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Introduction  
In current medical practice, there is a clear trend towards minimally invasive 

procedures in surgery and radiology. Medical imaging is very often used for diagnosis but 

also in percutaneous image guidance. One of the challenges that physicians still encounter 

is to accurately guide interventional tools such as needles to the region of interest for an 

effective treatment. Most percutaneous image-guided procedures such as tissue biopsy are 

performed under ultrasound, CT, MR, or X-ray. Ultrasound is widely used for guidance 

however it requires a lot of experience for proper and accurate needle guidance to the 

region of interest. X-ray is another real-time imaging that has the drawback of lacking 

soft tissue contrast information. CT and MR enable soft tissue visualization; however 

they require to be combined with ultrasound or X-ray for real-time guidance and 

visualization of the distal end of the tip of the interventional tools. Thus, there is a clear 

need to have sensing capabilities at the tip of the interventional tools to confirm its 

position in the region of interest for an effective treatment. To this aim, several 

biomedical research groups investigated optical sensing at the tip of interventional probes 

to provide feedback on the tissue type during a procedure and subsequently confirm the 

position of the tip in the region of interest. 

Diffuse reflectance spectroscopy is an optical technique that enables tissue 

characterization by measuring the spectral response of tissue-light interaction. Broadband 

light is emitted via an optical fiber and is collected with another optical fiber after light 

absorption and scattering in the tissue. The collected light is acquired with a spectrometer 

that can resolves light in the visible and near infrared wavelength range below a micron. 

The use of light is clinically appealing as it can detect physiological and biological 

changes whereas medical imaging only provides morphological information. Relevant 

biological parameters, namely blood oxygenation and content in the probed volume, 

could be extracted from the tissue spectral response to light illumination. These blood-

derived parameters have shown to be of great relevance to distinguish between normal 

and dysplastic tissues. However, no existing studies investigated the potential of diffuse 

reflectance spectroscopy in the infrared beyond 1000 nm due to the limitation of silicon 

detectors to sense light at wavelengths above a micron.  

This thesis focuses on investigating diffuse reflectance spectra acquired at the 

distal end of a custom-made needle in a wavelength range extended to 1800 nm as 

opposed to the commonly used wavelength range presented in existing studies in 

literature. Because of the limited sensitivity of silicon detectors to measure beyond 1000 

nm, an InGaAs detector was added to a silicon detector to measure spectra between 500 

and 1800 nm. The hypothesis is that additional biological chromophores, besides the 

blood-derived chromophores, have an optical signature in the infrared wavelength range 

which can be used for advanced tissue characterization. Different evaluation techniques 

have been used to validate a mathematical model that derives the physiological and 

biological tissue composition from the spectra. The impact of the wavelength range 

extension on the clinical diagnosis has been assessed for different medical applications in 
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the field of oncology. For each investigated organ such as breast, lung, and liver; a 

combination of parameters set enables discrimination of the abnormal tissue from healthy 

tissue. Multivariate data analysis methods and other statistical tools used throughout this 

thesis assessed the clinical performance of diffuse reflectance spectroscopy between 500 

and 1800 nm for tissue diagnosis and confirmation of the location of the needle tip for 

tissue biopsy or treatment. 

The ultimate goal of this thesis is to highlight the potential of diffuse reflectance 

spectroscopy in the demarcation of malignant and benign tissues from normal tissue 

based on the parameters that are derived from the spectral signals over a wide wavelength 

range in an image-guided clinical setting.  
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Chapter 1 

Abstract 

Over the last decade, several groups working on biomedical optics have developed 

setups to perform diffuse reflectance spectroscopy measurements acquired with fiber 

optic probes for clinical diagnosis. Several clinical studies were conducted to discriminate 

healthy from dysplastic tissue using different classification methods. Two different 

approaches have been used: a purely statistical approach where the unprocessed spectra 

are directly related to the clinical diagnosis, and a method that first analyses the spectra 

making use of the knowledge of tissue optics and then relate the outcome to the clinical 

diagnosis. The aim of this review is to present an overview of various models for 

analyzing reflectance spectra that are employed by different groups as well as the type of 

clinical studies conducted by these groups.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

11 
 

Chapter 1 Modeling diffuse reflectance spectroscopy: a review 

1. Introduction 

Optical spectroscopy is a field that has been growing over the last two decades 

with a strong emphasis on evaluating the diagnostic performance given a clinical 

application. 

There are three methods used by the biomedical photonics community to describe 

the reflectance in order to extract the optical properties from which physical and 

physiological parameters can be deduced: time domain [1-4], frequency domain [2, 4-6] 

and steady-state domain [7-9]. In the case of time-resolved measurements, what is 

actually measured is not a spectrum but the temporal changes of a near infrared (NIR) 

femto- or pico- second pulsed laser source measured with a near infrared photo multiplier 

tube (NIR-PMT) in a single or narrow band wavelength. From the measured time 

response of the tissue, one could assess the peak time value in combination with the 

integral of the measured signal that enables the determination of the absorption and 

reduced scattering coefficients [7]. By using multiple lasers at different wavelengths, the 

optical properties over a wide wavelength range can be estimated. Similarly, in the 

frequency-resolved domain, modulated light is detected after its interaction with the tissue 

and it is subsequently phase-shifted and amplitude demodulated. From both the phase 

shift and the modulation of the detected signal for different frequencies, one can 

determine the absorption and scattering coefficients from the real and imaginary part of 

the wave number [10]. In the steady-state domain, a broadband white light source is most 

commonly used to illuminate the tissue by making use of optical fibers and the reflected 

light is collected with another or the same fiber after being subject to scattering and 

absorption. From this measured diffuse reflectance spectra the absorption and scattering 

coefficients can be deduced [9].  

Various approaches were developed by different research groups to translate the 

acquired spectral data into clinically relevant parameters. There are three main 

approaches that can be distinguished in literature. The first approach is to directly 

correlate the raw measured spectra with the classical diagnosis. This method does not 

require any data processing and uses spectral analysis techniques such as principal 

component analysis, neural networks, and partially least squares discriminant analysis. 

The second approach consists of first translating the spectral data into physical properties 

such as the absorption and reduced scattering coefficients for different wavelengths on 

which the statistical analysis are performed and then investigate the correlation with the 

classical diagnosis. This method requires prior knowledge of light-tissue interaction. The 

third approach translates these optical properties into biologically relevant parameters. 

This uses additional prior knowledge on the optical properties of various biological 

substances that absorb and scatter light. These last methods require mathematical models 

that describe the measured diffuse reflectance spectra in terms of input parameters. 

The third approach, having received the most attention, will be discussed in more 

detail here. An overview of the recent developments in this model based approach will be 

presented. A plethora of efforts in investigating the validity of these models was 

performed in order to validate the reliability of the parameterization of the measured 

optical spectra. Thorough validations and assessments of the models are generally done 

by evaluating their outcome when applied to measurements with actual a priori known 
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optical properties of phantoms [11]. A list of all the existing biological chromophores that 

have been used so far in literature is given. Finally, an overview of the clinical 

applications that were investigated with diffuse reflectance spectroscopy such as 

treatment monitoring, complication prediction, needle guidance, tumor margin 

assessment and optical biopsy. 

The aim of this review is to present the wide panoply of ways of analyzing diffuse 

reflectance spectroscopy measurements aiming at extracting the relevant clinical 

parameters. 

2. Modeling of optical spectra 

Definition 

 Diffuse reflectance spectroscopy corresponds to the study of light absorption and 

scattering as a function of wavelength. Depending on the nature of the material that is 

being illuminated, light could either travel through the media along the direction of 

illumination or be diffused due to the turbidity of the media. 

 In the biomedical field, additionally to absorption, light interaction with tissue is 

influenced by the biological substructures that scatter light such as mitochondria, 

connective tissue, nuclei, etc. 

 

Analytical models to translate spectral measurements into optical properties 

Several groups use a derivation of the diffusion theory to describe the measured 

spectra with a well-defined analytical model. From the Boltzmann transport equation, the 

light propagation in turbid media can be described and is based on energy conservation by 

accounting for the amount of photons in a specific volume at a certain position per unit 

solid angle and time [12]. An analytical solution can be obtained by solving the 

Boltzmann transport equation under the diffusion approximation assumptions which are 

namely: (a) the fluence rate due to the highly forward scattering can be converted into 

fluence rate due to an isotropic scattering by expressing the scattering as reduced 

scattering using the similarity principle [1]. By doing such, the tissue anisotropy factor is 

taken into account with the scattering to obtain the reduced scattering 

 

  
          , (1) 

 

where    and   are the tissue scattering and anisotropy, respectively. (b) In case of highly 

scattering media such as in tissue, the fluence rate   satisifies the diffusion equation 

 

         ⁄                              , (2) 

 

with   being the absorption coefficient of tissue, c the celerity of light in tissue,   being 

the source term truncated after the first order spherical harmonics corresponding to low 

anisotropy photon sources in the tissue, and   is the diffusion constant assumed to be 

constant for homogenous media and is expressed as 

 

   [       
  ]⁄  . (3) 
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This approximation holds as long as the tissue absorption is small compared to the 

reduced scattering while the inverse of the reduced scattering is larger than the source-

detector separation  . (c) The third assumption is that the source terms in equation (2) 

consist of a distribution of single scattering sources along the axis normal to the boundary 

between the tissue and the source surface. 

 The diffusion equation can be solved analytically given specific boundary 

conditions that correspond to specific geometries. Throughout this review, the semi-

infinite media geometry is described as it is the most commonly used in literature. The 

semi-infinite media geometry corresponds to the fact that the tissue medium is delimited 

by the non-scattering probe and the scattering tissue medium [9]. The boundary condition 

can mathematically be expressed as  

 

                ⁄        , (4) 

 

meaning that the flux is null at the interface between the tissue and the probe [13] with 

    being the coordinate of the boundary along the normal to the interface. In Eq. (4),   

is a parameter that depends on the refractive index of the tissue and the surrounding 

medium. From the fluence rate obtained by solving the diffusion equation (Eq.2) given 

the boundary condition in Eq. (4), the reflectance   from the medium is calculated as the 

current across the boundary via Fick‟s law i.e. 

 

                 ⁄      . (5) 

 

In the case of the time-resolved domain, the reflectance of light   as a function of 

the absorption and reduced scattering coefficients as well as the radial distance   from the 

source at     as found by Farrell et al. [9] 
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with      [      
     ]

  ⁄  being the effective attenuation coefficient,    

  
    

     ⁄  being the albedo and          
     the location of the virtual scattering 

source. The extrapolated boundary condition is expressed as       . Furthermore, 

 ̃     
       ⁄  is the distance between the single scattering source and the collecting 

fiber, and  ̃           
       ⁄  is the distance between the image source and the 

collecting fiber.  

 

Analytical models to transform optical properties into biological, biochemical and 

physiological parameters 

Generally, a broadband white light source is used to illuminate the tissue and the 

reflected light is collected with a spectrometer. From a single reflectance measurement, it 

is not possible to extract both absorption and reduced scattering coefficients at a given 
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wavelength; therefore at least two different source-detector distance separations are 

required for that aim. On the other hand, by using a priori wavelength-dependent 

knowledge of the scattering and the absorption coefficient of the chromophores present in 

the measured tissue, it is possible to estimate the concentrations or volume fractions of 

the various biological substances from a single reflectance measurement. The absorption 

coefficient is generally expressed as the sum of the various chromophores absorption 

coefficients weighted by the corresponding concentration or volume fractions: 

 

      ∑ [  ]    

 
       , (7) 

 

with [  ] and    
    are the concentration and the absorption coefficient of the i-th out of 

the total amount N of chromophores present in tissue. The absorption coefficients as a 

function of the wavelength of each chromophores are known from literature and are used 

as a prori knowledge to fit the measured absorption in order to estimate the 

concentrations [  ] of each of the various biological constituents. The reduced scattering 

can be expressed as a function of wavelength by considering a Mie and a Rayleigh 

scattering contribution [14]: 

 

  
          

             
   , (8) 

 

with      and           corresponds to the Mie and Rayleigh reduced scattering 

amplitude, respectively. The   parameter corresponds to the Mie reduced scattering slope 

and correlates with the average particles size. When computing the reduced scattering 

with the Mie theory, it was observed that   decreases with the average diameter of the 

particles according to a Lorentzian cumulative function [15]. In a similar way as for the 

absorption coefficient, non wavelength-dependent parameters such as the reduced 

scattering amplitudes and slope are fitted from the estimated total reduced scattering   
 
. 

 Regarding the steady-state domain, one could use a single reflectance 

measurement only and estimate the clinical related parameters without having to estimate 

the optical properties beforehand. Indeed, by implementing Eq. (7) and (8) in Eq. (6), the 

chromophores concentrations and reduced scattering amplitudes and slopes can be 

immediately determined because the wavelength-dependency is replaced by a priori 

knowledge of the absorption coefficient of the various chromophores and the reduced 

scattering was assumed to be a power law function. In this way, the fitting model locks 

onto the spectral features and shapes of the measured reflectance. In the case of time-

resolved and frequency-resolved domain, only two equations are used to estimate the two 

optical parameters for each wavelength that is used for the light source. Subsequently, N 

parameters are derived by fitting the estimated absorption coefficient from the linear Eq. 

(7) and 3 parameters from Eq. (8) by applying a non-linear fit. In principle, min(N,3) 

number of wavelengths for light source is sufficient to estimate the various parameters of 

interest. However, in the case of the steady-state domain where only a single reflectance 

measurement is used to determine the parameters, there are N+3 parameters to fit from a 

highly non-linear equation such as Eq. (6).  
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Empirical models 

 In many cases, miniaturization of the optical probes requires a small source-

detector optical fiber separation. As a result, the mathematical assumptions behind 

diffusion theory are no longer valid. Therefore empirical models were developed by 

several groups to extract the optical properties. In most cases, the mathematical empirical 

models are either developed by modeling the reflectance measurements of a wide range 

of phantoms with different known optical properties or by using Monte-Carlo based 

approach. 

 The group of Bigio has started diffuse reflectance spectroscopy measurements in 

the mid-90 [16] using elastic scattering spectroscopy approach and principal component 

analysis to evaluate the differences in the measured spectra. A decade later, they have 

modeled the reflectance measurement for a 250 μm fiber distance separation by using the 

following empirical expression for R: 

  

       
                   

    ⁄   , (9) 

 

with    ⟦    ⟧  being constant coefficients derived from reflectance Monte-Carlo 

simulations and experiments for different absorption and reduced scattering coefficients 

[17]. From this model, inserting Eq. (7) and (8) enables the extraction of the clinical 

relevant parameters. 

  Zonios et al. have slightly modified the expression derived from diffusion theory 

Eq. (6) making it suitable for short fiber distance separation [18-19]. From measurements 

in polystyrene bead suspensions with known optical properties, they empirically defined 

two parameters    and    that are a scaling factor for the reflectance R and an effective 

radius replacing the actual fiber distance  , respectively. They have also developed an 

empirical model which seem to have similar performance than the modified diffusion 

theory approximation solution [20] 

 

       
 ⁄        

 ⁄    , (10) 

 

with     and    being two parameters that are derived from a reflectance measurement of 

a phantom with known optical properties. 

Another approach to estimate clinical relevant parameters is to make use of 

different path lengths in the steady-state domain as suggested by the group of Sterenborg 

in 2003 [21]. With this technique, the apparent path length is independent of the optical 

properties of the tissue but depends only on the fiber diameter as has been verified by 

Monte-Carlo simulations and experimental measurements on phantoms with known 

optical properties. Typically, for fiber diameters of 400 and 1000 microns, the apparent 

path length would be of 320 and 700 microns, respectively. Differential path length 

spectroscopy enables very shallow probing of the tissue. This has the advantage of 

assessing the optical properties of superficial tissue layers with a thickness below a 

millimeter and can be very useful to detect precancerous lesions with morphological and 
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physiological changes typically occurs in the mucosa. The reflectance model for the 

differential path length spectroscopy measurements is expressed as follows 

      
           , (11) 

 

with    being a proportionality constant that depends on the distance between the fiber 

and the calibration standards (spectralon) and   being the apparent path length that is 

proportional to the optical fiber diameter. 

In 2008, the same group developed a similar model for single fiber measurements 

which is used for light delivery and collection. The reflectance is modeled by the 

mathematical expression in Eq. (11). Similarly to the differential path length 

configuration, the apparent path length is a function of the fiber diameter and depends on 

the optical properties of the probed tissue [22]. From Monte Carlo simulations and 

phantoms measurements with a wide range of optical properties, the apparent path is 

empirically found to be 

 

  [   
         ] [   

        
                

   ]⁄  , (12) 

 

with        being the optical fiber diameter and [           ]  [               

                        ]  four parameters derived from the Monte Carlo and 

phantoms study of known optical properties. 

 

Probabilistic models 

Analytical expressions derived from the diffusion equation work well for simple 

geometries such as for semi-infinite media. For more complicated geometries additional 

approximations are required to come to analytical expressions for the measured 

reflectance spectra that may impact the accuracy with which the optical properties can be 

derived from the model. 

For complex geometries where the distance between the emitting and collecting 

fibers is small and for which the shape as well as the optical properties of the probe 

influence the reflectance measurements, an alternative to the analytical models is a 

probabilistic approach of solving the transport equation. This approach has the ability to 

cope with cases where the media is not highly scattering i.e. where the absorption 

coefficient greater than the reduced scattering coefficient. The most commonly used 

probabilistic model for the photon transport in tissue is the Monte Carlo approach [23-

24]. This approach requires the absorption and scattering coefficients as well as the 

anisotropy factor as input parameters. The probability density function expressed as an 

exponential distribution is then given by 

 

              
          , (13) 

 

which corresponds to the probability that a photon is being scattered and absorbed within 

a path length   along the photon direction of propagation. This distance is randomly 

sampled based on a uniformly distributed random number   [   ] as follows 
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                ⁄  . (14) 

 

Two additional probability density functions,      and     , are required to determine 

the deflection angles along the polar and the azimuthal orientations, respectively. The 

probability density function for the polar distribution describes the angular distribution of 

the scattering and is often modeled by the formulation of the phase function suggested by 

Henyey-Greenstein yielding the polar angle to be expressed as [25] 

 

       [
 

  
(     (

    

       
)
 

)] , (15) 

 

whereas the azimuthal distribution is often assumed to be uniformly distribution ranging 

between zero and 2  and therefore the azimuthal angle is given by 

 

      . (16) 

 

From these distributions, the reflectance can be computed by simulating for a large 

number of photons (typical several millions or more) their trajectories. Such a large 

number is required to statistically reduce the standard deviations of the reflectance for a 

given set of optical parameters. The photons are launched from the source into the tissue 

with a unity weight and are gradually decreased for each step with a weight that derives 

from the Beer-Lambert law which relates the absorption to the initial light intensity and 

the path length. Each photon is subject to angular deflections described by Eq. (15) and 

(16) at each scattering event. For each incremental step size, the position of each photon 

is recorded along the path length. Given its iterative aspect, this approach is much more 

time consuming than the analytical models whether they are empirical or derive from 

diffusion theory. 

 Table 1 summarizes the types of modeling and measurement domains that are 

being used by the several research groups in the field of biomedical photonics. The 

amount of publications related to clinical studies is also displayed. Additionally, the fiber 

source-detector separation distance is also given. 
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Table 1. Overview of technological specification of the optical spectroscopy devices by 

several research groups. 

Group, location Type of model 

Wavelength 

range  

source-detector 

separation 

Bigio, Boston 

University, USA 
Empirical 350-800 nm 0.7-3.2 mm 

Cubeddu, 

Politecnico Milano, 

Italy 

Diffusion Theory 600-1100 nm Larger than 1 cm 

Feld, MIT, USA Diffusion Theory 375-750 nm 1 mm 

Jacques, Oregon 

University, USA 
Diffusion Theory 450-950 nm 2.5-3 mm 

Philips Research, 

The Netherlands 
Diffusion Theory 500-1600 nm 2.5 mm 

Ramanujam, Duke 

University, USA 
Probabilistic 350-600 nm Below 1 mm 

Sterenborg, 

Erasmus MC, The 

Netherlands 

Empirical 375-1060 nm Single fiber, 0.2-1 mm 

Tromberg, 

Beckman Laser 

Institute, USA 

Diffusion Theory 650-1000 nm Larger than 1 cm 

Tunnell, Texas 

University, USA 
Look-up table 375-700 nm Below 1 mm 

Zonios, University 

of Ioannina ,Greece 

Diffusion Theory 

Empirical 
450-1000 nm Below 1 mm 

 

Inhomogeneities 

Diffusion theory assumes a semi-infinite homogenous medium but this is 

obviously an assumption that does not fully describe the morphological tissue complexity. 

The effects of inhomogeneities are expected to be largest for large sampling volumes and 

disappear for sampling volumes of dimensions smaller than the diffusion length. 

Doornbos et al. [26] used spatially resolved diffuse reflectance with source detector 

separations up to 20 mm. On the basis of diffusion theory calculated absorption spectra, 

the measurements could not be fitted properly with the absorption spectra of the present 

chromophores. He observed smoothening of the absorption spectra. He and others found 

that this artifact could be fitted by adding an offset to the fit of the absorption spectrum, 

i.e. a wavelength independent constant absorption coefficient. Sterenborg et al. [27] 

showed that the measured spectra could be fitted with the known set of absorbers up to 

the measurement noise with differential pathlength spectroscopy (DPS) technique using 

400 micron fibers. That the sensitivity of the method to inhomogeneities is related to the 

size of the sampling volume with respect to the diffusion length and that the effects of 

inhomogeneities are expressed as misfits in certain spectral regions is illustrated by an 
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experiment by Nachabé et al. [28]. He used the method described above with a sampling 

volume of a couple of mm
3
. His measurements were performed through a needle inside 

tissue. Inside muscle and fat his spectra fitted perfectly, while close to a boundary spectral 

misfits occurred. The same smoothing was observed as in the spectra of Doornbos et al. 

The relation to the ratio between sampling volume and diffusion length is obvious: when 

sampling larger volumes, inhomogeneities cause spatial changes in fluence rates that 

diffusion theory mistakenly interprets by assuming incorrect optical properties. 

 

3. Fitting a model to measurements and fit quality assessment 

Model inversion 

In order to extract the optical properties from a measurement, a non-linear 

inversion is used to minimize the residual between the reflectance measurement and the 

model. To derive the clinically related parameters, the absorption coefficients of the 

chromophores of interest are fixed parameters in the model whereas the concentrations 

parameters in Eq. (7) are free parameters. With respect to the reduced scattering, the 

amplitudes and the slope are the free parameters. The first step in the inversion problem is 

to use an initial starting guess values for the model which will be used for a forward 

computation of the reflectance and that will be compared to the measurement. The free 

parameters are then iteratively updated until the sum of squares error is minimized. The 

most commonly used nonlinear least-squares inversion algorithm that is used is the 

Levenberg-Marquardt algorithm whereas few people presented other inversion techniques 

such as Nelder-Mead direct search simplex method [29], genetic algorithm [30] and 

Gauss-Newton [31].  

Some groups have different approaches with respect to the recovery of the free 

parameters such as look-up table principles based on Monte Carlo forward calculations of 

reflectance [32] or with phantoms with known optical properties are used to extract the 

physiological and biological constitution of the measured tissue [33]. Briefly, reflectance 

measurements from a set of phantoms with various absorption and reduced scattering 

coefficients are performed. The reflectance values can be mapped from the wavelength 

space to a 2D optical property space creating a sparse matrix for the reflectance. 

Subsequently, this space is interpolated to uniformly spaced data points of optical 

properties to obtain a look-up table for diffuse reflectance values.  

 

Modifications to the absorption coefficient expression 

 Investigators that were interested in determining blood volumes and its 

oxygenation level could not estimate the proper values from phantoms with known blood 

content when measuring the spectra for short wavelengths. At the beginning it was 

thought that the assumptions of the diffusion theory did not hold due to the fact that 

absorption of blood at short wavelengths was very high [34]. However, in the mid-90s, 

some groups investigated whether the cause was due to the difference in path lengths of 

the photons for the different wavelengths. As a matter of fact, as blood is not 

homogenously distributed in tissue but confined in small structures such as vessels, the 

photons at wavelengths below 500 nm have a much higher chance to be completely 

absorbed when being in a vessel as compared to the photons at higher wavelengths (cf. 
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Figure 1). Several groups looked into correction factors for the non-homogenous 

distribution of chromophores and mainly hemoglobin derivatives. Computational studies 

modeled distributions of hemoglobin in blood vessels in order to assess a pigment 

packaging correction factor [35-37]. Although it took almost a decade after its publication 

to be used by the field, nowadays most of the algorithms apply this correction factor to 

the absorption coefficient in Eq. (7). The most commonly used expression of the pigment 

packaging factor that assumes that blood is confined in cylindrical shaped tubes of 

diameter   derived by Verkruysse et al. and given by 

 

  [           ]      ⁄  . (17) 

 

In most cases, the absorption coefficient in Eq. (17) corresponds to the absorption of 

hemoglobin derived parameters only. In Eq. (7), the   factor is multiplied to the terms 

related to the chromophores that are considered to be subject to the pigment packaging 

effect [38]. More recently, a couple of experimental studies based on phantoms confirmed 

the importance of having such a factor to correct in the model [39, 40]. 

 Often Eq. (7) is implemented in a slightly different form where the total blood 

volume fraction and the oxygen saturation in blood are estimated instead of the 

concentration of oxygenated and deoxygenated hemoglobin: 

 

  
             [      

               
  ] , (18) 

 

with   
     and   

   being the absorption coefficient of oxygenated and deoxygenated 

hemoglobin, respectively; considering a concentration of hemoglobin in full human blood 

of 150g/L. The total blood volume fraction and the oxygen saturation level are noted as 

       and     , respectively. This formulation has the advantage of self-constraining 

     parameter between 0 and 1. Furthermore, it also reduces the covariance between 

       and      than between the Hb and HbO2 concentrations. Similarly, an equivalent 

notation is adopted for water and lipid where the sum of these two absorbers and the lipid 

fraction within this sum are estimated instead of their respective concentrations [28]. 

 

Modification of the reduced scattering expression 

 To obtain a more stable fit, the reduced scattering coefficient in Eq. (8) is often 

normalized to a specific wavelength in order to obtain amplitudes of the reduced 

scattering which is constrained to smaller ranges. Furthermore, instead of estimating 

separately the reduced scattering amplitudes due to Mie and Rayleigh scattering, fitting a 

Mie-to-total scattering fraction reduces the covariance. The implemented reduced 

scattering in the models could be thus expressed as follows 

 

  
      [     ⁄              ⁄    ] , (22) 

 

with    being a normalization wavelength,   the reduced scattering amplitude at    and   

the Mie scattering fraction within Mie and Rayleigh scattering. 
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Confidence intervals 

 The first question that arises after fitting a model to the measurements is whether 

the estimated values of the free parameters do make sense. Amelink et al. [41] published 

an extensive study to demonstrate the added value of computing the confidence intervals 

of the estimated free parameters as it gives indication on the bias in the obtained values. 

The computation of the confidence interval is described in detail by Amelink et al. [41] 

and a comparison of confidence intervals on simulated spectra with different level of 

synthetic noises as well when fitting with a missing absorber where demonstrated to 

present the effect on the values of the intervals. Briefly, to compute the confidence 

interval for each free parameter, the covariance matrix is first approximated as the 

multiplication of the reduced chi-square by the inverse of the hessian of the chi-square 

with respect to the free parameters. The confidence intervals correspond to the square root 

of the diagonal elements of the covariance matrix. 

 

F-test for number of parameters and model assessments 

 As in any research field that requires fitting a model to a measurement, 

researchers should be very careful when adding additional parameters to their model. By 

adding additional free parameters, it is possible to reduce the residual whilst biasing the 

actual values of the parameters. 

 As mentioned in section 3, the main absorbers in human tissue are Hb, HbO2, H2O 

and lipid which are also all together the most abundant biological substances in the 

human body. Therefore, the related parameters to these absorbers will properly lock onto 

the spectral shape. In principle, by including the free parameters related to the reduced 

scattering, the fit curve should overlay with the measurement curve yielding a small 

residual. However, in some cases the residual has a spectral shape suggesting a missing 

chromophore in the model or that the model does not describe well enough the 

measurements. 

 In order to evaluate whether adding a chromophore or improving the model by 

adding an extra free parameter is necessary, an F-test can be applied by using the chi-

square values from fitting the measurement with and without the additional free 

parameters. If the obtained F-value is close to unity, the initial model is the one that 

describes the measurements best. However if the F-value is greater than unity there are 

two possible interpretations. Either, the model with the additional parameters describes 

the measurements best or the model with lower amount of fitting parameters is the most 

suitable. To know which of these two conditions is correct; the computation of the p-

value from the F-value is required [27]. 

 

4. Biological chromophores 

As most of the models use the absorption or extinction coefficients of the various 

chromophores of interest as fixed input arguments, it is of high importance to have the 

most accurate coefficients for each chromophore for which the concentration is estimated. 

This section gives an overview of most of the biological chromophores that were 

investigated in literature. 
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Blood derived chromophores 

 Deoxygenated and oxygenated hemoglobin (Hb and HbO2) are the two main 

chromophores that are investigated by the biomedical photonics community as they are 

the two main optical absorbers that can be measured with silicon detector based 

spectrometers. These two biological substances are of great interest from a clinical point 

of view as they can be combined to define the oxygenation level of blood i.e. the 

concentration of HbO2 over the sum of both hemoglobin derivatives. The oxygenation 

level of blood is an important indicator of hypoxia [42] as well as tumor [43-45]. 

 Absorption coefficients of Hb and HbO2 measured by Scott Prahl are available for 

the biomedical photonics community in the website of the Oregon Medical Laser Center 

[46]. Another set of coefficients is also available in a book written by Zijlstra et al. which 

also reports the coefficients for different pH and temperature of the blood samples as well 

as coefficients for various animals [47]. Additionally, the book contains absorption 

coefficients of other blood derivatives such as methemoglobin (metHb), sulfhemoglobin 

(SHb), and carboxyhemoglobin (COHb). 

 Amelink et al. investigated which of the sources provides the most reliable 

coefficients as it is very important to have the most accurate absorption coefficients to 

properly fit the measurements [48]. He concluded that the absorption coefficients reported 

by Zijlstra et al. allowed most accurate fitting of the measurements. Figure 1 depicts the 

absorption coefficients of Hb and HbO2 by Prahl and Zijlstra. 

 

 
Figure 1. Hb and HbO2 absorption coefficients by Prahl [61] and Zijlstra [47]. 
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Water 

 Water is one of the most abundant biological substances in human body ranging 

from 60 to 80% in body weight [49]. Therefore, water is also one of the most important 

biological chromophore that is estimated with spectroscopy technique. Within the visible 

wavelength range, the absorption coefficient of water is insignificant. However, in the 

infrared, water has several absorption peaks with absolute values above one cm
-1

, as 

depicted in Figure 2, which are the most dominant absorption peaks in the infrared range. 

Water absorption coefficients change significantly for different temperatures [50]. 

Measurements of water absorption coefficients made at different temperatures ranging 

from 30 °C up to 45 °C demonstrated that the higher the temperature, the more the 972-

nm absorption peak of the water shifts to lower wavelengths. The shift is roughly 5 nm 

for an increase in temperature from 30 to 40 °C accompanied with typically 5%  higher 

absorption values. Additionally, it appeared that the water absorption value at 1192 nm 

decreases with negligible shift of the peak [50].  

Among the various research groups involved in estimating water volume fractions 

from spectroscopy measurements, the group of Tromberg and Cubeddu always estimate 

this component as they are mainly interested in water composition in breast (cf. Table 2). 

However, given the wavelength range for their measurements, only one single absorption 

peak at 972 enables determination of water fractions. Extending the measurement range at 

least up to 1600 nm is advisable as additional water absorption peaks exist (cf. Fig. 2). It 

was proven that in case of using the steady-state diffusion theory model, extension of the 

wavelength range significantly improved the confidence in estimating the water volume 

fractions [28].   The group of Sterenborg and Zonios occasionally determined water 

volume fractions in case of breast and skin measurements, respectively (cf. Table 2). 
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Figure 2. Water absorption coefficient [54]. 

 

Lipid 

In the human body, lipids are mainly found in adipose tissue such as subcutaneous 

fat layers as well in visceral fat surrounding the organs. They are main components of cell 

membranes and therefore could be found everywhere in the body. The lipid concentration 

in adipose tissue ranges from 60 to 87% for adults and 23 to 47% for infants [51].  

One of the very first lipid absorption coefficient measurements that was made 

available to the community was presented by Conway et al. who measured pork lard from 

800 to 1080 nm [52]. This measurement was performed by Van Veen et al. starting from 

400 nm and showed additional peaks of weak absorption coefficient up to 800 nm [53]. 

Nachabé et al. has performed measurement of lipid between 900 and 1600 nm [50] and 

re-measured the absorption coefficient from 400 up to 2200 nm as shown in Figure 3 

[54]. 

Lipid is composed of three types of fat: saturated, monounsaturated, and 

polyunsaturated fat. Typically, human subcutaneous fat is composed of 21%, 46%, and 

33% of saturated, monounsaturated, and polyunsaturated fat, respectively. The variations 

in composition of fat types yield to slight variations in the absorption peaks. For example, 

lipid constituted of 42%, 46%, and 12% of saturated, monounsaturated and 

polyunsaturated, respectively, shows an additional absorption peak at 1170 nm [50].  
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Figure 3. Lipid absorption coefficient [54]. 

 

β-Carotene 

 β-carotene is one of the carotenoids which is mainly found in the skin, blood 

stream, and adipose cells. In human breast studies [43, 55-57], it showed to be an 

important absorber in adipose tissue as well as in oral cancer clinical studies [58] and 

vessel plaque detection [59]. This chromophore has its main absorption peak at 482 nm as 

depicted in Figure 4. The extinction coefficient of β-carotene depends on the substance it 

was diluted. Comparing the extinction coefficients of this absorber when it is dissolved in 

hexane and in lipid-rich tissue, respectively, as depicted in Figure 4, it shows that the 

extinction peak is 25 nm broader in the green wavelengths when diluted in lipid-rich 

tissue. Besides, the absolute value of the extinction coefficient at 482 nm is lower. 

 Most of the groups that use β-carotene in their model consider the extinction 

coefficient with this absorber diluted in adipose cell as it is expected to be in human body. 
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Figure 4. Absorption coefficient of β-carotene diluted in hexane and in adipose cells. 

 

Bilirubin 

 Bilirubin is a yellow liquid that is mainly found in the spleen and in the liver. In 

case of an excess of bilirubin secretion in the liver, it can no longer be stored in bile and 

therefore it flows in the blood stream and leaks into the tissue yielding the skin to become 

yellowish. 

 Similarly to β-carotene, bilirubin extinction coefficients depend on the media in 

which it was diluted. Kanick et al. presented bilirubin diluted in albumin extinction 

coefficients and it appeared to have its maximum at 467 nm whereas bilirubin diluted in 

chloroform has its peak at 453 nm [60] as depicted in Figure 5. 
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Figure 5. Absorption coefficient of bilirubin diluted in chloroform and in albumin [88]. 

 

Organ specific chromophores 

Some other studies investigated other chromophores that are organ specific such 

as skin, liver and breast. 

In the field of dermatology, melanin is an important absorber that is always taken 

into consideration in the model and is expressed as a power law 

  
                 ⁄        [61] or as an exponential decay function    

        

   [                ⁄  ]  with      being the minimum wavelength value for the 

fitting range and    being a fit parameter [62].  

Recently, measurements on liver showed the need to add the bile absorption 

coefficient for liver measurements as this organ is extremely abundant with bile ducts and 

demonstrated that bile concentrations are significantly different in liver metastases 

compared to healthy liver tissue [63].  

Taroni et al. investigated the absorption coefficient of collagen in the wavelength 

range from 600 to 1100 nm and demonstrated that it improves the fit mainly for 

measurements performed on dense breast tissue [64-66]. Nachabe et al. measured the 

collagen absorption coefficient of collagen from 500 to 1600 nm and presented the 

collagen concentration in various tumors types of breast tissue [67]. 

 Table 2 summarizes the different absorbers that are used in the different studies of 

various groups. 
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Table 2. Overview of biological chromophores used for specific organs by the various 

research groups developing optical spectroscopy tools for medical applications. 

Group, location Organ
 

Absorbers used in model 

Bigio, Boston 

University, USA 

Muscle [68] 

 

 

Hb, HbO2 

Cubeddu, 

Politecnico Milano, 

Italy 

Breast [64-66] 

 

 

 

Hb, HbO2, H2O, Lipid, Collagen 

Feld, MIT, USA Breast [55] 

Oral [58, 69] 

Cardiovascular [59,70] 

Cervix [71] 

 

Hb, HbO2, β-carotene 

Hb, HbO2, β-carotene 

Hb, HbO2, β-carotene, Ceroid 

Hb, HbO2, β-carotene 

 

Jacques, Oregon 

University, USA 

Gastrointestinal [72-74] 

 

Hb, HbO2 

Philips Research, 

The Netherlands 

Breast [67] 

 

Muscle [28] 

Neuro [75, 76] 

Liver [54, 63] 

 

Hb, HbO2, H2O, Lipid, β-carotene, 

Collagen 

Hb, HbO2, H2O, Lipid 

Hb, HbO2, H2O, Lipid 

Hb, HbO2, H2O, Lipid, Bile 

Ramanujam, Duke 

University, USA 

Breast [45, 56, 57, 77-81] 

Cervix [82, 83] 

Head and Neck [84, 85] 

 

Hb, HbO2, β-carotene 

Hb, HbO2, β-carotene 

Hb, HbO2 

Sterenborg, Erasmus 

MC, The 

Netherlands 

Breast [43] 

Head and Neck [86] 

Lung [21, 42, 87] 

Lung [88] 

Oral [89] 

Oral [90] 

Gastrointestinal [91] 

Urology [92] 

Hb, HbO2, β-carotene 

Hb, HbO2 

Hb, HbO2 

Hb, HbO2, Bilirubin 

Hb, HbO2 

Hb, HbO2, β-carotene 

Hb, HbO2 

Hb, HbO2 

 

Tromberg, Beckman 

Laser Institute, USA 

Breast [10, 44, 93-105] 

 

Hb, HbO2, H2O, Lipid 

 

Tunnell, Texas 

University, USA 

Skin [33, 40] 

Skin [106, 107] 

 

Hb, HbO2 

Hb, HbO2, Melanin 

Zonios, University of 

Ioannina ,Greece 

Gastrointestinal [18] 

Skin [15, 19, 62, 108, 109] 

Skin [110] 

Skin [111] 

Hb, HbO2  

Hb, HbO2, Melanin 

Hb, HbO2, H2O, Melanin  

Hb, HbO2, MetHb 
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5. Clinical applications 

Diagnosis 

 The most common clinical application is cancer diagnosis where malignant tissue 

is discriminated from the surrounding healthy tissue in order to assess tumors margins. 

For this aim, several tools were developed ranging from hand-held probes [44, 81] to pen-

like probes [55-57] and needle-like probes [21, 43, 75, 76]. Most of the studies clearly 

showed that there is a significant difference in blood oxygenation level between 

malignant and non-malignant tissues with non-malignant being less oxygenated. The 

same holds for the reduced scattering amplitude with higher values in malignant tissues 

compared to non-malignant tissues. These observations are independent of the organs. In 

many cases, the total amount of blood is also a discriminator with higher volume fractions 

in non-malignant tissues related to angiogenesis. It was also demonstrated that in the case 

of breast cancer the healthy tissue is rich in β-carotene compared to the malignant tissue 

as β-carotene is abundant in adipose tissue [43, 55-57, 67]. Groups that measure spectra 

above 900 nm are able to estimate water and lipid volume fractions and proved that 

obviously it is possible to discriminate non-malignant tissue as adipose tissue is rich in 

lipid [44, 67]. However, it is important to note that very often glandular tissue is included 

as non-malignant tissue and the statistics can be biased due to the fact that glandular is 

mainly rich in connective tissues.  

 Another organ that received a lot of attention is skin due to the fact that it is easily 

accessible. The group of Zonios has the largest experience in dermatological investigation 

with diffuse reflectance spectroscopy and showed that the main discriminator between the 

cancerous tissue and benign tissue is the melanin decay factor km. The group of Tunnell 

has been over the last five years active in investigating skin cancer diagnosis and showed 

that they can classify basal cell carcinoma from squamous cell carcinoma and benign skin 

tissue with a sensitivity and specificity ranging from 89% to 97% and 25% to 89%, 

respectively [106]. 

With respect to cervical cancer, several studies investigated the change in optical 

properties for different grades and it was demonstrated that blood volume fractions 

increases with the grade level [82, 83]. 

Colon tissues have also been investigated with diffuse reflectance spectroscopy to 

diagnose polyps and cancer [18, 112]. It was shown that blood volume fraction is the 

main discriminator between malignant and non-malignant and being less abundant in 

normal tissue. Another organ from the gastrointestinal system that was investigated by 

Amelink et al. is the esophagus where it was shown that blood volume fractions is also 

higher in cancer compared to healthy mucosa from the Barrett‟s esophagus. 

Diffuse reflectance spectroscopy investigations on the oral cavity showed that 

blood is a discriminator between cancerous tissue and normal tissue as well as the 

scattering amplitude and slope [89]. 

The group of Sterenborg has a lot of experience in lung cancer diagnosis where 

they showed that the blood oxygenation level is lower in cancerous tissue compared to 

healthy tissue using differential pathlength spectroscopy technique [21, 42, 87]. More 

recently, they have investigated the difference between metastasis and normal lymph 

nodes in the lung by integrating a single fiber in a fine-needle and showed that both blood 
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volume fraction and its oxygenation level are significantly different for the two types of 

lymph nodes [88]. 

A paucity of liver studies cannot allow for a clear conclusion with respect to the 

parameters that show differences between tumors and healthy tissue. Nachabé et al. 

performed a study to investigate the difference between colorectal metastasis in liver and 

the surrounding healthy tissue. It was shown that bile is a very important discriminator 

being more abundant in healthy tissue than the tumors. Similarly to breast and cervical 

cancer, it was shown that the reduced scattering amplitude is significantly higher in 

tumors. Furthermore, water showed similar trends to the scattering amplitude; the reason 

being that water is attracted to necrotic tissue that is abundantly present in most colorectal 

liver metastases. The high water content of collagenous stroma in general, and tumor 

induced stroma play a role as well. Another type of diagnosis investigated by Nachabé et 

al. corresponds to non-alcoholic fatty liver disease (NAFLD) diagnosis [54]. NAFLD is 

considered to be positively diagnosed for hepatic lipid accumulation as low as 5% and 

therefore very accurate tools are required to properly estimate the fat fraction. Nachabé et 

al. showed by comparing fat estimation with diffuse reflectance spectroscopy with other 

commonly used methods such as MR spectroscopy, MAS-NMR spectroscopy, high 

performance thin layer chromatography and histopathology being the gold standard. They 

concluded that diffuse reflectance spectroscopy provides comparable hepatic fat 

quantification for the various methods as well as clear differences in fat between a chow 

control mice group and a high fat diet mice group. 
Few studies exist with respect to the head and neck cancer. Breumer et al. [85] 

showed significant difference between squamous cell carcinomas and healthy tissue based 

on the blood oxygenation level. The cardiovascular field is also not very much 

investigated. The group of Feld did perform studies on distinguishing thrombotic plaques 

from vulnerable plaques and showed that they can classify both tissues with a sensitivity 

and specificity of 93% and 72%, respectively [59]. 

 

Tumor margins assessment 

 The group of Ramanujam has a wide experience in diffuse reflectance 

spectroscopy for breast cancer investigation and has recently developed a multiple fiber 

probe setup to evaluate breast tumor margins subject to surgery removal.  

They have showed in a study by Wilke et al. [78] that they reached sensitivity of 79% of 

the pathological close/positive margins and a specificity of 67%. More recently, a study 

by Kennedy et al. [81] showed that the reduced scattering amplitude and the blood 

volume fraction are both significantly higher in malignant tissue compared to the 

surrounding healthy breast tissue. 

 

Chemotherapy response monitoring 

The group of Tromberg has investigated the relation between the fit parameters 

and breast cancer chemotherapy responses. Monitoring the response to therapy can 

improve survival and reduce morbidity [44, 99, 100, 113]. 

Jakubowsky et al. used diffuse reflectance spectroscopy to monitor tumor 

responses to neoadjuvant chemotherapy prior to doxorubicincyclophosphamide therapy as 
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well as at several time points over the course of three treatment cycles of 68 days [100]. 

By investigating the tumor to normal tissue contrast in blood, water, lipid and blood 

oxygenation prior to treatment and comparing the values over a 10-week period, they 

showed that blood and water fractions dropped more than 50%, whereas lipid remained 

constant and the oxygenation level increased. Within only 5 days, half of the blood and 

water changes occurred making these two chromophores of high interest for breast 

chemotherapy monitoring. 

Shah et al. performed a similar study where diffuse reflectance spectroscopy 

measurements were employed in conjunction with magnetic resonance imaging (MRI) to 

assess tumor responses to presurgical neoadjuvant chemotherapy [99]. The study was 

conducted on patients with ductal carcinoma in situ breast tumors and the measurements 

were performed after the first and fourth cycles of doxorubicincyclophosphamide 

regimen. Spectral measurements are used to quantify bulk tissue optical and physiological 

parameters, which are mapped to T2- and T1-weighted contrast-enhanced MRI images. 

Initial spectroscopic measurements show high tumor/normal contrast in blood and water 

fraction colocalized with regions of strongly enhancing T2-wieghted signals. After the 

fourth cycle of chemotherapy, decreases in peak MRI contrast-enhancement values and 

apparent lesion volume (20% to 25% reduction in the spatial extent of the tumor) and a 

38.7% drop in mean blood content were observed. 

Tromberg et al. [113] performed a study on 12 young patients aged from 30 to 39 

years and investigated the potential of detecting tumors in pre-menopausal women and 

monitor the neoadjuvant chemotherapy. They showed that blood, water, and lipid volume 

fractions as well as the blood oxygenation level showed significant differences between 

normal and tumor. They came up with an empirical parameter called tissue optical index 

(TOI) corresponding to the product of deoxygenated hemoglobin concentration multiplied 

by the water fraction and divided by the lipid fraction to evaluate the response of tumors 

to chemotherapy. A 50% decrease in TOI within a single week after neoadjuvant 

chemotherapy was observed. 

Cerussi et al. [95] conducted a study where the goal was to investigate how early 

during the chemotherapy treatment can one predict whether a patient is a responder or not 

based on the fit-parameters derived from diffuse reflectance spectroscopy. Discrimination 

analysis based on the combination of deoxygenated hemoglobin concentration and water 

fractions classified responders from non-responders with 100% sensitivity and specificity 

within a single week after the treatment. 

From all these studies conducted by the group of Tromberg, it can be suggested 

that diffuse reflectance spectroscopy has a strong potential in properly monitoring 

chemotherapy responses as well as developing new strategies for individualized patient 

care. 

 

Photodynamic and radiotherapy monitoring 

 Photodynamic treatment (PDT) is an emerging treatment that is used to treat and 

reduce tumors size. It requires a photosensitizer such as aminolevulinic acid (ALA-5) that 

is absorbed by cells and coverted into protoporphoryn IX (PPIX). Subsequently, a single 

wavelength light is shined on the tumor causing light absorption by PPIX and causing 
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energy transfer from PPIX to oxygen. The reaction between the oxygen and the biological 

substances in the tumor provoke tissue damage. However the PDT dose of photosensitizer 

and light delivery can vary for patient to patient and therefore there is a crucial need in 

monitoring PDT. The group of Sterenborg performed several studies to monitor 

oxygenation during PDT procedures and showed increase in blood content as well its 

oxygenation at the treated tumor sites [86]. Similar study by Bargo et al. corroborated 

with these findings [72]. 

 Another type of treatment monitoring corresponds to irradiation treatment 

monitoring. Vishwanath et al. performed a preclinical study to investigate whether a final 

treatment outcome could be estimated from optical signatures in a murine model of head 

and neck cancer when treated with radiation [84]. They performed the study on 23 nude 

mice exposed to 39 Gy of radiation and 11 other as control group exposed to sham 

radiation. The measurements were performed until 17 days after treatment and they 

demonstrated that an increase in blood oxygenation can be observed starting 5 days post-

treatment and last up to 17 days. 

 

Complications prediction 

 Recently, the group of Jacques has investigated the potential of diffuse reflectance 

spectroscopy to predict anastomotic complications and gastric ischemic conditions during 

conduit creation [73, 74]. They have demonstrated that patients that had anastomotic 

complications showed to have higher blood content with lower oxygenation level 

measured in the distal gastric conduit. This study was performed in 23 patients during 

esophagectomy from which 8 showed anastomotic complications. They came to the 

conclusion that decreased oxygenation level in blood at either the completion of conduit 

or anastomosis is predictive of complication with a sensitivity and specificity of 71%. 

 

Needle guidance 

Diffuse reflectance spectroscopy sensing integrated in needles (e.g. biopsy 

needles) has shown to be a promising real-time feedback tool for improving percutaneous 

procedures. Van Veen et al. clearly showed the advantage of having real-time optical 

sensing feedback for breast biopsies [43]. Being able to discriminate the tumor site from 

the healthy tissue is of great relevance for clinician to be able to acquire the biopsy in the 

tumor site for further histopathological analysis. As a consequence, the total amount of 

repeated biopsy could be reduced. 

Rathmell et al. showed the added value of spinal needles with integrated optical 

fibers to be able to confirm the localization of the tip of a needle in the epidural space 

[75]. Based on the total amount of lipid that is estimated with diffuse reflectance 

spectroscopy, the epidural space can be accurately identified and discriminated from the 

surrounding tissues such as the ligamentum flavum or the cerebral spinal fluid (CSF).  

 

6. Conclusion 

Diffuse reflectance spectroscopy measurements acquired from fiber-optic hand-

held probes are extremely relevant for several clinical applications. As emphasized in this 
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review, the choice of the model should be carefully made by taking into consideration the 

geometrical aspects of the probe. The most common way of validating a model is to 

recover the optical properties from phantoms measurements with known optical 

properties. Several mathematical tools exist to evaluate the reliability of the estimated 

parameters as well as to investigate whether additional parameters need to be added to the 

model. 

Multitude of preclinical and clinical studies has been conducted and most of them 

converge to the same conclusions with respect to the analysis of the clinically relevant 

parameters in the aim to discriminate different types of tissues. However, the comparison 

between the different tools and the performance of the analysis is not always 

straightforward as there is a big variety of method, wavelength range, chromophores 

considered in the models, etc. that can influence the comparison. 

Anyhow, using diffuse reflectance spectroscopy showed sensitivity and specificity 

to discriminate malignant from non-malignant tissues ranging from 53% to 100% and 70 

to 100%, respectively. The performance of such diagnosis can be improved by combining 

fluorescence spectroscopy and also Raman spectroscopy. 

Diffuse reflectance spectroscopy has been intensively used in the clinic and 

demonstrated great potential in several clinical applications thanks to its minimal 

invasiveness and high optical contrast between various chromophores that enables tissue 

discrimination.   
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Abstract 

We demonstrate a method to estimate the concentrations of water and lipid in 

scattering media such as biological tissues with diffuse optical spectra acquired over the 

range of 900 – 1600 nm. Estimations were performed by fitting the spectra to a model of 

light propagation in scattering media derived from diffusion theory. To validate the 

method, spectra were acquired from tissue phantoms consisting of lipid and water 

emulsions and swine tissues ex vivo with a two-fiber probe.  
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1. Introduction 

Diffuse optical spectroscopy (DOS) is a widely used technique that can provide a 

wealth of clinically-relevant information about the physiological composition of tissues 

[1-4]. DOS measurements can be obtained non-invasively with an optical fiber probe, 

making them well-suited for guiding tissue resections during open surgeries. In the field 

of biomedical spectroscopy, many studies have focused on the estimation of the 

concentrations of deoxy-hemoglobin (Hb) and oxy-hemoglobin (HbO2). In the visible and 

near infrared wavelength ranges, these two chromophores are often the dominant 

absorbers in biological tissue [1-6]. However, lipid and water concentrations can also be 

of interest to discriminate between malignant and normal tissues in the breast [7] and to 

distinguish benign lesions from cysts in breast [8] in particular when employed in fiber-

tissue probes. 

The estimation of lipid and water concentrations with DOS in the 900-1000 nm 

wavelength range was addressed by several studies [9-10]. These studies focused on 

measurements on phantoms made of intralipid or emulsions made with different kinds of 

oils. However, very few studies have focused on the estimation of lipid and water 

concentrations in biological tissues with DOS with wavelengths above 1000 nm [11-13]. 

This wavelength region is potentially attractive from the standpoint of measuring 

concentrations of water and lipid because absorption features of these chromophores are 

more prominent than those in the 900-1000 nm range. 

Several methods have been demonstrated for estimating optical properties and 

chromophore concentrations from DOS measurements. Several models have been widely 

used over the last decade such as analytical solutions derived from diffusion theory [1, 

14], differential path length spectroscopy [6, 15], combined frequency-domain and 

continuous wave broadband diffuse optical spectroscopy [7, 10] and empirical models 

based on Monte Carlo simulations and experimental phantoms with known optical 

properties [14, 16-19]. However, these studies were only applied to wavelengths ranges 

below 1000 nm. 

The model proposed in this study utilizes an analytical solution of a diffusion 

theory approximation to light propagation in scattering media. First described by Farrell 

et al. [14], it expresses the intensity of received light as a function of the optical 

properties of the medium, i.e. the absorption and the scattering, and the distance between 

the emitting source and location at the surface of the medium where it is received. To the 

authors‟ knowledge, this study represents the first application of the Farrell model to DOS 

measurements in the wavelength range of 900 to 1600 nm. 

 To validate the estimation method, DOS measurements were performed on tissue 

phantoms consisting of custom emulsions for which the lipid and water content were 

accurately known. Commercial food products, such as butters and margarine, were also 

utilized as phantoms. To investigate the accuracy of the algorithm with different 

scattering properties, the particle size distribution (PSD) was varied. To provide an 

indication of the relevance of this method for deriving concentrations from biological 

tissue, spectra were acquired from swine tissue ex vivo.  
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2. Materials and methods 

2.1 Experimental setup 

A 1.3 mm diameter optical probe was used for which the distal end was angled 70 

degrees. The probe contains two optical fibers with axis of symmetry parallel to the axis 

of symmetry of the probe therefore the fibers were separated at the distal end by a 

distance of 2.48 mm (center to center). Figure 1 shows a sagittal cross-section of the 

probe where the two lines inside the probe correspond to the axis of symmetry of the two 

optical fibers. The optical fibers are low-OH fibers from Ocean Optics of 220 microns 

diameter with a core of 200 microns and an NA of 0.22. One fiber is connected to a 

Tungsten Halogen broadband light source with an integrated shutter (Ocean Optics, HL-

2000-HP) and the second fiber is connected to a spectrometer with a spectral response 

from 800 to 1700 nm. The spectrometer has a holographic grating (150 grooves/mm and 

1250 nm blaze) and an InGaAs sensor array of 512x1 pixels and a pixel size of 500x50 

microns (Andor Technology, DU492A -1.7).  

 

 

Figure 1. Schematic sketch of the sagittal cross-section of the probe. The distal end is on 

the left side and the two lines inside the probe correspond to the axis of symmetry of each 

of the two optical fibers. 

 

2.2 Data pre-processing 

The data was acquired via an interface where the integration time can be set 

between 1µs and several minutes. To suppress the dark current, the detector is 

thermoelectrically cooled to a temperature of -50ºC. A wavelength calibration was 

performed to assign a wavelength value to each pixel of the detector. This was done by 

fitting a second order polynomial to a set of atomic lines from an Argon light source with 

peaks at known wavelengths. 

The spectra S(λi) that were processed to estimate the amount of lipid and water 

were calibrated by first acquiring an intensity calibration spectrum C(λi). To this aim, the 

reflectance of a white reflectance standard (LabSphere, WS-1-SL) was measured. A 

custom made probe-holder was made to hold the probe tightly and keep the surface of the 

optical fibers at the distal end parallel to the reflectance standard at a fixed distance of 2 

mm. The white reflectance standard reflects the light uniformly over the probe surface 

and this spectrum was used as the system response to compensate for the spectral shape 
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of the light emitted by the lamp and the wavelength-dependent sensitivity of the detector 

as well as any wavelength-dependent sensitivity in the optics and gratings of the system. 

This calibration step was followed by a background measurement in order to minimize 

the impact of the ambient light, dark current and the electric offsets of the detector. As 

soon as the detector temperature was stable and the light output was stable (roughly 5 

minutes after starting our setup), the calibration was performed before each set of 

measurements. 

The spectrum of the tissue can be described as a function of wavelength with the 

following equation: 

 

      
              

             
     

 

where      ,       and       are the calibrated tissue spectrum, the effective measured 

tissue spectrum and the white reflectance standard measured spectrum, respectively. After 

each tissue measurement, a background measurement         is acquired by shuttering 

the light input and subtracted from      . A background measurement         is also 

acquired after the measurement of the white reflectance standard      . 

 All the measurements discussed throughout this paper were taken by placing the 

surface of the optical fibers at the distal end parallel and in contact with the phantoms and 

the tissues. Having polished fibers at an angle and the size of the optical fibers surface did 

not hamper our parameter estimation since the distance between the emitting and 

collecting fibers was sufficiently large (i.e. 2.48 mm) so that it did not influence our 

spectral fitting. For much shorter fiber distance separation, the effective radius of the 

optical fibers and the probe of the geometry influence the reflectance measurements and 

thus should be taken into account [17, 19].  

 

2.3 DOS model and data analysis 

Several models [14, 16-20] have been described in literature to express the 

intensity of light collected by a fiber after several scattering and absorption events in a 

diffuse medium. The model that is used in this paper is expressed in equation (2) and 

corresponds to the solution of the diffusion equation for a semi-infinite medium and is a 

widely accepted model in the field of biomedical photonics [14]. This analytical 

expression for the diffuse reflectance           
        is a function of the distance ρ 

between the emitting and collecting fiber, the absorption coefficient       and the 

reduced scattering coefficient   
     and is given by 
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where          [     
 ]   ⁄  is the effective attenuation coefficient and    

      
     is the location of the virtual scattering source. The extrapolated boundary 

condition is expressed as        where A is a parameter that depends on the refractive 

index of the tissue and the surrounding medium. An analytical model for A was described 

in [14] which expresses A as a function of the relative refractive index and the critical 

angle. We made the assumptions that the difference in refractive index of tissue and the 

optical fibers is small and therefore considered that there were no refractive index 

mismatch which leads to set A=1. Furthermore,     [     
 ]    is the diffusion 

constant,   ̃     
       ⁄  is the distance between the single scattering source and the 

collecting fiber, and  ̃           
       ⁄  is the distance between the image source 

and the collecting fiber. In this model, the reduced scattering coefficient   
          

is a function of the scattering coefficient    and the anisotropy parameter  . However, the 

reduced scattering parameter can be approximated by a power law function as   
  

 (
 

  
)
  

 with amplitude   and where   is a parameter related to the particle size [4]. Here  

   is a normalization wavelength that is set to 1200 nm and thus   corresponds to the 

reduced scattering at this specific wavelength (    
             ). The absorption 

coefficient is expressed as: 

 

               
                  

             

 

where        and        are the water and lipid volume fractions respectively and; 

  
         and   

         are the absorption coefficient of water and lipid, respectively. 

 Data were analyzed by fitting equation (2) to the processed measurement data 

obtained by equation (1) in order to estimate the optical properties of the probed samples. 

The parameter ρ that corresponds to the distance between the emitting and collecting fiber 

is a fixed input argument set at 2.48 mm. Equation (1) and (2) are related by a 

wavelength-independent constant. This constant corresponds to the ratio between the 

fraction of light from the calibration standard collected by the fiber and the light from the 

measured phantoms. The fitting locks onto the spectral shape of the measurements while 

the constant, which is also derived from the fitting, accounts for the absolute value of the 

fitting. The fitting procedure of the spectrum is a Levenberg-Marquardt minimization 

method available in Matlab, which produced an estimation of the parameters       ,     , 

  and  . The advantage of this way of fitting is that the absorption coefficients of pure 

water and pure lipid are input to the model that constrains the spectral shape. The 

following section describes in detail how we obtained, from measured spectra, these two 

wavelength dependent absorption coefficients that are essential for the fitting procedure. 

Moreover, the reduced scattering coefficient is defined by the amplitude parameter a and 

slope parameter b only. In contrast, refs [7, 10] fit equation (3) to pre-fitted absorption 

and reduced scattering or measured optical properties for a set of wavelengths.  

In order to assess the reliability of the estimated parameters, the goodness of fit 

was assessed with the covariance matrix [21]. 



 

49 
 

Chapter 2 
Estimation of lipid and water concentrations in scattering media withdiffuse reflectance 

spectroscopy from 900 to 1600 nmEstimation of lipid and water concentrations in 
scattering media with diffuse reflectance spectroscopy from 900 to 1600 nm 

The model holds when the reduced scattering is greater than the absorption and 

the distance between the optical fibers is greater than the scattering length. Moreover, the 

medium should be homogenous. In this paper, our phantoms and tissue measurements 

fulfill these assumptions to some extent. 

 

2.4 Absorption measurement of lipid and water 

It should be emphasized that accurate tables of extinction coefficients as a 

function of wavelength are required to estimate the exact amount of chromophores [15]. 

In order to ensure the optimization of the fits to the model, we decided to measure our 

own absorption spectra of water and lipid in the wavelength range of 900 to 1600 nm. 

The absorption properties of lipid and water were computed based on transmission 

measurements at constant temperature of 30 degrees through cuvettes of 0.1, 0.2, 0.5 and 

1 cm width with a 1-nm resolution spectrophotometer [Lambda 900 Spectrometer, Perkin 

Elmer]. These measurements were made at different temperatures ranging from 30 

degrees up to 45 degrees to assess the dependence of the absorption values to 

temperature. It appeared that there were no changes in the absorption of lipid. In the case 

of water, the higher the temperature the more the 972 nm absorption peak of the water 

shifts to lower wavelengths (roughly 5 nm for an increase of temperature from 30 to 40 

degrees) resulting in a higher absorption value (5% relative increase of the absolute 

value). Additionally, it appeared that the water absorption at 1192 nm decreases with 

negligible shift of the peak. Figure 2.a and 2.b show the absorption coefficient of water at 

30, 34, 37 and 40 degrees Celsius for different wavelengths ranges (a linear scale was 

applied to the figure to highlight the differences).  
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Figure 2. Absorption coefficient of water at different temperature for the wavelength 

range of 900 to 1100 nm (a) and 1100 to 1300 nm (b). Full line, dashed-line, dotted-line, 

dashed and dotted line correspond to measurement at 30, 34, 37 and 40 degrees 

respectively. 

 

 Figure 3 depicts the absorption coefficients of water   
         and lipid   

       

between 900 and 1600 nm at 30 degrees Celsisus. The type of lipid that was used was 

100% beef fat. The absorption peaks at 930, 1040, 1211, 1392 and 1413 nm are in good 

agreement with measurements performed by Van Veen [22] in the visible-NIR range and 

Anderson in the NIR–Mid IR range [11]. The water absorption peaks at 972, 1192 and 

1453 nm are also in good agreement with the measurments reported by Hale and Querry 

[23]. Besides, the absolute value of the measured absorption of the lipid and water is in 

good agreement with that published by Anderson [11]. 
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Figure 3. Absorption spectra of water and fat from 900 to 1600 nm. 

 

2.5 Tissue phantom preparation 

Phantoms were made by mixing three ingredients: 100% beef fat (commercial 

frying fat), water, and an emulsifier (Triton X-100 from Roche). According to the 

technical data sheet of the commercial frying fat, the solid fraction compositions (SFC) 

were respectively 37% at 20 degree Celsius, 20% at 30 degrees Celsius and 4% at 40 

degrees Celsius. The beef fat was melted by heating it to a temperature such that the SFC 

is less than 1% to make it completely liquid and thus easy to mix with water. Taking this 

into consideration, the water, the lipid and the emulsifier were heated up to 50 degrees, 

below the cloud temperature of the Triton X-100 which is 65 degrees and high enough to 

get a liquid lipid. The amount of emulsifier comprised 4% of the total amount of lipid that 

was used to prepare the phantoms as suggested by Merritt et al [10]. The three ingredients 

were mixed together at the same temperature with a kitchen blender (Philips HR1363) at 

high speed for a minute. Samples of 40 ml with 10%, 30% and 60% lipid-to-water ratio 

were prepared. Half of each solution was poured in separate containers to ultrasonicate 

the content. An ultrasonication probe (IKA T25 digital Ultra-Turrax) was used to reduce 

the particle size and thereby to change the scattering properties of the emulsions. Thus six 

samples were prepared in total, with three different lipid-to-water ratios and different 

particle size distributions. 

The particle size distribution (PSD) of each of the six samples was measured with 

an apparatus based on the coulter principle (Multisizer 3 coulter counter from Beckman 
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Coulter). This apparatus could not resolve submicron particle sizes due to the limited 

dynamic range of the system. The PSD of the six emulsions we prepared in the lab is 

shown in Figure 4. The first row of figures corresponds to the measurements performed 

on the samples that were mixed with the kitchen blender. The second row corresponds to 

the samples which were ultrasonicated. By comparing the PSD of the ultrasonicated with 

the non-ultrasonicated samples for each of the various lipid-to-water ratios, it appears that 

the maximum of the distribution shifts to the smaller particle size as expected. However, 

the standard deviation of the particles size is higher for lower lipid content so if one wants 

to obtain a more uniform PSD for low lipid content samples it is necessary to use other 

techniques. 

 

 
Figure 4. Particle size distribution measurements (PSD) of the emulsions. The top row 

graphs show the PSD of the emulsions that were blended with a kitchen blender for the 

10% (a), 30% (b) and 60% (c) lipid-to-water ratio respectively. The bottom row shows 

the PSD of the same emulsions after applying an ultrasonic mixing for the 10% (d), 30% 

(e) and 60% (f) lipid-to-water ratio respectively. 

 

3. Results and discussion 

Figure 5 and 6 show the measured spectra at a temperature around 30 degrees of 

the different lipid and water emulsions (dashed line) and the corresponding best fits (solid 

line). The presence of lipid in the sample is correlated with the narrow peak at 1211 nm 

which is an absorption signature of lipid. Moreover, for the sample that contains more 

lipid than water, the 930 nm absorption peak of lipid is clearly visible in the measured 

spectrum. Above 1400 nm, the intensity is null and this is due to the very high absorption 

of water above this specific wavelength given the fiber distance separation. 
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Figure 5. Results of the fitting (Line curves) on the measured spectra (Marker curves) of 

the different emulsions mixed with a blender. 

 

The estimated parameters for each phantom emulsion are displayed in Table 1 and 

the variances of the fitted values derived from the calculation of the covariance matrix are 

displayed between brackets next to the estimated values. The estimation of the lipid-to-

water ratio is within 5% error from the true value. 

 

Table 1. Estimation of the optical properties of the custom emulsions without and with 

ultrasonication. 

Lipid-to-

water ratio 
10 % 30 % 60 % 

Ultra-

sonication 
Yes No Yes No Yes No 

Water (%) 
86.5 

(±2.2) 

86.7 

(±2.6) 

70.1 

(±2.2) 

69.3 

(±1.6) 

41.0 

(±1.2) 

41.7 

(±1.0) 

Lipid (%) 
11.5 

(±1.6) 

10.8 

(±1.9) 

29.7 

(±2.4) 

30.0 

(±1.8) 

58.2 

(±2.3) 

57.8 

(±1.8) 

  
  (120 nm) 

(cm
-1

) 

26.3 

 (±0.4) 

29.5 

(±0.5) 

64.2 

(±1.0) 

72.3 

(±0.8) 

84.4 

(±1.0) 

87.1 

(±0.9) 

b  
0.06 

(±0.06) 

0.29 

(±0.07) 

0.40 

(±0.06) 

0.70 

(±0.04) 

0.56 

(±0.04) 

0.87 

(±0.04) 

 

The scattering parameter increased with the amount of lipid in the sample. This 

was expected since the lipid is the only scatterer in the various samples. The estimated 
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slope value varied with respect to the scatterer size [4]. From the estimated parameters for 

the slope, it appeared that the slope for the ultrasonicated samples was greater than for the 

non-ultrasonicated samples. This observation correlates with the PSD measurements as 

discussed in the beginning of this section i.e. high slope values for samples with small 

average particles size. 

 

 
Figure 6. Results of the fitting (Line curves) on the measured spectra (Marker curves) of 

the different emulsions mixed with a blender and the sample preparation included an 

ultrasonication process. 

 

In summary, we have shown with the set of custom made phantoms, that we could 

estimate the amount of water and lipid for different reduced scattering profiles from 

spectroscopic measurements with our optical probe using a fit to a diffusion 

approximation model. The following step was to complement the validation with a 

phantom study with a wider range of lipid-to-water ratios. 

Measurements on commercial lipid-water samples such as butter and margarine 

were also performed at room temperature in order to further validate our method and to 

highlight the difference in the spectra for a wider range of lipid-to-water ratios. Butter 

samples with 25%, 35%, 60% and 83% lipid content, and a 40% lipid content margarine 

sample were also measured. A suspension of 320 mg of BaSO4 in 20 ml of water was 

prepared so that we had a light scattering sample without lipid in order to mimic muscle-

like tissue with 0% lipid. 

Figure 7 depicts the different measurements of the commercial butters (dashed 

line) and the respective best fits (solid line). It is important to notice that the absorption 

spectra of lipid and water both have an absorption peak around 1200 nm wavelength, but 

that the widths of these peaks are different. The lipid peak is much narrower than the 

water peak. For increasing concentration of lipid with respect to water, the measurements 
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depicted in Figure 7 show a narrowing of the peak in the spectra in the vicinity of 1200 

nm. 

 

 
Figure 7. Fits (line curves) to the measured spectra (data points curves) of the solution of 

BaSO4 in water (a) and the 25% (b), 35% (c), 40% (d), 60% (e) and 83% (f) lipid content 

commercial butters and margarine. 

 

The fitting routine was performed on the measurements to estimate the amount of 

lipid and to compare it with the value written on the packages of the commercial samples. 

The results from the fits are summarized in Table 2 and reveal that with our method it is 

possible to retrieve the amount of lipid with a deviation below 5% in comparison with the 

amount of lipid indicated on the commercial packages. 

Several reasons can explain the deviation that were encountered and also the wide 

range of scattering between the different commercial samples. The fact the absorption 

spectrum derived from beef fat was used as a reference absorption spectrum in the fitting 

routine is potentially a source of error since it is a different kind of fat than in butters. 

Butter, margarine and animal fats (e.g. lard) are known to be composed of different kind 

of fats which are divided into three families: saturated fat, monounsaturated fat and 

polyunsaturated fat. Butter is mainly composed of saturated fat (typically 66% saturated, 

30% monounsaturated and 4% polyunsaturated fat) whereas margarine is mainly 

composed of monounsaturated and polyunsaturated fat (typically 21% saturated, 46% 

monounsaturated and 33% polyunsaturated fat) and animal fat of saturated and 
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monounsaturated fat (typically 41%, 47% and 12% of respectively saturated, 

monounsaturated and polyunsaturated fat). 

 

Table 2. Estimation of the optical properties of the BaSO4 in water (A), 25% lipid content 

butter (B), 35% lipid content butter (C), 40% lipid content margarine (D), 60% lipid 

content butter (E) and 83% lipid content butter (F). 

 Sample 

 A B C D E F 

Water (%) 
93.6 

(±2.5) 

74.6 

(±1.5) 

63.9 

(±1.1) 

57.3 

(±1.1) 

36.1 

(±0.8) 

13.8 

(±0.5) 

Lipid (%) 
0 

(±4.6) 

25.2 

(±1.7) 

36.0 

(±1.6) 

42.7 

(±1.8) 

63.7 

(±2.0) 

85.4 

(±2.5) 

  
  (1200 nm) 

(cm
-1

) 

1.7 

(±0.5) 

43.7 

(±0.4) 

68.5 

(±0.6) 

94.9 

(±0.9) 

75.0 

(±0.7) 

53.7 

(±0.6) 

b  
0.55 

(±0.03) 

0.01 

(±0.03) 

0.03 

(±0.02) 

0.33 

(±0.02) 

0.09 

(±0.03) 

0.01 

(±0.03) 

 

Figure 8 depicts the absorption coefficient of 100% lipid-content oil composed of 

10% saturated, 30% monounsaturated and 60% polyunsaturated fat; and the beef fat. One 

major difference is the presence of an extra absorption peak at 1170 nm and slight 

difference in the absolute value of the absorption. The most optimal fit would be obtained 

by using the same type of fat of each commercial sample to estimate the amount of lipid 

in the various commercial samples. Therefore, we decided to just use the absorption 

coefficient from the beef fat as the reference for lipid in the fitting. The more unsaturated 

the fat is, the larger the molecule. As a result, the scattering can vary significantly from 

sample to sample depending on the distribution of the different types of fat in the butter 

(e.g. industrial margarine is composed of droplets of 5 to 10 microns diameter size). 

In the case of the custom emulsions, it can clearly be seen that the fitting curve 

between 900 and 1000 nm is not accurate compared to the rest of the wavelength range. 

This is mainly due to the temperature of the sample. The PSD measurements were done 

just before the actual acquisition of the spectra and thus the temperature of the samples 

was not constant. Several studies, such as Ref. [24], showed that the absorption 

coefficient of water is sensitive to temperature. Thus, the effect of temperature on the 

absorption coefficient of water is important to take into consideration.  
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Figure 8. Comparison between two types of lipids: the dashed line corresponds to the 

beef lipid whereas the full line curve corresponds to 100% lipid oil (sunflower oil). 

 

 Figure 9 shows ex vivo measurements (marker curves) of excised tissue from a pig 

and their respective fit curves (line curves). The measurements were performed on 

subcutaneous fat, muscle, visceral fat and white matter from the spinal cord by inserting 

the tip of the probe in the tissue. In Table 3, the estimated parameters for each tissue are 

summarized. Due to the fact that for the wavelength range of study, hemoglobin and 

oxygenated hemoglobin have their highest absorption values (roughly 2cm
-1

) between 

900 and 1000 nm, whereas water is the dominant absorber above 1000 nm as pinpointed 

in [25]; we did not include these two absorbers in the fitting routine. Our ex vivo tissue 

samples did not contain more than 1% of total blood volume fraction and thus 

hemoglobin did not have any influence on the fit parameters. 
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Figure 9. Fits (line curves) to the ex vivo tissue measurements (data point curves) of 

subcutaneous fat (a), muscle (b), visceral fat (c) and white matter (d). 

 

The estimated values are in agreement with those published from previous studies 

[26-29]. The composition in lipid and water of the subcutaneous fat was defined in Ref. 

[28] as being of 14% water and 86% fat which is in perfect agreement with our reported 

result. The estimation of water and from the muscle measurement is around 75% which is 

within the range of 60% to 80% of water in muscle whereas the estimated lipid content is 

roughly 2% within the 0% to 8% range [29]. In visceral fat, the estimation of lipid is 74% 

within the lipid content range of 60% and 90% in adipose tissue [29]. White matter is 

mainly axons surrounded with myelin; this physiological property is also in agreement 

with our finding from the acquired spectrum. From the estimation of the optical 

properties, it follows that white matter contains about 25% of lipid and the rest is water 

which is slightly above the reported 20% [29]. The scattering amplitudes that are 

estimated from the measured tissues are within the range of values available in Ref. [27]. 

Ref. [6] and Ref. [26] respectively presents the scattering of different tissues and fatty 

breasts which are comparable to our results. The scattering slope values estimated are 

within the range of 0.18 to 2.84 described in Ref. [26]. 

The absorption and reduced scattering coefficient can be computed thanks to the 

relation described in equation (3) and the power law function, respectively. Figure 10 

shows the optical properties for each of the ex vivo tissue measurements that were 

computed once the fit parameters in table 3 were obtained.  
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Figure 10. Absorption and reduced scattering coefficients of the ex vivo tissue 

measurements of subcutaneous fat (a), muscle (b), visceral fat (c) and white matter (d). 

Although the reduced scattering coefficient above 1350 nm is lower than the 

absorption coefficient, it is still possible to estimate the proper volume fraction of water 

and lipid. In particular, the fact that water and lipid have sharp peaks in the 900 to 1000 

nm wavelength range and around 1200 nm makes the estimation of the amount of water 

and lipid in the full range of 900 to 1600 nm still possible. For wavelengths below 1350 

nm, the reduced scattering coefficient is larger than the absorption coefficient. Since the 

reduced scattering coefficient is modeled by a power law for the whole wavelength range, 

the reduced scattering amplitude and slope constrained the fit and thus it is possible to 

evaluate the optical properties, despite the fact that absorption can be higher than the 

reduced scattering above 1350 nm. However, for low-lipid content tissues with low 

reduced scattering, care must be taken since the method may become inaccurate. If the fit 

deviates from the measurements for wavelengths above 1350 nm, this would be a sign 

that the applied model is no longer valid. For high-water content tissue, the signal can 

become null, given our fiber distance separation which also allows for a more stable fit. 

One can notice that around 1200 nm the absorption coefficient of water and lipid have 

roughly the same absolute values making this ratio less sensitive to errors in the fit model. 
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Table 3. Estimated optical properties of various swine tissues measured ex vivo. 

 Subcutaneous fat Muscle Visceral fat White matter 

Water (%) 12.2 (±0.5) 74.6 (±2.2) 24.9 (±0.9) 76.8 (±1.5) 

Lipid (%) 89.6 (±5.0) 1.9 (±1.2) 74.0 (±4.1) 26.4 (±1.3) 

  
  (1200 nm) (cm

-1
) 4.5 (±0.6) 3.1 (±0.2) 5.3 (±0.7) 6.0 (±0.3) 

b  1.76 (±0.21) 1.17(±0.08) 1.92 (±0.33) 1.58 (±0.24) 

 

4. Conclusion 

To accurately estimate water and lipid content in a small volume (e.g. a few mm
3
), 

a higher extinction is preferable than that of the commonly used 900 to 1000 nm 

absorption peaks. In the wavelength range from 900 to 1600 nm, one finds more 

absorption peaks with higher absorption coefficients. We performed accurate 

measurements of the water and lipid extinction coefficient to allow us to obtain a reliable 

estimation of these two chromophores in mixtures. 

We have demonstrated in this study that we can accurately estimate the amount of 

lipid and water with a diffuse optical spectroscopy technique in the near infrared for 

wavelengths in the range of 900 to 1600 nm. The phantom study proved that we can 

estimate, within less than 5% error, the amount of lipid and water in the various samples 

that were prepared. Furthermore, by applying ultrasonication to our phantoms to shrink 

the particle size, we have seen that the slope of the reduced scattering increased without 

effecting the estimation of water and lipid content. The validation of our method was 

completed with the estimation of the concentration of lipid in commercial food samples 

with known lipid content. 

This phantom study is complemented by ex vivo measurements and analysis that 

provides information on the optical properties of different tissues. The amount of lipid 

and water will prove to be important for discriminating healthy and cancerous tissue. 

With our method, we could provide real-time clinical feedback to physicians on the 

amount of lipid and water of tissue with the goal to classify between normal, malignant 

and benign samples when acquiring spectra from fiber-tissue probes. 
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Abstract 

With an optical fiber probe, we acquired spectra from swine tissue between 500 

and 1600 nm by combining a silicon and an InGaAs spectrometer. The concentrations of 

the biological chromophores were estimated by fitting a mathematical model derived 

from diffusion theory. The advantage of our technique relative to those presented in 

previous studies is that we extended the commonly-used wavelength ranges of 500 and 

1000 nm to include the range of 1000 to 1600 nm, where additional water and lipid 

absorption features exist. Hence, a more accurate estimation of these two chromophores is 

expected when spectra are fitted between 500 and 1600 nm than between 500 and 1000 

nm. When extending the UV-VIS wavelength range, the estimated total amount of 

chromophores approached 100% of the total as present in the probed volume. The 

confidence levels of the water and lipid related parameters increases by a factor of four. 
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1. Introduction 

Diffuse optical spectroscopy (DOS) has been widely used as a tool for 

determining optical properties of tissue. Such tools are investigated as an aid for detecting 

cancers [1-4], for monitoring changes in tissue optical properties that reflect 

morphological and physiological changes [5], and for monitoring therapy response for 

instance in photodynamic therapy [6]. Several methods exist to extract optical properties 

of tissue-like diffuse media such as time-resolved [7-8], frequency-domain [9], spatially-

resolved continuous wave [10-11], combined frequency-domain and continuous wave 

broadband diffuse optical spectroscopy [3], and empirical models based on Monte-Carlo 

simulations and experimental phantoms of known optical properties [5, 12-13]. 

Most of the studies [2, 14-19] focused on the estimation of chromophore 

concentrations in the ultraviolet and visible wavelength range (typically between 350 and 

800 nm) where deoxygenated and oxygenated hemoglobin are the main optical absorbers. 

Measurements in breast [2, 14-15] or on the skin [16] showed absorption from additional 

chromophores such as beta-carotene and melanin, respectively. Several studies used 

wavelength ranges extended up to 1000 nm [3, 17-18] in order to determine 

concentrations of water and lipid, which have distinct absorption peaks at 972 and 930 

nm, respectively [18-19]. These studies [3, 17-19] used probes with fiber separations up 

to 1.7 cm. For probes with much shorter separation between the collecting and emitting 

fibers, the absorption dips in the reflectance due to lipid and water will also be much 

smaller since the transmitted light decays exponentially with the path length and the 

absorption coefficient (Beer‟s law). Thus, measurements of water and lipid content in this 

wavelength region using photon pathlengths of a few mm only will not be very accurate. 

Extending the commonly used wavelength range of 500 to 1000 nm up to 1600 nm 

enables the measurement of additional absorption peaks of water and lipid with 

absorption values that are an order of magnitude higher than those in the lower 

wavelength region. Although not extensively reported, not constraining the fitting 

parameters [17] often leads to an estimated summed volume of chromophores 

significantly different from a total of 100%. This could either mean that there is a 

biological entity within the probed volume that does not have optical absorption peaks 

(e.g. melanin) or that the model requires modifications. The present paper aims to 

investigate if the use of this extended wavelength region increases the accuracy of the 

measurement without constraining any of the fit parameters. 

The applicability of an analytical solution that derives from diffusion theory to 

determine the optical properties was extensively studied and validated for wavelength 

ranges below 1000 nm [10-11]. In a former study [20], the absorption coefficients of 

water and lipid between 900 and 1600 nm (I900


1600) were measured and the applicability 

of the diffusion theory model to this wavelength range was validated for phantom 

measurements with known amounts of water and lipid. 

To investigate whether having an additional spectrometer that can measure in the 

infrared up to 1600 nm can effectively improve the estimation of water and lipid 

concentrations, we compared the values of the parameters derived from the fits applied 

for two different wavelength ranges: the classical range from 500 to 1000 nm (I500


1000) 



 

68 
 

Chapter 3 

and the extended range from 500 to 1600 nm (I500


1600). Measurements on in vivo swine 

tissues were performed with combined silicon and InGaAs spectrometers and were 

analyzed by fitting an analytical model to the two wavelength ranges of interest. In order 

to assess the improvements to the fits when adding the InGaAs spectrometer, we 

compared the confidence intervals [21] of the estimated parameters obtained from both 

fits. 

 

2. Methods 

2.1 Instrumentation 

A schematic diagram of the setup is shown in Fig. 1. The setup consists of an 

optical probe with three optical fibers with a NA of 0.22, a spectrometer with a silicon 

detector (Andor Technology, DU420A-BRDD), a spectrometer with an InGaAs detector 

(Andor Technology, DU492A-1.7) and a tungsten halogen broadband light source with an 

integrated shutter (Ocean Optics, HL-2000-HP). The optical probe has a diameter of 1.3 

mm and its distal end is polished at an angle of 20 degrees in order to ease its insertion in 

the animals. The probe contains three 200 μm core diameter optical fibers with axis of 

symmetry parallel to the axis of symmetry of the probe. One optical fiber is connected to 

a light source. The second and third optical fibers are connected to the spectrometer with 

a silicon detector and the spectrometer with an InGaAs detector, respectively. The silicon 

detector is a matrix of 1024 by 255 pixels with pixel size of 26x26 microns whereas the 

InGaAs detector is a single array of 512 pixels with a pixel size of 500x50 microns. The 

spectral resolution for the silicon and InGaAs detectors are 4 and 10 nm, respectively. At 

the tip of the probe, the three optical fibers distal ends form an isosceles triangle in such a 

way that both collecting fibers were embedded side by side with a center-to-center 

distance of 370 microns and separated by a distance of 2.48 mm from the emitting fiber. 
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Figure 1. Sketch of the optical setup: it consists of a halogen lamp that is connected to a 

fiber and two spectrometers that are connected to two separate fibers that are located 

next to each other at the tip of the probe. 

 

2.2 Data acquisition and pre-processing 

The calibration and the generation of the spectra acquired with the InGaAs 

spectrometer was described elsewhere [20]. Briefly, the calibration procedure consisted of 

assigning a wavelength value to each pixel of the detector, then measuring a white 

reflectance standard to compensate for the spectral shape of the light emitted by the lamp 

and the wavelength-dependant sensitivity of the detector and the optics in the grating of 

the system; and a background measurement to compensate for the dark current and 

electric offsets of the detector. The tissue spectra are computed by dividing the measured 

spectra in tissue corrected for background by the calibration measurement of the white 

reflectance standard. We applied the same process for the spectra acquired with the 

silicon spectrometer. The spectra obtained from both spectrometers have an overlapping 

wavelength range between 900 and 1000 nm which was used to compute the matching 

factor to form continuous spectra from 500 and 1600 nm. For all the acquired spectra, the 

matching factor should be ideally equal to one but is on average 0.9±0.3. This is due to 

the fact that the light is collected via two separate fibers and in an inhomogeneous 

medium there might be a sampling error. To avoid this artifact, one single fiber should be 

connected to a fiber splitter in order to collect the light from the same sampling volume. 

However, using a fiber splitter will reduce the light transmission by more than 50% and 

thus longer integration times might be needed to achieve a good signal-to-noise ratio 

making real-time feedback impossible. 
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2.3 Tissue measurements 

Measurements were performed on three anaesthetized swine after approval from 

the internal review board of the animal lab facility. The swine were originally dedicated 

for a different clinical study; however we were allowed to perform our measurements. 

Spectra were taken at different locations within the animals, where the position of the tip 

of the optical probe was confirmed by X-ray or ultrasound imaging. Tissue boundaries 

were avoided in order to measure in volumes as homogenous as possible. 

The integration time for a single spectrum acquisition ranges from a quarter of a 

second to two seconds but most spectra were acquired with an integration time of one 

second yielding to a signal-to-noise ratio of 200:1 and 120:1 for the Silicon and InGaAs 

detector, respectively. However, all measurements on the white reflectance standard for 

calibration were made with an integration time of two seconds. For both spectrometers, 

the integration time was kept the same. In total, we obtained 296 spectra including 143 

measurements on various fatty layer structures (from which 56 subcutaneous fat in the 

back of the pig and 87 visceral fat in the epidural space) and 153 muscle measurements in 

the back of the three animals. 

 

2.4 Analytical model 

The acquired spectra were fitted with the analytical model developed by Farrell et 

al. [10] which has the absorption coefficient  aμ λ  and the reduced scattering coefficient

 ,

sμ λ , in cm
-1

, as input arguments. In a previous work [20], this model was described and 

used to estimate water and lipid concentration and its validity was shown in the 900-1600 

nm wavelength range. 

A double power law function was used to describe the wavelength dependence of 

the reduced scattering (cf. Eq. (1)). The first law corresponds to the contribution of Mie 

scattering [22-24] whereas the second power law corresponds to the contribution of 

Rayleigh scattering which can be significant in the visible wavelength range [25]. The 

reduced scattering is expressed in cm
-1

 and is a function of wavelength: 

 

   
-b -4

,

s MR MR

0 0

λ λ
μ λ =a ρ + 1-ρ .

λ λ

    
    
     

    (1) 

 

In Eq. (1), 0 is a normalization wavelength set to 800 nm and the parameter a

corresponds to the reduced scattering amplitude at this specific wavelength. The reduced 

scattering corresponds to the sum of Mie and Rayleigh scattering and, therefore, MR  is 

defined as the Mie-to-Rayleigh fraction of the scattering. The reduced scattering slope of 

the Mie scattering is denoted b  and is related to the particle size [26]. 

The main chromophores that absorb in the visible and near infrared are 

hemoglobin derivatives in the blood (deoxy-hemoglobin and oxy-hemoglobin) [27, 28], 

water and lipid [18, 20, 29]. Instead of modeling the absorption coefficient  aμ λ  as the 
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sum of absorption coefficients weighted by the respective concentrations of the four 

chromophores of interest, we decided to express the absorption coefficient as: 

 

            Blood Water Lipid

a BL a WL WL a WL aμ λ =C λ ν μ λ +ν 1-α μ λ +α μ λ .     (2) 

 

The absorption coefficients of hemoglobin in blood, water and lipid are  Blood

aμ λ , 

 Water

aμ λ  and  Lipid

aμ λ , respectively; and are depicted in Fig. 2. The absorption 

coefficient of blood is multiplied by the blood volume fraction    BL 2ν = Hb + HbO , 

where  Hb  and  2HbO  correspond to the concentration of deoxygenated and 

oxygenated hemoglobin, respectively;  and a correction factor  C λ  that accounts for the 

effect of pigment packaging [30] and alters for the shape of the absorption spectrum. The 

correction factor is given by 

 

 
  

 

Blood

a

Blood

a

1-exp -2Rμ λ
C λ =

2Rμ λ
     (3) 

 

where R  corresponds to the effective vessel radius. The absorption coefficient of 

hemoglobin in blood is given by 

 

       2HbOBlood Hb

a BL a BL aμ λ =α μ λ + 1-α μ λ .     (4) 

 

Here  2HbO

aμ λ  and  Hb

aμ λ  represent the basics extinction coefficient spectra of 

oxygenated and deoxygenated hemoglobin, respectively, assuming a blood hemoglobin 

content of 150 g/l (typical value for human blood). The oxygenated hemoglobin fraction 

in the total amount of hemoglobin is noted       BL 2 2α = HbO HbO + Hb and is 

commonly known as the blood oxygen saturation. Similarly    WL 2ν = H O + Lipid  and 

      WL 2α = Lipid Lipid + H O  where  Lipid  and  2H O  correspond to the 

concentration of lipid (density of 0.86g/ml) and water, respectively. They correspond to 

the total amount of water and lipid in the probed volume and the lipid fraction within this 

volume, respectively. This way of relating the water and lipid parameters in the 

expression of the absorption coefficient defined in Eq. (2) rather than estimating 

separately the water and lipid volume fraction corresponds to a minimization of the 

covariance of the basis functions for fitting resulting in a more stable fit.  

From the acquired spectra we derive eight parameters: a , b , MRρ , R , BLν , BLα , 

WLν  and WLα . Hence three parameters define the reduced scattering coefficient, and five 

components the absorption coefficient, from which three are related to blood and the two 

other to water and lipid. Although not commonly used when fitting beyond 500 nm, a 

Rayleigh scattering term and the correction factor for pigment packaging were used [17]. 

According to an F-test with p<0.001 [31], the fit is improved for 64% and 89% of the data 
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when considering Rayleigh scattering and the pigment packaging factor in the model, 

respectively. The spectra were fitted over the 500-1000 nm and 500-1600 nm wavelength 

ranges using a non constrained nonlinear least-squares Levenberg-Marquardt fitting 

algorithm. The confidence intervals on the estimated parameters at a confidence level of 

99% were assessed from the square roots of the diagonal elements of the covariance 

matrix [21]. 

 

 

Figure 2. Absorption coefficient of deoxygenated hemoglobin (full line), oxygenated 

hemoglobin (dashed line), water (dotted line) and lipid (dashed-dotted line) from 500 to 

1600 nm. 

 

A detailed study on the validation and calibration of the model in the 900-1600 

nm wavelength range was described in Ref. 20 based on phantom experiments. Given the 

extensive literature descriptions of the model validation in the 500-1000 nm wavelength 

range [10-11], only a validation comparable to the one in Ref. 10 was performed to make 

sure that the model estimates the correct blood volume faction with our setup. A set of 

phantoms that consist of human blood diluted in a scattering solution (80 mg of oil-free 

scattering powder in PBS) were prepared to obtain blood volume fractions of 0.5, 1, 5 and 

10% of a total phantom volume of 10 ml for each dilution. As soon as the blood was 

extracted from the subject, a blood oxygen saturation of 98.9% was measured with a 

blood gas analyzer (RapidPoint 405) before the preparation of the phantoms. When 
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comparing the estimated blood volume fractions with the actual values, a linear 

regression of equation y=0.97x-0.01 was obtained (R
2
=0.993). A blood oxygen saturation 

of 96.1±2.3% was estimated which is in good agreement with the value estimated by the 

blood gas analyzer. 

 

3. Results and discussion 

Fig. 3 shows typical diffuse optical spectra measured on a muscle and a fat layer 

respectively with the corresponding fit over I500


1600. Moreover, it also shows the 

residual. 

 

 

Figure 3. Typical measurement of muscle and fat layer (dotted line), and the 

corresponding fits and residuals between 500 and 1600 nm (full line). 

 

When measuring with a silicon spectrometer, it is possible to estimate the amount 

of water and lipid due to the absorption peaks of these two chromophores that exist in the 

900 to 1000 nm wavelength range. However it is interesting to investigate whether any 

advantages arise from adding an InGaAs spectrometer to accurately estimate the amount 

of water and lipid. Table 1 summarizes the average values that are estimated from fitting 

at I500


1000 (Fit 1) and I500


1600 (Fit 2) and their respective average confidence intervals. It 

is clear from Table 1 that the total amount of chromophores (i.e. BLν + WLν ) is closer to 

100% when the fit is applied over I500


1600. As a matter of comparison, there is a 
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significant difference (t-test, p<0.05) from a 100% total amount of chromophores for 67% 

of the spectra fitted over I500


1000 and only 28% when fitted over I500


1600. 

Among the 28% of the spectra for which the t otal amount of chromophores is 

statistically different from 100%, a few spectra gave numbers statistically higher than 

100% when fitting between 500 and 1600 nm. A number of effects might be the cause of 

this. The temperature of the animals decreased during the measurement sessions thus the 

water temperature in the body decreased. Therefore, the absorption coefficient of water 

which is temperature dependant need to be adapted in the fitting [20]. Moreover the type 

of lipid that is used in the fit is from beef fat and not from swine. As lipid is composed of 

different types of fat such as unsaturated, monosaturated and polysaturated fat; the beef 

fat can be chemically different from swine fat. This difference in fat provides differences 

in absorption coefficient of lipid [20]. As it can be seen in the residual curve of the fat 

layer measurement in Fig. 3, the largest deviations are around 1100 and 1200 nm where 

the main difference in absorption values of fat exists as presented in Fig. 8 of reference 

20. 

 

Table 1. Average estimated parameters and  corresponding average confidence intervals 

for fat layers and muscle as derived from fitting over I500


1000 (Fit 1) and I500


1600 (Fit 2). 

 Fat layers (n=143)  Muscle (n=153) 

Parameters 
Fit 1 

500-1000 

Fit 2 

500-1600 

 
Fit 1 

500-1000 

Fit 2 

500-1600 

a  (cm
-1

) 5.2±1.7 6.3±0.7  4.0±1.0 4.6±0.4 

b  0.7±0.3 0.8±0.1  0.7±0.3 0.6±0.1 

MR  (%) 98±8 98±6  93±10 87±6 

R  (μm) 23±9 15±5  27±8 19±4 

BL  (%)
(*)

 1.0±0.3 0.8±0.1  2.4±0.6 2.0±0.2 

BL  (%) 21±5 21±7  27±5 25±5 

WL  (%)
(*) 

112±30 95±5  114±42 89±5 

WL  (%) 60±5 68±1  10±13 18±3 

(*)
Significant difference from 100% of the sum with p<0.05 for 67% of all the spectra 

when Fit 1 is applied and 28% of the spectra when Fit 2 is applied. 
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Figure 4. Estimated water and lipid volume fraction (dots) when fitting between 500 and 

1000 nm versus 500 and 1000 nm and the respective mean and standard deviation. 

 

Figure 5 shows in a log-log scale for each of the parameters BLν , BLα , WLν  and 

WLα  the comparison of the confidence intervals for the two wavelength ranges of interest. 

Computing the average of the ratio of the confidence intervals obtained for both fits 

shows that extending the wavelength range up to 1600 nm narrows the confidence 

intervals of the water and lipid related parameters on average by a factor of four and the 

total blood volume fraction of a factor of two whereas no improvements are seen for the 

blood saturation levels. 

A Spearman‟s rank correlation test [17] is performed to assess the correlation 

between the values obtained for the two different wavelength ranges. Such a test 

determines whether strong correlation exists between the estimated parameters for both 

wavelength ranges. However, there could be high correlation despite a different 

dispersion (statistical variability) of the values and therefore a statistical test is required to 

determine whether the standard deviations of the estimated values are of the same order 

for both fits. The Levene‟s test [32] was applied to investigate whether there are 

significant differences between the dispersion of the estimated parameters from both fits. 



 

76 
 

Chapter 3 

 

Figure 5. Comparison of confidence intervals obtained when fit is applied between 500 

and 1000 nm and 500 and 1600 nm of the blood volume fraction (stars), blood saturation 

(circles), water and lipid volume fraction (crosses) and lipid fraction in the total volume 

(squares). 

 

Table 2 provides the Spearman‟s rank correlation coefficient for each parameter 

and indicates which parameters have significant differences with respect to the values and 

the dispersion of the values based on the analysis of variance and Levene‟s tests. The 

confidence intervals of the Spearman‟s correlation coefficients were computed by using a 

Fisher‟s z-transformation [32] with p<0.05. From Table 2, it is clear that adding the 900-

1600 nm data induces statistical differences for WLν  and WLα . One can notice that the 

lipid fraction parameter is the only parameter that does show significant difference in 

values but not in dispersion. As seen in Table 1, the lipid fraction estimated over I500


1000 

is smaller than when fitting over I500


1600. However the values do vary between 0 and 
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100% and therefore there is a non-significant difference in the dispersion of the estimated 

value for this parameter. From Table 2, the Spearman‟s correlation factors are considered 

to be high (above 0.8) except for the scattering related parameter and the water and lipid 

volume fraction. 

Although there is a significant difference in the reduced scattering amplitude 

values a  for both fits, their correlation factor is only as high as 0.75 and not more. It is 

thus interesting to know the cause of this effect. For this purpose, a t-test was performed 

for all the estimated values of reduced scattering to know which data points give 

significant differences with p<0.05. Fig. 6.a. depicts the data points for which there is no 

significant difference in the estimated reduced scattering amplitude values for both fits 

(blue stars) and those for which there is difference (red diamonds) according to the t-test. 

 

Table 2. Spearman’s correlation rank for each estimated parameter and parameters that 

show significant differences in value and dispersion. 

Parameters 

Spearman‟s correlation 

factor of the estimated 

values 

Significant difference 

of the estimated 

parameters values with 

p<0.05 for the analysis 

of variance test 

Significant difference 

of the dispersion of the 

estimated parameters 

with p<0.05 for the 

Levene‟s test 

a  (cm
-1

)
 0.75±0.05 + + 

b  0.22±0.10 - - 

MR  (%)
 

0.55±0.08 + + 

R  (μm)
 
 0.82±0.03 - - 

BL  (%) 0.81±0.04 - - 

BL  (%) 0.87±0.02 - - 

WL  (%) 0.50±0.09 + + 

WL  (%) 0.90±0.02 + - 

 

From Fig. 6.a, it can be seen that the values which are different all have low 

reduced scattering amplitudes. By plotting the corresponding water and lipid volume 

fractions that were estimated (cf. Fig. 6.b.), we observe that the values that show 

significant differences in the reduced scattering amplitudes mainly corresponds to the 

spectra for which WL  was estimated to be larger than 100% when the fit is applied 

between 500 and 1000 nm. When fitting up to 1600 nm, the estimated WL  for these 

spectra approaches 100% and the reduced scattering amplitude becomes higher. Thus 

when the reduced scattering amplitude of the measured tissues is low (i.e. smaller than the 

inverse of the fiber distance separation of 5cm
-1

), its covariance with WL  is high which 

leads to an incorrect estimation of the latter parameter. Besides, a change in the estimated 
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reduced scattering amplitudes also induces a change in the estimation of the blood 

volume fraction (cf. Fig. 6.c.). The amount of blood is overestimated when fitting over 

the 500 to 1000 nm wavelength range in case of low reduced scattering samples. 

Otherwise, the blood volume fraction values are not altered whilst the amount of water 

and lipid volume fraction is improved. 

By fitting up to 1600 nm where additional absorption features of water and lipid 

exist, the covariance with the reduced scattering as defined in Eq. (1) is smaller and still 

allows for a reliable fit when the reduced scattering coefficient is low. In case the fit is 

performed between 500 and 1000 nm, for small reduced scattering values, the scattering 

is underestimated whereas the absorption due to water, lipid and blood is overestimated. 

 

 

Figure  6. Comparison of the estimated reduced scattering amplitude when fit is applied 

between 500 and 1000 nm (Fit 1) and 500 and 1600 nm (Fit 2) where the circles 

correspond to no statistical difference in absolute values and the crosses with statistical 

differences (a). The corresponding water and lipid volume fractions shows larger 

deviation from 100% when Fit 1 is applied (b). The corresponding blood volume fraction 

shows overestimations of the values when Fit 1 is applied (c). 

 

4. Conclusion 

We have presented a comparison on the estimation of the absorption and reduced 

scattering related parameters when fits are applied to spectra measured in the commonly 

used wavelength range of 500 to 1000 nm acquired with a  silicon detector and the 

wavelength range of 500 to 1600 nm obtained when adding an InGaAs spectrometer. The 

fitting procedure was deliberately performed without constraining the values. Judging on 

the confidence intervals computed for each estimated parameter, having an additional 

spectrometer to measure up to 1600 nm provides up to four time higher confidence on the 

estimation of the water and lipid related parameters due to the presence of additional 

absorption features above 1000 nm. The blood volume fraction showed a factor of two 

improvement in the confidence intervals when fitting up to 1600 nm. The covariance 

between the reduced scattering amplitude and the water and lipid volume fraction is high 
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for low reduced scattering amplitudes leading to errors in the estimation of absorbers if 

the fit is applied between 500 and 1000 nm.  
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Abstract 

Objectives: To validate near infra-red (NIR) based optical spectroscopy 

measurements of hepatic fat content using a minimally invasive needle-like probe with 

integrated optical fibers enabling real-time feedback during percutaneous interventions. 

The results were compared with magnetic resonance spectroscopy (MRS) as validation 

and with histopathology, being the clinical golden standard. Additionally, ex vivo magic 

angle spinning nuclear magnetic resonance (MAS-NMR) spectroscopy and high 

performance thin layer chromatography (HPTLC) were performed for comparison. 

Materials and Methods: Ten mice were used for the study of which half received 

a regular chow diet and the other half a high fat diet to induce obesity and hepatosteatosis. 

The mice were imaged with a clinical 3-Tesla MR to select a region of interest (ROI) 

within the right and left lobes of the liver, where MRS measurements were acquired in 

vivo. Subsequently, optical spectra were measured ex vivo at the surface of the liver at six 

different positions immediately after resection. Additionally, hepatic fat was determined 

by MAS-NMR spectroscopy and HPTLC. Histopathologic analyses were performed and 

used as the reference standard. Pearson‟s correlation and linear regression analysis were 

done to assess the correlation of the various techniques with NIR. A one-way analysis of 

variance including post hoc Tukey‟s multiple comparison tests were used to study the 

difference in fat estimation between the various techniques. 

Results: For both of the mice groups, the estimated fat fractions by the various 

techniques were significantly similar, P = 0.072 and 0.627 for chow diet and high fat diet 

group, respectively. The Pearson‟s correlation value between NIR and the other 

techniques for fat determination showed the same strong linear correlation (P above 

0.990, P < 0.001); whereas for histopathology which is a rather qualitative measure, the 

Pearson‟s correlation value was slightly lower (P = 0.925, P < 0.001). Linear regression 

coefficient computed to compare NIR to the other techniques resulted in values close to 

unity with MRS having the narrowest confidence interval (CI) (r = 0.935, 95% CI: 

[0.860–1.009]) demonstrating highly correlating results between NIR and MRS. 

Conclusions: NIR spectroscopy measurements from a needle-like probe with 

integrated optical fibers for sensing at the tip of the needle can quickly and accurately 

determine hepatic fat content during an interventional procedure and might therefore be a 

promising novel diagnosing tool in the clinic. 
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1. Introduction 

Hepatic steatosis as the most prevalent liver disorder is found in a broad spectrum 

of disease. It is characterized by an excessive accumulation of triglycerides in the 

cytoplasm of the hepatocytes, being the key histological feature. Besides alcoholic liver 

disease, the intrahepatic accumulation of lipids may also be associated with non-alcoholic 

fatty liver disease (NAFLD), a feature not only encompassing the rather benign 

hepatosteatosis, but also the more severe non-alcoholic steatohepatitis, which may lead to 

irreversible liver cirrhosis and hepatic failure. NAFLD is strongly associated with obesity, 

insulin resistance and hyperlipidemia, features of the metabolic syndrome.
1
 As obesity 

and the metabolic syndrome are globally gaining prevalence in pandemic proportions, 

NAFLD may become a major disorder and should be detected in the early reversible 

stage.  

Currently, the golden standard to determine intrahepatic fat is histological analysis 

of samples obtained from a liver biopsy, which might be prone to inter-observer variance
2
 

and to sampling errors.
3
 Though, the invasiveness is its major drawback. Ultrasound (US) 

is a non-invasive technique that is the most widely used to detect fatty infiltration in liver 

by comparing the echogenicity in the liver and fat free organs such as the kidney cortex or 

spleen.
4
 However, this technique is not quantitative, prone to inter-observer variance and 

not optimal in presence of morbid obesity. Another method is based on computer 

tomography (CT) imaging where the Hounsfield attenuation values in liver and spleen are 

compared knowing that fat has a lower X-ray absorption than water and blood.
5
 Similarly 

to US, it is difficult to obtain accurate quantification of fat from CT images especially in 

the less severe cases of steatosis. Moreover, its ionizing radiation limits its use, 

particularly in children. Magnetic Resonance Imaging (MRI) is a widely used technique 

to estimate fat in liver by using commercially available algorithms such as in-

phase/opposed-phase, the Dixon method
6
 and its additional refinements

7
 to quantify fat 

fractions in liver. However, these techniques are sensitive to field inhomogeneity which 

potentially yield large errors on the estimation of fat.
8
 Nevertheless, a recent study 

conducted by Kühn et al. demonstrated that T2
*
-corrected Dixon MRI for estimating 

hepatic fat content showed excellent correlation with liver biopsy without being limited 

by liver iron content and fibrosis or cirrhosis.
9
 Magnetic resonance spectroscopy (MRS) 

enables measurements of water and fat proton signals and is generally considered as the 

most accurate non-invasive technique for hepatic fat quantification.
10

 Still, MRS remains 

a research tool for clinical studies and is not yet used in daily routine liver examinations. 

Optical spectroscopy measurements acquired with needle-like optical probes is a 

relatively new technique that is being developed over the last decade to estimate blood 

volume fractions and saturation in oxygen in the tissue by analyzing the spectra in the 

visible and near infra-red wavelengths range between 400 and 900 nm.
11-13

 We recently 

developed an optical setup and needles with integrated optical fibers that allows spectral 

measurements in the infra-red wavelengths range up to 1600 nm where fat and water 

absorption bands exist that enable accurate fraction estimation of these substances in 

addition to blood.
14

 The advantage of using such a broad wavelength range is that the 

error on the estimated fat fractions is below 3%.
15

 A thorough study was performed in 

order to evaluate the accuracy and the reliability of the fat fraction estimation in phantoms 
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with a wide range of known fat content.
14

 In addition to light absorption caused by the 

various biological chromophores, the light scattering in tissue correlated to the cellular 

structure and morphology is estimated as well. Recently, we have published a study 

discriminating tumors from healthy human liver tissue based on the difference in light 

scattering and the amount of bile in the liver estimated using a similar model as in the 

present study.
16

 Compared to our previous studies
14-16

, we extended the infra-red 

wavelength range of measurement from 1600 to 1800 nm where additional fat and water 

absorption bands exist; enabling higher accuracy in quantification of these biological 

chromophores.  

Fatty liver disease requires diagnostic tools that can accurately estimate hepatic fat 

given the fact that it is positively diagnosed by histopathology for lipid accumulation as 

low as 5%.
17

 Therefore, the goal of the study is to perform a validation of the NIR 

technique with MRS by estimating fat in the liver of two groups of mice under different 

dietary conditions. One group of mice was subjected to a regular chow diet, considered as 

healthy controls, whereas the second was subjected to a high fat diet inducing obesity and 

hepatosteatosis. Besides, ex vivo histopathology, the clinical golden standard, was 

performed for comparison as well as two other ex vivo techniques being magic angle 

spinning nuclear magnetic resonance (MAS-NMR)
18-22

 and high performance thin layer 

chromatography (HPTLC). 

 

2. Materials and methods 

2.1. Animal model and measurement protocol 

Ten male heterozygous APOE*3Leiden.CETP (cholesteryl ester transfer protein) 

transgenic mice,
23

 8-10 weeks of age, were matched on their body weight into a healthy 

control group, which received a regular chow diet (n = 5) or to a diet induced obese group 

(n = 5), supplemented a high fat diet containing 32% (w/w) lard (60 %kcal fat, D12492 

Research Diets, NJ, USA). The mice remained on the dedicated diets for 16 weeks, 

resulting in obesity in the high fat fed group (body weight of 46.9 ± 2.2 g versus 29.0 ± 

1.0 g in the chow group). The animals received food and water ad libitum. Body weight 

and food intake were monitored bi-weekly during the study. 

The mice were anesthetized using a mixture of isoflurane (1-3%) and medical air. 

Liver fat was measured in the left and right lobe non-invasively by MRS. Subsequently, 

the mice were euthanizaed by CO2 suffocation and livers were resected and immediately 

measured with NIR spectroscopy. After the NIR spectroscopy measurements, the livers 

were dissected, divided into several pieces and stored for further ex vivo analyses.  

Animals were obtained from the SPF breeding stock at TNO Metabolic Health 

Research (Leiden the Netherlands). Animal experiments were approved by the 

Institutional Animal Care and Use Committee of The Netherlands Organization for 

Applied Research (TNO).     

 

2.2. Near Infra-Red spectroscopy 

We have recently built an optical setup that allows optical spectroscopy 

measurements of tissue to estimate physiological and morphological information such as 
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chromophores volume fractions (e.g. blood, water, lipid, bile, etc.), blood saturation in 

oxygen and light scattering due to tissue density using an optical tissue model.
14-16

 

Briefly, the setup comprises a light source (Ocean Optics, Duiven, The 

Netherlands) and two optical spectrometers (Ocean Optics, Duiven, The Netherlands) that 

resolve light from 400 to 1200 nm and 900 to 2100 nm, respectively. A custom-made 

needle-like optical probe is connected to the light source and to both spectrometers via 

200 micrometer diameter optical fibers. 

The light that travels through the liver from the emitting to the collecting fibers is 

subject to optical absorption and scattering, properties that are related to the physiological 

and morphological properties of tissue. This tissue-light interaction is described by a 

model deriving from the diffusion theory and allows extraction of parameter of interest 

i.e. the fat fraction within the probed volume at the tip of the needle.
14-16

 A non-linear 

least squares inversion of the model is applied to fit the measurement curves with the set 

of parameters that best describes the tissue optical properties. The absorption coefficients 

of light by the various chromophores in their pure state in liver tissue (i.e. oxygenated 

hemoglobin, deoxygenated hemoglobin, bile, water and lipid) are used as a priori 

knowledge in the model to estimate the corresponding volume fractions in the total 

volume probed with the needle.
14-16 

Figure 1 depicts the absorption of light by water and lipid from 400 to 2200 nm 

that we measured as described elsewhere.
14

 Briefly, pure water and fat were inserted in 

separate cuvettes of different thickness and their optical transmission were measured with 

a 1 nm resolution high-end laboratory spectrophotograph (Perkin Elmer, Waltham, MA). 

From the transmission measurements, the absorption coefficients are computed and used 

as references for the analysis. These two chromophores have high absorption coefficients 

compared to other absorbers for wavelengths above 900 nm. Water has higher absorption 

coefficients than fat. However the fat absorption peaks at 930, 1211, 1720 and 1760 nm 

are of the same order of magnitude as the water absorption values altering the spectral 

shape of the measured spectra in case of presence of fat in the liver. The penetration depth 

depends on the optical properties of the probed tissue i.e. the absorption and reduced 

scattering coefficients. In average, it is roughly half the distance that separates the source 

and detection optical fibers. In our case the fiber separation distance is 2.5 mm yielding a 

penetration depth of approximately 1.25 mm. 

NIR spectroscopy measurements were performed on the fresh excised livers 

immediately after sacrificing the mice. The optical probe was gently put in contact with 

the surface of the liver without pricking. In principle the needle can be inserted inside the 

liver, however, surface measurements were preferred to avoid damaging of the tissue that 

can hamper ex vivo analysis for HPTLC, MAS-NMR and histopathology. In total 30 NIR 

spectra were measured at 6 different positions: in the upper-left, lower-left, central-left, 

upper-right, lower-right and central-right of the liver. 

The measurement acquisition time per spectrum is 500 ms and the analytical 

model was used to fit the measurement between 450 and 1800 nm to extract the fat 

volume fraction.
16

 The percentage of fat is calculated as percentage over water and fat 

similarly to MRS and MAS-NMR. Per mouse, the hepatic fat content was the calculated 

average of all fat fractions derived from the 30 NIR measurements of the liver.  
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Figure 1: Optical absorption coefficient of water and fat. 

 

2.3. Magnetic Resonance Imaging  

After 16 weeks of dietary intervention (either chow or high fat diet), the mice 

were anaesthetized by isoflurane inhalation and placed in a dedicated small animal setup. 

Core body temperature and respiration rate were controlled and recorded during the 

measurements. The MRI experiments were performed using a 3T Philips Achieva MR 

scanner (Philips Healthcare, Best, the Netherlands) with a Quasar dual gradient system 

(amplitude 80mT/m, slew rate 200mT/m/ms). All experiments were performed under 

software release 2.5.3. For imaging the liver and acquiring the MRS spectra, a dedicated 

whole body mouse coil (solenoid receive only, Philips Research, Hamburg, Germany) 

was used. This solenoid coil was placed perpendicular to the main magnetic field of the 

MR scanner. To position the mouse inside the MR coil, a dedicated mouse cradle 

(Equipement Vétérinaire MINERVE, Esternay, France) equipped with an anesthesia 

breathing mask and heating pad (using air) for maintaining the body temperature of the 

anesthetized mouse. The cradle with the mouse was positioned in such a way that the 
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liver of the mouse is positioned at the center of the MR coil. Figure 2 depicts from left to 

right the sagittal, transversal and coronal planes from a mouse MR image. Based on 

anatomical landmarks, a ROI of 27 mm
3
 was placed at the left and the right lobes of the 

liver for MRS measurements. 

 

 
Figure 2: Sagittal, transversal, and coronal planes from a mouse MRI image. Based on 

anatomical landmarks, a ROI of 27 mm
3
 was placed at the left and the right (shown) 

lobes of the liver for measuring a spectrum. 

 

2.4. Magnetic Resonance Spectroscopy 

All spectroscopy data were recorded with a Point RESsolved Spectroscopy 

(PRESS) sequence
24

 which is a volume selective MRS sequence based on 3 orthogonal 

selection gradients in combination with 3 RF pulses. Spoiler gradients were used to 

suppress unwanted signals. This sequence results in a spectrum from the volume defined 

by the intersection of the three slice selective profiles. 

Extra care was taken in planning of the volume in order to avoid chemical shift 

displacement errors as much as possible.  Chemical shift displacement is caused by the 

difference in chemical shift in combination with a selection gradient. As a consequence, 

the actual physical volume from which the -CH2 signals of the fat originate, will be 

different from the water volume. During planning both volumes were always shown on 

the image. Care was taken that both volumes were planned within the liver, avoiding 

major blood vessels. 

After optimization of gradient shimming, three consecutive spectra were acquired: 

(a) TR/TE = 4000 ms/31 ms, voxel size of 5x5x5 mm
3
 and without water suppression; (b) 

TR/TE = 4000 ms/31 ms, voxel size of 3x3x3 mm
3
 and without water suppression; (c) 

TR/TE = 4000 ms/31 ms, voxel size of 3x3x3 mm
3
 and with water suppression. Long TR 

was chosen for complete relaxation to ensure accurate quantifications. In principle, a 

single spectrum takes a couple of minutes however the combination of shimming and 

acquiring three consecutive spectra makes the total MRS scan time of 20 minutes. For all 
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three spectra, acquisition parameters included as well a number of signal averages of 32 

with a readout of 1024 data points over 2000 Hz spectral bandwidth. The first acquisition 

was mainly used for the shim optimization; the second acquisition was used to estimate 

the fat fractions whereas the third acquisition was used to have an improved fit of the 

CH2-signal for a more accurate quantification. 

The data were processed using jMRUI v3.0 software. After phase correction of the 

spectra, quantitative analysis was performed using the Advanced Magnetic Resonance 

(AMARES) algorithm within jMRUI.
25

 The amount of triglycerides can be quantified by 

integrating the triglyceride C(H2)n signal (1.1 - 1.3 ppm) against H2O signal. These values 

are T2-corrected since both signals have a different T2 relaxation time and thus undergo a 

different amount of signal decay at a chosen echo time. The corrected signal A0 can be 

calculated as A0=ATE/exp(-TE/T2) where ATE is the integral at the measured echo time 

and T2 is the spin-spin relation time of the H2O or the triglyceride C(H2)n signal. The T2 

values used in this study are 34 ms for H2O and 68 ms for C(H2)n taken from literature.
26

 

The lipid-percentage FMRS is calculated as FMRS=100.A0-triglyceride/( A0-triglyceride+A0-water) 

with A0-triglyceride and A0-water corresponding to the corrected integral of the C(H2)n and H2O 

signals, respectively.
27 

 

2.5. HR-MAS 1H-NMR spectroscopy description to estimate fat in liver 

After isolation of the whole liver, a piece of the left lobe was snap frozen in liquid 

nitrogen and stored below -70°C until the measurements by HR-MAS NMR. Shortly 

before the measurements, approximately 6 mg of frozen tissue was excised from the liver 

near the site that was previously selected for the in-vivo localized magnetic-resonance 

spectroscopy. The frozen tissue was rapidly transferred into a cooled zirconia 12 L HR-

MAS NMR rotor (CortecNet, product code HZ05537). Subsequently, 8 L of cooled 

99.95% D2O was added to the tissue, a Kel-F spherical spacer (CortecNet, product code 

H8548) was inserted to restrict the sample volume to 12 L,
21

 the excess of D2O was 

removed, and the rotor was sealed with a Kel-F cap (CortecNet, product code H6304). 

HR-MAS 
1
H-NMR spectra were acquired on a Bruker AVANCE 600MHz NMR 

(Rheinstetten, Germany) spectrometer equipped with a Bruker 4mm 
1
H/

13
C HR-MAS 

probe at a spinning speed of 6000 Hz. The magnetic-field homogeneity was optimized by 

minimizing the line width of the H2O resonance. The Free Induction Decay (FDI) 

sequence had the following parameters: number of averages is 64; spectral bandwidth of 

24 kHz; number of data points is 64k; and a repetition time of 5 s. After apodization with 

a 0.1 Hz exponential window function and Fourier transform, the NMR signals of H2O 

and the fatty-acid CH3 group were manually selected and quantified using the Bruker 

TOPSPIN NMR software package. 

 

2.6. HPTLC measurements to determine hepatic fat 

After isolation of the whole liver, a piece of the left and right lobe were snap 

frozen in liquid nitrogen and stored below -70°C until the measurements of lipids by 

HPTLC as described previously.
28

 In short the liver pieces were homogenized in PBS 

(phosphate-buffered saline). Protein content of all samples was determined and 
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subsequently lipids were extracted. Briefly, a solution of 200 μg protein in 800 μL of 

MilliQ was mixed with 3 ml Methanol/Chloroform (2:1), after which 500 μL Chloroform, 

100 μL Internal Standard and 1 mL MilliQ water was added. All were mixed and 

centrifuged for 10 min at 300 rpm. After the centrifugation the chloroform layer was 

collected and dried under nitrogen. The pellets were dissolved in 50 μL chloroform and 

transferred to a HPTLC plate for separation of triacylglycerols (TG), free cholesterol (FC) 

and cholesterol esters (CE). The lipids were separated using HPTLC on silica gel plates 

and subsequent analysis was performed by TINA 2.09 software (Rayest Isotopen 

Meβgeräte GmbH, Straubenhardt, Germany). The hepatic fat content was calculated as 

mg TG/ mg protein from two samples per mouse. 

 

2.7. Histopathology to determine hepatosteatosis 

After isolation of the whole liver, a piece of the left lobe was formalin fixed and 

embedded in paraffin. Microscopic sections (5 μm thick) were used for histological 

analysis. Sections were stained with haematoxylin-phloxine-saffron. Hepatosteatosis was 

determined by the amount of hepatocellular microvacuolisation around the central vene 

(centrilobular). The severity was defined by estimating the percentage of affected cells: 1- 

Very slight (<5%), 2- Slight (5-50%) and 3- Moderate (>50%). The livers from the chow 

diet group were considered as the healthy reference and therefore this method might be 

considered semi-quantitative. For statistical analyses the estimated percentages of 

affected cells were used. All analyses were performed by one toxicological pathologist. 

 

2.8. Statistical analysis 

All the data obtained by each technique can be described by a normal distribution 

according to the Jarque-Bera test for normality.
29

 Therefore, the estimated fat fractions 

are described as mean ± SD. 

A one-way analysis of variance combined with a post hoc Tukey‟s procedure for 

multiple comparison correction was applied to evaluate whether a technique gives 

significant differences from the others.  

Pairwise comparisons of the determined fat fraction by NIR with the different 

techniques were assessed using Pearson‟s correlation analysis. The Pearson‟s correlation 

coefficient provides an indication on the linearity of the estimated fat with NIR with 

respect to the values estimated by another technique. 

Pairwise robust linear regression fits were performed to evaluate the relation in fat 

estimation between NIR and each of the other techniques. For each mouse, a mean and a 

standard deviation fat fraction value are computed from all the estimated fat fractions 

measured at the different positions within a single mouse. The SD values were taken as 

weighting factor in the robust linear regression fit. A linear regression coefficient close to 

unity would mean that NIR gives similar values than the technique for which it is 

compared. For each linear regression coefficient, a 95% CI was computed. The data are 

displayed as scatter plots including bars that represent SDs within each mouse along with 

their linear fits and corresponding 95% confidence bounds. 

Histopathological results may be considered rather qualitative than quantitative as 

the chow group was defined as the healthy reference, with a disease score of „0‟. 
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Therefore these are slightly different from each of the other techniques results and thus 

not included neither in the one-way analysis of variance test for the comparisons of means 

nor in the pairwise robust linear regression computational procedure. 

 

3. Results 

Sixteen weeks of high fat feeding clearly induced hepatosteatosis as compared to 

the chow diet as determined by NIR, MRS, MAS-NMR and HPTLC and as confirmed by 

histopathologic analysis. Indeed, for each of the methods, applying a one-way analysis of 

variance test to the determined fat fraction values showed that there is a significant 

difference between both groups of mice (P < 0.002). 

 

 
Figure 3: Representative spectra from (A) NIR, (B) MRS, and (C) MAS-NMR 

measurements of a mouse liver under chow diet (left) and high fat diet (right) conditions. 

The arrows indicate wavelengths and frequencies corresponding to fat signatures in the 

spectra. 
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Figure 3A depicts NIR spectra of a liver from a chow diet and a high fat diet 

mouse, respectively. Light absorption below 900 nm is mainly due to the presence of 

blood-derived chromophores such as oxygenated hemoglobin and deoxygenated 

hemoglobin, and bile;
16

 whereas absorption above 900 nm is mainly due to water and fat 

in the tissue.
14

 Besides, examples of MRS (Figure 3B) and MAS-NMR (Figure 3C) 

spectra acquired in a mouse under chow diet and a mouse under high fat diet are 

displayed, respectively. The peaks at a chemical shift of 4.7 ppm correspond to presence 

of water whereas the peaks at a chemical shift of 1.3 ppm to triglycerides fatty acids. The 

arrows in Figure 3 indicate the wavelengths and frequencies for which fat signature exist. 

Representative histologic pictures from a liver from the chow diet group and from the 

high fat diet group are presented in Figure 4. 

 

 
Figure 4: Representative histologic pictures from mouse livers after chow diet (top) and 

high fat diet (bottom) at different magnifications (left 40x and right panel 400x). As 

compared to the chow diet, livers from the high fat diet show histolofical features of 

hepatosteatosis, evidenced by lipid accumulation in the hepatocytes. Asterisk denotes 

adipose cells. 
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Quantitative fat estimation in the liver using the various techniques were 

statistically compared and found not different (Table 1). The P-value for the chow diet 

and high fat diet category are 0.072 and 0.627, respectively; therefore none of the 

methods showed significant difference from another method for hepatic fat quantification 

for any of the mice groups. With respect to the chow diet group, NIR and MRS showed 

the same average fat fraction within a difference of 0.4 percent point whereas a difference 

of 2.7 and 1.1 percent point was observed with MAS-NMR and HPTLC, respectively. 

However, no statistically significant difference was obtained according to Tukey‟s post 

hoc test. The different techniques to measure hepatic fat in the high fat group were very 

similar. 

 

TABLE 1. Mean and standard deviation of the estimated fat in each mice group by the 

different techniques 

  
Fat (%) estimated by the various techniques 

(mean ± SD) 
  

Group  NIR MRS 
MAS-

NMR 
HPTLC  P -value

* 

Chow diet  4.5 ± 2.2 4.1 ± 1.4 7.2 ± 1.8 5.6 ± 1.0  0.072 

High fat diet  23.6 ± 7.3 25.6 ± 9.3 20.2 ± 4.0 26.5 ± 7.3  0.627 

*
Computed with a multiple group one-way analysis of variance test. No significant 

differences observed between any pairwise comparison of the techniques after Tukey‟s 

post hoc multiple comparison tests. 

 

After comparing the results on group level of the various methods, we calculated 

the correlations between the results obtained with the NIR technique and each of the other 

techniques. Table 2 summarizes the Pearson‟s correlation coefficients with corresponding 

CI applied to the data from NIR spectroscopy and the other techniques. NIR showed very 

high correlation with Pearson‟s coefficient P above 0.990 (P < 0.001) with all other 

techniques. Histopathology as semi-quantitative analysis demonstrated a lower value (P = 

0.925, P < 0.001). All compared techniques showed high Pearson‟s correlation 

coefficients meaning that a strong linearity exists between NIR and the different methods 

in determining the fat fraction in liver. Additionally, Table 2 summarizes the linear 

regression coefficient and corresponding 95% confidence intervals when comparing the 

estimated fat with NIR with another method. NIR and MRS showed the linear regression 

coefficient with the narrowest CI comprising unity (r = 0.935, 95% CI: 0.860-1.009). 

Therefore NIR showed to be the most comparable to MRS for fat fractions quantification. 

Comparison with HPTLC showed as well a linear regression coefficient lower than unity 

whereas it was above unity when comparing with MAS-NMR. All the regression 

coefficients have CI comprising unity besides for HPTLC that has an upper bound of 

0.993.  
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TABLE 2. Pearson’s correlation P and linear regression r coefficients computed when 

comparing estimated fat fractions from NIR with respect to MRS, MAS-NMR, and 

HPTLC and to histopathological scores. 

 MRS MAS-NMR HPTLC Histopathology
*
 

P coefficient 
0.993 

[0.970-0.998] 

0.990 

 [0.955-0.998] 

0.993 

[0.969-0.998] 

0.925 

[0.845-0.991] 

r coefficient 
0.935 

[0.860-1.009] 

1.030 

[0.781-1.279] 

0.896 

 [0.799-0.993] 
- 

*
Computed by comparing fat fractions determined with NIR versus the hepateastosis 

scores from histopathology. All P coefficients have P < 0.001. CI with P < 0.05 

displayed between brackets. 

 

Figure 5 depicts the average fat fractions and SD determined by NIR versus MRS 

(Figure 5A), MAS-NMR (Figure 5B) and HPTLC (Figure 5C), respectively. 

Additionally, Figure 5 depicts the linear regression fits and the 95% confidence bounds. 

MRS, HPTLC, and MAS-NMR are the techniques with narrowest to widest confidence 

bounds. The SD of estimated fat fraction with NIR within each mouse is similar to the 

one of HPTLC but larger than MRS. As only a single MAS-NMR spectrum was acquired 

per mouse, no SDs are available for this method. Given the fact that histopathology is a 

semi-quantitative method, no linear regression was applied to compute the regression 

coefficient between NIR and this method. 

 

 
Figure 5: Mean and SD of fat fraction in each mouse determined by (A) NIR versus MRS, 

(B) MAS-NMR, (C) HPTLC. The dashed line corresponds to the linear regression and the 

dotted lines correspond to the 95% confidence bound. 

 

4. Discussion 

In the present study we evaluated the NIR based optical spectroscopy 

measurements of hepatic fat content using a minimally invasive needle-like probe as 

compared to in vivo MRS measurements as validation, to histopathology being the 

clinical golden standard, to MAS-NMR spectroscopy, and to HPTLC measurements. 
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NIR spectroscopy showed very good agreement in fat quantification as compared 

to MRS with a very high Pearson‟s correlation coefficient and a linear regression 

coefficient of 0.935 making NIR underestimating the fat in liver of 6.5% compared to 

MRS. Whereas the average fat determined in the chow diet mice category is similar for 

both techniques (difference of 0.4 percent point), it is in average 2% lower in the case of 

high fat diet mice liver measurements yielding to a regression coefficient lower than unity 

when comparing NIR to MRS. We have performed two previous studies where we 

investigated the necessity to measure above 1000 nm and the accuracy of fat estimation 

with NIR from phantom measurements with fat content ranging from 0 to 83% of the 

total volume yielding a regression coefficient of 1.02 (R
2 

= 0.999).
14-15

 These studies 

showed the importance of extending the commonly-used wavelength ranges (between 400 

and 1000 nm) up to 1600 nm for a more accurate fat quantification. In this present study, 

we extended the wavelength range up to 1800 nm, where additional fat and water 

absorption bands exist. The local maxima of fat absorption at 1720 and 1760 nm are the 

only wavelength for which these maxima coincide with a local minimum of water 

absorption; adding more accuracy for fat quantification in comparison to what has already 

been published so far in literature. Bernard et al.
30

 performed MRS measurements in 

phantoms with fat content ranging from 0% to 100% and the analysis yielded a regression 

of 1.06 (R
2
 = 0.993). Consequently, based on the results from published phantoms study, 

MRS seems to be slightly overestimating fat fractions compared to NIR which can 

explain the regression coefficient of 0.935 when comparing NIR with MRS in this study. 

From Figure 5A, one can notice that the SD per mouse if smaller when the hepatic fat is 

estimated with MRS compared to NIR. This is due to the fact that only a single 

measurement per lobe is performed whereas three measurements per lobe are performed 

with NIR showing differences in fat content between the measurements performed close 

to the center of the liver compared to the other locations. 

Computing a linear regression coefficient to compare the estimated fat fractions 

between NIR and histopathology is not applicable. This is mainly due to the fact that 

histopathology is a rather semi-quantitative method. Moreover, the chow group was 

defined as the healthy reference with measured fat fractions below 5%, hence the „null‟ 

score for hepatosteatosis. Nevertheless, the correlation with NIR is still very high 

suggesting strong linearity. 

MAS-NMR and HPTLC are two techniques enabling ex vivo fat quantification 

and were used for comparison with NIR. Good agreements are observed between NIR 

and each of both methods with roughly similar Pearson‟s correlation coefficient values. 

However, the linear regression coefficient comparing NIR to MAS-NMR is the only one 

to be above unity. Moreover, only a single measurement per liver was performed with 

MAS-NMR and therefore no standard deviations are available for enhanced comparisons. 

Fat fractions estimated with HPTLC showed slightly higher values than NIR however the 

standard deviations are comparable. A potential explanation for this difference is the fact 

that the determined fat fractions with NIR correspond to the percentage of fat over water 

and fat whereas the fat fractions derived from HPTLC corresponds to percentage of fat 

over protein in liver and not water. 
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NIR spectroscopy has been used so far to quantify hemoglobin derivatives, and 

few studies investigated fat quantification in breast by measuring the spectra up to 1000 

nm only.
31-32

 Kitai et al.
33

 measured the optical properties such as the absorption and 

reduced scattering coefficients with time-resolved NIR spectroscopy on graft livers and 

showed correlation between the hepatic fat quantification and the ratio of reduced 

scattering to absorption however no quantitative fat is derived. The present study is the 

first to use a wavelength range up to 1800 for a very quick and a more accurate fat 

quantification. 

As fatty liver disease is considered to be positively diagnosed by histopathology 

for lipid accumulation as low as 5%,
17

 NIR seems to be a suitable technique for this 

purpose as demonstrated in this study. This suggests that NIR spectroscopy is a tool that 

performs as good as the other techniques that exists for hepatic fat quantification. NIR 

spectroscopy has the advantage of being very quick in acquiring and analyzing the spectra 

for fat quantification enabling real-time feedback for clinician compared to other 

techniques by only tipping the liver tissue. However optical fibers integrated in needles 

makes this technique invasive causing potential discomfort to patients. 

With NIR measurements at the tip of a needle, only local fat distributions can be 

estimated and therefore mapping of fat accumulations in the liver is only possible along 

the needle path. Existing NIR based imaging tools for fat mapping exist for breast 

however the breast is compressed in order to minimize the thickness of the organ and be 

able to have light penetrating through the whole breast.
32 

Quantifying fat with NIR is a relatively new technique that has only been used so 

far in investigational studies whereas MRS is already a well-established technique that is 

used in the clinics. A number of NIR studies in the oncology field were performed which 

demonstrated that fat content appeared to be a reliable discriminator between tumors and 

the surrounding healthy tissue.
16, 34

 Ongoing human in vivo studies carried out in the 

clinic will provide a better picture of the potential of this technique. With NIR sensing, it 

should be in principle possible to differentiate between microvesicular and 

macrovesicular fat content of liver cells. As a matter of fact, we have demonstrated that it 

is possible to distinguish with NIR between different sizes of lipid vesicles emulsified 

with water.
14

 Phantoms with known fat content where measured before and after 

shrinking of the vesicles sizes in order to investigate the effect of the particles size on the 

NIR spectra. The results showed that the fat content could be accurately determined 

independently from the particles size and that one can correlate the particles size with the 

slope of the estimated reduced scattering. The smaller the particles size, the higher the 

scattering slope. It appeared from this study that the chow diet mice group has a 

statistically higher reduced scattering slope (1.27±0.28) in comparison to the high fat diet 

mice group (0.98±0.23) suggesting larger particles size in the liver of mice under high fat 

diet as compared as the mice under chow diet. This corroborates with what can be seen on 

the histopathology slices in Figure 4 where the high fat diet liver slice shows larger 

adipose cells as compared to the chow diet liver slice. Therefore NIR can be an 

interesting tool to assess the suitability of a donor liver since one of the exclusion criteria 

is the extent of macrovesicular hepatic fat content.
35 
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Table 3 summarizes the characteristics of the different methods. NIR 

spectroscopy has the advantage of being a fast method to measure and estimate the 

hepatic fat. The acquisition time of 20 minutes for MRS is higher than the average values 

reported in literature. This is mainly due to the fact that we added higher order shims to 

our shim procedure to obtain the most optimal results possible. In standard clinical 

settings, higher order shims are not used. In comparison to MRS, high accuracy of fat 

estimation is reached with NIR however it has the disadvantage of being invasive 

whereas MRS is non-invasive. Nevertheless, the measurements can be performed in the 

body and therefore no additional chemical processing of the tissue is required after its 

resection as compared to MAS-NMR and HPTLC. 

 

TABLE 3. Characteristics of different methods for hepatic fat quantification  

  
Measure 

 time 
Invasiveness Accuracy Practice 

Main  

disadvantage 

NIR 
Sub-

second 
Minimally High Research Invasive 

MRS 
20 

minutes 
Non High Common 

Time 

consuming 

MAS-NMR 
10 

minutes 
Resection Average Rare 

Tissue 

excised 

HPTLC Days Resection Average Rare 
Tissue 

excised 

Histopathology Days Biopsy Qualitative 
Very 

Common 

Tissue 

excised 

Histopathology is considered as golden standard in the clinic. 

 

5. Conclusion 

This study investigated the potential of NIR spectroscopy for hepatic fat 

quantification by validating this method with the most commonly-used techniques such as 

MRS and histopathology, as well as HPTLC and MAS-NMR. A paucity of NIR studies 

for fat determination in a wide wavelength range from 450 to 1800 nm makes this study 

the first to be benchmarked with state of the art methods. We hypothesize that optical 

fibers integrated in needles could have the potential of providing instantly relevant 

feedback on hepatic fat quantification during interventional procedures in relevant parts 

of the liver.  
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Abstract 

We investigated differences between healthy tissue and metastatic tumor from ex 

vivo human partial liver resections using diffuse optical spectroscopy with a fiber optic 

probe. We extracted various physiological and morphological parameters from the 

spectra. During evaluation of the residual between the measurements and a fit model 

based on diffusion theory, we found that bile is an additional chromophore absorbing in 

the visible wavelength range that was missing in our model. Consistency of the residual 

with the absorption spectrum of bile was noticed. An accurate measurement of the 

absorption coefficient of bile from various human bile samples was performed and 

implemented into the fit model. Having the absorption coefficient of bile as a priori 

knowledge in the model showed a clear improvement in terms of reducing the fitting 

discrepancies. The addition of this chromophore yields significantly different estimates of 

the amount of blood. Furthermore, the estimated bile volume fraction and reduced 

scattering amplitude turned out to be two main relevant discriminators between normal 

and metastatic liver tissues. 
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1. Introduction 

Incidence and mortality rates of primary and secondary liver cancer have 

progressively increased worldwide over the last two decades [1]. In the western world, 

malignant lesions of the liver are generally metastases from other organs. Tumors of the 

gastro-intestinal tract, such as primary colorectal cancer, preferentially metastasize to the 

liver. 

For liver metastases of colorectal origin, resection is the only accepted treatment 

with curative intent. However, radiofrequency ablation (RFA) is an increasingly practiced 

treatment modality for patients with liver malignancy that are not suitable for surgery [2-

4]. 

The main negative prognostic factor for survival after liver surgery is a positive surgical 

margin [5, 6]. Histological analysis to determine the surgical margin is still considered to 

be the golden standard. However, intra-operative margin analysis would allow direct 

surgical intervention of a positive surgical margin, therefore reducing the chance of post-

operative loco-regional recurrence. 

Patients treated with RFA have demonstrated prolonged survival compared to 

patients treated with chemotherapy alone [7, 8]. Nevertheless, localization of the ablative 

needle and monitoring of the ablation process are important steps for optimal treatment of 

liver malignancies with RFA, since incidence of loco-regional disease recurrence due to 

ineffective ablation ranges from 3.6% to 60% [9]. Therefore, real-time intra-operative 

needle localization and ablation monitoring could improve ablation efficacy and disease-

free survival.     

Diffuse optical spectroscopy with fiber optic probes is a widely used technique to 

estimate the optical properties of tissue [10-15]. Concomitantly, several models have been 

developed to extract the absorption and reduced scattering coefficients from the measured 

spectra which are subsequently converted into physiological parameters. Such parameters 

are very useful to discriminate between healthy tissue and tumors in different organs. 

Indeed, several ex vivo and in vivo clinical studies were performed in the last decade 

showing the potential of optical spectroscopy to discriminate between healthy and tumor 

samples. However, only a few studies have focused on estimating tissue optical properties 

from spectroscopy measurements in liver [26-28] compared to other organs such as breast 

[11, 16-18], cervix [19, 20], lung [10, 21, 22] and skin [23-25]. 

In the present paper, we report on an ex vivo clinical study of healthy and 

metastatic human liver tissue where we measured the diffuse optical spectra in the 500-

1600 nm wavelength range. From the acquired spectra, several physiological and 

morphological parameters of clinical relevance were extracted, using a widely accepted 

analytical model developed by Farrell et al. based on the diffusion theory [29]. Recently, 

we have shown the applicability of the model to wavelength ranges extended to 1600 nm 

where additional absorption features of water and lipids appear [30, 31]. Parameters that 

were also obtained by fitting the model to the measurements are blood, water, lipid 

volume fractions, average vessel radius, oxygen saturation level in blood and tissue 

scattering properties. Accurate analysis of the measured spectra suggested that bile is an 

important chromophore in the liver because it significantly absorbs in the visible 

wavelength range. This chromophore should therefore be included in the fitting model. 
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The difference between healthy and tumor ex vivo human liver tissue was investigated 

based upon the parameters extracted from these measurements. 

 

2. Materials and methods 

2.1 Patients and liver tissue handling 

The presented pilot study on ex vivo liver was conducted at the Netherlands 

Cancer Institute in Amsterdam (NKI-AVL) under approval from the internal review 

board committee. Spectra were collected from liver surgical specimens after partial liver 

hepatectomy. Before resection of the specimen, the hepatic vessels that provide the blood 

supply to the part of the liver containing the tumor were clamped up to one hour before 

the resection started. Directly after resection, tissue was transported to the pathology 

department for further processing. After gross inspection by the pathologist, the optical 

spectra were collected from macroscopic normal and malignant tissue samples. 

Spectroscopy measurements were performed on freshly excised tissue before formalin 

fixation within two hours after the resection. In order to ensure that the measurements 

were at the tumor location, the samples were cut by the pathologist such that the tumor 

would be exposed in the most optimal way for measurements. All tumors were colorectal 

metastases and none were primary tumors. At the measurement sites, tissue was collected 

for conventional histopathology and the slides were analyzed at the pathology 

department. The pathological findings were correlated with the optical measurements. 

Several spectra were measured on liver tissues from 14 enrolled patients. In 

average, 15 spectra at different sites were taken from each of the fourteen healthy and 

metastatic tumor samples, respectively. All the measurements taken from the 14 samples 

were included in the study and compiled with the results from the pathological report. All 

measurements were performed by the same operator and care was taken to ensure the 

same measuring conditions on all the samples. 

 

2.2 Instrumentation and calibration 

The spectra were collected from the different samples with an instrument which 

was used in our previous study [31]. The setup consists of a halogen broadband light 

source with an embedded shutter, an optical probe with three fibers and two 

spectrometers that can resolve light from 400 to 1100 nm (silicon detector) and 800 to 

1700 nm (InGaAs detector), respectively. A filter that rejects light for wavelengths below 

465 nm was mounted in front of the spectrometers to reject second order light at the 

detectors. The 1.3 mm diameter probe has a fiber connected to the light source and two 

other fibers each connected to a spectrometer. The center-to-center distance between the 

emitting and collecting fibers is 2.48 mm, where the tip of the probe has an angled bevel. 

All optical fibers are low-OH fibers of 200 microns core diameter. The spectrometers are 

controlled by custom-made software to acquire the data. Figure 1 depicts a schematic of 

the full setup. 

The system was calibrated prior to each measurement on the tissue samples. The 

calibration consisted of several steps. First, the detectors were cooled down to -40ºC. 

Once the temperature was stable, a wavelength calibration was performed to assign a 

wavelength value to each pixel of both detectors, fitting a second order polynomial to a 
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set of atomic lines from argon and mercury light sources with peaks at known 

wavelengths. The second steps consisted of calibrating the system with a white 

reflectance standard measurement to compensate for the spectral shape of the light 

emitted by the lamp and the wavelength-dependent sensitivity of the detectors. 

Subsequently, a background measurement was carried out. Each spectrum was acquired 

by measuring simultaneously with both spectrometers. The analyzed spectra 

corresponded to tissue measurements corrected for the spectral shape of the light source, 

and the spectral response of the detectors measured on a white standard reference 

measurement as described in detail in our previous studies [30, 31].  

The simultaneously acquired spectra in the 400-1100 nm range and in the near-

infrared 800-1700 nm range were combined to a single spectrum, using the 950-1000 nm 

range to scale the near-infrared spectrum to the visible spectrum. For the spectral analyses 

we have used the 500-1600 nm spectral range, where the 500 to 1000 nm and 1000 to 

1600 nm correspond to the data collected with the silicon and InGaAs detectors, 

respectively [31].  

 

 
Figure 1. Schematic of the optical setup and the design of the optical probe. 

 

2.3 Mathematical modeling of the diffuse optical spectra 

The measured diffuse optical spectra were fitted, using the method of Farrell et al. 

[29] where the reduced scattering coefficient  ,

s  , the absorption coefficient  a  and 

the center-to-center distance between the emitting and collecting fibers at the tip of the 

probe are input arguments for the model. The spectra were fitted over the wavelength 

range of 500-1600 nm, using a non-constrained linear least squares fitting algorithm. The 

validation of this method with the setup and optical probe described in section 2.2 was 

performed in our previous work based on an extensive phantom and in vivo animal 

studies [30-31]. Briefly, we demonstrated that the fiber distance separation that is used is 

large enough in order not to infringe the diffusion theory assumptions. An extensive 

phantom study with different absorption and reduced scattering properties was performed 

to investigate the robustness of the fit. It was also shown that the model is suitable to 

properly estimate chromophore concentrations independently from the reduced scattering 

profile which was varied by changing the particle size distribution in the phantoms. The 

confidence intervals of the estimated parameters that derive from the covariance matrix 

were also used to investigate the reliability of the fits from the phantom measurements.  

The wavelength dependant reduced scattering coefficient is expressed by a double power 

law 
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     (1) 

 

where the wavelength   is expressed in nm and is normalized to a wavelength value of 

0λ = 800 nm. The reduced scattering coefficient is expressed as the sum of a Mie and a 

Rayleigh scattering where MRρ  is the Mie-to-total reduced scattering fraction and  b  

corresponds to the slope of the Mie reduced scattering. The total reduced scattering 

amplitude at 0λ  is denoted by a . 

We adopted the formulation of the absorption coefficient that is described in our 

previous study [31] where the absorption, due to chromophores present in the measured 

tissue, is expressed as 

 

     Tissue Blood WL -1

a a aμ λ =μ λ +μ λ    [cm ]      (2) 

 

where  Blood

aμ λ  corresponds to the absorption by blood and  WL

aμ λ  corresponds to 

absorption by water and lipid in the probed tissue. The blood related absorption 

coefficient is given by 

 

         2HbOBlood Hb -1

a Blood t 2 a t 2 aμ λ =C λ ν S O μ λ + 1-S O μ λ    [cm ]        (3) 

 

where 2HbO

aμ  and 
Hb

aμ  are the absorption coefficient of oxygenated hemoglobin 2HbO  

and deoxygenated hemoglobin Hb , respectively. The parameter Bloodν  corresponds to the 

blood volume fraction for a concentration of hemoglobin in whole blood of 150 mg/ml 

and t 2S O  corresponds to the oxygen saturation of the blood in the probed volume. The 

factor C  is a wavelength dependant correction factor known as a pigment packaging 

factor [32] and is given by 

 

 
      

     

2

2

HbO Hb

t 2 a t 2 a

HbO Hb

t 2 a t 2 a

1-exp -2R S O μ λ + 1-S O μ λ
C λ =

2R S O μ λ + 1-S O μ λ

  

  

     (4) 

 

with R  the average vessel radius expressed in cm; note however that its value is reported 

in microns throughout this paper. The absorption due to the presence of water and lipid in 

the measured tissue is defined as 

 

       2H OWL Lipid -1

a WL Lipid a Lipid aμ λ =ν f μ λ + 1-f μ λ    [cm ] 
 

     (5) 
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with 2H O

aμ  and 
Lipid

aμ  being the absorption coefficient of water and lipid (density of 0.86 

g/ml [31]) , respectively. The parameters WLν  and Lipidf  correspond to the total volume 

fraction of water and lipid in the tissue and the lipid fraction within this volume, 

respectively. Describing the absorption due to water and lipid as in equation (5) has the 

advantage that the covariance between WLν  and Lipidf  is smaller compared to the sum of 

the absorption of water and lipid separately weighted by corresponding volume fractions 

[31]. However, throughout this paper WLν  and Lipidf  are converted to water and lipid 

fractions and reported as such because of their clinical relevance for interpretation. 

 When inspecting the measured spectra, it was observed that there was a missing 

absorber in the visible wavelength range i.e. between 500 and 750 nm. The assumption 

was that bile would be the missing absorber in the fit model, since it is an endogenous 

compound which is abundant in liver [33]. Absorption by bile was included by 

incorporating it into equation (2) so that the total absorption is expressed as 

 

     Total Tissue Bile -1

a a Bile aμ λ =μ λ +ν μ λ    [cm ]      (6) 

 

where Bileν  and 
Bile

aμ  are the volume fraction and absorption coefficient of bile, 

respectively.  The absorption coefficient was determined by measuring bile freshly 

obtained from the gallbladder of two patients who underwent a cholecystectomy as part 

of the liver resection operation. The bile was poured in cuvettes of different thickness (1, 

2, 5 and 10 mm) and the optical transmission was measured in a spectrophotograph 

(Lambda 900 Spectrometer, Perkin Elmer) with a resolution of 1 nm. The bile absorption 

is depicted in figure 2 (circle-marked curve) and it corresponds to the measured 

absorption coefficients from 300 to 1600 nm. In the near-infrared, the bile absorption is 

similar to the water absorption coefficient [33]. This is due to the fact that bile is mainly 

composed of water. In the visible, bile has a local maximum at 409 nm, a local minimum 

at 350 nm and a large absorption peak centered at 605 nm. Additionally, figure 2 shows 

the absorption coefficient in a logarithmic scale of fully oxygenated hemoglobin [34], 

deoxygenated hemoglobin [34], lipid [30] and water [30] from 400 to 1600 nm. 

In the model, we have used the bile absorption coefficient as the measured bile 

absorption coefficient from which the water absorption coefficient was retrieved. Figure 3 

depicts the normalized absorption coefficients of bile, oxygenated and deoxygenated 

hemoglobin starting from 500 nm (starting wavelength of the fit). Bile has a large 

absorption peak at 605 nm of 5.4 cm
-1

 and its value does not change more than 5% 

between 550 and 650 nm. This large absorption peak can significantly change the spectral 

shape in the visible range of a measurement where bile is present in the tissue. 
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Figure 2. Absorption coefficients of deoxygenated hemoglobin (solid line), oxygenated 

hemoglobin (dashed line), lipid (dashed-dotted line) and water (dotted line) from 400 to 

1600 nm .Absorption coefficient of bile (circle-marked line) from 300 to 1600 nm. The 

absorption coefficient axis is in a logarithmic scale. 

 

From the acquired spectra the following parameters a , b , MRρ , R , Bloodν , 2StO , 

WLν , Lipidf  and Bileν  are determined. For each of these fit parameters, the confidence 

intervals were computed from the square root of the diagonal of the covariance matrix for 

a critical value of 0.05 [35]. A statistical F-test was performed to evaluate the 

improvement when bile is added to the model. The F-test is based on analyzing the 

difference between the sum-of-squares of the model with and without the bile absorption 

component. From the number of data points within the wavelength range where the fit 

was performed and the number of fit parameters for the models with and without the bile 

component, an F-ratio is computed from which a p-value can be extracted. If the p-value 

is smaller than the specific significance level chosen to be 0.05, the model with the bile 

component leads to a better description of the measured spectra. Statistical comparison of 

the parameters estimated from the healthy and metastatic tumor measurements was 

performed, using the Kruskal-Wallis non-parametric test with significance determined by 

computed p-values [36]. 
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Figure 3. Normalized absorption coefficients of deoxygenated hemoglobin (dashed line), 

oxygenated hemoglobin (dotted line), and bile (solid line) between 500 and 1000 nm. 

 

3. Results and discussion 

3.1 Mathematical model applied to the healthy liver tissue measurements 

Figure 4 shows a measured spectrum from 500 to 1600 nm of a healthy liver 

sample (dotted line), the corresponding fit curve without the bile component added into 

the model (solid line) and the 95% confidence bounds (dashed lines) [37]. For the 

measurement shown in figure 4, the parameters and the corresponding confidence 

intervals obtained from the fit are Bloodν =4.4±0.3%, t 2S O =22±8%, R =76±13μm, WLν

=91±2%, Lipidf =17±2%, and a reduced scattering amplitude of 14.2±0.3 cm
-1 

at 800 nm 

with a Mie-to-total reduced scattering fraction of 19±4%. When investigating the residual 

(χ
2
=0.238) and the confidence bounds, a large deviation between the measurement and 

the fit curves was observed around the deoxygenated hemoglobin peak at 758 nm. 
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Figure 4. Reflectance measurement (dotted line) from a normal ex vivo tissue sample and 

its fit (solid line) without bile absorption coefficient implemented in the model and the 

corresponding 95% confidence bound (dashed lines). The vertical dotted lines at 605, 

757, 972 and 1211 nm correspond to the absorption peaks location of bile, deoxygenated 

hemoglobin, water and lipid, respectively. 

 

By adding the absorption coefficient of bile to the model, the large deviation 

around 758 nm significantly reduced while the confidence bounds narrowed towards the 

fit curve. The measurement curve in figure 5 is the same than the one depicted in figure 4 

with a fit including the bile absorption coefficient in the model. For the measurement 

shown in figure 5, the estimated values and the corresponding confidence intervals are 

Bileν =3.9±0.7%, Bloodν =3.5±0.3%, t 2S O =37±8%, R =56±13μm, WLν =93±2%, Lipidf

=19±1%, and a reduced scattering amplitude of 14.5±0.3 cm
-1 

at 800 nm with a Mie-to-

total reduced scattering fraction of 25±7% were found. The residual decreased to a value 

of χ
2
=0.206. In comparison to the outcome of the model without bile, the oxygen 

saturation level is higher, indicating that the bile absorption was compensated by 

deoxygenated hemoglobin. Similar results can be seen in table 1 which shows comparison 

of the mean and standard deviation of the parameters obtained from all the spectra 

measured on the 14 normal human liver tissue samples. Based on the confidence 

intervals, the model with bile showed for each sample that the parameters were estimated 
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more reliably compared to the model without bile. Another observation in figure 5 is that 

the 95% confidence bound is closer to the fit curve, especially in the wavelength range 

between 500 and 800 nm where a bile absorption peak is present. 

 

 
Figure 5. Reflectance measurement (dotted line) from a normal ex vivo tissue sample and 

its fit (solid line) with bile absorption implemented in the model and the corresponding 

95% confidence bound (dashed line). The vertical dotted lines at 605, 757, 972 and 1211 

nm correspond to absorption peaks location of bile, deoxygenated hemoglobin, water and 

lipid, respectively. 

 

In order to depict the imprint of bile absorption on the measured spectra, a 

forward calculation of the spectrum with the estimated parameters can be computed by 

setting the bile volume fraction to 0%. Figure 6 shows another example of a healthy liver 

spectrum and the corresponding fits where the estimated bile volume fraction is 10.4%. 

Additionally, the forward computation of the spectrum by using the estimated parameters 

as input arguments and setting the bile volume fraction to 0% is plotted and the area 

comprised between the generated curves and the fitted curves is illustrated and highlights 

the spectral changes that result from bile absorption. 
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Table 1. Mean and standard deviation of the estimated values of the physiological and 

morphological parameters of healthy liver tissues obtained from the fitting model without 

and with bile absorption coefficient. 

Parameters Fit without bile Fit with bile 

Bile (%) - 6.6±4.5 

Blood volume fraction (%) 4.8±0.3 3.4±2.0 

Blood oxygenation level (%) 6±8 8±14 

Average vessel radius (microns) 67±28 50±22 

Water volume fraction (%) 77±7 76±7 

Lipid volume fraction (%) 17±11 19±11 

Reduced scattering at 800 nm (cm
-1

) 17±2 17±3 

Mie Slope 0.5±0.3 1.0±0.5 

Mie-to-total scattering fraction (%) 19±10 37±19 

According to a statistical F-test with p<0.05, 95% of the data showed improvement 

on the fitting when bile is added to the model. 

 

In order to mathematically evaluate whether bile is the missing absorber in the 

model, a statistical F-test was applied to all the data acquired at healthy sites in the liver 

[37]. P-values were computed from the F-ratios to evaluate if the model with bile 

absorption improved the fits. In total, 95% of the data have shown that the model 

including bile described best the measured spectra with a p-value below 0.05.  
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Figure 6. Tissue measurement from a normal tissue sample (dotted line) with an 

estimated bile volume fraction estimated from the fit (red solid line) of 10.4%. The 

colored area indicates the imprint of bile absorption obtained by comparison with a 

forward computation of the diffuse reflectance spectrum where the bile volume fraction is 

set to 0% (black solid line). 

 

3.2 Comparison of healthy and metastatic tumor liver tissue 

Figure 7 shows a typical spectrum (dotted line) from both healthy and metastatic 

tumor liver tissues with the corresponding fit curves (solid line) including bile. Major 

differences between the two typical spectra correlated with a difference in the estimated 

parameters. 

From the typical metastatic tissue measurement depicted in figure 7, the estimated 

parameters and the corresponding confidence intervals are Bileν =0±0%, Bloodν =1.5±0.1%, 

t 2S O =3±5%, R =31±3μm, WL =101±2%, Lipidf =10±1%, and a reduced scattering 

amplitude of 9.8±0.3 cm
-1 

at 800 nm with a Mie-to-total reduced scattering fraction of 

76±4%. 
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Figure 7. Reflectance measurement of healthy and metastatic tumor liver tissues (dotted 

line) and their corresponding fits (solid line). 

 

Table 2 summarizes all the median and standard deviations derived from the 

interquartiles of the various fit parameters for all the measurements performed in the 

fourteen samples of healthy and metastatic liver tissues. The advantage of reporting the 

median and the standard deviation derived from interquartiles instead of the mean and 

standard deviation is that the data cannot be described by a parametric distribution, hence 

we used a non-parametric statistical Kruskal-Wallis test instead of a t-test to find which 

parameters show significant difference between the two types of tissue, as was also done 

in previous studies [10, 12, 13, 16, 17, 19, 21, 22]. The blood oxygenation was not 

reported, due to the fact that the study was conducted on ex vivo samples. Therefore this 

parameter does not reflect the actual oxygenation level as it would be in vivo. According 

to the Kruskal-Wallis statistical test, the values that showed most significant differences 

between healthy and metastatic tissues with p < 0.01 were bile, the reduced scattering 

amplitude and the water volume fraction. 
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Table 2. Median and standard deviation of the various morphological parameters 

estimated from ex vivo measurements performed on normal and metastatic tumor tissues 

in liver. 

Parameters 
Normal liver 

(14 samples) 

Metastatic Tumor 

(14 samples) 

Bile (%)
a 

5.5±2.3 1.0±1.1 

Blood volume fraction (%) 3.2±1.6 0.8±2.4 

Blood oxygenation level (%) 8±14 45±44 

Average vessel radius (microns) 53±20 67±82 

Water volume fraction (%)
a
 76±4 93±17 

Lipid volume fraction (%) 16±3 12±6 

Reduced scattering at 800 nm (cm
-1

)
 

a
 

17±3 10±3 

Mie Slope 1.2±0.7 0.5±0.5 

Mie-to-total scattering fraction (%) 44±25 57±15 

a
Indicates significant differences with p<0.01 for the Kruskal-Wallis test. 

 

Figure 8 shows a picture of a tumor and the surrounding healthy liver tissue. It is 

visually clear that the tumor is less rich in blood than the healthy liver tissue. All the 

measured tumors were at least a centimeter in diameter and rather white in appearance. 

 

 
Figure.8. Picture of a tumor surrounded by healthy liver tissue. The optical probe is 

directed towards the tumor site. 
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4. Discussion 

A paucity of studies has investigated the absorption coefficient of bile. Maitland et 

al. [33] measured the absorption coefficient of bile from 350 to 2450 nm and stated that 

bile has its main absorption peaks at 400, 1450 and 1900 nm. The latter two most likely 

correspond to absorption due to the presence of water in bile, whereas the peak at 400 nm 

corresponds to an actual absorption peak of bile. After measuring the absorption 

coefficient of bile, we observed a broad absorption peak between 550 and 650 nm with a 

local maximum of 5.4 cm
-1

 at 605 nm. Our measurement also suggests that there is a 

higher absorption peak at 409 nm, whereas the maximum reported by Maitland et al. is at 

400 nm [33]. The presented bile absorption coefficients in this paper can therefore be 

considered as an updated measurement of the one reported by Maitland et al. [33]. 

This study demonstrated the necessity to incorporate the bile absorption 

coefficient into the model when fitting spectroscopic measurements in liver tissue. In 

95% of the measured healthy tissue data, including bile in the fitting model provided a 

better fit according to a statistical F-test. The fit parameters that were mainly altered when 

the bile was not added to the model were the blood volume fraction and the average 

vessel radius. For the 14 measured normal samples, the blood volume fraction decreased 

on average from 4.8±1.7% to 3.4±2.0%, whereas no significant changes were observed 

for the oxygenation level of blood. Figure 2 and 3 illustrates a higher absorption for 

deoxygenated hemoglobin than for oxygenated hemoglobin between 550 and 750 nm. 

The main absorption of bile is between these wavelengths. The resulting fit model 

without bile compensates for the residual by overestimating the deoxygenated 

hemoglobin yielding higher blood volumes with unchanged oxygen saturation levels. 

Moreover, this discrepancy is observed between the measurement and the fit curves 

depicted at 758 nm in figure 4 where no bile was taken into account in the model. It is 

important to note that deoxygenated-hemoglobin has a distinct spectral absorption peak at 

758 nm (cf. figure 2) resulting in an inflection point in the fits that is not present in the 

measured liver spectra. Furthermore, changes are observed in the Mie slope and Mie-to-

total reduced scattering fractions, whereas the reduced scattering amplitude remains 

unchanged. Finally, no effects on the estimation of water and lipid fractions is seen when 

bile is not present in the model. This is expected since there are no overlapping absorption 

features between these two biological parameters. 

It is important to note that the bile that was used to measure its absorption 

coefficients comes from patients suffering from metastatic colorectal cancer. Therefore 

the pigmentation concentration in the bile can vary from one person to another, resulting 

in slightly different absorption coefficients; hence the presence of a significant residual 

around 800 nm when bile is added in the model (cf. figure 5). However, this is not the 

case in all patients. Another remark with respect to the residual is the small deviation 

between the measurement and the fits around 1211 nm which is most probably due to 

changes in water absorption coefficients with temperature. Indeed, the tissue 

measurements were performed ex vivo after resection, and hence the temperature of the 

samples decreased from body temperature down to the room ambient temperature when 

brought to the pathology department. We have shown elsewhere [30] that water 
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absorption coefficient is temperature dependant and that it is prone to significant variation 

in absorption in the vicinity of 1200 nm, hence the small residual around this wavelength.  

The analysis of the diffuse optical spectra showed significant differences 

according to the Kruskal-Wallis non-parametric test with a critical value of 0.01 for bile 

and water volume fractions, as well as the reduced scattering amplitude and the 

oxygenation saturation of blood. 

The study by Kitai et al. [26] measured the optical properties before and after 

clamping the left branches of the hepatic pedicle, including the portal vein and hepatic 

artery, during 60 minutes. Their study showed that the oxygenation level in blood equals 

75% just before clamping the vessels and drops down to 8% one hour after clamping. The 

median oxygenation values in the healthy tissues and tumors presented in table 2 are 8% 

and 45%, respectively. In our study, the blood vessels of the resected specimens were 

clamped up to one hour before the resection was completed and the samples were 

transported within a time frame of two hours after resection to the pathology department. 

Therefore, there was no more blood flow and perfusion to the liver tissue in the ex vivo 

samples yielding to a decrease in oxygenation levels when the samples were delivered for 

measurements. It is therefore difficult to draw any conclusions by comparing the 

estimated oxygenation levels in healthy tissues and the tumors measured ex vivo. 

The reduced scattering amplitude and the bile volume fraction showed the most 

significant differences (p<0.0001) between healthy and metastatic liver tissues. As shown 

in table 2, healthy tissue has more than five times more bile than tumors whereas the 

reduced scattering amplitude is almost twice as high. Healthy liver tissue is mainly 

constituted of hepatocytes which are cells that are arranged as very thin plates separated 

by fine vascular sinusoids where blood flows; allowing perfusion of the bile throughout 

the liver [38]. In the tumor, this structure is lost, causing a different perfusion of the bile 

and an alteration of the cell structures yielding to a different light scattering. This 

observation is consistent with the fact that the tumors in liver are metastases of colorectal 

cancer with different structural composition. The tumor consists therefore of abnormal 

colorectal tissue cells embedded in collagenous cellular stroma induced by the epithelial 

tumor cells. Such tumors are almost completely devoid of stroma. Therefore, hardly any 

bile is expected in the tumor cells from colorectal origin. 

The reduced scattering amplitude is 1.7 times higher in healthy tissue than in 

tumors. Germer et al. measured the absorption coefficient, scattering and anisotropy of 

human liver tissues and colorectal liver metastases in vitro at 850, 980 and 1064 nm [39]. 

They found that scattering in human liver tissues is in average 1.7 times higher than in the 

metastases tissues. However, the large difference in anisotropy yields to reduced 

scattering of 9.5 and 11 cm
-1

 at 800 nm (extrapolated values) for normal and metastatic 

liver tissue, respectively [39]. Therefore, the reduced scattering amplitude of the 

metastatic tumor reported in table 2 is very comparable to the value reported in ref. [39] 

whereas the value in healthy liver tissue is much higher. 

The water volume fraction showed significant difference between both types of 

tissue with higher water content in tumor. There is a multitude of factors that could 

explain this observation. In particular, the fact that water is attracted to necrotic tissue 
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which is also abundantly present in most colorectal liver metastases, the high water 

content of collagenous stroma in general, and tumor induced stroma could play a role. 

From Table 2, one can observe a low Mie scattering contribution in liver 

compared to other organs. The reported Mie-to-total scattering fraction in healthy tissue 

and tumors are 44% and 57%, respectively. Optical properties such as the absorption 

coefficient, scattering coefficient and anisotropy of porcine liver were measured with a 

double integrating sphere setup by Fritz et al. [40] where it is clearly shown that the 

anisotropy of liver tissue steeply increases from 0.75 to 0.9 between 400 and 600 nm and 

is constant at a value of 0.93 beyond 600 nm up to 1600 nm. By applying the double 

power law for reduced scattering as expressed in Eq. (1) to the data of Fritz et al. up to 

1600 nm, the Mie-to-total reduced scattering contribution is as low as 59% which is 

comparable to the values reported in table 2. This is a result of the high gradient of the 

anisotropy below 600 nm. Rayleigh scattering occurs due to the interaction of light with 

sub-micron structures, such as thin fibers, in tissue and it was proven that it is necessary 

to include a Rayleigh term in the reduced scattering model beyond 500 nm [41]. Liver is 

very rich in sub-micron reticular fibers in the perisinusoidal space separating hepatocytes 

from sinusoids, likely yielding high Rayleigh scattering [38].  

Table 2 reports a median value of blood volume fraction in healthy and metastatic 

tissue of 3.2% and 0.8%, respectively. However, despite this large difference, there is 

statistically no significant difference (p < 0.05) between the two types of tissue because 

the standard deviation for tumor tissue is very large. The reason is that in two of the 

fourteen tumor samples, which were large necrotic samples, high amounts of blood were 

present. Indeed it is known that most tumors have a vascular network of higher density 

than most normal tissues. However, the opposite is true for colorectal liver metastases, as 

normal liver tissue is extremely well vascularized to fulfill its many functions related to 

metabolism, detoxification, bile production, etc. The absorption coefficient of the human 

liver measurements in ref. [39] was found to be higher in the liver than in the metastases 

for the wavelengths of interest which in fact means that more blood is present in healthy 

liver tissue than in metastatic tumors which corroborates with the estimated blood volume 

fraction in table 2. 

Given the distance between the emitting and collecting fibers, the amount of light 

that is collected below 600 nm is in some cases close to the noise level because of the 

high blood amount (above roughly 5%) in the liver. The high amount of blood causes a 

decrease in the amount of light that is collected. In order to enhance the reliability of the 

estimated parameters of the blood and bile, one could measure below 500 nm where 

additional absorption peaks of these chromophores exist (cf. figure 2) by using a smaller 

distance separation between the emitting and collecting fibers.  

 

5. Conclusion 

In conclusion, this paper presents the first study in which bile, water and lipid are 

included in addition to oxygenated and deoxygenated hemoglobin in the discrimination 

between healthy and metastatic tumors tissues in human liver with diffuse optical 

spectroscopy. The absorption spectrum of bile was accurately measured and integrated in 

the model in order to estimate the concentration of this chromophore in the liver. We have 
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demonstrated that bile should be included when analyzing diffuse optical spectroscopy 

data, because of its presence in the liver bile ducts. Our results illustrate that 

discrimination between healthy and metastatic liver cancer tissues seems possible based 

on the estimated bile volume fraction and reduced scattering amplitude obtained from 

diffuse optical spectra measured on both types of tissue. Compared to healthy tissue, 

tumors have around five and two times lower bile and reduced scattering amplitude 

values, respectively. This method can also be applied during real-time intra-operative 

needle localization and ablation monitoring to improve ablation efficacy and hence 

disease-free survival. 

 

6. Acknowledgments 

The authors would like to thanks the pathology department staff at the 

Netherlands Cancer Institute (NKI-AVL) and Philips Research project members. 

Furthermore, the authors thank Gert„t Hooft, Susanne van der Berg, and Willem 

Verkruijsse for their valuable feedback when preparing the manuscript and Walter 

Bierhoff and Jeroen Horikx for improving the hardware and making the probes.    

This work is supported by a European Commission Marie Curie contract MEST-

CT-2004-007832. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

122 
 

Chapter 5 

References 

1. Am. Canc. Org. 2010 official stats website: 

http://www.who.int/mediacentre/factsheets/fs297/en/index.html 

2. N. C. Tsim, A. E. Frampton, N. A. Habib, and L. R. Jiao, “Surgical treatment for 

liver cancer”, World J. Gastroenterol. 16, 927-933 (2010).  

3. N. Kemeny, “The management of resectable and unresctable liver metastases from 

colorectal cancer”, Curr. Opin. Oncol. 22, 364-373 (2010). 

4. H. Shimada, K. Tanaka, I. Endou, and Y. Ichikawa, “Treatment for colorectal liver 

metastases: a review”, Langenbeck‟s Arch. Surg. 394, 973-983 (2009). 

5. A. Muratore, D. Ribero, G. Zimmitti, A. Mellano, S. Langella, and L. Capussotti, 

“Resection margin and recurrence-free survival after liver resection of colorectal 

metastases”, Ann. Surg. Oncol. 17, 1324-1329 (2010). 

6. T. M. Pawlik, C. R. Scoggins, D. Zorzi, E. K. Abdalla, A. Andres, C. Eng, S. A. 

Curley, E. M. Loyer, A. Muratore, G. Mentha, L. Capussotti, and J. N. Vauthey, 

“Effect of surgical margin status on survival and site of recurrence after hepatic 

resection for colorectal metastases”, Ann. Surg. 241, 715-722 (2005). 

7. N. Bhardwaj, A. D. Strickland, F. Ahmad, A. R. Dennison, and D. M. Lloyd, 

“Liver ablation techniques: a review”, Surg. Endosc. 24, 254-265 (2010). 

8. T. J. Ruers, J. J. Joosten, B. Wiering, B. S. Langenhoff, H. M. Dekker, T. Wobbes, 

W. J. Oyen, P. F. Krabbe, and C. J. Punt, “Comparison between local ablative 

therapy and chemotherapy for non-resectable colorectal liver metastases: a 

prospective study”, Ann. Surg. Oncol. 14, 1161-1169 (2007).  

9. S. L. Wong, P. B. Mangu, M. A. Choti, T. S. Crocenzi, G. Dodd, G. S. Dorfman, 

C. Eng, Y. Fong, A. F. Giusti, D. Lu, T. A. Marsland, R. Michelson, G. J. Poston, 

D. Schrag, J. Seidenfeld, and A. Benson, “American society of clinical oncology 

2009 clinical evidence review on radiofrequency ablation of hepatic metastases 

from colorectal cancer”, J. Clin. Oncol. 28, 493-508 (2010). 

10. M. L. Bard, A. Amelink, V. N. Hegt, W. J. Graveland, H. J. C. M. Sterenborg, H. 

C. Hoogsteden, and J. G. J. V. Aerts, “Measurement of hypoxia-related parameters 

in bronchial mucosa by use of optical spectroscopy”, Am. J. Respir. Crit. Care 

Med. 171, 1178-1184 (2005). 

11. Z. Volynskaya, A. S. Haka, K. L. Bechtel, M. Fitzmaurice, R. Shenk, N. Wang, J. 

Mazemi, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer using diffuse 

reflectance spectroscopy and intrinsic fluorescence spectroscopy”, J. Biomed. Opt. 

13, 024012 (2008). 

12. A. E. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In 

vivo absorption , scattering of 58 malignant breast tumors determined by 

broadband diffuse optical spectroscopy”, J. Biomed. Opt. 11, 044005 (2006). 

13. J. Q. Brown, L. G. Wilke, J. Geradts, S. A. Kennedy, G. M. Palmer, and N. 

Ramanujam, “Quantitative optical spectroscopy: a robust tool for direct 

measurement of breast cancer vascular oxygenation and total hemoglobin content 

in vivo”, Cancer Res. 69, 2919-2926 (2009). 

http://www.who.int/mediacentre/factsheets/fs297/en/index.html


 

123 
 

Effect of bile absorption coefficients on the estimation of liver tissue optical properties 
and related implications in discriminating healthy and tumorous samples 

Chapter 5 

14. G. Zonios, L. T. Perelman, V. M. Backman, R. Manoharan, V. D. Fritzmaurice, J. 

Van Dam, and M. S. Feld, “Diffuse reflectance spectroscopy of human adenomatus 

colon polyps in vivo”, Appl. Opt. 38, 6628-6637 (1999). 

15. R. Reif, O. A‟Amar, and I. J. Bigio, “Analytical model of light reflectance for 

extraction of the optical properties in small volumes of turbid media”, Appl. Opt. 

46, 7317-7328 (2007). 

16. R. L. P. van Veen, A. Amelink, M. Menke-Plymers, C. Van der Pol, and H. J. C. 

M. Sterenborg, “Optical biopsy of breast tissue using differential path-length 

spectroscopy”, Phys. Med. Biol. 50, 2573-2581 (2005). 

17. C. Zhu, T. M. Breslin, J. Harter, and N. Ramanujam, “Model based and empirical 

spectral analysis for the diagnosis of breast cancer”, Opt. Exp. 16, 14961-12978 

(2008). 

18. I. J. Bigio, S. G. Bown, G. Briggs, C. Kelley, S. Lakhani, D. Pickard, P. M. Ripley, 

I. G. Rose, and C. Saunders, “Diagnosis of breast cancer using elastic-scattering 

spectroscopy: preliminary clinical results”, J. Biomed. Opt. 5, 221-228 (2000). 

19. V. Chang, P. S. Cartwright, S. M. Bean, G. M. Palmer, R. C. Bentley, and N. 

Ramanujam, “Quantitative physiology of the precancerous cervix in vivo through 

optical spectroscopy”, Neoplasia 11, 325-332 (2009). 

20. J. R. Mourant, T. J. Bocklage, T. M. Powers, H. M. Greene, K. L. Bullock, L. R. 

Marr-Lyon, M. H. Dorin, A. G. Waxman, M. M. Zsemlye, and H. O. Smith, “In 

vivo light scattering measurements for detection of precancerous conditions of the 

cervix”, Gyneco. Onc. 105, 439-445 (2007). 

21. S. C. Kanick, C. van der Leest, R. S. Djamin, A. M. Janssens, H. C. Hoogsteden, 

H. J. C. M. Sterenborg, A. Amelink, and J. G. J. V. Aerts, “Characterization of 

mediastinal lymph node physiology in vivo by optical spectroscopy during 

endoscopic ultrasound-guided fine needle aspiration”, J. Thoracic. Onc. 5, 981-987 

(2010). 

22. S. C. Kanick, C. van der Leest, J. G. J. V. Aerts, H. C. Hoogsteden, S. Kascakova, 

H. J. C. M. Sterenborg, and A. Amelink, “Integration of single-fiber reflectance 

spectroscopy into ultasound-guided endoscopic lung cancer staging of mediastinal 

lymph nodes”, J. Biomed. Opt. 15, 017004 (2010). 

23. G. Zonios, and A. Dimou, “Modeling diffuse reflectance from semi-infinite turbid 

media: application to the study of skin optical properties”, Opt. Exp. 14, 8661-

8674 (2006).  

24. G. Zonios, I. Bassukas, and A. Dimou, “Comparative evaluation of two simple 

diffuse reflectance models for biological tissue applications”, Appl. Optics 47, 

4965-4973 (2008). 

25. G. Zonios, and A. Dimou “Light scattering spectroscopy of human skin in vivo”, 

Opt. Exp. 17, 1256-1267 (2009). 

26. T. Kitai, M. Miwa, H. Liu, B. Beauvoit, B. Chance, and Y. Yamaoka, “Application 

of near-infrared time-resolved spectroscopy to rat liver, a preliminary report for 

surgical application”, Phys. Med. Biol. 44, 2049-2061 (1999). 



 

124 
 

Chapter 5 

27. T. Kitai, T. Nishio, M. Miwa, and Y. Yamaoka, “Optical analysis of the cirrhotic 

liver by near-infrared time-resolved spectroscopy”, Surg. Today 34, 424-428 

(2004). 

28. C. P. Hsu, M. K. Razavi, S. K. So, I. H. Parachikov, and D. A. Benaron, “Liver 

tumor gross margin identification and ablation monitoring during liver 

radiofrequency treatment”, J. Vasc, Inter. Radiol. 16, 1473-1478 (2005). 

29. T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially 

resolved, steady-state diffuse reflectance for the non-invasive determination of 

tissue optical properties”, Med. Phys. 19, 879-888 (1992). 

30. R. Nachabé, B. H. W. Hendriks, A. E. Desjardins, M. van der Voort, M. B. van der 

Mark, and H. J. C. M. Sterenborg, “Estimation of lipid and water concentrations in 

scattering media with diffuse optical spectroscopy from 900 to 1600 nm”, J. 

Biomed. Opt. 15, 037015 (2010). 

31. R. Nachabé, B. H. W. Hendriks, M. van der Voort, A. E. Desjardins, and H. J. C. 

M. Sterenborg, “Estimation of biological chromophores using diffuse optical 

spectroscopy: benefit of extending the UV-VIS wavelength range to include 1000 

to 1600 nm”, Biomed. Opt. Exp. 18, 1432-1442 (2010). 

32. W. Verkruysse, G. Lucassen, J. F. De Boer, D. J. Smithies, J. S. Nelson, and M. J. 

C. Van Gemert, “Modelling light distributions of homogenous versus discrete 

absorbers in light irradiated turbid media”, Phys. Med. Biol. 42, 51-65 (1997). 

33. D. J. Maitland, J. T. Walsh, and J. B. Prystowsky, “Optical properties of human 

gallbladder tissue and bile”, App. Opt. 32, 586-591 (1993). 

34. W. G. Zijlstra, A. Buursma, and O. W. Van Assendelft, Visible and near infrared 

absorption spectra of human and animal haemoglobin (Utrecht, The Netherlands, 

VSP Publishing, 2000). 

35. A. Amelink, D. J. Robinson, and H. J. C. M. Sterenborg, “Confidence intervals on 

fit parameters derived from optical reflectance spectroscopy measurements”, J. 

Biomed. Opt. 13, 054044 (2008).  

36. W. H. Kruskal, and W. A. Wallis, “Use of ranks in one-criterion variance 

analysis”, J. Am. Stat. Association 47, 583-621 (1952) 

37. H. Motulsky, Intuitive biostatistics (Oxford University Press, 1995). 

38. B.Young, J. Lowe, A. Stevens, and J. Heath, Wheater’s functional histology 

(Churchill Livingstone, 2006). 

39. C. Germer, A. Roggan, J. Ritz, C. Isbert, D. Albrecht, G. Müller, and H. Buhr, 

“Optical properties of native and coagulated human liver tissue and liver 

matastases in the near infrared range”, Lasers in Surg. and Med. 23, 194-203 

(1998). 

40. J. Ritz, A. Roggan, C. Isbert, G. Müller, H. Buhr, and C. Germer, “Optical 

properties of native and coagulated porcine liver tissue between 400 and 2400 nm”, 

Lasers in Surg, and Med. 29, 205-212 (2001). 

41. I. S. Saidi, S. L. Jacques, and F. K. Tittel, “Mie and Rayleigh modeling of visible-

light scattering in neonatal skin”, Appl. Opt. 34, 7410-7418 (1995). 

  



 

 
 

Chapter 6 

Optical sensing for tumor detection in the liver  

 

 

 

 

 

 

 

 

 

 

Daniel J. Evers 

Rami Nachabé 

Daphne Hompes 

Frits van Coevorden 

Gerald W. Lucassen 

Benno H. W. Hendriks 

Loes van Velthuizen 

Jelle Wesseling 

Theo J. M. Ruers 

 

Manuscript submitted to Annals of Surgical Oncology in February 2012 



 

126 
 

Chapter 6 

Abstract 

Introduction. There is an increasing trend for optical guidance techniques in 

surgery. Optical imaging using Diffuse Reflectance Spectroscopy (DRS) can distinguish 

different tissue types through a specific “optical fingerprint”. We aim to evaluate whether 

DRS could discriminate metastatic tumor tissue from normal liver tissue and in this way 

would be a potential technology for further implementation into surgical or radiological 

intervention tools.    

 Methods. A miniaturized optical needle was developed able to collect DRS spectra 

between 500 and 1600 nm. Liver specimen of 24 patients operated for colorectal liver 

metastases were analyzed with DRS immediately after resection. Multiple measurements 

were performed and DRS results were compared to the histology analysis of the 

measurement locations. In addition, normal liver tissue was scored for the presence or 

absence of steatosis. 

 Results. A total of 780 out of the 828 optical measurements were correctly 

classified into either normal or tumor tissue. The resulting sensitivity and specificity were 

both 94%. The results of the analysis for each patient individually showed an accuracy of 

100%. The Spearman‟s rank correlation of DRS estimated percentages of hepatic 

steatosis in normal liver tissue compared to that of the pathologist was 0.86. 

 Conclusion. DRS demonstrates a high accuracy in discriminating normal liver 

tissue from colorectal liver metastases. DRS can also predict the degree of hepatic 

steatosis with high accuracy.  The technique, here demonstrated in a needle like probe, 

may as such be incorporated into surgical tools for optical guided surgery or percutaneous 

needles for radiological interventions. 
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1. Introduction 

In the last decade, optical sensing by means of diffuse reflectance spectroscopy 

(DRS) has developed into a promising technique that could make a significant 

contribution to the diagnosis and treatment monitoring of cancer [1, 2]. DRS is an optical 

measurement technique that records changes in the spectral distribution of light after its 

interaction with the molecules of the tissue. Main changes in the reflected spectra are a 

result of a combination of absorption and scattering of light. By illuminating tissue with a 

selected spectral band of light and subsequent analysis of the characteristic scattering and 

absorption patterns, it is possible to obtain an „optical fingerprint‟ of the tissue. Such an 

optical fingerprint represents specific quantitative biochemical en morphological 

information from the examined tissue and may depend on metabolic rate, vascularity, 

intra-vascular oxygenation and alterations in tissue morphology. By allowing specific 

differentiation between tissues, this technique has the potential to be incorporated into 

optical tools for cancer diagnosis and therapy. As such, DRS is progressively being 

explored for sole use as well as for combined use with conventional imaging techniques. 

It has been performed for tissue surface analysis during endoscopical procedures but also 

for analysis of tissue abnormalities in solid organs [3-8]. Within breast cancer, several 

groups have investigated the improvement of tissue biopsy and surgical margin analysis 

with DRS, demonstrating promising results in the discrimination of malignant lesions 

from normal breast tissue [9-11]. 

 Also in patients with primary liver malignancy or metastatic disease to the liver, 

DRS could contribute to daily clinical care. For example, DRS can be incorporated into 

surgical tools or percutaneous intervention needles enabling direct optical guidance by 

real time tissue information at the tip of the instrument.  Such an approach would result in 

guided surgery by optical sensing and could improve surgical outcome by predicting 

resection planes, especially in deep seated smaller tumors or those lesions that are 

difficult assessable. In addition, DRS has shown to identify irreversible cell damage 

during RFA procedures in animal experiments, opening the potential to monitor the 

efficacy during percutaneous RFA ablations in liver tumors [12]. Finally, DRS could be 

of additional value by predicting severe steatosis hepatis and therefore preventing too 

extensive resections in these high risk patients [13-16].  

Despite the potential application of DRS in patients with liver malignancies, 

studies on the use of DRS in human liver tissue are scarce [12, 17-20].  Recently, we 

described bile to be an important liver tissue chromophore, enabling DRS analysis to 

overall discriminate normal liver tissue from metastatic tumor tissue [21]. However, in 

that study a method for tissue prediction in individual patients was still missing. To 

proceed to further clinical implementation we now aim to investigate whether DRS is 

able to discriminate tumor tissue from normal liver tissue in individual patients. 

Moreover, we are interested whether the technique could judge the presence of hepatic 

steatosis, an important limiting factor for extensive liver resections after prolonged 

chemotherapy.  
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2. Materials and methods 

2.1 Clinical study design 

This study was conducted at The Netherlands Cancer Institute (NKI-AVL) under 

approval of the internal review board. Liver tissue was obtained from 24 patients 

undergoing partial liver resection for metastatic colorectal cancer. Shortly after resection, 

tissue was transported to the pathology department for optical spectroscopy analysis. 

After gross inspection by the pathologist, the optical spectra were collected from 

macroscopic normal liver tissue and tumor tissue. From both tissue classes, multiple 

measurements were performed, in total 393 DRS measurements in normal liver 

parenchyma and 435 in metastatic liver lesions. After data acquisition, the measurement 

sites were marked and specimens were fixed in formalin. After fixation, the marked tissue 

measurement locations were selected for cutting and processed for standard Hematoxylin 

and Eosin (H&E) staining. An experienced pathologist, who was blinded for the outcome 

of the spectroscopy analysis, examined the histological slides and visually determined if 

the measurements location was either tumor or normal liver tissue. In addition, for normal 

liver tissue the degree of steatosis was determined. The quantitative assessment of 

steatosis was determined by estimating the percentage of hepatocytes containing lipid 

droplets (both micro- and macrosteatotic droplets). The pathologic degree of steatosis was 

estimated with 5% steps.     

 

2.2 Instrumentation 

The instrumentation and calibration procedure of our optical spectroscopy system 

has recently been described elsewhere by Nachabé et al. [21-24] 

 The system consists of a console comprising a Tungsten/Halogen broadband light 

source, two spectrometers and an optical probe with three optical fibers. The two 

spectrometers resolve light in the visible wavelength range between 400 nm and 1100 nm 

(Andor Technology, DU420A-BRDD) and in the near infrared wavelength range from 

800 up to 1700 nm (Andor Technology, DU492A-1.7), respectively. The developed 

miniaturized optical probe contains three optical fibers: one fiber is connected to the light 

source, while the other two fibers are connected to the spectrometers to capture the 

diffusely scattered light from the tissue (Figure 1). The average tissue volume that is 

illuminated is roughly 5 mm
3
. The acquisition time of each spectrum was on average one 

second.  
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Figure 1. Schematic overview of the diffuse reflectance spectroscopy system. 

 

2.3 Spectral data processing 

 The light delivered by the illumination optical fiber is subject to optical absorption 

and scattering. Each biological substance in the probed tissue has its intrinsic optical 

absorption property as a function of wavelength.  In the wavelength range between 500 and 

900 nm the dominant chromophores are hemoglobin (oxygenated and deoxygenated) [25], 

bile [21] and β-carotene [9]. In the wavelength range between 900 and 1600 nm, the 

dominant chromophores are water, fat and collagen [24]. Each of these chromophores has a 

well determined optical absorption spectrum available in literature [22]. The total 

absorption coefficient corresponds to the sum of each of these chromophore-specific 

absorption coefficient weighted by the respective volume fraction that it occupies within 

the total probed volume. In addition to absorption, light is also subject to optical scattering 

in tissue due to its morphological irregularity. Optical scattering is defined by a reduced 

scattering amplitude at an arbitrarily given wavelength (e.g. at 800 nm) and a slope. The 

scattering characteristics are dependent on the cellular structure of the target tissue and are 

sensitive to size and density of cellular and subcellular structures. Total scattering is 

composed of Mie scattering (scattering of cellular particles which have a diameter of the 

same or higher order of magnitude than the wavelength) and Rayleigh scattering (scattering 

of cellular particles which have a diameter smaller than the wavelength). 

An analytical model was used to estimate the various chromophore volume 

fractions and scattering coefficients from all the acquired spectroscopy measurements. This 

model was first described by Farrell et al. [26] The measurements are fitted with the 

analytical model by applying a non-linear Levenberg-Marquardt inversion algorithm. 

Diffuse reflectance spectra acquired from the tissue were fitted and analyzed over the 

wavelength range from 500 to 1600 nm. Spectral characteristics analysis was performed 

with a Matlab software package (MathWorks Inc., Natick, MA). Quantified mean values 

for each tissue parameter were calculated and displayed in boxplots.  
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2.4 Tissue classification analysis 

A Classification And Regression Tree (CART) algorithm was used to 

automatically classify each collected tissue into either of the two defined tissue types 

based on the parameters (i.e. volume fractions of the various chromophores and the 

reduced scattering properties) derived from the measurements [25].  With the CART 

algorithm, a decision tree is created based on the five most significantly different tissue 

chromophores and scattering parameters using a leave-one-out (LOO) cross validation 

scheme. Each spectrum is separately classified as either normal or tumor tissue based on 

the calculated thresholds in the decision tree and subsequently compared to the histology 

analysis and presented in terms of sensitivity and specificity. An advantage of the CART 

method is that the results can easily be interpreted and correlated to clinical details, since 

the input parameters are thresholds of the calculated values of the main tissue parameters. 

The CART analysis was performed for all acquired data collectively and also for each 

included patient individually. For the individual analysis, all measurements in each 

defined tissue class were analyzed and compared to the corresponding histological 

diagnosis. We chose an arbitrary threshold of an 80% agreement between all DRS 

measurements at a marked tissue site and the histopathological diagnosis of that site to 

either determine the DRS measurements as correct (≥80%) or define the measurements as 

uncertain (<80%).  

 

2.5 Statistical analysis 

 The DRS-estimated quantification of each parameter in the liver tissues cannot be 

described by a parametric distribution such as the Gaussian distribution. The statistical 

differences between normal liver tissue and tumor tissue were therefore determined using 

the non-parametric Kruskal-Wallis test [27].  P-levels smaller than 0.05 were considered 

statistically significant. 

 The lipid fraction scored by the pathologist was the area fraction (Larea) of the 

slide containing lipid, while with the DRS method we determine the volume of lipid 

fraction. Assuming a homogeneous volume distribution this area fraction can be 

translated in a volume lipid fraction (Lvolume) according to Lvolume = (Larea)
3/2

. For the 

correlation between the DRS and pathologists quantification of steatosis, we used 

Spearman‟s rank correlation test. Analysis was performed using SPSS (Statistical 

Package for the Social Sciences, version 16.0). 

 

3. Results 

The characteristics of all 24 patients who were included in this study are displayed 

in Table 1. 

Figure 2 shows the typical tissue spectra of both normal liver parenchyma and 

incised liver tumor tissue (colorectal liver metastases) from one of these patients. Notable 

spectral differences between the two tissue types are apparent. Photos of the 

corresponding tissue measurements and H&E stained tissue samples of the measurement 

locations are displayed on the right. 
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Table 1. Patient and tumor characteristics of all included patients. 

Number of patients 
Male 

Female 

14 

10 

Median age 
Year 

Range 

64 

41-83 

Tumor Origin 
Colon 

Rectum 

17 

7 

 

 
Figure 2. Comparison of two tissue spectra of normal liver tissue (green) and metastatic 

liver tumor (red). The optical spectra indicate the intensity of light received by the optical 

needle as a function of the wavelength for both tissue types (A). Displayed on the right is 

an incised resection specimen showing the typical white metastasis in the middle and the 

different positions of the optical probe in normal liver tissue (B) and tumor tissue (C) and 

the corresponding pathology slides of normal and tumor tissue (H&E staining). 

 

3.1 Tissue classification analysis 

Figure 3 displays boxplots of the five most significant tissue parameters as 

determined by spectral analysis. All of these parameters displayed P-values < 0.0001 when 

distinguishing normal liver tissue from liver tumor tissue. The most significant tissue 

chromophores were total hemoglobin, fat and bile content. The most significant scattering 

parameters were the scattering at 800 nm and the ratio between the Mie scattering and the 

total scattering. 
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Figure 2. Boxplots of relevant tissue parameters derived from the spectral analysis. N=828 

optical measurements. All P-values are below 0.0001. 

 

 Based on these five tissue parameters a decision tree was created using the CART 

algorithm. Table 2 displays the classification accuracy of this decision tree for all optical 

DRS measurements when compared to the histology analysis. A total of 780 out of the 828 

optical measurements were correctly classified in either normal liver tissue or liver tumor. 

This resulted in a sensitivity and specificity of both 94%. 

 

Table 2. Comparison of each optical spectrum classified by CART analysis into either 

normal liver tissue or tumor with the pathological diagnosis. 

Pathology\Model based analysis Tumor tissue Normal liver tissue 

Tumor tissue (N = 435) 410 25 

Normal liver tissue (N = 393) 23 370 

 

 The result of the analysis for each patient individually is displayed in Table 3. For 

each patient, the ratio of the number of correctly classified tissue measurements for both 

normal liver tissue and liver tumor tissue is illustrated. The data shows that for each 

individual patient the defined tissue class on the basis of DRS measurements corresponds 

to the ultimate histological diagnosis. Therefore, the accuracy of DRS to predict either 

tissue class (normal tissue or tumor tissue) was 100%. 
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Table 3. Analysis of all performed optical measurements per patient. Fraction of the 

amount of measurements correctly classified out of the total number of measurements 

performed in either normal liver tissue of liver tumor. 

Patient 

number 

Neoadjuvant 

chemotherapy 

Fraction of correctly 

classified measurements 

in normal tissue 

Fraction of correctly 

classified 

measurements in 

tumor tissue 

1 Yes 5/5 5/5 

2 No 23/24 33/35 

3 Yes 19/19 18/18 

4 Yes 20/20 23/24 

5 Yes 10/10 10/10 

6 No 10/10 15/15 

7 No 10/10 15/15 

8 No 10/10 15/15 

9 Yes 9/9 23/23 

10 Yes 16/16 18/18 

11 Yes 20/21 20/20 

12 Yes 15/15 4/4 

13 Yes 16/16 15/15 

14 No 27/27 12/13 

15 Yes 15/15 20/20 

16 Yes 15/15 20/20 

17 No 15/15 15/15 

18 No 15/15 19/19 

19 Yes 14/15 9/10 

20 Yes 19/20 39/40 

21 Yes 15/15 15/15 

22 Yes 25/26 24/25 

23 No 20/20 21/21 

24 No 25/25 20/20 

 

3.2 Hepatic steatosis 

Figure 4a represents the correlation of the estimated percentage of steatosis in 

normal liver tissue as scored by the pathologist to the quantification of fat by the DRS 

analysis. The Spearman‟s rank correlation coefficient is 0.86. Figures 4b, c and d display 

examples of the optical spectra and corresponding histology specimen of three patients 
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with different levels of steatosis in the normal liver parenchyma. The spectrum at the 

vicinity of 1211 nm is mainly dominated by absorption of light by lipid cells. Alteration of 

the spectra in this wavelength band is observed with increasing lipid content [27]. 

 

 
Figure 4. Comparison of the quantification of the total steatosis by DRS compared to the 

histological analysis (A). Example of optical spectra taken in healthy tissue and the 

corresponding histological slides (B, C, and D). The dashed lines correspond to the 

wavelength bad for which the spectra are altered by the presence of lipid in the probed 

volume. 
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4. Discussion 

DRS has been demonstrated to be a promising new optical technique for tumor 

diagnosis by multiple studies for over a decade [3, 6, 28-35].  For several human tissue 

types, such as breast and oral cavity, an accuracy of up to 90% and 100% respectively 

were described for discrimination between normal tissue and tumor tissue. A limited 

number of studies investigated the application of DRS in human liver tissue, mainly 

focussing on spectroscopic assessment of thermal ablation [16-20]. In a recent paper, 

however, we demonstrated that the quantification of bile by DRS analysis offers the 

opportunity for more specific tissue discrimination in liver, such as between normal liver 

tissue and metastatic tumor tissue [21]. In continuation on these results we hypothesized 

that also in liver DRS is able to reach a high accuracy for the detection of tumor tissue. In 

the collective analysis of 828 optical measurements of 24 liver specimens, we indeed 

observed a sensitivity and specificity of the DRS of 94% when compared to the pathology 

analysis.  

The performance of this tissue discrimination was based on the estimated 

hemoglobin, lipid and bile content as well as the reduced scattering amplitude and the 

Mie to total scattering ratio. From these derived parameters, it can be seen that normal 

tissue contains more blood, bile and fat than the tumor tissues. The finding with respect to 

blood correlates with the macroscopic observations (cf. Figure 2B and 2C) as normal liver 

is much more abundant in red blood cells compared to metastatic tumor tissue. An 

interesting observation compared to previous studies in other organs is the decreased total 

haemoglobin content in liver tumor compared to normal liver parenchyma. Previous 

studies have all detected higher total haemoglobin content in cancer lesions compared to 

normal tissue [6, 8, 9, 32, 36]. An explanation for this difference could be that previous 

papers all studied primary tumors, while in this paper all tumors were colorectal 

metastases that typically show a solid less vascularised whitish appearance.  As notable in 

figure 2 these metastatic lesions do not all consist of vital tumor cells, but also show 

significant necrotic areas due to poor vascularity. Bile was less present in tumors as it 

concerns metastases from colorectal cancer and therefore very little bile is expected at 

these tumor sites. Another finding is that hardly any fat is present in tumors according to 

the derived fat content from the optical measurements. In general, hepatic metastases do 

not contain fat although rare cases with foci of fat in the metastases exist. Furthermore, 

normal tissue is found to have higher reduced scattering amplitude with a lower Mie 

scattering contribution as compared to tumor. This suggests that normal tissue has a larger 

density of small particles than tumors. This observation collaborates with the fact that 

healthy liver tissue is very rich in small hepatic cells compared to the metastases as can be 

seen in the histological slides in Figure 2. It must be noted that the present study was 

conducted in ex-vivo liver tissue. It remains to be determined whether specific tissue 

parameters, such as total haemoglobin count and bile content that contributed to the tissue 

discrimination in this study, will be of comparable significance in human tissue in-vivo. 

The effect of small haemorrhages, which could occur during in vivo measurements, 

remains to be seen. Oxygenation of tissue could significantly change after resection. For 

this reason we excluded this parameter form the analysis. The scattering and fat content 

parameters are unlikely to change significantly after resection since they are strongly 
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linked to the morphology of the tissue. Also for bile a significant differences between ex 

vivo and in vivo measurements are unlikely.  

The presented figures of 94% accuracy for tissue discrimination are promising, 

but with regards to the diagnostic accuracy of any medical instrument used in clinical 

practice, the main interest will be the discriminative accuracy within any individual 

patient. In Table 3 we presented an overview of the discriminative accuracy of the DRS 

measurements for all patients individually. DRS measurements predicted the correct 

diagnosis for both normal and tumor tissue for each patient, indicating the potential of 

this technology for image guided surgery.  The fact that the optical probe we used in this 

study is already needle sized shows that further development of specific surgical or 

interventional tools is within technical reach. Such a tools would be feasible for open and 

laparoscopic surgical procedures as well as for interventional procedures in the radiology 

department. It should be stressed that the results of DRS measurements including the 

analysis are available almost real time. The present measurement and analysis time at one 

tissue location is of the order of a few hundred milliseconds but can be further reduced in 

future.  

In addtion, we have demonstrated a high correlation between the estimated fat 

content of the liver by DRS and the presence of steathosis in the histopathological 

specimen.  

This would be most relevant when major liver surgery is considered, especially in 

those patients treated extensivly with pre-operative chemotherapy. In these patients 

steatosis is often induced by prolonged chemotherapy and has been releated to higher 

morbidity scores [37-40]. The presented results suggest that DRS could play a role in 

intra-operative decision-making concerning the extent of liver resection in these patients.  

Although our results are promising towards the use of DRS in the clinical setting, 

several steps remain to be taken. First, our conclusions are based on ex-vivo data. The 

next step would be to reconfirm these conclusions in an in-vivo analysis. Furthermore, no 

primary liver malignancy was included in this study and the feasibility of DRS in primary 

liver cancer remains to be studied. This is stressed by the fact that bile is demonstrated to 

be an important discriminative chromophore between normal liver tissue and metastatic 

liver disease. In contrast to metastatic disease to the liver, primary liver cancer cells can 

produce bile. Therefore, the discrimination with DRS based on bile concentration might 

not be as significant for this tumor type as the results for colorectal liver metastases 

presented in this paper. Further studies are needed to investigate these possible 

differences. 

 

5. Conclusion  

In conclusion, we have demonstrated that DRS discriminates metastatic liver 

tissue from normal liver tissue with a high accuracy. Moreover, DRS proves able to 

determine the extent of steatosis, identifying those patients at risk for extented resections. 

These features illustrate the potential of DRS to be incorporated into image guided 

surgery tools. A prospective in-vivo analysis of DRS in liver and tumor tissue is 

underway to confirm the clinical application of this new technology for real time imaging 

file:///C:/PHILIPS%20BACKUP%20DESKTOP/PhD%20Organisation/Thesis%20with%20Ch10/Complete%20Thesis%20Rami%20Nachabe%202.docx%23_ENREF_37


 

137 
 

Optical sensing for tumor detection in the liver Chapter 6 

of surgical procedures as well as for minimally invasive procedures in the radiology 

department. 
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Abstract 

Background. A significant number of percutaneous intra-thoracic biopsy 

procedures result in indeterminate cytological or histological diagnosis in clinical 

practice. Diffuse Reflectance Spectroscopy (DRS) is an imaging technique that can 

distinguish different tissue types on a microscopic level. DRS may improve needle 

localization accuracy during biopsy procedures. The objective of this study was to assess 

the ability of DRS to enhance diagnosis of malignant lung disease in human lung tissue. 

Methods. Ex-vivo analysis with a DRS system was performed on lung tissue from 

10 patients after pulmonary resection for malignant disease. Tissue spectra measured 

from 500 to 1600 nm were analyzed using two analysis methods; a model-based analysis 

that derives clinical and optical properties from the measurements and a partial least 

squares discriminant analysis (PLS-DA) which classifies measured spectra with respect to 

the histological nature of the measured tissue. 

Results. Sensitivity and specificity for discrimination of tumor from normal lung 

tissue were 89% and 79% respectively based on the model-based analysis. Overall 

accuracy was 84%.  The PLS-DA analysis yielded a sensitivity of 78%, a specificity of 

86% and an overall accuracy of 81%. 

Conclusions. The presented results demonstrate that DRS has the potential to enhance 

diagnostic accuracy in minimal invasive biopsy procedures of the lungs in combination 

with conventional imaging techniques. 
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1. Introduction 

Essential first steps in the diagnostic work-up after detection of a suspected lung 

mass include describing the anatomical extent as well as the cellular origin of the tumor. 

Biopsy or fine needle aspiration of the lesion for further analysis is a crucial step in this 

process. For intra-thoracic lesions, this is often performed percutaneously. Correct 

localization of the biopsy needle within the target lesion is essential for success of this 

procedure and is frequently performed under image-guidance of computed tomography 

(CT).  

Recent studies have reported varying figures of overall accuracy for thoracic 

biopsies, which respectively range between 67% and 96% 
1-5

. Main factors influencing 

the biopsy accuracy are location and size of the intra-thoracic lesions as well as 

respiratory motion during the biopsy procedure. Moreover, even correct localization of 

the biopsy needle within the target lesion can still result in indefinite pathology diagnosis 

when the biopsy only consists of necrotic cell debris. Hence, a considerable number of 

patients undergoing percutaneous biopsies will subsequently require a repeated biopsy or 

even surgical intervention to obtain tissue material for diagnosis before an individualized 

treatment plan can be initiated.  

In recent years, promising achievements in specific tissue discrimination have 

been made in the field of diffuse reflectance spectroscopy (DRS) that may allow 

improved accuracy in cancer diagnostics 
6-8

.
  
With this optical technique changes in the 

spectral distribution of light, as a result of either absorption or scattering of light, are 

recorded after the light has interacted with molecules in tissue.  Subsequently, the 

collected spectral information is translated into morphological and physiological 

information. Changes in human tissue associated with malignant transformation include 

alterations in cellular composition, metabolic rate, vascularity, intra-vascular oxygenation 

and tissue morphology. DRS is sensitive to such changes in tissue, enabling 

discrimination between normal tissue and tumor. Ultimately, incorporation of this 

technology into biopsy needles may improve tip localization of the biopsy needle within 

the tissue compared to image-guided localization.  

Many human tissue types have been subjected to optical spectroscopy with 

promising results for clinical application of this technique. Only a few studies involving 

optical spectroscopy have focused on the characterization of human lung tissue. Those 

published mainly involved the incorporation of DRS or Fluorescence spectroscopy (FS) 

into bronchoscopy tools 
9-13

. Detection of superficial abnormalities during bronchoscopy 

procedures was proven to be enhanced with use of spectroscopy techniques within this 

setting. Sensitivity of DRS and FS ranged between 70 and 86%, specificity ranged 

between 68 and 82%. 

Recently, we have developed and validated a novel DRS system combining 

detection of visual (VIS) and near-infrared light (NIR) spectrum 
14-17

.
 
Contrary to most 

previous studies with DRS that focus on the VIS part of the spectrum, we included the 

NIR (1000-1600 nm) spectrum.  

The aim of this report is to assess the discrimination accuracy of our DRS system 

between normal lung tissue and tumor in an ex-vivo analysis.  
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2. Materials and methods 

2.1 Clinical study design 

This study was conducted at The Netherlands Cancer Institute (NKI-AVL) under 

approval of the internal review board committee. Lung tissue was obtained from 10 

patients who had undergone a pulmonary resection (lobectomy or segmental resection) 

for primary non-small cell lung cancer or pulmonary metastases.  

Directly after resection, tissue was transported to the pathology department for 

optical spectroscopy analysis. After gross inspection by the pathologist, the optical 

spectra were collected from macroscopic normal tissue and tumor samples. Spectroscopy 

measurements were performed on freshly excised tissue within two hours after the 

resection. Each specific measurement location was digitally photographed during the 

procedure. Figure 1(A) depicts a photograph of a resected lung sample with a cut through 

the tumor. A total of 330 optical measurements were performed on 67 tissue locations of 

both normal lung tissue and tumor. Resection specimens were then fixed in formalin. The 

measurement locations were subsequently selected and excised according to the 

measurement locations on the photos. These tissue samples were paraffin-embedded, cut 

in 2- to 3-μm-thick sections and stained with standard hematoxylin/eosin staining. An 

experienced pathologist, who was blinded for the outcome of the spectroscopy analysis, 

examined the histological slides. Examples of a pathology slide of normal lung tissue as 

well as tumor lung tissue are shown in Figure 1.  

 

 
Figure 1. Photograph of a resected lung sample showing a cut through the tumor. An 

example of a pathology slide of normal lung tissue with pink appearance (B) and dark 

appearance (C) as well as lung tumor (D). 
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2.2 Instrumentation 

The instrumentation and calibration procedure of our optical spectroscopy model 

have been described recently by Nachabé et al 
14-17

. 

In short, ex-vivo diffuse reflectance spectra were measured with a portable 

spectroscopic system as described earlier 
17

. The system consists of a console comprising 

a Tungsten/Halogen broadband light source and two spectrometers. The spectrometers 

resolve light either between 400 nm and 1100 nm (Andor Technology, DU420A-BRDD) 

or from 800 up to 1700 nm (Andor Technology, DU492A-1.7). An optical probe 

containing three optical fibers was connected to the optical setup. As depicted in Figure 2, 

one fiber is connected to the light source and the two other fibers are connected to the 

spectrometers to collect diffusely scattered light from the tissue. The optical probe has a 

diameter of 1.3 mm and its distal end is polished at an angle of 20 degrees. The 

illumination optical fiber is located at a distance of 2.48 mm from the two side-by-side 

optical fibers that are used to collect the diffused light (Figure 2). Such a setup enables 

spectral acquisition in the range between 500 to 1600 nm via an optical fiber with its 

distal end placed against the samples.  

 

 
Figure 2. Schematic of the DRS optical setup. 

 

2.3 Light-tissue interaction and optical spectroscopy 

The light delivered by the illumination optical fiber is subject to optical absorption 

and scattering. Each biological substance in the probed tissue has its intrinsic optical 

absorption property as a function of wavelength. The most common biological substances 

that absorb light are blood-derived chromophores such as oxygenated and deoxygenated 

hemoglobin, water and lipid 
15

. Oxygenated and deoxygenated hemoglobin have the most 

dominant absorption coefficients in the wavelength range below 900 nm whereas water 

and lipid have the most dominant absorption coefficient above 900 nm 
15

. Each of these 

chromophores has a well determined optical absorption spectrum available in literature 
15

. 

The total absorption coefficient corresponds to the sum of each of these chromophore-

specific absorption coefficient weighted by the respective volume fraction that it occupies 

within the total probed volume. This is known as the Beer-Lambert law that applies in 

non-turbid media. However, in addition to absorption, light is also subject to optical 
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scattering in tissue due to its morphological irregularities at a structural level yielding 

deflection of the light rays after interaction with the different substances present in tissue. 

The optical scattering is mathematically defined as a monotonic decreasing power-law 

function over wavelength. Therefore the optical scattering is defined by a reduced 

scattering amplitude at an arbitrarily given wavelength (e.g. at 800 nm) and a slope. The 

diffused light that is collected at the detection optical fibers correspond to a non-linear 

mathematical relation of the wavelength-dependent absorption and scattering properties 
18

. The volume of the probed diffused light in tissue is mainly dependent on the 

absorption and scattering properties as well as the distance between the illumination and 

collection fibers. Given the specification of the optical probe that was used in this study 

and the range of tissue absorption and scattering properties over the wavelength range of 

interest (i.e. 500 to 1600 nm), the average probed volume is roughly 5 mm
3

. 

 

2.4 Spectral data processing 

Two different lung tissue types were classified in the spectral data processing: 

normal lung tissue and tumor. Furthermore, measured spectra from all included 

measurement locations were separated into either the training data set (N = 171 optical 

measurements from 35 tissue locations) or the validation data set (N = 159 optical 

measurements from 32 tissue locations). This was accomplished by randomly dividing 

measurement sets from different tissue locations of both normal lung tissue and tumor from 

each included patient between the two data sets. The histological breakdown of the optical 

measurements performed in these patients is displayed in table 1.  

 

Table 1. Histological breakdown of tissue samples used for data analysis. N = 10 

patients. 

Measured tissue 

types 

Optical 

measurement 

locations 

(training and 

validation 

sets) N= 67 

Optical 

measurements 

(training and 

validation sets) 

N= 330 

Optical 

measurement 

locations 

(and 

validation 

set) N= 32 

Optical 

measurements 

(validation set) 

N= 159 

Normal lung tissue 30 145 14 66 

Tumor 37 185 18 93 

 

Finally, all acquired spectra were analyzed in two ways: First, an analytical model 

derived from the diffusion theory was used to estimate the various chromophore volume 

fractions and scattering coefficients 
18

. Second, a statistical classification of the tissue 

spectra was performed using partial least squares discriminant analysis (PLS-DA) 
19

. 

Model-based analysis. Validation of the analytical model that was used to recover 

the chromophore volume fractions and scattering coefficients from the measurements has 
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recently been described 
14-17

. Diffuse reflectance spectra measured from the tissue were 

fitted over the wavelength range from 500 to 1600 nm. A non-linear Levenberg-

Marquardt inversion algorithm was used to estimate the various unknown chromophores 

volume fractions from the spectra within the analysis wavelength range. This inversion 

consists of determining the optimum volume fractions of the four chromophores of 

interest as well as the reduced scattering amplitude (which we arbitrarily defined at 800 

nm) and slope which minimizes best the residual between the model and the measurement 
15

. A total blood volume fraction is computed as the sum of the estimated oxygenated and 

deoxygenated haemoglobin volume fraction by considering a total haemoglobin 

concentration of 150 mg per ml of blood; oxygenation level in tissue computed as the 

ratio of oxygenated hemoglobin to the total blood volume fraction, water volume fraction 

and adipose tissue volume fraction. The absorption coefficient of each of these 

chromophores in its pure state is used as a priori knowledge during the fitting procedure. 

An example of a spectral measurement on a normal lung sample and a tumor with the 

corresponding fitting curve are shown in Figure 3. The spectral characteristics analysis 

was performed with Matlab software package (MathWorks Inc., Natick, MA). Quantified 

mean values for tissue parameters were calculated based on all tissue measurements and 

were displayed in boxplots.  

Subsequently, we used the data from the training data set to design a decision tree 

for automated discrimination between normal lung tissue and tumor. This was performed 

using the Gini index maximisation and has recently been described by Nachabé et al 
17

. 

By applying this evaluation method, thresholds of the most significantly discriminating 

tissue parameters are yielded from which all included tissue measurements could be 

differentiated into either tissue class with the least number of evaluation steps. The 

calculated thresholds were depicted as a decision tree.  

PLS-DA analysis. Partial least squares (PLS) analysis is a regression method to 

find a linear relationship between a response variable Y (tissue type class) and the 

independent variables X (spectra). The method is based on finding a number of principal 

components (PC) that represent as much of the variance in X as possible and are relevant 

to the response variable Y. The PLS model is generated using part of the data, the training 

data set. A discriminant analysis (DA) method is subsequently performed to obtain 

thresholds for discriminating the different responses (tissue classes). Prediction of class 

(tissue type) on the remaining data (the validation data set) is obtained by comparing the 

predicted PLS scores with the DA thresholds. The measured tissue type is assigned to one 

of the two predefined tissue classes depending on the PLS scores. The PLS-DA algorithm 

scripts were implemented in MATLAB 7.2 using PLS Toolbox 5.8.  
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Figure 3. Example of spectral measurements in normal (point-marked curve) and 

tumor tissue (circle-marked curve) as well as the corresponding fit (solid line curve). 

 

2.5 Statistical analysis 

The DRS-estimated quantification of each parameter in the lung tissue cannot be 

described by a parametric distribution such as the Gaussian distribution. The statistical 

differences between the two distinguished lung tissues were therefore determined using a 

non-parametric Kruskal-Wallis test 
20

. P-values smaller than 0.05 were considered 

statistically significant. 

Discriminative accuracy for both the model-based and PLS-DA analysis were 

determined by comparing the means of all tissue spectra from each measurement location 

of the validation data set to the yielded thresholds from each analysis method and 

assigning each collected tissue spectrum to either defined tissue class. These results were 

then compared to the histology analysis and were subsequently presented in terms of 

sensitivity, specificity and overall accuracy.  
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3. Results 

3.1 Study characteristics 

Five of the included patients were male and five were female. All patients were 

smokers and the average age was 61 years old (range 38 to 74 years). Six of the patients 

had undergone neo-adjuvant treatment. Eight of the measured tumors were primary lung 

tumors and the remaining two measured tumors were metastases from the colon and from a 

melanoma. 

 

3.2 Tissue parameter analysis 

Tissue parameter quantification was performed as part of the model-based data 

analysis using all of the 330 collected optical spectra. Quantification was primarily 

performed on all relevant tissue parameters as well as on the reduced scattering coefficient 

at three different wavelengths. The tissue parameters with the most discriminative 

relevance were total hemoglobin volume fraction, water volume fraction, adipose tissue 

volume fraction and reduced scattering coefficient at 800 nm (Figure 4). Significant 

statistical differences were demonstrated for hemoglobin volume fraction (P < 0.001) and 

reduced scattering coefficient at 800 nm (P < 0.01).  

 

 
Figure 4. Boxplots of diagnostically relevant tissue parameters. N= 330 tissue 

measurements from 67 measurement locations. Hb+HbO2 = total hemoglobin volume 

fraction, H2O = water volume fraction; Fat = adipose tissue volume fraction; μs` = 

reduced scattering coefficient at 800 nm. 



 

150 
 

Chapter 7 

3.3 Classification accuracy 

Model-based analysis. The computed decision tree based on tissue parameter 

thresholds is demonstrated in Figure 5.  The means of all collected tissue spectra from each 

measurement location could be assigned to either tissue class based on thresholds yielded 

from hemoglobin volume fraction and reduced scattering coefficient in a two-step analysis. 

Results from the tissue parameter quantification of the validation data set were analysed 

according to the defined thresholds. Compared to the histology analysis overall 

discriminative accuracy of the model-based analysis was 84% (Table 2). 

 

 
Figure 5. Discriminative thresholds for automated discrimination between normal lung 

tissue and tumor depicted in a decision tree. Thresholds were calculated based on 

quantification of tissue spectra from the training data set. N = 37 measurements locations.  

 

Table 2. Model based classification accuracy of DRS measurements of lung tissue divided 

into 2 classes compared to the pathology analysis. N = 32 measurement locations. 

Pathology\Model based analysis Tumor tissue Normal lung tissue 

Tumor (N = 18) 16 2 

Normal lung tissue (N = 14) 3 11 

Sensitivity = 89%; Specificity = 79%; Overall accuracy = 84%. 
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PLS-DA analysis. Results from the PLS-DA classification analysis of the spectra 

are displayed in Figure 6. For several measurements difficulty discriminating between 

normal lung tissue and tumor was apparent. Overall discriminative accuracy of the PLS-

DA analysis was 81% (Table 3). 

 

 
Figure 6. PLS-DA classification of the spectra of DRS measurements comparing benign to 

malignant tissue. Each square represents a tissue measurement from which the spectrum is 

compared to the spectral thresholds acquired from the training data set analysis. N= 32 

measurement locations. Red circles represent the histological diagnosis tumor and green 

squares normal lung tissue. 

 

Table 3. PLS-DA classification accuracy of DRS measurements of lung tissue divided into 

two classes compared to the pathology analysis. N = 32 measurement locations. 

Pathology\PLS-DA Tumor tissue Normal lung tissue 

Tumor tissue (N = 18) 14 4 

Normal lung tissue (N = 14) 2 12 

Sensitivity = 78%; Specificity = 86%; Overall accuracy = 81%. 
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4. Discussion 

This report demonstrates first published results of a novel Diffuse Reflectance 

Spectroscopy system, combining the analysis of spectral results after ex-vivo lung tissue 

illumination with both visual and near infra-red light. Research with DRS on other human 

tissue has proven the potential of this technique for tissue discrimination. As yet, this was 

never performed including near-infrared spectra beyond 1000 nm 
21-25

. The advantage of 

having an additional spectrometer that resolves light above 900 nm is the possibility to 

measure spectra in a range where water and lipid have high absorption coefficients 
14

. 

Therefore accurate volume fractions of these biological substances can be determined and 

used for classification on top of the commonly used blood derived chromophores and 

scattering parameters 
9-10

. Although no significant differences was observed between 

normal and tumor in water, Figure 4 shows that estimated water distribution is skewed to 

higher values in tumor than normal lung tissue. We expected that the water volume 

fraction would be higher in tumor tissue compared to normal because normal tissue 

consists of air filled alveoli compared to more solid, no air containing, tumor tissue. 

Probably due to the resection these alveoli are partly collapsed resulting in a more dark 

appearance of the normal lung tissue. This is supported by pathology findings showing 

collapsed alveoli in the normal lung tissue with darker appearance (Figure 1(C)).  These 

results indicate that accurate determination of the water volume fraction might play a role 

in discriminating normal and tumor an in vivo setting where the above effect is not 

expected. As a result having a spectrometer to resolve light for wavelengths beyond 900 

nm, being able to determine accurately the water volume fraction, might then turn out to 

be useful. From the boxplots, one can further notice that normal lung samples have 

significantly higher blood volume fraction than in tumors. This can be seen in Figure 

1(A) with the tumor being the white part surrounded by the pink normal lung tissue. The 

scattering of tissue in normal is higher in normal than in tumor samples according to the 

boxplots. This is due to the fact that normal lung tissue has a multitude of alveolus filled 

with air that yields to greater light scattering (related to refractive index changes in tissue) 

as opposed to the solid tumors.  

Using two different data analysis methods our DRS system yielded a promising 

overall discriminative accuracy of 84% for the model-based data analysis and 81% for the 

PLS-DA analysis compared to the pathology analysis. These results indicate that DRS has 

the potential to enhance diagnostic accuracy during minimal invasive thoracic procedures 

in combination with conventional imaging techniques.   

In clinical practice, the main objective for correct localization of the needle within 

the target lesion is accurate identification of the tumor itself. High specificity of an 

imaging modality is therefore the most important parameter. Hence, the higher the 

specificity, the lesser indeterminate results can be expected. In previously published 

papers specificity for thoracic biopsies mainly with CT guidance ranges from 83 to 97%, 

resulting in indeterminate biopsies in 3 to 17% of the patients  
1-5

. An indeterminate 

biopsy is defined as a biopsy which was thought to be taken from the target lesion, but 

cannot be characterized as malignant tissue by the pathologist. The best specificity result 

displayed in the current paper was 86% with the PLS-DA data analysis. This would result 

in an expected indeterminate test results of 14% of patients. Because the two diagnostic 
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tests can be considered independent when performed together, the test accuracy from both 

tests may be multiplied to calculate the suspected combined discriminative accuracy. A 

combination of biopsy with CT imaging and displayed DRS incorporated in a biopsy 

needle could in theory therefore improve biopsy specificity to 98%. It can be concluded 

that DRS has the potential to enhance diagnostic accuracy during minimal invasive 

thoracic procedures in comparison with conventional imaging techniques. This hypothesis 

will have to be proven in future in-vivo experiments. 

Additional arguments can be given towards the expected feasibility of DRS in an 

in-vivo analysis. First; we would expect tissue scattering to have a more significant 

discriminative effect in an in-vivo analysis. Hence, in the in-vivo setting the alveoli will 

be air-filled. The expected scattering will therefore be higher compared to the ex-vivo 

collapsed alveoli due to the larger refraction index mismatch between air and human 

tissue. Thus, the expected difference in the scattering coefficient compared to solid tumor 

will be larger. Second; we expect the water volume fraction to show more difference 

between the normal and tumor tissue due to the air filled alveoli. Third; we expect a 

greater number of significant discriminative tissue parameters in in-vivo measurements. 

The main discriminative tissue parameters in this study were total hemoglobin volume 

fraction and the reduced scattering coefficient at 800 nm. Fawzy et al. and Bard et al. 

both demonstrated similar results with these tissue parameters in their in-vivo analysis of 

bronchial mucosa 
9, 12

. Another important distinguishing parameter in their studies was 

tissue oxygen saturation. Both studies demonstrated tissue oxygen saturation to be 

diminished in cancerous lesions in comparison to normal lung tissue. In our DRS 

analysis, no significant differences in tissue saturation were displayed between normal 

lung tissue and tumor. Overall fitting results of our optical measurements revealed an 

average oxygenation in normal lung tissue of 31% (SD ±22%) compared to 24% (SD 

±22%) in measured tumor tissue (data not displayed). This is most likely due to the nature 

of this analysis and the ex-vivo optical measurements. Moreover, during the operation the 

target tissue specimen is progressively impaired from blood circulation before final 

resection is performed.  

Furthermore, for future analysis we plan to combine DRS with Fluorescence 

spectroscopy. Discriminative accuracy of such a combined spectroscopy system has been 

proven to be superior to each spectroscopy technique alone in two recent studies of 

human breast tissue 
26, 27

. Thus, an overall improvement of our discriminative accuracy is 

to be expected in future in-vivo experiments of lung tissue.  

Although our results are promising, a critical assessment must be noted. First, 

although analyses were performed on a significant number of measured spectra which are 

comparable to quantities in previously published studies, a restricted number of patients 

(N=10) and tissue specimens were utilized. Heterogeneity between patients could have a 

negative effect on the discriminative accuracy. Second, total hemoglobin volume fraction 

was demonstrated to be the main discriminative parameter. It is unclear what the 

discriminative value of a comparable analysis of lung tissue in an in-vivo setting would be 

in case of local hemorrhage caused by the optical needle. Hence, located hemorrhage 

during minimal invasive spectroscopy measurement could have a negative effect on 
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optical measurement due to the absorption properties of hemoglobin in the visual 

spectrum.  

In conclusion, a novel Diffuse Reflectance Spectroscopy system was presented for 

analysis of human lung tissue. Overall discriminative accuracy of the DRS system 

compared to the pathology analysis was 84% and 81% for model-based and PLS-DA 

analysis, respectively. Based on the presented results, we conclude that DRS has the 

potential to enhance diagnostic accuracy in minimal invasive procedures of the lungs. In-

vivo experiments are currently being performed by our group to confirm these results as a 

next step towards before clinical application. 
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Abstract 

We report on the use of diffuse optical spectroscopy analysis of breast spectra 

acquired in the wavelength range from 500 to 1600 nm with a fiber optic probe. A total of 

102 ex vivo samples of five different breast tissue types, namely adipose, glandular, 

fibroadenoma, invasive carcinoma and ductal carcinoma in situ from 52 patients were 

measured. A model deriving from the diffusion theory was applied to the measured 

spectra in order to extract clinically relevant parameters such as blood, water, lipid, and 

collagen volume fractions, β-carotene concentration, average vessels radius, reduced 

scattering amplitude, Mie slope and Mie-to-total scattering fraction. Based on a 

classification and regression tree algorithm applied to the derived parameters, a 

sensitivity-specificity of 98%-99%, 84%-95%, 81%-98%, 91%-95%, and 83%-99% were 

obtained for discrimination of adipose, glandular, fibroadenoma, invasive carcinoma, and 

ductal carcinoma in situ, respectively; and a multiple classes overall diagnostic 

performance of 94%. Sensitivity-specificity values obtained for discriminating malignant 

from non-malignant tissue were compared to existing reported studies by applying the 

different classification methods that were used in each of these studies. Furthermore, in 

these reported studies, either lipid or β-carotene was considered as adipose tissue 

precursors. We estimate both chromophore concentrations and demonstrate that lipid is a 

better discriminator for adipose tissue than β-carotene. 
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1. Introduction 

Within present-day strategy of human breast cancer treatment, diagnostic biopsy 

and surgical margin assessment are two elements in which procedural accuracy could 

significantly be enhanced. 

Missed diagnoses of cancer by false-negative biopsies have been reported ranging 

from 4.3 to 17.9%, despite ongoing advance in imaging technologies. Moreover, 

indeterminate pathology analysis will result in need of repeat biopsies in between 4 to 

32% of patients [1-6].
 
 

Breast conservative therapy aimed at conserving as much breast tissue as possible, 

is the treatment of choice in patients with T1-T2 breast tumors. However, the rate of 

irradical resection and the need for a secondary surgical procedure is often over 10%, 

depending on the specific definition [7, 8]. 

 Over the last decade, new tools have been developed to classify breast tissue and 

assess breast tissue margins based on optical spectroscopy techniques [9-22]. Bigio et al. 

performed in vivo elastic scattering spectroscopy measurements between 350 and 750 nm 

to discriminate between 13 malignant and 59 non-malignant breast tissue samples by 

applying artificial neural network (ANN) and hierarchical cluster analysis (HCA) on the 

spectra yielding sensitivity-specificity of 69%-85% and 67%-79%, respectively [9]. This 

study also showed that the spectral features between 400 and 500 nm in adipose tissue are 

mainly dominated by β-carotene light absorption, however optical properties were not 

derived from the measured spectra. The biomedical group at Duke University has 

performed several studies where optical properties were derived from measurements 

performed between 350 and 600 nm by using an inverse Monte-Carlo technique to extract 

hemoglobin and β-carotene concentrations as well as hemoglobin saturation and the 

reduced scattering amplitude [10-13]. Classification based on linear support vector 

machine (SVM) learning was performed to classify malignant (35 samples) from non-

malignant samples (50 samples including adipose and fibrous tissue types) with a 

sensitivity-specificity of 83%-80% [10]. A more recent study from the same group 

showed that it is possible to discriminate 54 malignant samples from 70 non-malignant 

samples with a sensitivity-specificity of 83%-87% based on the extracted parameters 

from diffuse reflectance measurements [11]. Volynskaya et al. conducted an ex vivo 

breast (104 samples) study where a classification between four types of breast tissue was 

performed from diffuse reflectance spectra acquired from 350 to 750 nm [14]. 

Classification of 31 normal, 55 fibrocystic change, 9 fibroadenoma, and 9 infiltrating 

ductal carcinoma was achieved with a sensitivity-specificity of 100%-100% by using a 

logistic regression algorithm (LR). An ex vivo breast study by Majumder et al. showed 

that sparse multinomial logistic regression classification of 134 normal (adipose and 

glandular), 86 invasive ductal carcinoma, 18 ductal carcinoma in situ and 55 

fibroadenoma spectra can be achieved with sensitivity-specificity ranging from 28%-86% 

to 86%-97% when only analyzing diffuse reflectance spectra acquired between 400 and 

800 nm [15]. A more recent study showed sensitivity-specificity of 85%-96% when 

discriminating 145 normal from 34 tumor (invasive ductal carcinoma and ductal 

carcinoma in situ) samples [16]. Laughney et al. presented ex vivo non-contact optical 

properties estimations from spectra acquired between 510 and 785 nm from 29 breast 



 

160 
 

Chapter 8 

samples and a k-nearest neighbor (KNN) classification method was used to discriminate 

between different tissue types [17]. They have shown an interesting comparison of 

classifying the different types of tissue according to their pathology identity and by 

grouping them into subgroups such as adipose (7021 spectra), non-malignant (533 

inflammation, 4110 benign epithelia, and 31226 normal epithelia spectra), and malignant 

(194 ductal carcinoma in situ, 479 invasive lobular carcinoma, and 22547 invasive ductal 

carcinoma spectra). Their results showed sensitivity-specificity of 87%-99%, 90%-82%, 

and 77%-90% for adipose, non-malignant and malignant, respectively. However, a 

sensitivity-specificity of 87%-99%, 74%-74%, 9%-91%, 0%-100%, 77%-90%, 0%-

100%, and 0%-100% was reached for adipose, normal epithelia, benign, inflammation, 

invasive ductal carcinoma, ductal carcinoma in situ, and invasive lobular carcinoma, 

respectively. 

 Other studies [18-21] investigated wavelength ranges between 600 and 1100 nm 

where water and lipid were estimated in addition to hemoglobin. Therefore adipose tissue 

could be discriminated based on the amount of estimated lipid and not β-carotene, since 

this chromophore has negligible absorption above 600 nm. However these investigators 

did not perform classification on their data. 

In our study, we have conducted an ex vivo trial to estimate optical properties 

from 102 samples of five different types of breast tissue: adipose, glandular, invasive 

carcinoma (IC), fibroadenoma (FA), and ductal carcinoma in situ (DCIS) measured in 52 

patients. Optical spectra were taken with a setup that can resolve light from 500 nm up to 

1600 nm and a model based on diffusion theory was applied to the measurements to 

estimate the optical properties by determining several parameters such as blood, water, 

and lipid volume fractions, reduced scattering amplitude, Mie slope, Mie scattering 

fraction, and pigment packaging factor [23, 24]. Besides, β-carotene was also included in 

our model since it has significant absorption up to 500 nm as demonstrated by other 

groups [9-11, 14]. Recent findings by Taroni et al. showed that collagen is an important 

absorber to include in the model for fitting the measured spectra as it has distinct 

absorption features above 900 nm [19-21]. Therefore, we measured the absorption 

coefficient of collagen up to 1600 nm and included it in our model. 

We present the first study using DRS measurements on a 500-1600 nm 

wavelength range to estimate physiological, morphological and optical properties 

parameters of ex vivo breast tissue. The classification and regression tree (CART) 

algorithm, a probabilistic discriminative classification method, was applied to the derived 

parameters to evaluate the performance of diagnosis of the five measured types of tissues. 

Sensitivity-specificity computation and receiver operating characteristic (ROC) curves 

analysis were performed to quantify the overall performance of the diagnosis by using the 

Provost and Domingos measure (PDM) [25].   

In addition, several classification methods that were used in literature to 

discriminate malignant from non-malignant tissues were applied to our data in order to 

compare our results with those reported in existing literature studies. Additional 

classification methods were also applied for comparison. 
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Finally, classification of adipose tissue based on either β-carotene or lipid only 

was compared as no existing breast studies in literature made a comparison on classifying 

adipose tissue based on only one of these two adipose tissue precursors. 

 

2. Materials and methods 

2.1.Ex vivo breast sample collection 

      The human breast samples were obtained under approval by the internal 

review board committee of the Dutch Cancer Institute in Amsterdam, The Netherlands 

(NKI-AVL) where this study was conducted. The breast samples that were measured 

corresponded to resection specimens of either to mastectomies or lumpectomies. Breast 

samples of patients subject to mastectomy were sliced with a thickness of roughly 0.5 to 1 

cm whereas the sample sizes of the patients who were subject to lumpectomy (e.g. 

fibroadenoma) corresponded to the size of the excised tissue which was in average 

several millimeters in diameter. After surgical resection, resection samples were 

transferred to the pathology department within 2 hours where they were inked at the 

surface before slicing them for histological processing. All optical measurements were 

performed before formalin fixation and tissue preparations by the pathologists in order to 

limit as much as possible changes in the optical properties from the tissue conditions 

when excised. Five different types of tissue were measured based on the macroscopical 

indication by the pathologist: adipose, glandular, fibroadenoma (FA), invasive carcinoma 

(IC) and ductal carcinoma in situ (DCIS). A total number of 102 samples from 52 patients 

were investigated from which a total number of 980 spectra were acquired and co-

registered with the pathological findings. The pathological diagnosis performance was 

very high for all the cases that we have tested. The cancerous cases were all 

macroscopically clear cut carcinomas; and in case of doubt we were reluctant to include 

such cases in this study. Table 1 summarizes the histological breakdown of the breast 

tissue samples including the amount of acquired spectra in this study. 

 

Table 1. Histological description of breast tissue types and the corresponding amount of 

samples and spectra that were measured. 

Type of breast tissue (abbreviation) Number of samples Number of spectra 

Non-Malignant 73 643 

   Adipose 43 327 

   Glandular 23 189 

   Fibroadenoma (FA) 7 127 

Malignant 29 337 

   Invasive Carcinoma (IC) 21 241 

   Ductal Carcinoma In Situ (DCIS) 8 96 

Total 102 980 
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2.2.Instrumentation and spectral calibration 

      Ex vivo diffuse reflectance spectra were taken using a portable spectroscopic 

system as illustrated in Fig. 1 and used in previous studies [23, 24, 26]. A tungsten 

halogen broadband light source with an integrated shutter (Ocean Optics, HL-2000-HP) 

was used to deliver light into tissue. Delivery of light to the tissue and its collection were 

achieved with a 1.3 mm diameter fiber-optic probe with a distal end polished at an angle 

of 20 degrees. The probe comprises three 200-μm core diameter optical fibers with one 

fiber connected to the light source that is located 2.48 mm from the two side-by-side 

optical fibers that are used to collect the diffused light. The optical fibers used for the 

collection of light are connected to a spectrometer with a silicon detector (Andor 

Technology, DU420A-BRDD) and a spectrometer with an InGaAs detector (Andor 

Technology, DU492A-1.7), respectively. After thermoelectrically cooling the detectors to 

-40˚C, wavelength values were assigned to each pixel of the detector by fitting a second-

order polynomial to a set of atomic lines from an argon source with peaks at known 

wavelength. Subsequently, the spectral response of a white reflectance standard 

(Spectralon) with known reflectivity was measured by placing the distal end of the probe 

at a fixed distance of roughly 2 mm and followed by a background measurement in order 

to minimize the impact of ambient light. This step is necessary as it allows correcting for 

the system response (e.g. spectral shape of the light source and wavelength-dependent 

sensitivity in the optics and gratings and the detectors). This white reference measurement 

is used to divide each spectral measurement on the tissue samples for which a background 

measurement is subtracted yielding to the final reflectance measurement. The integration 

time for each measurement is in average 0.5 second. The reflectance spectra obtained 

with both spectra are combined together to form one single reflectance spectrum ranging 

from 500 to 1600 nm and is used in order to apply the mathematical modeling for the data 

analysis. 

 
Figure 1. Schematic of the optical setup and the design of the optical probe. 
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2.3. Spectral data modeling  

       The measured spectra were fitted from 500 to 1600 nm with the model of 

Farrell et al. [27] that is derived from diffusion theory using a Levenberg-Marquardt non-

linear inversion algorithm in order to determine the absorption coefficient       and the 

reduced scattering coefficient   
     expressed in cm

-1
. The validation of the model based 

on a phantom study, including spectral calibration procedures, and its application to in 

vivo and ex vivo tissues were justified in detail elsewhere [23, 24].  

The model requires the distance between the emitting and collecting fibers as well 

as the wavelength-dependent absorption coefficients of the chromophores of interest as 

input arguments. Additionally, the reduced scattering coefficient was empirically 

modeled as: 
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where     = 800 nm corresponds to a wavelength normalization value,   is the reduced 

scatteringamplitude at   , the Mie scattering slope is  , and   denotes the Mie-to-total 

reduced scattering fraction assuming Mie and Rayleigh scattering as the two types of 

scattering in tissue.  

The absorption coefficient is expressed as a term that corresponds to vascular absorption 

  
        , of the light due to blood-derived chromophores and a second term   

         

due to absorption of light by other chromophores present in breast tissue. The blood 

related absorbers are deoxygenated-hemoglobin (Hb) and oxygenated-Hemoglobin 

(HbO2) and define the absorption coefficient due to blood as: 
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where    
       and   

        correspond to absorption coefficients of pure Hb and HbO2 

given an average hemoglobin concentration in blood of 150 mg/ml, respectively. The 

parameters   and       correspond to the blood volume fraction and the level of 

hemoglobin saturation by oxygen, respectively. The parameter      was used to account 

for inhomogenous distribution of hemoglobin in vessels and is known as pigment 

packaging factor [28] expressed as: 
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where   corresponds to the average vessel radius. Studies that were performed on breast 

tissue [11, 14] showed that it is important to have β-carotene (βc) as an absorber in the 

model when recording spectra in the visible range. Indeed, these studies demonstrated 

that βc is an essential discriminator for adipose tissue in breast. Other studies that 

investigated optical properties of breast in the near infrared range [18, 20] discriminate 
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adipose tissue from other types of tissue based on light absorption by lipids. However, no 

studies so far used both βc and lipid. In our study we included both absorbers in the 

model and investigated the advantage of measuring up to 1600 nm where additional water 

and lipid absorption features exist [23] which enables more accurate estimation of lipid 

volume fraction [24]. 

Taroni et al. showed that collagen is an abundant absorber in several breast tissue 

types when recording optical spectra up to 1100 nm [19-21]. Therefore, we have 

measured collagen Type I (Sigma-Aldrich C9879) absorption coefficients from 500 to 

1600 nm by tightly inserting  the collagen fibers in cuvettes of 0.5, 1 and 2 mm thickness 

and measuring its absorption with a spectrophotograph with a 150 mm diameter 

integrating sphere (Lambda 900 Spectrometer, Perkin Elmer). The absorption 

measurements were separated from the scattering by mounting the cuvettes inside the 

integrating sphere far away from the detector. When a sample is mounted inside the 

sphere, the loss of light is mainly due to absorption by the sample related to the 

absorption coefficient. Because of the turbidity of the sample, scattering occurs. 

Therefore, an additional measurement was performed by allowing the forward transmitted 

light to escape out of an exit port in the back end of the sphere in order to measure 

scattering. The scattered light from the sample mounted inside the sphere is therefore 

measured, and subsequently the absorption coefficient can be determined by subtracting 

the measurement with the opened exit port from the measurement with closed exit port. 
The absorption coefficient due to non-blood derived chromophores is expressed 

as: 

 

  
       *        

         (        )  
      +             

           

                  

 

where   
        ,   

      ,   
            and        correspond to the absorption 

coefficients of lipid, water, collagen and the extinction coefficient (in cm
-1

.M
-1

) of β-

carotene, respectively. The parameter   represents the water and lipid volume fraction, 

and        represents the lipid fraction within the volume probed by the light. However, 

          corresponds to the collagen volume fraction in the probed tissue whereas     

corresponds to the molar concentration of β-carotene. The absorption coefficients of the 

various chromophores of interest are depicted in Fig. 2. The absorption coefficient at unit 

concentration of Hb and HbO2 that is used as a priori knowledge for the model are from 

Zijlstra et al. [29] whereas the extinction coefficient of β-carotene in human adipose cells 

is from van de Poll et al. [30]. Water and lipid absorption coefficients that are used in the 

presented study are from previous published work [23]. The collagen absorption 

coefficient presented in this study has a local maximum at 1200 nm of 1.54 cm
-1

 which is 

of the same order of magnitude as the water and lipid absorption coefficient in the 

vicinity of 1200 nm. It is important to note that collagen has a wider maximum than fat 

but narrower than water. Other local maxima at 911, 1030 and 1510 nm are observed with 

absorption coefficients of 0.21, 0.34, and 5.22 cm
-1

. The presented absorption coefficient 
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of collagen is about an order of magnitude higher than the one presented by Taroni et al. 

[20], however it matches very well with the coefficients reported by Tsai et al. [31] and 

by Nunez [32]. The difference in collagen absorption values with Taroni et al. could be 

due to the fact that the density of our measured sample is different from the density used 

by Taroni et al. 

 

 
Figure 2. Normalized absorption coefficients of deoxygenated-hemoglobin (Hb), 

oxygenated-hemoglobin (HbO2), β-carotene, water (H2O), lipid and collagen. 

 

 In few cases, the ink used by the pathologist before cutting was spread into the 

tissue when slicing the breast samples, influencing the measured spectral shapes. In order 

to correct for this, the absorption coefficients of these inks were measured and added to 

the fitting. Given the large number of free parameters, two separate fits on different 

wavelength ranges were performed: the first fit was performed between 500 and 900 nm 

with   
                    and        only in the model and the second fit was 

performed between 900 and 1600 nm with   
                    and        only in the 

model. The extracted values from both fits were used as initial guess for the fit applied 

over the full wavelength range between 500 and 1600 nm in order to ensure stability of 

the fit. 

From fits to the spectra between 500 and 1600 nm, the following fit parameters 

were obtained:  ,     ,  ,  ,       ,          ,    ,  ,   and  . For each estimated value, a 
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confidence interval computed from the covariance matrix was used to assess the 

reliability for each fit parameter [33]. 

 

2.4 Statistical analysis 

A non-parametric Kruskal-Wallis statistical test was conducted to evaluate 

significant differences of the estimated parameters between the various types of breast 

tissue for a significance level of 5% (i.e. p<0.05). The test examines if the medians of the 

various groups are not all equal; meaning that if the p-value is below the significance 

level, at least one type of tissue can be discriminated from the others. Therefore an 

additional post hoc test is required to account for multiple comparisons, as well as for the 

fact that comparisons can be interrelated. In this study, Tukey‟s post hoc test was applied 

at a significance level of 5%. This statistical procedure is a restricted pairwise comparison 

that follows the Kruskal-Wallis test which had indicated the significance of the 

differences [34].  

 

2.5 Classification algorithms 

The classification and regression tree (CART) algorithm was used to classify 

between the five types of tissue. The CART algorithm starts from a central node that 

discriminates the largest class, adipose tissue in our case, based on the best classifier. 

From this root node, a split is performed to discriminate the largest class from the other 

tissue classes. From the split, daughter partial trees are generated and other parameters are 

used for further splits. The purity of each node is assessed with the Gini‟s maximization 

index algorithm which corresponds to unity minus the sum of squares of the proportions 

of target classes at a specific node [35]. The advantage of CART is that it is a non-

parametric method whereas other methods such as (linear discriminant analysis) LDA, 

LR, and KNN assume functional relations between dependent and predictor variables. 

Moreover, one of the advantages of CART is that it is easy to interpret since the input 

parameters for classification are used whereas other methods post-process the parameters 

into scores that might not be intuitively related to the input parameters. The performance 

of the diagnosis was evaluated by carrying out an ROC analysis. From the sensitivity-

specificity values and the area under the ROC curves (AUC), the Provost and Domingos 

measure (PDM) for total AUC is computed to assess the accuracy of the diagnostic 

algorithms [25]. The PDM value corresponds to the sum of AUC of each class weighted 

by the class size fraction. 

Classifications were carried out on the estimated parameters from the fit model 

using a leave-one-out (LOO) cross validation scheme. Additionally, a hold-out (HO) 

cross validation scheme with a 70%-30% training-testing split of the data was carried out. 

The split was performed by random selection of the data before splitting and 

classification. This partition procedure and classification was reproduced 20 times and the 

computed sensitivity-specificity values were averaged.    

Several techniques were used in literature to classify parameters based on diffuse 

reflectance spectroscopy measurements or directly applied to the spectra as mentioned in 

the introduction section. The following classification algorithms were applied to our data: 

ANN [9], linear SVM [11], LR [14-16] and KNN employing Mahalabonis distance to 
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account for parameters intercorrelation [17], in order to evaluate the sensitivity-specificity 

of discriminating malignant and non-malignant types of breast tissue. Besides, other 

classification methods were also tested such as CART, LDA with Mahalanobis distance 

stratified covariance, and non-linear SVM to discriminate malignant from non-malignant 

breast tissues. However, the classification was performed by taking the amount of 

samples that corresponds to the lowest sample size within the malignant and non-

malignant category respectively. This means that within the non-malignant category, 127 

spectra from adipose and from glandular tissues were randomly selected and added to the 

FA spectra to form the non-malignant database whereas 96 spectra from IC were 

randomly selected and added to the DCIS spectra to form the malignant database. The 

purpose of such categorization is to avoid higher representation of one type of tissue over 

the others within the same category. Otherwise, discriminating malignant from non-

malignant tissue would be comparable to classification of adipose versus IC given the fact 

that the total adipose and IC spectra represent 51% and 72% of the non-malignant and 

malignant samples size, respectively. 

Furthermore, this study is the first that estimates both β-carotene and lipid from 

breast tissue measurements. A classification of adipose tissue was performed from all the 

parameters except lipid, water and collagen and another classification without β-carotene 

to evaluate which adipose precursor is the most accurate for adipose breast tissue 

classification using the CART algorithm. 

 

3. Results 

Fig. 3 depicts typical examples of spectra measured on adipose (Fig. 3.a), 

glandular (Fig. 3.b), FA (Fig. 3.c), IC (Fig. 3.d) and DCIS (Fig. 3.e) tissues and their 

corresponding fits. From the measurement of adipose breast tissue, one can notice the 

effect of β-carotene absorption on the spectra below 550 nm and the lipid absorption 

peaks at 930 and 1211 nm. 
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Figure 3. Typical measurement of adipose (a), glandular (b), FA (c), IC (d), and DCIS (e) 

and their corresponding fit curves. 

 

Fig. 4 depicts the histograms of the median and standard deviation for each of the 

parameters derived from the fit per category of tissue type. Complementary to Fig.4, 

Table 2 displays the parameters that show significant differences (p<0.05) for pairwise 

types of tissue comparison according to a Kruskal-Wallis test followed by a post hoc 

multiple comparison Tukey‟s test. 
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Figure 4. Average and standard deviation of the estimated blood volume fraction (ν), 

oxygenation level (StO2), water (H2O), lipid, reduced scattering amplitude (α), scattering 

slope (b), vessel radius (R),  β-carotene, collagen, and the Mie-to-total reduced scattering 

fraction (ρ) for each of the various types of breast tissues: adipose, glandular, FA, IC, 

and DCIS. 

 

It can be seen that adipose and DCIS tissue contains almost twice as much blood 

as the other types of tissue whilst the blood oxygenation level is lower in malignant tissue 

(StO2<40%) compared to non-malignant tissue. Adipose tissue can clearly be 

distinguished from the other tissue types by its high lipid average volume fraction and β-

carotene concentration of 80% and 12 μM, respectively. FA has the lowest β-carotene 

concentration and is significantly different from the other tissue types except for DCIS. 

The reduced scattering amplitude is the lowest for adipose tissue (roughly 5 cm
-1

) and the 

highest for DCIS (roughly 10 cm
-1

), whereas it is rather similar for the other tissues 

(around 7 cm
-1

). A clear distinction can be observed for the Mie slope where it is almost 

2-fold smaller for non-malignant compared to malignant samples. Apart from adipose 

tissue, IC showed significant differences based on the water content with the highest 
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amount among all tissues. Adipose and FA have the lowest collagen volume fraction of 

roughly 14%, whereas glandular and IC are about 18% and DCIS has the highest value 

with 22%. Although adipose and FA have similar collagen volume fractions, this 

parameter showed significant difference between DCIS and adipose tissue and not with 

FA due to the higher standard deviation in collagen in adipose tissue compared to FA. It 

can be seen that the trends in collagen are correlated with the estimated Mie scattering 

fractions: a lower collagen volume fraction corresponds to a higher Rayleigh scattering 

contribution. 

 

Table 2. Parameters that show significant difference for the pairwise comparisons of the 

different tissue types after Kruskal-Wallis statistical test with post hoc Tukey’s multiple 

comparison test (p<0.05). 

 Type of breast tissue 

Type of  

breast 

tissue  

Glandular FA IC DCIS 

Adipose  

ν, StO2, H2O, 

Lipid, α, βC, 

Collagen, ρ 

ν, StO2, H2O, 

Lipid, α, b, R, βC 

ν, StO2, H2O, 

Lipid, α, b, R, 

βC, Collagen, ρ 

H2O, Lipid, α, 

b, 

 βC, Collagen, 

ρ 

Glandular  - 
b, R, βC, 

Collagen, ρ 

StO2, H2O, α, b, 

R 
ν, StO2, α, b 

FA   - 
StO2, H2O, R, 

βC, Collagen, ρ 

ν, StO2, Lipid, 

α, R, ρ 

IC   
- 

 
ν, Lipid, α, R 

 

Multiple class classification was performed with the CART method, on the five 

categories of breast tissue i.e. adipose, glandular, FA, IC, and DCIS in order to evaluate 

the performance of such a diagnosis. Fig. 5 depicts a decision tree that classifies all 

tissues based on a specific threshold value for each parameter. As can be seen, the first 

node allows discrimination of adipose tissue based on the lipid content. If the lipid 

volume fraction is above 40%, an acquired spectrum is considered to be taken in adipose 

tissue otherwise it is another type of tissue. 
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Figure 5. Classification decision tree of the different breast types based on parameter 

threshold values. 

 

Table 3 corresponds to the confusion matrix displaying the diagnostic 

performance by comparing with the pathological diagnosis being the reference standard. 
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Table 3. Confusion matrix displaying classification of breast tissues using the CART 

algorithm for classification. 

 

Table 4 compares the sensitivity-specificity rates for each type of tissue when a 

LOO and HO cross validation were applied. The overall classification accuracy computed 

from the confusion matrix is 90% (879 out of 980). The type of tissue with the lowest 

sensitivity rate is FA whereas adipose tissue has the highest specificity rate. 

 

Table 4. Sensitivity and specificity of CART classification of each type of tissue using 

leave-one-out (LOO) and 20-fold hold-out (HO) cross validation. 

 
 

Sensitivity (%) - Specificity (%) 

Type of breast tissue  
 Leave-one-out cross 

validation 

Hold-out cross 

validation  

Adipose 
 

98 – 99 98±1 – 99±1 

Glandular 
 

84 – 95 80±6 – 95±2 

FA 
 

81 – 98 75±9 – 97±1 

IC  
 

91 – 95 86±6 – 94±2 

DCIS 
 

83 – 99 81±10 – 98±2 

 DRS classification diagnosis 

 Non-Malignant  Malignant 

Type of breast tissue  

(number of samples) 
Adipose Glandular FA IC DCIS 

 

Adipose (327) 319 6 2 0 0 

Glandular (189) 7 158 8 15 1 

FA (127) 0 11 103 11 2 

IC  (241) 0 15 4 219 3 

DCIS (96) 0 5 1 10 80 
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The receiver operating characteristic (ROC) curves for classification of each tissue 

are depicted in Fig. 6 including confidence intervals. 

 

 
Figure 6. ROC curves (solid line) for classification of adipose (a), glandular (b), FA (c), 

IC (d), and DCIS (e) tissues including confidence intervals (dashed line) and 

corresponding AUC. 

 

Corresponding area under curve (AUC) and PDM measures are summarized in 

Table 5. From the AUC values, the performance of the diagnosis can be classified into 

three categories with adipose as the best performance (AUC almost 100%), glandular as 
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the worst performance with AUC of 86% and FA, IC and DCIS as the median 

performance with comparable AUC values of roughly 92%. The PDM multiple classes 

overall performance of the diagnostic is 93.6%. 

 

Table 5. AUC values of ROC curves for the five tissue types and PDM value. 

Type of breast tissue  AUC Confidence Interval 

Adipose 99.8% 99.7%-99.9% 

Glandular 85.9% 81.9%-87.9% 

FA 92.3% 90.4%-94.1% 

IC  92.5% 90.9%-94.0% 

DCIS 91.8% 88.7%-93.4% 

PDM for total AUC 93.6% 91.9%-94.9% 

 

Table 6 summarizes the sensitivity-specificity obtained for classification of 

malignant versus non-malignant tissues by using various algorithms for classification. 

The obtained numbers are compared to what has already been reported by other studies 

from different research groups. The best algorithm performance applied to the data was 

reached with KNN classification whereas the poorest performance was reached with LDA 

classification. 

Classification based on the CART method showed that discriminating adipose 

tissue based on the β-carotene values only yields to a sensitivity-specificity of 68%-92% 

whereas classification based on the lipid parameters yields to a sensitivity-specificity of 

98%-99%. Using both parameters yielded a sensitivity-specificity of 99%-99%.  
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Table 6. Literature overview of diagnostic performance in discriminating malignant from 

non-malignant tissue and comparison of different classification algorithms applied to the 

data in the presented study. 

Classification 

algorithm 
Reference 

Sens. (%)- 

Spec. (%) 
 

Sens.-Spec. 

of 

 this study 

(LOO) 

Sens.-Spec. 

of 

 this study 

(HO) 

Artificial Neural 

Network 
Bigio et al.

 (a)
 69 – 85 

 
 89 – 98 91±2 – 96±4 

K-Nearest Neighbor  
Laughney et 

al. 
90 – 77  96 – 99 94±4 – 98±2 

Logistic Regression 
Volynskaya 

et al. 
100 – 100

(b)
  82 – 94 82±3 – 94±6 

Logistic Regression  Keller et al.
 (a)

 85 – 96
(b) 

 82 – 94 82±3 – 94±6 

Linear Support 

Vector Machine  
Zhu et al. 83 – 87

(b) 
 79 – 93 81±4 – 93±2 

Non-Linear Support 

Vector Machine 
- -  90 – 97 88±4 – 97±2 

Linear Discriminant 

Analysis  
- -  78 – 95 74±6 – 96±2 

Classification And 

Regression Tree 
- -  88 – 93 85±6 – 92±3 

(a)
 Sensitivity and specificity computed after classification of the spectra and not from the 

parameters derived from a fit-model. 
(b)

 Fluorescence was also measured in these studies however the reported sensitivity-

specificity corresponds to classification of parameters derived from diffuse optical 

spectroscopy only except for Keller et al. 
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4. Discussion 

This study corresponds to the first in its kind that evaluates the classification of 

different types of breast tissue based on several parameters derived from spectroscopic 

data acquired from a wide wavelength range from 500 to 1600 nm. From Table 2, it is 

clear that adipose tissue is the easiest tissue that can be discriminated from the other types 

of tissue. More than seven parameters showed significant differences with lipid, water 

and β-carotene as main discriminators, as supported by other studies as well [9-22]. 

Glandular and DCIS tissues have the lowest amount of parameters that showed significant 

differences with other tissues. It is important to note that the use of post hoc Tukey‟s test 

is essential for reliable statistical test for significance of differences. If not used, 

additional parameters become significantly different between types of tissue. For 

example, lipid becomes significantly different between glandular and FA as well as IC if 

no post hoc test is performed. Moreover, glandular tissue has on average 5% lipid 

whereas FA and DCIS have below 0.5% lipid while still no significant differences are 

observed according to Tukey‟s test despite an order of magnitude difference in lipid 

content. Similarly to ex vivo [10, 11, 14] and in vivo [18, 22, 36] existing studies, we also 

observed a lower blood oxygenation level in malignant tissue compared to non-malignant 

tissue with significant differences (cf. Table 2 and Fig. 4). This is expected because 

malignant tissues are known to exhibit regions of hypoxia [36]. Although this observation 

corroborates with other existing ex vivo studies, this should be validated in vivo because 

the oxygenation level of the tissue can significantly change during and after tissue 

excision. Another interesting finding is that we observed comparable amounts of blood 

(0.3%) in malignant and non-malignant tissue similar to reported studies in literature. Yet 

on the contrary, Van Veen et al. [22] have reported a higher blood volume fraction in 

malignant tissue similarly to optical mammography studies that were conducted in vivo 

by Spinelli et al. on 190 patients from which 32 had cancer [37] and by Grosenick et al. 

on 154 patients with 87 carcinoma cases [38] (In Ref. 38, table 4 provides an overview on 

blood volume, oxygenation level, and reduced scattering properties of healthy and 

malignant tissue from various optical mammography studies available in literature). 

Among the malignant types of tissue, only DCIS exhibited larger amount of blood than 

the average value of blood in non-malignant tissues. An increase in blood volume 

fractions is a potential marker for angiogenesis. Yet again, the current study was 

performed ex vivo and an in vivo study is required to confirm this observation as shown 

by Van Veen et al. Furthermore, our data corroborates with the observation from other 

studies with respect to the reduced scattering amplitude. Indeed, the reduced scattering 

amplitude is higher in malignant tissue (8.1 cm
-1

) than in non-malignant tissue (5.6 cm
-1

). 

As expected, we observed that collagen volume fractions correlate with ρ. This is in 

agreements with findings of Saidi et al. [39] that the Rayleigh scattering in tissue is 

mainly due to sub-micron collagen fibers in the connective tissue suggesting a stronger 

Rayleigh contribution in glandular, IC and DCIS that contain the highest collagen volume 

fractions as depicted in Fig 4. Water content is the most prominent in IC and is 

significantly different from the other tissues (cf. Table 2). The lowest water volume 

fraction is obviously observed for adipose tissue since lipid contains almost no water. 

However collagen-rich stroma contains quite a lot of water as collagen fibers are 
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hydrophilic. Thus if a tumor induces a lot of stroma, the water content in the tumor will 

be relatively high as the fibers are loosely arranged leaving a lot of space for water 

molecules to intervene in the tumor. In breast tissue with benign sclerotic changes in 

which collagen gets cross-linked to a great extent, hardly any space is left for water 

molecules. Necrosis can also play a role in water increase but only a very small minority 

of all breast cancer contains necrotic areas in general. When investigating the differences 

in values of the different parameters within each patient instead of comparing tissue types 

from all the patients together, the p-values for discriminating a tissue from another 

becomes even smaller. Results of the spectral differences between different patients are to 

be presented in a future publication. 

Multiple class classification with the CART algorithm demonstrated a very high 

overall diagnostic performance of 94% with the highest AUC value for adipose tissue and 

the lowest for glandular tissue as can be seen in the ROC curves in Fig. 6. In the study by 

Majumder et al., glandular and adipose tissues were both classified as normal and 

discriminated with FA, IC and DCIS and obtained an overall classification performance 

of 88% using sparse multinomial LR on the diffuse reflectance spectra [15]. Our data 

showed better sensitivity-specificity for IC and DCIS (cf. Table 4) whereas FA showed 

similar performance. It is important to note that the amount of DCIS samples by 

Majumder et al. is rather small compared to the other tissues and therefore a low 

performance can be expected. Moreover, DCIS is not a common tissue measured by other 

groups (6, 2, and 1 samples measured by Majumder et al. [15], Zhu et al. [11], and 

Laughney et al. [17], respectively). It is recommended to acquire more spectra from a 

sample and to perform classification on the spectra in order not to bias the diagnosis by 

low numbers compared to other tissues. 

For a better comparison of our results with existing literature studies, we have 

performed classification on our data using the techniques suggested in literature. Table 6 

summarizes the classification algorithm used to discriminate malignant tissue (i.e. IC and 

DCIS) from non-malignant tissue (i.e. adipose, glandular and FA) and the table compares 

the reported sensitivity-specificity values as reported in literature with those obtained in 

our study. The sensitivity-specificity obtained with the same method for all categories of 

breast classification, i.e. the CART method, is 88%-93%. Compared to the results by 

Bigio et al., ANN classification applied to our data showed better sensitivity-specificity. 

However, it is important to note that our classification was performed on the parameters 

derived from the spectra and not by applying the ANN classification to the spectra as 

done by Bigio et al. The KNN classification employing Mahalanobis distance metric to 

account for parameter intercorrelations, as used by Laughney et al., showed the highest 

diagnostic performance. The sensitivity-specificity obtained with this method corresponds 

to a very high performance. One might question the classification method because the 

KNN algorithm can be biased since it is very sensitive to redundant or similar features 

because all features contribute to the similarity principle and thus to the classification. 

Using an LR based classification method showed a sensitivity-specificity of 82%-94% 

which is outperformed by the sensitivity-specificity of 100%-100% obtained by 

Volynskaya et al. However, it is important to note that the study by Volynskaya et al. did 

not include the 6 DCIS samples they measured because they considered it was a very 
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small number compared to the 9 IC, 9 FA, 31 normal and 55 fibrocystic change (FCC) 

samples they had measured. Keller et al. obtained a lower sensitivity but higher 

specificity compared to our result. It should be noted that they classified the spectra and 

not the parameters that were derived from the spectra. Moreover, they included 

fluorescence spectra to their classification scheme. Zhu et al. achieved a sensitivity-

specificity of 83%-87% and 82±5%-89±5% using SVM classification with a LOO and 

HO cross-validation scheme, respectively. In our study, the sensitivity-specificity with 

linear SVM classification is 79%-93% and 81±4%-93±2% with a LOO and HO cross 

validation scheme, respectively. The data used for classification by Zhu et al. correspond 

to 89% of adipose tissue within the non-malignant category and 74% of IC among the 

malignant category. Therefore, the weight of classification is mainly dominated by 

adipose and IC for malignant and non-malignant tissue, respectively. In our study, 51% of 

the non-malignant samples correspond to adipose tissue and 71% of the malignant tissue 

samples correspond to IC. However, we have performed the classification by taking the 

same amount of spectra for each type of tissue within the malignant and non-malignant 

category in order to avoid an overrepresentation of adipose and IC within the non-

malignant and malignant category, respectively. This can explain the fact that we observe 

a lower sensitivity than Zhu et al. However, we obtain a higher specificity suggesting that 

we can classify non-malignant tissue better thanks to the additional parameters derived 

from the fit-model. In case of non-linear SVM, i.e. using a Gaussian radial basis kernel 

function instead of a linear kernel, the performance of discriminating malignant tissue 

increased to a sensitivity-specificity of 82%-94%. As mentioned by Zhu et al. in a 

previous study [10], a classification based on linear algorithms could underperform in the 

diagnosis since the optical properties are non-linearly related in the description of the 

measured spectra, hence the better performance of the non-linear compared to the linear 

SVM algorithm applied to our data. Besides, for comparison with another non-linear 

classification method, a sensitivity-specificity of 78%-95% reached with LDA employing 

Mahalanobis distance yielded the lowest performance among the other classification 

methods with respect to specificity. From the various classification methods, large 

variations in sensitivity-specificity can be achieved and therefore care should be taken 

when comparing one‟s results with existing results in literature. The choice of the 

classification algorithm is very important and the sample sizes, the methods, and the 

linearity of the problem should be carefully taken into consideration. As a matter of fact, 

for classification problems with small sample size LDA is not suitable, as it is a 

parametric method assuming normal distribution of the data in each class. Other methods 

have the advantage of being non-parametric methods. However, KNN is very sensitive to 

redundant and similar features for classification. On the other hand, linear SVM finds 

linear separation of two classes in the training set with a hyperplane that has maximal 

distance from the two classes. If the groups are not linearly separable, non-linear SVM 

can be applied [40]. The LR algorithm is a probabilistic method that has the advantage of 

using few or no statistical assumptions but the drawback is that the complete data is 

needed for each class to calculate the probabilities. Hence large variations in sample sizes 

can bias the classification. 
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Among the studies quoted in Table 6, the study by Keller et al., Majumder et al., 

Zhu et al. and Volynskaya et al. performed fluorescence measurements. The latter two 

derived collagen and NADH concentrations from fitting the fluorescence spectra. Both 

studies showed a significant increase in collagen in malignant tissue compared to non-

malignant tissue which correlates with our finding where we estimated collagen with 

diffuse reflectance spectroscopy measurements. Adding fluorescence to diffuse optical 

spectroscopy did not result in the same conclusions for the different studies. Volynskaya 

et al. showed a decrease in specificity from 100% to 96%, whereas Zhu et al. did not 

observe any differences in performance. Majumder et al. showed a tremendous 

improvement in discriminating the tumor types of tissue when adding fluorescence 

measurements to the classification routine increasing the overall diagnosis performance 

from 88% without fluorescence to 95% with fluorescence. Apart from fluorescence, 

Majumder et al. performed Raman spectroscopy measurements and showed that this 

optical tissue measurement technique yields to the best overall performance (99%). The 

group of biomedical photonics at MIT presented several Raman studies [41-44] showing 

that they can reach sensitivity-specificity of 83%-93% by classifying estimated 

parameters similar to those extracted from the measurements presented in this paper such 

as β-carotene, lipid, collagen as well as additional biological substances such as calcium, 

cholesterol, and cell nucleus. Interestingly, in comparison with the Raman results of the 

study conducted by the MIT group, the average collagen and fat fractions are reasonably 

similar for the different types of tissue except for adipose tissue where we estimate an 

average collagen content of 15%. In the latest study from the MIT group [42] the 20 

spectra acquired from DCIS samples were not classified because this type of tissue was 

not encountered in the calibration data set they used for their diagnostic algorithm 

development. They do discuss nevertheless that applying their algorithm to the DCIS 

samples would result into 5 samples out of 20 to be classified as malignant based on 

classification of their estimated fat and collagen fractions derived from the fitted Raman 

spectra. 

One final point of discussion concerns adipose tissue discrimination. Both lipid 

and β-carotene are adipose tissue precursors and only one of them was used in previous 

studies. In this paper, we estimate both chromophores and from classifying adipose tissue 

based on only one of the chromophores, it turned out that lipid is the best discriminator 

for adipose tissue with sensitivity-specificity of 98%-99% versus 68%-92% for β-

carotene. It is known that β-carotene is significantly lower in smokers than non-smokers 

[45]. Thus, it can bias the discrimination of adipose tissue in breast depending whether a 

patient is a smoker or not, making lipid a more suitable discriminator. 

 

5. Conclusion 

We present the first breast diagnosis study based on estimating morphological, 

physiological and optical parameters derived from diffuse reflectance spectroscopy 

measurements on a 500 to 1600 nm wavelength range. Based on a classification and 

regression tree algorithm applied to the derived parameters, a sensitivity-specificity of 

98%-99%, 84%-95%, 81%-98%, 91%-95%, and 83%-99% was obtained for 

discrimination of adipose, glandular, fibroadenoma, invasive carcinoma, and ductal 
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carcinoma in situ, respectively; and a multiple classes overall diagnostic performance of 

94%. A comparison of different classification techniques to discriminate malignant and 

non-malignant tissue showed varying performance that can highly depend on the 

classification algorithm. Finally, to the best of our knowledge, given the fact this is the 

only study that estimates both β-carotene and lipid as adipose tissue precursor; we show 

that lipid is a much better discriminator with sensitivity–specificity of 98%-99% for lipid 

versus 68%-92% for β-carotene. 
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Abstract 

Background. Optical spectroscopy is increasingly used in breast tissue analysis. 

Despite years of research, final steps towards clinical application of optical spectroscopy 

are yet to be taken. One of the reasons for current inability for clinical application could 

be the continuously executed collective data analysis methods in combination with 

significant inter-patient breast tissue variations. An individualised approach for optical 

spectroscopy analysis in breast tissue could improve discrimination accuracy towards a 

future clinical application of this technique. 

Methods. Breast tissue from 47 patients was included for an ex-vivo analysis with 

Diffuse Reflectance Spectroscopy (DRS). The measured optical spectra from all patients 

collectively and individually were analyzed. 

Results. Collective patient data analysis for discrimination between normal and 

malignant breast tissue yielded sensitivity and specificity of 90% and 88%, respectively 

whereas individual patient data analysis improved discrimination accuracy to 100% for 

31patients. 

Conclusions. Individual patient discrimination of tumor tissue from normal tissue 

displayed improved accuracy between normal and malignant breast tissue. These results 

support further validation on an individual patient analysis and direct towards in-vivo 

application of DRS in clinical practice for diagnostic procedures in breast tissue. 
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1. Introduction 

In the last decade new optical guidance techniques are increasingly being 

implemented into medical practice of cancer, rapidly evolving standard protocol and 

treatment strategies [1, 2]. One of these new optical techniques is Diffuse Reflectance 

Spectroscopy (DRS) [3-5]. DRS has the potential of differentiating biological structures 

and compositions by their intrinsic light absorption characteristics which varies with 

wavelength. It can provide detailed information of the underlying biological composition 

of tissue. DRS consists of recording the spectral response of tissue illuminated with light 

which is partially absorbed by endogenous chromophores as well as scattered by the 

various cells and fibers along its path towards a detection unit. Depending on the tissue 

composition and its structure, a specific spectral pattern is acquired from which the 

biological composition related to light absorption and tissue density related to light 

scattering are both recovered via well-established mathematical model that describes the 

spectral measurement [4]. By allowing specific differentiation between tissues, the 

technique has the potential to be incorporated into optical tools for cancer diagnosis and 

therapy.   

 One considered application for DRS that could improve clinical practice of breast 

cancer in the near future are the optical guided tissue biopsy. Current figures on repeated 

breast tissue biopsies due to indeterminate pathology analysis range from 5 to 30% [6-9].  

 Breast tissue can arguably be considered one of the most challenging human tissue 

types due to the general inhomogeneity of the morphology within both normal and 

malignant breast tissue [10]. Normal breast tissue composition is largely influenced by 

due age and hormonal status of the individual. Therefore, tissue analysis with DRS to 

discriminate tissue types based on the derived parameters from the measurements can be 

expected to be hampered by this diversity of tissue and inter-patient variation. Several 

groups have focussed on breast tissue discrimination with DRS [5, 11-17]. Presented 

results of discriminative accuracy based on analysis between normal and malignant breast 

tissue in these papers ranged between 65% and 90%. These results have not yet resulted 

in the development of optical spectroscopic guided instruments for use in clinical 

practice.  

 We believe that inter-patient variation within breast morphology hampers the 

discriminative accuracy as currently used and an important next step towards the 

application of optical techniques like DRS within clinical cancer is to focus on the 

development and optimization of individual patient analysis methods. Hence, with 

regards to the diagnostic accuracy between different tissues of any medical instrument 

used in clinical practice, the main interest of any physician will be the discriminative 

accuracy within any individual patient. Such an approach is already common practice in 

various imaging modalities like X-ray, CT, MRI or Ultrasound where malignant tissue is 

compared to normal tissue within an individual patient. This should also be considered as 

an important requirement for the introduction of any optical spectroscopy system for 

clinical use.  

 In a previous study, we published results of the development and validation of a 

novel Diffuse Reflectance Spectroscopy system combining detection of visible (VIS) and 

near-infrared (NIR) light spectra that enables DRS measurements on a very wide 
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wavelength range from 500 to 1600 nm [18, 19]. The aim of this present study is to 

confirm the hypothesis that the discriminative value of an individual analysis approach of 

breast tissue using DRS is an important step towards the development of intelligent 

medical tools such as an optical biopsy needle. 

 

2. Materials and methods 

2.1 Clinical study design 

This study was conducted at The Netherlands Cancer Institute (NKI-AVL) under 

approval of the internal review board committee. Breast tissue was obtained from 47 

female patients who had undergone either a local excision or total mastectomy of the 

breast due to the presence of a fibroadenoma or (pre)-malignant disease. Shortly after 

surgical resection, tissue was transported to the pathology department for optical 

spectroscopy analysis. After gross inspection by the pathologist, the spectroscopy 

measurements were performed on freshly excised tissue within two hours after resection. 

The optical spectra were collected from macroscopic normal fat, glandular tissue samples 

and fibroadenoma lesions as well as from (pre)-malignant tissue samples. On average, 

five optical measurements were performed at each measurement location. Subsequently, a 

biopsy of the measured tissue location was performed. These tissue samples were then 

fixated in formalin, paraffin-embedded, cut in 2- to 3-μm-thick sections and stained with 

standard hematoxylin/eosin staining. An experienced pathologist, who was blinded for the 

outcome of the spectroscopy analysis, examined the histological slides. For each 

measurement location, the percentages of adipose, glandular and fibroadenomatous tissue 

as well as ductal carcinoma in-situ (DCIS) and invasive carcinoma were respectively 

scored if present in the two dimensional image of the slide. Within the 47 resected tissue 

specimen, 160 measurements were performed in 11 fibroadenomatous lesions, 121 

measurements in 11 areas of DCIS and 314 measurements in 35 lesions of Invasive 

carcinoma. Five of these lesions were lobular carcinomas and 30 were ductal carcinomas. 

A total of 294 measurements in adipose tissue of the breast specimen and 184 

measurements in glandular tissue were performed. In total, 1073 DRS measurements 

were acquired. 

 

2.2 Instrumentation 

The instrumentation and calibration procedure of our optical spectroscopy system 

has been described in recent papers [18-20].  

The system consists of a console comprising a Tungsten/Halogen broadband light 

source, two spectrometers and an optical probe with three optical fibers. The two 

spectrometers resolve  light in the visible wavelength range between 400 nm and 1100 nm 

(Andor Technology, DU420A-BRDD) and in the near infrared wavelength range from 

800 up to 1700 nm (Andor Technology, DU492A-1.7), respectively. The optical probe 

contains three optical fibers: one fiber is connected to the light source, while the other two 

fibers are connected to the spectrometers to capture the diffusely scattered light from the 

tissue. The average tissue volume that is illuminated is roughly 5 mm
3
. The acquisition 

time of each spectrum was on average one second. 
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2.3 Spectral data processing 

Five different breast tissue classes were distinguished in the spectral data 

processing: adipose tissue, glandular tissue, fibroadenoma, DCIS and invasive carcinoma. 

Additionally, we distinguished normal breast tissue (all tissue locations of adipose, 

glandular and fibroadenomatous tissue) from malignant breast tissue (DCIS and invasive 

carcinoma). An analytical model was used to estimate the various chromophore volume 

fractions and scattering coefficients from all the acquired spectroscopy measurements. 

This model was first described by Farrell et al. [21] The model has been further modified 

and validated to be applicable to human tissue samples [12, 19, 20, 22, 23]. Diffuse 

reflectance spectra acquired from the tissue were fitted and analyzed over the wavelength 

range from 500 to 1600 nm. The measurements are fitted with the analytical model by 

applying a non-linear Levenberg-Marquardt inversion algorithm. By fitting the model to 

the measured spectra, several parameters are derived such as total hemoglobin 

concentration (the sum of oxygenated and deoxygenated hemoglobin), water, lipid, 

collagen volume fractions, and β-carotene as well as the scattering amplitude at 800 nm 

wavelength. Light in the wavelength range between 500 and 1000 nm is mainly subject to 

absorption due to presence of hemoglobin and β-carotene in the probed volume; whereas 

for higher wavelength range it is due to presence of water, lipid and collagen [20]. The 

scattering of light is dependent on the cellular structure of the target tissue and is sensitive 

to the size and the density of cellular and subcellular structures. Spectral characteristics 

analysis was performed with a Matlab software package (MathWorks Inc., Natick, MA). 

The distribution of the quantified values of each tissue parameter was displayed in 

boxplots. 
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Figure 1. Boxplots of most significantly different tissue parameters. DCIS = ductal 

carcinoma in-situ; μs’ = scattering at 800nm. 

 

2.4 Tissue classification analysis 

In the spectral data processing, breast tissue was categorized into the five defined 

tissue classes and also as two groups either as normal liver tissue or as tumor tissue. A 

Classification And Regression Tree (CART) algorithm was used to automatically classify 

each collected tissue into one of the defined breast tissue types based on the parameters 

derived from the measurements [24]. With the CART algorithm, a decision tree is created 

based on the five most significantly different tissue chromophores and scattering 

parameters using a leave-one-out (LOO) cross validation scheme. Each spectrum is 

separately classified based on the calculated thresholds in the decision tree and 
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subsequently compared to the histology analysis and presented in terms of sensitivity and 

specificity. The CART analysis was performed for all acquired data collectively and also 

for each included patient individually in which both normal breast tissue and 

(pre)malignant tissue was measured. It must be noted that the classification between 

normal breast tissue and malignant breast tissue was performed taking the amount of 

samples that corresponds to the tissue class with the lowest sample size in both groups. 

This was done to avoid overestimation of the discrimination accuracy due to the higher 

representation of one of the tissue classes over the other within either the normal or 

malignant tissue group.  Within the normal breast tissue group, 160 tissue measurements 

of both adipose and glandular tissue were randomly selected and added to the 

corresponding to the number of fibroadenomatous tissue measurements. For the 

malignant tissue measurements, 120 invasive carcinoma tissue measurements were 

randomly selected.  

Previously, the CART analysis with LOO cross validation scheme was studied by 

Nachabé et al. in the only published comparison to other generally used spectral 

classification algorithms [20]. The main advantage of the CART method is that the results 

can easily be interpreted and correlated to clinical details, since the input parameters are 

thresholds of the calculated values of the main tissue parameters.  

 

2.5 Statistical analysis 

The DRS-estimated quantification of each parameter in the breast tissue classes 

cannot be described by a parametric distribution such as the Gaussian distribution. The 

statistical differences of each parameter in the defined tissue classes were therefore 

determined using the non-parametric Kruskal-Wallis test [25].  P-values smaller than 0.05 

were considered statistically significant. 

 

3. Results 

A total of 47 breast tissue specimens from female patients were included into this 

study. The mean age at time of operation was 52 years (range 20 – 74 years).  

 

3.1 Cohort data analysis 

Chromophore volume fractions and scattering coefficients from each of the tissue 

parameters were calculated from each tissue measurement using the analytical model. The 

distributions of each of the six most significantly different tissue parameters for each of 

the five distinguished tissue classes are depicted in Figure 1. Adipose tissue is best 

distinguished from the other tissue classes by fat,water , and β-carotene content, as well 

as by the scattering coefficient at 800 nm. Fibroadenomatous tissue is best discriminated 

from the other five tissue classes based fat and β-carotene. Each measurement was 

diagnosed using the CART algorithm to predict for each measurement to which of the 

five defined tissue classes it belongs and to classify it either as normal breast tissue or 

malignant breast tissue after comparison with the histology diagnosis. The results of the 

five class distribution of the analysis results are displayed in Table 1. 
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Table 1. Diagnosis for each tissue measurement generated by the DRS analysis compared 

to the histology diagnosis of the measurement location with the calculated sensitivity and 

specificity of all the measurements in each tissue class. 

 

A high specificity (≥90%) for all tissue classes was noted. Adipose tissue is the 

best distinguishable tissue from the rest and there is a notable overlap in diagnosis 

between glandular tissue and DCIS resulting in the lowest sensitivity rates. The result of 

discrimination between normal and malignant breast tissue samples is displayed in Table 

2. After random selection of the tissue classes within both groups to fit the amount of 

measurements of the tissue class with the lowest sample size, the comparison of DRS to 

the pathology diagnosis yielded a sensitivity of 90% and a specificity of 88%. 

 

Table 2. Classification of tissue measurements defined as normal or as malignant breast 

tissue.  

 DRS classification diagnosis 

 Malignant  Non-Malignant 

Type of breast tissue 

(number of samples) 

Invasive 

carcinoma 
DCIS FA 

Glandular 

tissue 

Adipose 

tissue 

 

Invasive carcinoma     (314) 268 17 6 23 0 

 DCIS                         (121) 22 86 1 12 0 

 FA                             (160) 13 5 132 10 0 

 Glandular tissue        (184) 24 12 7 141 0 

 Adipose tissue           (294) 9 6 0 10 269 

Sensitivity(%)-Specificity (%) 85-90 71-95 83-98 77-93 91-100 

Pathology (number of samples) Malignant tissue Normal tissue 

Malignant tissue  (N=242) 219 23 

Normal tissue      (N=480) 59 421 

Sensitivity of  90% and specificity of 88% 
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The microscopic heterogeneity of the various tissue samples is illustrated in 

Figure 2. Three examples of invasive carcinoma are displayed with different percentages 

of malignant tissue within the specimen, respectively classified by the pathologist as 20%, 

50% and >90% invasive carcinoma within the tissue sample. The corresponding 

measured spectrum for each sample displays notable differences when compared. It is to 

be expected that these differences in histology and corresponding spectra will contribute 

to the difficulties distinguishing mainly glandular tissue from DCIS and invasive 

carcinoma, which were noted in Figure 1. We therefore divided all of the 314 

measurements of invasive carcinoma into <50% or >50% malignant cells within the 

tissue specimen based on the individual pathology reports and compared these two groups 

to all measurements of glandular tissue.  

 

 
Figure 2. Example of the pathological heterogeneity within several tissue samples defined 

as 20% (A), 50% (B), and 90% (C) invasive carcinoma, respectively. 

 

The results of the differences in significance of the quantification of most notable 

tissue parameters in the two malignant groups compared to glandular tissue are displayed 

in table 3. Both malignant groups can be discriminated from glandular tissue based on the 

parameters THC and fat. For the parameters scattering at 800nm, β-carotene and collagen 

A B C 
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no significant differences are illustrated when the percentage of invasive carcinoma 

within the tissue specimen is < 50%, but are apparent for ratios of invasive carcinoma > 

50%. 

 

Table 3. Significant differences of the quantification of the most notable tissue parameters 

of all invasive carcinoma measurements with either <50% or >50% malignant cells 

within each tissue specimen compared to glandular tissue measurements.  ~: Tissue 

parameter not significantly different when comparing glandular tissue with invasive 

carcinoma;  ↑ / ↓ : tissue parameter respectively higher and lower in the invasive 

carcinoma compared to glandular tissue with a P-value < 0.05;  ↑↑ / ↓↓ : tissue 

parameter respectively higher and lower in the invasive carcinoma compared to 

glandular tissue with a P-value < 0.0005. 

 

3.2 Individual data analysis 

Discrimination between the classified tissue classes was also performed for each 

patient individually, with emphasis on the discrimination between normal and malignant 

breast tissue. In one of the 47 tissue specimen, all five defined tissue classes were present 

and could be examined. Results of the tissue and spectral analysis are displayed in Figure 

3. 

 

Parameter Invasive carcinoma 0-50% Invasive carcinoma 50-100% 

Total hemoglobin  ↑↑ ↑↑ 

Fat ↓↓ ↓↓ 

β-carotene ~ ↓ 

Collagen ~ ↑↑ 

Scattering amplitude ~ ↑↑ 
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Figure 3. H&E staining of the five different tissue classes within one single patient 

specimen i.e. adipose tissue (A), glandular tissue (B), fibroadenomatous tissue (C), DCIS 

(D), and invasive carcinoma (e) including the corresponding spectra. The distribution of 

all the measurements for each defined tissue class based on the quantification of 

scattering at 800nm and total hemoglobin content is also illustrated (F). 

 

For each tissue sample, a marked heterogeneity of the histology is notable. These 

variations can be expected to contribute to difficulty in the classification when a cohort of 

patients is examined. For each tissue class, the acquired optical spectrum is displayed as 

well as the scattering coefficient at 800nm wavelength versus the total haemoglobin 

content (THC) is plotted. When comparing the five tissue classes for this individual 

patient based on these two parameters (Figure 3F), the five classes can simply be 

discriminated from each other. Results of all performed measurements and the 

A B C 

D E F 
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discriminative accuracy between normal and malignant breast tissue on an individual 

basis are displayed in Table 4.  

 

Table 4. Results of the discriminative accuracy between normal and 

malignant tissue measurements for each patient in which both groups were present. 

Patient Adipose 

tissue 

Glandular 

tissue 

FA DCIS Invasive 

carcinoma 

Sens. 

(%) 

Spec. 

(%) 1 10 - - 5 - 100 100 

2 - - 10 - - - - 
3 5 4 - 10 10 100 96 
4 5 - 20 - - - - 
5 5 9 - - 9 100 100 
6 - 10 - 8 - 86 100 
7 - 4 - - 20 100 100 
8 - 10 - - 5 76 100 
9 5 4 - - 10 100 100 
10 5 - - - 10 100 100 
11 - - 28 - - - - 
12 8 - 25 - - - - 
13 5 - - 21 - 100 100 
14 4 - - - 20 100 100 
15 5 - - - 10 100 100 
16 8 5 - - 19 100 100 
17 10 - - - 7 100 100 
18 5 9 - - 10 100 100 
19 10 - - - 10 100 100 
20 9 - 10 - - - - 
21 - - 24 - - - - 
22 10 - - 14 - 100 100 
23 5 - - - 10 100 100 
24 9 9 - - 19 100 100 
25 10 5 - 14 - 100 100 
26 10 - - 4 10 100 100 
27 10 10 - 20 - 92 100 
28 10 10 - - 10 100 100 
29 10 - - - 10 100 100 
30 4 - 10 - - - - 
31 5 - - - 15 100 100 
32 10 10 - - 10 100 100 
33 5 10 - - 5 100 100 
34 6 5 5 5 5 100 100 
35 4 10 - - 5 100 100 
36 10 10 - 10 10 100 100 
37 5 5 - - - - - 
38 5 - - 10 10 100 100 
39 5 4 8 - - - - 
40 5 - 5 - - - - 
41 5 5 - - 5 100 100 
42 5 5 - - 5 100 100 
43 10 - - - 10 100 100 
44 5 5 - - 10 100 100 
45 10 7 - - 10 90 94 
46 8 9 - - 15 100 100 
47 14 10 15 - - - - 

Total 294 184 160 121 314 - - 
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4. Discussion 

 The implementation of optical technologies within clinical cancer is increasingly 

being explored [1-5]. For the approach to the clinical application of these new 

technologies within the diagnosis and treatment of breast malignancies, the heterogeneity 

of this human tissue must be considered. This heterogeneity is apparent on the 

histological slides of the tissue measurement locations displayed in Figures 2 and 3. 

Moreover, one must keep in mind that with DRS, one is comparing the optical 

characteristics of a tissue volume of several mm
3 

to the histological characteristics of a 

tissue sample of 5 μm thickness typically. In this study of ex-vivo breast tissue we 

examined 47 specimens exploring the hypothesis that an individual approach to breast 

tissue analysis would enhance the discriminative accuracy between normal and malignant 

tissue and could therefore be an important step towards incorporation of DRS within 

clinical practice of breast cancer. 

 The histological heterogeneity depicted in Figures 2 and 3 is also apparent in the 

results of the quantification of several tissue parameters illustrated in Figure 1. When we 

distinguished between five different tissue classes, the boxplots clearly displayed a 

notable distribution range of most of the measurable optical parameters within the 

different tissue classes for measurements in multiple breast tissue locations. Adipose and 

fibroadenomatous tissue can be well differentiated from the other three tissue classes, yet 

the discrimination of glandular tissue from DCIS and invasive carcinoma is not so 

straightforward. The overall discrimination accuracy of DRS distinguishing 5 tissue 

classes was 82%. Sensitivity and specificity for each of the tissue classes ranged between 

71% and 91% and between 90% and 100%, respectively. When we compared the 

combined measurements of normal and benign breast tissue to both malignant breast 

tissue classes the sensitivity was 90% and specificity 88%. These figures are conform best 

published figures in previous papers of DRS analysis in breast tissue [5, 13, 15, 16, 26, 

27].  

 A more detailed analysis of the results in Figure 1 and Table 1 reveals the main 

discriminating difficulty between glandular tissue, DCIS and invasive carcinoma with a 

notable overlap in the quantification of the tissue parameters. This has been reported by 

Volynskaya et al. [12] with no significant differences in collagen and β-carotene in these 

tissue classes and by Zhu et al. [5] with similar concentrations in β-carotene and THC. 

We demonstrated a main discriminative factor to be the scattering at 800nm. Overall 

scattering has been previously published to be an important discriminative factor [5, 10]. 

 These results can be explained when taking into mind that primary malignant 

degeneration in the breast is generally a gradual evolution of glandular tissue to 

carcinoma in-situ to an invasive carcinoma and that an important part of the composition 

of all three tissue classes will be fibro-vascular matrix with possible adipose component, 

it is not surprising that these tissues are not easily discriminated. Moreover, the presence 

of micro-calcifications in carcinoma in-situ areas and irregularly shaped and ordered 

cancerous cells in invasive carcinoma lesions is expected to cause notable scattering 

variations. The differences in composition between various cancerous lesions are 

displayed in Figure 2 and depending on the proportion of malignant cells within the 

measured specimen the different tissue parameters will be more or less significantly 
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different from normal glandular tissue as is demonstrated in Table 3. Finally, the age of 

the patients included into this study ranged from 20 to 74. The differences in menopausal 

status and composition of the normal breast structure between these patients would be 

expected to differ remarkably. 

 Notable improvement in the discrimination accuracy is displayed in the Figure 3 

and Table 4. In one of the tissue specimen included in this study, all five distinguished 

tissue classes could be examined (Figure 3 and patient 34 in Table 4). Within the tissue 

samples of this single patient an inhomogeneous histology is apparent with various 

percentages of normal and malignant tissue types within each sample. From the DRS 

spectrum we selectively extracted the scattering coefficient at 800nm and THC.  We 

subsequently compared the five different tissue classes based on these two tissue 

parameters (Figure 3F) and demonstrated in this analysis that each of the five tissue 

classes can easily be distinguished from the others. Moreover, the figures display a 

notably small variation of the two parameters within each tissue class. The discriminative 

accuracy of this individual analysis was 100% as displayed in Table 4.  For each patient 

in which both normal breast tissue as malignant tissue was measured (N=36 patients), we 

performed a comparable individual discriminative analysis (Table 4). For 31 of these 

patients the discriminative accuracy of this individual analysis was 100%. The analysis of 

two of the patients revealed a sensitivity which was inferior to the collective analysis.  

 When we translate these results on individual analysis to clinical practice of tissue 

biopsy the main objective for correct localisation of the needle within the target lesion is 

accurate identification of malignant tissue from normal tissue. High specificity of the 

optical modality is therefore the most important parameter. Hence, the higher the 

specificity, the lesser indeterminate results can be expected. An indeterminate biopsy is 

defined as a biopsy which was thought to be taken from the target lesion, but cannot be 

characterized as malignant tissue by the pathologist. With an individual patient tissue 

analysis we displayed a specificity which was minimally 94% and in all but two patients 

was 100%. We therefore conclude that individual tissue analysis with DRS is superior to 

a collective data analysis and could enhance the accuracy in breast tissue biopsy when 

included into a biopsy needle. 

 

5. Conclusion 

Diffuse reflectance spectroscopy is considered as an important new optical 

sensing technique that could improve on various aspects of clinical practice in cancer in 

the near future. Based on the results presented in this paper, we conclude that the analysis 

of optical characteristics of different tissue classes within an organ of a single patient is 

superior to an analysis using the results of a cohort data analysis. We argue that for future 

application of DRS into clinical practice such as breast tissue biopsy, emphasis should 

therefore be put on individual tissue analysis. As a next step towards a clinical application 

we aim to confirm these results in an in-vivo setting. 
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Abstract 

This study presents the first in vivo real-time tissue characterization during image-

guided percutaneous intervention with diffuse optical spectroscopy (DOS) sensing at a tip 

of a needle with integrated optical fibers. A total of 9 percutaneous needle insertions in 

three woodchucks with primary hepatocellular carcinoma were performed under 3D 

fluoroscopy and ultrasound; DOS measurements were continuously acquired during 

needle insertion and clinically relevant parameters were extracted from the optical data 

along the needle paths. The derived real-time tissue characterization enabled 

identification of the tissue type at the needle tip during the transition from healthy liver to 

tumor tissue. Statistically significant differences in tissue properties between the tumor 

and the healthy liver enabled discrimination between these two types of tissues. Tissue 

blood content, oxygenation level, lipid content and tissue density were the main 

parameters that showed significant differences when the needle tip was guided from 

healthy tissue to tumor. 
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1. Introduction 

Diffuse optical spectroscopy (DOS) is an emerging technique for real-time tissue 

characterization. This technique consists of studying the spectral light response after 

illuminating tissue with a light source. The collected optical spectra are translated into 

clinically relevant parameters such as blood, water and lipid fractions, tissue oxygenation 

levels and tissue density related to the scattering of light [1]. In recent research, several 

advances have been made in integrating optical fibers into needle-like probes for DOS 

measurements at the distal end of the devices [2-5]. Most of the DOS clinical studies have 

addressed the diagnostic performance of such a tool in discriminating tumors from normal 

tissue. These clinical experiments consisted of performing several point measurements at 

different locations in tumors and healthy tissue. The diagnostic performance of DOS has 

generally been evaluated by comparing the outcome of a statistical classification with 

pathology [3, 5] or with diagnostic medical images used as reference [2,3,6]. A few in 

vivo studies have been conducted to demonstrate that DOS measurements enable tissue 

discrimination [3,4,6]. In most of these cases, image guidance was used to advance the tip 

of the probe into the region of interest [2,3,6]. Point measurements were then performed 

at various positions in tumors and in normal tissues. DOS data collected from various 

patients were gathered together by type of tissue and diagnostic performance in 

discriminating tumor from normal tissue was thereby evaluated. However, no continuous 

DOS measurements were performed during the insertion of the needles in the subjects. 

Continuous measurements are of great relevance during percutaneous procedures, 

because they enable detection of the transition from healthy tissue to tumor based on the 

clinical parameters derived from optical spectroscopy. Additionally, continuous 

measurements provide a profile of the tissue along the needle path yielding data on intra-

subject heterogeneity. 

To this aim, we applied continuous DOS measurements under 3D fluoroscopy and 

ultrasound guidance in woodchucks with hepatocellular carcinoma (HCC) tumor to 

evaluate the added-value of continuous measurements during percutaneous insertions.  

 

2. Materials and methods 

2.1. Animal model and handling 

In this study, we used three woodchucks with HCC tumor induced by the 

woodchuck hepatitis virus infection. Similar to hepatitis B virus, the woodchuck hepatitis 

virus infects the liver, may cause acute and chronic hepatitis and usually leads to 

development of HCC within three years. The woodchucks were ordered from 

Northeastern Wildlife Inc. (Harrison, ID, USA) and weighed an average of 2.5 kg. The 

animals were initially sedated with an intramuscular injection of 5mg/kg of Xylazine 

(Fort Dodge Labaratories, Fort Dodge, Iowa) and 50mg/kg of Ketamine (Fort Dodge 

Labaratories, Fort Dodge, Iowa). For intravenous contrast agent administration, a 20 

gauge angiocatheter was placed into the femoral vein using direct ultrasound guidance. 

All procedures in this study followed the guidelines of the Institutional Animal Care and 

Use Committee of Cincinnati Children Hospital Medical Center and were approved by 

the ethics committee. 
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2.2. Needle with sensing capabilities and optical setup 

A research prototype setup that allows optical spectroscopy measurements of 

tissue via optical fibers integrated in a needle was used in this study [7]. In short, the 

setup includes a light source and two optical spectrometers that enable light detection in 

the visible and near infrared wavelength range. A custom-made needle is connected to the 

light source and to both spectrometers via 200 micrometer diameter optical fibers. The 18 

gauge needle has a polished angle tip of 70 degrees while the fiber ends were cut straight. 

The light emitted at the tip of the needle travels through the tissue before reaching the 

collecting optical fiber and is subject to optical absorption and scattering. The 

measurement acquisition time per spectrum is 300 ms and an analytical model was used 

to derive the various physiological and morphological properties from each spectrum. The 

spectral measurements enable estimation of physiological and morphological information 

such as biological volume fractions (e.g. blood, water, lipid, bile, etc.), oxygenation level 

of blood and light scattering due to tissue density using a mathematical model that 

describes tissue-light interaction [7]. The blood volume fraction corresponds to 

hemoglobin (oxygenated and deoxygenated) assuming a concentration of 150 g of 

hemoglobin per liter of plasma. The lipid volume fraction corresponds to a density of 0.86 

g/ml.  

 

2.3. Image guidance 

The needle insertions were performed under 3D fluoroscopy and ultrasound 

guidance to advance the tip of the needle into the tumor. Whereas ultrasound is a common 

imaging technique used for needle guidance, 3D fluorosocopy is a more recent technique 

that consists of overlaying live X-ray fluoroscopy with cone beam CT (CBCT) [8]. A 3D 

soft tissue CBCT dataset was acquired after injection of contrast agent (Optiray 350, 

Covidien) for better visualization of the tumor and the surrounding healthy tissue. From 

the 3D data set, an optimal CT-like slice with the tumor being clearly visible was selected 

to define a planned needle path. The needle planning was interactively performed by 

drawing a line from the center of the tumor towards the skin surface. Figure 1.A shows a 

CBCT image of the tumor within the liver as well as the planned needle path whereas 

Figure 1.B shows the 3D fluoroscopy with the tip of the needle reaching the target. Live 

fluoroscopy and ultrasound imaging were acquired simultaneously with DOS acquisition 

in order to assure registration of the tissue characterization with the actual location of the 

needle tip. A total of 9 insertions were performed in the animals. At the end of the 

experiment, the liver was excised for gross tissue investigation. A cut-through was 

performed along the needle path in the tumor to observe the tissue structure.  
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Figure 1. (A) Cone beam CT slice depicting a virtual needle path (green line) with entry 

point (magenta marker) defined at the skin surface and the end target in the middle of the 

round tumor. The small and large dash markers along the virtual line correspond to mm 

and cm spacing, respectively. The white arrows indicate the boundaries of the tumors 

along the virtual line (B) Cone beam CT overlayed with live fluoroscopy (i.e. 3D 

fluoroscopy) demonstrating tumor in liver. The green line corresponds to the virtual 

needle trajectory. The needle tip is in the center of the tumor 

 

3. Results 

When comparing the data acquired within the normal liver tissue and within the 

tumor from the 9 insertions, statistical differences (P-value < 0.05) were noted for 

parameters such as blood volume fraction, tissue oxygenation level, lipid volume fraction, 

and scattering amplitude. The set of boxplots in the top row of Figure 2 shows that blood 

and lipid volume fractions and the tissue oxygenation were significantly greater in normal 

liver as opposed to tumors, whereas the scattering amplitude was greater in tumors than in 

normal liver tissue. In all reported in vivo studies in literature, collective data acquired 

from all enrolled subjects were statistically compared [3,4,6]. However, it is interesting to 
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evaluate the statistical differences within one needle insertion. The bottom row of Figure 

2 shows boxplots of the parameters of interest for a single insertion from normal to tumor 

tissue. It can be seen that the trends are similar to the collective data set. What is 

interesting to note is the fact that outliers (cross markers in boxplots) for blood and tissue 

oxygenation values correspond to transition values from one tissue type to another. 

 

 
Figure 2. Boxplot of collective data for normal and tumor tissues (top tow) and for a 

single insertion (bottom row) of blood, lipid volume fractions as well as tissue 

oxygenation and scattering amplitude. 

 

Figure 3 depicts estimated values of the four derived parameters while inserting 

the needle from normal to tumor tissue from which the boxplots in the bottom row of 

Figure 2 were obtained. 
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Figure 3. Histogram of blood volume fraction, tissue oxygenation, lipid volume fraction 

and scattering amplitude derived from DOS measurements when needle being inserted 

from normal to tumor tissue. 

 

4. Discussion 

Several observations can conjointly be drawn from Figure 2 and 3. First, the total 

amount of blood is significantly higher in healthy liver as opposed to tumor tissue. This 

observation correlates with the macroscopic investigations after tissue resection depicted 

in Figure 4. Second, the oxygenation saturation level of blood is lower in the tumor as 

compared to the healthy liver. Furthermore, parts of the tumors are hypoxic with 

oxygenation levels as low as 10%, while regions close to the boundaries have higher 

oxygenation levels. Third, the lipid volume fractions are very low at the boundaries 

between the tumor and the healthy liver tissue. Finally, the scattering amplitude of the 

probed healthy liver tissue is homogeneous whereas it is heterogeneous in the tumor; this 

correlates with the macroscopic observation shown in Figure 4 where the tumor tissue 

has a more granular structure. Additionally, the difference in tissue homogeneity between 

the tumor and the healthy part of the liver is visible macroscopically on the CBCT images 

displayed in Figure 1. These findings were consistent for all insertions except for one 

case in which the blood content in tumor was higher than in normal tissue; this was 

confirmed by ultrasound to be a hemorrhagic part of the tumor. 
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Figure 4. Photograph of the liver with a cut section through the tumor. The thickness of 

the tumor is roughly one centimeter as it can also be seen on Figure 1. 

 

To our knowledge, there have been no previous in vivo liver tumor DOS studies, 

although there have been a few ex vivo studies demonstrating higher blood content in the 

healthy liver as compared to tumor; however, care should be taken in interpreting ex vivo 

human studies because the tissue properties can change very quickly after excision of the 

tissue [9,10]. Moreover, the ex vivo studies were done in liver with colorectal metastases 

whereas the present study addresses primary liver tumors. The comparison of the derived 

parameters is thus not straightforward. Therefore, this present in vivo animal study can be 

considered as a starting point for future investigational works in discriminating HCC from 

healthy liver tissue. The ex vivo studies available in literature showed higher scattering 

amplitude as well as lipid, blood and bile content in healthy liver as opposed to tumor. 

From the results depicted in Figure 2, we also demonstrate that blood and lipid content 

are greater in the healthy part of liver. There was no significant difference in bile content, 

which is most likely due to the fact that the tumors in our animals are primary tumors and 

not metastases from other organs; metastases are made of abnormal cells from the organ 

of origin and therefore no bile is expected in metastases [9]. 

The existing in vivo studies in the literature were mainly performed in breast [3,4] and 

lung [6]; therefore, only comparisons of physiological parameters (e.g., oxygenation 
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levels) in our study to these previous studies are valid, and tissue composition 

comparisons are not. Our results agree with the general reported findings from the in vivo 

human DOS studies that were conducted previously by different research groups [3,4,6]. 

Most of these studies demonstrated lower oxygenation levels in the tumor and higher 

scattering amplitude, as did our study. 

The information provided by DOS, such as mapping of blood oxygenation levels along 

the needle path, can be of great relevance in the case of biopsy procedures. Hypoxic 

tissue is often associated with necrosis and therefore measuring the oxygenation level in 

tumors can allow the operator to avoid performing a biopsy in a necrotic region that 

would not allow conclusive tumor staging by pathologists. Hence, relying on the 

oxygenation level in blood is of great interest in performing biopsies [4]. 

In the HCC tumor, the estimated lipid volume fraction was non-uniformly distributed, 

which is expected because HCC is known to be associated with patchy macroscopic fatty 

change [11]. The scattering amplitude related to tissue density is also heterogeneous in 

the tumor, whereas it is homogenous in healthy liver. This observation is in agreement 

with existing findings on stiffness measurements with ultrasound or MR elastography, 

with tumors being harder than normal liver tissue [12]. Performing continuous 

measurements during a needle insertion as opposed to single point measurements in the 

different types of tissues as done in existing studies has the advantage of providing a full 

overview of the tissue characterization along the needle path to ensure better needle 

placement for biopsies. 

 

5. Conclusion 

In summary, this study shows the potential of real-time tissue characterization by 

diffuse optical spectroscopy measurements at the tip of a needle during percutaneous 

intervention. This first in vivo liver study using diagnostic imaging as a reference 

demonstrates that blood content and tissue oxygenation can be used as the primary 

discriminators for transition from normal tissue to tumor. Lipid content and scattering 

amplitude provide information on the heterogeneity of tumor tissues along the needle 

path, which contrasts to the homogeneity of the surrounding normal liver tissue. 
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General discussion 
Several research groups investigated over the last two decades the potential of 

diffuse optical spectroscopy for specific medical applications such as cancer diagnosis, 

treatment monitoring and surgery support. The recent technical advances in detectors, 

gratings, optical fibers and light sources enabled the possibility to perform quasi real-time 

measurements with miniaturized probes such as needles, endoscopes, catheters and the 

like.  

 

 This dissertation encompasses several research and development works in the 

field of clinical diagnosis with diffuse optical spectroscopy. Needle-like optical probes 

with similar characteristics than conventional medical needles were developed in such a 

way that the optical fibers were integrated in the cannula. Three optical fibers were 

embedded, one from which light is delivered while the two other fibers are connected to 

the detection unit composed of silicon and InGaAs detectors, respectively. The InGaAs 

detectors are relatively new and expensive enabling light detection above a micron 

wavelength. Formerly, PbS detectors were used to detect light with wavelength above a 

micron however the sensitivity of such detectors is poor. Other research groups only use 

silicon detectors due to its low price limiting the light detection to wavelengths below one 

micron. Therefore, most research groups have only evaluated blood-derived 

chromophores in the visible and near infrared wavelengths range because these are the 

man chromophores that have spectral absorption features in wavelength range detectable 

with silicon detectors. In the beginning of the century, researchers have tried to estimate 

water and lipid concentrations by trying to measure up to the limit of silicon detection of 

light roughly around 1100 nm. However, the reliability of the derived water and lipid 

concentrations could well be not very accurate because of the limitations and sensitivity 

of silicon detectors. By measuring simultaneously with silicon and InGaAs detectors, we 

were able to acquire spectra up to 1800 nm with a signal-to-noise ratio above 100:1 

enabling accurate absorption coefficients measurement of biological chromophores such 

as water, lipid and collagen. The determination of absorption coefficients of these 

chromophores enables their use in mathematical models to derive their concentrations in 

tissue after spectral measurements with the optical probe. Therefore, the use of an InGaAs 

detector is relevant for accurate determination of additional biological substances that are 

not commonly used by other research groups.  

 

The model we used to characterize tissue corresponds to an analytical expression 

derived from diffusion theory. In this dissertation the first parameterization of diffuse 

optical spectroscopy measurements over a wavelength range comprising the visible and 

the near infrared up to 1800 nm is presented. Validation of the method and the 

mathematical model to derive parameters relevant to the clinician was performed by 

means of phantoms studies and benchmarking with other existing techniques for 

biological substances concentration estimation. The validation is performed by comparing 
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the derived chromophores concentrations from the mathematical model with the actual 

concentrations in the phantom with known optical properties. The robustness of the 

model is evaluated by changing the average particles size in the phantom without 

modifying its content. Such a procedure enables to verify that the model does extract the 

same concentrations while the scattering properties are being changed. Comparison of 

quantifying concentrations of certain biological substances with other existing methods is 

also considered as a guaranty of the reliability of diffuse optical spectroscopy in 

determining proper values. Validation of the model in deriving the various parameters of 

interest is an essential and crucial step before interpreting the measurements performed in 

the clinic as the outcome should help the physician to make the proper diagnosis or make 

the right decision during a medical procedure. However, using a model derived from the 

diffusion theory has its limitations. In fact, in order to be applicable the scattering length 

of the photons i.e. the average distance between two scattering events should be small 

compared to the source-detector fiber distance. Recently, several studies by various 

research groups were conducted to model diffuse optical spectroscopy for side-by-side 

fibers as well as single fiber backscattering configurations. These models are developed 

based on either phantom measurements or probabilistic-based simulations (e.g., Monte-

Carlo) with a wide range of optical properties corresponding to the one expected in tissue. 

In this dissertation, we have chosen to use probes in which the source-detector fiber 

distance is large compared to the average scattering length of the photons such that 

diffusion theory is applicable across the broad wavelength range of interest. 

 

Most of the presented clinical studies in this dissertation were conducted in ex 

vivo settings and therefore the blood derived chromophores might be questionable 

although measurements were performed immediately after tissue excisions. Nevertheless, 

extending the wavelength range has clear benefits when comparing with results from 

other existing ex vivo clinical studies available in literature. The first in vivo experiments 

that were performed in animals with primary tumors showed the importance of real-time 

measurements and data analysis in order to identify the transition of needle placement in a 

tumor based on the changes in the derived parameters. Additionally, deriving the tissue 

oxygenation level along the needle path is of great relevance to avoid taking biopsies in 

hypoxic locations that potentially could be correlated to necrosis. 

  

In this PhD research, several advances have been made with respect to measuring 

and investigating biological chromophores that are not commonly used in literature. 

Whereas the main focus of most of the research groups are investigating the difference 

between normal and dysplastic tissue in blood content and its oxygenation level, the 

presented preclinical and clinical studies in this dissertation showed that several 

additional chromophores can be relevant for tissue discrimination yielding better 

diagnosis performances. Diffuse optical spectroscopy has been widely used for diagnosis 

in the field of oncology where blood volume fraction, its oxygenation level and the 

reduced scattering amplitude are the main three derived parameters that allows 

discrimination of dysplastic and cancerous tissue from normal tissue. Having a wide 

wavelength range up to 1800 nm showed to be of great relevance for accurate water and 
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lipid volume fractions estimation. It was shown that proper estimation of water and lipid 

concentrations can significantly improves diagnosis performances in breast and liver 

cancer. Therefore, the thorough investigation in understanding which biological 

substances that could potentially play a role in discriminating abnormal from normal 

tissue is very important. For instance, bile showed to be a biological chromophore that is 

significantly higher in healthy liver as opposed to colorectal metastases tumors due to the 

presence of cancer cells originating from a different organ, hence not containing bile. In 

opposition, the in vivo study in animal with primary tumor showed no significant 

differences in bile content between normal and tumor samples measurements. However, it 

was shown that tissue oxygenation is lower in tumors as expected and proven in different 

in vivo studies presented by several research groups.   

 

 The main clinical applications addressed in this dissertation are focused on 

diagnosis but several other clinical applications can be addressed with diffuse optical 

spectroscopy sensing at the distal end of needle-like fiber optic probes. A wide range of 

clinical applications have been investigated by several research groups. Two of the topics 

that have been gaining a lot of interest are chemotherapy monitoring as well as tumor 

margin assessments. The possibility of measuring up to 1800 nm widens further the scope 

of clinical applications as it enables to derive many other biological substances that 

absorb lights in the infrared wavelengths range. In fact, the possibility of accurately 

quantifying lipid and water shows that diffuse reflectance spectroscopy has a great 

potential in steatosis quantification and non-alcoholic fatty liver disease diagnosis. This 

disease is considered to be positively diagnosed if the haptic fat is above 5% only, hence 

the need of accurate tools for reliable hepatic fat quantification. Diffuse reflectance 

spectroscopy can be an interesting alternative for magnetic resonance spectroscopy for 

accurate quantitative fat determination provided that measurements are performed in a 

very wide wavelength range comprising several fat and water absorption features. The 

work presented in this dissertation yielded additional clinical investigations addressing 

specific applications. For example, another clinical application of interest that can be 

addressed due to the lipid quantification from a broad wavelength range corresponds to 

epidural space identification. For instance, an in vivo study in swine showed the potential 

of diffuse optical spectroscopy in identifying the epidural space which is a lipid-rich 

space surrounding the cerebral spine fluid. It was shown that a confirmation of needle 

placement in the epidural space can be ensured based on the amount of lipid and blood 

present in the probed volume. 

  

 Further investigations in the wavelength ranges above a micron are still required. 

It has been demonstrated in this dissertation that absorption coefficients of water and lipid 

are sensitive to temperature and types of triglycerides, respectively. Thus additional 

research is advised to evaluate the possibility of temperature estimation from the spectral 

measurements or discriminating different types of fat in tissue. These topics are of a great 

challenge as the changes are very subtle and thus accurate signal processing is to be 

envisaged. Other chromophores should also be investigated in the infrared wavelengths 
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range as there are probably other biological substances that absorb light in the infrared 

such as for instance collagen as shown in this dissertation. 

 

Ongoing in vivo human clinical studies using the technology and methods 

developed herein should further validate the clinical value in surgical and interventional 

procedures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



 

 
 

Summary 
The goal of this dissertation is to present the potential of diffuse optical 

spectroscopy technique to characterize and differentiate types of tissue, including 

dysplastic and cancerous tissues, when measuring the tissue spectra during a surgical or 

an interventional procedure under medical image guidance. 

 

This dissertation begins with a chapter that describes the different mathematical 

modeling of light transport in scattering media such as tissue. Each of the existing models 

used in literature is described including the way to extract the optical properties by 

applying it to the tissue measurements performed with fiber-optic handheld probes. An 

overview of the clinical applications investigated by the research groups is given as well 

as the performance of the diagnosis in discriminating different types of tissue based on 

the derived parameters. 

 

Chapter 2 and 3 corresponds to the validation of the diffusion theory model 

applied to optical spectroscopy measurements performed in a wide wavelength range as 

compared to what has been already presented in literature. In fact, chapter 2 presents the 

very first validation available in literature of the applicability of diffusion theory 

approximation model to measurements performed from 900 to 1600 nm. Water and lipid 

absorption coefficients were measured for different temperatures and used to in the model 

to derive the concentration of these chromophores. The validation was performed by 

recovering the actual water and lipid content in custom made emulsions with known lipid 

content. The validation of the reduced scattering estimation was performed by correlating 

the estimated parameters related to the reduced scattering with the particles size of the 

emulsions after blending and investigating the particle size distribution. Chapter 3 

presents the advantage of extending the commonly-used wavelength range from 400 to 

1000 nm up to 1600 nm. Although water and lipid can be estimated from diffuse optical 

spectroscopy measurements up to 1000 nm, this chapter shows that the extension of the 

wavelength significantly improves the accuracy of the optical properties extraction and 

that the lack of spectral feature of water and lipid when measuring up to 1000 nm can not 

only yield inaccurate water and lipid content but as well influence the estimated blood 

concentrations and reduced scattering parameters. 

 

Chapters 4 through 6 present the application of diffuse optical spectroscopy for 

diagnosis related to liver diseases. Chapter 4 is a benchmarking of optical spectroscopy 

with other techniques such as magnetic resonance spectroscopy (MRS), nuclear magnetic 

resonance spectroscopy (NMR), high performance thin layer chromatography (HPTLC) 

and histopathology for hepatic lipid quantification in mice. The derived hepatic fat 

fractions in the mice liver did not show any significant differences between the various 

techniques. Furthermore, it was shown that it was possible to clearly distinguish the group 

of mice on chow diet from the group of mice on high fat diet. The potential of diffuse 
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optical spectroscopy in quantifying hepatic lipid is of great interest for diagnosis of fatty 

liver disease where it is considered to be positive in patients for hepatic lipid fractions as 

low as 5%. Chapter 5 presents optical spectra acquired ex vivo on metastasis in liver and 

the surrounding healthy liver tissue in 14 patients. This chapter demonstrates the 

importance of including bile absorption coefficients to the model in addition to 

oxygenated-hemoglobin (HbO2), deoxygenated hemoglobin (Hb), water and lipid as 

livers are rich in bile ducts. This study shows that it is possible to discriminate tumors 

from the surrounding healthy liver tissue based on the amount of bile, water and the 

reduced scattering amplitude. Chapter 6 describes the diagnosis performance of diffuse 

optical spectroscopy in discriminating the tumors from the healthy liver samples with two 

different methods: classifying the types of tissues using the derived clinical parameters 

from fitting the diffusion theory mathematical model to the measurements as well as 

applying a statistical method to classify the raw optical measurements. In this chapter, in 

addition to discriminating tumors from healthy tissue, the lipid content estimated with 

diffuse optical spectroscopy showed a strong correlation with hepatic fat estimation from 

the histological slides. These findings ultimately have impact on detecting tumors when 

performing a biopsy as well as defining the steatosis level in liver. 

 

Chapter 7 demonstrates the capability of diffuse optical spectroscopy in 

discriminating tumor sites from the surrounding healthy lung tissues. An ex vivo study 

was conducted in samples excised from 10 patients with lung cancer. This study showed 

that hemoglobin volume fraction and the reduced scattering amplitude showed significant 

difference in both type of tissue by being lower in tumors as compared to the healthy lung 

sites. Additionally, the performance of diagnosis to discriminate the tumors from the 

healthy lung samples was evaluated and yielded sensitivity and specificity up to 86% and 

85%, respectively. 

 

 Chapters 8 and 9 demonstrate the potential of diffuse optical spectroscopy to 

classify several types of breast tissues including malignant types. Chapter 8 corresponds 

to an ex vivo study on 54 excised breast samples that were measured at 5 different sites, 

namely adipose, glandular, fibroadenoma, invasive carcinoma and ductal carcinoma in 

situ. From the various optical parameters that are derived from the measurements and the 

chromophores volume fractions, statistical tests were performed to investigate which 

parameter shows significant difference between pairwise types of tissue. Furthermore, the 

performance of diagnosis in discriminating the 5 types of tissue yielded area under 

receiver operator curve (AUC) ranging from 86% to 100%. Additionally, the performance 

of classifying benign and malignant samples was made with different types of 

classification methods that were already applied by various research groups that 

conducted optical spectroscopy measurements on breast samples. The different 

classification schemes were compared and it was shown that the performance of the 

diagnosis can vary a lot depending on the type of classification that is used. Therefore this 

chapter emphasizes the importance of being very critical when selecting the classification 

scheme. Chapter 9 shows the differences in investigating the difference in optical 

properties and measurements between malignant and non-malignant tissue by comparing 
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intra and inter-patients variations. It was concluded that the diagnosis performance is best 

when comparing the tissues within single patients as compared to when all data from all 

patients are compared. 

  

 Chapter 10 presents the feasibility of real-time tissue characterization during 

needle insertions from healthy liver to hepatocellular carcinoma tumor where medical 

imaging such as 3D fluoroscopy and ultrasound were used as reference. Whereas in 

literature point measurements in healthy and in tumors are compared,  this study shows 

that continuous diffuse reflectance measurements while advancing the needle enables the 

identification of the tumor boundaries based on the derived clinical parameter, namely 

blood oxygenation and volume fraction as well as the scattering amplitude. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

218 
 

Summary 

 



 

 
 

Samenvatting 
Het onderzoeksdoel van dit proefschrift is vaststellen in hoeverre diffuse optische 

spectroscopie gebruikt kan worden om verschillende weefsels, waaronder displastisch en 

kankerweefsel, van elkaar te onderscheiden tijdens chirurgische of onder beeldgeleiding 

uitgevoerde ingrepen.  

 

In hoofdstuk 1 worden verschillende mathematische modellen uit de literatuur 

besproken die optische verstrooiingsparameters extraheren uit spectra die gemeten zijn 

met handzame op glasvezel gebaseerde meetinstrumenten. Tevens wordt er een overzicht 

gegeven van de klinische toepassingen die door de verschillende onderzoeksgroepen 

hiermee onderzocht zijn, evenals de behaalde nauwkeurigheid in onderscheidend 

vermogen van deze methodes. 

 

In hoofdstuk 2 en 3 van dit proefschrift wordt de validatie van het diffusie theorie 

model onderzocht wanneer deze toegepast wordt op een groter golflengte gebied dan tot 

dus ver beschreven in de literatuur. Hoofdstuk 2 beschrijft voor het eerst de toepassing 

van het diffusie model voor het golflengte gebied van 900 tot 1600 nm. Water en vet 

absorptiecoëfficiënten zijn gemeten voor verschillende temperaturen en vervolgens 

gebruikt als invoerparameters in het model om de concentraties van deze chromoforen uit 

de gemeten spectra te bepalen. Dit model is vervolgens gevalideerd door verschillende 

water en vet emulsies met bekende vet concentraties te meten. De validatie van de 

gereduceerde verstrooiingscoëfficiënt is gebeurd door de voorspelde vetdeeltjesgrootte in 

de emulsies na menging te vergelijken met de gemeten deeltjesgrootte verdeling. 

Hoofdstuk 3 gaat in op het voordeel dat de uitbreiding van het golflengte gebied tot 1600 

nm geeft vergeleken met de steeds gebruikte golflengte gebied van 400 nm tot 1000 nm. 

Hoewel vet en water concentraties ook geschat kunnen worden op basis van het spectrum 

tot 1000 nm laat dit onderzoeksdeel zien dat de uitbreiding van het golflengte gebied leidt 

tot een nauwkeurigere  bepaling van deze parameters. Daarnaast wordt ook aangetoond 

dat de beperkte spectrale karakteristieken van water en vet in het golflengte gebied tot 

1000 nm niet alleen leiden tot een onnauwkeurige schatting van water en vet concentratie 

maar dat ook de verstrooiingsparameters en bloedconcentratie schattingen nadelig 

beïnvloed worden. 

 

In de hoofdstukken 4 tot en met 6 worden de toepassingen van de diffuse optische 

spectroscopie op leverziekten besproken. In hoofdstuk 4 wordt optische spectroscopie 

vergeleken met andere technieken zoals magnetische resonantie spectroscopie (MRS), 

nucleaire magnetische resonantie spectroscopie (NMR), hoge prestatie dunne laag 

chromatografie (HPTLC) en histopathologie op vetgehalte bepaling in muizenlevers. De 

verschillende technieken vertoonde geen significante verschillen tussen de bepaalde lever 

vetfracties. Verder wordt aangetoond dat het mogelijk is de groep muizen op chow 

voeding te onderscheiden van de groep muizen op voeding met hoog vetgehalte. 
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Kwantificeren van levervet met diffuse optische spectroscopie is van groot belang voor de 

diagnose van leververvetting waarbij patiënten met een vetpercentage van meer dan 5% al 

als positief beschouwd worden. In hoofdstuk 5 worden ex vivo spectroscopische meting 

aan uitgezaaide dikke darm tumoren in de lever van 14 patiënten besproken. In dit 

hoofdstuk wordt het belang van het toevoegen van gal aan de lijst van absorberende 

stoffen in de lever, waar galproductie plaatsvindt, naast die van oxyhemoglobine (HbO2), 

desoxyhemoglobine (Hb), water en vet aangetoond. Deze studie laat zien dat het mogelijk 

is om deze uitgezaaide kankergezwellen te onderscheiden van normaal leverweefsel op 

basis van de gemeten hoeveelheid gal, water en de gereduceerde verstrooiingscoëfficiënt. 

Hoofdstuk 6 beschrijft het diagnostische vermogen van diffuse optische spectroscopie om 

lever kankergezwellen van normaal leverweefsel te onderscheiden waarbij twee 

onderzoeksmethoden gebruikt zijn: classificatie op basis van de bepaalde optische 

parameters door het diffusie theorie model te fitten aan de spectra alsook door een 

statistische classificatie methode toe te passen op de ruwe optische metingen. Daarnaast is 

in dit hoofdstuk ook gekeken naar het vetgehalte in de lever bepaalt uit de optische 

metingen en dit vergeleken met de vetgehalte schatting op basis van pathologisch 

gekleurde weefselcoupes, hetgeen een goede correlatie liet zien. Beide bevindingen zijn 

waardevol, daar ze het biopteren van kankergezwellen kunnen verbeteren en tevens de 

risico‟s bij levertransplantaties kunnen verkleinen door snel en nauwkeurig de steatose 

graad van de lever te bepalen. 

 

Hoofdstuk 7 laat de mogelijkheden van diffuse optische spectroscopie zien bij het 

onderscheiden van kankergezwellen in longweefsel. Een ex vivo studie werd uitgevoerd 

aan weefselmonsters van 10 patiënten met longkanker. Dit onderzoek toonde aan dat de 

hemoglobine concentratie en gereduceerde verstrooiingsamplitude significant verschilden 

in het kankerweefsel vergeleken met het omringende normale weefsel. De sensitiviteit en 

specificiteit waarmee longkankergezwellen van normaal longweefsel onderscheiden 

kunnen worden, zijn respectievelijk 86% en 85%. 

 

In hoofdstukken 8 en 9 wordt onderzocht in hoeverre met diffuse optische 

spectroscopie verschillende vormen van borstweefsels, inclusief borstkankergezwellen, te 

onderscheiden zijn. Hoofdstuk 8 bespreekt een ex vivo studie aan 54 verwijderde 

borstkankergezwellen waarbij aan 5 verschillende soorten weefsels metingen verricht 

zijn, namelijk aan vetweefsel, klierweefsel, fibroadenomen, invasieve carcinomen en 

ductaal carcinoma‟s in situ. Door statistische proeven uit te voeren aan de verschillende 

geëxtraheerde optische parameters is bepaald welke parameters significante verschillen 

opleveren tussen de verschillende weefseltypes. Bovendien is het onderscheidend 

vermogen waarmee de 5 weefseltypes van elkaar te onderscheiden zijn bepaald door het 

oppervlak onder de “receiver operator curve” (AUC) te berekenen, dat varieerde van 86% 

tot 100%. Daarnaast is het onderscheidend vermogen om kwaadaardige kankergezwellen 

van normaal en goedaardig afwijkend weefsel bepaald met behulp van verschillende 

soorten classificatie methoden die al door diverse onderzoeksgroepen, die optische 

spectroscopie metingen uitvoeren, gehanteerd zijn. Bij het vergelijken van de 

verschillende classificatiemethoden volgde dat het onderscheidend vermogen afhankelijk 
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is van de gekozen methode. Het is dus van belang om een zorgvuldige keuze van de 

classificatiemethode te maken. In hoofdstuk 9 is gekeken in hoeverre het onderscheiden 

van kwaadaardige kankergezwellen van normaal en goedaardige gezwellen in 

borstweefsel met diffuse optische spectroscopie beïnvloed wordt door de variaties die er 

zijn tussen verschillende patiënten. Geconcludeerd kon worden dat het onderscheidend 

vermogen beter wordt bij het vergelijken van de weefsels binnen één patiënt in 

vergelijking met wanneer de gegevens van alle patiënten gezamenlijk vergeleken wordt. 

 

In hoofdstuk 10 is onderzocht wat de toegevoegde waarde is van real-time 

optische weefsel karakterisering tijdens medische naald interventies in combinatie met 

medische beeldvorming zoals röntgen doorlichting en echografie. Vooral naald 

interventies aan primaire lever tumoren in bosmarmotten zijn daarbij onderzocht. Terwijl 

tot dusver in de literatuur puntmetingen in gezond weefsel en kankerweefsel vergeleken 

worden, blijkt uit deze studie dat continue diffuse optische reflectie metingen het 

opsporen van de kankergezwelgrenzen op basis van de waarden van bloed concentratie, 

bloedoxygenatie en verstrooiing amplitude duidelijk verbeterd. 
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