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1 Introduction

The martingale hypothesis for asset prices or weak efficiency of financial
markets is one of the most intensely investigated topics in financial economics.
Pagan (1996) and Campbell et al. (1997) provide excellent surveys of the
relevant literature. If one augments the martingale assumption for financial
asset prices with the condition that the martingale differences have constant
(conditional) variance, it follows that the variance of asset returns is directly
proportional to the holding period. This property has been used to construct
formal testing procedures for the martingale hypothesis, known as variance
ratio tests. Variance ratio tests have been applied extensively over the past
decade, both in macroeconomics and finance. Examples include Campbell
and Mankiw (1987) and Cochrane (1988) on output fluctuations, Fama and
French (1988), Lo and MacKinlay (1988), Poterba and Summers (1988),
Richardson and Stock (1989), Chow and Denning (1993), and Richardson
(1993) on stock returns, and Huizinga (1987), Liu and He (1991), and Fong
et al. (1997) on foreign exchange rate returns.

Variance ratio tests are especially good at detecting linear dependence
in the returns, see Faust (1992). While the variance ratio statistic describes
one aspect of asset returns, the idea behind this statistic can be generalized
to provide a more complete characterization of asset return data. In this
paper we investigate what can be learnt from using other moments in the
ratio statistic besides the variance. We focus on using a combination of the
variance ratio statistic and the first absolute moment ratio statistic. The
first absolute moment ratio statistic by itself is useful as a measure of linear
dependence if no higher order moments than the variance exist. In combi-
nation with the variance ratio statistic it can be used to disentangle linear
dependence from other deviations of the standard assumption in finance of
unconditionally normally distributed returns. In particular, the absolute
moment ratio statistic provides information concerning the tail of the distri-
bution and conditional heteroskedasticity. By using lower order moments of
asset returns in the construction of volatility ratios, e.g., absolute returns,
one relaxes the conditions on the number of moments that need to exist for
standard asymptotic distribution theory to apply. We formally prove that
our general testing methodology can in principle even be applied for return
distributions that lie in the domain of attraction of a stable law (which in-
cludes the normal distribution as a special case). Stable laws, apart from
the normal distribution, have infinite variance, such that our approach is ap-
plicable outside the finite-variance paradigm, see McCulloch (1997) for the
relevance of stable variates in finance. Since in empirical work there often
exists considerable controversy about the precise nature of the asset return
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distribution, devising a test procedure that is valid for both finite-variance
processes and infinite variance alternatives is useful for detecting linear de-
pendence in asset returns.

If the variance is bounded, the first absolute moment ratio statistic in
conjunction with the variance ratio is informative about two important data
features: (i) tail thickness, and (ii) volatility clustering. First, the statistic
can reveal whether the unconditional distribution of the return innovations
is non-normal. The empirical evidence suggests, see Pagan (1996), that sec-
ond moments appear to be finite, while moments higher than approximately
the fourth or fifth are unbounded. Two properties may be responsible for
this heavy tail feature, namely, conditional fat-tailedness of asset returns and
volatility clustering, i.e., even with marginal thin-tailed innovations the un-
conditional distribution can be fat-tailed such as in the case of an ARCH
process with normal distributed innovations. Second, the first absolute mo-
ment ratio statistic can also signal the presence of volatility clusters. The
volatility clustering is signalled regardless whether it is of the GARCH-type,
or whether it is generated by a bivariate driving process of the stochas-
tic volatility kind. Note that the unconditional distribution of a stochastic
volatility process may have all moments bounded, while this is not the case
for the GARCH class processes. Indeed, we do find that the heavy tail prop-
erty of the return distribution affects the absolute moment ratio statistic
differently from the volatility clustering effect. Our procedures exploit these
opposing effects such that it is often possible to distinguish between both
causes for deviations from normality.

To the best of our knowledge the first absolute moment ratio statistic,
its properties and uses are new to the literature. The first absolute moment
has been used before as a measure of volatility, see, e.g., Taylor (1986) and
Granger and Ding (1995). In Müller et al. (1990) the first absolute moment
is computed for different return horizons. Müller et al. observe a regularity
in the absolute moment estimates which is not in line with the presumption
of i.i.d. normal innovations; this regularity was labeled the scaling law. In
this paper we consider the ratios of these absolute moment estimates, we
obtain their statistical properties under various distributional assumptions,
and we explain the observed regularity behind the ‘scaling law’. In par-
ticular, we show why the deviations observed by Müller et al. should not
be carelessly interpreted as evidence against the efficient market hypothesis.
Furthermore, we show that the absolute moment ratio statistics contain much
more information than the scaling law. Especially, when the statistic is used
in combination with the variance ratio statistic, most of the characteristic
features of asset returns come to the fore.

Specifically, we advocate the simultaneous use of volatility statistics based
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on first (absolute returns) and second order moments (variances). In such
a way we construct a test which is not only suited to detect linear depen-
dence in asset returns, but also fat-tailedness and non-linear dependence,
e.g., volatility clustering. We analytically show why moment ratios based
on absolute returns can be used to detect fat-tailedness and volatility clus-
tering, while standard variance ratios convey no information in this respect.
Discriminating between the alternative phenomena is important, since they
have different implications for portfolio selection and risk management.

Throughout the paper, we rely on a convenient graphical representation of
the statistics: the moment ratio curves. This allows us to summarize a whole
range of moment ratio tests for a specific return series in a comprehensible
way. The graphical representation allows for a quick assessment of the salient
features of the return series under study. Such an assessment builds on the
ability to recognize patterns displayed in combined moment ratio plots. This
ability presupposes some expert knowledge of the researcher in interpreting
these plots. In the present paper, we develop this expert knowledge for time
series that display characteristics typical for economic and financial data. To
facilitate the formulation of an expert opinion for a specific time series, we
augment our methodology with a formal statistical testing procedure. The
combination of pattern recognition, expert opinion, and formal statistical
testing makes our approach a hybrid one.

The formal testing procedure we propose in this paper heavily builds
on the bootstrap. By performing a non-parametric bootstrap based on the
empirical returns, we construct uniform confidence intervals for the range
of moment ratios considered. The confidence intervals are called uniform, as
opposed to pointwise, to express that the inference procedure accounts for the
fact that multiple volatility ratios based on the same data set are correlated.
Chow and Denning (1993) demonstrate that pointwise confidence intervals
for variance ratios do not lead to reliable inference on the joint implications
of these ratios when computed over various return horizons. They solve this
problem by using the Studentized Maximum Modulus (SMM) distribution,
which implies that the tests for different return horizons are assumed to be
perfectly uncorrelated, see also Fong et al. (1997). This results in overly
conservative confidence intervals. Another drawback is that their approach
does not allow for an easily tractable analytical analogue in case moment
ratios other than the variance ratio are used. We improve their procedure by
employing the bootstrap. Apart from constructing a confidence region for the
empirical volatility ratio curves, the bootstrap also proves to be extremely
useful for our hybrid testing procedure through the shape of the average
bootstrap moment ratio curve. The average bootstrap curve allows us to
clarify effects concerning the tail behavior of asset returns if such effects are
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blurred in the empirical curve due to sampling error.
As an empirical example, we apply our generalized volatility ratio tests

to two daily spot foreign exchange rate series. For the US/UK rate, we find
fat-tailedness, no linear dependence and moderate ARCH effects. Thus, the
martingale hypothesis cannot be rejected for this series, but the forex returns
are clearly not normal. For the FF/DM rate, though, we find significant
linear dependence in the returns.

The remainder of this paper is as follows. In Section 2, we develop the
generalized moment ratio statistic using the theory on stable distributions.
We also derive conditions under which non-normality and (non-)linear corre-
lation patterns may be detected with the moment ratio plots. In Section 3 we
then describe how to perform joint inference on the moment ratios using the
bootstrap. In Section 4, we present simulation experiments that illustrate
the performance of the testing procedure for various types of stochastic pro-
cesses. Section 5 contains the empirical analysis, while Section 6 concludes.
The Appendices present the proofs of the results in Section 2.

2 A generalized moment ratio statistic

2.1 Basic theory

The standard variance ratio test from the literature is based on the assump-
tion of an independent and identically distributed (i.i.d.) random walk for
log asset prices, see, e.g., Campbell et al. (1997, Section 2.4.3). Let pt denote
the log-price process of a financial asset and let rn

t ≡ pt − pt−n denote the
n-period return at time t. Under the i.i.d. random walk hypothesis for pt, we
have that

rn
t = εt + . . . + εt−n+1, (1)

with εt a set of i.i.d. random variables with mean zero and variance σ2 < ∞.
Consequently, E((rn

t )2) = nσ2, where E(·) denotes the expectations operator.
Under the assumption of an i.i.d. random walk, the variance of asset returns
is linear in the return horizon. A natural statistic to test the random walk
assumption is given by

V 2
n =

E
(
(rn

t )2)
nE
(
(r1

t )
2
) , (2)

i.e., the ratio of the variance of the n-period return to that of the one-period
return, normalized by the return horizon n. Under the above assumptions,
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V 2
n = 1. Most authors compute V 2

n for several values of n and test whether
any of these statistics differs significantly from the hypothesized value of one.
Chow and Denning (1993), and Fong et al. (1997), in contrast, use a joint
testing procedure based on variance ratios for several return horizons n.

We generalize (2) by replacing the square in the numerator and denomi-
nator of V 2

n by a general constant 0 6 ζ 6 2. Discarding for the moment the
return horizon n in the denominator of (2) and taking logarithms, we obtain
from the generalized version of (2)

log
(
E
(
|rn

t |ζ
))

− log
(
E
(∣∣r1

t

∣∣ζ)) . (3)

For the variance ratio we have ζ = 2. In that case (3) is linear in log(n) with
unit slope coefficient. The linearity of (3) in the log-return horizon log(n)
holds under much more general conditions, as we demonstrate in our main
theorem below.

Before giving the general result, we first need to focus on the class of
symmetric stable distributions.1 Let the distribution of εt be equal to Sα(c),
where Sα denotes a symmetric stable law with index of stability α ∈ (0, 2],
and where c > 0 is the scale parameter, cf. Samorodnitsky and Taqqu (1994,
p. 20). In the following we assume that c = 1. It follows from Definition 1.1.4
of Samorodnitsky and Taqqu (1994, p. 3) and Theorem 1 in Feller (1971, ch.
VI.1) that

rn
t =

n−1∑
i=0

εt−i
d
= n1/αεt.

Consequently,

E
(
|rn

t |ζ
)

= E

∣∣∣∣∣
n−1∑
i=0

εt−i

∣∣∣∣∣
ζ
 = nζ/αE

(
|εt|ζ

)
,

and hence

log
(
E
(
|rn

t |ζ
))

− log
(
E
(∣∣r1

t

∣∣ζ)) =
ζ

α
log(n). (4)

Equation (4) clearly indicates that for the class of stable distributions the
relationship between (3) and log(n) is linear. The slope of the corresponding

1We restrict our attention to the class of symmetric stable distributions since this
considerably simplifies the exposition. This implies that we assume in the sequel that the
εt are symmetrically distributed around the origin. Stable distributions are extensively
discussed in Samorodnitsky and Taqqu (1994), who provide a comprehensive treatment;
see also Ibragimov and Linnik (1971, ch. 2).
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linear function is equal to ζ/α. Note that for this result to be valid, it must
be the case that E(|εt|ζ) < ∞, which implies that necessarily 0 < ζ < α
for α < 2, and ζ < ∞ for α = 2. As was mentioned earlier, we obtain a
slope coefficient of one for the Gaussian distribution (α = 2) and the variance
related plots (ζ = 2). For the expected absolute returns (ζ = 1), in contrast,
we obtain a line with slope coefficient 1/2 for Gaussian εt.

The class of stable distributions forms the basis of our main result. This
class of distributions has an attractive property. For εi i.i.d. random numbers,
let {an}∞i=0 denote a sequence of increasing numbers such that a−1

n

∑n
i=1 εi

has a nondegenerate limiting distribution. Then this limiting distribution
must belong to the class of stable distributions, see Ibragimov and Linnik
(1971, p. 37), and the distribution of εi is said to belong to the domain of
attraction of a stable law. Stable distributions thus play a key role in limiting
distribution theory. We exploit this phenomenon in the proof of our main
theorem.

Theorem 1 Let {εt}∞t=1 denote a sequence of i.i.d. random variables with
common distribution function F (·). Let F (·) belong to the domain of attrac-
tion of a stable law with index α. Let ζ be such that 0 6 ζ < α for α < 2,
and 0 6 ζ 6 2 for α = 2. Then

lim
n→∞

log
(
E
(
|rn

t |ζ
)

/E
(
|r1

t |ζ
))

log(n)
= ζ/α.

The proof of this Theorem is given in Appendix A. The condition that
F (·) lies in the domain of attraction of a stable law in effect implies that
there exists a sequence of constants an of the form mentioned above, such
that the partial sums a−1

n

∑n
i=1 εi converge in distribution to a nondegenerate

stable distribution with index α. For α = 2, it suffices that E(ε2
i ) < ∞. For

α < 2, necessary and sufficient conditions for this requirement to hold can
be found in Ibragimov and Linnik (1971, Theorem 2.6.1). In that case, the
tails of F (·) need to decline algebraically, so that their shape is of the Pareto
form x−α for large values of x.

Theorem 1 shows that the relationship between (3) and log(n) is asymp-
totically linear with slope coefficient ζ/α. This holds for a wide class of
distributions. Therefore, our testing procedure mainly builds on plots of the
statistic

vζ
n = log(V ζ

n ) (5)
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versus log(n), where

V ζ
n =

E
(
|rn

t |ζ
)

nζ/αE
(
|r1

t |ζ
) . (6)

We call such a plot a moment ratio curve. Throughout the remainder of this
paper we focus on two alternative values of ζ , namely ζ = 1, 2. If ζ = 2, the
moment ratio coincides with the well-known benchmark: the variance ratio.
For ζ = 1, moment ratios are based on absolute returns. Absolute returns
have been used before as measures of volatility in the financial economics
literature by, e.g., Taylor (1986), Müller et al. (1990), Ding et al. (1993), and
Granger and Ding (1995). The moment ratio statistic for ζ = 1 is implicit
in Müller et al. (1990) as the slope of their regression curve. In the next
subsections, we formalize what patterns can be expected for the volatility
ratio curves with ζ = 1, 2 in different settings of practical interest. This
establishes the usefulness of our main result in Theorem 1.

2.2 Heavy tails and i.i.d. innovations

In this subsection we demonstrate how the moment ratio curve can be used
to detect deviations from normality if the returns are i.i.d. As mentioned
in the introduction, the variance ratio curve (ζ = 2) on its own is of no
use for this purpose. Here we demonstrate that a curve based on ζ = 2
augmented with a curve based on ζ = 1 can be very useful for detecting
deviations from normality. First note that it follows from Theorem 1 that
if the returns follow a stable distribution with parameter α < 2, then we
expect a linear volatility ratio curve for ζ = 1 with slope coefficient larger
than 1/2. So for the special case of stable distributions, it is clear that
the empirical absolute moment ratio curves will lie above the log(n)-axis
if the curves are based on an (incorrect) finite variance assumption, since
1/α > 1/2. Also note that the volatility ratio curve in that case does not
converge in probability to a fixed value. A similar result can be established
for a larger class of fat-tailed distributions, even in case the finite variance
assumption is correct. The result is summarized in the following theorem,
which is proved in Appendix A.

Theorem 2 (Heavy tails) Let the εt in (1) be i.i.d. with zero mean and
finite variance, but not necessarily normally distributed. Then v2

n ≡ 0. More-
over, the volatility ratio curve based on ζ = 1 lies above (below) the log(n)
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axis for sufficiently large values of n, i.e., v1
n > 0 (v1

n < 0), depending on

E (|εt|)√
E (ε2

t )
<

√
2

π
(respectively >).

Remark 1 Note that εt with non-zero means can easily be coped with by
first demeaning the one-period returns.

Theorem 2 states that i.i.d. innovations give rise to a flat volatility ratio
curve with ζ = 2. This is well-known in the literature and forms the basis for
the class of variance ratio tests. Moreover, Theorem 2 reveals that moment
ratio curves based on ζ = 1 are non-constant if the one-period returns are
non-normally distributed. More precisely, the returns must be non-normal
and E(|εt|)/

√
E(ε2

t ) 6=
√

2/π. When considered simultaneously, the ζ = 1
and ζ = 2 plots should thus provide a signal on deviations from normality
and on i.i.d.-ness of the returns. The following examples illustrate how the
results of Theorems 1 and 2 can be applied in practice.

Example 1 Let the one-period returns be i.i.d. We consider four distribu-
tions: the normal, the Laplace distribution, the Student t(3) distribution,
and the shifted Bernoulli distribution. The shifted Bernoulli distribution
places probability mass 1/2 on +1/2 and −1/2, respectively. The normal
distribution, with density exp(−x2/2)/

√
2π, is the benchmark. The Laplace

distribution or two-tailed exponential with density exp(−|x|)/2, has fatter
tails than the normal, though the tails are still exponential. In contrast, the
Student t(3) distribution, with density 6

√
3/π(3+x2)2, has algebraically de-

clining tails. Finally, the tails of the Bernoulli distribution are thinner than
those of the normal, as the Bernoulli has a compact support. The kurtosis is
an often used measure for tail fatness (though the statistic is not unambigu-
ous). For the benchmark normal the kurtosis is 3, the Bernoulli has kurtosis
1, the Laplace has kurtosis 3, while kurtosis for the Student t(3) is infinite.
By this measure the examples thus cover a wide range of possible cases. Note
that because of the i.i.d. assumption, v2

n ≡ 0, see (1) and (2).
For the normal distribution, it is easy to see that v1

n ≡ 0. In contrast, it
is proved in Appendix B that

E (|rn
t |) =

2Γ(n + 1/2)

π1/2Γ(n)
, (7)

for the Laplace distribution, with Γ(·) denoting the Gamma function or gen-
eralized factorial. For the Student t(3) distributed innovations

E (|rn
t |) =

2
√

3

π

(
n− (n− 1)

n−2∑
k=0

(n− 2)!

(n− 2− k)!(k + 1)(k + 2)nk

)
. (8)
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Figure 1: Analytical first absolute moment ratio curves (left-hand panel) and vari-
ance ratio curves (right-hand panel) for normal, Laplace, Student-t(3), and shifted
Bernoulli distributed εt.

For the shifted Bernoulli distribution

E (|rn
t |) =

2−nn!⌊
n
2

⌋
!
⌊

n−1
2

⌋
!
, (9)

where bxc denotes the integer part of x, also known as the entier function.
Appendix B also proves for each of these distributions that E(|rn

t |) a∼ n1/2

for n → ∞, illustrating the validity of Theorem 1 for these example distri-
butions. Plots of the volatility ratio curves v1

n and v2
n versus log(n) for the

above distributions are provided in Figure 1. Note that we use the base-10
logarithm, so that log(100) = 2 refers to a 100 period convolution of single
returns.

It is clear in Figure 1 that the first absolute moment ratio curves for
the fat-tailed distributions lie above that of the normal distribution. In
contrast, the curve for the shifted Bernoulli lies below that of the normal. The
applicability of Theorem 2 now follows from the fact that E(|εt|)/(E(ε2

t ))
1/2

equals 2−1/2, 2/π, and 1 for the Laplace, the Student t(3), and the shifted
Bernoulli, respectively. The moment ratio curves based on absolute returns
(ζ = 1) can therefore be used to distinguish between fat-tailed and thin-
tailed distributions. Note again that variance ratio curves (ζ = 2) contain
no information whatsoever in this respect. Furthermore, as follows from
Theorem 1, all curves in the left-hand panel of Figure 1 level off for sufficiently
large values of n, and eventually become horizontal. For extremely fat-tailed
distributions like the Student t(3), however, the return horizon n for which
the curve becomes horizontal may be excessively large given the sample size
typically available in empirical work.
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2.3 Volatility clustering

The assumption of i.i.d. one-period returns does not fit typical financial data.
Such data often exhibit forms of volatility clustering. In this subsection
we concentrate on the effect of autoregressive conditional heteroskedasticity
(ARCH) on moment ratio curves. It is well known that even if the inno-
vations to the ARCH process are (conditionally) normal, the unconditional
distribution (stationary distribution) is heavy-tailed, see Engle (1982), de
Haan et al. (1989), and Nelson (1990). The following theorem summarizes
what pattern we can expect for the volatility ratio curves in case of ARCH.

Theorem 3 (Volatility clusters) Let the return innovations follow a fi-
nite variance normal ARCH(p) process

εt = h
1/2
t xt, xt i.i.d. N(0, 1),

ht = ω +

p∑
i=1

λiε
2
t−i, ω > 0, λi > 0,

∑
i

λi < 1.

Then v2
n ≡ 0, while v1

n > 0 for sufficiently large n.

The proof can be found in Appendix A. Note that covariance stationary
GARCH(1,1) processes can also be handled through the above method of
proof. If the innovations xt in the ARCH process are not N(0, 1), then the
LHS of (A.3) in the proof of Theorem 3 becomes a composite product of the
ratio E(

√
ht)/

√
E(ht) and E(|x1

t |)/
√

E((x1
t )

2). The latter also appeared in
Theorem 2. Hence, if the innovations xt are also heavy-tailed in the sense
of Theorem 2, then the conclusion of Theorem 3 is reinforced. In contrast,
if the innovations are light-tailed, the inequality (A.3) with ζ = 1 may be
reversed.

Note that a heavy-tailed distributed xt and a nonzero λ both have the
effect of raising v1

n above zero. So if v1
n > 0 is observed, it is not possible to

tell whether this is caused by fat tails or volatility clustering. Fortunately, for
small n, volatility clustering has a rather distinct effect on v1

n in comparison
to the heavy tail effect. This is the upshot of the next theorem.

Theorem 4 Let εt follow a covariance stationary ARCH(1) process as in
Theorem 3, but where the i.i.d. innovations xt follow any symmetric distri-
bution around 0 with finite variance σ2 < ∞. Let v1

n,λ denote the moment
ratio curve based on ζ = 1 with ARCH(1) parameter λ1 = λ. If λ > 0, then
eventually v1

n,λ > v1
n,0 as n →∞. But for n = 2, the converse result is that

∂v1
2,λ

∂λ

∣∣∣∣
λ=0

< 0.
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The proof to this claim is given in Appendix A. The result is that the
effect of volatility clusters on the v1

n curve is markedly different from the effect
of fat-tailed i.i.d. innovations. In particular, the volatility clustering causes
a downward (upward) shift in the moment ratio curve based on absolute
returns for small (large) values of n compared to the i.i.d. case. So, for
a certain range of return horizons n, the slope of the moment ratio curve
under volatility clustering will initially be below that of the corresponding
i.i.d. case. Afterwards, the slope will be larger. Below, we will exploit these
properties to extract information concerning the heavy tail feature and the
volatility clustering effect from the absolute moment ratios.

Remark 2 There are alternative modelling strategies to capture the volatil-
ity clustering effect like stochastic volatility. For a stochastic volatility pro-
cess one can show an analogous result to Theorem 3. Moreover, for short
horizons the absolute moment ratio dips below the i.i.d. based curve. For
the sake of brevity, we omit a detailed treatment.

2.4 Linear dependence

Theorems 2 through 4 illustrate settings in which the variance ratio plots
(ζ = 2) are informative only when used in conjunction with volatility ratio
curves based on ζ = 1. We now consider the case where the volatility ratio
curves for both ζ = 1 and ζ = 2 are informative. This case is also treated
in the standard literature on variance ratio tests. The following theorem
summarizes the result.

Theorem 5 Let εt follow a covariance stationary invertible ARMA process
with absolutely summable autocovariances γj = cov (r1

t , r
1
t−j),

∑∞
j=0 |γj| < ∞.

Then

vζ
n ? 0

is equivalent to

E(|ξ|ζ) ?
E
(
|εt|ζ

)
E
(
(εt)

2)ζ/2

(
γ0∑∞

j=−∞ γj

)ζ/2

, (10)

with ξ a standard normal random variate.

The proof is again in Appendix A. Comparing Theorem 5 with the previ-
ous theorems, we note that there is an additional factor on the RHS in (10).
So even if the innovations to the ARMA process are normally distributed
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such that E(|εt|ζ)/E(ε2
t )

ζ/2 = E(ξζ), the factor (γ0/
∑∞

j=−∞ γj)
ζ/2 on the

RHS of (10) remains. For the remainder of the discussion, we focus on
ζ = 2. Plots for ζ = 1 reveal a similar pattern. But the plot for ζ = 1 is
more ambiguous, because deviations are also caused by other factors than
linear dependence, see Sections 2.2 and 2.3. For ζ = 2, the additional factor
in (10) equals the ratio of the short term variance of the one-period return
process to the long-run variance, see, e.g., Ibragimov and Linnik (1971, The-
orem 18.2.1) and Phillips (1987). Define

σ̄2 =

∞∑
j=−∞

γj = lim
n→∞

(
∑n

i=1 εi)
2

n
,

and σ2 = γ0. Then (3) reduces to log(σ̄2/σ2) + log(n) for large values of
n. Note that this curve has the same slope as for i.i.d. returns, namely 1
(see also Theorem 1), but that the level of the curve has shifted with respect
to the i.i.d. case. For a positive long-run correlation of the εt (σ̄2 > σ2)
the variance ratio curve lies above the i.i.d. one, while for negative long-run
correlations (σ̄2 < σ2) the opposite holds. This is easily illustrated using
AR(1) one-period returns with autoregressive parameter ϕ. In that case,
(10) becomes 1 ? [(1 − ϕ)/(1 + ϕ)], such that v2

n ? 0 for ϕ ? 0. Plots of
volatility ratio curves for correlated returns are found in Groenendijk et al.
(1997).

Note that the above line of reasoning is only valid conditional on σ̄2 being
strictly positive. If there is a moving average unit root in the return process,
then σ̄ is zero, such that the moment ratio curve v2

n defined in (5) decreases
for large values of n. To illustrate such behavior, consider an ARMA(1,1)
process for log asset prices pt,

pt = ϕpt−1 + εt − θεt−1, (11)

with εt i.i.d. standard normal random variables. Let |ϕ| < 1, such that asset
returns have a moving average unit root, i.e., r1

t = ϕr1
t−1 + θ̃(L)εt, with

θ̃(L) = (1 − L)(1 − θL), L the lag operator Lεt = εt−1, and θ̃(1) = 0. It is
proved in Appendix B.4 that

E
(
(rn

t )2) =
2(1− ϕn)(1− 2θϕ + θ2)

1− ϕ2
+ 2θϕn−1, (12)

which is bounded uniformly in n. Consequently, the long-run variance σ̄2 =
limn→∞E((rn

t )2)/n = 0. Moreover, the variance ratio curve (ζ = 2) clearly
decreases for n sufficiently large, as is shown in the right-hand panel of Fig-
ure 2. Because for normal innovations the expectation of the absolute n-
period return is proportional to the square root of (11), with the constant
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Figure 2: Analytical first absolute moment ratio curves (left-hand panel) and vari-
ance ratio curves (right-hand panel) for the autoregressive log asset price process
in (11), where θ = −0.1 and ϕ as indicated.

of proportionality independent of n, similar features hold for the volatility
ratio curves based on ζ = 1, as shown in the left-hand panel of Figure 2. So
linear dependence of returns becomes apparent through either a level shift
in the volatility ratio curve or a decline of the curve in log(n), both in the
ζ = 1 and ζ = 2 plots.

2.5 Conclusion and interpretation of related results

Subsections 2.2 through 2.4 illustrate that standard variance ratio tests can
only effectively distinguish between correlated and uncorrelated asset returns.
In contrast, when these tests are used in conjunction with moment ratio
curves based on absolute returns, our results show that useful information
may be obtained both on linear and non-linear dependence in asset returns
and on thin-tailedness or fat-tailedness. By recognizing the joint pattern of
moment ratio curves for ζ = 1 and ζ = 2, the graphical representation of
moment ratio curves laid out in this section can be used to obtain an assess-
ment of the salient features of asset returns. This, together with the formal
statistical tests explained in Section 3, turns the approach into a hybrid test-
ing procedure for disentangling non-normality, first moment dependence, and
second moment dependence in asset returns.

To conclude this section we comment on related work in the literature.
Moment ratio curves based on absolute returns are implicit in Müller et al.
(1990) and Guillaume et al. (1997) as a tool for exploratory data analysis.
Our formal results derived in this section shed new light on their results. In
Müller et al. (1990) and Guillaume et al. (1997) large tic-by-tic data sets on
forex quotes are used to plot averages of |rn

t | against ln(n). Hence, the slope
in such plots implicitly provides a measure of V 1

n , since the slope measures
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√
n V 1

n (if the variance is bounded). These studies report slope estimates
which hover around 0.58, and Müller et al. note that these estimates are
well above the 0.50 which can be expected if the returns are i.i.d. Gaussian
distributed. This deviation from normality in the slope estimates is referred
to as the scaling law. In principle two sorts of causes may explain the scaling
law. One explanation would be that the i.i.d. innovations are so heavy tailed
that α < 2. On basis of Theorem 1, the slope estimate of 0.58 would then
correspond to an α = 1.72. Another explanation would be that the returns
are non-i.i.d. or are non-normally distributed but with α = 2. In the latter
case, for example, the LHS panel of Figure 1 shows that the slope eventually
approaches 0.50, but deviates from 0.50 at the higher frequencies. Regression
analysis such as are used in the referenced studies can then easily produce
slope estimates above 0.50, especially so if ultra-high frequency data are used.
In the application section we provide evidence for the latter explanation
behind the scaling law.

3 Joint inference on volatility ratios

As was mentioned earlier, the graphical representation of the moment curves
as put forward in Section 2 can be used to detect various features of asset
returns, e.g., fat-tailedness, linear dependence, and non-linear dependence,
by recognizing the patterns of these curves. In this section we construct a
formal statistical testing procedure to complement the information contained
in the graphical plots. Our approach is hybrid in character, mixing formal
statistical tests with expert opinions based on exploratory data analysis using
moment ratio curves.

Standard variance ratio tests are usually computed for different return
horizons. In fact, one of the main puzzles stemming from the application of
these tests is the possible presence of positive autocorrelation at short hori-
zons, and negative correlation at long horizons, see, e.g., Fama and French
(1988) and Poterba and Summers (1988). Chow and Denning (1993) and
Fong et al. (1997) recently argued that variance ratio tests for different re-
turn horizons based on a single data set require modifications of the inference
procedure. In particular, standard confidence intervals for the tests have to
be widened if more than one test is computed using the same data set. This
is due to the fact that volatility ratios for different return horizons are gen-
erally imperfectly correlated. We account for this phenomenon in developing
a formal inference procedure for our generalized moment ratio test. We ad-
vocate a graphical presentation of the test. In this way we establish a close
link between the formal test procedure of the present section and the shapes
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of the moment ratio curves established in the previous section. This proves
especially helpful if standard variance ratio tests are used in conjunction with
tests based on alternative measures of volatility.

Using the notation of the previous section, we consider a set of N moment
ratios, indexed as

V̂ ζ
n =

T
∑T

t=n |rn
t |ζ

nζ/α(T + 1− n)
∑T

t=1 |r1
t |ζ

, (13)

for n = 1, . . . , N . Note that V̂ ζ
n is a natural estimator of V ζ

n in (6). The
estimate is based on overlapping n-period returns using a sample of T one-
period returns. Let v̂ζ

n = log(V̂ ζ
n ), where log is the base-10 logarithm. The

empirical counterpart of the curves presented in Section 2 is a plot of v̂ζ
n

versus log(n) for n = 1, . . . , N . According to Theorem 1 this curve should
become horizontal for large values of n. Moreover, if the r1

t are i.i.d. α-stable
distributed, the curve should be approximately zero over its entire domain,
see Equation (4). In order to derive a formal testing procedure, we need
some type of confidence bands for the v̂ζ

n-curve. The usual approach found
in the literature is to construct pointwise confidence intervals for each value
of n. Such confidence bands suffer from the fact that the different points on
the v̂ζ

n-curve are computed using the same data. As moment ratios for dif-
ferent return horizons are imperfectly correlated, using pointwise confidence
bands results in a testing procedure that is oversized. Chow and Denning
(1993) solve this problem by a Bonferroni argument using the Studentized
Maximum Modulus (SMM) distribution. We argue that their approach is
too conservative in general, as the SMM distribution does not account for
the high correlation between different vζ

n’s that arises (especially) for large
n. Moreover, their simultaneous inference procedure does not allow for an
easily tractable analytical analogue in case different volatility measures are
used than the variance, i.e., if ζ < 2. Therefore, we base our simultaneous or
uniform (in the return horizon n) confidence bands on bootstrap estimates.
This approach has two main advantages. First, it can be implemented for
general values of α and ζ . Second, it accounts for the simultaneity problem
without resorting to procedures that are generally too conservative given the
structure of the testing problem. A disadvantage of the bootstrap is the
increase in computation time.

We propose the use of different bootstrap procedures in the ζ = 2 and
the ζ = 1 plots. This follows from the different information that can be
obtained from these plots. Whereas the ζ = 2 plot is mainly suited for
detecting deviations from the martingale hypothesis, the ζ = 1 plot is useful
for detecting tail behavior and volatility clustering. Subsection 3.1 treats the
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formal inference procedure for ζ = 2, while Subsection 3.2 discusses the use
of the bootstrap for ζ = 1 based moment ratio curves.

Before we explain the details of our bootstrap procedures, we comment
on the choice of the stability parameter α in (13). A specific value of α is
needed in order to make the inference procedure operational. The choice of
α affects the slope of the moment ratio curve for large n. For a correct choice
of α, Theorem 1 shows that the curve ultimately becomes horizontal. Unless
explicitly stated otherwise, we assume for the remainder of this paper that
α = 2. This is motivated by the fact that there seems to be some consensus
in the literature that at least second moments exist for most financial time
series, see Pagan (1996). Note, however, that even if α turns out to be smaller
than 2, the first absolute moment ratio curve and our bootstrap methodology
still provide useful information about the properties of the observed series.
Care must be taken, however, in assessing the validity of the formal inference
procedure in such cases.

3.1 The block-bootstrap and ζ = 2

The plot for ζ = 2 is useful for detecting deviations from the martingale as-
sumption. Therefore, a formal statistical test should allow for the possibility
that the return series has non-linear dependence, e.g., volatility clustering.
Apart from this, we also have to cope with two additional complexities in
deriving an appropriate inference procedure. First, we have to account for
the fact that overlapping data are used to compute the different points on
the moment ratio curve. Second, even if we were to use non-overlapping
data, we have to account for the fact that the different points on the mo-
ment ratio curve are not independent, because they are based on the same
data set. A simultaneous and analytical treatment of all the above topics
appears extremely difficult and can, to our knowledge, not be found in the
literature. Therefore we adopt a simulation based inference procedure using
the bootstrap.

In order to account for the possible dependence in the returns, we use
a block-bootstrap procedure. The approach is as follows. Given a sample
of one-period returns {r1

t }T
t=1, we draw a bootstrap sample {r1,b

t }T
t=1 by ran-

domly drawing blocks (with replacement) of length m from the original one-
period returns r1

t . A block consists of m consecutive returns: r1
t , . . . , r1

t+m−1.
The blocks can be overlapping. If the sample size T is not an integer multiple
of the block size m, only the first part of the final block drawn is used to con-
struct the bootstrap series. As a result, the bootstrap sample also contains
T one-period observations. For a specific bootstrap sample, we compute the
bootstrapped moment ratio curve v̂ζ,b

n . This can be done a large, say B,
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number of times.
Given the sample of bootstrapped volatility ratio curves, we compute

v̄ζ
n = B−1

B∑
b=1

v̂ζ,b
n , (14)

σ̄ζ
n = B−1

B∑
b=1

(v̂ζ,b
n − v̄ζ

n)2, (15)

and

ŝvζ,b
n = (v̂ζ,b

n − v̄ζ
n)/σ̄ζ

n. (16)

We call ŝvζ,b
n the standardized moment ratio curve, and v̄ζ

n is called the av-
erage bootstrap curve. Based on the standard moment ratio curves, we
compute the uniform bounds lowζ and upζ such that

lowζ = sup
l

{
l
∣∣∣#{b | ∃n : ŝvζ,b

n < l} ≤ α∗B/2
}

(17)

and

upζ = inf
u

{
u
∣∣∣#{b | ∃n : ŝvζ,b

n > u} ≤ α∗B/2
}

, (18)

where α∗ is the desired significance level of the (joint) moment ratio test,
and #A denotes the number of elements in the set A. Unless the v̂ζ

n-curves
of the observed process are highly non-monotonic, the above approach will
approximately provide the correct coverage level asymptotically. Otherwise,
our approach will be slightly conservative. Given the typical pattern for
volatility plots in Sections 2 and 4 for processes that can be thought relevant
for financial data, however, we do not think that this problem will be impor-
tant for practical purposes. We investigate this claim by means of simulation
in the next section. The uniform upper and lower confidence bands of the
moment ratio curve v̂ζ

n are computed as v̄ζ
n + lowζ · σ̄ζ

n and v̄ζ
n + upζ · σ̄ζ

n,
respectively. We plot these bands and the average bootstrap curve v̄ζ

n along
with the empirical curve v̂ζ

n in one figure.
Using the above procedure, we deal with the overlapping data problem

as well as with the simultaneity problem, while allowing for phenomena as
volatility clustering by using the block-bootstrap. The length of the blocks
used is, of course, both a theoretical and an empirical matter. In the com-
putations for the present paper we use blocks of length 10. We also exper-
imented with blocks of length 5 and 20 without substantial changes in the
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results. Asymptotically, of course, we require the block length to diverge to
infinity with the sample size at an appropriate rate, see Hall et al. (1995) and
Shao and Tu (1995). We leave this for further research. Ideally, we would
like an automated optimal block-length selection in finite samples, but this
would unduely increase the required computation time.

We expect the following from our formal inference procedure. If the
martingale assumption is satisfied, the entire log(n)-axis should be contained
in the confidence band, irrespective of whether the returns are thin-tailed or
fat-tailed or whether or not they exhibit volatility clustering. If the returns
are linearly dependent, we expect that (part of) the log(n)-axis falls outside
the confidence band. For independent returns, moreover, we expect that the
empirical curve lies inside the confidence band. This is not so evident for the
case of non-linearly dependent returns. Though the dependence structure
is captured correctly asymptotically by the use of the block-bootstrap, in
finite samples the correlation structure may be corrupted. This is especially
relevant near the end points of the blocks. If (non-linear) dependence is
strong, the bias caused by the finite block length in the block-bootstrap
procedure may be significant, see, e.g., Section 4.

3.2 The i.i.d.-bootstrap and ζ = 1

In our methodology, we augment the standard variance ratios with alternative
moment ratios based on absolute returns. As mentioned in Section 2, plots
of moment ratio curves for ζ = 1 complement the information contained in
curves for ζ = 2. The plots based on absolute returns (ζ = 1) are especially
useful for detecting deviations from normality and non-linear independence.
So whereas the implicit null hypothesis for the ζ = 2 plots is the martingale
model, for the ζ = 1 plots it is the i.i.d. normal model. This difference in
implicit null hypotheses requires a different bootstrap methodology. Whereas
we used the block-bootstrap for the ζ = 2 curve in order to allow for possible
non-linear dependence in the returns, we can use the i.i.d. bootstrap in case
ζ = 1. The formal methodology is identical to the one described in the
previous subsection for ζ = 2, only with the block size m set equal to 1.

If the one-period returns are normal and i.i.d., we expect both the em-
pirical moment ratio curve and the log(n)-axis to be covered completely
by the bootstrapped confidence band. In contrast, if the returns are suffi-
ciently non-normal and i.i.d., we expect the log(n)-axis to fall outside the
confidence band for certain values of n. The empirical curve in that case,
however, should still be contained in the confidence band, see Section 2. For
a sufficiently high degree of non-linear dependence, e.g., volatility clustering,
we expect that parts of both the log(n)-axis and the empirical curve fall
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outside the confidence band. For volatility clustering, and since the ζ = 1
bootstrap uses an i.i.d. resampling scheme, the clustering induces positive
bootstrapped volatility ratio curves on average (due to the fat-tailedness of
the unconditional distribution). As a result, the log(n)-axis is likely to fall
outside the confidence band. Moreover, as was demonstrated in Section 2.3,
ARCH effects result in a downward sloping moment ratio curve for small n.
This effect is not captured by the i.i.d. resampling scheme, such that we can
expect the empirical curve to fall outside (below) the confidence band for
certain small values of the return horizon n. Note that in all cases described
above, we also expect the ζ = 2 curve not to signal any deviations from the
martingale model.

Finally, if returns are linearly dependent, we expect that the confidence
band fails to cover the empirical curve for ζ = 1. Two other things should be
noted in this case for the ζ = 1 plot. First, though the resampling scheme is
i.i.d., there may be a bias in the average bootstrap curve for ζ = 1 if the linear
dependence is sufficiently strong. This is intuitively clear, as in that case the
one-period returns may still be correlated, even if the returns are relatively
far apart in time. Second, even in case the returns are linearly dependent,
the average bootstrapped volatility ratio curve for ζ = 1 still contains useful
information concerning the tail behavior of the returns. Abstracting for the
moment from the bias discussed earlier, the i.i.d. resampling scheme gives a
signal concerning the unconditional tail behavior of the returns. If one only
allows for linear dependence, this directly reveals information on the tail
behavior of the innovations to the return process. Alternatively, if one also
allows for non-linear dependence, the average bootstrapped curve may signal
non-normal unconditional tail behavior. Given the typical sample size and
correlation structure found in financial return series, we think that the effect
of the bias mentioned in the first remark above will be quite limited. For
the same reason, we conjecture that the information content of the average
bootstrap curve for ζ = 1 may still be significant in many situations of
practical interest.

4 Monte-Carlo illustrations

In this section we further illustrate the properties of our new hybrid testing
procedure using simulated time series. We consider four sets of simulations.
First, we consider normal i.i.d. one-period returns. This case serves as the
benchmark. Second, we investigate the effect of fat-tailedness by generating
i.i.d. one-period returns from the Student t(3) distribution. Our last two
sets of simulations concern the behavior of the tests under linear and second
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order dependence in the one-period returns, respectively.
In all set-ups used below, we consider two experiments. In the first exper-

iment, we consider a single representative realization of a time series of length
T = 1, 000 and moment ratios up to horizon N = 100. This experiment aims
at giving insight into what patterns of moment ratio curves to expect in sit-
uations of practical interest. For ζ = 1, the number of bootstrap simulations
is B = 1, 000, while for ζ = 2, we perform B = 1, 000 block-bootstrap simu-
lations using blocks of length 10. The nominal significance level of the formal
test is α∗ = 0.05. As mentioned in Section 3, we assume that the variance of
the returns exists, i.e., α = 2. The results of the first experiment are comple-
mented by a second experiment, which presents a limited study on the power
of our hybrid testing procedure. In this second experiment, we perform 100
Monte-Carlo replications of the first experiment. For each Monte-Carlo sim-
ulation, we record at what return horizon the empirical moment ratio curve
or the log(n)-axis falls outside the bootstrapped confidence band. We report
the average rejection frequencies over the Monte-Carlo samples. The number
of Monte-Carlo simulations was limited to 100. As each Monte-Carlo simu-
lation involves 1,000 bootstraps for ζ = 1 and yet another 1,000 for ζ = 2,
the total computation time of these Monte-Carlo simulations rises rapidly.

4.1 Normal i.i.d.

The result for normal i.i.d. returns is presented in Figure 3. In the upper
panels, we see that both the empirical volatility ratio curve (v̂ζ

n) and the
log(n)-axis fall well within the uniform confidence band, both for ζ = 1 and
ζ = 2, such that we have no indication of fat-tailedness or dependence in the
one-period returns. Although the empirical volatility ratio curve seems to
display some non-monotonic behavior, the effect is not significant given the
confidence bands. The lower panels of the figure demonstrate that the for-
mal statistical test is somewhat undersized if we consider pointwise rejection
frequencies. For uniform rejection frequencies, however, the test appears to
be somewhat oversized as 0.11 > 0.05. The empirical curve thus appears to
lie outside the confidence band too often compared to the nominal size of the
test. Due to the limited number of simulations for the lower panels, however,
these conclusions are only indicative.

4.2 Student t(3) i.i.d.

We now turn to the case of Student t(3) i.i.d. one-period returns. The results
are presented in Figure 4. First, consider the ζ = 2 plot of the upper panels
in Figure 4, i.e., the variance ratio curve. Both the empirical curve and
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Figure 3: The upper panels display simulated moment ratio curves for a sin-
gle batch of normally distributed εt, with (block-)bootstrapped uniform confidence
bands. The lower panels present the pointwise frequencies by which the empirical
volatility ratio curve or the log(n)-axis fall outside the uniform confidence band
for ζ = 1 and ζ = 2, respectively. The left-hand and right-hand numbers in-
side the (lower) plots give the uniform rejection frequencies over the Monte-Carlo
replications of the empirical and the log(n)-axis falling inside the confidence band,
respectively.

the log(n)-axis lie well within the confidence band. From this we conclude
that there is no significant indication of linear dependence in the returns,
hence the martingale hypothesis cannot be rejected. Note, however, that
the confidence bands for ζ = 2 have to be interpreted with care, as fourth
order moments of the Student t(3) distribution do not exist. To obtain
information about fat-tailedness and non-i.i.d.-ness, we turn to the plot based
on ζ = 1. While the empirical curve falls entirely within the band, part of the
log(n)-axis lies below the confidence band. As explained in Section 2.2, this
signals deviations from normality. Since the confidence band in the ζ = 2
plot contains the log(n)-axis, i.i.d.-ness is maintained. Also note that the
average bootstrap curve lies entirely above the log(n)-axis, again signalling
fat-tailedness. However, given that the empirical curve stays within the band,
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Figure 4: Results for simulated moment ratio curves for Student t(3) distributed
εt; see the note to Figure 2 for a description of the contents.

there is no volatility clustering. Of course this is exactly what we would
expect given the nature of the generated return series.

The lower panels in Figure 4 again demonstrate the performance of our
test procedure for Student t(3) innovations over repeated experiments. As
expected, the variance ratio curves (ζ = 2) have no ability to distinguish
between thin-tailed and fat-tailed martingales. The empirical uniform re-
jection frequencies (0.01 and 0.03) are somewhat below the nominal size of
the test. In contrast, the empirical rejection frequencies for ζ = 1 are much
more interesting. The uniform rejection frequency for the empirical curve
falling inside the confidence band (0.08) is close to the nominal size of 0.05.
This illustrates that no significant departures from the i.i.d.-assumption are
found. The probability of the log(n)-axis falling outside the confidence band,
however, is extremely high (0.98), illustrating that our procedure has power
in discriminating thin-tailed from fat-tailed martingales. The pointwise re-
jection frequencies illustrate that the confidence band for the ζ = 1 moment
ratio curves fails to cover the log(n)-axis for return horizons between 1 and
15. This again corroborates the patters displayed in the upper panels of
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Figure 5: Results for simulated volatility ratio curves for the ARMA log price
process in (19); see the note to Figure 3 for a description of the contents.

Figure 4.

4.3 ARMA(1,1) log prices

We now abstract from the i.i.d. assumption and consider dependent one-
period returns. Consider an ARMA(1,1) for the log price level,

pt = 0.95pt−1 + εt − 0.1εt−1, (19)

with εt i.i.d. standard normal. The result is presented in Figure 5.
We see that the empirical volatility ratio curve falls well outside the con-

fidence region, both for ζ = 1 and ζ = 2. This clearly signals linear depen-
dence in the returns, as explained in Section 3.1. Also note that for ζ = 2, the
log(n)-axis partly falls outside the confidence band, which confirms the pres-
ence of linear dependence. For ζ = 1, in contrast, the log(n)-axis lies well
inside the band, which is what we would expect given the i.i.d. bootstrap
method used in that case. Some additional information may be obtained
from the average bootstrap curve in the ζ = 1 plot. Since this curve lies
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close to the log(n)-axis, we conclude that we detect significant departures
from the assumption of i.i.d. returns, but no deviations from the assumption
of normality.

The lower panels in Figure 5 support these findings. Uniform rejection
frequencies for the ζ = 2 plot are both high (0.91 and 0.94). The fact that
the log(n)-axis falls outside the confidence band with high probability signals
that uncorrelatedness is strongly rejected. For long return horizons n, we also
note that the empirical curve often falls outside the confidence band. This is
a consequence of the block-bootstrap methodology used. As blocks of length
10 are used in the simulations, we cannot expect the correlation structure of
the original series to be captured beyond return horizons of 10 periods. The
correlation between distant returns may be far larger than the correlation
implied by the block-bootstrap. This is the case in our simulation set-up, as
demonstrated by the high pointwise rejection frequencies for large n. The
lower-left panel in Figure 5 also reveals some interesting patterns. Again,
the uniform rejection frequency for the empirical curve falling inside the
confidence band is extremely high (1.00), especially for large return horizons.
The rejection frequency for the log(n)-axis falling inside the band, in contrast,
are extremely low (0.00). So from the ζ = 1 plot we conclude deviations from
i.i.d.-ness, but no deviations from normality. Combining this with the ζ = 2
plot, we additionally conclude that the departures from i.i.d.-ness are caused
by deviations from the martingale assumption and not by ARCH effects. The
latter conclusion follows from the observation that ARCH effects would imply
large rejection frequencies for the log(n)-axis falling outside the confidence
band for ζ = 1, something we demonstrate next.

4.4 ARCH

To conclude this section, we consider a situation in which the martingale
assumption is valid, but the independence assumption is violated. This case
is of special interest in financial applications, where researchers often find
volatility clustering for asset returns, see, e.g., Pagan (1996) for references.
As a simple illustration of the effect of volatility clustering on our hybrid
testing procedure, we consider an ARCH process of order one: r1

t = h
1/2
t εt,

with

ht = 0.01 + 0.95ε2
t−1, (20)

and εt a set of i.i.d. standard normal random variables. The results are
presented in Figure 6.

In the ζ = 2 plot we see that both the empirical curve and the log(n)-axis
lie within the confidence band. Though the empirical curve is non-monotonic,
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Figure 6: Results for simulated moment ratio curves for the ARCH process in (20);
see the note to Figure 3 for a description of the contents.

the effect does not appear to be significant. Thus, the martingale hypothesis
cannot be rejected, i.e., there is no dependence in the first moment. Again,
the ζ = 1 plot reveals additional information about the data. A large part of
the log(n)-axis falls outside the confidence interval. This points to volatility
clustering and/or non-normality. Since the empirical curve lies below the
lower confidence band for small values of n, we conclude that the returns
exhibit ARCH effects. The fact that the empirical curve lies below the log(n)-
axis for small n, and above the log(n)-axis for larger n corroborates our
theoretical results of Theorem 4. Furthermore, we know from the literature
that the unconditional distribution of a conditionally normal ARCH process
is leptokurtic, see, e.g., Nelson (1990). This is clearly revealed by the average
bootstrap curve shown in the ζ = 1 plot.

The results for the single experiment presented in the upper panels of
Figure 6 are strongly supported by the findings over repeated experiments,
as reported in the lower panels. The panel for ζ = 2 demonstrates that
the nominal size of the test (0.05) is close to its empirical (uniform) size for
ARCH processes (0.02 and 0.06 for the empirical curve and the log(n)-axis,
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Figure 7: Moment ratio curves for the US/UK exchange rate from January 3, 1986
to December 31, 1997, with (block-)bootstrapped uniform confidence intervals.

respectively). This can be expected as the ARCH process is a martingale.
In the panel for ζ = 1 we see that the uniform rejection frequencies are
extremely close to unity for both the empirical curve and the log(n)-axis
falling inside the confidence band (1.00 and 0.98, respectively). So normal
tails and i.i.d.-ness are strongly rejected by the moment ratio curves based
on absolute moments (ζ = 1). Again we see that pointwise rejections are
strongest for relatively low values of the return horizon n.

5 Application to foreign exchange data

In this section, we apply our hybrid volatility ratio test to the daily US/UK
and the FF/DM spot exchange rates. The data were obtained from Datas-
tream and span the period January 1986–December 1997. The number of
observations is 3,129. The volatility ratio curves for the US/UK are presented
in Figure 7.

First consider the ζ = 2 plot for the US/UK series. The empirical curve
rises slowly for small values of the return horizon n, and then levels off at
larger return horizons. The curve remains well within the 95% confidence
band. Furthermore, the log(n)-axis completely falls within the confidence
interval. This signals that there is no significant linear dependence in this
return series. Moreover, even if there is some (insignificant) correlation be-
tween returns, it appears not to be of the mean reverting type, cf. Figures 2
and 5. Also note that the average bootstrap variance ratio curve practically
coincides with the log(n)-axis. The empirical evidence thus confirms the
hypothesis that freely floating exchange rates are governed by a martingale.

The ζ = 1 plot is also quite informative. The empirical moment ratio
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Figure 8: Moment ratio curves for the FF/DM exchange rate from January 3,
1986 to December 31, 1997, with (block-)bootstrapped uniform confidence intervals.

curve increases initially, and then levels off. The curve touches the edge of
the 95 % confidence band, indicating that there may be some dependence
in the second moments of the returns. The weak evidence for volatility
clusters can be understood from the presence of Generalized ARCH effects
in combination with heavy-tailed marginal innovations. Typical GARCH
estimates give a dominant role to past volatility and only a moderate role
to past (squared) exchange rate returns. This induces a moderate indication
for ARCH when the marginal innovations are fat-tailed distributed, since
the weak ARCH effect has only a moderate impact on lowering the curve
for small n while the latter has a strong upward effect. The presence of fat-
tailedness is clearly signalled by the fact that the confidence interval fails to
cover a large part of the log(n)-axis. This non-normality is confirmed by the
shape of the average bootstrap curve, which lies entirely above the log(n)-
axis. Similar results were obtained for other freely floating currencies against
the US dollar. In fact, for the dollar rates considered by Liu and He (1991)
we never find evidence in favor of linear dependence. This contrasts with
the conclusion of Liu and He and is due to the simultaneous consideration
of the ratios at different horizons. For all these rates, however, we do find
the heavy tail feature and weak ARCH effects; only in the Canadian/US
dollar rate did we not find evidence for volatility clustering. Next we turn to
non-freely floating rates.

Figure 8 presents the moment ratio curves for the FF/DM rate. Again
we begin by considering the ζ = 2 plot. The most striking feature is that the
log(n)-axis lies completely above the confidence band. This implies that there
is a high degree of first-order dependence in the returns. Thus, the martingale
assumption is overwhelmingly rejected. The empirical curve, however, lies
well within the confidence bands.
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Turning to the ζ = 1 case, we note that both the log(n)-axis and the
empirical moment ratio curve lie entirely below the confidence band, while
the average bootstrap curve rises above the log(n)-axis before levelling off
somewhat at larger return horizons. The log(n)-axis and the empirical curve
signal that there is significant linear dependence in the returns. The average
bootstrap curve for ζ = 1 reveals that the returns are fat-tailed because the
confidence band is entirely above the x-axis.

An economic explanation for the FF/DM results is not hard to find.
Because of the obligations arising from the ERM arrangement, the monetary
authorities in France and Germany have frequently intervened since 1983 to
keep the FF/DM rate within the predefined target zone. These interventions
generate negative autocorrelation in the returns, see, e.g., Bertola (1994).
This is exactly what we find in Figure 8. Similar pictures emerge for other
managed (cross) rates.

6 Conclusions

The paper presents a new and generalized volatility ratio testing methodol-
ogy. The statistic based on the ratio of the first absolute moments has not
been considered before. Our methodology allows one to distinguish between
first order linear dependence, fat-tailedness, and volatility clustering. The
typical behavior of the moment ratios under these three types of deviations
from the assumption of normal i.i.d. returns is obtained analytically. The
approach is hybrid in the sense that we use a combination of formal sta-
tistical testing and pattern recognition based on graphical representations
of moment ratios for various return horizons. The graphical representation
provides a useful tool for exploratory data analysis and allows one to quickly
assess the salient features of the data. The formal statistical inference pro-
cedure incorporated in the graphical representation heavily builds on the
bootstrap. In contrast to previous research, this allows us to account for the
correlation between moment ratio tests based on different return horizons
without resorting to overly conservative confidence intervals.

We illustrated the methodology using simulations and empirical data.
The simulated data allow one to build up an expert opinion in interpreting
moment ratio curves. We particularly consider data generating processes
that exhibit properties relevant in a (financial) economic context, e.g., fat-
tailedness, linear dependence, and volatility clustering. We also consider the
result of our testing procedure when applied to two spot exchange rate series.
For the US/UK rate, we find no significant deviations from the martingale
assumption. By contrast, there is a clear and significant indication of fat-
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tailedness of the unconditional returns, which is due to fat-tailed conditional
returns and some volatility clustering. For the FF/DM rate, we find sig-
nificant negative autocorrelation, and again fat-tailed unconditional returns.
The linear dependence accords with the substantial amount of intervention
in this rate over the sample period.
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A Proof of Theorems

Proof of Theorem 1: First consider the case where 0 6 ζ < 2. Following
Ibragimov and Linnik (1971, Theorem 2.1.1),

lim
n→∞

log
(
E
(
|rn

t |ζ
))

log(n)
= lim

n→∞


log
(
(Bn)ζ

)
log(n)

+
log
(
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(∣∣∣ rn
t
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∣∣∣ζ))
log(n)


=
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α
+ lim
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E

(∣∣∣ rn
t

Bn

∣∣∣ζ)
log(n)

,
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where Bn is an appropriately chosen normalizing constant of the form Bn =
n1/αs(n), with s(n) a slowly varying function, i.e., limn→∞ s(tn)/s(n) = 1 for
t > 0. Using Ibragimov and Linnik (1971, Lemma 5.2.2), we have that

ζ

α
+ lim

n→∞

E

(∣∣∣ rn
t

Bn

∣∣∣ζ)
log(n)

6
ζ

α
+ lim

n→∞
∆

log(n)
=

ζ

α
,

where ∆ is a positive constant that does not depend on n.
Next consider the case where ζ = α = 2. Note that

lim
n→∞

log
(
E
(
|rn

t |2
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log(n)
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(
E
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log(n)
.

(A.1)

It remains to be shown that the last term in (A.1) goes to zero as n tends to
infinity. To prove this, note that

E

(∣∣∣rn
t /n1/2

∣∣∣2) = n−1E

( n∑
i=1

εi

)2
 = n−1

n∑
i=1

E
(
ε2
i

)
= E

(
ε2
i

)
,

which is finite by assumption. This establishes the theorem for ζ = α = 2, which
completes the proof.

Proof of Theorem 2: Let the one-period returns rt
1 = εt follow the distribution

D, and let ξt be a standard normal random variate. By the Central Limit Theorem,
we obtain

E

(∣∣∣n−1/2rn
t

∣∣∣ζ) ≈
(
E
(
(εt)

2
))ζ/2

E
(
|ξt|ζ

)
.

for sufficiently large n. Hence, vζ
n ? 0 is equivalent to (for sufficiently large n)

E
(
|ξt|ζ

)
?

E
(
|εt|ζ

)
(
E
(
(εt)

2
))ζ/2

. (A.2)

Note that for ζ = 2, the LHS and RHS in (A.2) are equal to 1. But this need not
be the case for ζ = 1. For the normal law E(|εt|)/

√
E(ε2

t ) =
√

2/π.

Proof of Theorem 3: From Proposition (2.1) of Diebold (1988) we have that√
1−∑i λi

nω

n∑
t=1

εt → N(0, 1)
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in distribution. Hence, as in the proof of the previous theorem, we can rewrite
vζ
n > 0 as

E
(
|εt|ζ

)/
E
(
(εt)

2
)ζ/2

6
√

2/π, (A.3)

where E((εt)2) = ω/(1 −∑i λi). It is immediate that for ζ = 2, (A.3) is an
equality. For ζ = 1, the LHS of (A.3) can be written as

E (|εt|)
/√

E
(
(εt)

2
)

=
√

2/π E
(√

ht

)/√
E(ht).

Hence, (A.3) reduces to

E
(√

H
)

<
√

E(H),

which holds by Jensen’s inequality.

Proof of Theorem 4: By assumption E(xt) = 0, E(x2
t ) = σ2 < ∞. From the

definition (6)

V 1
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Partial differentiation of V 1
2 at λ = 0 with respect to λ yields
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Let Kxt(·) denote the distribution function of xt, and let Fεt−2 be the unconditional
distribution function of εt−2. By definition
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Since
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Similarly, for the convolution
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with a = −xtεt−1/εt. Note that at λ = 0 : a = −xt−1. The covariance sta-
tionarity of the process implies that E(ε2

t−2) = ωσ2/(1 − λσ2), and hence at
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By Leibniz’ rule we obtain
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Use these last two integral expressions to further simplify
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where A(y) = −2
∫ −y
−∞ xdKx. The function A(y) has the following two properties.

Let kx(x) denote the density of the innovations xt. The derivative of A(y) is (by
Leibniz’ rule)

dA(y)
dy

= −2yk(−y) ? 0 as y 7 0.

Hence, A(y) monotonically increases on (−∞, 0) and decreases on (0,∞). Fur-
thermore A(∞) = A(−∞) = 0, A(0) = E(|x|), and A(y) > 0. By the assumed
symmetry of k(x) it follows that A(y) is symmetric around 0 as well. Hence, we
can always find a constant c > 0 such that

cA(σ) = cA(−σ) = k(σ).

For this constant cA(x) > 1 on [−σ, σ] and cA(x) < 1 for x 6∈ [−σ, σ]. Hence,
cA(x)k(x) has more mass in the center and less mass in the tails than k(x). It is
then immediate that
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Proof of Theorem 5: By Proposition 7.11 in Hamilton (1994),
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in distribution. Manipulating vζ

n ? 0 as before proves the theorem.
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B Proofs of examples

B.1 Results for the Laplace distribution

The characteristic function of the standard Laplace distribution is∫ ∞

−∞

1
2
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,

see, e.g., Gradshteyn and Ryzhik (1994, p. 1191). Therefore, for Laplace dis-
tributed one-period returns, we obtain
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(B.1)

with f(rn
t ) denoting the density of rn

t , and Kν(·) a Bessel function of the third
kind for imaginary arguments (see Gradshteyn and Ryzhik (1994, pp. 961, 1191)).
As the density of εt is symmetric around zero, so is the density of rn

t . Therefore,
the expectation of |rn

t | equals
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Using (B.1), (B.2) can be rewritten as
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The integral in (B.3) can be recognized as the Mellin transform of Kν(·) with
argument n + 3/2 (see Gradshteyn and Ryzhik (1994, p. 1193)). Using the Mellin
transform of Kν(·) as given in, e.g., Gradshteyn and Ryzhik (1994, p. 1195), (B.3)
reduces to
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.

Using the result that n−1/2Γ(n+1/2)/Γ(n) tends to one as n tends to infinity (see
Abramowitz and Stegun (1972, Equation 6.1.46)), it follows immediately that
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B.2 Results for the Student-t(3) distribution

Consider the Student-t(3) distribution

t3(x) =
2

π
√

3
· 1(

1 + x2

3

)2 .

The Fourier transform of the t(3) distribution is given by (see Gradshteyn and
Ryzhik (1994, p. 1191))
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The density of the n-period return rn
t is given by the inverse Fourier transform

of (B.4). Using this fact, E(|rn
t |) can be written as
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where the last equality follows from Gradshteyn and Ryzhik (1994, p. 1178), and
Re (x) denotes the real part of x ∈ C , with C the set of complex numbers. Note
that integration and summation in (B.5) cannot be interchanged, as the individual
terms in the integrals of the sum do not always exist. Therefore, we simplify (B.5)
as follows. Note that (B.5) is equivalent to
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Solving the integral in (B.6) yields
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Substituting back this expression into (B.6), we obtain

lim
M→∞

2
√

3
π

Re
{
−iM + n ln(n + iM)− n ln(n) +

iMn

n + iM
− n ln(n + iM)

+ n ln(n) +
n∑

k=2

n!
(n− k)!

{
kiM + n

k(k − 1)(n + iM)k
− 1

k(k − 1)nk−1

}}

= lim
M→∞

2
√

3
π

Re
{

M2

n + iM

+
n∑

k=2

n!
(n− k)!

{
ikM + n

k(k − 1)(n + iM)k
− 1

k(k − 1)nk−1

}}

= lim
M→∞

2
√

3
π

{
nM2

n2 + M2

+
n∑

k=2

n!
(n− k)!

{
ikM + n

k(k − 1)(n + iM)k
− 1

k(k − 1)nk−1

}}

=
2
√

3
π

{
n−

n∑
k=2

n!
(n− k)!k(k − 1)nk−1

}
.

Hence

E

(∣∣∣∣∣
n∑

i=1

εi

∣∣∣∣∣
)

=
2
√

3
π

(
n− (n− 1)

n−2∑
k=0

(n− 2)!
(n− 2− k)!(k + 1)(k + 2)nk

)
.

Note that
1

(k + 1)(k + 2)
=

1
k + 1

− 1
k + 2

,

which implies

n−2∑
k=0

(n− 2)!
(n − 2− k)!(k + 1)(k + 2)nk

= 1 +
n−3∑
k=0

(n− 2)!
(n− 3− k)!nk+1(k + 2)

−
n−3∑
k=0

(n − 2)!
(n − 2− k)!nk(k + 2)

− (n− 2)!
nn−1

= 1− (n− 2)!
nn−1

−
n−3∑
k=0

(n− 2)!
(n− 2− k)!nk+1

.
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From Stirling’s formula (see Abramowitz and Stegun (1972, p. 257)), it follows
that (n− 2)!/nn−1 is exponentially small for large n. Next, we prove

n−3∑
k=0

(n− 2)!
(n− 2− k)!nk

= c · √n + o
(√

n
)
, (B.7)

for some constant c > 0, where o (
√

n) denotes a function that has an order of
magnitude smaller than

√
n for large n.

Using Stirling’s formula, i.e.,

n! =
√

2πnn√n exp
(
−n +

θ

n

)
,

where 0 < θ < 1/12, we obtain

n−3∑
k=0

(n− 2)!
(n− 2− k)!nk

=

(
n−2∑
k=0

(n− 2)!
(n− 2− k)!nk

)
− (n− 2)!

nn−2

=
(n− 2)!
nn−2

n−2∑
k=0

nk

k!
+ o

(√
n
)

=
√

2π
(

1− 2
n

)n−2

e
θ

n−2
√

n− 2e−n+2
n−2∑
k=0

nk

k!
+ o

(√
n
)
.

As n →∞,

√
2π
(

1− 2
n

)n−2

e
θ

n−2
+2 −→

√
2π.

It now remains to be proved that

lim
n→∞

∑n−2
k=0

nk

k!

en
> 0.

Let P̄λ denote a Poisson distributed random variable with mean λ. Then

n∑
k=0

e−nnk

k!
= P

(
P̄n 6 n

)
= P

(
n∑

i=1

(
P̄

(i)
1 − 1

)
/
√

n 6 0

)

−→ 1
2
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according to the standard central limit theorem, with {P̄ (i)
1 }n

i=1 a set of i.i.d.
Poisson distributed random variables with mean 1. This completes the proof
of (B.7). It now follows directly from (B.7) that

lim
n→∞

log
(
E (|rn

t |) /E
(∣∣r1

t

∣∣))
log(n)

=
1
2
.

B.3 Results for the Bernoulli distribution

Consider εt following the shifted Bernoulli as explained in example 1. Since rn
t ≡∑n−1

i=0 εt−i, it follows that rn
t + n/2 has a binomial distribution with parameters

(n, 1/2). For even and odd values of n, the expectation of the absolute moment
can be derived as

E (|rn
t |) = 2

n
2
−1∑

k=0

(
n

k

)(
1
2

)n (n

2
− k
)

=
2−nn!(

n
2

)
!
(

n
2 − 1

)
!
, (B.8)

and

E (|rn
t |) = 2

n−1
2∑

k=0

(
n

k

)(
1
2

)n (n

2
− k
)

=
2−nn!(

n
2 − 1

2

)
!
(

n
2 − 1

2

)
!
, (B.9)

respectively. We now have that

E (|rn
t |) =

2−nn!⌊
n
2

⌋
!
⌊

n−1
2

⌋
!
,

where bXc is the integer part of X. Applying Stirling’s formula (see Abramowitz
and Stegun (1972, p. 257)) to (B.8) and (B.9) respectively, we obtain

E (|rn
t |) =

2−n
√

2π nn √n exp
(
−n + ϑ1

n

)
2π (n − 1)n−1 2−n(n− 1) exp

(
−n + 1 + 2ϑ2

n

) ∼ √
n,

and

E (|rn
t |) =

2−n−1
√

2π nn+1 √n exp
(
−n + ϑ1

n

)
2π nn 2−n−1 n exp

(
−n + 2ϑ3

n

) ∼ √
n,

for n is even and odd, respectively.
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B.4 Results for ARMA(1,1) log prices

Rewriting (10) using backward substitution, we obtain

pt = ϕtp0 + εt − θϕt−1ε0 + (ϕ− θ)
t−2∑
i=0

ϕiεt−1−i.

This implies that for t > 1,

E
(
(pt − p0)

2
)

= (ϕt − 1)2E
(
p2
0

)
+ 1 + θ2ϕ2t−2 − 2θϕt−1(ϕt − 1)

+
(ϕ− θ)2(1− ϕ2t−2)

1− ϕ2

=
(ϕt − 1)(1 − 2θϕ + θ2)

1− ϕ2
+ 1 + θ2ϕ2t−2 − 2θϕt−1(ϕt − 1)

+
(ϕ− θ)2(1− ϕ2t−2)

1− ϕ2

=
2(1 − ϕt)(1− 2θϕ + θ2)

1− ϕ2
+ 2θϕt−1.

The result now follows from the stationarity of rn
t and the observation that rt

0 =
pt − p0.
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