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Abstract

In this paper we introduce a bootstrap procedure to test parameter restrictions in
vector autoregressive models which is robust in cases of conditionally heteroskedas-
tic error terms. The adopted wild bootstrap method does not require any para-
metric specification of the volatility process and takes contemporaneous error cor-
relation implicitly into account. Via a Monte Carlo investigation empirical size and
power properties of the new method are illustrated. We compare the bootstrap
approach with standard procedures either ignoring heteroskedasticity or adopting a
heteroskedasticity consistent estimation of the relevant covariance matrices in the
spirit of the White correction. In terms of empirical size the proposed method
clearly outperforms competing approaches without paying any price in terms of
size adjusted power. We apply the alternative tests to investigate the potential of
causal relationships linking daily prices of natural gas and crude oil. Unlike stan-
dard inference ignoring time varying error variances, heteroskedasticity consistent
test procedures do not deliver any evidence in favor of short run causality between
the two series.
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1 Introduction

The magnitude of price variations at speculative markets typically exhibits positive au-
tocorrelation and cross correlation among a set of assets, goods, stock market indices,
exchange rates, etc. The observation that periods of higher and lower volatility alternate
has generated a huge body of econometric literature after the seminal contributions by
Engle (1982), Bollerslev (1986), and Taylor (1986) introducing the (generalized) autore-
gressive conditionally heteroskedastic ((G)ARCH) process and the stochastic volatility
model, respectively. Numerous proposals of parametric models characterizing multivari-
ate volatility dynamics are now available in the literature, see e.g. Bollerslev (1990),
Bollerslev and Engle (1993), Braun, Sunier and Nelson (1995), Danielsson (1998), and
Engle and Kroner (1995).

In the multivariate case, estimation of volatility dynamics typically requires highly
specialized optimization algorithms which are employed to maximize some (quasi) log
likelihood function. In the multivariate framework results on the asymptotic properties
of the (Q)ML-estimator have been derived only recently, e.g. by Jeantheau (1998) Comte
and Lieberman (2000), and Bollerslev and Wooldridge (1992). Nevertheless, most of the
practical analyses are numerical in nature and thus highly dependent on data and problem
specific features. The reliability of QML-procedures may suffer from large parameter
spaces necessary for the joint modelling of variances and covariances. In addition, given
large samples of empirical data, the implicit assumption of structural invariance of the
volatility process may also be criticized. Applying standard tests on structural invariance
of GARCH-type error processes as introduced by Chu (1995), the assumption of dynamic
homogeneity of empirical volatility processes is often (strongly) rejected. Thus, in practice,
QML-methods could lack robustness especially if the assumed volatility model, GARCH
say, amounts to misspecification or structural variation of the volatility process.

When heteroskedastic error terms generate a vector autoregressive (VAR) model, the
analyst might be interested in inference on significance of (specific) parameter estimates.
First and second order moments of VAR-estimates obtained from QML-procedures are
typically dependent on the particular specification of the volatility dynamics. Thus, the
conclusions to be made when testing e.g. non-causality in the VAR framework might not be
robust with respect to the a-priori assumed underlying volatility dynamics. Least squares
based approaches to testing significance of VAR parameter estimates are more robust with
respect to the specification of volatility dynamics. Moreover, least squares procedures
provide unique numerical results and, thus, might be preferred to QML-estimates when
the interest of the analyst is focused on estimating the conditional mean of a VAR-
process. However, inference along standard lines ignoring potential heteroskedasticity
involves invalid empirical levels of tests derived under iid assumptions. To correct for
these size distortions, White (1980) introduced a correction of standard t−ratios in a
univariate framework under heteroskedasticity which is easily implemented. Furthermore,
bootstrap procedures designed for heteroskedastic innovations may be seen as a reasonable
framework to retain the convenience of least squares procedures, as shown by Hafner and
Herwartz (2000).

In this paper we introduce a wild bootstrap method to test parameter restrictions
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in vector autoregressive models that is robust under conditional heteroskedasticity of
unspecified (unknown) form. We show consistency of the new approach and compare it
with standard Wald-tests. Implementing the latter, we evaluate the relevant covariance
matrices under the assumption of underlying iid error terms and, alternatively, allowing
for conditional heteroskedasticity. Via Monte Carlo analysis we show that in terms of its
empirical size the bootstrap approach outperforms competing test strategies. Differences
in power estimates mirror the size properties and, thus, we summarize that the bootstrap
is to be recommended for empirical work.

In an empirical application we show that the statistical decision for or against short
term causality from crude oil to natural gas prices hinges on the way the asymptotic
covariance matrix of the parameter estimates is calculated: standard Granger causal-
ity tests indicate causality, whereas tests correcting for heteroskedasticity do not. Both
series exhibit strong heteroskedasticity, so that the decision of no causality based on het-
eroskedasticity consistent procedures is more reliable.

The remainder of the paper is organized as follows. In the next section we formal-
ize the considered testing problem and discuss alternative testing procedures. Empirical
properties of competing test approaches are investigated in Section 3. An empirical anal-
ysis of causal relationships linking daily prices for crude oil and natural gas follows in
Section 4. A brief summary concludes the paper. To improve readability of the paper
proofs of the propositions are given in the appendix.

2 Testing for VAR(1) dynamics in case of heteroske-

dastic error terms

Let us consider the vector autoregressive process of order one, VAR(1), given by

yt = Ayt−1 + ut, (1)

where yt contains K components, A is a K ×K parameter matrix, and ut is a mean zero
error term. One of our objectives is to keep the notation simple, so that we do not include
an intercept in (1), nor do we consider VAR models of higher order. For VAR(p) models
with intercept, analogous results are easily obtained.

For a given sample of T observations, y1, . . . , yT , we can collect the variables in the
K × T matrices Y = (y1, . . . , yT ), Z = (y0, . . . , yT−1), and U = (u1, . . . , uT ). The model
then reads compactly as

Y = AZ + U. (2)

Denote a = vecA, y = vecY and u = vecU . The OLS-estimator is given by

â =
{
(ZZ ′)−1Z ⊗ IK

}
y.

For deriving the properties of â one often assumes that the vector ut is an iid white
noise vector with finite covariance matrix. In the following we abandon this strong as-
sumption and allow for dependence of ut by making the following assumptions.
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(A1) All eigenvalues of A have modulus smaller than one.

(A2) ut is a mixing process.

(A3) E[ut | Ft−1] = 0 with Ft denoting the information set up to time t.

(A4) E[|ut|2r] ≤ B < ∞, for some r > 2 and for all t.

(A5) limT→∞ 1
T

∑T
t=1 E[(yt−1y

′
t−1)⊗ (utu

′
t)] = W with some finite, positive definite matrix

W .

(A1) ensures that yt is stable, (A2) says that the temporal dependence of ut decays in a
certain sense, (A3) says that ut is a martingale difference, and (A4) ensures that all fourth
moments of ut exist. (A5) is a kind of asymptotic stationarity assumption. Finiteness of
the expectation E[(yt−1y

′
t−1)⊗ (utu

′
t)] follows already by (A1) and (A4), as shown in the

proof of Proposition 2, so (A5) merely assumes that the averages of these expectations
converge to a fixed matrix W . We can now state the first proposition.

Proposition 1 Under (A1) to (A5),

1. plim 1
T

∑T
t=1 yt−1u

′
t = 0

2. plim 1
T

∑T
t=1 yt−1y

′
t−1 = Γ exists and is nonsingular

3. plimâ = a

4. 1√
T

∑T
t=1 yt−1 ⊗ ut

d→ N(0,W )

5.
√

T (â− a)
d→ N(0, V −1WV −1) with V = Γ⊗ IK.

Note that replacing (A2) by the stronger assumption of conditional homoskedasticity,
i.e., E[utu

′
t | Ft−1] = Σu with some positive definite matrix Σu, W would be given by

W = lim
1

T

T∑

t=1

E[(yt−1y
′
t−1)⊗ Σu] = Γ⊗ Σu, (3)

and the asymptotic covariance matrix would simplify to

V −1WV −1 = (Γ⊗ IK)−1(Γ⊗ Σu)(Γ⊗ IK)−1

= Γ−1 ⊗ Σu = C, say. (4)

In general, however, the matrix W is unknown. In a univariate framework, White
(1980) has shown that a consistent estimate of W can be easily obtained by using the
residuals ût of the least squares regression. We adopt this idea in our multivariate frame-
work and propose the following estimate of W .

WT =
1

T

T∑

t=1

(yt−1y
′
t−1)⊗ (ûtû

′
t). (5)

The following proposition states the consistency of WT .
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Proposition 2 Under Assumptions (A1) to (A5), plim WT = W.

One can now easily construct a consistent estimate of the asymptotic covariance matrix
V −1WV −1 by defining VT = ΓT ⊗ IK and ΓT = 1

T

∑T
t=1 yt−1y

′
t−1. By Proposition 1, ΓT is

consistent for Γ and hence VT is consistent for V . Thus, making use of Slutsky’s Theo-
rem, the estimator V −1

T WT V −1
T consistently estimates the asymptotic covariance matrix

V −1WV −1.
We now want to test the hypothesis H0 : Ra = r against H1 : Ra 6= r where R is an

(N ×K2) matrix of rank N and r is an (N × 1) vector. Examples of specific hypotheses
are the presence of autoregressive dynamics (R = IK2 , r = 0) and the absence of Granger
causality which imposes zero restrictions on some elements of a that are collected with
an appropriate restriction matrix R.

2.1 The standard Wald statistic

The common Wald test statistic for testing H0 under the assumption of homoskedastic
white noise errors reads

λT = T (Râ− r)′(RCT R′)−1(Râ− r), (6)

where CT = Γ−1
T ⊗ Σ̂u, and Σ̂u is a consistent estimate of Σu, e.g., Σ̂u =

∑T
t=1 ûtû

′
t/T .

In terms of the underlying vector error terms ut the test statistic in (6) has the following
structure:

λT =
1

T
u′B′

T QT BTu, (7)

where

BT = (ΓT ⊗ Σ̂u)
−1/2(Z ⊗ IK) and QT = C

1/2
T R′(RCT R′)−1RC

1/2
T .

Since each of the factors in CT and QT is consistent, one can use Slutsky’s Theorem to
obtain CT

p→ C and QT
p→ Q, where C is given in (4) and Q = C1/2R′(RCR′)−1RC1/2.

Note that Q is an idempotent matrix of dimension K2 ×K2, i.e. QQ = Q. This allows
us to prove the following proposition.

Proposition 3 Under assumptions (A1) to (A5) and H0,

λT
d→ β′X, (8)

where X is an N-dimensional vector of independent χ2(1) random variables and β is an
N-dimensional vector containing the eigenvalues of Ω given by

Ω = W 1/2V −1R′(RCR′)−1RV −1W 1/2. (9)

So, the test statistic λT is asymptotically distributed as a weighted mixture of in-
dependent χ2(1)-random variables where the weights are the eigenvalues of the matrix
Ω.
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Corollary 1 If one replaces (A2) by the stronger assumption of conditional homoskedas-
ticity, E[utu

′
t | Ft−1] = Σu, then W = Γ ⊗ Σu, see (3), and Ω reduces to Ω = Q, which

is idempotent and therefore its eigenvalues are 0 and 1, where the number of eigenvalues
equal to 1 is equal to the rank N of Q. Thus, λT has an asymptotic χ2

N -distribution.

A direct proof of this corollary is given e.g. in Proposition 3.5 of Lütkepohl (1993).
In general, however, using the standard Wald statistic with critical values obtained

from the χ2
N distribution leads to inconsistency. In the following section, we use the

results of Proposition 1 to propose a test statistic that modifies the covariance matrix of
the standard Wald statistic to obtain a standard χ2

N distribution.

2.2 A modified Wald statistic

Taking into account the modification of the asymptotic covariance matrix for the case of
heteroskedasticity, we suggest the following modified Wald test statistic:

φT = T (Râ− r)′
[
RV −1

T WT V −1
T R′]−1

(Râ− r), (10)

Proposition 4 Under Assumptions (A1) to (A5) and H0, φT has an asymptotic χ2
N -

distribution, i.e.

φT
d→ χ2

N . (11)

Thus, in the general case allowing for heteroskedasticity, it is preferable to use φT

rather than λT in combination with critical values of the χ2
N distribution. Note, however,

that φT is more complex because it involves estimation of W , which is essentially a matrix
of fourth moments, whereas λT only needs estimation of V , a matrix of second moments.
Thus, φT may be more affected by high variation in small samples than λT does. The
empirical performance of both test statistics will be investigated in our simulation study.

2.3 Consistency of the wild bootstrap

As derived in Section 2.1, the test statistic λT has a nonstandard limit distribution in
case of conditional heteroskedasticity. A first order asymptotic approximation for the dis-
tribution of λT is hardly available in practice although the relevant nuisance parameters,
namely the eigenvalues of Ω in (9) can be consistently estimated. In this case bootstrap
methods become a convenient means to estimate the distribution of λT if the resampling
scheme allows for conditional heteroskedasticity. Wu (1986) introduced the wild bootstrap
coping with heteroskedastic error distributions. This procedure is advocated by Mammen
(1993) to estimate the distribution of F–type statistics in parametric regression models
with random explanatory variables under heteroskedasticity. Adopting a nonparametric
framework, Neumann and Kreiss (1998) show that the validity of regression type boot-
strap procedures is maintained for autoregressive models if the error term ut follows a
martingale difference sequence, as assumed in (A3).
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Bootstrap error terms can be obtained as u∗t = ûtηt, where the ût are estimated
residuals obtained from the VAR(1) model in (1) and ηt ∼ iid(0, 1) and independent of
yt−1 and ût. By construction, the first two moments of estimated residuals and bootstrap
errors is identical, i.e., E[u∗it] = 0 and E[u∗itu

∗
jt] = ûitûjt for all i, j = 1, . . . K. To implement

the bootstrap approximation of λT (φT ) denoted as λ∗T (φ∗T ) we draw R = 500 replications
of λ∗T (φ∗T ). A particular null hypothesis is rejected with significance level α if λT (φT )
exceeds the (1− α)-quantile of the bootstrap distribution.

Instead of obtaining ût from the unrestricted VAR-model, residual terms can alter-
natively be estimated under the null hypothesis. Under the latter approach the analyst
runs the risk of losing power due to the fact that under the alternative hypothesis the
obtained error terms may be far away from their true values. Sampling u∗t from restricted
OLS-residuals, however, promises a close approximation of the data generating process
if the null hypothesis is actually true. Therefore more accurate size properties could be
expected for estimating ût under the null hypothesis. Note that the risk of sampling from
biased error estimates when the alternative hypothesis is actually true is more pronounced
if the null hypothesis and the unrestricted model are far apart from each other. For the
implementation of the bootstrap in our Monte Carlo study we will shed light on the latter
issue by drawing u∗t from both error estimates obtained under the null and alternative
hypothesis.

In the following we will argue that the distributions of λT and its bootstrap coun-
terpart λ∗T coincide asymptotically. Since this distribution is nonstandard it turns out
to be cumbersome to show the asymptotic validity of the bootstrap method under het-
eroskedasticity directly. In deriving the desired result indirectly we make use of the fact
that the idempotent matrix QT converges in probability to a limit which only depends on
the unconditional expectations of yt−1y

′
t−1 and utu

′
t and, thus, is identical under the actual

sampling scheme and the recommended wild bootstrap procedure. Therefore our argu-
ments will exploit the fact that the asymptotic distribution of λT defined in (6) coincides
with that of λ∗T defined by

λ∗T =
1

T
u∗′B′

T QT BTu∗, (12)

if bT = 1√
T
BTu and b∗T = 1√

T
BTu∗ share the same asymptotic distribution. It was shown

in the proof of Proposition 3 that bT is asymptotically normally distributed with mean
zero and finite covariance matrix (Γ⊗ Σu)

−1/2W (Γ⊗ Σu)
−1/2, or explicitly,

(Γ⊗ Σu)
−1/2 lim

T→∞

[
1

T

T∑

t=1

E[yt−1y
′
t−1 ⊗ utu

′
t]

]
(Γ⊗ Σu)

−1/2. (13)

To derive the asymptotic distribution of the bootstrap random vector b∗T , the ût are
treated as if they were non-stochastic fixed variables. Then the bootstrap counterpart of
bT , i.e.

b∗T =
1√
T

BTu∗ =
1√
T

(ΓT ⊗ Σ̂u)
−1/2

T∑

t=1

yt−1 ⊗ ûtηt
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is also asymptotically normally distributed with mean zero and covariance matrix

(Γ⊗ Σu)
−1/2 lim

T→∞

[
1

T

T∑

t=1

E[yt−1y
′
t−1 ⊗ ûtû

′
tη

2
t ]

]
(Γ⊗ Σu)

−1/2. (14)

Since ηt is independent from yt−1 and E[η2
t ] = 1, we have by construction the equiva-

lence of E[yt−1y
′
t−1⊗ ûtû

′
tη

2
t ] and E[yt−1y

′
t−1⊗ ûtû

′
t]. Therefore, bT and b∗T share the same

asymptotic normal distribution. Given that Q is unaffected under the bootstrap proce-
dure, the latter argument implies also that λ∗T = b∗

′
T QTb∗T and λT = b′T QTbT share the

same asymptotic distribution. So we have proved the following proposition.

Proposition 5 Under assumptions (A1) to (A5) and H0,

λ∗T
d→ β′X, (15)

where X is an N-dimensional vector of independent χ2(1) random variables and β is an
N-dimensional vector containing the eigenvalues of Ω given in (9).

The asymptotic distribution of the statistics λT and λ∗T is not asymptotically pivotal,
which means that it depends on nuisance parameters. However, it is well known that
with respect to interval estimation the bootstrap procedure is particularly fruitful if the
simulated statistic is (asymptotically) pivotal (Hall 1992). As was shown in Proposition
4, the statistic φT is asymptotically pivotal and, following similar arguments as above,
we can show that φ∗T , the bootstrap version of φT , shares the same property. In the
simulation experiment we will investigate all competing test procedures (λT , λ∗T , φT , φ∗T )
and compare their empirical performance.

3 Monte Carlo Investigation

To shed light on the empirical properties of the test statistics proposed in the previous
section we conduct a Monte Carlo analysis.

3.1 The simulation design

We generate bivariate autoregressive processes (K = 2) of lag order p = 1:

yt = Ayt−1 + ut. (16)

The hypothesis to be tested is H0 : vecA = 0 implying that yt is free of serial correlation.
To investigate the empirical size properties of the competing test procedures we set A = 0
and draw ut alternatively from a Gaussian distribution and according to a multivariate
GARCH(1,1) process,

ut = Σ
1/2
t ξt, (17)

Σt = D′D + F ′ut−1u
′
t−1F + G′Σt−1G. (18)
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In (17) ξt is a two dimensional standard Gaussian random vector. In (18) F and G are
K ×K parameter matrices and D is an upper triangular matrix. The parametric model
in (18) has become popular as the so-called BEKK-model which provides a rich dynamic
volatility structure including cross equation dependencies. It is discussed in detail e.g. by
Engle and Kroner (1995). To be specific we draw heteroskedastic error terms using the
following choices of parameter matrices in (18):

D = 10−3

(
1.15 .31
0 .76

)
, F =

(
.282 −.050
−.057 .293

)
, G =

(
.939 .028
.025 .939

)
. (19)

The particular model detailed in (18) and (19) is found in Fengler and Herwartz (2002)
to characterize joint volatility dynamics of daily quotes of the DEM and GBP measured
against the USD over the period December 31, 1979 to April 1, 1994.

To examine the empirical power properties we let ut follow the GARCH(1,1) specifi-
cation given above and use the following choices for the parameter matrix A:

A(1) =

(
0.10 0.00
0.00 0.10

)
, A(2) =

(
0.10 0.05
0.05 0.10

)
, A(3) =

(
0.00 0.10
0.10 0.00

)
.

Each data generating process is generated with 5000 replications. The relevant sample
sizes are alternatively T = 25, 50, 100, 500, 1000. As the nominal test level we mostly
consider α = 0.05.

The following test procedures are studied: The conventional Wald statistic (λT ) with
the covariance matrix of vecÂ estimated under the assumption of homoskedastic error
terms. The evaluation of the latter covariance matrix under the assumption of het-
eroskedasticity as given in Proposition 4 delivers the test statistic φT . The heteroskedas-
ticity consistent bootstrap counterparts of the latter two statistics are denoted as λ∗T and
φ∗T , respectively. To provide a comparison with commonly used test procedures we also
test the null hypothesis of interest by means of portmanteau statistics. Since the simu-
lations cover the small sample cases with T = 25 and T = 50 we decide to employ the
modified portmanteau test statistic (see e.g. Lütkepohl 1993)

Ph = T 2
h∑

i=1

(T − i)−1tr(Ĉ ′
iĈ

−1
0 ĈiĈ

−1
0 ), Ĉi =

1

T

T∑

t=i+1

ûtû
′
t−i, (20)

where ût are residual estimates obtained from estimating a VAR model under the null
hypothesis. We consider alternative test orders h = 1 and h = 10. Under the null
hypothesis of no serial correlation, Ph has an asymptotic χ2

q distribution with q = hK2

degrees of freedom. So, in the bivariate case, the asymptotic distributions of P1 and P10

are χ2
4 and χ2

40, respectively.

3.2 Simulation results

Rejection frequencies obtained from competing approaches to test the hypothesis H0 :
Ra = 0, R = IK2 in the two dimensional VAR(1)-model are shown in Table 1. To facili-
tate the comparison of competing testing strategies size estimates violating the respective
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α = 0.05 α = 0.10
T 25 50 100 500 1000 25 100 500

Size 1: ut ∼iid
λT .1206 .0824 .0638 .0524 .0508 .1916 .1180 .1092
φT .2742 .1550 .0952 .0586 .0530 .3596 .1616 .1208
λ∗T .0904 .0706 .0596 .0536 .0498 .1550 .1136 .1084
φ∗T .1402 .0986 .0724 .0514 .0512 .2182 .1236 .1102
λ̃∗T .0560 .0510 .0508 .0526 .0488 .1132 .1028 .1058
P1 .0400 .0480 .0460 .0496 .0496 .0932 .0958 .1054
P10 .0562 .0500 .0508 .0450 .0454 .1018 .0956 .0944

Size 2: ut follows multivariate GARCH(1,1)
λT .1282 .0940 .0810 .0954 .1150 .2030 .1384 .1630
φT .2748 .1574 .0920 .0648 .0600 .3622 .1578 .1182
λ∗T .0886 .0734 .0610 .0562 .0566 .1530 .1080 .1052
φ∗T .1398 .1024 .0682 .0576 .0560 .2102 .1218 .1060
λ̃∗T .0582 .0566 .0508 .0522 .0550 .1134 .0944 .1010
P1 .0418 .0558 .0578 .0912 .1130 .0938 .1142 .1586
P10 .0606 .0606 .0860 .1702 .2188 .1062 .1470 .2570

Power 1 under GARCH: A = A(1)

λT .1316 .1372 .1886 .6884 .9246 .2082 .2800 .7740
φT .2806 .2006 .1974 .5428 .8382 .3654 .2906 .6676
λ∗T .0890 .1138 .1504 .5852 .8692 .1604 .2378 .7024
φ∗T .1398 .1324 .1536 .5232 .8292 .2178 .2392 .6448
λ̃∗T .0602 .0884 .1310 .5768 .8684 .1202 .2188 .6984
P1 .0420 .0832 .1554 .6804 .9232 .0980 .2476 .7692
P10 .0690 .0798 .1248 .4492 .7466 .1200 .1984 .5690

Power 2 under GARCH: A = A(2)

λT .1370 .1526 .2230 .7910 .9760 .2166 .3200 .8602
φT .2824 .2238 .2434 .7022 .9386 .3786 .3402 .7964
λ∗T .0928 .1266 .1812 .7036 .9450 .1656 .2766 .8002
φ∗T .1478 .1520 .1928 .6850 .9324 .2230 .2866 .7798
λ̃∗T .0598 .0982 .1612 .6986 .9440 .1256 .2594 .7954
P1 .0456 .0924 .1848 .7842 .9756 .1024 .2840 .8560
P10 .0684 .0824 .1338 .5216 .8398 .1220 .2132 .6384

Power 3 under GARCH: A = A(3)

λT .1592 .1640 .2110 .7220 .9554 .2410 .3174 .8184
φT .3124 .2346 .2378 .6514 .9196 .4040 .3390 .7592
λ∗T .1114 .1336 .1708 .6132 .9056 .1830 .2684 .7382
φ∗T .1596 .1594 .1874 .6354 .9132 .2430 .2822 .7396
λ̃∗T .0724 .1040 .1538 .6070 .9020 .1408 .2488 .7344
P1 .0538 .1032 .1716 .7134 .9540 .1214 .2832 .8130
P10 .0658 .0754 .1106 .4386 .7592 .1112 .1896 .5596

Table 1: Size and power estimates for competing procedures testing H0 : vecA = 0. λT

and φT are the standard Wald test and its heteroskedasticity consistent counterpart. λ∗T
and φ∗T denote corresponding bootstrap approximations. λ̃∗T is analogous to λ∗T except that
bootstrap errors are drawn from restricted OLS residuals. Ph denotes the multivariate
portmanteau statistic of order h.
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nominal levels with 1% significance are indicated with bold entries. In case of underlying
homoskedastic innovations we obtain empirical size properties of the standard Wald test
(λT ) and portmanteau statistics (P(.)) which are in line with the results of other contribu-
tions to the topic. In small samples (T = 25) serious size distortions are obtained for the
Wald test with the empirical significance level exceeding twice its nominal counterpart.
In one particular case, T = 25, the portmanteau statistic P1 turns out to be significantly
conservative, i.e. the actual empirical level of the test is far below the nominal one. For
the remaining scenarios both portmanteau statistics deliver empirical significance levels
that cannot be distinguished from their nominal counterparts. Estimating the covariance
matrix of â = vecÂ under the assumption of heteroskedastic innovations (φT ) delivers
serious size distortions which are significant at the 1% level up to sample size T = 500.
In the worst case (T = 25) the latter device shows an empirical size of 27.42% when the
nominal level is α = 0.05. Bootstrap procedures (λ∗T , φ∗T ) improve the empirical size prop-
erties of the corresponding Wald tests (λT , φT ) in all cases. In small samples (T = 25),
for instance, the empirical size estimates obtained from λ∗T and φ∗T are 9.04% and 14.02%
respectively, being considerably closer to the nominal level of α = 0.05 as if the test is per-
formed by means of first order asymptotic approximations. Further improvements of the
empirical size estimates are obtained when the bootstrap distribution is simulated with
error estimates ût according to the restricted model (λ̃∗T ). At the nominal 5% significance
level this test strategy is the only procedure that delivers for all sample sizes T empirical
rejection frequencies under the null hypothesis which cannot be distinguished from 0.05.

If yt is driven by heteroskedastic error terms both portmanteau tests (P1, P10) and
the standard Wald statistic (λT ) show huge size distortions which do not vanish even
if the sample size gets quite large. For the case T = 1000 the latter test device shows
an empirical size which is at least 11.3% thus exceeding the nominal level of 5% by
far. Employing the heteroskedasticity consistent covariance estimate of â (φT ) improves
the latter size properties considerably in larger samples (T = 500, T = 1000). For the
case T = 1000, however, the empirical significance level of the φ∗T statistic is 6.0% and,
thus, still exceeds significantly the nominal level. In small samples (T = 25, 50, 100) it
appears that there is almost no gain from evaluating the covariance matrix of â under the
assumption of conditional heteroskedasticity. The bootstrap procedures in general and the
λ∗T and λ̃∗T versions in particular deliver superior size estimates. Over all considered sample
sizes the empirical rejection frequencies obtained from λ∗T (λ̃∗T ) vary between 8.86% and
5.66% (5.82% and 5.50%). For sample sizes T = 500 and T = 1000 bootstrap procedures
are the only approaches delivering size estimates which cannot be distinguished from the
nominal level with 1% significance. Drawing bootstrap error terms from restricted residual
estimates (λ̃∗T ) significant size distortions vanish already for samples of size T = 50 and
larger.

Generating yt under the alternative of (weak) serial correlation all test procedures
show some power which becomes apparent at least for samples of size T = 50 and larger.
Differences in power estimates mirror the different size properties especially of the Wald
tests (λT , φT ) and their bootstrap counterparts (λ∗T , φ∗T ). As outlined before the risk of
simulating the bootstrap distribution by means of restricted OLS-residuals is to reduce the
power of the test. For all processes simulated under the alternative, however, it turns out
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that this risk might be negligible under weak serial correlation patterns since the power
losses involved when applying λ̃∗T , in comparison to λ∗T say, can be entirely addressed to
the better size properties of the former statistic. In most cases considered the high order
Portmanteau test (P10) delivers the weakest power estimates which is obviously related
to choosing too high a test order.

For the purpose of illustration Table 1 also provides some simulation results for the
nominal level of α = 0.10. As can be seen almost all results obtained for the higher
significance level are analogous to the case α = 0.05.

4 Short-term causality from crude oil to natural gas

spot prices

Multivariate economic time series can often be categorized into series that are integrated
without common trends, series that are cointegrated or have common stochastic trends,
and series that are mean reverting or trend stationary. A very rough ordering with respect
to the type of series would be financial markets, macroeconomic and commodity markets
series being typically described by the first, second and third category, respectively. For
financial time series, the argument of the efficient markets hypothesis says that prices
should contain all available and relevant information at any time, excluding any pre-
dictability beyond a given economic model. As noted in many papers, however, one often
observes predictability of financial series that is stronger than what established economic
theories explain. In commodity markets, where mean reversion is the rule rather than the
exception, it is not surprising that prices tend to be autocorrelated around a given trend.
More interesting here is the question of causality among alternative goods. For example,
in energy markets, the issue of alternative fuels such as products linked to natural gas
and others linked to oil is long-debated. The economic argument for a causality is the
substitution effect. If prices shoot up in oil-linked products, people will try to move to
alternative products such as gas, thereby increasing the price of gas. However, contracts
are usually not flexible in the short run, so that a physical effect of an oil-price shock on
gas, say, is to be expected only after a few weeks or months. Most border prices of natural
gas, for example, are linked to a lagged six month average of a reference oil product. But
still, there may be a reaction in the short run, from day to day, if people think that the
oil price shock is persistent. In this paper, we will investigate this issue by comparing
the standard Granger causality test using the assumption of homoskedasticity, with tests
correcting for heteroskedasticity. Indeed, the degree of heteroskedasticity in the oil price
series seems to be very high. We use a reference crude oil series (north sea Brent) and the
gas spot price series of the British National Balance Point (NBP) for the period March
1996 to April 2002 (1421 daily prices).

For the discussed sample period, a unit root cannot be rejected to be contained in the
(log) Brent series. The ADF statistic with four lags is -1.26 with a ten percent critical
value of -2.57. However, if we take a longer sample starting on May 16, 1983, the ADF
statistic with four lags (-2.69) rejects at the ten percent level and the PP statistic with
truncation lag 9 (-3.21) rejects at the five percent level. This supports the view that oil
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NBP natural gas.

prices are mean reverting with a very slow mean reversion rate, and that our sample of 6
years is not long enough to detect the mean reversion. As for log NBP, both ADF(4) with
-3.89 and PP(7) with -4.36 reject the null hypothesis of a unit root at the one percent
level. To summarize, we will consider both log series as stationary and will fit a bivariate
VAR model to yt = (log Brentt, log NBPt)

′. To check robustness of our results we will also
investigate a bivariate VAR model specified for ∆yt.

To illustrate conditional heteroskedasticity of both log price series we apply an ARCH-
LM test of order 1 (Engle 1982) to the residuals of the ADF-regressions discussed before.
Testing residuals of the ADF regression for crude oil prices and natural gas prices the
obtained LM-statistics are 10.30 and 251.67, respectively. Comparing both statistics with
a χ2

1 distribution we reject the assumption of homoskedasticity which, in light of the
preceding sections, should alert us against using the standard causality test mentioned
above. Rather, we calculate the heteroskedasticity consistent Wald test and a correspond-
ing bootstrap version.

In modelling gas prices, one often observes seasonality that arises because of heating
during the winter months. To take seasonality into account, we consider the exogenous
variable xt which is defined as xt = max(H − Tempt, 0), where is H is a parameter and
Tempt is the relevant temperature. We take the mean of daily minimum and maximum
temperatures in London as explanatory variable for all heating-based gas demand.
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The empirical models specify vector autoregressive dynamics alternatively for the level
series yt and first differences ∆yt as follows:

1. Level representation
Y = AZ + BlW + Ul, (21)

where similar to (2) Y = (y1, . . . , yT ) A = [A1 : · · · : Ap], Z = (z0, . . . , zT−1),
zt = (y′t−1, y

′
t−2, . . . , y

′
t−p)

′ Ul = (ul1, . . . , ulT ). In addition X = (w1, . . . , wT ), wt =
(1, xt, xt−1)

′ and Bl contains parameters governing the impact of the exogenous
variables on yt.

2. Growth rates
∆Y = D∆Z + BdX + Ud, (22)

where apart from obvious definitions D = [D1 : · · · : Dp−1].

As indicated in (21) and (22) we determine the autoregressive order of our empirical model
merely for the level representation by statistical criteria. Instead of doing specification and
causality tests for the models in (21) and (22) directly we first condition the entire analysis
on the variables in W for convenience, i.e. estimate vector autoregressive dynamics for
oil and gas prices by means of the following models:

Y M = AZM + Ul (levels), (23)

∆Y M = D∆ZM + Ud (growth rates), (24)

where M = I −X ′(XX ′)−1X.
To determine the lag order p in the level representation (21) we use the SIC criterion

which yields p = 3, and H is selected by means of a grid search over all integer values
between -1 and 20 degrees. Along these lines we find that H = 1 provides the best fit in
terms of the R2.

For both empirical models, multivariate portmanteau tests on serial residual auto-
correlation are highly significant throughout. In particular, we obtain P10 = 53.64 and
P20 = 104.33 for the levels representation and P10 = 57.53 and P20 = 104.80 for the
growth rates model, respectively. Given that portmanteau tests are highly oversized un-
der conditional heteroskedasticity we do not take these results to indicate misspecification
of both models. Since for all specification and causality tests which are to be performed
portmanteau statistics are expected to become even larger we do not further report em-
pirical results for this test. Covariance estimates for the residuals of both models are
rather close. Therefore one may conclude that switching from the levels representation
to growth rates does not involve overdifferencing of the data. We obtain the following
covariance estimators

Σ̂ul
=

(
0.717 −0.075
−0.075 6.093

)
10−3 and Σ̂ud

(
0.724 −0.064
−0.064 6.471

)
10−3,

respectively.
Parameter estimates Âk, k = 1, 2, 3 and D̂k, k = 1, 2 are given in Table 2. Apart from

the point estimates p-values obtained from competing significance tests are shown. In
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Â1 Â2 Â3

1.023
(.000, .000)

[.000, .000]

0.006
(.477, .502)

[.472, .486]

−0.062
(.101, .152)

[.144, .146]

0.004
(.628, .651)

[.622, .632]

0.035
(.188, .231)

[.232, .250]

−0.010
(.217, .276)

[.278, .242]

0.176
(.022, .033)

[.034, .042]

0.887
(.000, .000)

[.000, .000]

−0.201
(.068, .094)

[.098, .102]

−0.050
(.132, .589)

[.608, .624]

0.046
(.547, .591)

[.580, .586]

0.132
(.000, .048)

[.058, .044]

D̂1 D̂2

0.025
(.341, .433)

[.426, .426]

0.004
(.723, .733)

[.736, .728]

−0.034
(.184, .220)

[.218, .216]

0.010
(.233, .293)

[.300, .270]

0.145
(.064, .069)

[.072, .068]

−0.111
(.000, .253)

[.244, .254]

−0.013
(.870, .881)

[.878, .876]

−0.137
(.000, .045)

[.030, .018]

Table 2: Coefficient estimates for the level (Âk) and growth rates (D̂k) VAR-model and
p-values obtained from competing testing strategies. Results for the standard and the
heteroskedasticity consistent Wald-test are shown in parentheses (p(λT ), p(φT )). p-values
from bootstrap approximations are in square brackets [p(λ∗T ), p(λ̃∗T )].

parentheses directly underneath the estimates p-values obtained from the standard Wald
test (λT ) and the corresponding statistic φT are given the latter of which is consistent
under conditional heteroskedasticity. In square brackets p-values obtained from bootstrap-
ping λT from unrestricted (λ∗T ) and restricted OLS-residuals (λ̃∗T ) are shown. Taking the

5% level to decide on significance of single parameter estimates a
(k)
i,j , k = 1, 2, 3, i, j = 1, 2,

it turns out that most procedures find 4 estimates with p-values smaller than 0.05. Boot-
strapping λT by means of unrestricted residuals delivers only three significant parameters.
Since under this scheme the coefficient â

(3)
22 is not significant it might be sensible to reduce

the autoregressive order of the model. All inference procedures find the diagonal elements
of the matrix Â1 to be highly significant. For the dynamic system of growth rates the
statistic λT indicates significance of the estimate d̂

(1)
22 . Whereas for this coefficient the

p-value obtained by this test statistic is close to zero all heteroskedasticity consistent
approaches provide p-values of at least 24%.

Further results from tests on joint parameter restrictions are shown in Table 3. Joint
parameter restrictions are mostly not rejected by heteroskedasticity consistent test pro-
cedures (φ, λ∗T , φ∗T ) whereas the standard Wald test (λT ) (falsely) supports rejection of
the respective null hypotheses. For instance, applying the heteroskedasticity consistent
procedures to test the hypothesis that all parameters in the D1 matrix are zero delivers
p-values of at least 24% whereas the corresponding p-value obtained from λT is close to
zero. Conclusions to be drawn from testing the hypotheses H0 : A3 = 0 or H0 : D2 = 0
via bootstrap procedures differ largely with respect to the residuals from which bootstrap
replications are drawn. Estimating these residuals under the null hypothesis, the corre-
sponding test statistics turn out to be insignificant up to the 20% level, whereas from
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H0 λT p(λT ) φT p(φT ) p(λ∗T ) p(φ∗T ) p(λ̃∗T ) p(φ̃∗T )
VAR(3) for log price levels

a
(.)
i,j = 0, i, j = 1, 2 208257.1 .000 172218.8 .000 .000 .000 .000 .000

a
(.)
i,j = 0, i 6= j 13.990 .030 12.488 .052 .064 .068 .054 .068

a
(.)
i,j = 0, j > i 1.921 .589 1.460 .692 .628 .712 .608 .700

a
(.)
i,j = 0, i > j 12.053 .007 11.273 .010 .018 .008 .020 .012

a
(1)
i,j = 0, i, j = 1, 2 2756.4 .000 1200.14 .000 .000 .000 .000 .000

a
(2)
i,j = 0, i, j = 1, 2 8.378 .079 5.659 .226 .508 .280 .508 .288

a
(3)
i,j = 0, i, j = 1, 2 31.647 .000 6.166 .187 .064 .232 .046 .204

VAR(2) for log price changes

d
(.)
i,j = 0, i, j = 1, 2 53.552 .000 8.914 .350 .112 .482 .106 .432

d
(.)
i,j = 0, i 6= j 4.993 .288 4.708 .319 .374 .390 .354 .388

d
(.)
i,j = 0, j > i 1.562 .458 1.196 .550 .516 .590 .504 .580

d
(.)
i,j = 0, i > j 3.431 .180 3.319 .190 .220 .208 .218 .208

d
(1)
i,j = 0, 24.595 .000 4.747 .314 .240 .366 .242 .360

d
(2)
i,j = 0, 33.448 .000 6.059 .195 .040 .252 .022 .232

Table 3: Test statistics and p-values obtained when testing diverse joint parameter restric-
tions in the VAR-model for energy prices specified in levels and growth rates. See also
Table 2.

unrestricted residuals bootstrap p-values are .064 or less. Thus, for this particular hy-
potheses one might diagnose some loss of power when resampling from restricted residual
estimates.

With respect to testing for causality we find that the hypotheses H0 : a
(.)
ij = 0, j > i and

H0 : d
(.)
ij = 0, j > i (i.e. gas prices do not Granger cause crude oil prices) deliver higher p-

values in comparison to the opposite hypotheses H0 : a
(.)
ij = 0, j > i and H0 : d

(.)
ij = 0, j < i

(i.e. gas prices are not Granger caused by prices of crude oil). Moreover, in contrast to
the former hypothesis the latter is rejected by all test procedures with 5% significance
when the level representation is employed for the test.

Given that for both empirical models more than 1400 observations are available and
taking the results from the Monte Carlo exercises into account it should not be too surpris-
ing that all heteroskedasticity consistent test statistics deliver almost unique results when
testing at a particular nominal level, 5% say. For practical purposes it is interesting to
investigate the robustness of the conclusions on causality drawn before. Therefore we per-
form the causality test at the actual end of the sample for time windows of varying sizes.
Doing so we also get some more insight into the performance of the competing test proce-
dures when less sample information is available. In Table 4, test results for a sequence of
tests are given where the employed sample covers the last T ∗ = 50, 100, 200, 300, 500, 1000
available observations. All tests are performed for the growth rate specification. It turns
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T ∗ λT p(λT ) φT p(φT ) p(λ∗T ) p(φ∗T ) p(λ̃∗T ) p(φ̃∗T )
H0 : Gas prices do not Granger cause crude oil prices

50 0.769 .681 0.693 .707 .702 .774 .698 .786
100 6.367 .041 4.049 .132 .104 .202 .118 .200
200 12.07 .002 8.735 .013 .004 .016 .010 .018
300 6.898 .032 4.987 .083 .062 .082 .060 .082
400 4.312 .116 3.305 .192 .190 .202 .196 .188
500 3.478 .176 3.105 .212 .268 .250 .270 .242
1000 0.714 .700 0.568 .753 .742 .794 .706 .774

H0 : Crude oil prices do not Granger cause Gas prices
50 0.442 .802 0.516 .773 .838 .862 .834 .868
100 0.077 .962 0.068 .967 .982 .982 .982 .984
200 4.060 .131 3.683 .159 .320 .206 .380 .212
300 1.574 .455 1.818 .403 .614 .468 .636 .468
400 4.638 .098 5.757 .056 .180 .074 .168 .064
500 8.045 .018 7.688 .021 .028 .020 .040 .020
1000 3.471 .176 3.650 .161 .208 .178 .200 .174

Table 4: Sequential causality tests with increasing time windows of length T ∗ at the actual
end of the sample. See also Table 2 and Table 3.

out that the hypothesis that gas prices are not Granger caused by crude oil prices cannot
be rejected for most sample sizes under consideration. Using merely the last 500 available
observations, however, the latter hypothesis is rejected by all test statistics. On the one
hand one may address this finding to the Type I error of statistical inference. On the
other hand one may also call the stability of the underlying data generating dynamics
(conditional mean or volatility) into question. Both considerations motivate an interest
in procedures which work quite well even in small samples.

5 Conclusions

We have shown that standard Wald type statistics can perform very poorly if heteroskedas-
ticity of error terms is ignored. A modified Wald statistic that is heteroskedasticity con-
sistent is shown to behave better in large samples but even worse in small samples. The
reason for this was explained to lie in the high variability of involved moment estimates
in small samples. We proposed to use bootstapped versions of these statistics that were
shown to be consistent and have a superior empirical performance, in particular with
respect to the size of the test. Applied to a bivariate series of daily prices of natural
gas and crude oil which both exhibit strong heteroskedasticity, we found that standard
tests would reject the hypothesis of no causality from oil to gas, whereas this was not
the case for the heteroskedasticity consistent statistics. One could investigate this issue
more deeply by looking at aggregated series, monthly say, since then economically there
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should be a causality from crude oil to natural gas prices, since delivery contracts of the
latter are often linked directly to some moving average of oil prices. This may be a topic
for future research, but longer series would be needed. Our tests have shown that in the
daily trading activity of gas and oil, causality between them is doubtful due to the high
degree of heteroskedasticity in both series.

Appendix

Denote by | · | the Euclidean norm and by ‖ · ‖p the Lp norm E[| · |p]1/p. The eigenvalue
of A with maximum modulus is denoted by λmax with |λmax| < 1 by Assumption (A1).

Proof of Proposition 1

1. Follows the arguments of the proof of Theorem 6.5.1. of Davidson (2000) by noting
that the vector yt−1⊗ut is a martingale difference. It therefore suffices to show that
E[|yt−1 ⊗ ut|1+δ] < ∞ for some δ > 0. Noting that yt =

∑∞
i=0 Aiut−i,

‖yt−1 ⊗ ut‖1+δ ≤
∞∑

i=0

|λmax|i‖ut−i−1 ⊗ ut‖1+δ (25)

≤ maxj≥0 ‖ut−j−1ut‖1+δ

1− |λmax| . (26)

The Cauchy-Schwarz inequality gives

E[|ut−i−1 ⊗ ut|1+δ] ≤
(
E[|ut−i−1|2+2δ]E[|ut|2+2δ]

)1/2 ≤ B < ∞

by Assumption (A4). Therefore, ‖yt−1 ⊗ ut‖1+δ < ∞, which completes the proof of
the first part.

2. Use the decomposition

1

T

T∑

t=1

yty
′
t =

1

T

T∑

t=1

Ayt−1y
′
t−1A

′ +
1

T

T∑

t=1

uty
′
t−1A

′ +
1

T

T∑

t=1

Ayt−1u
′
t +

1

T

T∑

t=1

utu
′
t.

The probability limits of the second and third terms are zero by Proposition 1.1.
The difference between 1

T

∑T
t=1 yty

′
t and 1

T

∑T
t=1 yt−1y

′
t−1 is bounded in probability.

Therefore, taking vecs, and using the stability assumption (A1),

plim
1

T

T∑

t=1

vec(yty
′
t) = (IK2 − A⊗ A)−1plim

1

T

T∑

t=1

vec(utu
′
t) + Op(1)

To see that plim 1
T

∑T
t=1 vec(utu

′
t) is bounded note that E[utu

′
t] = Σt < ∞ for all t

by Assumption (A4) and therefore lim 1
T

∑T
t=1 Σt < ∞. Since ut is mixing by (A2),

assumptions of Theorem 6.4.4 of Davidson (2000) hold and plim 1
T

∑T
t=1(vec(utu

′
t)−

Σt) = 0.
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3. For the consistency of â, note that â = a + ( 1
T

∑T
t=1 yt−1y

′
t−1)

−1 1
T

∑T
t=1 vec(uty

′
t−1).

By Slutsky’s Theorem,

plimâ− a = (plim
1

T

T∑

t=1

yt−1y
′
t−1)

−1plim
1

T

T∑

t=1

vec(uty
′
t−1) = 0

since plim 1
T

∑T
t=1 yt−1y

′
t−1 is bounded by Proposition 1.2 and plim 1

T

∑T
t=1 vec(uty

′
t−1) =

0 by Proposition 1.1.

4. Because vt = yt−1⊗ ut is a martingale difference w.r.t. Ft, we invoke a central limit
theorem for square integrable martingale difference sequences. In the multivariate
case this is given e.g. by Theorem 10.1 of Pötscher and Prucha (1997). Their
condition supT T−1 ∑T

t=1 E[|vt|2+δ] < ∞ for some δ > 0 is fulfilled by noting that for
every t, E[|vt|2+δ] ≤ B < ∞ by Assumption (A4). The condition of part (b) of their
Theorem 10.1 is limT→∞ T−1 ∑T

t=1 E[vtv
′
t] = W < ∞, which is just our Assumption

(A5).

5. The asymptotic distribution of
√

T (â−a) now follows by the consistency of 1
T

∑T
t=1 yty

′
t

in Proposition 1.2, by the asymptotic distribution of 1√
T

∑T
t=1 yt−1⊗ut in Proposition

1.4 and Cramér’s Theorem.

Proof of Proposition 2
Since ût = ut − (Â− A)yt−1 we can decompose the estimate of W as

WT =
1

T

T∑

t=1

vec(yt−1y
′
t−1)vec(ûtû

′
t)
′ (27)

=
1

T

T∑

t=1

vec(yt−1y
′
t−1)vec(utu

′
t)
′ (28)

− 1

T

T∑

t=1

vec(yt−1y
′
t−1)vec(uty

′
t−1)

′((Â− A)′ ⊗ IK) (29)

− 1

T

T∑

t=1

vec(yt−1y
′
t−1)vec(yt−1u

′
t)
′(IK ⊗ (Â− A)′) (30)

+
1

T

T∑

t=1

vec(yt−1y
′
t−1)vec(yt−1y

′
t−1)

′((Â− A)⊗ (Â− A))′ (31)

= T1 + T2 + T3 + T4 (32)

First we show the convergence in probability of T1 to W . The expectation of T1 is bounded:

E[yt−1y
′
t−1 ⊗ utu

′
t] =

∞∑

i=0

∞∑

j=0

(Ai ⊗ Aj)E[vec(ut−ju
′
t−i)vec(utu

′
t)
′]. (33)

Due to the law of iterated expectations, the expectation on the right hand side of (33)
is zero for all i 6= j. Applying the Cauchy-Schwartz inequality, we have for k, l, m, n =
1 . . . , K

E[|ut−i,kut−i,lut,mut,n|] ≤
(
Eu4

t−i,kEu4
t−i,lEu4

t,mEu4
t,n

)1/4 ≤ B < ∞
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by Assumption(A4). Thus, the expectation on the right hand side of (33) is bounded by
B and, hence,

E[yt−1y
′
t−1 ⊗ utu

′
t] ≤ B

∞∑

i=0

(A⊗ A)i = B(IK2 − A⊗ A)−1 < ∞

by Assumption (A1). Now, let xt = vec(yt−1y
′
t−1 ⊗ utu

′
t) and note that

|xt| =

∣∣∣∣∣∣
vec



∞∑

i=0

∞∑

j=0

(Ai ⊗ Aj)((ut−j−1u
′
t−i−1)⊗ (utu

′
t))




∣∣∣∣∣∣
(34)

≤
∞∑

i=0

∞∑

j=0

|λmax|i+j|vec((ut−j−1u
′
t−i−1)⊗ (utu

′
t))| (35)

almost surely. Thus,

‖xt − E[xt]‖1+δ ≤ ‖xt‖1+δ + ‖E[xt]‖1+δ (36)

≤ 2‖xt‖1+δ (37)

≤ 2
∞∑

i=0

∞∑

j=0

|λmax|i+j‖vec((ut−j−1u
′
t−i−1)⊗ (utu

′
t))‖1+δ (38)

≤ 2B

(1− |λmax|)2
< ∞ (39)

This, together with xt being L1 − NED on the mixing process ut (see Davidson, 2000)
ensures that a weak law of large numbers applies to xt, i.e., plim 1

T

∑T
t=1(xt − E[xt]) = 0.

Since Â − A = Op(T
−1/2), the terms T2, T3 and T4 converge to zero in probability

provided the means of vec(yty
′
t)vec(yty

′
t)
′ and vec(yt−1y

′
t−1)vec(yt−1u

′
t)
′ converge in prob-

ability to finite limits. To see that this is the case, one can argue just as above. For
example, let zt = vec((yty

′
t) ⊗ (yty

′
t) and note that E[zt] < ∞ as implied by (A1) and

(A4). Then,

‖zt − E[zt]‖1+δ ≤ 2‖zt‖1+δ ≤ 2B

(1− |λmax|)4
< ∞

Proof of Proposition 3
Based on Proposition 1.4, bT = 1√

T
BTu is asymptotically normally distributed with

asymptotic covariance matrix given by (Γ⊗Σu)
−1/2W (Γ⊗Σu)

−1/2, by using (A3), plimΓT =

Γ, plimΣ̂u = Σu, and Proposition C.4 (1) of Lütkepohl (1993). Defining b̃T = W
−1/2
T (ΓT⊗

Σ̂u)
1/2bT and using the same arguments as before, one obtains

b̃T
d→ N(0, IK2) (40)

We can now rewrite the test statistic as λT = b̃′T ΩT b̃T with

ΩT = W
1/2
T (Γ−1

T ⊗ IK)R′(RCT R′)−1R(Γ−1
T ⊗ IK)W

1/2
T .

Again using Slutsky’s Theorem and Proposition C.4 (1) of Lütkepohl (1993), ΩT con-
verges in probability to a finite positive semi-definite matrix given by Ω = W 1/2(Γ−1 ⊗
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IK)R′(RCR′)−1R(Γ−1 ⊗ IK)W 1/2. Decompose ΩT as ΩT = ΘT ΛT Θ′
T , where ΘT contains

the eigenvectors and ΛT is diagonal with the eigenvalues ΛT (1), . . . , ΛT (K2) of ΩT on its
diagonal. The test statistic can now be written as

λT = b̃T ΘT ΛT Θ′
T b̃′T =

K2∑

i=1

ΛT (i)(Θ′
T b̃T )2

i

Using (40) and the orthogonality of ΘT , Θ′
T b̃T

d→ N(0, IK2), which shows that λT is
asymptotically distributed as a weighted mixture of independent χ2(1)-random variables
where the weights are the eigenvalues Λ(i) of the matrix Ω. Q.E.D.

Proof of Proposition 4
As in the proof of Proposition 3, one can write the test statistic as φT = b̃′T ΩT b̃T

where b̃T
d→ N(0, IK2), but where ΩT is now given by

ΩT = W
1/2
T V −1

T R′(RV −1
T WV −1

T R′)−1RV −1
T W

1/2
T .

Note that ΩT is now idempotent and, as before, converges in probability to a finite positive
semi-definite matrix given by Ω = W 1/2V −1R′(RV −1WV −1R′)−1RV −1W 1/2. Since Ω is
idempotent, its eigenvalues are 0 and 1, where the number of non-zero eigenvalues is equal
to the rank N of Ω. Thus, φT has an asymptotic χ2

N distribution. Q.E.D.
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