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Abstract 

 

Most multivariate variance or volatility models suffer from a common problem, the 

“curse of dimensionality”. For this reason, most are fitted under strong parametric 

restrictions that reduce the interpretation and flexibility of the models. Recently, the 

literature has focused on multivariate models with milder restrictions, whose purpose 

was to combine the need for interpretability and efficiency faced by model users with 

the computational problems that may emerge when the number of assets is quite large. 

We contribute to this strand of the literature proposing a block-type parameterization for 

multivariate stochastic volatility models. The empirical analysis on stock returns on US 

market shows that 1% and 5 % Value-at-Risk thresholds based on one-step-ahead 

forecasts of covariances by the new specification are satisfactory for the period includes 

the global financial crisis. 

 

 

Keywords: block structures; multivariate stochastic volatility; curse of dimensionality; 

leverage effects; multi-factors; heavy-tailed distribution. 

JEL classifications: C32, C51, C10. 

 

 

 
  



3 
 

1. Introduction 
 

Classical portfolio allocation and management strategies are based on the assumption 

that risky returns series are characterized by time invariant moments. However, the 

econometric literature of the last few decades demonstrated the existence of dynamic 

behaviour in the variances of financial returns series. The introduction of such empirical 

evidence may constitute an additional source of performance for portfolio managers, as 

evidenced by Fleming, Kirby and Ostdiek (2001), or may be relevant for improving the 

market risk measurement and monitoring activities (see, for example, Hull and White 

(1998) and Lehar et al. (2002)). Two families of models emerged in the literature, 

namely GARCH-type specifications (see Engle (2002)), and Stochastic Volatility 

models (see Taylor (1986) and Andersen (1994)). 

 

However, portfolio management strategies often involve a large number of assets 

requiring the use of multivariate specifications. Among the possible alternative models, 

we cite the contributions of Bollerslev (1990), Engle and Kroner (1995), Ling and 

McAleer (2003), Asai and McAleer (2006, 2009a,b), and the surveys in McAleer (2005), 

Bauwens, Laurent and Rombouts (2006), Asai, McAleer and Yu (2006) and Chib, 

Omori and Asai (2009). Most models, if not all, suffer from a common problem, the 

well-known “curse of dimensionality”, whereby models become empirically infeasible 

if fitted to a number of series of moderate size (in some cases, the models may become 

computationally intractable with even 5 or 6 assets). In order to match the need of 

introducing time-varying variances with practical computational problems, several 

restricted models are generally used: the diagonal VECH specifications suggested by 

Bollerslev, Engle and Wooldridge (1988), the scalar VECH and BEKK models proposed 
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by Ding and Engle (2001), the CCC model of Bollerslev (1990), and the dynamic 

conditional correlation models of Engle (2002) and Tse and Tsui (2002). However, the 

introduction of significant and strong restrictions reduces the interpretation and 

flexibility of the models, possibly affecting the purportedly improved performance they 

may provide and/or the appropriateness of the analysis based on their results. 

 

Recently, the literature has focused on multivariate models with milder restrictions, 

whose purpose was to combine the need for interpretability and efficiency faced by 

model users with the computational problems that may emerge when the number of 

assets is quite large. Among the contributions in this direction, we follow the approach 

of Billio, Caporin and Gobbo (2006). They proposed specifying the parameter matrices 

of a general multivariate correlation model in a block form, where the blocks are 

associated with assets sharing some common feature, such as the economic sector. Our 

purpose is to adopt this block-type parameterization and adapt it to multivariate 

stochastic volatility models.  

 

In general terms, Multivariate Stochastic Volatility (MSV) models have a parameter 

number of order  2O M , where M is the number of assets. With the introduction of 

block parameter matrices, we may control the number of parameters and obtain a model 

specification which is feasible, even for a very large number of assets. Furthermore, as 

in the contribution of Billio, Caporin and Gobbo (2006), the models we propose follow 

the spirit of sectoral-based asset allocation strategies since they will presume the 

existence of common dynamic behaviour within assets or financial instruments 

belonging to the same economic sector. This assumption is not as strong as postulating 
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the existence of a unique factor driving all the variances and covariances, since the 

financial theory may suggest the existence of sector-specific risk factors (sectoral asset 

allocation is often followed by portfolio managers and characterized by a number of 

managed financial instruments). 

 

As distinct from an extremely restricted model, we also recover part of the spillover 

effect between variances, which allows monitoring of the interdependence between 

groups of assets, an additional element which may be relevant. Within our modeling 

approach, the coefficients may be interpreted as sectoral specific, while the assets will 

be in any case characterized by a specific long term variance through the introduction of 

unrestricted constants in the variance equations. 

 

For the purpose of explaining our approach, we consider a multi-component MSV 

model allowing leverage effect and heavy-tailed unconditional distribution, which is a 

multivariate extension of Chernov et al. (2003), although our approach is applicable to 

the factor model of Pitt and Shephard (1999) and Chib, Nardari, and Shephard (2006) 

and the dynamic correlation model of Asai and McAleer (2009b). 

 

Clearly, the restrictions proposed may not necessarily be accepted by the data, as more 

‘complete’ models will, in general, provide better results. We will show that the 

introduction of such restrictions provides limited losses, while yielding a significant 

improvement over the more restricted specifications. We will evaluate and compare the 

out-of-sample forecast of alternative models. 
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The plan of the remainder of the paper is as follows. Section 2 presents the 

multi-component MSV models, and discusses the differences between the MSV model 

and the factor specifications. Section 3 introduces the block-structure modelling 

approach, and addresses some estimation issues. Section 4 presents an empirical 

example regarding the out-of-sample forecasts, based on US stock market data for 

selected firms. Section 5gives some concluding comments. 

 

2. Multi-Component MSV Model 
 

The block-structure model, which we will present in the next section, can be considered 

as a restricted specification of a general MSV model. In fact we will show how the 

modelling approach consists in defining a set of parametric restrictions that makes the 

model feasible, but without losing the interpretation of coefficients.  

 

We start from the basic MSV model suggested by Harvey, Ruiz and Shephard (1994). 

Let tR  be the M-dimensional vector of asset returns, and define  1t t t ty R E R    , 

where t  is the M-dimensional vector of conditional means. Then, the mean equation 

of the basic MSV model is defined by 

 

 ,t t ty D   (1) 

   diag exp 0.5 ,t tD h  (2) 

 

where th  is the M-dimensional vector of stochastic volatilities,  exp x  for a vector x 
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is the element-by-element operator of exponentiation,  diag x  for a vector x is the 

operator which creates a diagonal matrix with the diagonal element corresponding to 

those of x, and t  follow the multivariate normal distribution with covariance matrix 

defined later. We exclude the case that t  is specified by th  as in Koopman and 

Uspensky (2002), since it is beyond the scope of our paper. The volatility equation of 

the model is given by  

 

 1 ,t t th h     (3) 

 

where th  is the M-dimensional vector of stochastic log-volatilities, the operator   

denotes the Hadamard (or element-by-element) product,   is the M-vector of 

parameters, t  and t  independently follow the multivariate normal distributions as 

 ~ 0,t N S P S    and  ~ 0,t N S P S   , xS  ,x    are M M diagonal 

matrices of standard deviations, and xxP  ,x    are M M  correlation matrices. In 

this specification, the vector of log-volatilities follows the VAR(1) process. For 

convenience, we call this type of MSV model the ‘basic MSV’ model. 

 

Based on the basic MSV model, several authors including Danielsson (1998), Chan 

Kohn and Kirby (2006), Asai and McAleer (2006, 2009a) and Chib, Omori and Asai 

(2009) suggested models which accommodate the asymmetric effects. The MSV model 

with Leverage effects (MSVL) is generally specified as the correlation between the 
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disturbances of the mean and volatility equations as,    , ~ 0,t t N SPS     with 

  

 , ,
S O P P

S P
O S P P
  

  

   
    
   

 (4) 

 

where S is the diagonal matrix of Standard deviations for  ,t t    and P is the 

corresponding correlation matrix. As the leverage effects are especially observed for the 

individual correlation between it  and it   1,2, ,i M  , we may reduce the 

number of parameters.  

 

Now, we turn to the feature regarding fat-tails of stock return distribution. Although the 

models of SV and GARCH families enable the observed series to have heavy-tailed 

distributions, empirical analysis has shown that assuming a Gaussian conditional 

distribution is insufficient to describe the tail behaviour of real data (see Liesenfeld and 

Jung (2000), Chib, Nardari, and Shephard (2002), and Asai (2008, 2009)). For the 

univariate SV models, these authors suggested several extensions on the heavy-tailed 

conditional distribution, including the Student t distribution, the generalized error 

distribution, and the mixture-of-normal distribution. With respect to the multivariate SV 

model, Harvey, Ruiz and Shephard (1994) work with a multivariate t distribution. Yu 

and Meyer (2006) made a restriction on the degree-of-freedom parameter such that the 

parameter for individual variable is specified as the same one, and they mentioned that 

this formulation was empirically better supported than the formulation in Harvey, Ruiz 

and Shephard (1994).  



9 
 

 

An alternative approach for fat-tails is to employ multifactor models, as proposed in 

Chernov et al. (2003). One of the contributions of Chernov et al. (2003) is to attain a 

heavy-tailed return distribution by introducing multi-component, without assuming 

heavy-tailed conditional distributions. See also Alizadeh, Brandt and Diebold (2002), 

Asai (2008) and Christoffersen, Jacobs and Wang (2008). Based on the idea for the 

univariate model, Asai and McAleer (2009a) considered the two component MSVL 

model. The general K-component MSVL model is defined by equations (1), (2) and  

 

 

 

         

1

1 1, 2, , ,
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i

t t
i

i i i i
t t t

h V

V V i K 







  



 

 (5) 

 

with  i  is M-vector of parameters,     1 , , K
t t t       and    , ~ 0,t t N SPS    , 

where S is the diagonal matrix of standard deviation,     1diag , , , KS     
     
  

  

and P is the correlation matrix constructed by    1 2 1 21 1 1
m mP Q I Q Q I

       and 
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with corresponding correlation matrices, P  and  iP   1,2, ,i K   and diagonal 

matrices of leverage effects,   diag i
i     1,2, ,i K  . The number of 
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parameters in the K-component MSVL model is      3 1 1 1 2K M K M M    . In 

the empirical analysis, we employ the two component MSVL (MSVL2C) model as the 

basics of the new block structure model. 

 

At this stage we should discuss the difference between the MSVL2C model and the 

popular factor MSV model suggested by Pitt and Shephard (1999). In the literature of 

MSV models, there are two major approaches for modeling factors. One is based on the 

volatility factor as in Harvey, Ruiz and Shephard (1994), who introduce latent factors 

instead of latent volatility processes, in order to describe volatilities using small number 

of factors. Calvet, Fisher, and Thompson (2006) also suggested volatility factor MSV 

model with Markov switching factors. In their specification, the number of factors is not 

necessary less than the dimension of ty . The other approach for modeling factors is the 

mean factor model suggested by Pitt and Shephard (1999), who assume the mean factor 

to have stochastic volatilities, in addition to those in the conditional distribution of ty . 

Based on the mean factor model, Chib, Nardari, and Shephard (2006) allowed for jumps 

in the observation model and a fat-tailed t-distribution, while Lopes and Carvalho 

(2007) suggested another general model which nests the models of Pitt and Shephard 

(1999) and Aguilar and West (2000).  

 

With respect to the two categories, the K-component MSVL model is classified as the 

volatility factor model. Compared with mean factor model of Pitt and Shephard (1999) 

with M-factors, the MSV2C, that is, two-component MSV model without leverage, has 

the same number of parameters. Unlike the model of Pitt and Shephard (1999), the 
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MSVL2C model accommodates the leverage effects. However, we should notice that 

the mean factor models can control the number of mean factors, implying that it enables 

to reduce the number of parameters by controlling the number of factors. In the 

following section, we will develop a new approach which reduces the number of 

parameters by considering block structures. Our new approach is also applicable to the 

mean factor model for the volatility structure of the disturbance. 

 

3. Block Structure Model 
 

The two-component MSVL (MSVL2C) model has two major advantages to the mean 

factor model of Pitt and Shephard (1999). One is that it is unnecessary to consider 

heavy-tailed conditional distribution generally, and the other is that it can incorporate 

leverage effects to the factors straightforwardly.  

 

Now, we develop a new specification based on a block structure of assets. We assume 

that the M assets are divided into B groups, with the j-th group containing jm  assets 

( 1 2 BM m m m    ). We define a block structure for the volatility by assuming that 

each group of assets is characterized by a common parametric behaviour in the volatility 

equation. Consider equation (5) with restrictions on parameters as 
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where m  is the m-dimensional vector of ones,  
,

i
jjP  are the j jm m  correlation 

matrices, and  i
j ,  i

j  and  i
j  are scalar parameters. Hereafter, we refer to the 

model in equations (1), (2), (5) and (6) as the K-component Block Structure MSVL 

(BS-MSVL) model. The number of parameters in the BS model is 

      1
0.5 1 3 0.5 1 1

B

j jj
M M KB K B B M M


      . 

 

For practical purpose, we compare the number of parameters in the MSVL, MSVL2C 

BS-MSVL2C models. When 9M   and 3B   ( 50M   and 5B  ) with the same 

block size, the number of parameters in the BS-MSVL2C model is 87 (1775). For the 

MSVL and MSVL2C models for the case 9M   ( 50M  ), they are 108 (2650) and 

171 (4025). Thus, the BS-MSV model is parsimonious in terms of the number of 

parameters. 

 

In empirical analysis, the appropriate number of component is K=2 for univariate SV 

models, as shown by Alizadeh, Brandt and Diebold (2002) and Chernov et al. (2003). 

Here, we stress an interpretation of the two-factor model by Shephard (1996). Shephard 
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(1996) introduces an approach to deal with permanent and transitory components in 

stochastic volatility models, as those components in the GARCH specification by Engle 

and Lee (1993). In the specification, the AR(1) parameter of the permanent component 

is equal to one, while it is located between -1 and 1 as usual for the transitory 

component. Inspired by the idea, we suggest the complete BS model for the 

BS-MSVL2C model, which has the first component with 

 

            1 1 1 1 1 1, , , ,M M M MP I              (7) 

 

where  1  and  1   are scalar parameters. We refer to the model as the ‘CBS’ model. 

The number of parameters in the BS model is 

      1
0.5 1 3 2 0.5 1 1

B

j jj
M M B B B M M


       . When 9M   and 3B   

( 50M   and 5B  ) with the same block size, the number of parameters in the CBS 

model is 68 (1527). 

 

4. Estimation 
 

For the estimation of the above various MSVL models, we estimate the mean and 

volatility equations separately. Following Asai and McAleer (2009a), we may employ 

the Monte Carlo likelihood (MCL) approach proposed by Durbin and Koopman (1997), 

in order to estimate the K-component MSVL models. The MCL method is based on the 

state-space form with non-Gaussian measurement errors. In the MCL method, the 

likelihood function can be approximated arbitrarily by decomposing it into a Gaussian 

part, which is constructed by the Kalman filter, and a remainder function, for which the 
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expectation is evaluated through simulation. 

 

Regarding the family of SV models, we may have the state space form by the 

logarithmic transformation of squared returns, as in Harvey, Ruiz and Shephard (1994) 

for the basic MSV model. By the transformation, we will however lose the information 

regarding the correlation between t  and t   t . While Harvey and Shephard 

(1996) suggested an approach to recover the information for the univariate SV model 

with the leverage effect (SVL), Asai and McAleer (2006) extended it to the MSVL 

model using the properties of half normal distributions shown by Leone, Nelson and 

Nottingham (1961) and Elandt (1961). Sandmann and Koopman (1998) applied the 

MCL method to the univariate SVL model, while Asai and McAleer (2006, 2009a) 

adapted it for the several kinds of MSVL models.  

 

It should be noted that we may also work with the quasi-maximum likelihood (QML) 

estimation based on the state space form, as suggested by Harvey, Ruiz and Shephard 

(1994). The QML estimator is inefficient, but it is still consistent.  

 

For convenience, we use the sample correlation matrix for the initial value for 

estimating P , which has a major part of parameters as  0.5 1M M  . 

 

5. Empirical Analysis 
 

In this section, we estimate the MSVL, BS-MSVL2C and CBS models, and compare 

their out-of-sample forecasts. Three groups of three assets from three different sectors 
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(B=3 and M=9) are used, namely Chemical, General Financials, and Oil and Gas 

Producers including (AIR PRDS.& CHEMS., ROHM & HAAS, EASTMAN 

CHEMICALS), (GOLDMAN SACHS GP., LEHMAN BROS.HDG., MERRILL 

LYNCH & CO.) and (CHEVRON, EXXON MOBIL, CONOCOPHILLIPS). Please 

correct them! These assets have been selected from among a small list of the largest 

companies between each sector on the basis of the correlations between the squared 

returns. All the selected stocks belong to the large cap segment of the NYSE, and enter 

the S&P 500 index. Given the approach followed in the asset selection, intuitively there 

possibly exist common patterns in the variances. We chose such a selection approach in 

order to provide an example where the proposed modelling approach may be useful.  

 

The series considered are daily return indices, collected in the sample period 2 January 

2000 to 31 December 2010, giving 2865 observations. We chose two kinds of periods 

before/after the global financial crisis (GFC) in the following way. We fixed the sample 

size as T=1500 for estimation and forecasting. Then we estimate the model based on the 

dataset for the years 2000-2005, and forecast daily covariances for the year 2006, 

corresponding to the period before GFC. With respect to the period which covers the 

GFC, we use the data for the years 2004-2009 for estimating the models, and conduct 

forecasting daily covariances for the year 2010. We should add that our data may be 

influenced by the wars in Afghanistan and Iraq and by the increasing trend in oil prices. 

 

In order to develop the conditional mean for each return, we used the following data 

sets; a set of interest rates (US Treasury bond 3 months, 6 months, 9 months, 1-3 years, 

3-5 years, 5-7 years), oil prices, and two dummies (January and Monday). Interest rates 
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are in the form of bond indices. Following Ait-Sahalia and Brandt (2001) and Pesaran 

and Timmerman (1995, 2000), we fit the conditional mean returns with the constant 

term, the lagged return, the contemporaneous dummies, the lagged Oil returns, and the 

deviations between the returns of the rates (the following differences between bond 

indices returns: 6 months minus 3 months, 1-3 years minus 6 months, and so on), giving 

10 explanatory variables, as follows: 

 

 1 1 2 1 3 4 5 6 1 10 5
Jan Mon Oil

t t t t t t t tE R R D D R V V                . 

 

The deviations between the rates, itV , can be considered as a proxy for the curvature of 

the yield curve, and hence may be useful in predicting stock movements. 

 

Table 1 shows the QML estimates for the MSVL model for two kinds of periods. In 

order to save spaces, the estimates of P  and P  are omitted. Regarding the period 

before GFC shown in Table 1(a), the estimates of j  are between 0.955 and 0.997, 

while the estimates of , j  varies from 0.067 to 0.542. These values are typical in the 

empirical analysis of the SV and MSV models. Most of the estimates of j  are 

negative and significant, indicating the leverage effects. But some are positive and 

insignificant. Table 1(a) also shows that minimum value of the estimates of j  is 

-0.166, implying that the leverage effects are weak or negligible for the datasets. Table 

1(b) shows the estimation results for the period including the GFC. Compare to Table 

1(a), the estimates of j , , j  and j  are similar. Again, the leverage effects are 
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minor. Unlike Table 1(a), some of the estimates of , j  are larger than 2. Also, all the 

values of the estimates of , j  are larger than those for the period before GFC, 

showing the increase in unexplained factor.  

 

Table 2 gives the QML estimates for the MSVL2C-BS model. We should note that the 

results for volatility part are ‘block-based’ by construction. With respect to the period 

before GFC, the estimates of  1
j  are close one, while those of  2

j  are far from one. 

Also, the estimates of  1
j  are smaller than those of  2

j . These results are typical in 

the two-component SV and MSV models. The leverage effects by the first component 

are negative and significant for all three blocks, while one of the second components 

gives a positive value. Compared with MSVL model, the estimates of , j  are similar. 

Turing to the period including the GFC, the estimates in Table 2(b) are similar to Table 

2(a) except for the leverage effects. In the period, the first and second components show 

a stronger leverage effects than the period before GFC. The estimates of , j  are 

smaller than the estimates for the MSVL model, implying that the unexplained factor in 

the MSVL model for GFC was explained by the second component for some extent. 

 

Table 3 presents the QML estimates for the CBS models, which is specified by setting 

parameters in the first component to be the same in all blocks such that  1 1j  , 

   1 1
j   and    1 1

j  . Table 3(a) and Table 3(b) shows that the estimates of  1  

are larger than the estimates given in Table 2, while the  1  in Table 2 is insignificant. 

According to the specification, the estimates of the second components are different 
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from Table 2, but these values are typical in the two component SV and MSV models. 

 

For the reminder part of the section, we calculate the forecasts of VaR thresholds as a 

diagnostic checking. As explained above, the first period for forecasting is the year 2006 

which consists of 260 observations, while the second period is the year 2010, giving 

261 observations.  

 

We examine characteristics of stock portfolios which are constructed based on 

covariance matrix forecasts from the MSVL, BS-MSVL2C and CBS models. As the 

covariance matrix is defined by t t tC D P D , its one-step-ahead forecasts are given by 

ˆ ˆ ˆ ˆ
t t tC D P D , where ˆ

tD  contains the forecasts of volatility in the diagonal and P̂  is 

the estimated correlation matrix of the conditional distribution for the return. Here, we 

consider the following three kinds of portfolio. The first one is the minimum variance 

portfolio (MVP) with the weights given by    1ˆ ˆ
t M t M t Mw C C  


 . The second 

portfolio is the equally weighted portfolio (EWP) with the constant weights of 

1
t Mw M  . The third one is the value-weighted portfolio (VWP) with time-varying 

weights given by      1

1 1 1t M M t t M tw R w R  


     , starting with a EWP at t = 0.  

 

Given, the portfolio weights, tw , we may define the portfolio returns as ,p t tR w R . 

As we assumed the conditional multivariate normal distribution, we have 

, , ,p t p t p tR y  , where ,p t t tw   is the conditional mean and ,p ty  has the 

conditional normal distribution with mean zero and variance t t t th w C w . Fixing the 
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sample size in estimation to be 1500, we re-estimate the model and forecast 

one-step-ahead VaR thresholds for the above two periods. In our analysis, we work with 

1% and 5% thresholds, i.e. ˆˆ 1.645t th   and ˆˆ 2.576t th  , respectively. We define 

the failure percentage as the ratio of the number of times that the portfolio return 

exceeds its forecast divided by the number of out-of-sample forecasts. 

 

In addition to the three models, we consider a combined approach based on 

BS-MSVL2C and CBS models, by choosing the portfolio which gives larger forecasts 

of portfolio variance. It is expected to adjust the fluctuations on BS and CBS models 

brought by restricting parameters on the MSVL2C model. 

 

In order to assess the estimated VaR thresholds, the unconditional coverage and 

independence tests developed by Christoffersen (1998) are widely used. A drawback of 

the Christoffersen (1998) test for independence is that it tests against a particular 

alternative of a first-order dependence. The duration-based approach in Christoffersen 

and Pelletier (2004) allows for testing against more general forms of dependence but 

still requires a specific alternative. Recently, Candelon et al. (2010) have developed a 

more robust procedure which does not need a specific distributional assumption for the 

durations under the alternative. Consider the “hit sequence” of VaR violations, which 

takes a value of one if the loss is greater than the VaR threshold, and takes the value 

zero if the VaR is not violated. If we could predict the VaR violations, then that 

information may help to construct a better model. Hence, the hit sequence of violations 

should be unpredictable, and should follow an independent Bernoulli distribution with 

parameter p, indicating that the duration of the hit sequence should follow a geometric 



20 
 

distribution  

 

The GMM duration-based test developed by Candelon et al. (2010) works with the 

J-statistic based on the moments defined by the orthonormal polynomials associated 

with the geometric distribution. The conditional coverage test and independence test 

based on q orthnormal polynomials have asymptotic 2
q  and 2

1q   distributions under 

their respective null distributions. The unconditional coverage test is given as a special 

case of the conditional coverage test with q = 1. 

 

Table 4 gives the test results for three kinds of portfolios based on the MSVL, 

BS-MSVL2C and CBS models and the combined BS+CBS approach, for the period 

before GFC. The test statistics for the MSVL model for 5% VaR thresholds are rejected 

for all three portfolios. The tests for the BS model are rejected for 5% and 1% VaR 

thresholds for the minimum variance portfolio. All the results for CBS and BS+CBS 

passed the tests. Regarding the period after GFC, Table 5 indicates that the tests for the 

MSVL model are rejected for all three portfolios. For the period, the minimum variance 

portfolio calculated by the CBS model gave unsatisfactory results. All the results for BS 

and BS+CBS passed the tests. Hence, the combined BS+CBS approach gives the best 

results for the forecasts before/after GFC. 

 

6. Conclusion 
 

In this paper we present a class of multivariate stochastic volatility models which is 

nested in the multi-component model with leverage effects suggested by Asai and 

McAleer (2009a). The distinctive feature of our model is that, contrary to fully 
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parameterized MSV models, it remains feasible in moderate to large cross-sectional 

dimensions. This result is achieved by imposing a block structure on the model 

parameter matrices. The variables could be grouped by using some economic or 

financial criteria, or following data-driven classifications. In addition, by the 

introduction of the blocks, if these have an economic interpretation, the model we 

propose preserves the interpretation of coefficients, a feature which is generally lost in 

feasible MSV models. 

 

We present then an empirical application where the proposed model is estimated on a 

set of US equities, and examine the VaR thresholds for several types of portfolio 

calculated by covariance forecasts. Unlike the MSV model with leverage effects, the 

results given by the approach based on the block structure is satisfactory. 

 

Although the specification by the block structure has the certain contribution to reduce 

the number of parameters, the conditional correlation matrix of return vector still has 

many parameters. The issue is left for future researches. 
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Table 1: QML Estimates for MSVL Model 

 

 

  
   

   

1

, diag exp 0.5 ,

, , ~ 0, ,

diag , , , diag .

t t t t t

t t t t t

y D D h

h h N SPS

P P
S P P

P P
 

  
 



   

  



 

  

        
   



 
 

(a) Before GFC 

 j  , j  j  , j  

AIR PRDS.& 

CHEMS. 

0.9945 

(0.0984) 

0.5420 

(0.0103) 

-0.1660 

(0.0097) 

1.3469 

(0.1064) 

ROHM & HAAS 
0.9888 

(0.0969) 

0.1018 

(0.0098) 

0.0157 

(0.0151) 

1.5317 

(0.0925) 

EASTMAN 

CHEMICALS 

0.9825 

(0.0969) 

0.0727 

(0.0050) 

-0.1530 

(0.0542) 

1.4156 

(0.0894)  

GOLDMAN 

SACHS GP. 

0.9926 

(0.0969) 

0.0850 

(0.0076) 

-0.0569 

(0.0523) 

1.4160 

(0.0714) 

LEHMAN 

BROS.HDG. 

0.9966 

(0.0969) 

0.0672 

(0.0097) 

-0.0252 

(0.0066) 

1.4934  

(0.0761) 

MERRILL 

LYNCH & CO. 

0.9925 

(0.0969) 

0.0995 

(0.0023) 

0.0204 

(0.0364) 

1.1346 

(0.0715) 

CHEVRON 
0.9585 

(0.0235) 

0.1899 

(0.0258) 

-0.0523 

(0.0010) 

1.3024 

(0.0311) 

EXXON MOBIL 
0.9804 

(0.0975) 

0.1562 

(0.0531) 

-0.1131 

(0.0010) 

1.2565 

(0.0844) 

CONOCOPHILL

IPS 

0.9554 

(0.0177) 

0.2069 

(0.0217) 

0.0151 

(0.0298) 

1.5038 

(0.0333) 

Note: Standard errors are given in parentheses. The estimates of 

P  and P  are omitted to save space.   
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Table 1 (Cont.): QML Estimates for MSVL Model 

 

 

  
   

   

1

, diag exp 0.5 ,

, , ~ 0, ,

diag , , , diag .
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y D D h

h h N SPS

P P
S P P

P P
 

  
 



   

  



 

  

        
   



 
 

(b) Middle and After GFC 

 j  , j  j  , j  

AIR PRDS.& 

CHEMS. 

0.9673 

(0.0981) 

0.2364 

(0.0108) 

-0.0998 

(0.0248) 

1.5828 

(0.4500) 

ROHM & HAAS 
0.9775 

(0.0981) 

0.1702 

(0.0098) 

-0.0496 

(0.0248) 

1.8041 

(0.6056) 

EASTMAN 

CHEMICALS 

0.9860 

(0.0981) 

0.1257 

(0.0056) 

-0.0636 

(0.0251) 

2.2625 

(0.6718)  

GOLDMAN 

SACHS GP. 

0.9905 

(0.0981) 

0.1452 

(0.0101) 

-0.0857 

(0.0248) 

2.3722 

(0.5559) 

LEHMAN 

BROS.HDG. 

0.9818 

(0.0981) 

0.2068 

(0.0124) 

-0.0095 

(0.0248) 

2.1927  

(0.7367) 

MERRILL 

LYNCH & CO. 

0.9885 

(0.0981) 

0.1731 

(0.0092) 

-0.1088 

(0.0248) 

2.0450 

(0.4855) 

CHEVRON 
0.9645 

(0.0981) 

0.1481 

(0.0153) 

-0.1019 

(0.0249) 

1.6192 

(0.1271) 

EXXON MOBIL 
0.9727 

(0.0982) 

0.1413 

(0.0134) 

-0.0738 

(0.0249) 

1.5058 

(0.1059) 

CONOCOPHILL

IPS 

0.9639 

(0.0910) 

0.1870 

(0.0111) 

0.0520 

(0.0249) 

1.9209 

(0.0874) 

Note: Standard errors are given in parentheses. The estimates of 

P  and P  are omitted to save space. 
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Table 2: QML Estimates for MSVL2C-BS Models  
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(a) Before GFC 

  1
j   1

j  
 1
j  

 2
j  

 2
, j  

 2
j  , j  

AIR PRDS.& CHEMS. 

0.9942 

(0.0022) 

0.0460 

(0.0018) 

-0.0141 

(0.0021) 

0.5690 

(0.0022) 

0.5172 

(0.0020) 

-0.0033 

(0.0049) 

1.4758 

(0.2276) 

ROHM & HAAS 1.5442 

(0.4829) 

EASTMAN CHEMICALS 1.3937 

(0.2205) 

GOLDMAN SACHS GP. 

0.9971 

(0.0022) 

0.0576 

(0.0018) 

-0.0703 

(0.0021) 

0.0352 

(0.0022) 

0.6390 

(0.0021) 

0.0046 

(0.0022) 

1.5660 

(0.2141) 

LEHMAN BROS.HDG. 1.5238 

(0.2634) 

MERRILL LYNCH & CO. 1.1648 

(0.1968) 

CHEVRON 

0.9836 

(0.0022) 

0.0977 

(0.0018) 

-0.0062 

(0.0021) 

0.3546 

(0.0022) 

0.3754 

(0.0025) 

-0.0389 

(0.0061) 

1.3075 

(0.2255) 

EXXON MOBIL 1.2962 

(0.2652) 

CONOCOPHILLIPS 1.5412 

(0.3254) 

Note: Standard errors are given in parentheses. The estimates of P ,  1P  and  2P  

are omitted to save space. 
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Table 2 (Cont.): QML Estimates for MSVL2C-BS Models 
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(b) Middle and After GFC 

  1
j  

 1
j

 
 1
j  

 2
j  

 2
, j  

 2
j  , j  

AIR PRDS.& CHEMS. 

0.9941 

(0.0089) 

0.1129 

(0.0052) 

-0.1329 

(0.0088) 

0.4167 

(0.0023) 

0.5837 

(0.1438) 

-0.0378 

(0.0011) 

1.2065 

(0.1414) 

ROHM & HAAS 1.3868 

(0.1643) 

EASTMAN CHEMICALS 1.6350 

(0.1798) 

GOLDMAN SACHS GP. 

0.9954 

(0.0088) 

0.0927 

(0.0005) 

-0.0243 

(0.0025) 

0.3785 

(0.0056) 

0.0010 

(0.0004) 

-0.0782 

(0.0039) 

1.0506 

(0.9409) 

LEHMAN BROS.HDG. 1.3507 

(0.1640) 

MERRILL LYNCH & CO. 1.4329 

(0.1311) 

CHEVRON 

0.9822 

(0.0139) 

0.1036 

(0.0005) 

-0.3987 

(0.0063) 

0.3448 

(0.0050) 

0.0024 

(0.0006) 

-0.0569 

(0.0065) 

1.4919 

(0.1756) 

EXXON MOBIL 1.3398 

(0.2199) 

CONOCOPHILLIPS 1.6691 

(0.0547) 

Note: Standard errors are given in parentheses. The estimates of P ,  1P  and  2P  

are omitted to save space. 

 



31 
 

Table 3: QML Estimates for CBS Models  
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2 2 2 2 2 2
3 3 3 3 3 3 31 3 3 32 3 3 ,33
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P I
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P P
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(a) Before GFC 

  1  
 1   

 2
j  

 2
, j  

 2
j  , j  

AIR PRDS.& CHEMS. 

0.3906 

(0.1097) 

-0.0097 

(0.0361) 

0.7471 

(0.0945) 

0.6037 

(0.1259) 

0.0185 

(0.0280) 

1.6119 

(0.1408) 

ROHM & HAAS 1.5018 

(0.1101) 

EASTMAN CHEMICALS 1.6204 

(0.1976) 

GOLDMAN SACHS GP. 

-0.3389 

(0.2151) 

0.2565 

(0.0561) 

-0.0224 

(0.0853) 

1.5833 

(0.1413) 

LEHMAN BROS.HDG. 1.7726 

(0.1284) 

MERRILL LYNCH & CO. 1.8617 

(0.1336) 

CHEVRON 

0.8593 

(0.0467) 

0.0287 

(0.0038) 

-0.0076 

(0.0062) 

1.6501 

(0.1844) 

EXXON MOBIL 1.5601 

(0.1102) 

CONOCOPHILLIPS 1.5106 

(0.1274) 

Note: Standard errors are given in parentheses. The estimates of P  and  2P  are 

omitted to save space. 
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Table 3 (Cont.): QML Estimates for CBS Models  
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2 2 2 2 2 2 2 2 2 2
2 3 2 3 2 3 21 3 3 ,22 32 3 3

2 2 2 2 2 2
3 3 3 3 3 3 31 3 3 32 3 3 ,33

, ,

, , , .

P I

P

P P

P





  





           

              

           



        
      

           
                     

 

(b) Middle and After GFC 

  1  
 1   

 2
j  

 2
, j  

 2
j  , j  

AIR PRDS.& CHEMS. 

0.1097 

(0.0253) 

0.0206 

(0.0389) 

0.9841 

(0.0071) 

0.7087 

(0.0879) 

-0.0010 

(0.0023) 

1.0849 

(0.1787) 

ROHM & HAAS 1.0290 

(0.1905) 

EASTMAN CHEMICALS 1.3024 

(0.1631) 

GOLDMAN SACHS GP. 

-0.0724 

(0.0712) 

0.1243 

(0.0281) 

-0.0160 

(0.0033) 

0.7903  

(0.1674) 

LEHMAN BROS.HDG. 1.1186 

(0.1505) 

MERRILL LYNCH & CO. 0.7566 

(0.1784) 

CHEVRON 

0.9720 

(0.0140) 

0.0506 

(0.0044) 

-0.0047 

(0.0012) 

0.9880 

(0.1695) 

EXXON MOBIL 0.9574 

(0.1993) 

CONOCOPHILLIPS 1.1438 

(0.1803) 

Note: Standard errors are given in parentheses. The estimates of P  and  2P  are 

omitted to save space. 
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Table 4: Backtesting VaR Thresholds: Before GFC 

 

(a) Minimum-variance portfolio 

Model VaR % Violation UC ID CC 

MSVL 5% 0.0885 4.4096*[0.0357] 0.0922 [0.9990] 5.6669 [0.3400] 

 1% 0.0192 0.5834 [0.4450] 1.8953 [0.7550] 0.8961 [0.9705] 

BS 5% 0.3885 79.765*[0.0000] 8.1793 [0.0852] 270.99*[0.0000]

 1% 0.3269 79.697*[0.0000] 6.8782 [0.1425] 360.03*[0.0000]

CBS 5% 0.0769 2.7147 [0.0994] 0.4148 [0.9813] 2.9254 [0.7115] 

 1% 0.0192 0.8925 [0.3448] 4.4728 [0.3458] 2.3007 [0.8062] 

BS+CBS 5% 0.0769 2.7147 [0.0994] 0.4148 [0.9813] 2.9254 [0.7115] 

 1% 0.0192 0.8925 [0.3448] 4.4728 [0.3458] 2.3007 [0.8062] 

 

(b) Equally-weighted portfolio 

Model VaR % Violation UC ID CC 

MSVL 5% 0.0808 2.7284 [0.0986] 13.286*[0.0099] 14.178 [0.0145]

 1% 0.0192 1.7868 [0.1813] 2.4639 [0.6511] 4.1809 [0.5237]

BS 5% 0.0462 0.0691 [0.7926] 8.5580 [0.1096] 7.5484 [0.0731]

 1% 0.0077 0.9701 [0.3247] 4.6629 [0.3237] 4.5653 [0.4712]

CBS 5% 0.0538 0.0032 [0.9546] 3.3408 [0.5025] 3.1439 [0.6778]

 1% 0.0115 1.6182 [0.2033] 5.0018 [0.2871] 5.4834 [0.3598]

BS+CBS 5% 0.0462 0.0691 [0.7926] 8.5580 [0.1096] 7.5484 [0.0731]

 1% 0.0077 0.9701 [0.3247] 4.6629 [0.3237] 4.5653 [0.4712]

 

Note: ‘% Violation’ is the percentage of days when returns are less than the VaR 

threshold. UC, IND and CC are the GMM duration-base tests for unconditional 

coverage, independence and conditional coverage, developed by Candelon et al. (2010). 

The number of orthonormal polynomials is set to 5. P-values are in brackets. 
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Table 4 (Cont.): Backtesting VaR Thresholds: Before GFC 

 

(c) Value-weighted portfolio 

Model 
VaR 

% 

Violation 
UC ID CC 

MSVL 5% 0.0923 4.7616*[0.0291] 22.794*[0.0001] 22.036*[0.0005]

 1% 0.0192 1.7868 [0.1813] 2.4639 [0.6511] 4.1809 [0.5237] 

BS 5% 0.0462 0.0691 [0.7926] 7.5484 [0.1096] 8.5580 [0.1281] 

 1% 0.0115 0.2200 [0.6390] 0.9373 [0.9192] 0.7063 [0.9826] 

CBS 5% 0.0500 0.0561 [0.8127] 6.7397 [0.1503] 6.7396 [0.2407] 

 1% 0.0154 0.9278 [0.3354] 1.3638 [0.8505] 1.8259 [0.8727] 

BS+CBS 5% 0.0462 0.0691 [0.7926] 7.5484 [0.1096] 8.5580 [0.1281] 

 1% 0.0115 0.2200 [0.6390] 0.9373 [0.9192] 0.7063 [0.9826] 

 

Note: ‘% Violation’ is the percentage of days when returns are less than the VaR 

threshold. UC, IND and CC are the GMM duration-base tests for unconditional 

coverage, independence and conditional coverage, developed by Candelon et al. (2010). 

The number of orthonormal polynomials is set to 5. P-values are in brackets. 
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Table 5: Backtesting VaR Thresholds: After GFC 

 

(a) Minimum-variance portfolio 

Model VaR % Violation UC ID CC 

MSVL 5% 0.0881 4.3182*[0.0377] 3.1632 [0.5309] 8.4487 [0.1332] 

 1% 0.0307 4.6064*[0.0319] 2.9456 [0.5670] 12.358*[0.0302]

BS 5% 0.0536 0.0032 [0.9546] 2.5191 [0.6412] 2.1080 [0.8340] 

 1% 0.0153 0.0652 [0.7985] 1.1493 [0.8864] 0.1935 [0.9992] 

CBS 5% 0.0996 6.2669*[0.0123] 1.9365 [0.0000] 10.605*[0.0598]

 1% 0.0383 7.2009*[0.0073] 4.8976 [0.2980] 24.196*[0.0002]

BS+CBS 5% 0.0498 0.0561 [0.8127] 2.4590 [0.6520] 2.4836 [0.7790] 

 1% 0.0115 0.0656 [0.4179] 0.6120 [0.9617] 0.8500 [0.9737] 

 

(b) Equally-weighted portfolio 

Model VaR % Violation UC ID CC 

MSVL 5% 0.1149 9.8820*[0.0017] 1.7100 [0.7889] 17.198*[0.0041]

 1% 0.0460 6.6345*[0.0100] 6.2647 [0.1802] 18.468*[0.0024]

BS 5% 0.0498 0.0178 [0.8940] 4.3026 [0.3666] 4.3922 [0.4944] 

 1% 0.0115 0.7891 [0.3744] 0.8451 [0.9323] 1.1307 [0.9514] 

CBS 5% 0.0575 0.1806 [0.6708] 7.4071 [0.1159] 4.8141 [0.4390] 

 1% 0.0077 0.8182 [0.3657] 3.1751 [0.5290] 2.7463 [0.7390] 

BS+CBS 5% 0.0460 0.2012 [0.6538] 2.2051 [0.6981] 3.8111 [0.5769] 

 1% 0.0077 0.8182 [0.3657] 3.1751 [0.5290] 2.7463 [0.7390] 

 

Note: ‘% Violation’ is the percentage of days when returns are less than the VaR 

threshold. UC, IND and CC are the GMM duration-base tests for unconditional 

coverage, independence and conditional coverage, developed by Candelon et al. (2010). 

The number of orthonormal polynomials is set to 5. P-values are in brackets. 
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Table 5 (Cont.): Backtesting VaR Thresholds: After GFC 

 

(c) Value-weighted portfolio 

Model 
VaR 

% 

Violation 
UC ID CC 

MSVL 5% 0.1149 9.8820*[0.0017] 1.7100*[0.0000] 17.198*[0.0041]

 1% 0.0498 7.5968*[0.0058] 3.1102 [0.5396] 20.345*[0.0011]

BS 5% 0.0498 0.0178 [0.8940] 4.3026 [0.3666] 4.3922 [0.4944] 

 1% 0.0115 0.7891 [0.3744] 0.8451 [0.9323] 1.1307 [0.9514] 

CBS 5% 0.0575 0.1806 [0.6708] 7.4071 [0.1159] 4.8141 [0.4390] 

 1% 0.0077 0.8182 [0.3657] 3.1751 [0.5290] 2.7463 [0.7390] 

CBS 5% 0.0460 0.2012 [0.6538] 2.2051 [0.6981] 3.8111 [0.5769] 

 1% 0.0077 0.8182 [0.3657] 3.1751 [0.5290] 2.7463 [0.7390] 

 

Note: ‘% Violation’ is the percentage of days when returns are less than the VaR 

threshold. UC, IND and CC are the GMM duration-base tests for unconditional 

coverage, independence and conditional coverage, developed by Candelon et al. (2010). 

The number of orthonormal polynomials is set to 5. P-values are in brackets. 

 


