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“Without hardship, there is no treasure; he who worked is paid in full measure”  
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Rationale  

In Western societies there has been a change in reproductive behaviour with a tendency 

towards more couples postponing childbearing.1 As a consequence the number of couples 

experiencing impaired fertility in the Netherlands is rising. Female age in this respect is the 

commonly studied individual risk factor for subfertility.2-3 Subfertility is clinically defined as 

12 months of unprotected intercourse during the fertile period of the menstrual cycle 

without a resulting pregnancy.4   Several modifiable factors exist that also affect fertility and 

the chance of having a healthy child.5-6 Many studies underline the detrimental role of 

adverse lifestyles and dietary intake of both women and men on reproductive outcome.6 

During the periconceptional period – defined as the time span before and surrounding 

conception – these factors can detrimentally influence reproductive processes such as 

gametogenesis, fertilisation and implantation, through the induction of oxidative stress,  

chromosomal defects, interact with polymorphisms in detoxification enzymes and/or 

possible interfere with epigenetic mechanisms.7-10  

Worldwide, there is a high prevalence of unhealthy lifestyle factors in women and men 

during their reproductive period. In the Netherlands 25% of the women and 35% of the men 

smoke, 80-90% of women and men use social alcohol , defined as the use of <14 units/week, 

and 40% of the women and 52% of the men have overweight or are obese.11  

Therefore, research into potential modifiable risk factors may ultimately contribute to 

preventive and curative treatments.  In the following paragraph the implication of adverse 

lifestyles on reproductive performance are outlined.  
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Smoking 

Smoking has been recognized as one of the strongest risk factor for fertility and pregnancy 

outcome.12 Women who smoke have a higher risk of being subfertile, experience a  

miscarriage and lower odds of pregnancy and life birth compared with non-smokers.12  

Specifically, it takes smokers a longer time to conceive than non-smokers. It has been shown 

that an OR of 1.54 (95%CI 1.19-2.01) was found for delayed conception(> 12 months) in 

women who smoke compared to non-smokers and an OR of 1.14 (95CI 0.92-1.42) for passive 

smoking.13 Fertility was most reduced in smokers who were exposed to cigarette smoke in 

utero.14 In women undergoing in vitro fertilization (IVF) twice as many IVF cycles were 

needed to achieve pregnancy.15-16  

Epidemiological data also point to a detrimental effect of smoking on semen parameters. 

Smoking in men is associated with higher sperm DNA damage, lower sperm count, motility 

and morphology and abnormal sperm fertilising capacity.17-18 Male smoking is demonstrated 

to significantly decrease intracytoplasmic sperm injection (ICSI) and IVF success rates.19 

 

Alcohol 

Excessive alcohol consumption has been reported to decrease the fertility of both women 

and men. The amount of alcohol consumption associated with reproductive risk is not 

clear.20-21 Less is known about the effects of social alcohol use. A 40% and 70% reduced 

fecundity has been reported in women with any alcohol intake and intakes above ten drinks 

per week, respectively.22 Social alcohol use revealed an approximately 60% reduced 

fecundity.23 Also, alcohol use during pregnancy is associated with an increased risk of poor 

pregnancy outcomes.24-26  
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In men, alcohol consumption can induce testicular atrophy, impotence, reduced libido and 

cause deterioration in sperm count.27 It remains unclear from the available evidence what 

amount of alcohol consumption affects reproductive performance and pregnancy outcome. 

 

 Body Mass Index 

The increasing use of an unhealthy diet (e.g. excessive energy intake) and lack of physical 

activity (e.g. low energy expenditure) disturb the energy balance, leading to increased fat 

storage. This trend has resulted in the worldwide epidemic of overweight (BMI ≤25–30 

kg/m2) and obesity (BMI≥30 kg/m2).28 Women with overweight or obesity have greater risks 

across the reproductive spectrum, including higher rates of subfertility as well as pregnancy 

complications. 29-30  

Increase in BMI reduces the chance of conception both in natural and assisted conception 

cycles.31  It has been shown that pregnancy rate was 42% among women with BMI 20-24 

kg/m2, 30% for women with BMI 25-27 kg/m2 and 21% for women with a BMI 28-36 kg/m2.32 

Thus, pregnancy rates progressively decrease with increasing BMI. Additionally, obese 

women undergoing fertility treatment require higher doses of gonadotrophins, have 

significantly fewer and less quality oocytes retrieved, experience lower pregnancy rates and 

have an increased likelihood of miscarriage.33-34  Weight loss of as little as 5%–10% can 

improve fertility outcomes, as a consequence of the improvement of endocrine parameters 

with return of normal menstrual cycles.35-36  

Less is known about the effect of overweight and obesity on male fertility.33 Several studies 

point to an increased chance of abnormal semen parameters and a higher incidence of male 

factor infertility.37 
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Nutrition 

A nutritionally unbalanced diet characterized by low intakes of vitamins and minerals and 

excessive intake of sugars and fats has been associated with significantly high reproductive 

risks.38-39 In this respect, folate is an important B vitamin, present in its natural form in green 

leafy vegetables, fruits and whole grains. In times of higher requirements, such as during the 

periconceptional period, women are recommended to take a folic acid supplement. 

Adequate folate levels at the time of pregnancy have been shown to decrease both the 

prevalence and incidence of neural tube defects (NTD) by 50% to 70%.40 Folic acid 

supplementation may also decrease the risk of other congenital anomalies such as orofacial 

clefts and congenital cardiovascular defects.41-42 Folate is also important for fertility: follicle-, 

oocyte quality and maturation, implantation.43 It has been hypothesized that a low folate 

status reduces ovarian response and successful pregnancy in IVF patients.44-45 Strong 

adherence to a dietary patterns supplying a high amount of folate, such as the 

Mediterranean diet (high in vegetables, fruit, whole grains and fish), is associated with a 40% 

increased chance of conception after fertility treatment and a 70% reduction of neural tube 

defects comparable to the use of folic acid supplements.46 

Further studies suggest that folate is also important for male fertility and spermatogenesis. A 

randomized controlled trial showed that the use of  folic acid and zinc sulphate supplements 

increased sperm count in subfertile men by 74%.47 Strong adherence to the Traditional 

Dutch dietary pattern (high in whole grains, meat and potatoes), with high folate 

bioavailability, improved semen quality.48 
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Preconception Care 

A new promising preventive approach – called Preconception Care – has been introduced to 

change unhealthy lifestyles and nutrition during the preconception period of the parents to 

be in order to increase reproductive performance and outcome. The objective of 

preconception care is preventing defects and disease in mother and child by detecting and, if 

possible, eliminating the identified risk factors before conception.49  There is a need for 

greater clinician awareness for this concept. However, there is evidence that, in practice, 

only limited preconception counselling about unhealthy lifestyle and nutrition is provided to 

couples planning pregnancy.50-51  Recognized barriers to providing this kind of preconception 

care include limited knowledge on the effectiveness, lack of standardized guidelines, lack of 

provider knowledge, lack of patient knowledge or demand for services, lack of provider time, 

and minimal to no insurance coverage.52 

With the findings described in this thesis, we aim to provide more insights in the 

effectiveness of preconception programs by means of lifestyle and nutrition promotion 

directed both at women and men planning pregnancy.  

 

Aims of the Thesis 

Against this background the questions to be addressed in this thesis are: 

 Effect of lifestyle and nutrition on fertility parameters in both women and men. 

 To evaluate an outpatient clinic for preconception counselling on adverse lifestyle 

and nutrition in women and men planning pregnancy at a university hospital. 
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Outline of the thesis 

Part 1 of the thesis focuses on lifestyle factors and fatty acid intake in couples undergoing an 

IVF or ICSI treatment The studies described in Chapter 2,3,4,5 are based on the Food 

Lifestyle and Fertility Outcome study (FOLFO), a periconceptional prospective cohort study, 

examining the influence of preconception lifestyle exposures in subfertile couples on fertility 

parameters and pregnancy outcome. This study was conducted between 2004 and 2007 in 

the Erasmus MC, University Medical Center Rotterdam. 

 

Part 2 focuses on the effect of preconception counselling on adverse lifestyle and nutrition 

in women and men planning pregnancy and attending the outpatient clinic of Obstetrics and 

Gynecology of the Erasmus MC, University Center. 

 

Finally, the main findings, implications for clinical practice and public health and suggestions 

for future research are discussed in Chapter 8.



 - 17 - 

References 

1. Baird DT, Collins J, Egozcue J, et al. Fertility and ageing. Hum Reprod Update 2005;11:261-76. 
2. Frank O, Bianchi PG, Campana A. The end of fertility: age, fecundity and fecundability in  
women. J Biosoc Sci 1994;26:349-68. 
3. Menken J, Trussell J, Larsen U. Age and infertility. Science 1986;233:1389-94. 
4. Evers JL. Female subfertility. Lancet 2002;360:151-9. 
5. Hassan MA, Killick SR. Negative lifestyle is associated with a significant reduction in fecundity. 
Fertil Steril 2004;81:384-92. 
6. Homan GF, Davies M, Norman R. The impact of lifestyle factors on reproductive performance 
in the general population and those undergoing infertility treatment: a review. Hum Reprod Update 
2007;13:209-23. 
7. Dolinoy DC, Weidman JR, Jirtle RL. Epigenetic gene regulation: linking early developmental 
environment to adult disease. Reprod Toxicol 2007;23:297-307. 
8. Kaufman MH. The teratogenic effects of alcohol following exposure during pregnancy, and its 
influence on the chromosome constitution of the pre-ovulatory egg. Alcohol Alcohol 1997;32:113-28. 
9. Poli G. Pathogenesis of liver fibrosis: role of oxidative stress. Mol Aspects Med 2000;21:49-
98. 
10. Sinclair KD, Allegrucci C, Singh R, et al. DNA methylation, insulin resistance, and blood 
pressure in offspring determined by maternal periconceptional B vitamin and methionine status. 
Proc Natl Acad Sci U S A 2007;104:19351-6. 
11. Health, lifestyle and health care. 2008; Accessed at:http://statline.cbs.nl.  
12. Anderson K, Nisenblat V, Norman R. Lifestyle factors in people seeking infertility treatment - 
A review. Aust N Z J Obstet Gynaecol 2010;50:8-20. 
13. Bolumar F, Olsen J, Boldsen J. Smoking reduces fecundity: a European multicenter study on 
infertility and subfecundity. The European Study Group on Infertility and Subfecundity. Am J 
Epidemiol 1996;143:578-87. 
14. Jensen TK, Henriksen TB, Hjollund NH, et al. Adult and prenatal exposures to tobacco smoke 
as risk indicators of fertility among 430 Danish couples. Am J Epidemiol 1998;148:992-7. 
15. Feichtinger W, Papalambrou K, Poehl M, Krischker U, Neumann K. Smoking and in vitro 
fertilization: a meta-analysis. J Assist Reprod Genet 1997;14:596-9. 
16. Klonoff-Cohen H, Lam-Kruglick P, Gonzalez C. Effects of maternal and paternal alcohol 
consumption on the success rates of in vitro fertilization and gamete intrafallopian transfer. Fertil 
Steril 2003;79:330-9. 
17. Kunzle R, Mueller MD, Hanggi W, Birkhauser MH, Drescher H, Bersinger NA. Semen quality of 
male smokers and nonsmokers in infertile couples. Fertil Steril 2003;79:287-91. 
18. Vine MF. Smoking and male reproduction: a review. Int J Androl 1996;19:323-37. 
19. Zitzmann M, Rolf C, Nordhoff V, et al. Male smokers have a decreased success rate for in 
vitro fertilization and intracytoplasmic sperm injection. Fertil Steril 2003;79 Suppl 3:1550-4. 
20. Chaudhuri JD. An analysis of the teratagenic effects that could possibly be due to alcohol 
consumption by pregnant mothers. Indian J Med Sci 2000;54:425-31. 
21. Health Council of the Netherlands. Preconception Care: A Good Beginning. The Hague: 
Health Council of the Netherlands. 2007. 
22. Jensen TK, Hjollund NH, Henriksen TB, et al. Does moderate alcohol consumption affect 
fertility? Follow up study among couples planning first pregnancy. BMJ 1998;317:505-10. 
23. Hakim RB, Gray RH, Zacur H. Alcohol and caffeine consumption and decreased fertility. Fertil 
Steril 1998;70:632-7. 
24. Kesmodel U, Wisborg K, Olsen SF, Henriksen TB, Secher NJ. Moderate alcohol intake during 
pregnancy and the risk of stillbirth and death in the first year of life. Am J Epidemiol 2002;155:305-
12. 

http://statline.cbs.nl/


 - 18 - 

25. Kesmodel U, Wisborg K, Olsen SF, Henriksen TB, Secher NJ. Moderate alcohol intake in 
pregnancy and the risk of spontaneous abortion. Alcohol Alcohol 2002;37:87-92. 
26. Munger RG, Romitti PA, Daack-Hirsch S, Burns TL, Murray JC, Hanson J. Maternal alcohol use 
and risk of orofacial cleft birth defects. Teratology 1996;54:27-33. 
27. Li Y, Lin H, Cao J. Association between socio-psycho-behavioral factors and male semen 
quality: systematic review and meta-analyses. Fertil Steril 2010. 
28. Pasquali R, Patton L, Gambineri A. Obesity and infertility. Curr Opin Endocrinol Diabetes Obes 
2007;14:482-7. 
29. van der Steeg JW, Steures P, Eijkemans MJ, et al. Obesity affects spontaneous pregnancy 
chances in subfertile, ovulatory women. Hum Reprod 2008;23:324-8. 
30. Bolumar F, Olsen J, Rebagliato M, Saez-Lloret I, Bisanti L. Body mass index and delayed 
conception: a European Multicenter Study on Infertility and Subfecundity. Am J Epidemiol 
2000;151:1072-9. 
31. Zaadstra BM, Seidell JC, Van Noord PA, et al. Fat and female fecundity: prospective study of 
effect of body fat distribution on conception rates. BMJ 1993;306:484-7. 
32. Koloszar S, Daru J, Kereszturi A, Zavaczki Z, Szollosi J, Pal A. Effect of female body weight on 
efficiency of donor AI. Arch Androl 2002;48:323-7. 
33. MacDonald AA, Herbison GP, Showell M, Farquhar CM. The impact of body mass index on 
semen parameters and reproductive hormones in human males: a systematic review with meta-
analysis. Hum Reprod Update 2010;16:293-311. 
34. Zhang D, Zhu Y, Gao H, et al. Overweight and obesity negatively affect the outcomes of 
ovarian stimulation and in vitro fertilisation: a cohort study of 2628 Chinese women. Gynecol 
Endocrinol 2010;26:325-32. 
35. Clark AM, Ledger W, Galletly C, et al. Weight loss results in significant improvement in 
pregnancy and ovulation rates in anovulatory obese women. Hum Reprod 1995;10:2705-12. 
36. Hollmann M, Runnebaum B, Gerhard I. Effects of weight loss on the hormonal profile in 
obese, infertile women. Hum Reprod 1996;11:1884-91. 
37. Loret de Mola JR. Obesity and its relationship to infertility in men and women. Obstet 
Gynecol Clin North Am 2009;36:333-46, ix. 
38. Cetin I, Berti C, Calabrese S. Role of micronutrients in the periconceptional period. Hum 
Reprod Update 2010;16:80-95. 
39. Mathews F, Yudkin P, Neil A. Influence of maternal nutrition on outcome of pregnancy: 
prospective cohort study. BMJ 1999;319:339-43. 
40. Lumley J, Watson L, Watson M, Bower C. Periconceptional supplementation with folate 
and/or multivitamins for preventing neural tube defects. Cochrane Database Syst Rev 
2000:CD001056. 
41. Botto LD, Olney RS, Erickson JD. Vitamin supplements and the risk for congenital anomalies 
other than neural tube defects. Am J Med Genet C Semin Med Genet 2004;125C:12-21. 
42. van Rooij IA, Ocke MC, Straatman H, Zielhuis GA, Merkus HM, Steegers-Theunissen RP. 
Periconceptional folate intake by supplement and food reduces the risk of nonsyndromic cleft lip 
with or without cleft palate. Prev Med 2004;39:689-94. 
43. Ebisch IM, Thomas CM, Peters WH, Braat DD, Steegers-Theunissen RP. The importance of 
folate, zinc and antioxidants in the pathogenesis and prevention of subfertility. Hum Reprod Update 
2007;13:163-74. 
44. Chavarro JE, Rich-Edwards JW, Rosner BA, Willett WC. Diet and lifestyle in the prevention of 
ovulatory disorder infertility. Obstet Gynecol 2007;110:1050-8. 
45. Haggarty P, McCallum H, McBain H, et al. Effect of B vitamins and genetics on success of in-
vitro fertilisation: prospective cohort study. Lancet 2006;367:1513-9. 
46. Vujkovic M, Steegers EA, Looman CW, Ocke MC, van der Spek PJ, Steegers-Theunissen RP. 
The maternal Mediterranean dietary pattern is associated with a reduced risk of spina bifida in the 
offspring. BJOG 2009;116:408-15. 



 - 19 - 

47. Wong WY, Merkus HM, Thomas CM, Menkveld R, Zielhuis GA, Steegers-Theunissen RP. 
Effects of folic acid and zinc sulfate on male factor subfertility: a double-blind, randomized, placebo-
controlled trial. Fertil Steril 2002;77:491-8. 
48. Vujkovic M, de Vries JH, Dohle GR, et al. Associations between dietary patterns and semen 
quality in men undergoing IVF/ICSI treatment. Hum Reprod 2009;24:1304-12. 
49. Moos MK. Preconceptional health promotion: a health education opportunity for all women. 
Women Health 1989;15:55-68. 
50. Riskin-Mashiah S, Auslander R. Preconception care--when and what: the attitude of Israeli 
gynaecologists to preconception counseling. Arch Gynecol Obstet 2007;275:367-71. 
51. Tough SC, Clarke M, Hicks M, Cook J. Pre-conception practices among family physicians and 
obstetrician-gynaecologists: results from a national survey. J Obstet Gynaecol Can 2006;28:780-8. 
52. Atrash H, Jack BW, Johnson K. Preconception care: a 2008 update. Curr Opin Obstet Gynecol 
2008;20:581-9. 



 - 20 - 

 
 



 - 21 - 

 Chapter 2 

 

Increased preconception omega-3 

polyunsaturated fatty acid intake improves 

embryo morphology 

 

 

 

 

 

 

 

 

 

F. Hammiche 

Marijana Vujković 

Willeke Wijburg 

Jeanne H. de Vries 

J.S.E. Laven  

R.P.M. Steegers-Theunissen 

 

 

Based on Fertility and Sterility 2011;95(5):1820-3 



 - 22 - 

 



 - 23 - 

ABSTRACT 
 

This study investigates associations between preconception dietary intake of omega-6 and omega-3 

poly-unsaturated fatty acids (LC-PUFAs) on estradiol levels and IVF/ICSI outcome.  

An observational prospective study was set up in a tertiary referral fertility clinic at the Erasmus 

University Medical Center, Rotterdam, the Netherlands. Two-hundred-thirty-five women undergoing 

IVF/ICSI treatment were included. Main outcome measures consisted of estradiol in blood, number 

of follicles and embryo morphology. 

Estradiol on cycle day 2 was positively associated with a high intake of total omega-3 LC-PUFA (β 

68.5, se 34.8, p≤0.05), in particular ALA (β 90.4, se 35.7, p ≤0.01). A lower estradiol response on the 

hCG day was observed in the groups with the highest EPA (β -1062, se 492, p≤0.03) and DHA (β -

1006, se 485, p≤0.04) intakes. The number of follicles was inversely associated with high intakes of 

EPA (β -1.75, se 0.87, p≤0.05) and DHA (β -1.78, se 0.85, p≤0.04). Positive associations were 

established between embryo morphology and total omega-3 (linear β 0.63, se 0.26, p≤0.02), ALA (β 

0.56, se 0.26, p≤0.03) and DHA (β 0.17, se 0.09, p≤0.05) LC-PUFAs intakes. Estradiol and fertility 

outcome parameters were not associated with omega-6 LA intake. 

Omega-3 LC-PUFA intake in women undergoing IVF/ICSI treatment is associated with improved 

embryo morphology.  
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Introduction 

Dietary intake of long chain poly-unsaturated fatty acids (LC-PUFAs) are beneficial in the 

prevention of cardiovascular disorders.1,2 The role of LC-PUFAs in human fertility has 

received little attention thus far.3 Several animal studies, however, reported that dietary fats 

influence oocyte maturation, corpus luteum function and embryo development.4-6  

LC-PUFAs are essential of cell membranes and after activation by hormones and growth 

factors they become precursors of eicosanoids, such as prostaglandins, leukotrienes and 

tromboxanes, which are important mediators in inflammatory, trombogenic and vascular 

mechanisms.3,4,7 Based on their chemical structure we distinguish omega-3 and omega-6 LC-

PUFAs. Omega-3 LC-PUFAs comprise alpha-linolenic acid (ALA), eicosapentaenoic acid (EPA) 

and docosahexaenoic acid (DHA). ALA – present in green vegetables – can be converted in 

EPA and DHA.7,8 However, this conversion is insufficient to meet daily EPA and DHA needs.  

Therefore, the intake of fish as rich dietary source of these omega-3 LC-PUFAs is 

recommended. Its consumption, however, is rather low in Western countries and results in 

an increased ratio of omega-6 to omega-3 LC-PUFAs (10:1).4 The most important omega-6 

PUFA is linoleic acid (LA) serving as precursor of arachidonic acid (AA) and present in nearly 

all vegetable oils, while substantial amounts of AA are present in meat and eggs.8 The effects 

of various amounts of individual omega-3 and omega-6 LC-PUFAs on human reproduction, 

however, is limited.9  Therefore, the aim of this study was to investigate associations 

between the periconception maternal dietary intake of omega-3 and omega-6 LC-PUFAs on 

estradiol levels and reproductive outcome parameters in a periconception prospective 

observational study of women undergoing in vitro fertilization (IVF) or intracytoplasmatic 

sperm injection treatment (ICSI). 
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Materials and Methods 

Study Population 

The Food Lifestyle and Fertility Outcome Study (FOLFO Study) is a prospective preconception 

observational study which focuses on the influence of nutrition and lifestyle on fertility and 

pregnancy outcome. The design of the study has been described previously.10 In summary, 

between September 2004 and January 2007 subfertile couples undergoing IVF/ICSI 

treatment at the Erasmus University Medical Center, Rotterdam, the Netherlands were 

invited to participate. Of the eligible IVF/ICSI population, 66% of the couples participated in 

the FOLFO study (n=251). We excluded couples who suffered from known conditions that 

may influence IVF/ICSI treatment outcome, such as oocyte donation, endometriosis and 

hydrosalpinx resulting in 235 women for this study.  

 

The study protocol was approved by the Central Committee for Human Research in The 

Hague, the Netherlands and the Medical Ethical and Institutional Review Board of the 

Erasmus University Medical Center in Rotterdam, the Netherlands. All participants gave their 

written informed consent and all obtained materials and questionnaires were processed 

anonymously. 

 

General Questionnaire 

All participants filled out a general questionnaire from which the following data were 

extracted: height, weight, ethnicity, education level, vitamin use, and other lifestyle factors. 

Ethnicity and education level were classified according to the definitions of Statistics 

Netherlands.11 Education level was divided into three categories: low (primary, lower 

vocational, or intermediate secondary), intermediate (intermediate vocational or higher 
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secondary) and high (higher vocational, or university). Ethnicity was divided into Dutch 

Native, European other and Non-European.11 

 

Food Frequency Questionnaire 

All participants filled out a food frequency questionnaire (FFQ) to estimate habitual food 

intake over the previous four weeks. This FFQ was originally developed at the division of 

Human Nutrition, Wageningen University, the Netherlands and validated for intake of 

energy, B-vitamins and fats.12,13 The FFQ was provided to the subfertile woman on the day of 

oocyte retrieval and was returned on the day of embryo transfer. The researcher verified the 

completeness of the FFQ. In case of missing or unclear information about type and amount 

of foods consumed, additional questions were asked by telephone. The intake of energy and 

fatty acids were compared with the Dietary Reference Intake (DRI) for the Netherlands.14 To 

evaluate the existence of underreporting the ratio of total energy intake to basal metabolic 

rate (BMR) was calculated using the new Oxford equation for women aged 30-60 years: BMR 

(mJoule/day) = 0.0407 x weight (in kilogram) + 2.90.15 This value is an estimation of the 

physical activity level (PAL) of a sedentary lifestyle. The physical activity level was then 

calculated by dividing the mean reported energy intake by the mean BMR. According to 

Goldberg et al. (1991) a cut-off point for underreporting for a sedentary lifestyle is a ratio of 

≤1.35.16 

 

In Vitro Fertilization Procedure 

In our study population, three IVF stimulation treatments were used. In one group women 

started ovarian stimulation with daily injections of 150 IU recombinant Follicle Stimulating 
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Hormone (rFSH) subcutaneous on cycle day 2 (Puregon, Schering Plough, Houten, the 

Netherlands or Gonal-F, Merck Serono Benelux BV, Schiphol-Rijk, the Netherlands).  

Administration of daily subcutaneous Gonadotropin Releasing Hormone (GnRH) antagonist 

(Orgalutran, NV Schering Plough, or Cetrotide, Merck Serono Benelux BV) was started when 

at least one follicle was ≥14 mm. In another treatment group women were randomized for 

either conventional ovarian stimulation or mild ovarian stimulation. Patients assigned to the 

conventional ovarian stimulation started the GnRH agonist 0.1 mg/day subcutaneous on 

cycle day 21 of the menstrual cycle. After two weeks of the GnRH regimen, co-treatment 

with rFSH 225 IU/day subcutaneous was started. Patients assigned to the mild ovarian 

stimulation were treated with a fixed dose of 150 IU/day rFSH subcutaneous started on cycle 

day 5. As soon as the leading follicle reached a diameter of 14 mm the GnRH-antagonist of 

0.25 mg/day subcutaneous was added to the regimen. To induce final oocyte maturation a 

single dose of 10.000 IE human chorionic gonadotropin (hCG) subcutaneous was 

administered in all three regimens as soon as the leading follicle reached a diameter of at 

least 18 mm and at least one additional follicle reached a diameter of 15 mm. 
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Results 
 

Data from 235 subfertile women were evaluated and the general characteristics are shown 

in Table 1. Women had a mean age of 35.0 years (sd 4.2) and a BMI of 23.7 kg/m2 (sd 3.7). 

Furthermore, the majority was of Dutch origin (70.4%), highly educated (44.0%), consumed 

alcoholic drinks on a frequent basis (91.5%), and used folic acid and/or a folic acid containing 

multivitamin supplement (88.5%). Only 8.9% of the women smoked. In Table 2 total energy, 

macronutrient and LC-PUFA intakes are depicted and compared with the DRI for women 

between 19-40 years of age as reference.19  The average total energy was slightly lower, fat, 

protein and carbohydrate intake were higher than the recommendations. The omega-3 LC-

PUFA intake – in particular of EPA and DHA – was lower whereas the omega-6 LA LC-PUFA 

intake was higher than the recommendations for women in the age group of 19-40 years 

and pregnant women. The omega-6/omega-3 ratio was 12.1/1.14; this is higher than 

recommended. To evaluate whether the relatively low omega-3 intake was due to the 

general underreporting of food intake, we calculated the PAL measure.  

This revealed that the PAL was 1.44, which is above the cut-off level of 1.35; therefore 

underreporting is not very likely. Table 3 shows associations, linear and after 

dichotomization in high (>p85) and low (<p15) LC-PUFA intakes, in relation to baseline and 

response estradiol levels and reproductive outcome parameters. Baseline estradiol on cycle 

day 2 was positively associated with high intakes of omega-3 LC-PUFA ALA (β 89.3(36.7) 

p≤0.05). Estradiol response was negatively associated with high intakes of EPA (β=-

1100.2(498.4), p≤0.05) and DHA (β=-1065(492.6), p≤0.05) also substantiated with a linear 

association of DHA (β=-401.4(201.1), p≤0.05). Number of follicles was inversely associated 

with high intakes of total omega3 (β=-1.79(0.58), p≤0.01), EPA (β=-1.49(0.49), p≤0.01) and 

DHA (β=-1.60(0.49), p≤0.01). There were significant positive associations between embryo 
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morphology and total omega3 intake (β=0.16(0.08), p≤0.05), ALA (β=0.56(0.26), p≤0.05) and 

DHA (β=0.18(0.09), p≤0.05). Estradiol and fertility outcome parameters were not associated 

with omega6 intake. However, high omega6:omega3 ratio was positively associated with the 

number of follicles.  
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Discussion 

To our knowledge this is the first study to evaluate omega-3 and omega-6 LC-PUFA intakes in 

association with estradiol status and response, number of follicles, and embryo morphology 

in women undergoing IVF/ICSI treatment. We demonstrate that in these women the dietary 

intake of omega-3 LC-PUFAs – in particular of EPA and DHA – is much lower than the dietary 

recommended intakes, in contrast to the adequate intakes of omega-6 LC-PUFA. Women 

with the highest intake of the omega-3 LC-PUFA ALA showed a higher baseline estradiol 

level, and in particular the high intakes of EPA and DHA reduced the estradiol response and 

number of follicles after ovarian stimulation treatment. This is in line with the improved 

embryo morphology by high intakes of omega-3 LC-PUFA, in particular ALA and DHA.  

The high intake of the omega-3 LC-PUFA ALA was also associated with a higher baseline 

estradiol level. The importance of the baseline estradiol level for reproductive outcomes is 

controversial.20 Omega-3 LC-PUFAs are an essential source for the synthesis of cholesterol, 

which acts as precursor of estradiol and other steroids. This is a possible pathway in which a 

high ALA intake increases follicular steroid synthesis.4 Other studies support this finding by 

showing that trans fatty acids, mono-unsaturated fat and poly-unsaturated fat intake 

influence the levels of estradiol as well.21,22 Two studies investigated potential associations 

between maternal omega-3 and omega-6 LC-PUFAs on estradiol levels during pregnancy, 

however, without significant results.23,24 These negative results are suggested to be due to 

the type of fatty acid intake.  

In this study, we also showed that a high intake of EPA and/or DHA reduced the estradiol 

response and number of follicles after ovarian stimulation treatment. In an animal study it 

has been shown that consumption of high levels of omega-3 LC-PUFAs resulted in elevated 

ova release, whereas consumption of moderate levels had no effect on ova release in rats.25 
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However, in this study fish oil was used, which included different omega-3 LC-PUFAs, 

therefore the enhancing effect couldn’t be attributable to a specific omega-3 LC-PUFAs or 

their combination, as well as the dietary level. Our findings suggest a beneficial effect of 

omega-3 LC-PUFA intake on fertility outcomes, since a more physiological approach to 

ovarian stimulation, resulting in fewer dominant follicles, may allow only the healthiest 

follicles and oocytes to develop in competent embryos.26 In addition, the existence of an 

estradiol window with an upper threshold at the time of hCG administration has been 

suggested.20,27 An elevation above this threshold could be deleterious for embryonic 

implantation. It has been shown that uterine receptivity is affected in patients undergoing 

ovulation induction with high serum estradiol concentrations on the day of hCG 

administration, regardless of the number of oocytes retrieved and the progesterone 

concentration. It would be interesting to study the associations with number of 

implantations and pregnancies as well. However, due to the limited power this was not the 

aim of the current study. 

Moreover, our finding is consistent with several studies in rats fed a diet high in EPA and 

DHA showing a decrease in the frequency of ovulations.28-31 EPA and DHA have been 

reported to elicit a reduction of ovarian synthesis of prostaglandin F2α, which is involved in 

follicle growth and ovulation and therefore may partly explain the inverse effect on number 

of follicles.32-34 The mechanism, by which EPA and DHA inhibit secretion of prostaglandin F2α 

is however not fully understood. Furthermore, the reduction of follicle numbers results in 

less estradiol synthesizing granulosa cells leading to a reduction of the estradiol level. In 

addition, omega-3 LC-PUFAs may affect the responses of the granulosa cells to 

gonadotropins due to interactions with transcription factors involved in the steroidogenic 

pathway.35 The specific mechanism by which EPA and DHA affect the estradiol response and 
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number of follicles could not be determined in this study and more research needs to be 

carried out to fully understand underlying mechanisms.  

In a previous study only omega-6 LC-PUFA intake seemed to increase the number of 

follicles.4 This could not be confirmed by our findings and might be due to the fact that the 

omega-6 LC-PUFA intake in our study was within the range of the recommended daily 

intake.36 In contrast, intakes of EPA and DHA were much lower than the dietary 

recommended intakes, which may be the reason of the demonstrated associations between 

EPA, DHA intake and fertility outcome parameters. These data, therefore, very much support 

the recommendation to increase fish and fish oil intakes to cover the needs of these omega-

3 LC-PUFAs during the reproductive period. 

In this study we also showed positive associations between the intake of omega-3 LC-PUFAs, 

specifically ALA and DHA, and embryo morphology. Other research groups showed beneficial 

effects of omega-3 LC-PUFA supplements on embryo morphology.37,38 Although, Wakefield 

et al.39 suggested that high dietary intakes of omega-3 LC-PUFA reduces normal embryo 

development by perturbation of mitochondrial metabolism. Their study population, 

however, was too small to show these effects. 

The major strength of our study is its prospective design. Therefore, it is unlikely that recall 

bias has confounded the data on the dietary intakes of LC-PUFA, covariates and 

confounders. A limitation of our study is the lack of information on the omega-6 LC-PUFA 

arachidonic acid. This LC-PUFA could not be determined from the FFQ and therefore omega-

6 intake was based on LA intake only. However, among Belgian women of reproductive age 

the arachidonic acid intake was only 0.6% of the total omega-6 LC-PUFA intake. Therefore, 

the effects of the slight underestimation of the total omega-6 LC-PUFA are considered to be 

minimal.40 Furthermore, we assessed the LC-PUFA intakes with a FFQ and had no 
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opportunity to measure the biomarkers in blood or follicular fluid. The dietary intake of 

omega-3 LC-PUFA, however, results in increased concentrations in plasma and tissues and is 

therefore associated with the availability in tissues.41-43  Additionally, we adjusted the 

nutrient intakes for total energy intake and included BMI and total energy intake as 

confounders, further eliminating extraneous variation which may cause spurious 

associations not attributable to the effect of short-term PUFA intake on fertility outcome 

parameters. 

 

In conclusion, for the first time significant associations were observed between intakes of 

omega-3 LC-PUFAs and baseline and response estradiol serum levels after ovarian 

stimulation treatment, and on embryo morphology. We suggest that dietary LC-PUFAs 

significantly contribute to the estradiol levels and as such to the number of follicles and 

embryo morphology. Because the intake of omega-3 LC-PUFAs was relatively low, and the 

omega-6 LC-PUFA intake was according the recommendations, the dietary intake of 

especially fish and fish oils should be encouraged in women during their reproductive years 

and in particular in those undergoing IVF/ ICSI treatment. 
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Table 1  

General characteristics of the study population 

Characteristic 
Participants 

(n 235) 

age1,2 35.0 ± 4.2 

BMI1,3 23.7 ± 3.7 

Dutch ethnicity4 164 (70.1) 

high education4 103 (44.0) 

smoking4 21 (8.9) 

medication4 36 (15.3) 

alcohol4 215 (91.5) 

folic acid use4 207 (88.5) 

cause of subfertility4  

female 51(21.7) 

male 86 (36.6) 

male and female 15 (6.4) 

idiopathic 83 (35.3) 

fertilization by IVF4 146 (62.1) 

stimulation scheme4  

P02-150 174 (76.7) 

P05-150 32 (14.1) 

DLP-225 21 (9.1) 

estradiol5,6,7  138.5 (41.0 - 2051.0) 

estradiol5,6,8 2484 (233 - 20018) 

Data are presented as 1means ± sd, 2years, 3kg/m2, 4n (%), 5pmol/L, 6median (min-max), 7at 
baseline, 8after stimulation.  
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Table 2   

Nutrient Intakes 

Nutrient Unit Participants DRI4 

Energy intake kJoule/day 
7861 (1999 - 

29814) 
8100 

Total fat g/day 70.0 (13.4 - 28.7) 50 

 adjusted 81.2 (30.5 - 124.7)  

Total protein g/day 70.8 (24.2 - 175.3) 50-52 

 adjusted 74.7 (43.7 - 100.7)  

Total carbohydrates g/day 223 (59 - 980) 270 

 adjusted 247 (136 - 386)  

Omega 6 PUFA1    

LA g/day 12.1 (1.5 - 49.8) 12.0 

 adjusted 13.6 (5.6 - 33.5)  

Omega 3 PUFA1    

ALA g/day 0.98 (0.18 - 6.61) 1.1 

 adjusted 1.06 (0.47 - 5.37)  

EPA g/day 0.04 (0.00 - 0.38) EPA + DHA > 0.4 

 adjusted 0.05 (0.00 - 0.39) 

DHA g/day 0.07 (0.00 - 0.51) EPA + DHA > 0.4 

 adjusted 0.08 (0.00 - 0.52) 

Total omega 32 g/day 1.14 (0.28 - 7.42 )  

 adjusted 1.26 (0.49 - 1.63)  

omega-6: omega-3 ratio3  10.1 (3.5 - 20.7)  

Data are presented as  medians (min-max).  
1PUFA= poly unsaturated fatty acid. 
2EPA + DHA + ALA. 3LA / (ALA + EPA + DHA). 
4Dietary Reference Intakes: energy, The Hague: Health Council of the Netherlands 2001/19R (corrected 
edition June 2002) 
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Table 3   

Associations between omega LC-PUFA and fertility outcome 

 

Nutrient 
 

Estradiol  

cycle day 21 

Estradiol 

 hCG Day2 

no. of  

follicles1 

Embryo  

morphology3 

LA  (n 188) (n 178) (n 194) (n 175) 

linear β (se) –49.1 (40.1) –662.9 (667) –0.50 (0.67) 0.50 (0.29) 

 p 0.22 0.32 0.45 0.08 

>p85 (17.9 g) β (se) 3.5 (41.7) –415.2 (679.8) –0.33 (0.66) 0.54 (0.32) 

 p 0.93 0.54 0.61 0.10 

<p15 (10.6 g) β (se) –10.7 (33.9) 472.9 (574.8) –0.12 (0.57) –0.22 (0.24) 

 p 0.75 0.41 0.84 0.36 

ALA      

linear β (se) –5.0 (35.5) –672.2 (582.5) –0.19 (0.45) 0.56 (0.26) 

 p 0.89 0.25 0.67 0.03 

>p85 (1.5 g) β (se) 89.3 (36.7) –709.4 (622.9) –0.23 (0.65) 0.09 (0.27) 

 p 0.02 0.26 0.73 0.75 

<p15 (0.8 g) β (se) –14.9 (38.5) -21.5 (639) 0.05 (0.66) –0.42 (0.26) 

 p 0.70 0.97 0.94 0.11 

EPA      

linear β (se) 8.1 (11.3) –301.9 (182.6) –6.29 (2.93) 0.09 (0.08) 

 p 0.48 0.10 0.03 0.26 

>p85 (0.1 g) β (se) –23.4 (30.7) –1100.2 (498.4) –1.49 (0.49) 0.11 (0.22) 

 p 0.45 0.03 0.00 0.62 

<p15 (0.01 g) β (se) –27.2 (39.5) 746.7 (637.2) –0.23 (0.67) –0.19 (0.27) 

 p 0.49 0.24 0.73 0.50 

Adjusted for 1ethnicity, age, BMI, smoking, alcohol, total energy intake, stimulation scheme, folic acid , 
IVF/ICSI treatment; 2estradiol on cycle day 2, ethnicity, age, BMI, smoking, alcohol, total energy intake, 
stimulation scheme, folic acid, IVF/ICSI treatment; 3age, BMI, ethnicity, total energy intake, IVF/ICSI, 
stimulation scheme. 

 



 - 37 - 

 

Table 3 continued   

Associations between omega LC-PUFA and fertility outcome 

 

Nutrient 
 

Estradiol  

cycle day 21 

Estradiol 

 hCG Day2 

no. of  

follicles1 

Embryo  

morphology3 

DHA  (n 188) (n 178) (n 194) (n 175) 

linear β (se) 8.4 (12.2) –401.4 (201.1) –4.02 (2.07) 0.18 (0.09) 

 p 0.49 0.05 0.05 0.04 

>p85 (0.2 g)  β (se) –24.7 (30.2) –1065.0 (492.6) –1.60 (0.49) 0.15 (0.22) 

 p 0.42 0.03 0.00 0.50 

<p15 (0.02 g) β (se) –29.7 (35.8) 1167.5 (584.7) 0.81 (0.65) –0.44 (0.26) 

 p 0.41 0.05 0.21 0.09 

Total omega 3      

linear β (se) 9.0 (11.0) –373.2 (182.7) –2.48 (1.22) 0.16 (0.08) 

 p 0.42 0.04 0.04 0.05 

>p85 (1.7 g) β (se) -7.28 (36.2) –550.5 (608.3) –1.79 (0.58) 0.21 (0.26) 

 p 0.84 0.37 0.00 0.41 

<p15 (1.0 g) β (se) –29.8 (36.5) 1183.1 (596.5) 0.46 (0.65) –0.45 (0.26) 

 p 0.42 0.05 0.48 0.09 

O6:O3 ratio      

linear β (se) –31.3 (43.0) 620.2 (707.6) 0.04 (0.07) –0.30 (0.31) 

 p 0.47 0.38 0.61 0.33 

>p85 (16.2) β (se) –39.6 (39.4) 590.0 (643.1) 1.67 (0.76) –0.45 (0.30) 

 p 0.32 0.36 0.03 0.13 

<p15 (7.3) β (se) –30.4 (33.1) –629.1 (556.2) 0.35 (0.61) 0.19 (0.24) 

 p 0.36 0.26 0.56 0.43 

Adjusted for 1ethnicity, age, BMI, smoking, alcohol, total energy intake, stimulation scheme, folic acid, 
IVF/ICSI; 2estradiol on cycle day 2, ethnicity, age, BMI, smoking, alcohol, total energy intake, stimulation 
scheme, folic acid, IVF/ICSI treatment; 3age, BMI, ethnicity, total energy intake, IVF/ICSI, stimulation 
scheme. 
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Abstract 

Folate is a methyl donor. Availability of folate affects DNA methylation profiles, and thereby gene 

expression profiles. We investigate the effects of low dose folic acid use (0.4 mg/day) on the ovarian 

response to mild and conventional ovarian stimulation in women. 

In a randomized trial among subfertile women, 24 and 26 subjects received conventional- and mild 

ovarian stimulation, respectively. Blood samples were taken during the early follicular phase of the 

cycle prior to treatment and on the day of hCG administration for determination of serum total 

homocysteine, AMH, estradiol and folate. Folic acid use is validated by questionnaire and serum 

folate levels. Preovulatory follicles were visualised, counted and diameters recorded using 

transvaginal ultrasound. The relation between folic acid use and ovarian response is assessed using 

linear regression analysis. 

Folic acid use modified the ovarian response to ovarian stimulation treatment. The estradiol 

response was higher in non-folic acid users receiving conventional treatment (βinteraction=0.52, [0.07-

0.97]; p=0.03), this effect was independent of serum AMH levels and preovulatory follicle count. In 

the conventional treatment the mean follicle number was also greater in non-users compared to the 

users group (14.1 vs. 8.9, p=0.03)  

Low dose folic acid use attenuates follicular and endocrine responses to conventional stimulation, 

independent of AMH and follicle count. The nature of this observation suggests that the effect of 

folic acid is most prominent during early follicle development, affecting immature follicles. 

Deleterious effects of folate deficiency, like DNA hypomethylation and oxidative stress can help to 

explain our observations. 
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 Introduction 

In women undergoing controlled ovarian hyperstimulation (COH) during assisted 

reproductive treatment (ART) there is still unpredictable inter- and intraindividual variability 

in the ovarian response to COH.1 Ovarian response is defined as ‘the endocrine and follicular 

reaction of the ovaries to a stimulus’.1 There is an optimum quantitative ovarian response to 

COH, where both a poor and high ovarian response to COH are associated with unfavorable 

treatment outcome.2 Knowledge of which determinants influence ovarian response to 

gonadotrophins would improve the predictions of the response to COH. This would reduce 

the number of treatment cycles required to achieve pregnancy, reduce the incidence of 

treatment complications or offer the possibility to tailor the treatment protocol according to 

patient characteristics. Accurately predicting ovarian response to gonadotrophins is 

currently not possible. 

Folate deficient women undergoing COH have lower oocyte quality, lower pregnancy rates 

and impaired ovarian function.3-7 The underlying mechanism, however, is not known. The 

natural B-vitamin folate is involved in numerous metabolic pathways including cell cycle 

regulation, amino acid biosynthesis and protein processing.8 Folate primarily serves as a 

methyl-group donor for these reactions. In a recent study in ewes fed a methyl deficient 

diet, low methyl-group availability increased mRNA expression of genes involved in 

mediating the ovarian response to gonadotrophins.9  

Epigenetic mechanisms aim to maintain the gene expression profile of cells after mitotic 

division. Epigenetic mechanisms are essentially post-replication modifications superimposed 

on the genome, regulating gene expression without causing changes in DNA sequence. In 

contrast to the genetic background of the individual, the epigenetic composition of the 

genome is sensitive to environmental influences, including nutrition, which effectively 
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modify gene expression.10-11 DNA methylation is an epigenetic mechanism, dependent on 

the availability of methyl groups. In experimental animal and retrospective human studies, in 

utero exposure to low levels of methyl group donors lead to an altered DNA methylation 

profile and phenotype in offspring.12-13  

Due to the nature of complex pathways in which folate is involved, especially highly 

proliferating cells, including those in developing ovarian follicles, are affected by folate 

deficiencies. Therefore, we hypothesized that the ovarian response to gonadotrophins is 

affected by the availability of methyl-donors, like folate. In a randomized clinical trial, 

comparing a mild- and conventional ovarian stimulation protocol, we aim to study the effect 

of low dose folic acid supplement use on specific biomarkers of the folate dependent 

homocysteine pathway and estradiol concentrations following conventional- and mild 

ovarian stimulation treatment. 
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Materials and methods 

Study design 

The Food Lifestyle and Fertility Outcome (FOLFO) study was designed to investigate the 

influence of periconception nutrition and lifestyle factors on biochemical, clinical fertility and 

pregnancy outcome parameters following IVF or intracytoplasmic sperm injection (ICSI) 

treatment. The FOLFO study comprises FOLFO I (an observational study) and FOLFO II (a 

randomized controlled trial). The FOLFO II study is designed to compare mild ovarian 

stimulation treatment with conventional ovarian stimulation treatment with regard to 

maternal biochemical, endocrine and clinical parameters.  

Eligible couples visiting the Erasmus MC, University Medical Center in Rotterdam, The 

Netherlands, with an indication for IVF or ICSI treatment were invited to participate in the 

FOLFO II study. Exclusion criteria for the FOLFO II study where: oocyte donation, 

endometriosis, hydrosalpinx, a priori indication for ICSI treatment, age >37 years old, BMI 

<18 or >29 kg/m2, irregular menstrual cycle, previous IVF treatment without embryo 

transfer, recurrent abortion, abnormal karyotype of man/woman and/or uterus anomalies. 

These criteria served to select only those patients with unexplained subfertility in order to 

be able to asses the role of food and lifestyle factors. A higher cancellation rate before 

oocyte retrieval and fewer embryos were expected following mild ovarian stimulation.14 

Therefore, randomization to one of the two treatment groups was performed according to a 

computer generated randomization schedule in a ratio of 2:3 (conventional group : mild 

group), assigned via numbered sealed envelopes. After the patient agreed to participate, the 

treating physician opened the next available numbered envelope on entry into the study 

during the preparatory IVF consultation. Of all eligible couples (n=161), 54 participated in the 

FOLFO II study and 49 participated in other clinical studies (Figure 1). Fifty-eight couples did 
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not participate in any of the studies because the extra effort for participation relative to 

normal treatment was considered too great or they did not see a clear benefit in 

participating. At the end of the inclusion period, 24 couples were randomized to the 

conventional protocol and 30 couples to the mild protocol. After randomization 4 women 

with exclusion criteria appeared to be included into the study, they were therefore excluded 

from the final analysis.  

When the allocated treatments commenced all couples filled out a questionnaire regarding 

nutrition, lifestyle, medication and disease history. Blood samples were collected for all 

couples on cycle day (CD) 2, before treatment commenced. On the day of hCG 

administration serum was collected from women only.  

The study protocol was approved by the Central Committee for Human Research (CCMO) in 

The Hague, The Netherlands and the Medical Ethical Committee (MEC) and Institutional 

Review Board of the Erasmus MC, University Medical Center in Rotterdam, The Netherlands. 

All participants gave their written informed consent and all materials and questionnaires 

were anonymously processed.   

 

IVF procedure 

After randomization, patients assigned to conventional ovarian stimulation treatment were 

treated with the GnRH agonist Triptorelin (Decapeptyl®, Ferring BV, Hoofddorp, The 

Netherlands) at 0.1 mg/day s.c., starting on CD21 of the menstrual cycle preceding the actual 

stimulation cycle. After two weeks of the GnRH-agonist regimen, co-treatment with rFSH 

225 IU/day s.c. (Puregon®, Schering-Plough, Houten, The Netherlands) was initiated. Patients 

assigned to mild ovarian stimulation treatment were treated with a fixed dose of 150 IU/day 

rFSH s.c. (Puregon®, Schering-Plough, Oss, The Netherlands) from CD 5 onwards. As soon as 
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the leading follicle reached a diameter of 14mm, a GnRH-antagonist (Orgalutran®, Schering-

Plough, Houten, The Netherlands) was administered at 0.25 mg/day s.c.. To induce final 

oocyte maturation a single s.c. dose of 10,000 IE hCG (Pregnyl®, Schering-Plough, Houten, 

The Netherlands) was administered in both regimens as soon as the leading follicle reached 

a diameter of at least 18 mm and at least one additional follicle reached a diameter of 15 

mm or more. Oocytes were retrieved 35 hours after hCG injection by transvaginal 

ultrasound-guided aspiration of follicles. 

 

Sample collection and analysis 

Isolated oocytes were washed and transferred to a separate droplet of medium in order to 

monitor their quality. The monofollicular fluid samples were centrifuged for 10 min at 1,700 

x g to separate red blood cells (RBC), leucocytes and granulosa cells. The samples were 

frozen without preservatives and stored at -20°C until assayed. 

Venous blood samples were drawn from each woman on CD2, i.e. the early follicular phase 

of the menstrual cycle preceeding the treatment cycle and on the day of hCG administration. 

For the determination of folate, cobalamin, pyridoxine and hormones, venous blood samples 

were drawn into dry vacutainer tubes and allowed to clot. After centrifugation at 2,000 x g, 

serum was collected for assay. Anti-Müllerian hormone (AMH) levels were measured using 

an enzyme-linked immunosorbent assay (ELISA) (Immunotech-Coulter, Marseille, France). 

Folate and cobalamin were analysed using an immunoelectrochemoluminescence assay 

(Roche Modular E170, Roche Diagnostics GmbH, Mannheim, Germany). These assays are 

calibrated to detect the folate form 5-methyl-tetrahydrofolate most effective. Serum 

concentrations of FSH were measured by luminescence-based immunometric assay 

(Immulite 2000, Siemens Diagnostics, Los Angeles, CA, USA). Estradiol was determined using 
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a coated tube radioimmunoassay obtained from the same supplier. For the determination of 

plasma total homocysteine (tHcy) and pyridoxine in whole blood, venous blood samples 

were drawn into ethylenediamine tetra-acetate (EDTA) containing vacutainer tubes. The 

EDTA-blood samples were placed on ice and within 1 hour, plasma was separated by 

centrifugation. Total homocysteine in EDTA plasma and pyridoxine as pyridoxial’5-phosphate 

in whole blood was determined using high-performance liquid chromatography with 

reversed phase separation and fluorescence detection.  

Inter-assay coefficients of variation for folate were 4.5% at 13 nmol/L and 5.7% at 23 nmol/L; 

for cobalamin 3.6% at 258 pmol/L and 2.2% at 832 pmol/L; for tHcy 4.8% at 14.6 mmol/L and 

3.3% at 34.2 mmol/L; for AMH this coefficient was <10%;  for FSH < 5.8%; and for estradiol, 

<8.8%. The detection limit for folate was 1.36 nmol/L, for cobalamin 22 pmol/L, for 

pyridoxine 5 nmol/L; for tHcy 4 mmol/L, for AMH 0.1 mg/L, for FSH 0.1 U/L and for estradiol 

10 pmol/L.  

 

Statistical analysis 

Prior to statistical analyses, all continuous variables were log-transformed, obtaining a near 

normal distribution of data suitable for parametric statistical testing. Normality was assessed 

using histograms and Q-Q plots. Measures of location and spread are depicted as Geometric 

Mean (GM) and Inter Quartile Range (IQR), respectively. When a suitable distribution was 

not attained after transformation, the variable is presented as median (range).  

Comparison of the two treatment groups and subsequent sub-groups was done using an 

unpaired t-test or Mann-Whitney-U test, were appropriate. Proportions were compared 

using a chi-square test. The influence of COH on the biochemical levels after COH was 

determined using paired t-tests.  
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To allow for adjustment, linear regression methods were used to investigate the relation 

between baseline biomarkers and endocrine responses after COH. Regression parameters 

are reported with their 95% confidence intervals. Collinearity was assessed using the VIF 

statistic, a VIF of ≥4 was considered to indicate collinearity. In the final model the highest 

observed VIF was 3.4. In figures, line fitting to data points was conducted using the least 

squares estimate.  

Folic acid supplement use was confirmed by serum folate levels. Patients were considered 

folic acid supplement users when the serum folate level was ≥22.5 umol/L .15 

 At the moment of study initiation there was no literature on a possible effect size, therefore 

a sample size estimate was not done. A p-value <0.05 was considered statistically significant. 

All statistical analyses were done using SPSS 15.0 for Windows software (SPSS Inc., Chicago, 

IL, USA). 
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Results 

Study population 

At baseline, there were no significant differences with regard to patient characteristics 

between treatment groups (Table I). In the conventional group, self reported folic acid use 

was 66.7%, in the mild group this was 80.8%. Self reported use is confirmed in CD2 serum 

levels in 62.5% and 76.9%, respectively.  

 

Biochemical parameters 

At baseline, there were no significant differences with regard to biochemical parameters 

between treatment groups (Table II).  

Baseline anti-Müllerian hormone (AMH) levels predict the ovarian response after COH (βAMH 

= 0.43, [0.14-0.72]; p<0.01). On the day of hCG administration treatment groups showed 

considerable differences with respect to estradiol concentrations, with the response in the 

conventional protocol being the highest (4,293 pmol/L vs. 2,706 pmol/L; p=0.03). Also, 

within each treatment group we observed a decline of tHcy levels relative to basal 

concentrations, where the median decline was more profound in the conventional 

stimulation treatment arm than that observed in the mild stimulation treatment arm (-1.20 

umol/L vs. -0.7 umol/L; p<0.01 and p=0.01, respectively). This observation was further 

analysed using a linear regression which showed a differential tHcy decline between the 

stimulation protocols (βprotocol = 0.15, [0.06-0.24]; p<0.01). Furthermore, AMH levels declined 

after stimulation treatment, which is different between the stimulation protocol (βprotocol = 

0.57 [0.34-0.79], p<0.001).  

After stratification for folic acid use and stimulation treatment, women in the conventional 

stimulation protocol, who did not use folic acid supplements, had an increased ovarian 
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response to COH (users: 3,482 pmol/L (conventional) vs. 2,978 pmol/L (mild); p=0.55 and 

non-users: 6,190 pmol/L (conventional) vs. 1,996 pmol/L (mild); p<0.001) (Table III.)) To 

confirm effect modification, this finding was further investigated in a linear regression 

model, which showed an interaction between baseline serum folate levels and stimulation 

protocol with regard to the estradiol response after COH (βinteraction =0.52, [0.07-0.97]; 

p=0.03) (Figure II). The effect of folate on the ovarian response was independent of 

preovulatory follicle count and AMH levels. Including baseline concentrations of pyridoxine, 

cobalamin and homocysteine into the model did not alter the effect of serum folate on the 

outcome. 

 

Clinical outcome parameters after IVF or ICSI treatment 

As presented in Tables III and IV, the mean number of preovulatory follicles (10.6 vs. 7.4; 

p<0.01) and the median number of retrieved oocytes (12.3 vs. 6.7; p=0.001) differed 

between treatment groups. The number of follicles was positively correlated with the 

estradiol response (r=0.78; p<0.001). Furthermore, in the non-users stratum the 

conventional group had a higher number of preovulatory large antral follicles (14.1 vs. 6.9; 

p<0.01), an effect which was not observed in the low dose users stratum (8.9 vs. 7.6; p=0.29) 

(Table III). Fertilization rates where comparable (0.56 vs. 0.49; p=0.36) and the number of 

transferred embryos did not differ (Table IV.) The number of ongoing pregnancies was not 

different (29.2% vs. 15.4%; p=0.34).  
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Discussion 

The results of our study suggest that the ovarian response to gonadotrophins is subject to 

the availability of the methyl donor folate. After conventional stimulation treatment, women 

who did not use a low dose folic acid supplement had a higher ovarian response to 

stimulation treatment than those who did use a folic acid containing supplement. The effect 

of folate on the ovarian response is independent of follicle count and AMH levels. 

Kanakkaparambil et al. 9 have previously observed the interplay between COH and low 

methyl group availability in ewes fed a methyl deficient (MD) diet. They reported a higher 

ovarian response after rFSH administration in MD ewes. Further in vitro analysis of granulosa 

cells revealed higher FSH receptor (FSHR) mRNA expression as homocysteine levels 

increased, reflecting low methyl group availability. 

The ovarian response to mild stimulation treatment seems not affected by folic acid use. 

Incidentally, ovarian dynamics differ considerably between conventional- and mild ovarian 

stimulation treatment. After pituitary desensitizing using a GnRH-agonist, as is done in the 

conventional stimulation treatment arm, the proportion of immature, FSH-responsive 

follicles has increased in size.16 In addition to the higher doses of rFSH, this can partially 

underlie the overall higher ovarian response after conventional stimulation treatment. The 

mild stimulation protocol does not interfere with the initial follicle recruitment by the 

natural menstrual cycle, and the lower dose of rFSH only stimulates more mature follicles for 

which the FSH-threshold is higher.17 Nevertheless, despite a higher oocyte yield, clinical 

outcome was comparable after conventional and mild stimulation treatment.18 This suggests 

that the absolute number of competent oocytes is not different, but only the proportion of 

competent oocytes is higher after mild stimulation treatment. It seems that preconception 

folic acid use attenuates the ovarian response; by affecting only less mature follicles that are 
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stimulated after GnRH-agonist treatment. Therefore, this finding can help improve oocyte 

quality after COH. 

Clinical, animal and in vitro studies permit speculation on potential mechanisms underlying 

the observed effect. The intertwined folate-methionine cycle is the main route of utilization 

for folates. In the folate cycle, folates primarily serve as a substrate for DNA nucleotide 

synthesis, where deficiencies in folate can result in faulty DNA-repair and nucleotide 

synthesis.19-20 In the methionine cycle, folates serve as a substrate for the re-methylation of 

homocysteine into methionine. Thereafter, methionine-adenosyltransferase metabolizes 

methionine into S-Adenosyl-Methionine (SAM), which is the substrate for virtually all 

methylation reactions. Transmethylation of SAM forms S-Adenosyl-Homocysteine (SAH). 

Deficiencies in folate can result in accumulation of homocysteine and SAH.21 Although we 

have not assessed SAM and SAH, the concentrations of these biomarkers of methylation are 

more direct measures of the methylation potential than serum folate. Furthermore, 

deficiencies in co-factors for these reactions, like cobalamin and pyridoxine, can also 

aggravate derailment of the methionine-cycle. In our study, however, cobalamin and 

pyridoxine levels did not affect the results. Additionally, when deliberating the folate- and 

methionine cycle as an underlying mechanism, it is necessary to take into account the 

influence of some polymorphisms in genes coding for enzymes of these cycles. Some 

attenuate the efficiency of the folate- and methionine cycle, most notably the C677T 

polymorphism in the 5,10-methylenetetrahydrofolate reductase enzyme, which also 

associates with the ovarian response.7,22 Homocysteine is a reactive metabolite. 

Homocysteine metabolites can be wrongfully incorporated in protein instead of methionine, 

affecting protein function 23 and thereby possibly cellular function. Also, homocysteine can 

generate reactive oxygen species (ROS).24 Although ROS function as second messengers, an 
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excess of ROS results in oxidative stress. Oxidative stress affects female fertility and ART 

success.25 In this study, there was no significant effect of homocysteine on the outcome of 

interest. Also, folate availability affects the DNA methylation pattern and thereby the gene 

expression profile of a cell.21 The reduction in SAM levels and accumulation of homocysteine 

due to folate deficiency inhibit the activity of DNA-methylases.26 Investigation of the mouse 

genome indicates that the FSHR gene contains CpG repeats, which when methylated inhibit 

FSHR gene transcription.27 In addition, Kanakkaparambil et al.9 showed that incubating 

granulosa cells with homocysteine increases FSHR mRNA levels. Similarly, the aromatase 

enzyme, which converts androgens into estrogens, expressed in bovine granulosa cells is 

regulated by DNA methylation.28 Finally, steroidogenesis by the ovarian follicle is augmented 

by the Insulin-like Growth Factor (IGF) family 29, Insulin-like Growth Factors mainly elicit their 

effect through the type 1 IGF receptor 29, which is over expressed in folate deficient cells.30 

In proliferating tissues, shortages of methyl groups can inhibit the full methylation of hemi-

methylated DNA strands by DNA methylases, eventually leading to hypomethylation of DNA 

in progeny cells of originally methylated gene-loci.10 Such a process of passive demethylation 

is also seen in the early zygote.31 In addition, oxidative DNA products inhibit effective 

(re)methylation of DNA or induce loss of methylation.32-34  

Folate status is associated with the quality of many parameters in human reproduction, from 

gamete- and embryo quality to the occurrence of congenital malformations.3 In the current 

study, folates also attenuate the ovarian response to ovarian stimulation treatment. Studies 

in human show that there is an optimal ovarian response with regard to the number of 

retrieved oocytes 18 and attained estradiol levels after stimulation treatment 35 with respect 

to clinical outcome after ovarian stimulation treatment. High hormone levels affect oocyte 

competency 36 and endometrial receptivity to the embryo.37 Possibly, folates affect ovarian 
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stimulation treatment outcome by mediating the ovarian response gonadotrophins through 

interference with FSH receptor, aromatase availability and an increase in ROS. 

We also need to address strengths and limitations of our study. Given the small sample size, 

it will not be justified to draw strong conclusions on the current data. Even so, statistical 

analyses show no complications of small numbers and our findings are supported by earlier 

observations by Kanakkaparambil et al. 2009.9 At the moment of study initiation, the effect 

estimates where unknown and therefore sample size estimation was not possible. Although, 

not primarily designed as a folic acid intervention study, folic acid use across the treatment 

groups was similar. Nevertheless, we cannot exclude selective non-participation. Because of 

the randomized design, however, confounding factors associated with folic acid supplement 

use will have an equal distribution over the two treatment groups. 

Our results show that the ovarian response to ovarian stimulation treatment is amongst 

others subject to the availability of folate. The effect of folate is independent of AMH and 

preovulatory follicle count. The nature of the observation suggests that the effect of folate is 

most prominent during early follicle development, affecting the less mature follicles. Our 

finding may offer a partial explanation for both the observed inter- and intraindividual 

variability in ovarian response to COH. Possibly, folates affect ovarian stimulation treatment 

outcome by mediating the ovarian response to gonadotrophins through interference with 

FSH receptor, aromatase availability and an increase in ROS. However, folate availability 

might also influence ovarian response through homocysteine metabolites, which might alter 

protein as well as cellular function.   

Of interest for future studies is to further validate the current findings and investigate DNA 

methylation patterns in human and animal granulosa cells, the effect of folates on the 

proteome and the deleterious effect of ROS on these entities.  
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Table 1  
Baseline characteristics of women undergoing ovarian stimulation treatment (n=50) 

 Conventional (n=24) Mild 
 (n=26) 

Age (years) mean (IQR) 32.7 (31.0-35.7) 34.0 (33.0-36.0) 
Body Mass Index (kg/m2) mean (IQR) 21.8 (19.5-23.5) 22.7 (21.0-24.0) 
Ethnicity:     
 Dutch % (n) 57.1 (12) 66.7 (16) 
 Non-Dutch European % (n) 9.5 (2) 16.7 (4) 
 Non-European % (n) 33.3 (7) 16.7 (4) 
Education:   26  
 Low % (n) 22.7 (5) 11.5 (3) 
 Intermediate % (n) 31.8 (7) 38.5 (10) 
 High % (n) 45.5 (10) 50.0 (13) 
Fertilization procedure:     
 IVF % (n) 91.7 (22) 87.5 (21) 
 ICSI % (n) 8.3 (2) 12.5 (3) 
Folic acid containing supplement, yes % (n) 66.7 (14) 80.8 (21) 
Smokers % (n) 13.4 (3) 3.8 (1) 
Duration of subfertility (months) median (range) 41.0 (16.0-101.0) 42.0 (3.0-135.0) 
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Table 2   
Biochemical markers of women undergoing ovarian stimulation treatment (n=50) 
 Conventional (n=24) Mild (n=26) p 

Follicles  10.6 (8.0-15.7) 7.4 (8.7-9.2) <0.01 

Baseline serum      

 FSH (U/L) 7.7 (6.5-8.8) 8.0 (6.8-9.7) ns 
 Estradiol (pmol/L) 141.6 (103.5-203.6) 160.1 (119.2-199.0) ns 
 AMH (ug/L) 4.4 (2.9-6.1) 5.6 (3.3-10.1) ns 
 Cobalamin (pmol/L)  351.0 (259.5-480.0) 309.3 (256.8-387.0) ns 
 Pyridoxine (nmol/L)  81.5 (66.0-91.0) 83.2 (61.0-108.0) ns 
 Folate (nmol/L)  27.3 (17.9-37.4) 37.1 (19.1-72.5) ns 
 Homocysteine (umol/L) 9.5 (8.1-11.2) 9.5 (7.7-10.7) ns 

HCG-day serum      

 Estradiol (pmol/L) 4,293 (2,889-6,646) 2,706 (1,716-3,558) 0.03 
 AMH (ug/L) 1.8 (1.4-3.0) 3.5 (2.4-5.3) 0.01 
 Cobalamin (pmol/L) 333.4 (262.7-481.5) 300.0 (221.7-381.8) ns 
 Pyridoxine (nmol/L) 76.9 (65.0-84.0) 82.1 (56.0-106.0) ns 
 Folate (nmol/L) 31.5 (18.2-59.4) 35.7 (19.1-65.4) ns 
 Homocysteine (umol/L) 7.9 (6.7-9.8) 8.9 (7.0-10.7) ns 
Variables are depicted: Geometric Mean (Inter Quartile Range) 
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Figure 1 Flowchart for eligible couples
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Figure 2 Interaction between serum folate and stimulation protocol on estradiol response 
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Abstract  

Poor nutrition, in particular low folate intake, affects ovarian function and subsequent fertility. 

Moreover, low folate intake and a high body mass index (BMI) result in global hypomethylation. 

Recently, Anti-Müllerian hormone (AMH) has emerged as a valuable novel biomarker for ovarian 

reserve. Therefore, the goal of this study was to investigate in women undergoing fertility treatment 

whether BMI is associated with AMH levels and whether the association can be modified by the 

folate status. This study was performed in a tertiary referral reproductive medicine unit at the 

Erasmus University Medical Center, Rotterdam, the Netherlands.  

We included 163 women undergoing ovarian hyperstimulation in a periconceptional prospective 

cohort. Height (m) and weight (kg) were measured according to a standardised protocol and BMI was 

calculated (kg/m2). Blood samples were taken at cycle day 2 (CD 2) prior to ovarian hyperstimulation 

and on the day of human chorionic gonadotropin (hCG) administration for determination of serum 

AMH levels. On CD 2 folate and hormone levels were also measured. The association between 

BMI and AMH was assessed using Spearman correlation and linear regression analysis. Age, 

cause of subfertility, serum folate and baseline AMH on CD 2 were included as potential 

confounding variables. After ovarian hyperstimulation the serum AMH level was significantly 

reduced (3.9 μg/L vs. 2.7 μg/L, p=0.000). BMI was not correlated with baseline serum AMH level 

(r=0.125, p=0.105), but significantly correlated with post stimulation AMH levels (r=0.208, p=0.009). 

However, BMI did correlate significantly with post stimulation AMH serum level (r=0.208, p=0.009). 

After adjustment for potential confounders BMI remained positively associated with AMH levels 

after ovarian hyperstimulation (β=0.04(0.014), p=0.007). Furthermore, the serum folate level on CD 2 

was inversely associated with both baseline AMH (β=-0.002(0.001), p=0.04) and AMH after ovarian 

hyperstimulation (β=-0.001(0.001), p=0.01). The increased AMH level after ovarian hyperstimulation 

in subfertile overweight or obese women is suggested to be due to hypomethylation of the AMH 

gene in which folate seems to act as modifier.  
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Introduction 

The high prevalence of overweight and obesity has become one of the greatest burdens for 

public health worldwide, including in women of reproductive age.1 In the Netherlands, 

around 41% of women during their reproductive life span do suffer from overweight or 

obesity.2 Besides the long term risks associated with overweight or obesity, such as type 2 

diabetes, cardiovascular disease and several cancers, epidemiological studies have 

demonstrated the adverse effects of overweight and obesity on reproductive health of 

women.3-4 Hence, women of reproductive age with a high body mass index (BMI) have a 

higher risk to suffer from ovulatory dysfunction and consequently reduced fertility and tend 

to respond less favourable to fertility treatment.5 It has been shown that the relative risk of 

anovulatory dysfunction is 1.3 in women with a BMI between 24 and 29.9, and 2.7 in women 

with a BMI >30 kg/m2.6 Furthermore, women with a high BMI seem to have a 4% lower 

pregnancy rate per unit increase in BMI [hazard ratio: 0.96 (95% CI 0.91–0.99).4  

Additionally, overweight or obesity is due to a combination of a poor diet and reduced 

physical exercise. Poor nutrition, in particular low folate intake, has been shown to hamper 

reproductive function and performance.7-8 Folate status is associated with the quality of 

many parameters involved in human reproduction ranging from gamete- and embryo quality 

to the occurrence of congenital malformations.9 The folate status is suggested to be 

negatively associated with BMI, but this association is not completely clear.10 Recently, we 

showed an inverse association between BMI and global methylation, being an important 

determinant of genome programming by DNA methylation.11 Moreover, Twigt et al., 

demonstrated that folic acid supplement use attenuates the follicular and endocrine 

responses to ovarian hyperstimulation.12 Therefore, we hypothesize that BMI and folate 

influence the regulation of the tissue specific epigenome of the ovary by affecting its global 
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methylation state.  

Anti-Müllerian hormone (AMH) has emerged as an important novel marker of ovarian 

reserve .13 AMH - a member of the transforming growth factor-β superfamily - is involved in 

ovarian function and is produced by granulosa cells from pre-antral and small antral 

follicles.13 AMH is involved in both the regulation of primordial follicle recruitment and the 

follicular responsiveness to follicle stimulating hormone (FSH) in an inhibitory manner.13-14 

As a result, serum AMH levels reflect the primordial follicle pool in the ovaries and are 

indicative of a woman’s reproductive capacity.13 Because the number of primordial follicles 

decreases with age, AMH is considered a marker for ovarian aging.15 A high BMI and a diet 

poor in folate may stimulate aging processes.16-17 Data on the association between 

overweight, obesity, folate and AMH, however, are lacking. 

Therefore we investigated in a prospective periconceptional cohort study the association 

between BMI and AMH and the modification by folate in women undergoing assisted 

reproductive treatment (ART). 
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Materials and methods 

Study design 

The periconceptional Food Lifestyle and Fertility Outcome (FOLFO) cohort study was 

designed to investigate the influence of periconceptional nutrition and lifestyle factors on 

biochemical, clinical fertility and pregnancy outcome parameters following in vitro 

fertilization (IVF) or intracytoplasmic sperm injection (ICSI) treatment. The design of the 

study has been described in detail previously.18 In summary, eligible couples visiting the 

Erasmus MC, University Medical Center in Rotterdam, The Netherlands, with an indication 

for IVF or ICSI treatment were invited to participate in the FOLFO study. We excluded 

couples who suffered from known conditions that may influence IVF/ICSI treatment 

outcome, such as oocyte donation, endometrioma and hydrosalpinx resulting in 163 women 

for this study. These restrictions were applied because these conditions might influence 

IVF/ICSI success rate much stronger than BMI, nutrition and lifestyle factors compared to 

other fertility disorders. 

The study protocol was approved by the Central Committee for Human Research (CCMO) in 

The Hague, The Netherlands and the Medical Ethical Committee (MEC) and Institutional 

Review Board of the Erasmus MC, University Medical Center in Rotterdam, The Netherlands. 

All participants gave their written informed consent and all materials and questionnaires 

were anonymously processed. 

 

Questionnaires 

All participants filled out a general questionnaire on the day of the oocyte pick-up from 

which the following data were extracted: height (m), weight (kg), ethnicity, education level, 

folic acid use and smoking habits. BMI was calculated by dividing weight (kg) by height 
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squared (m2). Ethnicity and educational level were classified according to the definitions of 

Statistics Netherlands.19-20 Education level was divided into three categories: low (primary / 

lower vocational / intermediate secondary), intermediate (intermediate vocational / higher 

secondary) and high (higher vocational / university). Ethnicity was divided into Dutch 

Natives, European others and Non-European. 

 

IVF procedure 

All women started the ovarian stimulation treatment with daily injections of 150 IU 

recombinant follicle stimulating hormone (rFSH) s.c. on cycle day 2 (CD2) (Puregon®, 

Schering-Plough, Houten, The Netherlands or Gonal-F®, Serono Benelux BV, Schiphol-Rijk the 

Netherlands). Administration of daily s.c. gonadotrophin releasing hormone antagonist 

(Orgalutran®, Schering-Plough, Houten, The Netherlands) was started when at least one 

follicle was ≥14 mm. To induce final oocyte maturation, a single dose of 10,000 IU hCG s.c. 

(Pregnyl®, Schering-Plough, Houten, The Netherlands) was administered as soon as the 

largest follicle reached at least 18 mm in diameter and at least one additional follicle of ≥15 

mm was observed. Oocyte retrieval was carried out 35 h after hCG injection by transvaginal 

ultrasound-guided aspiration of follicles.  

 

Sample collection and analysis 

Venous blood samples were drawn from each woman on CD2, i.e., the early follicular phase 

of the menstrual cycle proceeding the treatment cycle, and on the day of hCG 

administration. For the determination of folate and hormones, venous blood samples were 

drawn into dry vacutainer tubes and allowed to clot. After centrifugation at 2,000 x g, serum 

was collected to be assayed. Serum Anti-Müllerian hormone (AMH) levels were measured 
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using an in-house double-antibody enzyme-linked immunosorbent assay (ELISA).21 To 

estimate the short term (3-5 days)  and long term (2-4 months) folate state serum and red 

blood cell (RBC) levels, respectively, were measured. Folate was analysed using an 

immunoelectrochemolu-minescence assay (Roche Modular E170, Roche Diagnostics GmbH, 

Mannheim, Germany). Serum concentrations of FSH were measured by luminescence-based 

immunometric assay (Immulite 2000, Siemens Diagnostics, Los Angeles, CA, USA). Serum 

estradiol was determined using a coated tube radioimmunoassay obtained from the same 

supplier.  

Inter-assay coefficients of variation for folate were 4.5% at 13 nmol/L and 5.7% at 23 nmol/L; 

for AMH this coefficient was <10%; for FSH < 5.8%; and for estradiol, <8.8%. The detection 

limit for folate was 1.36 nmol/L, for AMH 0.1 mg/L, for FSH 0.1 U/L and for estradiol 10 

pmol/L.  

 

Statistical analysis 

Prior to statistical analyses, all continuous variables were log-transformed, to obtain a 

normal distribution of data suitable for parametric statistical testing. Normality was assessed 

using histograms and Q-Q plots. When a normal distribution was not attained after 

transformation, the variable is presented as median (range).  

Spearman correlation was used to investigate the correlations between several covariates 

and BMI and AMH. Adjustments were made in a multivariable linear regression model. Age, 

cause of subfertility, serum folate and baseline AMH (at cycle day 2) were included as 

potential confounding variables. Regression coefficients (β) are reported with standard error 

(s.e.). A p-value <0.05 was considered statistically significant. All statistical analyses were 

done using SPSS 15.0 for Windows software (SPSS Inc., Chicago, IL, USA). 
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Results 

Study population characteristics  

In total we included 163 women. The age of the women in the study group ranged from 23.2 

to 43.7 years with a median of 36.1 years. The median BMI of the women was 23.3 (16.1-

36.3), 66.3% had a normal weight (BMI<25) and 33.7% were overweight or obese (BMI≥25). 

Overall women were highly educated (39.7%) and 61% were of Dutch ethnicity.  There was 

no significant difference in folic acid supplement use in normal weight, and overweight and 

obese women, respectively 75% and 71%. 

 

Biochemical parameters and ovarian hyperstimulation treatment 

In the total study group the baseline AMH level was 3.9 μg/ L (0.1-19.5), which significantly 

declined after ovarian hyperstimulation to 2.7 μg/L (0.07-32.4) (p=0.000).  

Women were stratified into normal weight (BMI <25) and overweight or obese women 

(BMI≥25). Women with a BMI≥25 kg/m2 had a significantly higher AMH level after ovarian 

hyperstimulation compared to normal weight women (p=0.006) (Table 1). There was no 

difference in the number of follicles and oocytes after ovarian hyperstimulation between 

these groups. Furthermore, significantly lower RBC folate levels were found in women with a 

BMI≥25 (1145 (488-2676)) compared to women with a normal BMI (1539 (549-3611)) 

(p=0.001). 

BMI was not correlated with baseline AMH (r=0.125, p=0.105), but correlated significantly 

with AMH after ovarian hyperstimulation (r=0.208, p=0.009). This observation was further 

analysed using a multivariable linear regression model with adjustment for age, cause of 

subfertility, folic supplement use and baseline serum AMH level (Table 2). After adjustment 

BMI remained positively associated with AMH after ovarian hyperstimulation 
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(β=0.040(0.014), p=0.007). Furthermore, weight was the component in BMI that was 

associated with AMH after ovarian hyperstimulation (β=0.012(0.005), p=0.01). 

Serum folate at CD 2 was both inversely associated with baseline AMH (β=-0.002(0.001), 

p=0.04) and AMH after ovarian hyperstimulation (β=-0.001(0.001), p=0.01). 
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Discussion 

Our study shows that serum AMH levels significantly decline in subfertile women who 

underwent ovarian hyperstimulation. Most interesting is that in subfertile women with 

overweight or obesity compared to normal weight women the AMH levels were higher 

before, albeit not significantly, and after ovarian hyperstimulation (p=0.006). These effects 

were independent of age, cause of subfertility, and baseline folate and AMH levels. In the 

total group of women, we also observed a significant inverse association between baseline 

serum folate and AMH before and after ovarian hyperstimulation suggesting effect 

modification.   

A novel finding is that overweight or obese women do exhibit higher AMH levels before, but 

especially after ovarian hyperstimulation compared to normal weight women, despite the 

comparable total number of follicles and oocytes. Fanchin and associates showed improved 

responsiveness to ovarian hyperstimulation in women with high AMH levels on the day of 

hCG administration indicated by a reduced gonadotrophin requirement, a large number of 

antral follicles and oocytes.22 However, this study only included women with a normal BMI 

ranging from 18-25 kg/m2. AMH levels are positively correlated with ovarian dysfunction 

meaning that higher levels reflecting greater impairment in follicular development and 

granulosa cell function.23-25 Previous studies suggested an inverse association between 

obesity and baseline AMH levels, which is in line with our findings in overweight and obese 

women, albeit not significantly.   

The first explanation for this novel finding is that the high AMH level after ovarian 

hyperstimulation in overweight or obese women may be due to an altered follicle dynamic 

in overweight and obese women. This might be related to pre-existing differences in early 

antral follicles with more small antral, i.e., AMH producing follicles, in these women. 
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Furthermore, the higher AMH level in the same overweight and obese women after ovarian 

hyperstimulation treatment suggests that there are more small AMH producing follicles 

which seem less sensitive to ovarian hyperstimulation by exogenous FSH. The mechanism, 

however, underlying the heterogeneity in characteristics of antral follicles remains unclear. 

However, it has been shown that during the late luteal phase there is a gradual FSH 

elevation occurring to preserve antral follicles from atresia and ensure their subsequent 

growth.26-27 It is possible that in overweight or obese women there is an impairment of this 

early follicular development due to a lower endogenous FSH secretion during the luteal 

phase or a lower expression of the FSH receptor. In addition, increased body size is 

associated with increased estradiol and lower FSH and LH levels. This is in line with our 

results, since we showed a lower FSH level at baseline in these women compared to their 

normal weight counterparts.28-29  

AMH inhibits the initial and cyclic processes of follicular recruitment and the response to 

exogenous FSH, yet the aspects involved in its regulation are still poorly understood. 

However, because of the significant inverse association between also baseline serum folate 

and AMH before and after ovarian hyperstimulation treatment, comparable with the 

association between folate and estradiol.12 We suggest that folate as methyl donor 

influences the expression of the AMH receptor gene by affecting the methylation of its 

promoter.30 Folate acts as a methyl donor in the remethylation of homocysteine to 

methionine. Deficiencies in folate can result in accumulation of homocysteine, which is 

associated with DNA hypomethylation and could potentially result in changes in gene 

expression.31 DNA methylation is an epigenetic mechanism involved in the regulation of a 

wide variety of biological processes, including gene expression.32 Several genes involved in 

follicle development are regulated by DNA methylation. Investigation of the mouse genome 
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indicates that the FSHR gene contains CpG repeats, which when methylated inhibit FSHR 

gene transcription.33 In addition, Kanakkaparambil et al. showed that incubating granulosa 

cells with homocysteine increases FSHR mRNA levels.34 Similarly, the aromatase enzyme, 

which converts androgens into estrogens, expressed in bovine granulosa cells is regulated by 

DNA methylation.35 Environmental factors, such as a poor diet and obesity can influence 

global and DNA methylation with consequences for aging processes.11, 30 In our study women 

with a BMI≥25 kg/m2 showed a significantly lower baseline RBC folate used as proxy of the 

long term tissue methylation state, from which we can postulate that the folate state might 

modulate the higher AMH response after ovarian hyperstimulation in these women. This is 

substantiated by the study of van Driel et al. showing a significant association between an 

increased BMI and a state of global DNA hypomethylation.11 Thus, our explanation for the 

observed high AMH levels is that overweight and obesity stimulate epigenetic processes in 

the ovary related to aging, which seems to be modified by folate.11 To substantiate this 

finding, we showed in an additional multivariable linear regression analysis that especially 

weight was positively associated with the AMH level after ovarian hyperstimulation, whereas 

no association was found with height. The further assessed inverse association between 

weight and serum folate (r=-0.228; p<0.01) is further substantiating a possible explanatory 

role for DNA hypomethylation. 

The significant decrease of AMH levels after ovarian hyperstimulation is in accordance with 

previous studies.23, 36 The decrease in AMH after ovarian stimulation is consistent with the 

reduction in the number of small antral follicles due to stimulation by exogenous FSH. These 

data further support the hypothesis that maturing or aging follicles progressively loose their 

ability to produce AMH. 36-38  In addition, it has been shown that FSH treatment significantly 

reduces AMH expression in cultured granulosa cells.25, 38 Finally, it has been suggested that 
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increased serum estradiol levels during ovarian hyperstimulation could have an inhibitory 

effect on AMH secretion, which we couldn’t establish.26 

Some strengths and limitations have to be addressed. Folate, cobalamin and total 

homocysteine were measured as biomarkers of global methylation. Although, we are aware 

that total homocysteine and SAH are highly correlated, we were not able to measure the 

SAM/SAH ratio as a potentially better biomarker of global methylation. Nevertheless, the 

evidence of the link between  folate, homocysteine and the global methylation status is 

strong.39 Mild to moderate folate depletion increases total homocysteine and decreases 

DNA methylation, which can be reversed by folic acid supplement use.40  Body size may 

affect also other predictors of ovarian reserve, such as antral follicle count and Inhibin B. In 

our study these measurements were lacking. A strength of our study is that all women were 

on the same ovarian hyperstimulation treatment in which the measurements were carried 

out in a standardized fashion.  

 

In conclusion, we show that AMH levels significantly decline after ovarian hyperstimulation 

and that women with a higher BMI have higher AMH levels especially at the end of the 

ovarian hyperstimulation protocol. In line with the inverse association between BMI and a 

global DNA methylation, the increased AMH response in overweight or obese women may 

be due to hypomethylation of the AMH gene receptor resulting in increased expression. 

Moreover, it seems that the folate state acts herein as ’aging’ modifier. In vitro studies may 

help to further understand the causal relationship between BMI and AMH by investigating 

DNA methylation patterns in human and animal granulosa cells. 
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TABLE 1  
Biochemical parameters in 163 women of subfertile couples before (cycle day 2) and after ovarian 
stimulation treatment (hCG day) 
 BMI <25  

(n=108) 

BMI ≥25  

(n=55) 

p 

Biochemical Parameters (cycle day 2)    

AMH (μg/L) 3.9 (0.1-18.8) 4.7 (0.2-16.7) 0.1 

Estradiol (pmol/L) 148 (41-691) 130 (53-295) 0.052 

FSH (U/L) 8.6 (0.4-30.3) 7.5 (4.4-16) 0.051 

Folate, serum, (nmol/L) 32.6 (11.5-908) 29.4 (9.8-95.2) 0.3 

Folate RBC (nmol/L)a 1539 (549-3611) 1145 (488-2676) 0.001 

Total homocysteine, plasma, (μmol/L) 9.0 (5.5-16.6) 9.3 (6.1-75.3) 0.4 

Cobalamin, serum, (pmol/L) 351 (140-1856) 298 (74-863) 0.1 

Pyridoxine, plasma (nmol/L) 84 (39-310) 75 (39-310) 0.1 

Biochemical Parameters (hCG day)    

AMH (μg/L) 2.2 (0.07-32.5) 3.2 (0.1-21.5) 0.006 

Estradiol (pmol/L) 2173 (233-8982) 2272 (291-11978) 0.9 

LH (pmol /L) 1.2 (0.1-34) 1.3 (0.3-17.6) 0.3 

Folate, serum (nmol/l) 33.9 (7.7-174.3) 32.7 (8.0-95.3) 0.3 

Folate RBC (nmol/L) 1491 (530-4413) 1204 (599-2524) 0.054 

Total homocysteine, plasma, (μmol/L) 8.4(5.4-16.8) 8.4(4.3-71.6) 0.9 

Cobalamin, serum, (pmol/L) 319 (133-1046) 285 (75-1019) 0.3 

Pyridoxine, plasma, (nmol/L) 78 (35-310) 74 (40-310) 0.2 

Number of follicles 7 (1-23) 6 (1-20) 0.9 

Number of oocytes 6 (1-25) 6 (1-23) 0.7 

RBC folate= red blood cell folate 
Results are shown as number (%) or median (range). 
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TABLE 2  
Associations between height, weight, BMI and folate before ovulation 
stimulation treatment and AMH before and after ovulation stimulation 
treatment 
 Baseline AMH a AMH hCG day b 
Height   

β(s.e.) 0.002(0.010) 0.004(0.007) 
p-value 0.8 0.5 

Weight   
β(s.e.) 0.003(0.005) 0.012(0.005) 

p-value 0.515 0.01 
BMI   

β(s.e.) 0.014(0.016) 0.040(0.014) 
p-value 0.4 0.007 

Folate   
β(s.e.) -0.002(0.001) -0.001(0.001) 

p-value 0.04 0.01 
a Linear regression analysis with adjustment for age, BMI, cause of subfertility and folic acid 
use. 
b Linear regression analysis with adjustment for age, BMI, cause of subfertility, folic acid use 
and baseline AMH.  
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Abstract 

Due to changes in the society, couples in Western countries are increasingly delaying reproduction.  

This is accompanied by unhealthy lifestyles that may not only be detrimental to general health but 

also for reproductive capacity. It is well-known that maternal age has detrimental effects on fertility; 

the paternal influence on this outcome is largely unknown.  This study aims to investigate 

associations between a paternal age below 60 years of age, lifestyles and sperm quality.  

In a periconceptional prospective cohort study we included two hundred twenty-seven men 

undergoing in vitro fertilization (IVF) or intracytoplasmic sperm injection (ICSI) treatment. Age at 

sperm collection, lifestyles, cause of subfertility, ethnicity, sperm DNA fragmentation index (DFI), as 

marker of sperm DNA damage) and sperm parameters were determined. Linear regression analyses 

showed a positive association between a rising age from 26 to 59 years and DFI (P≤0.01) and an 

inverse association with ejaculate volume (P≤0.05). Inverse associations were determined between 

DFI and all conventional sperm parameters (all P≤0.01).  

There were no associations between smoking, alcohol use, BMI and DFI and sperm parameters. 

Dutch men compared to migrants, however, showed a higher DFI (P≤0.05) independent of lifestyles. 

We conclude that the trend of delaying fatherhood in men undergoing IVF or ICSI treatment is 

detrimental to sperm quality. 
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Introduction 

Approximately 10-15% of all couples in the Western world do not conceive within one year 

and 4-5% remains involuntarily childless. This has a great influence on the quality of life of 

the couples and their families. Male factor subfertility plays a role in 20-26% of subfertile 

couples.1 Concerns about the worldwide decline in sperm quality over the past 50 years, 

however, are increasing, in particular in western countries. Furthermore, there is a trend 

that the age at which men are reproducing is rising. From literature reveals that 

spermatogenesis in men above 55 years of age declines resulting in a reduced reproductive 

capacity.2-3 A rising age is often accompanied with changes in more unhealthy lifestyles, such 

as smoking and social alcohol use which both affect biological processes associated with 

sperm quality.4-5 Excessive exposure to smoking and alcohol consumption significantly 

diminishes sperm quality.6-7 Smoking reduces sperm production, motility and morphology 

and also seems to interfere with the chromatin integrity of spermatozoa thereby inducing 

DNA damage.8 It is worrisome that in the Netherlands around 31 % of men in reproductive 

ages smoke cigarettes and approximately 85 % of them also consume alcohol. 9 This is not 

different in other Western countries. 

Conventional sperm analysis, including ejaculate volume, sperm concentration, motility, and 

morphology determined according to World Health Organization (WHO) criteria  is used to 

discriminate between fertile and subfertile males.10 However, these parameters are of 

limited predictive value for fertility outcome.11 Human and animal studies have recently 

indicated that the integrity of sperm DNA might be a more accurate and precise predictor of 

fertility.12-13 The sperm chromatin structure assay (SCSA) determines the chromatin integrity 

of the sperm genome from which the DNA fragmentation index (DFI) and high DNA stability 

(HDS) is calculated.14 These parameters reflect the fraction of damaged or defective sperm 
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either due to the presence of DNA breaks or poorly condensed chromatin. Studies directed 

to investigate associations between the effects of age up to 60 years, unhealthy lifestyles, 

and sperm quality in men undergoing IVF or ICSI treatment are scarce and inconclusive.15-16  

From this background, this study aims to examine in men undergoing IVF or ICSI treatment 

the effects of: 1) rising age and unhealthy lifestyles on sperm quality, and 2) ethnicity on 

these associations.  
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Materials and Methods  

Patients 

The study was included in the Food, Lifestyle and Fertility Outcome-study (FOLFO-study) at 

the Erasmus MC, University Medical Center in the Netherlands. This prospective 

periconception study is focused on the effects of nutrition and lifestyles during the 

periconception period on fertility and has previously been described.17 From September 

2004 to January 2007, all subfertile couples undergoing IVF or ICSI were invited to 

participate in the FOLFO- study at the first intake visit for fertility treatment. For this study 

men were only included unless sperm was cryopreserved or obtained by microsurgical or 

percutaneous epididymal sperm aspiration (MESA or PESA).  

The study protocol was approved by the Central Committee for Human Research and the 

local Medical Ethical and Institutional Review Board of the Erasmus MC, University Medical 

Center in Rotterdam, the Netherlands. Written informed consent was obtained from all men 

before participation.  

Men visited the Andrology outpatient clinic for standard fertility evaluation consisting of 

physical examination, blood sampling and sperm analysis. Male factor subfertility was 

defined as a sperm concentration of <20 x 106 cells/mL, failure to conceive after 1 year of 

regular unprotected intercourse with the same partner, duration of child wish of more than 

1 year with the same partner, and no prior conception. Fertile men were defined by a sperm 

concentration of ≥20 x 106 cells/ml and a prior conception with the current or previous 

partner. They filled out a general questionnaire from which the following data were 

extracted: age, medical history, height, weight, ethnicity, educational level, use of 

medication, and the lifestyle factors social use of alcohol and smoking. Body mass index 

(BMI) was calculated by weight divided by squared height. Educational level was assessed by 
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the highest completed education and classified into three categories: 1) low education: no 

education, primary school, lower vocational training, intermediate general school, or 3 years 

or less general secondary school; 2) intermediate education: more than 3 years general 

secondary school, intermediate vocational training, or first year of higher vocational training; 

3) high education: higher vocational training, university or PhD degree.18 Ethnic background 

was classified according to the definitions of Statistics Netherlands.18 For the present 

analyses we included only men with information on ethnic background and availability of 

one sperm analysis (n=175). Because lifestyle factors are related to ethnicity we stratified 

the total group of men into Dutch men (n=148) and migrant men (n=27). The obtained 

materials were processed anonymously. 

 

Sperm collection and preparation 

Sperm samples were obtained after a standardized abstinence period of 3 to 5 days by 

masturbation. The sperm samples were processed within 1 hour after ejaculation. After 

liquefaction, the sperm parameters volume, concentration, count, percentage progressive 

motility and percentage normal morphology were assessed according to World Health 

Organization guidelines (WHO, 2001). We used the following WHO normal reference values: 

sperm concentration > 20 x 106 numbers/ml, 50% or more motile sperm or 25% or more 

progressive motile sperm and 30% normal morphology. Sperm concentration was 

determined with an improved Neubauer Hemacytometer® counting chamber. Morphology 

was evaluated using the Diff-Quick staining method. At least 200 spermatozoa per patient 

were evaluated at a magnificent of x100 according to the guidelines of the WHO. An aliquot 

of unprocessed sperm was stored at -80ºC until the determination of DFI. Subsequently, the 

remainder of sperm was centrifuged at 2,500 x g for 10 minutes.  
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Sperm Chromatin Structure Assay (SCSA) 

The principles and procedures of measuring sperm DNA damage by FAC Scan flow cytometry 

SCSA have been described in detail previously.19 Briefly, sperm samples were diluted with 

Tris-NACL-EDT buffer (TNE buffer) to a concentration of 1-2 x 106 sperm cells/mL in a volume 

of 0.20 mL. This cell suspension was mixed with 0.40 mL of acid detergent solution and then 

stained with 1.2 mL Acridine Orange (AO) staining solution. A reference sample treated in 

the same way was run prior to the actual measurements and used to adjust the voltage 

gains of the flow cytometer FL3 and FL1 photomultipliers that detected red and green 

fluorescence respectively. An aliquot of a reference sample was stained and run again after 

every 5 to 10 samples. Data collection of the fluorescent pattern in 5,000 cells was 

performed at 3 minutes after acid treatment. Each sperm sample was analyzed in duplicate.  

The percentage of DNA damage was expressed as the DNA fragmentation index (DFI), 

reflecting the ratio for red fluorescence to total fluorescence. Cell Quest Pro and WinList 

software (Becton Dickinson, San Jose, CA, USA) were used to calculate the DFI of each 

sample.  

 

Statistical analysis 

Normality of the variables was tested using the Kolmogorov-Smirnov tests. Because of 

skewed distributions, age, BMI, DFI, sperm parameters are presented as medians (range). 

The categorical variables are displayed in numbers with percentages. To test differences 

between the subgroups Mann-Whitney U and Chi-Square test were used.   

 To investigate the influence of age and lifestyles on DFI and conventional sperm 

parameters, we used linear regression models on log transformed sperm parameters. The 



 - 92 - 

regression analyses were adjusted for age, BMI, ethnicity, smoking, and alcohol use. The 

associations are presented by the adjusted regression coefficient (β). A P-value 0≤.05 was 

considered statistically significant. Statistical analyses were performed with Statistical 

Package of Social Sciences version 15.0 for windows (SPSS Inc., Chicago, IL, USA). 
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Results 

Characteristics 

The characteristics of the total group of men undergoing IVF/ICSI treatment and stratified 

into Dutch and migrant men are presented in Table 1. The median duration of subfertility is 

37 (4-121) months. 

Age, BMI, cause of the subfertility, educational level, alcohol use and cigarette smoking were 

comparable between Dutch and migrant men. Dutch men compared with migrants showed a 

higher DFI (P≤0.05).  

 

Age, lifestyles, conventional sperm parameters and DFI 

Associations between age, lifestyles, and DFI and sperm parameters, adjusted for 

confounders are presented in Table 2. Male age was significantly associated with ejaculate 

volume (adjusted β=-0.64, P<0.05) and DFI (adjusted β=0.08, P<0.01). In figure 1 the 

association between age and volume, and in figure 2 the correlation between age and DFI 

are also presented. Dutch men showed a higher ejaculate volume (adjusted β=0.04, P≤0.01) 

and a higher DFI (adjusted β=0.004, P≤0.05) compared to migrants.  No associations were 

found between BMI, smoking, alcohol use, and DFI and conventional sperm parameters.  

After adjusting for potential confounders, i.e., age, BMI, smoking, alcohol use and ethnicity, 

positive associations were found between DFI and sperm volume (adjusted β=2.03, P≤0.01). 

Statistically significant inverse associations were observed between DFI and sperm 

concentration (adjusted β=-0.07, P≤0.01), percentage progressive motility (adjusted β=-

36.84, P≤0.01), and sperm morphology (adjusted β=-97.57, P≤0.01).  
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Discussion 

This study shows that in men between 26 and 59 years of age and undergoing IVF or ICSI 

treatment the rising age is detrimental for sperm DNA integrity and ejaculate volume. 

Furthermore, Dutch men showed a significantly poorer sperm quality based on a higher DFI 

compared to migrants.  

The increase in  DFI in this group of men with an average age of 37 year is worrisome but in 

line  with a previous study showing that men with an average age of  40 show more DNA 

damaged spermatozoa due to  increased oxidative stress as a consequence of the aging 

process.20 In addition, studies in rats revealed that a decrease in epididymal antioxidant 

capacity occurs with rising age thereby disrupting germ-cell differentiation and sperm 

quality.21 This is consistent with the observations that in older men the apoptotic functions 

of spermatogenesis seem to be less efficient resulting in the production of more 

spermatozoa with defragmented DNA.20 The age related increase in DFI at lower ages has 

never been investigated before but the reduced sperm quality seems to be comparable with 

that of older men.22-23 The absence of significant effects of smoking, alcohol use and BMI on 

sperm quality may suggest that other factors may have masked the relatively weak effects of 

these lifestyles.24-25 Studies of others, however, showed detrimental effects of smoking on 

sperm quality in man. We investigated the effects of social alcohol use of which the accuracy 

of the measurement is difficult, which may explain the absence of an association with sperm 

quality. Not many studies have been performed on the association between BMI and sperm 

quality. Compared to the study of Aggerholm et al (2008) the absence of an association 

between BMI and sperm quality in our study might be due to the relatively small group of 

overweight and obese men.26 Other explanations are the differences and sizes of the 

populations investigated, the methods used to assess smoking and alcohol use, and the 
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definition used for overweight and obesity. It cannot be excluded that the lack of association 

may also be due to some misclassification of exposure status, since data on smoking and 

alcohol use were obtained from questionnaires and have not been validated by measuring 

biomarkers of smoking, e.g., cotinine, and alcohol use, e.g., ethanol, in serum or seminal 

plasma.7, 27-28 On the other hand sperm quality may be considered a biomarker of overall 

health.29 A new finding was that Dutch men showed more DNA damage, substantiated by a 

higher DFI, in their sperm compared to migrants. This could not be explained by differences 

in age, BMI, smoking and alcohol use between the groups, suggesting that these migrant 

men may have adapted to the Dutch lifestyle. It is possible that several unmeasured lifestyle 

factors, such as diet, occupational hazards, exercise, psychosocial stress and genetic factors, 

and overall health may also play a role.30 It has been reported that an adequate intake of 

unsaturated fatty acids present in fish improves sperm quality. Because in the general Dutch 

population the consumption of fish is very much compromised this dietary factor may have 

contributed to the poorer sperm quality in Dutch men.31-32 Exposures to environmental 

toxicants, such as pesticides and heavy metals are detrimental for spermatogenesis.33 

Animal and human studies have suggested that male reproductive disorders might be due to 

harmful in utero exposures disrupting embryonic programming and gonadal development.34-

35 This is demonstrated in a study in male mice exposed to polycyclic aromatic hydrocarbons 

in utero, a major mutagenic of tobacco smoke, showing a reduced fertility.36 This is in line 

with the in utero exposure to DES (diethylstilbestrol) or tobacco smoke with detrimental 

effects on fertility.34, 37-38 Thus, it can be hypothesized that Dutch men may have been more 

exposed to toxic agents than migrants, an issue of interest to be investigated in future 

studies.  
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Besides ageing and lifestyle factors also genetic variations affect spermatogenesis.30, 39 This is 

supported by the reported ethnical as well as geographical differences in sperm quality. 

Genetic variations in the Y chromosome, CAG repeats of the androgen receptor (AR), and 

endocrine and metabolic pathways also contribute to differences in susceptibility to adverse 

environmental exposures and as such influence sperm quality.30,39 The effects of genetic 

influences become particularly clear from the studies performed in the Baltic countries, in 

which despite a similar lifestyle a higher sperm concentration was reported in Finland, 

Estonia, Lithuania and Latvia than in Denmark and Norway.40-41   

Some limitations of our study have to be addressed. Due to the feasibility of the study, only 

one standardized sperm sample per participant was obtained. Furthermore, the group of 

migrant men was relatively small due to less participation as a consequence of language 

problems which is a known problem in this kind of research. In addition, we cannot exclude 

that migrants prefer doing fertility treatments in their home country. This group was 

heterogeneous with regard to the different ethnicities. Nevertheless, the results are in our 

opinion interesting and warrant more research in which ethnicity is taken into account.  

  

In conclusion, the age related decrease in sperm quality below 59 years of age - based on 

increased sperm DNA damage and decreased ejaculate volume - suggests that delaying 

childbearing not only in women but also in men, contributes to a reduced reproductive 

capacity. The significantly higher DFI in Dutch men compared to migrants could not be 

explained by differences in age and the most prominent unhealthy lifestyles. Further studies 

on other (un)healthy lifestyles, overall health and interventions to improve male factor 

subfertility in different ethnic populations should be stimulated.  
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Table 1 
General characteristics of the study participants 

Characteristics  Total group  Dutch men  Migrant men P* 

 N N=175 N N = 148 N N = 27  

Age(y) 175 36.9 (25.8-59.1) 148 36.4 (25.8-59.1) 27 36.7 (28.6-53.9) 0.57 

BMI(kg/m2)  
175 25.5 (18.8-37.9) 148 25.6 (18.8-37.9) 27 25.0 (19.8 – 34.3) 0.70 

Cause of the subfertility (%)  
187  148  27  0.7 

      Male factor  89 (47.6%)  69 (46.6%)  13 (48.1%)  

      Male and female factor  15 (8%)  12 (8.1%)  1 (3.7%)  

      Unexplained  83 (344.4%)  67 (45.3%)  13 (48.1%)  

Educational Level (%) 187  148  27  0.91 

     Low  30 (16%)  26 (17.6%)  4 (14.8%)  

     Intermediate  61 (32.6%)  52 (35.1%)  9 (33.3%)  

     High  84 (44.9%)  70 (47.3%)  14 (51.9%)  

Alcohol (units/week) 173 5.9 (0 – 54.9) 146 6.2 (0-55.0) 26 3.7 (0-28.1) 0.09 

Smoking, Yes (%) 175 35 (18.7%) 148 29 (19.6%) 27            6 (22.6%) 0.75 

     1-10 cigarettes/day   16 (8.6 %)  12(8.1%)  4(14.8%)  

     10-25 cigarettes/day   17 (9.1%)  16(10.8%)  1(3.7%)  

     25 cigarettes/day   2 (1.1%)  1(0.7%)              1(3.7%)  

Conventional Sperm parameters †        

     Volume (ml) 162 2.9 (0.3 – 8.1) 128 2.9 (0.6-8.1) 22 2.8 (0.3-6.0) 0.06 

     Concentration (x106  cells/ml) 162 23.0 (0.7 – 278.0) 128 23.0 (0.7-278.0) 22 34.5 (1.4-167.0) 0.12 

     Count (x106 cells) 162 46.2 (0 – 1556.8) 128 46.5 (2.0-1556.8) 22 73.8 (0-690.0) 0.40 

     Progressive motility (%) 162 29.0 (0 – 74.0) 128 29.0 (0-74.0) 22 37.0 (1.0-61.0) 0.49 

     Normal morphology (%) 162 4.0 (0 – 15.0) 128 4.0 (0-15.0) 22 6.0 (0-12.0) 0.39 

DFI (%) 162 24.4 (1.9 – 74.8) 128 24.3 (3.6 -74.8) 22 22.7 (1.9-50.5) <0.05 
Data are either presented as median (range) or as percentages (%). Numbers do not count up to 100 percent due to missings. 
* Mann- Whitney U and Chi-Square test were used to test differences between Dutch men and Migrant men.   
 †Determination according to World Health Organization (1999) criteria. Normal reference values are >20× 106 cells/ml sperm concentration, >50% 
motility, and ≥30% normal morphology. 
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Table 2 

 Associations between general characteristics and semen parameters 

 Volume Concentration Motility Count Morphology DFI 

 β β β β β β 

Age, years -0.64‡ 0.01 -3.35 0 1.72 0.08§ 

BMI, kg/m2 0.07 0.01 -2.70 0 -4.52 0.01 

Ethnicity † 0.04‡ 0 0.17 0 0.40 0.004‡ 

Smoking 0.01 0 -0.30 0 -1.11 0 

Alcohol -0.67 0.03 3.0 0 -10.8 -0.06 

Linear regression analysis is used to test independent associations. The regression coefficient (β) 
indicates the increase or decrease (-) change per unit of age (per year), BMI (per 1.0 kg/m2), smoking 
(yes versus no) and alcohol (glasses per week).  
† Dutch men versus migrant men 
‡ P≤0. 05 and § P≤0.01  
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Figure 1 The correlation between age (years) and volume (ml) (r = -0.17; p = < 0.05). 
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Figure 2 The correlation between age (years) and DFI (%) (r = 0.19; p = < 0.05). 
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Abstract 

The objective of this study was to investigate the effect of body mass index (BMI) and waist 

circumference on semen parameters in men of subfertile couples visiting a tertiary fertility clinic. We 

included 455 male partners of subfertile couples in a retrospective preconception cohort study . 

Semen Volume (mL), semen concentration (millions per mL), percentage of progressive motile and 

non-motile spermatozoa and total motile sperm count (in millions) were included as main outcome 

measures. 

Overweight was inversely associated with ejaculate volume (β-0.161(s.e.0.07); p=0.02) and the 

percentage of progressive motility type A (β-0.365(s.e.0.14); p=0.01), and positively associated with 

the percentage of immotility type C (β 0.210(s.e.0.06); p=0.001). Obesity was inversely associated 

with ejaculate volume (β-0.228(s.e.0.10); p=0.02), sperm concentration (β-0.678(s.e.0.26); p=0.009) 

and total motile sperm count (β -0.755(s.e.0.30); p=0.01). Waist circumference ≥102 cm, as measure 

for central adiposity, was inversely associated with sperm concentration (β-0.615(s.e.0.22); p=0.01) 

and total motile sperm count (β-0.645(s.e.0.26); p=0.01). All associations remained significant after 

adjustment for age, ethnicity, active and passive smoking, alcohol and medication use, folate status 

and a history of andrological surgery. 

This study shows that especially sperm concentration and total motile sperm count in men of 

subfertile couples are detrimentally affected by increasing BMI and central adiposity. The effect of 

weight loss on sperm quality and fertility needs further investigation. 
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Introduction 

In the Western countries subfertility is a serious health problem affecting 10-15% of all 

couples trying to conceive. Male factor subfertility accounts for 25-30% of all cases.1 In the 

majority of men no apparent cause for the impaired fertility can be found.1-2 This has drawn 

attention to the impact of poor lifestyles, such as smoking, alcohol consumption, and a high 

body mass index (BMI) on sperm quality.3 In recent decades, the prevalence of overweight 

and obesity in men of reproductive age has increased dramatically in the Netherlands, of 

which the trends are similar to other countries.4-5 Overweight is defined as a BMI between 

≥25 and <30 kg/m2 and obesity as a BMI≥30 kg/m2.5 

The adverse effects of a high BMI on female fertility, such as an increased time to conception 

and menstrual irregularities, are well known.6-7 Additionally, central adiposity, expressed by 

waist circumference and waist-hip ratio (WHR), has been shown to independently influence 

the reproductive potential in women.8 Evidence about the disadvantages of a high BMI on 

male fertility are conflicting.9 This is partially due to studies in which no adjustment are 

made for confounding variables, such as lifestyle factors. It has been shown that poor 

nutrition, smoking and alcohol use impair sperm function.10-11 These lifestyles are associated 

with excessive oxidative stress, which has been related to male subfertility due to its 

damaging effects on spermatozoa.12-13  

Since the increasing prevalence of overweight and obesity in man of reproductive age, this 

study aims to assess the association between BMI, central adiposity and sperm quality in 

men visiting the preconception outpatient clinic of the Erasmus University Medical Center in 

Rotterdam, the Netherlands. 
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Materials and Method 

Study design 

Between October 2007 and October 2010 couples planning pregnancy and visiting the 

outpatient clinic of the department of Obstetrics and Gynaecology of the Erasmus University 

Medical Center Rotterdam, were offered  preconception counselling at the outpatient clinic 

“Achieving a Healthy Pregnancy”.14 The couples filled out questionnaires from which the 

following data were extracted: age, ethnicity, educational level, smoking, alcohol 

consumption, and the use of medication, folic acid and multivitamins. Ethnicity and 

educational level were classified according to the definitions of Statistics Netherlands.15 At 

the preconception counselling visit the questionnaires were checked by the counsellor in 

detail. Height (m) and weight (kg) were standardized measured to calculate the body mass 

index (BMI=kg/m2). The waist circumference (WC) was measured at the narrowest point 

between the lower border of the rib cage and the iliac crest. Subsequently, venous blood 

samples were drawn to measure serum and red blood cell (RBC) folate, serum cobalamin 

and plasma total homocysteïne (tHcy) concentrations. All study participants assigned an 

informed consent form before participation. The study was approved by the Medical Ethical 

and Institutional Review Board of the Erasmus University Medical Center in the Netherlands. 

 

Sperm Collection and Analysis 

The sperm collection was done within a timeframe of 0-70 days prior to the preconception 

counselling. Sperm specimens were produced via masturbation after a required abstinence 

period of 3 to 5 days. After liquefaction, ejaculate volume, sperm concentration, percentage 

progressive (type A+B) and immotile spermatozoa (type C+D) were assessed according to 

World Health Organization guidelines.17  Total sperm count was calculated as the product 
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between ejaculate volume and sperm concentration. Total motile sperm count was 

calculated as the product between ejaculate volume, sperm concentration and progressive 

motile spermatozoa (type A+B). From a clinical relevance point of view we looked at 

percentage progressive (type A+B) and immotile spermatozoa (type C+D). However, we were 

also interested in the individual sperm motility parameters. 

In addition, the laboratory participates in the external quality control scheme of the Dutch 

Foundation for Quality Assessment in Clinical Laboratories (SKML). 

 

Laboratory determinations 

Venous blood samples were drawn into dry vacutainer tubes and allowed to clot. After 

centrifugation at 2,000 x g, serum was collected before being assayed for the concentrations 

of folate and cobalamin. For the determination of RBC folate and plasma tHcy, venous blood 

samples were drawn into ethylenediamine tetraacetate (EDTA)–containing vacutainer tubes. 

The EDTA-blood samples were kept on ice, and plasma was separated by centrifugation 

within 1 hour for determination of tHcy. Serum samples from each patient were analyzed 

during routine laboratory procedures for folate, cobalamin, and tHcy using an 

immunoelectrochemoluminescence assay (E170; Roche Diagnostics GmbH, Mannheim, 

Germany). Directly after blood sampling, 0.1 ml EDTA-blood was hemolyzed with 0.9 mL of 

freshly prepared 1.0% ascorbic acid. Subsequently the hematocrit of the EDTA-blood was 

determined on an ADVIA 120 Hematology Analyzer (Bayer Diagnostics, Leverkusen, 

Germany). The hemolysate was centrifuged for 5 minutes at 1,000 x g after which the folate 

concentration was measured in the hemolysate. RBC folate was calculated using the 

following formula: (nM hemolysate folate x 10/hematocrit) - (nM serum folate x [1 - 

hematocrit]/hematocrit) = nM RBC folate. tHcy in EDTA plasma was determined using high-
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performance liquid chromatography with reversed phase separation and fluorescence 

detection.16 Inter-assay coefficients of variation for serum folate were 4.5% at 13 nmol/L and 

5.7% at 23 nmol/L, for serum cobalamin 3.6% at 258 pmol/L and 2.2% at 832 pmol/l, for 

plasma total homocysteine 4.8% at 14.6 mmol/L. The detection limit for serum folate was 

1.36 nmol/L, for serum cobalamin 22 pmol/L and for plasma tHcy 4 mmol/L. 

 

 

Analysis 

Men were categorized into three BMI groups: 1) <25 kg/m2, 2) ≥25 and <30 kg/m2, and 3) 

≥30 kg/m2, according to the World Health Organization.5 We dichotomized waist 

circumference (WC) into high-risk and low-risk groups on the basis of the gender specific cut 

off point of ≥102 cm for the risk of cardiovascular disease according to the National 

Institutes of Health.18 As the distribution of the sperm parameters is skewed, these were log 

transformed before further analysis. The Kruskal-Wallis test was applied to test differences 

between the three BMI strata and the various sperm parameters. Spearman’s correlation 

coefficient was calculated between BMI and WC. 

The relationships between BMI categories, WC and sperm parameters were studied using a 

linear regression analysis with adjustment for potential confounders age, ethnicity, active 

and passive smoking, alcohol and medication use, folate status and history of andrological 

surgery. The regression coefficient (β) describes how the change of one unit affects each 

sperm parameter. All statistics were performed by using the SPSS 17 software package 

(SPSS, Inc., Chicago, IL). A two-tailed p≤.05 was considered statistically significant. 
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Results 

The general characteristics are depicted in Table 1 and stratified according to the three BMI 

categories. In total 455 men participated, from which 158 (34.7%) had a BMI<25 kg/m2, 225 

(49.5%) a BMI between ≥25 and <30 kg/m2 and 72 (15.8%) a BMI ≥30 kg/m2. Men with 

overweight or obesity were significantly older compared to normal weight men (p≤0.05). 

Overweight was significantly more present in Dutch men (75.1%) and obesity in non-

Western men (37.5%), (p≤0.05). Additionally, obese men consumed significantly less alcohol 

compared to normal weight and overweight men (p≤0.001). Last, folate RBC is significantly 

lower in obese men (p=0.03).  

Correlation analysis revealed that waist circumference is significantly correlated with BMI 

(r=0.829; p≤0.01). 

 

Association between BMI, waist circumference and sperm parameters 

Table 1 show that overweight and obese men showed a significantly lower ejaculate volume, 

sperm count (p≤0.05). Interestingly, although total motile sperm count didn’t show any 

significant difference between the groups, overweight and obese men showed a significantly 

lower percentage progressive motility type A (p=0.04). Furthermore, overweight men 

showed a significantly higher percentage immotility type C (p=0.003).  

We further analysed these associations between BMI and sperm parameters in a 

multivariable linear regression analysis with adjustment for the potential confounders age, 

ethnicity, active and passive smoking, alcohol and medication use, history of andrological 

surgery and folate status (Table 2).  BMI analysed as linear variable (BMI linear) and all three 

BMI categories were inversely associated with ejaculate volume (all p≤0.05). The association 

was most pronounced in men with BMI≥30 (adjusted β -0.237 (s.e. 0.10), p=0.02). Both BMI 
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linear and BMI≥30 were inversely associated with sperm concentration (adjusted β -0.056 

(s.e. 0.02), p=0.01; adjusted β -0.873 (s.e. 0.27), p=0.001, respectively). Inverse associations 

were estimated between BMI linear, BMI≥30 and total sperm count, (adjusted β -0.056 (s.e. 

0.02), p=0.002) and (adjusted β -1.086 (s.e. 0.28), p=0.000), respectively. In a similar manner 

BMI linear and BMI≥30 were inversely associated with total motile sperm count (adjusted β -

0.068 (s.e. 0.03), p=0.01) and (adjusted β -0.892 (s.e. 0.33), p=0.01), respectively. 

Furthermore, BMI ≥25-<30 was inversely associated with percentage progressive motility 

type A (adjusted β-0.295 (s.e. 0.15), p=0.05). BMI linear and the BMI category ≥25-<30 were 

positively associated with the percentage immotility type C, (adjusted β 0.015 (s.e. 0.01), 

p=0.05) and (adjusted β 0.187 (s.e. 0.07), p=0.006), respectively. 

 

Association between waist circumference and sperm parameters 

Men with a waist circumference ≥102 cm had a significantly lower sperm concentration 

compared to men with a waist circumference<102 cm, respectively 30.0 (0-661) and 20.0 (0-

350); p≤0.05. Table 3 shows the multivariate linear regression analysis with adjustment for 

confounders. After adjustment a waist circumference ≥102 cm remained inversely 

associated with sperm concentration (adjusted β -0.623 (s.e. 0.22), p=0.01). Furthermore, 

waist circumference ≥102 cm was also negatively associated with total sperm count 

(adjusted β -0.750 (s.e. 0.23), p=0.001) and total motile sperm count (adjusted β -0.603 (s.e. 

0.27), p=0.03). To investigate whether fat distribution explained these associations, we 

additionally adjusted for BMI in the linear regression analysis after which all associations 

disappeared. 
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Discussion 

This study demonstrates that BMI and waist circumference - independent of other lifestyle 

factors - affect sperm quality in men of subfertile couples attending an outpatient 

preconception clinic. Being overweight is associated with a significantly lower ejaculate 

volume, a lower percentage of progressive motility type A and a higher percentage of 

motility type C. Furthermore, obesity is associated with an even significantly lower ejaculate 

volume, lower sperm concentration, lower total sperm count and a lower total motile sperm 

count. A waist circumference ≥102 cm, a marker for central adiposity, was associated with a 

lower sperm concentration, lower total sperm count and a lower total motile sperm count. 

Due to the high correlation between BMI and waist circumference, these associations, 

disappeared after adjustment for BMI. 

Thus, body weight and waist circumference are especially associated with ejaculate volume, 

sperm concentration and sperm motility. These associations have also been investigated and 

described  by others.9 Our findings, however, are in contrast to a recent Dutch study19 which 

observed no significant association between BMI and sperm parameters. This lack of an 

association may be a statistical power issue, given that a smaller proportion of obese men 

(10.4%) compared to the 15.8% in our study has been investigated. In addition, it is not clear 

whether the anthropometric features were standardized measured or self-reported. The 

latter could have induced a differential misclassification of the exposure of interest, which 

may have led to an underestimation of obesity resulting in a non-significant estimate. This is 

supported by others showing that the prevalence of obesity based on self-reported data 

underestimates the true prevalence.20  

In line with the study of Chavarro et al, we also found different effects of the BMI strata on 

sperm parameters.21 They reported a similar inverse association between BMI and ejaculate 
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volume and total sperm count. However, they didn’t find an association between BMI and 

sperm concentration, which is the most consistent finding across studies.3,22-24 Furthermore, 

opposite to our results, the group of Chavarro showed that men with overweight had a 

higher percentage of progressive motile sperm. 

Our findings of the association between a high BMI and sperm parameters strengthen 

previously reported studies in Europe and the United States.3,22-23 The majority of these 

studies focused only on BMI as the predominant measure of adiposity and not on waist 

circumference. The sensitivity of BMI in estimating  individuals body fat mass suffers from 

the inability to distinguish between variability in body composition and body fat mass 

distribution.25 Recent studies indicated that abdominal obesity is more strongly associated 

with obesity-related health problems than adiposity measured by BMI.26 In women it has 

been shown that differences in fat mass distribution exist between subfertile women and 

normal controls. The different fat mass patterns were accompanied by different prognoses 

of fertility.27 We have shown that men with a waist circumference of ≥102 cm have lower 

sperm concentrations, total sperm count and total motile sperm count. However, after 

additional adjustment for BMI in the linear regression analysis the association attenuated, 

which may indicate that BMI and WC are intermediates in the same pathway. BMI and WC 

are intermediates in the same pathway.  BMI and WHR are highly correlated, and it can be 

speculated that they are both involved in the same causal pathway. Therefore, it is not 

unlikely that BMI can be simultaneously a confounder and an intermediate variable in the 

causal pathway of WC and semen quality. Therefore including BMI in the regression model 

may underestimate the true effect of WC. 

Several mechanisms might account for the harmful effects of a high BMI on sperm 

parameters. Numerous studies have noted that obesity and several of its causes, such as 
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insulin resistance and dyslipidaemia, are associated with increased oxidative stress.28-29 

Oxidative stress is an independent marker for male factor subfertility since it  impairs sperm 

quality.30 An animal study showed that obesity increases oxidative stress and as a result 

reduced sperm motility and increased DNA damage.31  

It has also been suggested that the detrimental influence of a high body weight on sperm 

quality is partially driven by an altered reproductive hormonal profile.3,32 Overweight and 

obesity, particularly when central, have been shown to affect the GnRH-LH/FSH pulse, which 

may impair Leydig and Sertoli cell functions and thus interfere with the release of sex 

hormones and production and maturation of sperm.33 Consequently, a high BMI is 

associated with lower levels of total testosterone, SHBG and inhibin B and higher levels of 

serum estradiol.3, 21 Additionally, serum leptin, which is higher in overweight and obese men, 

inhibits testosterone synthesis which is a cause of impaired sperm quality.34 However, the 

levels across which alterations of these hormones have a deleterious effect on sperm quality 

are unknown. In our study we were not able to substantiate our findings with changes in 

male sex hormonal levels. While weight loss normalizes testosterone and inhibin B levels in 

obese men, it is unknown whether this also restores sperm quality.35 A previous study 

concluded that associations between male BMI and sperm quality were found to be 

statistically significant even after adjustment for reproductive hormones.36 This suggests 

that a hormonal explanation as the sole mechanism is unlikely. Future studies are needed to 

investigate this finding in more detail. 

Finally, overweight and obesity are often associated with a diet characterised by foods 

containing excessive amounts of macronutrients and poor micronutrient concentrations, 

which can ultimately lead to essential nutrient deficiency involved in male fertility. Folate 

and zinc play an important role in male reproduction.37-39 In an RCT Wong et al. showed a 
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significant 76% increase in sperm count after the use of folic acid and zinc supplements for a 

period of  26 weeks.38 This is supported by the observation that a strong adherence to the 

traditional Dutch diet, comprising of potatoes, whole grains and meat as a rich source of 

folate and zinc, was significantly associated with a higher sperm concentration.10  

The strengths and weaknesses of the study design need to be addressed. Strengths of our 

study are the prospective design and the assessment of standardized anthropometric 

measures and potential confounders in a relatively large homogenous group of men in 

subfertile couples. This has never been performed in previous studies. To prevent selection 

bias we included men of subfertile couples planning pregnancy visiting one tertiary center 

between October 2007 and October 2010. BMI was measured in a standardized way, as well 

as semen parameters and biomarkers. Semen parameters and biomarkers were also 

measured at one single center and laboratory. A limitation might be that only one single 

sperm analysis was performed in this study. However, we do not believe that this poses a 

major threat to the validity, whilst a population based study showed that analyzing multiple 

sperm samples per subject does not seem superior to a single sperm sample analysis.40 

Finally, this study was performed in men of subfertile couples which limit its external validity 

and the result can not be extended to the general population.  

 

A high BMI and a high waist circumference detrimentally affect sperm quality. Increased 

awareness of the target population of men, gynecologists, urologists, andrologists and 

general practitioners is needed to address the importance of this relationship. Future 

preventive interventions should be developed and directed at men to loose weight 

especially during the window of planning pregnancy. However, this emphasizes the need of 

intervention studies directed on the effects of loosing weight on sperm quality. Future 
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studies are also needed to gain insight into the underlying mechanisms and the effects on 

fertility outcome.  
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Table 1 
Characteristics of men of subfertile couples (n=455) 
 BMI<25 

(n= 158) 
BMI≥25-<30 

(n=225) 
BMI≥30 
(n=72) 

p 

Age (years), median 33.4 (22.7-60.5) 35.4 (24.3-56.7) 35.3 (21.8-52.3) 0.03 
Waist Circumference(cm) 85.0 (65-106) 95.0 (81-110) 113.0 (95-135) ≤0.001 
Hip Circumference 100 (78-112) 107 (76-120) 118 (97-154) ≤0.001 
Waist-Hip ratio 0.85 (0.64-1.22) 0.90 (0.76-1.20) 0.95 (0.86-1.15) ≤0.001 
Ethnicity n (%)    0.04 
  Dutch 108 (68.4) 169 (75.1) 39 (54.9)  
  Other – Western,  13 (8.2) 12 (5.3) 5 (7.0)  
  Non-western 36 (22.8) 43 (19.1) 27 (38.0)  
Educational level n (%)    0.07 
  High 67 (42.4) 85 (37.8) 17 (23.9)  
  Intermediate 65 (41.1) 89 (39.6) 36 (50.7)  
  Low 26 (16.5) 51 (22.7) 18 (25.4)  
Subfertility n (%)    0.9 
  Primary 101 (72.1) 138 (70.4) 47 (73.4)  
  Secondary 39 (27.9) 58 (29.6) 17 (26.6)  
Lifestyles n (%)     
Smoking (yes) 38 (24.4) 64 (28.8) 22 (31.0) 0.5 
Smoking of Partner (yes) 31 (19.6) 52 (23.1) 13 (18.3) 0.4 
Alcohol (yes), n (%) 124 (78.5) 170 (75.6) 39 (54.9) ≤0.001 
Folic acid supplement use (yes) 19 (12) 17 (7.5) 7 (9.8) 0.71 
Multivitamin supplement use (yes) 44 (27.8) 53 (23.7) 16 (22.5) 0.81 
Medication use (prescribed and over the 
counter) (yes) 

40 (25.6) 53 (23.7) 24 (33.8) 0.24 

History of andrological surgery a, n (%) 25 (16.0) 47 (21.2) 9 (13.2) 0.23 
Biochemical Parameters     
Folate (nmol/L) 18.5 (6-64) 17.3 (7-45) 16.3 (8-33) 0.28 
Folate RBC (nmol/L) 874 (64-2247) 948 (153 -2194) 869 (474-1622) 0.03 
Cobalamin (pmol/L) 319 (122-1130) 290.5 (141-844) 281 (114-1475) 0.15 
tHcy (μmol/L) 11.5 (5-44) 11.4 (6-35) 11.0 (7-26) 0.27 
Sperm parameters (p25-p75)     
Ejaculate volume(mL)  3.0 (1.8-4.0) 2.7 (1.5-3.5) 2.4 (1.6-3.4) 0.02 
Sperm concentration (106/mL) 34 (9.2-62.3) 23 (6.8-51.5) 18 (1.1-60.3) 0.08 
Sperm count 67.9 (20.6-186.7) 49.6 (14-124.8) 45.9 (2.8-147.5) 0.02 
Total motile sperm count (106/mL) 27.1 (4.1-84.6) 17.2 (2.8-50.0) 15.8 (6.4-73.3) 0.05 
Progressive motility (A+B) (%) 38.5 (22.0-48.3) 37.0 (21.0-47.0) 39.5 (23.0-49.0) 0.53 
Immotile sperm (C+D) (%) 61.5 (51.8-78.0) 63.0 (53.0-79.0) 60.5 (51.0-77.0) 0.53 
Note: p≤.05 was considered statistically significant. Values are expressed as median (range), median (p25-p75) or as number (%) per BMI stratum. 
Not all percentages count up to 100% due to missings. Total sperm count=ejaculate volume x sperm concentration. Total motile sperm 
count=ejaculate volume x sperm concentration x progressive motile spermatozoa (type A+B).  
a Surgery for varicocele, orchidopexy, vasovasostomy and testis carcinoma. 
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Table 2  
Associations between BMI and sperm parameters  
  BMI 

Crude 
BMI 

Adjusted a 
BMI<25 
Crude 

BMI<25 
Adjusted a 

BMI≥25-<30 
Crude 

BMI≥25-<30 
Adjusted a 

BMI≥30 
Crude 

BMI≥30 
Adjusted a 

Sperm Parameters          
 Ejaculate volume (mL) β (s.e.) -0.026(0.01) 

 
-0.024(0.01) 

 
0.178(0.07) 0.167(0.07) 

 
-0.161(0.07) 

 
-0.146(0.07) 

 
-0.228(0.10) -0.237(0.10) 

 
 p 0.001 0.003 0.01 0.02 0.02 0.05 0.02 0.02 
Sperm concentration 
(106/mL) 

β (s.e.) -0.039(0.02) 
 

-0.056(0.02) 
 

0.273(0.18) 
 

0.273(0.19) 
 

-0.137(0.19) 
 

-0.088(0.19) 
 

-0.678(0.26) 
 

-0.873(0.27) 
 

 p 0.06 0.01 0.13 0.14 0.47 0.65 0.009 0.001 
Total sperm count (106/mL) β (s.e.) -0.056(0.02) -0.080(0.02) 0.437(0.18) 0.422(0.19) -0.280(0.19) -0.218(0.20) -0.902(0.26) -1.086(0.28) 

 p 0.002 0.000 0.02 0.03 0.15 0.28 0.001 0.00 
Total motile sperm count 
(106/mL) 

β (s.e.) -0.057(0.02) -0.068(0.03) 
 

0.375(0.21) 0.309(0.22) -0.247(0.22) 
 

-0.133(0.23) 
 

-0.755(0.30) 
 

-0.892(0.33) 
 

 p 0.02 0.01 0.08 0.16 0.27 0.57 0.01 0.01 
Progressive motility (A+B)(%) β (s.e.) -0.001(0.01) -0.002(0.01) 

 
0.074(0.08) 

 
0.045(0.09) 

 
-0.102(0.08) 

 
-0.065(0.09) 

 
0.014(0.11) 

 
0.024(0.13) 

 
 p 0.90 0.85 0.34 0.60 0.21 0.47 0.90 0.85 
Immotile sperm (C+D)(%) β (s.e.) 0 (0.003) 

 
-0.001 (0.004) 

 
-0.025(0.03) -0.013(0.03) 

 
0.036(0.03) 

 
0.023(0.03) 

 
-0.006(0.04) 

 
-0.022(0.05) 

 
 p 0.98 0.88 0.37 0.67 0.24 0.46 0.89 0.62 
Note: p≤.05 was considered statistically significant. All data in the table are presented as unstandardised adjusted linear regression coefficients (ß) (standard error (s.e.)) which reflect the relative effect per 
1 point of BMI on the respective sperm parameter. Total sperm count=ejaculate volume x sperm concentration. Total motile sperm count=ejaculate volume x sperm concentration x progressive motile 
spermatozoa (type A+B).  
a p-values are adjusted for the following covariates: age (in years),  ethnicity, active and passive smoking,  alcohol , medication use, history of andrological surgery and  folate status. 
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Table 3 
Associations between waist circumference and sperm parameters 
  Waist Circumference  

<102 cm 
Crude 

Waist Circumference  
<102 cm 

Adjusted a 

Waist Circumference  
≥102 cm 

Crude 

Waist Circumference  
≥102 cm 

Adjusted a 

Sperm Parameters      
Ejaculate volume (mL) β (s.e.) -0.047 (0.08) -0.022 (0.09) -0.133 (0.08) -0.149 (0.09) 
 p 0.56 0.80 0.11 0.09 
Sperm concentrations (106/mL) β (s.e.) 0.100 (0.21) 0.152 (0.22) -0.615 (0.22) -0.623 (0.22) 
 p 0.63 0.48 0.01 0.01 
Total sperm count (106/mL) β (s.e.) 0.041 (0.22) 0.125(0.22) -0.728 (0.22) -0.750(0.23) 
 p 0.85 0.58 0.001 0.001 
Total motile sperm count (106/mL) β (s.e.) -0.158 (0.25) -0.039 (0.26) -0.645 (0.26) -0.603 (0.27) 
 p 0.53 0.88 0.01 0.03 
Progressive motility (A+B) (%) β (s.e.) -0.159 (0.09) -0.123 (0.10) -0.122 (0.10) -0.067 (0.11) 
 p 0.09 0.23 0.21 0.52 
Immotile sperm (C+D) (%) β (s.e.) 0.049 (0.034) 0.035 (0.04) 0.030 (0.036) 0.003 (0.04) 
 p 0.16 0.34 0.40 0.95 
Note: p≤.05 was considered statistically significant. All data in the table are presented as unstandardised adjusted linear regression coefficients (ß) (standard error (s.e.)) which reflect the relative 
effect of waist circumference on the   respective sperm parameter. Total sperm count=ejaculate volume x sperm concentration. Total motile sperm count=ejaculate volume x sperm concentration x 
progressive motile spermatozoa (type A+B).  
a p-values are adjusted for the following covariates: age (in years),  ethnicity, active and passive smoking, alcohol, medication use, history of andrological surgery and  folate status. 
 



 - 121 - 

References 

1. Wong WY, Thomas CM, Merkus JM, Zielhuis GA, Steegers-Theunissen RP. Male factor 
subfertility: possible causes and the impact of nutritional factors. Fertil Steril 2000;73:435-42. 
2. Taylor A. ABC of subfertility: extent of the problem. BMJ 2003;327:434-6. 
3. Jensen TK, Andersson AM, Jorgensen N, et al. Body mass index in relation to semen quality and 
reproductive hormones among 1,558 Danish men. Fertil Steril 2004;82:863-70. 
4. Gezondheid, leefstijl, gebruik van zorg, 2010. (Accessed at http://statline.cbs.nl/StatWeb) 
5. Obesity: preventing and managing the global epidemic. Geneva: World Health Organization; 
2000. (Accessed at http://www.who.int/bmi/) 
6. Balen AH, Anderson RA, Policy, Practice Committee of the BFS. Impact of obesity on female 
reproductive health: British Fertility Society, Policy and Practice Guidelines. Hum Fertil (Camb) 
2007;10:195-206. 
7. Zain MM, Norman RJ. Impact of obesity on female fertility and fertility treatment. Womens 
Health (Lond Engl) 2008;4:183-94. 
8. Zaadstra BM, Seidell JC, Van Noord PA, et al. Fat and female fecundity: prospective study of 
effect of body fat distribution on conception rates. BMJ 1993;306:484-7. 
9. MacDonald AA, Herbison GP, Showell M, Farquhar CM. The impact of body mass index on 
semen parameters and reproductive hormones in human males: a systematic review with meta-
analysis. Hum Reprod Update 2010;16:293-311. 
10. Vujkovic M, de Vries JH, Dohle GR, et al. Associations between dietary patterns and semen 
quality in men undergoing IVF/ICSI treatment. Hum Reprod 2009;24:1304-12. 
11. Gaur DS, Talekar MS, Pathak VP. Alcohol intake and cigarette smoking: impact of two major 
lifestyle factors on male fertility. Indian J Pathol Microbiol 2010;53:35-40. 
12. Tremellen K. Oxidative stress and male infertility--a clinical perspective. Hum Reprod Update 
2008;14:243-58. 
13. Ebisch IM, Peters WH, Thomas CM, Wetzels AM, Peer PG, Steegers-Theunissen RP. 
Homocysteine, glutathione and related thiols affect fertility parameters in the (sub)fertile couple. Hum 
Reprod 2006;21:1725-33. 
14. Hammiche F, Laven JSE, Mil van N, et al. Tailored preconceptional dietary and lifestyle 
counselling in a tertiary outpatient clinic in the Netherlands. Hum Reprod 2011;in Press:1-10. 
15. Statistics Netherlands. Classification of educational level and ethnicity statistics netherlands, 
2008. (Available from: http://www.cos.rotterdam.nl) 
16. Pfeiffer CM, Huff DL, Gunter EW. Rapid and accurate HPLC assay for plasma total homocysteine 
and cysteine in a clinical laboratory setting. Clinical chemistry 1999;45:290-2. 
17. WHO, Organization WH. Laboratory Manual for the Examination of Human Semen and Sperm-
cervical Mucus Interaction, 5th edn. Cambridge: Cambridge University Press;. 2010. 
18. Washington (DC): US Department of Health and Human Services NIoH, National Heart, Lung, 
and Blood Institute, North American Association for the Study of Obesity,. The practical guide: 
identification, evaluation and treatment of overweight and obesity in adults. 2000. 
19. Duits FH, van Wely M, van der Veen F, Gianotten J. Healthy overweight male partners of 
subfertile couples should not worry about their semen quality. Fertil Steril 2010;94:1356-9. 
20. Fear NT, Sundin J, Rona RJ. Obesity in the United Kingdom Armed Forces: prevalence based on 
measured and self-reported data. Mil Med 2011;176:44-9. 
21. Chavarro JE, Toth TL, Wright DL, Meeker JD, Hauser R. Body mass index in relation to semen 
quality, sperm DNA integrity, and serum reproductive hormone levels among men attending an 
infertility clinic. Fertil Steril 2010;93:2222-31. 
22. Hammoud AO, Wilde N, Gibson M, Parks A, Carrell DT, Meikle AW. Male obesity and alteration 
in sperm parameters. Fertil Steril 2008;90:2222-5. 
23. Koloszar S, Fejes I, Zavaczki Z, Daru J, Szollosi J, Pal A. Effect of body weight on sperm 
concentration in normozoospermic males. Arch Androl 2005;51:299-304. 
24. Magnusdottir EV, Thorsteinsson T, Thorsteinsdottir S, Heimisdottir M, Olafsdottir K. Persistent 
organochlorines, sedentary occupation, obesity and human male subfertility. Hum Reprod 2005;20:208-
15. 

http://www.cos.rotterdam.nl/


 - 122 - 

25. Akpinar E, Bashan I, Bozdemir N, Saatci E. Which is the best anthropometric technique to 
identify obesity: body mass index, waist circumference or waist-hip ratio? Coll Antropol 2007;31:387-
93. 
26. Yusuf S, Hawken S, Ounpuu S, et al. Obesity and the risk of myocardial infarction in 27,000 
participants from 52 countries: a case-control study. Lancet 2005;366:1640-9. 
27. Kirchengast S, Huber J. Body composition characteristics and fat distribution patterns in young 
infertile women. Fertil Steril 2004;81:539-44. 
28. Dandona P, Aljada A, Chaudhuri A, Mohanty P, Garg R. Metabolic syndrome: a comprehensive 
perspective based on interactions between obesity, diabetes, and inflammation. Circulation 
2005;111:1448-54. 
29. Davi G, Falco A. Oxidant stress, inflammation and atherogenesis. Lupus 2005;14:760-4. 
30. Ebisch IM, Thomas CM, Wetzels AM, Willemsen WN, Sweep FC, Steegers-Theunissen RP. 
Review of the role of the plasminogen activator system and vascular endothelial growth factor in 
subfertility. Fertil Steril 2008;90:2340-50. 
31. Bakos HW, Mitchell M, Setchell BP, Lane M. The effect of paternal diet-induced obesity on 
sperm function and fertilization in a mouse model. Int J Androl 2010. 
32. Hammoud AO, Gibson M, Peterson CM, Meikle AW, Carrell DT. Impact of male obesity on 
infertility: a critical review of the current literature. Fertil Steril 2008;90:897-904. 
33. Belanger C, Luu-The V, Dupont P, Tchernof A. Adipose tissue intracrinology: potential 
importance of local androgen/estrogen metabolism in the regulation of adiposity. Horm Metab Res 
2002;34:737-45. 
34. Hofny ER, Ali ME, Abdel-Hafez HZ, et al. Semen parameters and hormonal profile in obese 
fertile and infertile males. Fertil Steril 2010;94:581-4. 
35. Globerman H, Shen-Orr Z, Karnieli E, Aloni Y, Charuzi I. Inhibin B in men with severe obesity and 
after weight reduction following gastroplasty. Endocr Res 2005;31:17-26. 
36. Qin DD, Yuan W, Zhou WJ, Cui YQ, Wu JQ, Gao ES. Do reproductive hormones explain the 
association between body mass index and semen quality? Asian J Androl 2007;9:827-34. 
37. Colagar AH, Marzony ET, Chaichi MJ. Zinc levels in seminal plasma are associated with sperm 
quality in fertile and infertile men. Nutr Res 2009;29:82-8. 
38. Wong WY, Merkus HM, Thomas CM, Menkveld R, Zielhuis GA, Steegers-Theunissen RP. Effects 
of folic acid and zinc sulfate on male factor subfertility: a double-blind, randomized, placebo-controlled 
trial. Fertil Steril 2002;77:491-8. 
39. Boxmeer JC, Smit M, Utomo E, et al. Low folate in seminal plasma is associated with increased 
sperm DNA damage. Fertil Steril 2009;92:548-56. 
40. Stokes-Riner A, Thurston SW, Brazil C, et al. One semen sample or 2? Insights from a study of 
fertile men. J Androl 2007;28:638-43. 
 
 
 

 

 



 - 123 - 



 - 124 - 

        

Chapter 7 

 

Tailored preconceptional dietary and lifestyle counselling in a 

tertiary outpatient clinic in the Netherlands  
 

 

 

 

 

 

 

 

 

 

F. Hammiche 

J.S.E. Laven 

N. van Mil 

M. de Cock 

J.H. de Vries 

J. Lindemans 

E.A.P. Steegers  

R.P.M. Steegers-Theunissen 

 

 

Human Reproduction 2011; 26(9):2432-41 



 - 125 - 

 



 - 126 - 

Abstract 

Adverse reproductive performance has been linked to unhealthy dietary intake and lifestyles. Our 

objectives were to investigate the prevalence of unhealthy dietary intake and lifestyles before 

conception and to evaluate whether tailored preconception counselling modifies these behaviours.  

Between October 2007 and April 2009 419 couples received tailored preconception dietary and lifestyle 

counselling at the outpatient clinic of Obstetrics and Gynaecology of the Erasmus University Medical 

Center Rotterdam, the Netherlands. A subgroup (n=110 couples) was counselled twice with a fixed time 

interval of 3 months. Self-administered questionnaires were used for tailored dietary and lifestyle 

counselling. A cumulative score based on six Dutch dietary guidelines was displayed in the personal 

Preconception Dietary Risk score (PDR-score). In a similar manner the Rotterdam Reproduction Risk 

score (R3-score) was calculated from lifestyle factors (women: 13 items, men: 10 items). Univariate and 

paired tests were used.  

Most couples (93.8%) were subfertile.  At the second counselling, the percentage consuming the 

recommended  intake of fruit had increased from  65 to 80 in women and from 49 to 68 in men and the 

percentage of women getting the recommended intake of fish increased from 39 to 52. As a 

consequence the median PDR-score was decreased (women: 2.6 (95% CI 2.4-2.9) to 2.4(95% CI 2.1-2.6), 

men: 2.5(95% CI 2.3-2.7) to 2.2 (95% CI 1.9-2.4), both p<0.05). The median R3-scores were also lower 

(women: 4.7(95% CI 4.3-5.0) to 3.1 (95% CI 2.8-3.4), men: 3.0 (95% CI 2.8-3.3) to 2.0 (95% CI 1.7-2.3), 

both p<0.01) due to less alcohol use (-14.6%), more physical exercise and folic acid use in women, and 

less alcohol use in men (-19.4%) (all p<0.01). The R3-scores in women and men were decreased in all 

ethnicity, educational level, neighbourhood and BMI categories. However, low educated women 

appeared to show a larger reduction than better educated women and men with a normal BMI to show 

a larger decrease than overweight men. The reduction in the PDR-score of women was similar in both 

ethnic groups. More than 85% women and men found the counselling useful and around 70% 

recommends it to others. 

Tailored preconception counselling about unhealthy dietary and lifestyle behaviours of subfertile 

couples in an outpatient tertiary clinic is feasible and seems to decrease the prevalence of harmful 

behaviours in the short term. These results with subfertile couples are promising and illustrate their 

opportunities to contribute to reproductive performance and pregnancy outcome. 
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Introduction 
 

The high prevalence rates of unhealthy diets and lifestyles in the reproductive population in 

industrialized countries are worrisome.1-3 Current evidence indicates that unhealthy 

preconceptional diets and lifestyles of both women and men significantly contribute to 

impaired reproduction with long-term consequences for parental health and health of their 

offspring. 4-7 Health professionals and parents-to-be generally are unaware of these adverse 

effects8-9, and adjustment of such habits is generally not perceived as beneficial for 

reproduction. The available evidence justifies reorganization and redefining obstetrical care 

such that it includes preconceptional screening and informing of parents-to-be, and support to 

those who intend to change unhealthy diets and lifestyles. 10-11  

The public recommendation of periconceptional maternal folic acid use is an example of the 

introduction of a preconceptional measure to prevent adverse pregnancy outcomes, in 

particular neural tube defects12. It may also positively influence follicular-, oocyte-, embryonic-, 

placental- and fetal growth.13-14  Despite its obvious benefits, compliance is moderate and 

therefore public health efforts should be reinforced by systematic individual preconceptional 

care to all parents-to-be. The preconceptional window allows for a personal contribution to a 

successful reproductive career and seems suitable to include lifestyle modification too.15 

Organized preconceptional care programmes to stimulate a healthy dietary intake and lifestyle 

behaviours, however, are scarce.16 Therefore, the department of Obstetrics and Gynaecology 

of the Erasmus University Medical Center in Rotterdam started an outpatient clinic on 

preconceptional tailored dietary and lifestyle counselling “Achieving a Healthy Pregnancy”. In 

the current evaluation we investigated the prevalence of unhealthy diet and lifestyles in mainly 

subfertile couples planning pregnancy, the effects of preconception counselling on the 

improvement of these behaviours and the influence of personal characteristics on these 

determinants. 
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Materials and Method 

Study design 

Between October 2007 and April 2009 couples planning pregnancy and visiting the outpatient 

clinic of the department of Obstetrics and Gynaecology of the Erasmus University Medical 

Center Rotterdam were offered preconception counselling at the outpatient clinic “Achieving a 

Healthy Pregnancy”. At the first gynaecological visit couples were referred for the 

preconceptional counselling tailored on dietary intake and lifestyle. They received a flyer with 

information and a self-administered questionnaire to be filled out at home. The questionnaires 

were used for individual tailored counselling during the outpatient visit of the couple. 

From the questionnaire we extracted the following data: age, ethnicity, educational level, 

indication for referral, dietary intake, lifestyle factors (smoking, alcohol and drug use), 

medication and vitamin use. Ethnicity and educational level were classified according to the 

definitions of Statistics Netherlands.17 Educational level was divided into three categories: low 

(primary/lower vocational/intermediate secondary), intermediate (intermediate 

vocational/higher secondary) and high (higher vocational/university).17  

 

Preconception counselling on dietary intake and lifestyle 

At the first outpatient preconception counselling (PC1) visit, the filled out questionnaires were 

checked by the counsellor, and height and weight were measured, to calculate the body mass 

index (BMI=weight in kilograms divided by squared height in centimetres). Additionally, waist-

hip circumference and blood pressure were measured. During the counselling the 

questionnaire data were discussed in detail for tailored dietary and lifestyle advice. For 

example if the woman and/or man smoke, they receive the following comment and advice: 
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“You urgently have to quit smoking, because in both women and men who smoke the time to 

conceive is much longer than in non-smokers. Tobacco smoke contains compounds that  

detrimentally affect the female and male gametes. Moreover, women who smoke have a 

higher risk of experiencing a miscarriage and pregnancy-related complications, such as 

intrauterine growth restriction”. 

 

Laboratory determinations 

Venous blood samples were drawn to measure sensitive biomarkers of the homocysteine 

pathway to obtain unbiased information on the intake of foods related to this pathway, i.e.,  

serum and red blood cell (RBC) folate, serum cobalamin and plasma total homocysteine (tHcy).   

Venous blood samples were drawn into dry vacutainer tubes and allowed to clot. After 

centrifugation at 2000 g, serum was collected before being assayed for the concentrations of 

folate and cobalamin. For the determination of RBC folate and plasma tHcy, venous blood 

samples were drawn into ethylenediamine tetraacetate (EDTA)–containing vacutainer tubes. 

The EDTA-blood samples were kept on ice, and plasma was separated by centrifugation within 

1 hour for determination of tHcy. Serum samples from each patient were analysed during 

routine laboratory procedures for folate, cobalamin, and tHcy using an 

immunoelectrochemoluminescence assay (E170; Roche Diagnostics GmbH, Mannheim, 

Germany). Directly after blood sampling, 0.1 ml EDTA tube was haemolysed with 0.9 ml of 

freshly prepared 1.0% ascorbic acid. Subsequently the hematocrit of the EDTA-blood was 

determined on an ADVIA 120 Hematology Analyzer (Bayer Diagnostics, Leverkusen,Germany). 

The hemolysate was centrifuged for 5 minutes at 1000 g after which the folate concentration 

was measured in the haemolysate. RBC folate was calculated using the following formula: (nM 

haemolysate folate x 10/haematocrit) - (nM serum folate x [1 - haematocrit]/haematocrit) = 

nM RBC folate. tHcy in EDTA plasma was determined using high-performance liquid 
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chromatography with reversed phase separation and fluorescence detection 18. Inter-assay 

coefficients of variation for serum folate were 4.5% at 13 nmol/L and 5.7% at 23 nmol/L, for  

serum cobalamin 3.6% at 258 pmol/L and 2.2% at 832 pmol/L, for plasma tHcy 4.8% at 14.6 

mmol/L. The detection limit for serum folate was 1.36 nmol/L, for serum cobalamin 22 pmol/L 

and for plasma tHcy 4 mmol/L. 

 

Tailored preconception dietary and lifestyle counselling 

Within the infrastructure of the Dutch Preconception Center of Excellence Rotterdam we 

developed and provided individual tailored preconception dietary and lifestyle counselling 

using the attitude social influence efficacy (ASE) model.19 The ASE model has been frequently 

used for the development of health education and prevention and is based on the interplay of 

attitudes, social influences and self-efficacy of an individual. Attitudes are the opinions of a 

person based on knowledge, experience and examples of others. Social influences include 

social norms, perceived behaviours of others, and direct pressure or support to perform a 

behaviour. Finally, self-efficacy includes confidence in one’s ability to perform a behaviour 

intention and progression through the stages of change. Together these factors determine the 

intention to perform or change certain behaviour. Whether or not the behavioural intention 

actually is performed depends in the ASE model from thresholds and positive incentives. 

Following the ASE structure we intended to modify intentions towards a healthier diet and 

lifestyle in terms of improved reproductive performance. A specific feature was that change 

was aimed in both women and men. 

The couple filled out an informed consent form and an evaluation form about their 

experiences of the preconception counselling. Moreover, they were offered a voluntary second 

counselling after 3 months. Within 3 weeks after the first counselling couples received a letter 

in which the identified (un)healthy dietary and lifestyle factors, biomarker concentrations and 

advises are reported.  
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Preconception Dietary Risk score (PDR-score) 

Six questions about dietary intake were filled out by the couple and estimate the general 

personal intake of six main food groups, with responses defined according to the food-based 

dietary guidelines of the Dutch Nutrition Center in the Netherlands.20 The guidelines included: 

at least four slices of brown bread daily, the use of monounsaturated or polyunsaturated 

oils/fats, at least 200 grams of vegetables daily, at least two pieces of fruit daily, at least three 

to four servings of meat a week, and at least one to two servings of fish a week. Each person 

received one point for every food group where they consumed less than the recommended 

amount; subsequently the total score was calculated and expressed by the individual the 

Preconception Dietary Risk score (PDR-score). We based the PDR-score on the unweighted 

summation of affirmative compliant responses. Consequently, the range of the PDR score was 

0 - 6, where 6 implies a highly inadequate diet.  

 

Rotterdam Reproduction Risk score (R3-score) 

The Rotterdam Reproduction Risk Score (R3-score) was created and based on the current 

scientific evidence of harmful effects of modifiable lifestyle risk factors (see addendum1). A 

similar approach has been used by the United States ‘Special Supplemental Food Program for 

Women, Infants and Children’ (WIC).21 Each person received one point for every risk factor; 

subsequently the total score was calculated and expressed by the individual R3-score. The R3-

score comprises of the following risk factors: no folic acid supplement use, use of medication 

(over the counter), smoking (yes, no), alcohol use (yes, no), caffeine use (≥6 cups a day), drug 

use (yes, no),  physical exercise (yes, no), infection risk (yes; including Rubella or Toxoplasmosis 

or Listeriosis, no), BMI (<20 of ≥30 kg/m2), waist circumference (woman:≥88 cm and man: ≥102 

cm), waist-to-hip-ratio  (≥0.8), blood pressure (systolic ≥160 or diastolic ≥90 mmHg) and 

deranged homocysteine pathway: folate: serum <15 nmol/L or (RBC) <500 nmol/L), or vitamin  
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B12 serum <160 pmol/l or tHcy>15 μmol/L. To reduce infection risk, we informed and advised 

women about the risks of consuming foods, such as raw meat/fish, and raw milk cheeses. Thus, 

they could change this risk by avoiding the intake of potentially contaminated foods with 

Toxoplasmosis and/or Listeriosis. Furthermore, when the women were not vaccinated for 

Rubella we indicated the need for vaccination to the woman and treating gynaecologist. 

For women the maximum score was 13. For men the maximum score was 10 because of 

excluding: folic acid supplement use, infection risk and waist-hip ratio since those factors are 

not related to reproductive performance and pregnancy outcome in men. Furthermore, age, 

ethnicity, educational level, marital status and parity are not modifiable and therefore not 

included in the R3-score. 

 

Statistical analysis 

The Kolmogorov Smirnov test was used to test for normality of the continuous variables. The 

variables that were not normally distributed were presented as medians with ranges and all 

other variables with numbers and percentages. The Wilcoxon signed rank test was used to 

analyse differences between paired continuous variables, the McNemar test for paired 

dichotomous variables, the Mann-Whitney U test for non-paired continuous variables and the 

Chi-Square for non-paired categorical variables.  A p-value of <0.05 was considered statistically 

significant. All statistical analyses were performed using SPSS 15.0 for Windows (SPSS Inc, 

Chicago, II, USA). 
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Results 

General characteristics 

In Table I, the non-modifiable and 6 modifiable dietary and 12 lifestyle risk factors are 

presented of the 419 couples and stratified into couples receiving preconception counselling 

(PC1) once (n=309) or twice after a fixed interval of 3 months (n=110, PC2).  

The median age of the total group of couples at PC1 was about 31 years, 56% had a Dutch 

ethnicity, 35% were high educated, and the main indication for referral to the outpatient 

preconception clinic was subfertility (93.8%). These characteristics were not significantly 

different between couples counselled once or twice.  

The non-modifiable and modifiable dietary risk factors were not significantly different between 

women or men who came for preconception counselling once or twice. Modifiable risk factors 

were also comparable between the two groups of women and men. However, more women 

who came for a second counselling were more often obese, had a higher waist circumference, 

waist-hip ratio and did not exercise.  

None of the couples showed a highly adequate diet that conformed to the guidelines, i.e., PDR-

score of 0. Most (>50%) women showed inadequate intakes of bread, vegetables, and  fish but 

adequate intakes of butter/oils, fruit and meat. Most men had inadequate intakes of 

vegetables and fish but adequate intakes of bread, butter/oils, fruit and meat.  In the total 

groups, overweight (BMI 25-30) or obesity (BMI ≥30) was present in 46.1% of the women and 

in 58.1% of the men. The median waist circumference was 90 cm (65-126) in women and 95 

cm (78-137) in men. For the waist-hip ratio this was 0.86 (0.67-1.41) and 0.92 (0.78-1.20), 

respectively. Both median systolic and diastolic blood pressure were within normal ranges in 

women and men. A pregnancy related infection risk was present in 38.7% of the women and 

29.1% of the women used medication. In men 22.4% used medication. In women and men 

49.6% and 59.7% consumed caffeine beverages, 11.7% and 29.3% smoked, 41.8% and 65% 
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used alcohol, 2.1% and 7.3% used drugs respectively, and 65.9% of the women  and 57.7% of 

the men did not physically exercise. In women 63.5% used folic acid supplements.  

 

Dietary intake and lifestyle risk factors 

In Table II, the effects after 3 months of preconceptional tailored dietary and lifestyle 

counselling are depicted. The median PDR score decreased significantly in the total group of 

women and men, 2.6(95% CI 2.4-2.9) to 2.4(95% CI 2.1-2.6) and 2.5(95% CI 2.3-2.7) to 2.2(95% 

CI 1.9-2.4), respectively, both p<0.05. This indicates that they better meet the food-based 

dietary guidelines. In women this effect is mainly due to a higher percentage taking at least 

guideline amounts of fruit (64.5% to 80%, p<0.05) and fish (39.1% to 51.8%, p<0.05), 

respectively. The percentage of men eating sufficient fruit increased (48.5% to 68%, p<0.05).  

R3-score decreased from 4.7(95% CI 4.3-5.0) to 3.1(95% CI 2.8-3.4) in women and from 3.0 

(95% CI 2.8-3.3) to 2.0 (95% CI 1.7-2.3) in men, both p<0.01 reflecting an improved lifestyle. In 

women, this was due to decreases in the percentages using alcohol (-14.6%), at risk of infection 

(-34.5%), and to increases in the percentage taking physical exercise (+ 43.7%) and starting to 

use a folic acid supplement (+ 17.2%) (all p<0.01). In men the prevalence of alcohol users 

decreased 19.4% (p<0.01). Reductions in the R3 and PDR scores were seen in all groups, but 

the reduction in R3 appeared to be larger in low educated women and in men with a normal 

BMI.  

 



 - 135 - 

 

Biomarkers  

As shown in Table III, in women and men attending for one or two sessions, the median 

concentrations of serum and RBC folate, serum vitamin B12 and plasma tHcy were within the 

normal range. Biomarker concentrations were not significantly different between women and 

men who were counselled once or twice, except a lower RBC folate in men who underwent 

counselling twice. At the second visit in women tHcy decreased from 8.6 mmol/L (95% CI 8.3-

8.8) to 7.7 mmol/L (95% CI 7.4-8.0), p<0.05. In men serum folate and RBC folate increased from 

16.6 nmol/L (95% CI 15.0-18.2) to 19.4 nmol/L (95% CI 17.8-21.0) and from 657 nmol/L (95% CI 

626-688) to 739 nmol/L (95% CI 689-789), respectively, both p<0.05.  

 

Evaluation of preconceptional tailored dietary and lifestyle counselling 

Table IV shows the assessment of the preconception counselling by the women and men. Most 

couples were referred to the preconception counselling clinic by the gynaecologist (women 

74.7% and men 57.5%). Most women and men found the preconception counselling very 

useful (64% and 58.7%), understood all information (90.7% and 83.1%), did not feel pressure to 

change their diet and lifestyle risk factors (81.1% and 75.2%), felt happy about the counselling 

(81.6% and 75.2%), and recommended the counselling to others (75.4% and 68%) respectively. 

There was no significant difference in the rating between women and men who visited the 

preconception counselling once or twice. In the subgroup that was counselled twice, men 

found the second counselling less useful. 
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Discussion 

The results of this study suggest that tailored preconceptional dietary and lifestyle counselling 

is effective in subfertile couples to change unhealthy behaviours within 3 months. In women 

and men the improvement in dietary intake (PDR-score) was achieved independent of 

ethnicity. The strongest effects were observed in women with low education, normal weight 

and living in a non-deprived neighbourhood, and in normal weight men with intermediate/high 

education. The significant improvement in the lifestyle risk factors (R3-score) was in both 

women and men independent of ethnicity, education, neighbourhood and BMI. The 

differences in R3-scores between the subgroups of women and men at baseline disappeared 

after 3 months except for BMI. These data very much encourages tailored preconception 

dietary and lifestyle counselling, because it is known that  ethnic minorities and populations 

with a low education and living in deprived neighbourhoods are very difficult to reach and 

motivate to change unhealthy behaviours.22 Despite intensive health care efforts, low 

socioeconomic groups still have a poorer health and shorter life expectancy and higher risk of 

adverse pregnancy outcome compared with high socioeconomic groups.23 This is caused 

amongst others by a higher prevalence of unhealthy dietary and lifestyle behaviours, such as a 

low intake of vegetables and fruits, obesity, smoking, and poor living and working conditions.23 

This is substantiated in our study with a higher PDR- and R3-score among couples with low 

education used as proxy of low socioeconomic class.  

We realize that these changes were achieved in a selective group of motivated mainly 

subfertile couples who voluntarily returned for a second preconception counselling. Since the 

given advices were offered without obligations, it is likely that even more health benefits can 

be achieved if the preconception counselling is mandatory and has consequences for the 

accessibility of fertility treatment.  
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In The Netherlands as well as in other countries the prevalence of unhealthy dietary intake and 

lifestyles is high.22 Our study clearly showed that the frequency of those factors is similar in 

subfertile couples planning pregnancy and that the knowledge about these risk factors is 

lacking despite the wish to be informed. This is in line with our observation that 93.4% of the 

women and 86.6% of the men found the preconception counselling useful and underscore the 

importance of using the preconception period as ‘window of opportunity’ to optimize dietary 

and lifestyle behaviours.10  

Furthermore, we established an increase in folic acid supplement use in women 3 months after 

counselling. A Dutch study showed that 50% of pregnant women used folic acid after an 

intensive mass media campaign for the entire advised period.24 A proactive intervention of 

Dutch pharmacists at informing and motivating women taking oral contraceptives to start 

taking folic acid supplements before pregnancy showed a significantly increase in folic acid 

supplement use.25 This is in line with our study since tailored preconception counselling was 

effective to increase folic acid supplement use up to 84.5%. This may suggest that tailored 

personalized counselling is more effective than anonymous public campaigns. 

The major strength of this study is that we implemented preconception counselling in a clinical 

setting, offered this to both women and men planning pregnancy, and included a follow-up 

period to examine changes in behaviours. This is unique as most studies obtained retrospective 

information in women only.26-28 Additionally, the effectiveness of counselling of the couple is 

assumed to be higher than that of the woman only.29 We validated the questionnaire data on 

dietary intake, i.e., PDR-score, and folic acid supplement use by measuring some of the 

biomarkers of the homocysteine pathway in which the B vitamins in fruit, vegetables and 

vitamin preparations play an important role. In this clinical evaluation the higher B vitamin and 

lower tHcy, albeit not always significant, are reflected by the higher intake of folic acid 

supplement use and fruit. In the clinical setting when using instruments we always have to  
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consider the time constraints. That was the rational for using a six-item food questionnaire and 

not a time consuming food frequency questionnaire (FFQ). Recently, Crozier et al (2009) 

developed a 20-item FFQ to assess a prudent dietary pattern. This could be a useful instrument 

for future preconception dietary counselling. We developed the PDR-score as a novel tool to 

predict an (in)adequate dietary intake of the women and men.  Although our data, i.e., 

questionnaires and biomarkers, are in line with previous findings on the dietary intake of 

couples in reproductive age, the PDR-score should be further evaluated with regard to its 

measure of overall healthy nutrient intake.30 Furthermore, since it is very difficult to give a 

valid weight to each of the R3-risk factors in association with outcome, we have given the same 

weight to each factor. We realize, however, that some risk factors should be weighted more 

than others, such as smoking. 

Finally, in our study, 46% of the women and 38% of the men had a non-Dutch ethnicity, which 

is a good reflection of the multi ethnic composition of the urban population of the city of 

Rotterdam in the Netherlands. For that reason, all couples received counselling from health 

professionals apprehending the Dutch and/or Moroccan, Turkish and English language. 

However, information bias due to language problems cannot be ruled out completely. 

Since, only 26% of the couples returned for a second preconception counselling, this may have 

led to selection bias. Therefore, the results do not apply to all couples with fertility problems 

and to the general population of couples planning pregnancy. On the other hand, in case no 

effects would have been shown in this motivated group, this would certainly apply and in a 

stronger degree to less motivated groups. Additionally, most couples don not visit their 

obstetrician/gynaecologist before conception. The issue to be addressed in the next years is 

how can we make the reproductive population aware of the needs and benefits of 

preconception counselling and what are the best manners to reach this target group. Thus, this 

evaluation shows that the way seems open to offer preconception counselling to other  
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populations as well and to investigate its effectiveness thereafter. The high percentage of non- 

responders for the second counselling may have contributed to confounding by a “healthy 

cohort effect”. Therefore, we have performed a non-response analysis showing that women 

who were counselled twice were more often obese and had more physical exercise (Table I). 

However, we cannot totally rule out desirable answers at the second visit. 

There was no difference in the evaluation of the usefulness, quality and understanding of the 

given information and the feeling of pressure in responders and non-responders. Both were 

very happy and satisfied about the first counselling. Therefore, we assume that the low 

compliance of the second counselling may be due to the fact that these couples were already 

satisfied after the first counselling. Finally, we are aware that this evaluation is not designed as 

a randomized controlled trial. Therefore, the results should be interpreted carefully. If ethically 

allowed, the time seems right to further investigate preconception care initiatives in 

randomized controlled trials. 

 

Our results confirm the very high prevalence of unhealthy dietary and lifestyle risk factors even 

in subfertile couples planning pregnancy, in one of the largest urban cities in the Netherlands. 

Couples with low education seem to benefit most from tailored personalized preconception 

dietary and lifestyle counselling. Therefore, we emphasize that the period of planning 

pregnancy should be used as ´window of opportunity´ to change unhealthy behaviours. In 

future it must be shown whether this new preventive care also applies to the general 

population planning pregnancy, whether the results improve reproductive performance and 

pregnancy outcome and reduce the costs for fertility treatment and care and treatment of 

pregnancy complications and adverse outcome. Future studies should also elaborate on the 

predictive value of the PDR and R3-score for reproduction.  
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Table 1 
Baseline characteristics of couples at the first preconception counselling (PC1) 
 Total women (n=419) Total men (n=409) 
 Total PC1 

 (n=419) 
PC1 only 
 (n=309) 

Two PCs 
PC1   

(n=110) 

p a Total PC1 
(n=409) 

PC1 only (n=306) Two PCs 
PC1  

(n=103) 

p a 

Non-Modifiable factors         
Age (years) median(range) 31 (19-44) 31.2 (19-44) 32 (19-42) 0.9 34 (22-63) 34.1 (22-63) 34.5 (22-60) 0.4 
Ethnicity; n(%)     0.8    0.1 
Dutch 223 (53.2) 167 (54.0) 56 (50.9)  245 (59.9) 190 (62.1) 55 (53.4)  
European-others 40 (9.5) 29 (9.4) 11 (10)  30 (7.3) 21 (6.9) 9 (8.7)  
Non-European 151(36) 109 (35.3) 42 (38.2)  129 (31.5) 91 (29.7) 38 (36.9)  
Educational level; n(%)    0.4    0.6 
Low 64 (15.3) 41 (13.3) 23 (20.9)  90 (21.5) 68 (21.5) 22 (21.4)  
Intermediate 199 (47.5) 157 (50.8) 42 (38.2)  151 (36.0) 116 (37.9) 35 (34)  
High 145 (34.6) 111 (35.9) 34 (30.9)  150 (35.8) 113 (36.9) 37 (35.9)  
Indication for referral; n(%)    0.7     
Subfertility 393 (93.8) 289 (93.5) 104 (94.5)      
High obstetrical risk 11 (2.6) 10 (3.2) 1 (0.9)      
Recurrent miscarriages 14 (3.3) 10 (3.2) 5 (4.5)      
Modifiable factors:         
All items of PDR-Score b         
Bread; n(%) 268 (64) 198 (64.1) 70 (63.6) 0.9 129 (31.5) 93 (30.4) 36 (35) 0.4 
Butter/Oils; n(%) 55 (13.1) 39 (12.6) 16 (14.5) 0.6 54 (13.2) 41 (13.4) 13 (12.6) 0.8 
Vegetables; n(%) 313 (74.7) 231 (74.8) 82 (74.5) 1.0 327 (80) 244 (79.7) 83 (80.6) 0.9 
Fruit; n(%) 140 (33.4) 101 (32.7) 39 (35.5) 0.6 199 (48.7) 146 (47.7) 53 (51.5) 0.5 
Meat; n(%) 68 (16.2) 51 (16.5) 17 (15.5) 0.8 53 (13) 39 (12.7) 14 (13.6) 0.8 
Fish; n(%) 224 (53.5) 157 (50.8) 67 (60.9) 0.07 215 (52.6) 158 (51.6) 57 (55.3) 0.5 
Rotterdam Reproduction Risk Score Items (R3-
score) 

        

BMI (kg/m2); median (range) 24.6 (17-43.2) 24.4 (17-43.2) 25.3 (18.4-42.4) 0.2 26.1 (17.4-46.8) 26.0 (17.4-46.8) 26.7 (18.5-42.5) 0.9 
            25-30 (kg/m2); n(%) 96 (22.9) 75 (24.3) 21 (19.1) 0.3 156 (38.1) 116 (37.9) 40 (38.8) 0.8 
 >30 (kg/m2); n(%) 97 (23.2) 63 (20.4) 34 (30.9) <0.05 82 (20) 60 (19.6) 22 (21.4) 0.9 
Waist circumference (cm); median(range) 90 (65-126) 84 (64-135) 90 (65-126) <0.05 95.0 (78-137) 95 (71-138) 95 (78-137) 0.6 
Waist - Hip ratio (cm) 0.86 (0.67-1.41) 0.83 (0.65-1.43) 0.86 (0.67-1.41) <0.01 0.92 (0.78-1.20) 0.91 (0.75-1.22) 0.92 (0.78-1.20) 0.1 
Systolic blood pressure (mmHg) 112 (90-152) 112 (88-180) 112 (90-152) 0.4 124 (90-165) 120 (90-178) 124 (90-165) 0.8 
Diastolic blood pressure (mmHg) 75 (40-96) 70 (50-106) 75 (40-96) 0.06 80 (60-110) 78 (50-110) 80 (60.0-110.0) 0.5 
Infection risk; n(%) 162 (38.7) 116 (37.5) 46 (41.8) 0.4 - - - - 
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Medication use; n(%) 122 (29.1) 83 (26.9) 39 (35.5) 0.09 94 (22.4) 66 (21.6) 28 (27.2) 0.2 
Caffeine use; n(%) 208 (49.6) 159 (51.5) 49 (44.5) 0.2 250 (59.7) 192 (62.7) 58 (56.3) 0.7 
Smoking; n(%)  49 (44.5) 69 (22.3) 18 (16.4) 0.2 120 (29.3) 95 (31) 25 (24.3) 0.2 
Alcohol use ; n(%)  175 (41.8) 136 (44) 39 (35.5) 0.1 266 (65) 198 (64.7) 68 (66) 0.4 
Drug use; n(%)  9 (2.1) 5 (1.6) 4 (3.6) 0.1 30 (7.3) 23 (7.5) 7 (6.8) 0.7 
Physical exercise (no); n(%) 276 (65.9) 193 (62.5) 83 (75.5) <0.05 236 (57.7) 171 (55.9) 65 (63.1) 0.1 
Folic acid supplement use; n(%)  266 (63.5) 192 (62.1) 74 (67.3) 0.3 - - - - 
a p-values show differences in characteristics of women and men who visited the preconception counselling only once (PC1 only) or twice (PC1 and 2) with a three months interval. 
b Dietary  intake of six food groups not  according to the Dutch guideline (Nutrition Center the Netherlands, 2009).20 
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Table 2 
Preconceptional dietary and lifestyle risk factors in couples visiting the preconception counselling clinic twice 
 Women Men 
 PC1 

(n=110) 
PC2 

(n=110) 
 p a PC1 

(n=103) 
PC 2 

(n=103) 
p a  

Preconceptional Dietary Risk Score Items (PDR-score) b       
Total PDR-score Median (95% CI) 2.6 (2.4-2.9) 2.4 (2.1-2.6) <0.05 2.5 (2.3-2.7) 2.2 (1.9-2.4) <0.05 
Bread n(%) 70 (63.6) 65 (59.1) 0.3 36 (35.0) 35 (34.0) 1.0 
Butter/Oils n(%) 16 (14.5) 18 (16.4) 0.7 13 (12.6) 17 (16.5) 0.5 
Vegetables n(%) 82 (74.5) 80 (72.7) 0.7 83 (80.6) 80 (77.7) 0.7 
Fruit n(%) 39 (35.5) 22 (20) <0.05 53 (51.5) 33 (32.0) <0.05 
Meat n(%) 17 (15.5) 21 (19.1) 0.4 14 (13.6) 13 (12.6) 1.0 
Fish n(%) 67 (60.9) 53 (48.2) <0.05 57 (55.3) 47 (45.6) 0.06 
Rotterdam Reproduction Risk Score Items (R3-score)       
Total R3-score Median (95% CI) 4.7 (4.3-5.0) 3.1 (2.8-3.4) <0.01 3.0 (2.8-3.3) 2.0 (1.7-2.3) <0.01 
BMI (kg/m2); median(range) 25.3 (18.4-42.4) 25.3 (18.8-40.3) 0.4 26.7(18.5-42.5) 26.8(19.1-41.9) 0.8 
 25-30 (kg/m2); n(%) 21 (19.1) 25 (22.7) 0.2 40 (38.8) 40 (38.8) 0.1 
 >30 (kg/m2); n(%) 34 (30.9) 31 (28.2) 0.4 22 (21.4) 17 (16.5) 0.3 
Waist circumference (cm); median(range) 90 (65-126) 94 (64-120) 0.7 95.0 (78-137) 96.5 (71-137) 0.9 
Waist-Hip ratio (cm) 0.86 (0.67-1.41) 0.87 (0.67-1.46) 0.9 0.92 (0.78-1.20) 0.93 (0.73-1.08) 0.9 
Systolic Blood pressure (mmHg) 112 (90-152) 110 (90-150) 0.2 124 (90-165) 120 (92-160) 0.5 
Diastolic Blood pressure (mmHg) 75 (40-96) 74 (48-94) 0.2 80 (60-110) 80 (55-100) 0.4 
Infection risk; n(%) 46 (41.8) 8 (7.3) <0.01 - -  
Medication use; n(%) 39 (35.5) 39 (35.5) 1.0 28 (27.2) 24 (23.3) 0.5 
Cafeïne use; n(%) 49 (44.5) 48 (43.6) 1.0 58 (56.3) 54 (52.4) 1.0 
Smoking; n(%) 18 (16.4) 17 (15.4) 0.9 25 (24.3) 21 (20.4) 0.4 
Alcohol use; n(%) 39 (35.5) 23 (20.9) <0.01 68 (66.0) 48 (46.6) <0.01 
Drug use; n(%) 4 (3.6) 4 (3.6) 1.0 7 (6.8) 4 (3.0) 0.3 
Physical Exercise (no); n(%) 83 (75.5) 35 (31.8) <0.01 65 (63.1) 67 (65.0) 0.6 
Folic acid supplement use; n(%) 74 (67.3) 93 (84.5) <0.01 - -  
a p-value shows the difference after 3 months between PDR-score, R3-score, dietary and  lifestyle items in women and men who visited the preconception counselling twice. 
b  Dietary intake of food groups not according to the recommendations of daily allowances (Nutrition Center the Netherlands, 2009).20 
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Table 3  
Biomarkers of couples visiting the preconception outpatient clinic once or  twice 

Women Men 
 

Total PC1 
(n=419) 

PC1 only 
(n=309) 

Two PCs 
PC1 

(n=110) 

PC2 
(n=110) 

Total PC1 
(n=409) 

PC1 only 
(n=306) 

Two PCs PC1 
(n=110) 

PC2 
(n=110) 

Folate, serum 
(nmol/L) 

26.9 
(25.0-28.8) 

27.1 
(24.9-29.3) 

26.3 
(21.7-30.9) 

32.4 
(29.3-35.5) 

17.0 
(16.3-17.6) 

17.2 
(16.4-18.0) 

16.6 
(15.0-18.2) 

19.4 
(17.8-21.0) 

Folate, RBC (nmol/L) 806 
(775-837) 

818 
(784-852) 

742 
(682-802) 

877 
(827-928) 

705 
(683-727) 

724 
(696-752) 

657 
(626-688) 

739 
(689-789) 

Vitamin B12, serum 
(pmol/L) 

316 
(304-328) 

322 
(305-338) 

312 
(289-336) 

311 
(293-329) 

307 
(293-321) 

309 
(290-328) 

304 
(2801-327) 

312 
(277-347) 

tHcy, plasma 
(μmol/L) 

8.4 
(8.0-8.7) 

8.2 
(7.8-8.5) 

8.6 
(8.3-8.8) 

7.7 
(7.4-8.0) 

10.7 
(10.5-10.9) 

10.8 
(10.5-11.0) 

10.7 
(10.0-11.4) 

10.5 
(9.9-11.1) 

Folate RBC = red blood cell folate 
Results are presented as median (95% Confidence Interval) 
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Table 4 
Assessment of the preconception counselling by the couples 
 Women Men 
 Total PC1 

(n=419) 
PC1 only 
(n=309) 

Two PCs 
PC1  

(n=110) 

PC2 
(n=110) 

p a p b Total PC1 
(n=419) 

PC1 only 
(n=309) 

Two PCs 
PC1  

(n=110) 

PC2 
(n=110) 

p a p b 

Reason for preconception counselling; 
n(%)* 

    0.5 0.8     0.2 0.05 

I wanted to go 161 (38.4) 113 (36.6) 48 (43.6) 59 (53.6)   154 (36.7) 121 (39.2) 33 (30) 76 (73.8)   
Gynaecologist told me to go 313  (74.7) 235 (76.1) 78 (70.9) 62 (56.4)   241 (57.5) 177 (57.3) 64(58.2) 5 (4.9)   
Partner told me to go 3 (0.7) 3 (1.0) 0 1 (0.9)   37 (6.4) 26 (8.4) 10 (9.1) 6 (5.8)   
Friends and family told me to go 0 0 0 1 (0.9)   1 (0.2) 0 0 0   
Usefulness of the counselling; n(%)*     0.2 0.06     0.2 0.03 
Yes, very useful 268 (64.0) 191 (61.8) 77 (70.0) 56 (50.9)   246 (58.7) 179 (57.9) 67 (60.9) 50 (48.5)   
Yes, a bit useful 123 (29.4) 99 (32.0) 24 (21.8) 39 (35.5)   117 (27.9) 93 (30.1) 24 (21.8) 33 (32.0)   
No, not useful 7 (1.7) 7 (2.3) 0 4 (3.6)   6 (1.4) 5 (1.6) 1 (0.9) 3 (2.9)   
Understanding of the information; n(%)*     0.9 0.4     0.9 0.2 
Yes, everything was clear 380 (90.7) 282 (91.3) 98 (89.1) 92 (83.6)   348 (83.1) 262 (84.8) 86 (78.2) 76 (73.8)   
Yes, most was clear 12 (2.9) 10 (3.2) 2 (1.8) 5 (4.5)   19 (4.5) 14 (4.5) 5 (4.5) 10 (9.7)   
No, some was not clear. 3 (0.7) 3 (1.0) 0 1 (0.9)   2 (0.5) 2 (0.6) 0 0   
No, everything was not clear 1 (0.2) 0 1 (0.9) 0         
Feeling pressure to change nutritional and 
lifestyle risk factors; n(%)* 

    0.7 0.5     0.9 0.5 

No 340 (81.1) 251 (81.2) 89 (80.9) 84 (76.4)   315 (75.2) 236 (76.4) 79 (71.8) 76 (73.8)   
Yes, by gynaecologist 18 (4.3) 12 (3.9) 6 (5.5) 9 (8.2)   14 (3.3) 10 (3.2) 4 (3.6) 5 (4.9)   
Yes, during counselling 34 (8.1) 28 (9.1) 6 (5.5) 7 (6.4)   33 (7.9) 24 (7.8) 9 (8.2) 6 (5.8)   
Yes, by partner 6 (1.4) 4 (1.3) 2 (1.8) 2 (1.8)   17 (4.1) 15 (4.9) 2 (1.8) 0   
Yes, by family and friends 8 (19.1) 5 (1.6) 3 (2.7) 0   9 (2.1) 5 (1.6) 4 (3.6) 0   
Feeling happy about the counselling; n(%)     0.6 0.7     0.1 0.9 
Yes 342 (81.6) 249 (80.6) 93 (84.5) 85 (77.3)   315 (75.2) 232 (75.1) 83 (75.5) 78 (75.7)   
No 8 (1.9) 6 (1.9) 2 (1.8) 1 (0.9)   8 (1.9) 6 (1.9) 2 (1.8) 2 (1.9)   
Don’t know 29 (6.9) 27 (8.7) 2 (1.8) 11 (10.0)   30 (7.2) 26 (8.4) 4 (3.6) 7 (6.8)   
Recommendation of counseling to others? 
n(%) 

    0.2 0.9     0.2 0.4 

Yes 316 (75.4) 226 (73.1) 90 (81.8) 84 (76.4)   285 (68.0) 211 (68.3) 74 (67.3) 68 (66.0)   
No 13 (3.1) 13 (4.2) 0 4 (3.6)   16 (3.8) 11 (3.6) 5 (4.5) 4 (3.9)   
Don’t know 48 (11.5) 41 (13.3) 7 (6.4) 10 (9.1)   51 (12.2) 42 (13.6) 9 (8.2) 13 (12.6)   
a  p-values show difference in rating of the preconception counselling of women and men who were counselled once (PC1 only) or twice (PC1 and 2) with a three months interval 
b p-value shows the difference  in preconception consultation between PC1 and PC2 in women and men. 
* Numbers and percentages may exceed 100% because multiple answers were possible to the question. 
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Addendum 1 Rotterdam Reproduction Risk Score (R3-Score) 
 Risk factor Score 

woman 
Score 
man 

Fertility Miscariage Fetal growth 
restriction 

Premature birth Pre-eclampsia Congenital 
malformation 

Health Medication; Yes 1 1 Dunlop et al., 2008 Siberstein et al.,2004 Koren et al.,1998  Reis et al.,2010; 
Calderon-Margalit et 
al.,2009 

Saftlas et al., 
2004 

Koren et al.,1998;  

Lifestyle Folic acid use; No 1 - Tamura et al., 2006 Tamura et al., 2006 Timmermans et al, 
2008; Tamura et al., 
2006 

Tamura et al., 2006 Tamura et al., 
2006 

Tamura et al., 
2006;Czeizel et al.,2009 

 Exercise; No 1 1 Homan et al., 2007 - Takito et al.,2010 Takito et al.,2010 - - 
 Infection risk; yes 1 - Coonrod et al., 2008 - - - - Elsheikha et al., 2008 

Intoxication Smoking; yes 1 1 Hassan et al.,2004  Rasch et al,2003 Bada et al,2005; Aliyu 
et al., 2009 

Kolas et al., 2000 - Lorente et al,2000 

 Alcohol use; yes 1 1 Windham et al., 1992; Grodstein et al., 
1994;Hassan et al.,2004 

Rasch et al,2003 Bada et al.,2005; 
O’Leary et al.,2009; 
Aliyu et al., 2009 

O’Leary et al.,2009 - Lorente et al,2000 

 Drug use; yes 1 1 Hassan et al., 2004  Slutsker  et al., 1992 Slutsker et al., 1992  Slutsker  et al., 1992 

 >6 cups of coffee; yes 1 1 Jensen et al., 1998 Rasch et al,2003 Weng et al., 2008 - - - 
Physical 
examination 

BMI <20/ ≥30 1 1 Hassan et al., 2004 Micali et al., 
2007;Landres et 
al.,2010 

Micali et al., 2007 Jensen et al.,2003 Siega-Riz et 
al.,2006 

Siega-Riz et al.,2006; 
Stothard et al., 2009 

 Systolic≥160mmHg  
Diastolic  ≥90 mmHg blood 
pressure 

1 1 - - Chappell et al.,2008  Chappell et al., 2008 Duckitt et al.,2005 - 

 Waist circumference 
Woman; ≥88 cm 
Man; ≥102 cm 

1 1 - - Berends et al.,2009 - Berends et 
al.,2009 

- 

  Waist to Hip ratio ≥0.8 1 - Zaadstra et al., 1993 - Berends et al.,2009 - Berends et 
al.,2009 

- 

Biomarkers Deviating biomarkers value: 

maximum 
1 

maximu
m 1 

Wong et al., 2001; Boxmeer et al., 
2009 

de la Calle et al., 
2003 

Timmermans et al, 
2008 

de la Calle et al., 
2003 

de la Calle et al., 
2003 

Tamura et al., 
2006;Czeizel et al.,2009 

 B12 total <160 pmol 1 1       
 B12 active <20 pmol/l 1 1       
 folate serum <8 nmol/l 1 1       

 
folate erythrocytes <350 
nmol/l 

1 1       

 homocysteine >15 umol 1 1       
Note: The maximum R3-score for women is 13 and for men 10. 
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Chapter 8 

General Discussion 
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Introduction 

The main objective of this thesis was to study the effects of nutrition and lifestyle factors on 

fertility parameters in both women and men in the preconception period (part I) and to 

evaluate the implementation of preconception counselling tailored on adverse nutrition and 

lifestyle in women and men planning pregnancy at the Erasmus MC in Rotterdam, The 

Netherlands, a tertiary university medical center (part II).  

The focus in this thesis is on: 

1. The effects of folic acid supplement use and dietary omega-3 polyunsaturated fatty acid 

consumption on fertility outcome parameters in subfertile couples who underwent 

ovarian hyperstimulation treatment; 

2. The associations between Body Mass Index (BMI) and AMH response  in women who 

underwent ovarian hyperstimulation treatment; 

3. The associations between BMI and  sperm quality in man of subfertile couples; 

4. The short term effectivity of tailored preconceptional nutrition and lifestyle counselling 

of subfertile couples. 

 

These research objectives were investigated in the FOLFO study and the preconceptional 

outpatient clinic “Achieving a Healthy Pregnancy”, which both have a prospective 

preconception cohort design.  
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Main Findings 

In part I we found that folic acid supplement use attenuates estradiol and follicular and 

endocrine responses to conventional ovarian hyperstimulation treatment, independent of 

AMH and antral follicle count (chapter 3). Next, we observed that dietary omega-3 LC-PUFA 

intake in women undergoing IVF/ICSI treatment is associated with improved embryo 

morphology (chapter 2). We also demonstrated that AMH levels after ovarian hyperstimulation 

remained elevated in women with a BMI≥25 compared to normal weight women (chapter 4).  

 

 In Part II, we found that sperm quality in men of subfertile couples is significantly affected by 

BMI and central adiposity (chapter 6). Additionally, we showed that tailored preconceptional 

counselling on unhealthy dietary and lifestyle behaviours of subfertile couples in an outpatient 

tertiary clinic is effective. Three months after preconceptional counselling this has led to a 

significant improvement in fruit (women: +15.5% and men: +19.5%) and fish (women: +13%) 

consumption and a decrease in alcohol use (women:-14.6% and men: -19.4%). In women also 

use of folic acid supplementation improved (+17.2%). These improvements were in both 

women and men independent of ethnicity, education, neighbourhood and BMI. 

 

Inferences of the findings 

There is a body of literature showing that nutrition is important in human reproduction.1  

Especially, in the preconception period, which represents a sensitive window during which 

nutritional status of both the woman and man play a critical role in their reproductive 

performance.  In this critical time episode of 3 months, gamete development and maturation 

takes place. This involves cell growth and differentiation.1 Malnutrition and lifestyle  and 
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demographic factors related to nutrition, such as smoking and education, can have adverse 

effects on these biological processes.1 

 

Folic acid 

As we described in Chapter 3 we observed that moderate folic acid use modifies the ovarian 

response after conventional ovarian hyperstimulation treatment. The estradiol response and 

the mean follicle number after ovarian hyperstimulation was higher in women not using a folic 

acid supplement compared to women using folic acid supplementation. Supraphysiological 

estradiol levels and a high number of follicles retrieved after ovarian hyperstimulation are 

associated with a higher frequency of embryo aneuploidy.2 These data suggest that folate 

interferes with ovarian physiology, which might lead to the generation of oocytes with a better 

quality of the genome. This suggestion is further reinforced by the fact that folate has a major 

role in one-carbon metabolism, important in epigenetic processes. It provides methyl groups 

for various macromolecules like DNA, RNA, proteins and membrane phospholipids. Our results 

suggest that the ovarian response to gonadotropins is subject to the availability of the methyl 

donor folate. Others also reported a higher ovarian response after rFSH administration in 

methyl-deficient ewes.3 An additional in vitro analysis of granulosa cells revealed higher FSH 

receptor (FSH) mRNA expression as homocysteine levels increased, reflecting low methyl group 

availability. 

 

Long-chain polyunsaturated fatty acids (LC-PUFAs) 

We also showed that women undergoing IVF/ICSI treatment with high intakes of the long-chain 

polyunsaturated fatty acids (LC-PUFA) eicosapentaenoic acid (EPA) and docosahexaenoic acid 

(DHA) have a lower estradiol (E2) response and number of follicles after ovarian 

hyperstimulation. Additionally, we demonstrated that total omega-3 intake, in particular  



 

 - 153 - 

ALA and DHA intake, improves embryo morphology (chapter 2). Animal studies have reported 

beneficial effects on cow reproductive performance following supplementation with omega-3 

PUFA. However, human studies are scarce.4-5 These fatty acids may act in the regulation of 

some key reproductive processes including ovarian function, steroidogenesis and suppression 

of uterine prostaglandin F2α synthesis.6-8 LC-PUFAs are an indispensable component of all cell 

membrane phospholipids and precursors of eicosanoids, such as prostaglandins, leukotrienes 

and tromboxanes.8  

Similar to folate, omega-3 PUFAs are also known to be regulators of gene transcription in many 

tissues.9-11 LC-PUFAs may alter the function of transcription factors controlling gene expression 

and can thus affect cellular concentrations of enzymes regulating both the prostaglandin and 

steroidogenic synthetic pathways. Namely, membrane phospholipids are major methyl group 

acceptors and reduced DHA levels may result in diversion of methyl groups towards DNA 

ultimately resulting in DNA methylation as was recently described in the one-carbon metabolic 

pathway.12 DNA methylation is critical for developmental changes in gene regulation, and 

changes that take place during this critical period may result in altered imprinting of genes 

which might be transferred to the next generation.13 

Additionally, the consumption of omega-3 PUFAs has been associated with lower 

homocysteine (tHcy) levels.14 A possible mechanism is that omega-3 PUFAs as transcription 

factors modulate gene expression of enzymes that are involved in the formation and 

metabolism of tHcy.15 High concentrations of tHcy are associated with reduced embryo 

quality.16 

 

PRECONCEPTIONAL INTERVENTIONS  

Thus, maternal folate and omega-3 LC-PUFAs status in the preconception period of women 

planning pregnancy is important for the outcome of IVF/ICSI treatment. Humans do not have 



 

 - 154 - 

the ability to endogenously synthesize folate and omega-3 PUFAs. Therefore, the demand for 

these nutrients has to be met entirely by dietary intake. Therefore, periconceptional folic 

supplement use has been recommended to women since the early 1990’s to reduce the risk of 

neural tube defects.17 

Yet, in the Netherlands only 51% of the women in the general population use folic acid for the 

entire advised period.18 Although the majority of women know about the beneficial effects of 

folic acid, its use in the advised period is not guaranteed, and there is still a large gap between 

women of different educational levels. Our data from the FOLFO study and the 

preconceptional outpatient clinic “Achieving a Healthy Pregnancy”; involving couples planning 

pregnancy, revealed that respectively 67% and 67.3% used folic acid  according to the 

recommendations. One would also expect that these women are well aware of this measure 

and that the percentage using folic acid is higher. We showed in chapter 7 that 3 months after 

tailored preconception counselling an increase in folic acid supplement use from 67.3% to 

84.5% was established in women. This was also achieved in women of low socio-economic 

class.  

At present, the Dutch debate specifically surrounds the issue whether folate intake should be 

increased by mandatory folic acid fortification, which will affect the entire population.19 Folate 

has beneficial effects in prevention of several diseases. However, on the other hand there is 

concern that exposure of the total population might promote the growth of pre-neoplastic 

lesions.20-21 Additionally, also with food fortification it is very difficult to reach the daily 

recommended intake of 0.4 mg folate in every women of childbearing age.22 Therefore, more 

studies are needed to address this issue. Until then the intake of excessive folate should be 

regarded with caution and more public health measures should be taken to increase 

information regarding folic acid supplement use in women of reproductive age.  
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Furthermore, it is recommended that good sources of omega-3 PUFAs, namely pelagic  

fish, are included in the diet. The Dutch Nutrition Health Center recommends to consume at 

least two portions of fish per week, one of which should be oily (equivalent to about 3 g EPA + 

DHA per week).23 Current intakes, especially of oily fish, are considerably lower than this. We 

also demonstrated in women undergoing IVF/ICSI treatment that the intake of omega-3 LC-

PUFAS is much lower than the recommended intake, in contrast to the adequate intakes of 

omega-6 LC-PUFA. The question then rises, whether women planning pregnancy should also be 

recommended to take PUFA supplements. Many women of reproductive age already take 

PUFA supplements for various health reasons, such as rheumatoid arthritis.24 It appears that 

LC-PUFAs are a two-edged sword—some are essential, but too much is potentially harmful. We 

remain largely ignorant as to the best balance to take at different points in our life in order to 

achieve optimum fertility. Therefore, just as with regard to folic acid fortification one should be 

cautious in taking PUFA supplements without proven beneficial effects. We showed, however, 

that tailored preconception counselling is also an effective intervention to increase dietary 

PUFA consumption by more fish consumption in women planning pregnancy (chapter 7). 

 

Body Mass Index (BMI) 

A high body mass index (BMI≥25) is a good phenotype for unhealthy nutrition and lifestyles. 

There is mounting evidence on the effect of a high BMI on female fertility. However, data on 

the effect of BMI on AMH - a marker for ovarian reserve - is scarce. A negative correlation 

between BMI and AMH levels has been found among late reproductive-age women and young 

women using oral contraceptives.25-26 Another study, however, failed to demonstrate a similar 

association.27 To date, there is still controversy about the relationship between BMI and AMH, 

and possible mechanisms underlying this association have not been elucidated. In Chapter 4  
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we have demonstrated that overweight or obese women undergoing ovarian hyperstimulation 

have higher AMH levels after ovarian hyperstimulation. We also suggest that folate acts herein 

as an intermediate. 

AMH inhibits the initial and cyclic processes of follicular recruitment and the response to 

exogenous FSH, yet the aspects involved in its regulation are still poorly understood. However, 

because of the significant inverse association between baseline serum folate and AMH before 

and after ovarian hyperstimulation, comparable with the association between folate and 

estradiol (chapter 3), we suggest that folate as methyl donor influences the expression of the 

AMH receptor gene by affecting the methylation of its promoter.28 Folate acts as a methyl 

donor in the remethylation of homocysteine to methionine. Deficiencies in folate can result in 

accumulation of homocysteine, which is associated with DNA hypomethylation and could 

potentially result in changes in gene expression 29.  

Unlike the well established inverse association between obesity and female fertility, little is 

known about what effect male obesity has on semen quality. In this thesis we have 

investigated the effects of lifestyle factors on semen parameters in both the FOLFO and 

“Achieving a Healthy Pregnancy” study (chapter 5 and 6). We could not demonstrate  

associations between smoking, alcohol use, BMI and the conventional sperm parameters and 

DNA fragmentation index (DFI) in the FOLFO study. The absence of significant effects of these 

lifestyle factors on sperm parameters may be due to a power problem. Additionally, it cannot 

be excluded that the lack of association may also be due to some misclassification of exposure 

status, since data on smoking and alcohol use were obtained from questionnaires and have not 

been validated by measuring biomarkers of smoking, e.g., cotinine, and alcohol use, e.g., 

ethanol, in serum or seminal plasma. Nevertheless, we showed a positive association between 

age and DFI and an inverse association with ejaculate volume (chapter 5). This suggests that 
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delaying childbearing not only in women but also in men can contribute to a reduced 

reproductive capacity. 

Our finding is consistent with the observation that older men show more DNA damaged 

spermatozoa due to increased oxidative stress as a consequence of the aging process.30-31 In 

addition, studies in rats revealed that a decrease in epididymal antioxidant capacity occurs 

with rising age thereby disrupting germ-cell differentiation and sperm quality.32  

In the study “Achieving a Healthy Pregnancy”, we demonstrated an inverse association 

between a high BMI and sperm quality (chapter 6).  Being overweight was associated with a 

significantly lower ejaculate volume, percentage of progressive motile sperm and higher 

percentages of immotile sperm. Furthermore, obesity was associated with an even significantly 

lower ejaculate volume, sperm concentration, total sperm count and total motile sperm count. 

Furthermore, we showed that a waist circumference ≥102 cm, a marker for central adiposity, 

was associated with a lower sperm concentration, total sperm count and total motile sperm 

count. Due to the high correlation between BMI and waist circumference, these associations, 

disappeared after adjustment for BMI. 

Thus, in addition to the importance of maternal lifestyle and nutrition, this thesis stresses the 

significance of a healthy lifestyle and nutritional behaviour in reproductive active men in order 

to improve their fertility capacity. 

 

Methodological considerations 
 

FOLFO study 

One of the strengths of the FOLFO study is its prospective preconception design, the relative 

large sample size and the fact that information of both women and men were collected. 

However, in this study only couples undergoing IVF/ICSI treatment were included.  
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Misclassification could have occurred in our study on semen since we only used one semen 

sample. However, in daily clinical practice only one semen sample is used to differentiate 

between fertile and subfertile men. By using a questionnaire involving lifestyle and dietary 

factors, recall bias and underreporting could have occurred which also could have led to 

misclassification. 

 

“Achieving a Healthy Pregnancy” 

The major strength of this study is that we implemented preconception counselling in a clinical 

setting, offered this to both women and men planning pregnancy, and included a follow-up 

period to investigate changes in behaviours. This is unique as most studies obtained 

retrospective information in women only.33-34 Additionally, the effectiveness of counselling of 

the couple is assumed to be higher than that of the woman only.35  In this study, couples 

returned voluntary for a second visit to evaluate to which extent they adapted the 

preconceptional advices. Since only 26% of the couples returned for a second preconception 

counselling, this may have led to selection bias. Therefore, the question arises whether the 

results can be applied to all couples with fertility problems and to the general population of 

couples planning pregnancy. Further research should be carried out in this regard and to 

address the effects on reproductive outcome 

 

Future perspectives  

It has become increasingly clear that reproductive disorders have their origin in the pre- and 

early postconception period, in which lifestyle and nutrition play an essential role. In this thesis 

we have added to this knowledge and also emphasize the importance of the man. 

Reproductive disorders are complex multifactorial diseases involving both genetic and 

environmental factors in the reproductive span of both the woman and the man. 



 

 - 159 - 

Polymorphisms in genes can lead to differences in the level of susceptibility of individuals to 

potentially adverse effects of unhealthy lifestyles and nutrition, such as obesity (western 

lifestyle and diet), on female or male reproduction36. This depends not only on the dose and 

potency of a given toxicant, but also on the occurrence of exposure during critical 

developmental time periods, such as the gametogenesis, a time of rapid growth and 

development. Disruption of processes during gametogenesis can cause permanent functional 

deficits, as well as delayed effects, such as diseases in later life.37 However, there is little known 

about this genetic variability. Therefore, differences in genetic traits should be investigated to 

elucidate the critical level of susceptibility to adverse effects of environmental influences in 

relation to reproductive outcomes. It is also becoming clear that distinct epigenetic marks are 

essential for normal germ cell formation and during early embryonic development. Therefore, 

studies focusing on epigenetic control of gene expression should be encouraged as a potential 

mechanism. For example, the link between reproductive outcome, lifestyle, nutrition and 

epigenetic modifications.  

We showed in this thesis that multiple risk factors exist in the preconception period in women 

and men of reproductive ages (Rotterdam Reproduction Risk score (R3-score) and 

Preconception Dietary Risk score (PDR-score)). Also there is a strong correlation between 

different lifestyles and nutritional habits. Therefore it would be interesting to study the effects  

of different risk factors together in relation to reproductive outcome. The department of 

Obstetrics and Gynaecology of Erasmus MC Rotterdam has started a prospective cohort study 

built-in in a clinical setting, e.g., Predict Study, which investigates the effects of 

periconceptional lifestyle, nutritional and biomarker status on reproductive outcome. In this 

design the cumulative effect of multiple risk factors and underlying (epigenetic) mechanisms in 

association with reproductive outcome can be studied. 
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There is little evidence on the effects of preconceptional health promotion on reproductive 

outcome and much more research is needed in this area. Ideally, a large randomized controlled 

trial is needed to study these effects. 

One should, however, realize that for some topics, especially withdrawing the use of folic acid, 

a randomized clinical trial for ethical reasons is not feasible. 

 

Public health relevance 

In 2007 the department of Obstetrics and Gynaecology of the Erasmus MC Rotterdam initiated 

the preconception counselling program “Achieving a Healthy Pregnancy” for its patients and 

employees.38 This implicated that health behaviour changes might be initiated and sustained 

with tailored personalised counselling during the preconception period (chapter 6).  Promotion 

of a healthy diet and lifestyle should therefore be implemented in the current preconception 

care and should be targeted to all women and men planning pregnancy. Special attention 

should be paid to immigrants and people from low socioeconomic class, since they are often 

not reached in the provision of information about the consequences of unhealthy behaviours 

on fertility and pregnancy. Additionally, most couples don’t visit their general practitioners, 

midwife or obstetrician/gynaecologist before conception. The issue to be addressed in the next 

years is how can we make the reproductive population aware of the needs and benefits of 

preconception counselling and what are the best manners to reach this target group. An  

important medium like the internet can be used for health education and behaviour change 

applications.39-40 Moreover, the mobile phone can be used, to send a tailored short message 

service to prospective parents.41-42 These technologies allow for the provision of timely 

information to consumers as well as individual tailored intervention at distance.  
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Final conclusions 

The studies described in this thesis emphasize the importance of nutrition and lifestyle for 

women and men planning pregnancy and that tailored preconception counselling on these 

factors is necessary and feasible. General practitioners, gynaecologists and other care givers 

should be aware of the importance of preconception counselling and focus on this. 
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English Summary 
 
It has been estimated that 10-15% of couples experience impaired fertility at some point in 

reproductive life. However, in 30% of these couples no medical cause is identified.  Differences 

in the prevalence of putative lifestyle and nutrition risk factors have been suggested to play a 

role. The aims of this thesis were to investigate the effects of lifestyle and nutrition on fertility 

parameters in both women and men, and to evaluate the effects of preconception counselling 

tailored on lifestyle and nutrition in women and men planning pregnancy at the outpatient 

fertility clinic of the Erasmus MC Rotterdam. The studies described in this thesis are based on a 

prospective preconception cohort study the “Food, Lifestyle and Fertility Outcome” (FOLFO) 

study and the outpatient preconception clinic “Achieving a Healthy Pregnancy”. 

 

Part I 

The first part of this thesis focused on the associations between preconception nutrition and 

lifestyle factors on fertility parameters in both women and men. After the general introduction 

in Chapter 1 we describe in Chapter 2 the associations between preconception nutritional 

intake of long-chain polyunsaturated fatty acids (LC-PUFA) and estradiol and fertility outcome 

parameters in women undergoing IVF or ICSI treatment. We showed that women with the 

highest intake of the omega-3 LC-PUFA ALA showed a higher baseline estradiol level. 

Furthermore, high intakes of EPA and DHA reduced the estradiol response and number of 

follicles after ovarian hyperstimulation treatment. High intakes of omega-3 LC-PUFA, in 

particular ALA and DHA, were associated with improved embryo morphology. In Chapter 3, we 

hypothesized that the ovarian response to gonadotrophins is affected by the availability of 

one-carbon-donors, like folate. In a randomized clinical trial, comparing a mild- and 

conventional  
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ovarian hyperstimulation protocol, we aimed to study the effect of low dose folic acid 

supplement use on specific biomarkers of the folate dependent homocysteine pathway and 

estradiol concentrations following conventional- and mild ovarian hyperstimulation treatment. 

After conventional hyperstimulation treatment, women who did not use a low dose folic acid 

supplement had a significantly higher ovarian response after hyperstimulation treatment than 

those who did use a folic acid containing supplement. Therefore, low dose folic acid use 

attenuates follicular and endocrine responses to conventional stimulation, which occurred 

independent of AMH and follicle count. In Chapter 4, we examined the association between 

BMI and AMH and the modification by folate in women undergoing assisted reproductive 

treatment. Subfertile women with overweight or obesity exhibit higher AMH levels after 

ovarian hyperstimulation compared to normal weight women despite the comparable total 

number of follicles and oocytes. The effect on AMH before and after stimulation was inversely 

modified by baseline serum folate.  

In Chapter 5, we evaluated the effects of increasing age and unhealthy lifestyles on sperm 

quality in men attending a fertility clinic. We observed in men of couples undergoing IVF or ICSI 

treatment that the rising age between 26 and 59 years is detrimental for sperm DNA integrity 

and ejaculate volume.  

 

Part II 

In Chapter 6 we demonstrated that a high body weight as marker of poor nutrition and 

lifestyle, independently affects sperm quality in men of subfertile couples. We observed that 

overweight is associated with a significantly lower ejaculate volume, a lower percentage 

motility type A and a higher percentage immotility type C. Furthermore, obesity is associated 

with a significantly lower ejaculate volume, lower sperm concentration and lower total motile 
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sperm count. Waist circumference, a marker for central adiposity, was also associated with 

lower sperm concentration and total motile sperm count. 

In Chapter 7, we evaluated whether tailored preconception counselling modifies unhealthy 

behaviours with respect to nutrition and lifestyle. For this purpose we created the 

Preconception Dietary Risk score (PDR-score) and Rotterdam Reproduction Risk score (R3-

score). In subfertile couples the improvement in dietary intake (PDR-score) was achieved 

independent of ethnicity. In women and men the PDR-score decreased by respectively, 8% and 

12%. The R3-score in women and men decreased by respectively, 34% and 33%. The R3-scores 

in these couples decreased independent of ethnicity, educational level, neighbourhood and 

BMI. However, low educated women appeared to show a larger reduction than those with a 

higher education. Furthermore, in men with a normal BMI a larger decrease was shown than in 

overweight men. More than 85% of the subfertile couples indicated the counselling as useful 

and around 70% recommends it to others.  

 

The general discussion in Chapter 8 elaborates on the strengths and weaknesses of the studies 

and reflects on the clinical implications of our results. The relatively high prevalence of poor 

nutrition and lifestyle factors in subfertile couples planning pregnancy emphasis the need to 

raise more awareness on these issues in fertility treatment. Therefore, targeted preconception 

health educational programmes should be developed and applied in order to improve 

reproductive outcome. 
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Nederlandse Samenvatting 
 

De schatting is dat ongeveer 10-15% van de paren een verminderde vruchtbaarheid heeft op 

enig moment in de reproductieve levensfase. Echter, bij 30% van deze paren wordt geen 

medische oorzaak gevonden. Er komen wel steeds meer aanwijzingen dat ongezonde 

voedings- en leefstijlfactoren hieraan een bijdrage leveren. Het identificeren van deze 

risicofactoren en het bestuderen van biologische mechanismen zal in de toekomst bijdragen 

aan de preventie van vruchtbaarheidsstoornissen. 

Het doel van dit proefschrift was om de effecten te bestuderen van voedings- en 

leefstijlfactoren op een aantal vruchtbaarheids parameters bij zowel vrouwen als mannen. 

Daarnaast werd het in 2007 gestarte speciale preconceptie spreekuur, gericht op de screening 

en counseling van voedings- en leefstijlfactoren, van paren met kinderwens geëvalueerd. Dit 

proefschrift is gebaseerd op gegevens die verzameld zijn in het prospectieve cohort onderzoek; 

“Food, Lifestyle and Fertility Outcome” (FOLFO) en het preconceptie spreekuur "Gezond 

Zwanger Worden". 

 

Deel I 

Het eerste deel van dit proefschrift beschrijft de associaties tussen voedings- en 

leefstijlfactoren in de preconceptie periode van zowel vrouwen als mannen in relatie tot 

vruchtbaarheids parameters. Na de algemene introductie in Hoofdstuk 1 beschrijven we in 

Hoofdstuk 2 de positieve associatie tussen de preconceptionele inname van meervoudig 

onverzadigde vetzuren (Omega3), oestradiol concentraties en de vruchtbaarheids parameters 

van vrouwen die een IVF of ICSI behandeling hebben ondergaan. Vrouwen met de hoogste 

inname van ALA, een van de omega3 vetzuren, vertoonden een hoger gehalte van het 

vrouwelijke hormoon oestradiol in het bloed voorafgaand aan de ovariële hyperstimulatie voor 
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de IVF/ICSI behandeling. Daarnaast werd een afname vastgesteld van de oestradiol respons en 

het totale aantal follikels verkregen na ovariële hyperstimulatie door een hoge inname van de 

omega-3 vetzuren EPA en DHA. Een opvallende bevinding was dat een hoge inname van 

omega3 vetzuren, in het bijzonder van ALA en DHA, geassocieerd was met een verbeterde 

morfologie van het embryo. In Hoofdstuk 3 werd de invloed bestudeerd van de inname van 

foliumzuur in tabletvorm op de ovariële respons na ovariële hyperstimulatie behandeling. 

Hiervoor werden in de gerandomiseerde FOLFO II trial de biomarkers van de foliumzuur 

afhankelijke homocysteine pathway en oestradiol gehalten vergeleken tussen vrouwen die het 

milde en het conventionele ovariële hyperstimulatie protocol kregen. Hierbij werd een verdere 

onderverdeling gemaakt in vrouwen die al dan niet een laag gedoseerd foliumzuur supplement 

gebruikten. Na de conventionele ovariële hyperstimulatie behandeling hadden vrouwen die 

geen foliumzuur supplement gebruikten een significant hogere ovariële respons in vergelijking 

met vrouwen die wel foliumzuur gebruikten. Dit is een eerste aanwijzing dat het gebruik van 

een laag gedoseerd foliumzuur supplement de folliculaire en endocriene respons na 

conventionele behandeling beïnvloed. Dit effect was onafhankelijk van het anti- mullerian 

hormoon (AMH) gehalte en het aantal follikels. 

In Hoofdstuk 4 onderzochten we de associatie tussen de body mass index (BMI) en het AMH 

gehalte en de invloed hierop van het foliumzuurgehalte in het bloed bij vrouwen die een 

ovariële hyperstimulatie behandeling ondergingen. De subfertiele vrouwen met overgewicht of 

obesitas bleken een hoger AMH gehalte te hebben na ovariële hyperstimulatie in vergelijking 

met vrouwen met een normaal gewicht. Dit was ondanks het feit dat het totaal aantal 

verkregen follikels en oocyten vergelijkbaar was. Opvallend was de bevinding dat het 

foliumzuurgehalte in het bloed het effect op het AMH gehalte voor en na ovariële 

hyperstimulatie ook lijkt te beïnvloeden.  
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In Hoofdstuk 5, bestudeerden we de effecten van de leeftijd en een ongezonde leefstijl op de 

zaadkwaliteit van mannen die een fertiliteitskliniek bezochten in verband met een IVF of ICSI 

behandeling. Uit deze studie bleek dat met het toenemen van de leeftijd van mannen (26 tot 

59 jaar) het volume van het ejaculaat en de kwaliteit van het erfelijk materiaal (DNA) in het 

zaad afneemt.  

 

Deel II 

In Hoofdstuk 6 werd de bevinding gedaan dat overgewicht en obesitas bij mannen die een 

fertiliteitskliniek bezochten, als proxy voor ongezonde voedings- en leefstijlgewoonten, 

onafhankelijk van andere leefstijlfactoren nadelig is voor de zaadkwaliteit. Overgewicht bij 

mannen bleek geassocieerd te zijn met een lager volume van het ejaculaat, een verminderde 

motiliteit (type A) en een hogere immotiliteit (type C). Bovendien hadden mannen met 

obesitas ook een lager volume van het ejaculaat, een lagere zaadconcentratie en een 

verminderde totale beweeglijkheid van de zaadcellen. De middelomtrek van deze mannen, als 

marker voor centrale adipositas, bleek eveneens geassocieerd te zijn met een lagere 

zaadconcentratie en een verminderde totale beweeglijkheid van de zaadcellen. 

In Hoofdstuk 7 hebben we de behoefte, patiëntvriendelijkheid en effectiviteit geëvalueerd van 

het speciale preconceptie spreekuur Gezond Zwanger Worden (GZW), dat tot doel heeft het 

screenen van paren met kinderwens op (on)gezonde voedings- en leefstijlfactoren en het 

bevorderen van gezonde gewoonten. Voor dit doel hebben we de “Preconceptie Dieet Risico 

Score” (PDR-score) en de “Rotterdam Reproductie Risico Score” (R3-score) ontwikkeld. Het 

spreekuur werd grotendeels bezocht door paren met een vruchtbaarheidsprobleem, waarvan 

bij de meerderheid een of meerdere ongezonde voedingsgewoonten en een of meerdere 

leefstijlrisicofactoren werden vastgesteld. Drie maanden na het GZW consult vertoonden 18% 

van de vrouwen en 12% van de mannen een verbetering van de voedingsgewoonten (PDR-
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score). Een resultaat dat onafhankelijk was van etniciteit. Hiernaast lieten ook de 

leefstijlgewoonten een verbetering zien. De R3-score van vrouwen verbeterde met 34% en die 

van mannen met 33%. Deze verbetering was bij zowel vrouwen als mannen onafhankelijk van 

BMI, etniciteit, opleidingsniveau en woonomgeving. Echter, laag opgeleide vrouwen 

vertoonden een grotere verbetering in vergelijking met hoger opgeleide vrouwen. Bovendien 

waren de effecten bij mannen met een normale BMI groter dan bij degenen met overgewicht. 

Opvallend was dat meer dan 85% van de vrouwen en mannen het GZW consult als nuttig 

beoordeelden en ongeveer 70% het anderen zou aanraden. Deze bevindingen ondersteunen 

zowel de behoefte als eerste effectiviteit van een speciale preconceptie spreekuur gericht op 

voeding en leefstijl. 

 

In Hoofdstuk 8 worden de resultaten van dit proefschrift in een breder perspectief geplaatst 

en worden aanbevelingen gedaan voor toekomstig onderzoek. De relatieve hoge frequentie 

van ongezonde voedings- en leefstijlgewoonten onder paren met een 

vruchtbaarheidsprobleem en kinderwens alsmede de biologische effecten die hiervan werden 

aangetoond op vruchtbaarheidsparameters, ondersteunen het belang van deze gewoonten 

voor de eigen gezondheid maar ook voor de vruchtbaarheid en zwangerschap.  

Hieruit spreekt de behoefte en noodzaak voor het uitrollen en ontwikkelen van preconceptie 

spreekuren gericht op het screenen van voedings- en leefstijlrisicofactoren en het coachen bij 

het aanleren en onderhouden van gezonde gewoonten. Dit is de investering die nu moet 

worden gedaan voor de gezondheid van de huidige en toekomstige generaties. 
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groter bewustzijn voor de nadelige effecten van deze factoren voor de fertiliteit. Daarom is het 

ontwikkelen en toepassen van gerichte op maat gemaakte preconceptie 

gezondheidsprogramma’s noodzakelijk om de reproductie uitkomsten te verbeteren. 

 



 

 - 174 - 

 

Authors and Affiliations 

List of Publications 

PhD Portfolio 



 

 - 175 - 

  

Authors and Affiliations 

 

From the Department of Obstetrics and Gynaecology, Erasmus MC, Rotterdam, the Netherlands 

R.P.M. Steegers-Theunissen, J.S.E. Laven, E.A.P. Steegers, M.Vujovic, G.Bonsel, N. van Mil 
 

From the Department of Obstetrics and Gynaecology, Division of Reproductive Medicine Erasmus MC, 

Rotterdam, the Netherlands 

J.S.E. Laven, N. Beckers 
 

From the Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands 

R.P.M. Steegers-Theunissen 
 

From the Department of Clinical Genetics, Erasmus MC, Rotterdam, the Netherlands 

R.P.M. Steegers-Theunissen 
 

From the Department of Bioinformatics, Erasmus MC, Rotterdam, the Netherlands 

M.Vujkovic 
 

From the Department of Clinical Chemistry, Erasmus MC, Rotterdam, the Netherlands 

 J. Lindemans 
 

From the Department of Human Nutrition, Wageningen University, Wageningen, the Netherlands 

J.H. de Vries, M. de Cock, W. Wijburg 
 

From the Department of reproductive Medicine and Gynacology, University Medical center Utrecht, 

Utrecht, the Netherlands 

N.S. Macklon 

 

From the Department of Andrology and Urology, Erasmus University Medical Center, Rotterdam, the 

Netherlands 

G.R. Dohle, W.P.A. Boellaard 

 

From the department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands 

F.H. de Jong 

        

 



 

 - 176 - 

 

List of Publications 
 

Articles included in this thesis 
 

Hammiche F, Laven JS, Boxmeer JC, Dohle GR, Steegers EA, Steegers-Theunissen RP. Sperm 

quality decline among men below 60 years of age undergoing IVF or ICSI treatment. J. Androl. 

2011;32:70-6 
 

Twigt JM, Hammiche F, Sinclair KD, Beckers NG, Visser JA, Lindemans J, de Jong FH, Laven JS, 

Steegers-Theunissen RP. Preconception folic acid use modulates estradiol and follicular 

responses to ovarian stimulation. J Clin Endocrinol Metab. 2011;96:322-9 
 

Hammiche F, Vujkovic M, wijburg W, de Vries JH, Macklon NS, Laven JS, Steegers-Theunissen 

RP. Increased preconception omega-3 polyunsaturated fatty acid intake improves embryo 

morphology.Fertil Steril. 2011;95:1820-3 
 

Hammiche F, Laven JS, van Mil N, de Cock M, de Vries JH, Lindemans J, Steegers EA, Steegers-

Theunissen RP. Tailored preconceptional dietary and lifestyle counselling in a tertiary 

outpatient clinic in the Netherlands. Hum Reprod. 2011; Jul 12: Epub ahead of print 
 

Hammiche F, Steegers-Theunissen RP, Beckers NG, de Jong FH, Laven JS.  Body Mass Index 

mediates AMH response after ovarian hyperstimulation teratment. Submitted for publication. 

 

Hammiche F, Laven JS, Boellaard WPA, Steegers EA, Steegers-Theunissen RP. Body Mass Index 

and central adiposity are associated with semen quality in men of subfertile couples.  

Submitted for publication 

 

Other articles  

Passchier J, Erdman J, Hammiche F, Erdman RA. Adrogenetic alopecia: stress of discovery. 

Psychol Rep. 2006;98:226-8 
 

Hammiche F, Temel S, Laven JS, Verhagen-van den Graaf MJ, Steegers EA, Steegers-Theunissen 

RP. Vruchtbare Adviezen. Medisch Contact. 2008;41:1672-1674 

 

 



 

 - 177 - 

Summary of PhD training and teaching activities 
Name PhD student:                  Fatima Hammiche 

Erasmus MC Department:       Obstetrics and Gynaecology 

Research School:                       NIHES 

PhD period:                                August 2007- August 2011 

Promotors                                  Prof. dr. R.P.M. Steegers-Theunissen 

                                                     Prof. dr. J.S.E. Laven 

 
 

 Year Workload: ECTS 

General academic skills 

- Methodologie van patient gebonden onderzoek en voorbereiding subsidie aanvragen, Erasmus MC  

Rotterdam 

- Introduction to statistics and working with SPSS 

- English Medical writing course 

- PhD introduction day, Erasmus MC 

- NIHES: Classical Methods for Data Analysis 

- NIHES: Maternal and Child Health 

- NIHES: Summer Programme 

 

2010 

 

2009 

2008 

2008 

2008 

2008 

2007 

 

0.7 

 

2.0 

2.0 

0.3 

5.7 

1.4 

5.0 

National and International conferences(presentations), seminars, and workshops 

- Wetenschapsdag gynaecologie en urologie. Erasmus MC Rotterdam 

- VFS meeting, Leuven, Belgium 

- SGI 57th Annual Scientific Meeting Orlando, Florida, USA 

- RCOG onderzoeksdag / Wladimiroff Symposium. Erasmus MC Rotterdam 

- First European Preconception Congres. Brussel, Belgium 

- Preconception Congress, Nieuwegein 

- Kennispoort symposium, Preconception Care, Utrecht 

- DOHAD, Santiago, Chile 

- RCOG onderzoeksdag / Wladimiroff Symposium. Erasmus MC Rotterdam 

- Wetenschapsdag gynaecologie en urologie. Erasmus MC Rotterdam 

- Nederlandse Vereniging Obstetrie en Gynaecologie. Gynaecongres Arnhem 

- Achieving a Healthy Pregnancy: 9 maanden beurs Rai, Utrecht 

- Nederlandse Vereniging voor Obstetrie en Gynaecologie. Gynaecongres Utrecht 

- Symposium “New imaging and developmental concepts in early pregnancy”.  

  Erasmus MC Rotterdam 

- SGI 56th Annual Scientific Meeting Glasgow, Scotland 

- RCOG onderzoeksdag / Wladimiroff Symposium. Erasmus MC Rotterdam 

- Wetenschapsdag gynaecologie en urologie. Erasmus MC Rotterdam 

- Symposium De Jonge Zwangerschap. Erasmus MC Rotterdam 

- Generation R Symposium. Imaging and early brain development.  Erasmus MC Rotterdam 

- ABCD Study Symposium. Een gezonde start voor een gezond leven. Vumc, Amsterdam 

- VFS meeting, Leiden, LUMC 

 

2010 

2010 

2010 

2010 

2009 

2009 

2009 

2009 

2009 

2009 

2009 

2009 

2008 

2008 

 

2008 

2008 

2008 

2008 

2008 

2008 

2008 

 

0.3 

1.0 

0.7 

0.3 

1.4 

1.0 

0.7 

1.0 

0.3 

1.4 

0.3 

0.7 

0.9 

0.3 

 

0.7 

0.3 

0.3 

0.7 

0.7 

0.3 

0.3 

 
 
 



 

 - 178 - 

 
 Year Workload: ECTS 

National and International conferences, seminars, and workshops 

- RCOG onderzoeksdag / Wladimiroff Symposium. Erasmus MC Rotterdam 

- Nederlandse Vereniging Toxicologie voorjaarsvergadering. Erasmus MC Rotterdam 

- Epigenetic epidemiology: lecture Rob Waterland. LUMC  

- Wetenschapsmiddag. Erasmus MC Rotterdam 

- Wetenschapsdag gynaecologie en urologie. Erasmus MC Rotterdam 

- Generation R Study Symposium. Fetal Growth and Development, Erasmus MC Rotterdam 

 

2008 

2008 

2008 

2008 

2007 

2007 

 

1.0 

0.3 

0.3 

0.3 

0.3 

0.7 

Lecturing, Supervising practicals 

- Ithar Alghanam 

- Marieke de Cock, student Human Nutrition Wageningen University 

- Nina van Mil, Medical student Erasmus MC Rotterdam 

- Tamara Sterkenburg, student Human Nutrition Wageningen University 

- Supervising pratical, Course Basic Introduction Course to SPSS, Molmed 

- John Twigt, PhD student Erasmus MC Rotterdam 

- Inge Granneman, student Human Nutrition Wageningen University 

- Marieke van Oversteeg, student Human Nutrition Wageningen University 

- Sevilay Temel, Medical student Erasmus MC Rotterdam 

 

2011 

2010 

2010 

2010 

2010 

2009 

2008 

2008 

2007 

 

2.0 

3.0 

2.4 

1.0 

0.7 

2.0 

2.0 

2.0 

2.0 

  51.7 

 
 

 



 

 - 179 - 

 
 


	Preconception care: The influence of Nutrition and Lifestyle on Fertility = Preconceptiezorg: De invloed van Voeding en Leefstijl op de Fertiliteit
	Contents
	List of Abbreviations
	Chapter 1 - Introduction
	Part I - Nutrition, Lifestyle and Fertility parameters
	Chapter 2 - Increased preconception omega-3 polyunsaturated fatty acid intake improves embryo morphology.Hammiche F, Vujkovic M, Wijburg W, de Vries JH, Macklon NS, Laven JS, Steegers-Theunissen RP.Fertil Steril. 2011 Apr;95(5):1820-3. doi: 10.1016/j.fertnstert.2010.11.021. Epub 2010 Dec 3.PMID: 21130435 [PubMed - indexed for MEDLINE] 
	Chapter 3 - Preconception folic acid use modulates estradiol and follicular responses to ovarian stimulation.Twigt JM, Hammiche F, Sinclair KD, Beckers NG, Visser JA, Lindemans J, de Jong FH, Laven JS, Steegers-Theunissen RP.J Clin Endocrinol Metab. 2011 Feb;96(2):E322-9. doi: 10.1210/jc.2010-1282. Epub 2010 Dec 1.PMID: 21123447 [PubMed - indexed for MEDLINE] Free Article
	Chapter 4 - Body Mass Index mediates AMH response after ovarian hyperstimulation treatment. F. Hammiche, R.P.M. Steegers-Theunissen, N. Beckers, F.H. de Jong, J.S.E. Laven
	Chapter 5 - Sperm quality decline among men below 60 years of age undergoing IVF or ICSI treatment.Hammiche F, Laven JS, Boxmeer JC, Dohle GR, Steegers EA, Steegers-Theunissen RP.J Androl. 2011 Jan-Feb;32(1):70-6. doi: 10.2164/jandrol.109.009647. Epub 2010 May 13.PMID: 20467050 [PubMed - indexed for MEDLINE] Free Article

	Part II - Preconceptional Care
	Chapter 6 - Body mass index and central adiposity are associated with sperm quality in men of subfertile couples.Hammiche F, Laven JS, Twigt JM, Boellaard WP, Steegers EA, Steegers-Theunissen RP.Hum Reprod. 2012 Aug;27(8):2365-72. doi: 10.1093/humrep/des177. Epub 2012 Jun 12.PMID: 22693175 [PubMed - indexed for MEDLINE]
	Chapter 7 - Tailored preconceptional dietary and lifestyle counselling in a tertiary outpatient clinic in The Netherlands.Hammiche F, Laven JS, van Mil N, de Cock M, de Vries JH, Lindemans J, Steegers EA, Steegers-Theunissen RP.Hum Reprod. 2011 Sep;26(9):2432-41. doi: 10.1093/humrep/der225. Epub 2011 Jul 12.PMID: 21752799 [PubMed - indexed for MEDLINE] Free Article

	Chapter 8 - General Discussion
	References

	Chapter 9 - Summary/Samenvatting
	Chapter 10  - Authors and Affiliations
	List of Publications
	Summary of PhD training and teaching activities

