problem area increases.

5 Computational Results

We use two real-world cases of NS to test the formulations presented in the previous
section. The cases concern track segments in the western part of the Netherlands.
Figure 6 shows the stations and junctions that we consider, the tracks between the
stations and the important track changes. Case I considers a large disruption on
a track segment between stations Rotterdam (Rtd) and Gouda Goverwelle (Gdg)
and case II a large disruption on a track segment between stations The Hague
(Gvc) and Gouda Goverwelle. For both cases we consider a partial and a complete
blockade. The disposition timetable needs to be operated from 16:00h to 18:00h
on a weekday. In the normal timetables, long distance and regional trains are
each operated with a frequency of four trains per hour in both directions. The
long distance trains stop only at the major stations (Rtd, Rta, Gvc and Gd), the
regional trains also stop at all intermediate stations. For both cases, the number of
events in the event-activity network is about 130 for a partial blockade and about
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Gvc Bkh Ypb Ztmo Mdaz

Gd Gdg

Rtd Rtn Rta Nwk Mdo

Figure 6: Part of the railway network of NS in the western part of the Netherlands.

65 for a complete blockade. The number of activities ranges from about 900 to
2500 and from about 450 to 700, depending on the maximum allowable delay.

We use a minimum headway time for two trains in the same direction of two
minutes, a minimum headway time for two trains in the opposite direction of three
minutes and a minimum turn around time of four minutes. The weights in the
objective function are equal to α1 = 1, α2 = 0.001, α3 = 0.1 and α4 = 0.5. To
evaluate our approach, the solutions are compared with the disruption scenarios
that are currently used by NS. CPLEX 12.4 is used to solve the models.

5.1 Partial Blockade

5.1.1 Case I

Consider the situation in which one of the two tracks between Nieuwerkerk (Nwk)
and Moordrecht (Mdo) is blocked from 16:00h to 18:00h. The disruption scenario
that is currently used states that half of the trains is canceled: both long distance
and regional trains are operated with a frequency of two trains per hour in each
direction. The maximum time between two trains in the same direction is 26
minutes. The disposition timetable is shown as a time-space diagram in Figure
7. The horizontal axis represents the time and the vertical axis represents the
stations. The gray area between stations Nieuwerkerk and Moordrecht denotes
the disrupted track segments and the lines represent the trains that are operated:
black lines represent long distance trains and gray lines represent regional trains.

The disposition timetable computed by our model with the maximum allow-
able delay equal to zero has the same characteristics as the disposition timetable
defined by the disruption scenario. At first, we do not take the inventory con-
straints into account. If we allow trains to be delayed, it is possible to increase the
number of trains that can be operated. Table 1 shows for different values of the
maximum allowable delay the number of operated train sub series in each direction
and in total, the percentage of operated events that is delayed, the average delay
of these events, the maximum interval between two operated trains in the same
direction (µ), the optimal solutions of the LP-relaxation and the IP model, and
the computation time of the IP model. For increasing maximum allowable delay
the number of train sub series that can be operated increases, the optimal solution
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Figure 7: Case I - Disposition timetable of the disruption scenario.
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Figure 8: Case I - Disposition timetable maximum allowable delay five minutes.

values of the LP and IP models decrease, and the computation time increases.
The increase in computation time can be explained by an increase in the size of
the problem. For instance, compared to the model without delays, the number of
variables and constraints has more than doubled for the model with a maximum
delay of 15 minutes.

To be able to operate one additional train sub series a delay of four minutes
is needed for some events. By delaying half of the long distance trains with five
minutes it is possible to operate all long distance trains and half of the regional
trains in each direction, see Figure 8. This solution is an improvement over the
disposition timetable of Figure 7 from the point of view that the maximum time
between two trains in the same direction is decreased from 26 to 16 minutes.
About one quarter of the events is delayed, but on average only with 3.3 minutes
which seems acceptable. If we increase the maximum allowable delay further it is
possible to operate all train sub series. However, this requires that several trains
in one direction are operated shortly after each other and results in an increase in
µ. Hence, this solution is not preferred from an operational point of view.
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Table 1: Case I - Disposition timetables for different maximum delay values.
Max Train sub series Delayed Average Max Objective value
delay A B Total events (%) delay interval LP IP Time (s)

0 4 4 8 0 0 26 8.7 10.60 <1
1 4 4 8 8 1 25 5.89 10.51 <1
2 4 4 8 8 2 24 3.95 10.41 <1
3 4 4 8 8 3 23 2.55 10.32 <1
4 5 5 10 38 3.6 16 1.66 7.64 <1
5 6 6 12 32 3.3 16 1.23 5.70 <1
10 7 7 14 49 5.6 13 0.88 3.60 5.9
15 8 8 16 50 6.7 18 0.50 2.22 7.9

Table 2: Case I - Disposition timetables for different start inventories.
Start inventory Train sub series Max Objective
Rtd Gdg A B Total interval value IP Time (s)

4 2 4 4 8 26 10.6 <1
3 2 4 4 8 26 10.6 <1
2 2 3 3 6 26 12.6 <1
1 2 2 2 4 34 15.4 <1
2 1 2 2 4 34 15.4 <1

A start inventory of more than four units at station Rotterdam and more than
two units at station Gouda Goverwelle at the start of phase two is unlikely. Table
2 shows the number of operated train sub series, the maximum interval between
two operated trains in the same direction, the optimal solution value of the IP
model, and the computation time of the IP model for smaller start inventories
with a maximum allowable delay of zero. If the start inventories are not sufficient,
the disposition timetable of Figure 7 is not feasible, and a disposition timetable
in which less train sub series are operated or which is less regular, is obtained. A
total start inventory of one or two units is only possible if the constraints which
state that of each train type at least one train should be operated in each direction
is relaxed.

In the regular disposition timetable all regional trains are operated. Hence,
the total number of operated train sub series is eight, four in direction A and
four in direction B, and the time interval between each two trains is 15 minutes.
To obtain this timetable only a slight modification is needed: in direction A the
trains run according to the normal timetable, in direction B they are delayed with
one minute. Whether the regular timetable is preferred to the timetable of Figure
8 needs to be judged by the dispatchers. For all regular disposition timetables
presented in this section, the computation time was less than one second.
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5.1.2 Case II

We consider a partial blockade between stations Zoetermeer (Ztmo) and Moor-
drecht (Mdaz) for two hours. In the disposition timetable defined by the disrup-
tion scenario two regional trains are operated per hour in each direction, with a
maximum time between two trains of 45 minutes. In the solution computed by our
model (allowing no delays and without inventory constraints) in both directions
one additional long distance train can be operated per hour. Although the number
of operated train sub series increases, the maximum time between two trains in
the same direction does not decrease.

Table 3 shows the disposition timetables for different values of the maximum
allowable delay. Four trains need to be delayed with five minutes to operate one
additional train sub series in each direction. In this solution, passengers still may
need to wait more than half an hour for the next train. To get a solution in which
the operated trains are more evenly distributed over time, the maximum delay has
to be increased to ten minutes. In both directions, every half an hour a regional
and a long distance train are operated. As for Case I, increasing the maximum
allowable delay to 15 minutes increases the number of train sub series that can
be operated, but results in a solution with large train delays and in which in each
direction all trains are operated one after another.

To operate the timetable defined by the disruption scenarios, the start inventory
at The Hague should be at least three units, and the start inventory at Gouda
Goverwelle should be at least one unit. In some circumstances it might be that
the available start inventories are not sufficient. A disposition timetable with one
long distance and one regional train per hour is possible, if there is a start inventory
of two units at both stations. With smaller start inventories, the constraints that
at least one long distance and one regional train need to be operated per hour
cannot be satisfied.

Table 3: Case II - Disposition timetables for different maximum delay values.
Max Train sub series Delayed Average Max Objective value
delay A B Total events (%) delay interval LP IP Time (s)

0 3 3 6 0 0 44 8.70 14.40 <1
1 3 3 6 0 0 44 7.38 14.40 <1
2 3 3 6 23 2 43 6.28 14.32 <1
3 3 3 6 23 2 43 5.36 14.32 <1
4 3 3 6 50 3.3 30 4.58 13.08 <1
5 4 4 8 28 4.1 39 3.89 11.97 <1
10 4 4 8 56 7.1 30 1.49 11.26 2.8
15 5 5 10 50 7.2 41 0.90 10.44 13.9
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In the regular disposition timetable three train sub series are operated in each
direction, with µ equal to twenty. The trains in direction A are delayed with zero,
five and ten minutes, the train in direction B with two, seven and twelve minutes.
Of the operated events, 83% is delayed with on average 7.2 minutes which means
that the deviations from the normal timetable are larger.

5.2 Complete Blockade

5.2.1 Case I

If both tracks between Nieuwerkerk and Moordrecht are blocked, trains can drive
up to the stations adjacent to the blockade, turn around and take over the service
of a train in the other direction. For this case we only present the solution at
side A of the blockade because in the disruption scenario for side B the long
distance trains are either canceled or rerouted via The Hague. As rerouting is not
a disruption measure that is included in our model, we are not able to compare
the solutions. Figure 6 shows that at side A of the blockade the trains can change
track at station Rotterdam Alexander, at which two tracks are available. Buses are
operated between Rotterdam Alexander and Gouda to transport the passengers
that want to travel further than the blocked segment.

According to the disruption scenario, two regional trains are operated between
Rotterdam and Nieuwerkerk, with a maximum interval of thirty minutes. In the
disposition timetable computed by our model without delays and inventory con-
straints two pairs consisting of long distance trains and one consisting of regional
trains are operated per hour. The number of operated pairs increases from two to
three, but the maximum interval does not decrease.

The results for the situation of a complete blockade are shown in Table 4. For
different maximum delay values it shows the number of operated pairs per hour,
the percentage of delayed events, the average delay of the delayed events, the
maximum interval between two operated trains in the same direction (µ), and the
optimal solutions of the LP-relaxation and the IP model. The computation time is
omitted from the table because for the model of a complete blockade all instances
were solved in less than one second. For better interpretation of the results we
present the objective values in terms of the number of canceled train sub series.
By delaying the long distance trains with one minute the number of operated pairs
can be increased to four: two pairs consisting of long distance trains and two pairs
consisting of regional trains, see Figure 10. Increasing the maximum delay to ten
minutes, the number of operated pairs can be increased to five and the maximum
interval is reduced to 14 minutes. Because of the additional capacity restrictions
as compared to the model for a partial blockade, it is not possible to operate all
trains of the normal timetable, even not when a fifteen minute delay is allowed.
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Figure 9: Case I - Disposition timetable of the disruption scenario.
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Figure 10: Case I - Disposition timetable maximum allowable delay one minute.

Table 4: Case I - Disposition timetables for different maximum delay values.
Max Pairs Delayed Average Max Objective value
delay total events (%) delay interval LP IP

0 3 0 0 25 9.20 12.50
1 4 21 1 24 8.20 10.41
2 4 21 2 23 8.20 10.32
3 4 21 3 22 8.20 10.22
4 4 27 4 21 8.20 10.13
5 4 19 3.5 19 8.20 9.95
10 5 48 8.6 14 3.60 7.58
15 5 48 7.8 14 1.49 7.57

To be able to operate the timetable of with one minute delay, the start inventory
at Rotterdam has to be at least four. Table 5 shows the characteristics of the
disposition timetable for smaller start inventories if the maximum allowable delay
is one minute. The table shows that every one unit decrease of the start inventory
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Table 5: Case I - Disposition timetables for different start inventories.
Start Pairs Delayed Average Max Objective

inventory total events (%) delay interval value IP
4 4 21 1 24 10.41
3 3 10 1 24 12.40
2 2 10 1 34 15.41

Table 6: Case II - Disposition timetables for different maximum delay values.
Max Pairs Delayed Average Max Objective value
delay total events (%) delay interval LP IP

0 3 0 0 27 9.20 12.70
1 3 3 1 26 9.20 12.60
2 3 5 1.6 25 9.20 12.51
3 3 4 2.6 24 9.20 12.42
4 3 6 3.6 23 9.20 12.33
5 4 25 5 22 8.20 10.24
10 4 10 10 16 3.33 9.68
15 5 58 7.2 16 1.88 7.75

has an immediate effect on the number of pairs that can be operated.
In the regular disposition timetable all regional trains are operated, the trains

in direction A with a delay of two minutes. Hence, the total number of pairs
is equal to the number operated in the disposition timetable with maximum one
minute delay (Figure 10) and the interval between two trains is only 15 minutes.
Because the trains are only operated over a short distance, the fact that no long
distance trains are operated might not be a disadvantage.

5.2.2 Case II

No trains can be operated on the blocked segment and trains need to turn around at
station Zoetermeer. For the same reason as for Case I, we only present the model at
side A of the blockade. Figure 6 shows that trains can change track at Ypenburg
(Ypb), at which two tracks are available. In the disposition timetable defined
by the disruption scenario two pairs consisting of regional trains are operated
per hour. Our model without delays and no inventory constraints results in a
disposition timetable in which two pairs consisting of long distance trains and one
pair consisting of regional trains are operated.

Table 6 shows that for small delay values, the number of operated pairs cannot
be increased. In the regular disposition timetable four pairs of regional trains are
operated. The delays of the trains in direction A is six minutes. Comparing this
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to the solution with maximum ten minutes delay shows deviates more from the
normal timetable because the number of delayed events and the average delay is
larger.

6 Conclusions and Further Research

In this research, we consider the problem of adjusting a railway timetable in case of
large disruptions. We present integer programming formulations based on event-
activity networks for the situations of a partial and a complete blockade. The
disruption measures we include to convert the normal timetable into a disposition
timetable are delaying trains, canceling trains and reversing trains at stations
adjacent to the blockade. The models determine which trains need to be canceled
and define the disposition timetable of the trains that are not canceled. Besides,
we present how the models can be modified in case a regular disposition timetable
is preferred.

Two real-world cases of NS are used to test our models. The results show
a balance between the number of trains that can be operated in the disposition
timetable and the maximum delay that is allowed. Besides, we show the effect
of limited start inventories at the number of trains that can be operated. By
presenting also the regular disposition timetable, a trade-off is offered between a
disposition timetable that is more regular or one that deviates less from the normal
timetable. For all instances, the time needed to compute the disposition timetable
is at most a few seconds, which is acceptable in realtime disruption management.

We propose some directions for further research. In our models, we take some
aspects of the rolling stock rescheduling problem into account by canceling all
trains that belong to the same train sub series, by defining inventory constraints
and by balancing the number of trains in each direction. It has to be investigated
whether a further integration of the rolling stock rescheduling problem is possible
and whether the most important aspects of the crew rescheduling problem can be
taken into account as well.

In this research, we present models for the second phase of the disruption
management process in which the disposition timetable is operated. A possible
extension is to take other disruption measures, such as rerouting of trains, into
account. Moreover, the model can be extended to cover also the first and third
phase of the disruption process.

The results in the previous section show that for the two cases presented the
computation time is small. However, for more complex cases or when we extend
the model the computations times can increase considerably and can be too long to
be acceptable in realtime disruption management. Therefore, as a final direction
of further research, we propose to consider other solution methods.
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