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Approximation Algorithms for the Parallel Flow Shop Problem

Xiandong Zhang∗ Steef van de Velde†

August 13, 2011

Abstract

We consider the NP-hard problem of scheduling n jobs in m two-stage parallel flow

shops so as to minimize the makespan. This problem decomposes into two subproblems:

assigning the jobs to parallel flow shops; and scheduling the jobs assigned to the same

flow shop by use of Johnson’s rule. For m = 2, we present a 3
2 -approximation algorithm,

and for m = 3, we present a 12
7 -approximation algorithm. Both these algorithms run

in O(n log n) time. These are the first approximation algorithms with fixed worst-case

performance guarantees for the parallel flow shop problem.

Key Words: scheduling; parallel flow shop; hybrid flow shop; approximation algorithms;

worst-case analysis

1 Introduction

Consider the problem of scheduling a set of n independent jobs J = {J1, . . . , Jn}, in which

each job Jj consists of a chain of two operations (O1j , O2j) (j = 1, . . . , n), in a hybrid flow

shop, also called a flexible flow shop, so as to minimize the length of the schedule, that is,

the makespan. A hybrid flow shop is an extension of the classical flow shop, where there

are m1 identical machines Mi1 (i = 1, . . . , m1) in stage 1 and m2 identical machines Mi2

(i = 1, . . . , m2) in stage 2. The first operation O1j of any job Jj needs first be processed on
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one of the machines in stage 1 during an uninterrupted processing time p1j ≥ 0, and then

the second operation O2j needs to be processed on one of the machines in stage 2 during

an uninterrupted processing time p2j ≥ 0.

The hybrid flow shop problem of minimizing makespan has been well studied (Ruiz

and Vazquez-Rodriguez (2010), Ribas et al. (2010) and Naderi et al. (2010)). Obviously, if

m1 = m2 = 1, then the problem is polynomially solvable in O(n log n) time by Johnson’s

rule (Johnson (1954)). However, if m1 ≥ 2, or by symmetry m2 ≥ 2, the problem becomes

strongly NP-hard (Hoogeveen et al. (1996)). Many researchers have focused on the special

case with a single machine in one stage (Chen (1995), Gupta (1988), Gupta and Tunc

(1991), Gupta et al. (1997)). For a review of the literature for the hybrid flow shop problem

with a single machine in one stage, see Linn and Zhang (1999) and Wang (2005). For

the general case, Chen (1994) and Lee and Vairaktarakis (1994) present O(n log n)-time

heuristics with worst-case performance guarantee ratio 2 − 1/ max{m1, m2}. If, for any

instance of the problem, the makespan of the schedule generated by some heuristic does not

exceed ρ times the optimal makespan, where ρ is a constant that is as small as possible,

then ρ is the worst-case performance ratio of the heuristic. A heuristic with a worst-case

performance ratio of ρ is called referred to as a ρ-approximation algorithm.

A hybrid flow shop is a manufacturing system that offers much flexibility, but as Vairak-

tarakis and Elhafsi (2000) point out, this superior performance comes at the expense of

sophisticated material handling systems, like automated guided vehicles and automated

transfer lines. As an alternative to the hybrid flow shop, Vairaktarakis and Elhafsi (2000)

introduced the parallel flowline design, which is a flexible manufacturing environment with

m identical parallel two-stage flow shops F1, . . . , Fm, each consisting of a series of two ma-

chines M1i and M2i (i = 1, . . . , m). Each job needs first to be assigned to one of the flow

shops, and once assigned, it will stay there for both operations. See Figure 1 for a hybrid

two-stage flow shop, where the arrows indicate the routes that the different jobs may follow,

and Figure 2 for a parallel two-stage flow shop. In the remainder, we will refer to a parallel

flowline design as a parallel flow shop.

The makespan parallel flow shop problem breaks down into two consecutive subproblems;

first assigning each job to one of the m flow shops, and then scheduling the jobs in each

flow shop so as to minimize the makespan. Whereas this second problem can obviously be

solved in polynomial time by Johsnon’s rule (Johnson (1954)), the first subproblem makes
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M11 M12

M21 M22

Mm1 Mm2

…

Stage 1 Stage 2 

Figure 1: A hybrid two-stage flow shop.

Flow shop 1: M11 M12

Flow shop 2: M21 M22

Flow shop m: Mm1 Mm2

…

Figure 2: A parallel two-stage flow shop.

the problem NP-hard, as proved by Vairaktarakis and Elhafsi (2000), who also presented

an O(n
∑n

j=1(p1j + p2j)3) time dynamic programming algorithm for its solution. Qi (2008)

gave a faster algorithm, running in O(n
∑n

j=1(p1j + p2j)2) time.

Vairaktarakis and Elhafsi (2000) concluded empirically, on the basis of computational

experiments with several heuristics for both problems, that the parallel flow shop entails

only a minor loss in throughput performance in comparison with the hybrid flow shop;

accordingly, it is an attractive alternative to the hybrid flow shop, with its complicated

routings. Other heuristics for the parallel flow shop problem have been presented by Cao

and Chen (2003) and Al-Salem (2004).
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In contrast to the makespan hybrid flow shop problem, no approximation results for

the makespan parallel flow shop are known. In this paper, we present a 3
2 -approximation

algorithm for the parallel flow shop problem with m = 2 in Section 2. For m = 3, we

present a 12
7 -approximation algorithm in Section 3. These results are the first polynomial-

time algorithms with fixed worst-case ratios for the parallel flow shop problem.

Section 4 ends the paper with some conclusions, where we point out that our algorithms

and their worst-case performance guarantees also apply to the parallel flow shop problem

where each job Jj after the completion of its first operation may be transferred to another

flow shop for the processing of its second operation and where such a transfer requires a

transportation time τj ≥ 0. This transportation time effectively introduces a minimum

time lag between the completion time of the first operation and the start time of the second

operation of a job. Note that if τj = 0 for each Jj , then the parallel flow shop problem

with transportation times boils down to the hybrid flow shop problem. For the hybrid flow

shop problem with m1 = m2 = 2, our approximation algorithm has the same worst-case

performance ratio as the one by Chen (1994) and Lee and Vairaktarakis (1994). At the other

extreme, if τj = ∞ for each Jj , then transfer between flow shops is effectively prohibited,

and we have the original parallel flow shop problem.

2 A 3
2-approximation algorithm for m = 2

In the remainder of the paper, we assume that the job set J = {J1, . . . , Jn} has been re-

indexed according to Johnson’s rule; that is, for any pair of jobs (Ji, Jj) we have that i < j

if and only if

min{p1i, p2j} ≤ min{p1j , p2i}.

For any instance of the m parallel two-stage flow shop problem, we refer to the John-

sonian schedule σ as the schedule that is obtained by assigning all the jobs to the first flow

shop F1 and processing them in order of Johnson’s rule. Cmax(J ) denotes the makespan of

the Johnsonian schedule for any job set J = {J1, . . . , Jn}, whereas Sij and Cij denote the

start and completion times of the operations Oij in the Johnsonian schedule, respectively,

for i = 1, 2; j = 1, . . . , n.

Lemma 1, which goes with no proof, specifies a simple lower bound on the minimum

makespan C∗
max for the m parallel two-stage flow shop problem.
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Lemma 1 We have that

C∗
max ≥ max{ 1

m

n∑

j=1

p1j ,
1
m

n∑

j=1

p2j ,
1
m

Cmax(J ), max
1≤j≤n

{p1j + p2j}}. (1)

Roughly speaking, the core idea for the 3
2 -algorithm is to judiciously cut a Johnsonian

schedule σ for J into two parts. The first part is scheduled on F1, the second part on F2.

Both parts are scheduled according to Johnson’s rule in order to minimize the makespan.

The key question of course is where to cut the schedule so as to guarantee the 3
2 performance

ratio.

Let now T1 = 1
4Cmax(J ) and T2 = 3

4Cmax(J ). Initially, we try to cut the Johnsonian

schedule σ at time T2. We have then the following lemma.

Lemma 2 If there exists no job Jh with S2h ≤ T2 ≤ C2h, then let J 1 = {J1, . . . , Jk−1} and

J 2 = {Jk, . . . , Jn} with Jk such that S1k ≤ T2 ≤ C1k. We then have that

max{Cmax(J 1), Cmax(J 2)} ≤ 3
2
C∗

max.

Proof. See Figure 3 for an illustration of how the two job sets are formed if there is no job

Jh such that S2h ≤ T2 ≤ C2h. By visual inspection of Figure 3 and by use of (1), it follows

that

Cmax(J 1) ≤ T2 =
3
4
Cmax(J ) ≤ 3

2
C∗

max, and

Cmax(J 2) ≤ Cmax(J )−T2 + p1k ≤ 1
4
Cmax(J ) + p1k ≤ 3

2
C∗

max. �

0 )(max JCT1 T2

…

Jk

Figure 3: Cutting the Johnsonian schedule as prescribed in Lemma 2.

The implication of Lemma 1 is that if there is no job Jh with S2h ≤ T2 ≤ C2h, then we have

indeed constructed a schedule with makespan no more than 3
2 times the optimal makespan
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and we are done. Accordingly, we need to investigate the case where such a job Jh does

exist. We then have the following result.

Lemma 3 If there exists a job Jh with S2h ≤ T2 ≤ C2h and if S1h ≥ T1 or C1h = S2h, then

let J 1 = {J1, . . . , Jh−1} and J 2 = {Jh, . . . , Jn}. It then holds that

max{Cmax(J 1), Cmax(J 2)} ≤ 3
2
C∗

max.

Proof. Refer to Figure 4 for an illustration. Since S2h ≤ T2, job Jh−1 is finished before or

at T2. We have therefore that

Cmax(J 1) ≤ T2 ≤ 3
2
C∗

max.

If S1h ≥ T1, we have that

Cmax(J 2) ≤ Cmax(J ) − T1 = T2 ≤ 3
2
C∗

max.

If C1h = S2h, then

Cmax(J 2) ≤ p1h + p2h + (Cmax(J ) − T2) ≤ 3
2
C∗

max.

�

0 T1 T2 )(max JC

Jh

T10 T2 )(max JC

Jh

Figure 4: Cutting the Johnsonian schedule as prescribed in Lemma 3.

Lemmata 2 and 3 do not cover the case where there exists a job Jh with S2h ≤ T2 ≤ C2h,

S1h < T1 and C1h < S2h. To analyze this case, we transform the Johnsonian schedule σ

into the schedule σ′ by delaying all operations as much as possible without changing the

makespan. Hence, σ′ has makespan Cmax(J ), has no idle time between any two operations

on machine M2, and all jobs are sequenced in order of Johnson’s rule. We refer to σ′ as the

delayed Johnsonian schedule. Let now S′
ij and C ′

ij denote the start and completion times

of Oij in σ′.

For σ′, we have the following result.
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Lemma 4 If S′
1h ≥ T1 or C ′

1h = S′
2h, then let J 1 = {J1, . . . , Jh−1}, J 2 = {Jh, . . . , Jn}. It

then holds that

max{Cmax(J 1), Cmax(J 2)} ≤ 3
2
C∗

max.

Proof. In this case, there is a job Jh with S2h ≤ T2 ≤ C2h, therefore we have

Cmax(J 1) = C2(h−1) ≤ S2h ≤ T2 ≤ 3
2
C∗

max.

If S′
1h ≥ T1 = 1

4Cmax(J ), then

Cmax(J 2) ≤ Cmax(J ) − S′
1h ≤ 3

4
Cmax(J ) =

3
2
C∗

max.

This case is illustrated in Figure 5, which shows both σ and σ′.

0 )(max JCT1 T2

Jh

Jh

Figure 5: Cutting the delayed Johnsonian schedule as prescribed in Lemma 4 if S′
1h ≥

T1. The top schedule is the Johnsonian schedule σ, the bottom schedule is the delayed

Johnsonian schedule σ′.

If S′
1h < T1 and we have C ′

1h = S′
2h, then

Cmax(J 2) ≤ p1h + p2h + (Cmax(J ) − C2h) ≤ C∗
max +

1
4
Cmax(J ) =

3
2
C∗

max.

This case is illustrated by Figure 6. �

We have dealt now with many different subcases. The only case left to consider is the

one with a job Jh with S2h ≤ T2 ≤ C2h, S1h < T1, C1h < S2h, S′
1h < T1 and C ′

1h < S′
2h. See

Figure 7 for an illustration of this case. In what follows, we will focus on this case.

We then have the following lemma.
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0 )(max JCT1 T2

Jh

Jh

Figure 6: Cutting the delayed Johnsonian schedule as prescribed in Lemma 4 if S′
1h < T1.

The top schedule is the Johnsonian schedule σ, the bottom schedule is delayed Johnsonian

schedule σ′.

Jh

0 )(max JCT1 T2

Jh

Figure 7: Illustration of a Johnsonian schedule σ (the top schedule) and a delayed John-

sonian schedule σ′ (the bottom schedule) for a job Jh with S2h ≤ T2 ≤ C2h, S1h < T1,

C1h < S2h, S′
1h < T1 and C ′

1h < S′
2h.

Lemma 5 If there is a job Jh with S2h ≤ T2 ≤ C2h, S1h < T1, C1h < S2h, S′
1h < T1 and

C ′
1h < S′

2h, then machine M2 is completely busy during the period [T1, T2] in schedule σ and

machine M1 is completely busy during the period [T1, T2] in schedule σ′.

Proof. If in schedule σ machine M2 would not have been busy during the interval [T1, T2],

then operation O2h could have been started earlier. Similarly, if M1 would not have been

busy during the interval [T1, T2] in schedule σ′, then operation O1h could have been started

8



  

later. �

We now separate all n jobs into two subsets S1 and S2 with S1 = {Jj |p1j ≤ p2j , j =

1, . . . , n} and S2 = {Jj |p1j > p2j , j = 1, . . . , n}. Since all jobs have been indexed in

order of Johnson’s rule, we can represent these two sets alternatively as S1 = {J1, . . . , Ju}
and S2 = {Jv, . . . , Jn} with v = u + 1. We branch into two cases:

∑n
j=v p1j ≥ T1; and

∑u
j=1 p2j ≥ T1. Since these two cases are symmetrical, we analyze only the case with

∑n
j=v p1j ≥ T1.

In this case, we need to find a job Je with e ≥ v such that
∑e−1

j=v p1j < T1 ≤ ∑e
j=v p1j and

a job Jd with d < v such that
∑e−1

j=d+1 p2j < T1 ≤ ∑e−1
j=d p2j . If v = e, we let

∑e−1
j=v p1j = 0.

If d = e − 1, we let
∑e−1

j=d+1 p2j = 0.

Lemma 6 Je and Jd exist.

Proof. Since
∑n

j=v p1j ≥ T1, job Je must exist. To show that Jd exists, too, we branch

into two cases. Since machine M2 is busy in the period [T1, T2] and S1h ≤ T2 ≤ C2h, we

have
∑h

j=1 p2j ≥ T2 − T1 > T1. If Jh ∈ S1, then v > h, and we have that
∑v−1

j=1 p2j ≥
∑h

j=1 p2j > T1. Hence, job Jd exists. If Jh ∈ S2, then v ≤ h. And since
∑e

j=v p1j ≥ T1

and
∑h−1

j=1 p1j < T1 (because S1h < T1), we have that e ≥ h. Since C1h < S2h, we have
∑h−1

j=1 p2j > p1h > p2h. Together with
∑h

j=1 p2j ≥ T2 − T1 = 2T1, we get
∑h−1

j=1 p2j > T1.

Therefore, job Jd exists in this case also. For an illustration, see Figure 8. �

0 )(max JCT1 T2

JvJd Je

Jd

Figure 8: Illustration of the jobs Ju,Jv,Jd,Je, with Ju = Jd = Jh, as they occur in Lemma

6.

We now divide the case
∑n

j=v p1j ≥ T1 further into 5 different subcases and deal with

these subcases in Lemmata 7 to 11.
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Lemma 7 If
∑e

j=v p2j ≥ T1, let J 1 = {Jv, . . . , Je} and J 2 = {J \J 1}. Then

max{Cmax(J 1), Cmax(J 2)} ≤ 3
2
C∗

max.

Proof. In this case, we have
∑e−1

j=v p1j < T1 ≤ ∑e
j=v p1j ,

∑e
j=v p2j ≥ T1, J 1 = {Jv, . . . , Je}

and J 2 = {J \J 1}. This can be illustrated by Figure 9.

0 )(max JCT1 T2

Jv Je

JeJv

Figure 9: Cutting the Johnsonian schedule as prescribed in Lemma 7.

Let Jw (v ≤ w ≤ e) be the job for which Cmax(J 1) =
∑w

j=v p1j +
∑e

j=w p2j . This implies

that
w∑

j=v

p1j +
e∑

j=w

p2j = max
k

{
k∑

j=v

p1j +
e∑

j=k

p2j},

and we refer to Jw as the critical job of schedule σ. Since J 1 ⊂ S2 = {Jj |p1j > p2j}, we

must have that p2e ≤ p2w < p1w and
∑w−1

j=v p1j +
∑e

j=w+1 p2j ≤ ∑w−1
j=v p1j +

∑e−1
j=w p2j <

∑e−1
j=v p1j < T1. It then holds that

Cmax(J 1) =
w−1∑

j=v

p1j +
e∑

j=w+1

p2j + p1w + p2w < T1 + C∗
max ≤ 3

2
C∗

max.

Let σ2 be the minimum makespan schedule for the jobs in J 2, obtained by scheduling

the jobs in order of Johnson’s rule. For σ2, let S′′
ij denote the start time and C ′′

ij the

completion time of operation Oij (i = 1, 2; j = 1, . . . , v−1, e+1, . . . , n). We have S′′
ij = Sij ,

C ′′
ij = Cij , for j = 1, . . . , u; and S′′

ij ≤ Sij − T1, C ′′
ij ≤ Cij − T1, for j = e + 1, . . . , n, since

job set J 1 = {Jv, . . . , Je} is not included in J 2 and
∑e

j=v p1j ≥
∑e

j=v p2j ≥ T1. We have

Cmax(J 2) = C ′′
2n ≤ Cmax(J ) − T1 =

3
2
C∗

max.

�
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Lemma 8 If
∑v−1

j=d p1j ≥ T1, then let J 1 = {Jd, . . . , Jv−1} and J 2 = {J \J 1}. We then

have that

max{Cmax(J 1), Cmax(J 2)} ≤ 3
2
C∗

max.

Proof. This case is illustrated in Figure 10.

0 T1 T2 )(max JC

Jv

Jd

Jv-1

Jv-1Jv Je

JeJd

Figure 10: Cutting the Johnsonian schedule as prescribed in Lemma 8.

Since p1j ≤ p2j for j = d, . . . , v − 1, we have
∑v−1

j=d p2j ≥ ∑v−1
j=d p1j ≥ T1. By definition

of job Jd, we get
∑v−1

j=d+1 p2j < T1. The case is then symmetric to the case specified in

Lemma 7. �

In the remaining analysis, we therefore assume that
∑v−1

j=d p1j < T1.

Lemma 9 Assume
∑v

j=d p1j ≥ T1 and
∑v

j=d p2j ≥ T1. If v < e, then let J 1 = {Jd, . . . , Jv}
and J 2 = {J1, . . . , Jd−1, Jv+1, . . . , Jn}. If v = e, find a job Jk with

∑e
j=k+1 p2j < T1 ≤

∑e
j=k p2j and d ≤ k < e, and let J 1 = {Jk, . . . , Je} and J 2 = {J \J 1}. It then holds that

max{Cmax(J 1), Cmax(J 2)} ≤ 3
2
C∗

max.

Proof. First consider the case v < e, illustrated by Figure 11.

If Cmax(J 1) =
∑v

j=d p1j +p2v =
∑v−1

j=d p1j +p1v +p2v, we have Cmax(J 1) < T1 +C∗
max <

3
2C∗

max. If Cmax(J 1) = p1d +
∑v

j=d p2j = p1d + p2d +
∑v

j=d+1 p2j , we have Cmax(J 1) <

C∗
max + T1 ≤ 3

2C∗
max. If Cmax(J 1) =

∑w
j=d p1j +

∑v
j=w p2j and d < w < v, where Jw

is the critical job, we have Cmax(J 1) =
∑w

j=d p1j +
∑v

j=w p2j < T1 + T1 ≤ C∗
max, since

∑v−1
j=d p1j < T1 and

∑v
j=d+1 p2j < T1. The proof that Cmax(J 2) ≤ 3

2C∗
max is similar to the

proof of Lemma 7.

Now consider the case v = e, which is illustrated by Figure 12.

11



  

0 T1 T2 )(max JC

Jv

Jd Jv-1 Jv Je

JeJd Jv-1

Figure 11: Cutting the Johnsonian schedule as prescribed in Lemma 9 if v < e.

0 T1 T2 )(max JC

Je

Jk Jv-1 Je

Jk Jv-1

Figure 12: Splitting of the Johnsonian schedule according to Lemma 9. (v ≥ e)

Since
∑e−1

j=d p2j ≥ T1, job Jk exists. In this case, we have
∑e−1

j=k p1j < T1, which follows

from
∑v−1

j=d p1j < T1 and d ≤ k < v = e. Therefore, the proof is analogous to the one for

v < e. �

In Lemma 9, we consider only the situation that
∑v

j=d p1j ≥ T1 and
∑v

j=d p2j ≥ T1.

If
∑v

j=d p1j ≥ T1 and
∑v

j=d p2j < T1, it must be that v ≤ e − 2. Otherwise, if v = e or

v = e − 1, we would have that
∑v

j=d p2j ≥ T1. If the subcase in Lemma 9 is not satisfied,

we have Lemmata 10 and 11 to solve remaining cases.

Lemma 10 If
∑e−1

j=d p1j ≥ T1, let J 1 = {Jd, . . . , Je−1} and J 2 = {J \J 1}. It then holds

that

max{Cmax(J 1), Cmax(J 2)} ≤ 3
2
C∗

max.

Proof. If v = e or v = e − 1, the result is correct due to Lemma 8 and Lemma 9. Hence,

we need to consider only the case v ≤ e − 2, which is illustrated by Figure 13.

Consider Cmax(J 1). Let Jw be the critical job in the minimum makespan schedule for

J 1. If Cmax(J 1) =
∑w

j=d p1j +
∑e−1

j=w p2j and d ≤ w < v, we must have p1d ≤ p1w ≤ p2w and

12



  

0 T1 T2 )(max JC

Jv

Jd

Jd Jv-1 Je-1 Je

Jv-1 Jv Je-1

Figure 13: Cutting the Johnsonian schedule as prescribed in Lemma 10.

∑w−1
j=d p1j +

∑e−1
j=w+1 p2j ≤

∑e−1
j=d+1 p2j < T1. Then, Cmax(J 1) =

∑w−1
j=d p1j +

∑e−1
j=w+1 p2j +

p1w + p2w < T1 + C∗
max = 3

2C∗
max.

If Cmax(J 1) =
∑w

j=d p1j +
∑e−1

j=w p2j and v ≤ w ≤ e − 1, we have
∑e−1

j=w+1 p2j −
∑e−1

j=w+1 p1j ≤ 0, since {Jw, . . . , Je−1} ⊂ S2. This implies that

Cmax(J 1) =
w∑

j=d

p1j +
e−1∑

j=w

p2j

=
v−1∑

j=d

p1j +
e−1∑

j=v

p1j + p2w +
e−1∑

j=w+1

p2j −
e−1∑

j=w+1

p1j

≤
v−1∑

j=d

p1j +
e−1∑

j=v

p1j + p2w.

If
∑v−1

j=d p1j+p2w ≥ T1, we have
∑v

j=d p1j ≥ T1 and
∑v

j=d p2j ≥ T1, since p2w ≤ p2v < p1v

and
∑v−1

j=d p1j ≤ ∑v−1
j=d p2j . We have solved this case in Lemma 9. If

∑v−1
j=d p1j + p2w < T1,

we have that

Cmax(J 1) ≤
v−1∑

j=d

p1j + p2w +
e−1∑

j=v

p1j < T1 + T1 < C∗
max.

Since we have
∑e−1

j=d p1j ≥ T1 and
∑e−1

j=d p2j ≥ T1 by definition, the proof of set J 2 is

analogous to that of Lemma 7. �

Lemma 11 If
∑e−1

j=d p1j < T1, find a job Jk with d ≤ k < v such that
∑e

k+1 p2j < T1 ≤
∑e

k p2j, and define J 1 = {Jk, . . . , Je} and J 2 = {J \J 1}. It then holds that

max{Cmax(J 1), Cmax(J 2)} ≤ 3
2
C∗

max.
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0 T1 T2 )(max JC
Jk Jv-1      Jv Je

Jk Jv-1 Jv Je

Figure 14: Cutting the Johnsonian schedule as indicated in Lemma 11.

Proof. For a visualization of this case, see Figure 14.

Since
∑e−1

j=d p2j ≥ T1, job Jk exists. If Cmax(J 1) =
∑w

j=k p1j +
∑e

j=w p2j and k ≤ w < v,

we must have p1k ≤ p1w ≤ p2w and
∑w−1

j=k p1j +
∑e

j=w+1 p2j ≤ ∑e
j=k+1 p2j < T1. Then,

Cmax(J 1) =
∑w−1

j=d p1j +
∑e

j=w+1 p2j + p1w + p2w < T1 + C∗
max = 3

2C∗
max.

If Cmax(J 1) =
∑w

j=k p1j +
∑e

j=w p2j and v ≤ w ≤ e, we must have p2e ≤ p2w < p1w

and
∑w−1

j=k p1j +
∑e

j=w+1 p2j ≤
∑e−1

j=k p1j ≤
∑e−1

j=d p1j < T1. Then, Cmax(J 1) =
∑w−1

j=k p1j +
∑e

j=w+1 p2j + p1w + p2w < T1 + C∗
max = 3

2C∗
max.

Since we have
∑e

j=k p1j ≥ ∑e
j=v p1j ≥ T1 and

∑e
j=k p2j ≥ T1, the proof of set J 2 is

analogous to that of Lemma 7. �

We are now done with the analysis of the case for which
∑n

j=v p1j ≥ T1, and for which

there exists a job Jh with S2h ≤ T2 ≤ C2h, S1h < T1, C1h < S2h, S′
1h < T1 and C ′

1h < S′
2h.

If
∑u

j=1 p2j ≥ T1, the case is symmetrical to the case
∑n

j=v p1j ≥ T1, and we can cut the

Johnsonian schedule similarly.

Lemma 12 There is no case with both
∑n

j=v p1j < T1 and
∑u

j=1 p2j < T1.

Proof. If
∑n

j=v p1j < T1 and
∑u

j=1 p2j < T1, we get
∑n

j=v p2j < T1 and
∑u

j=1 p1j < T1.

Then we must have that
∑n

j=v p1j +
∑u

j=1 p2j +
∑n

j=v p2j +
∑u

j=1 p1j < Cmax(J ), which is

a contradiction. �

Using Lemmata 2-12, we have proved that we can split any set J into two disjoint

subsets J 1 and J 2 and guarantee that the minimum makespan schedule for either subset

has makespan no larger than 3
2C∗

max. The full details of the algorithm, referred to as

Algorithm SPLT1, can be found as following.

Algorithm 1 SPLT1
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Step 1. (Initialization) Re-index the job set J according to the Johnson’s rule.

Let S11 = 0, C11 = S11 + p11, S21 = C11, C21 = S21 + p21.

For j = 2 to n, do the following:

S1j = C1(j−1), C1j = S1j + p1j, S2j = max{C1j , C2(j−1)}, C2j = S2j + p2j.

Let Cmax(J ) = C2n, T1 = 1
4Cmax(J ), T2 = 3

4Cmax(J ).

Step 2. Find the job Jh with S2h ≤ T2 ≤ C2h. If job Jh does not exists, find the job Jk

with S1k ≤ T2 ≤ C1k, and let J 1 = {J1, . . . , Jk−1}, and J 2 = {Jk, . . . , Jn}, stop; otherwise,

go to Step 3 with Jh.

Step 3.If S1h ≥ T1 or C1h = S2h, let J 1 = {J1, . . . , Jh−1}, and J 2 = {Jh, . . . , Jn}, stop;

otherwise, go to Step 4 with Jh.

Step 4. Let C ′
1n = S2n and S′

1n = C ′
1n − p1n.

For j = (n − 1) to 1, perform the following computations:

C ′
1j = min{S′

1(j+1), S2j} and S′
1j = C ′

1j − p1j, where S′
1j and C ′

1j are the latest

possible start and completion time of job Jj in machine M1.

Step 5. If S′
1h ≥ T1 or C ′

1h = S′
2h, let J 1 = {J1, . . . , Jh−1}, J 2 = {Jh, . . . , Jn}, and

stop; otherwise, go to Step 6.

Step 6. In schedule σ, find the job Ju with p1u ≤ p2u and p1(u+1) > p2(u+1), and let

v = u + 1. Therefore, in schedule σ, we have p1j ≤ p2j for j = 1, . . . , u and p1j > p2j for

j = v, . . . , n. Then, we branch into the two cases.

Case 1.
∑n

j=v p1j ≥ T1. Find a job Je with e ≥ v such that
∑e−1

j=v p1j < T1 ≤ ∑e
j=v p1j

and a job Jd with d < v such that
∑e−1

j=d+1 p2j < T1 ≤ ∑e−1
j=d p2j. We branch into five

subcases.

Subcase 1.1
∑e

j=v p2j ≥ T1. Let J 1 = {Jv, . . . , Je} and J 2 = {J \J 1}. Stop.

Subcase 1.2
∑v−1

j=d p1j ≥ T1. Let J 1 = {Jd, . . . , Jv−1} and J 2 = {J \J 1}. Stop.

Subcase 1.3
∑v

j=d p1j ≥ T1 and
∑v

j=d p2j ≥ T1. If v < e, let J 1 = {Jd, . . . , Jv} and

J 2 = {J \J 1}. If v = e, find a job Jk with
∑e

j=k+1 p2j < T1 ≤ ∑e
j=k p2j and d ≤ k < e.

Let J 1 = {Jk, . . . , Je} and J 2 = {J \J 1}. Stop.

Subcase 1.4
∑e−1

j=d p1j ≥ T1. Let J 1 = {Jd, . . . , Je−1} and J 2 = {J \J 1}. Stop.

Subcase 1.5
∑e−1

j=d p1j < T1. Find a job Jk with d ≤ k < v such that
∑e

k+1 p2j < T1 ≤
∑e

k p2j, J 1 = {Jk, . . . , Je} and J 2 = {J \J 1}. Stop.

Case 2.
∑u

j=1 p2j ≥ T1. Find a job Jd with d ≤ u such that
∑u

j=d+1 p2j < T1 ≤ ∑u
j=d p2j

and a job Je with e > u such that
∑e−1

j=d+1 p1j < T1 ≤ ∑e
j=d+1 p1j. We branch into five

subcases.
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Subcase 2.1
∑u

j=d p1j ≥ T1. Let J 1 = {Jd, . . . , Ju} and J 2 = {J \J 1}. Stop.

Subcase 2.2
∑e

j=u+1 p2j ≥ T1. Let J 1 = {Ju+1, . . . , Je} and J 2 = {J \J 1}. Stop.

Subcase 2.3
∑e

j=u p1j ≥ T1 and
∑e

j=u p2j ≥ T1. If d < u, let J 1 = {Ju, . . . , Je} and

J 2 = {J \J 1}. If d = u, find a job Jk with
∑k−1

j=d p1j < T1 ≤ ∑k
j=d p1j and d < k ≤ e. Let

J 1 = {Jd, . . . , Jk} and J 2 = {J \J 1}. Stop.

Subcase 2.4
∑e

j=d+1 p2j ≥ T1. Let J 1 = {Jd+1, . . . , Je} and J 2 = {J \J 1}. Stop.

Subcase 2.5
∑e

j=d+1 p2j < T1. Find a job Jk with u < k ≤ e such that
∑k−1

d p2j < T1 ≤
∑k

d p2j, J 1 = {Jd, . . . , Jk} and J 2 = {J \J 1}. Stop.

Theorem 1 Algorithm SPLT1 is a 3
2 -approximation for minimizing makespan on two par-

allel two-stage flow shops. �

In Step 1 of the algorithm SPLT1, the re-indexing process runs in O(n log n) time. In

all the remaining steps, finding a job with particular conditions needs O(n) time by checking

jobs one by one. Therefore, the overall time complexity of the algorithm is O(n log n), which

implies a fast algorithm.

3 A 12
7 -approximation algorithm for m = 3

For m = 3, we essentially design a similar approach as for Algorithm SPLT1; we start

by cutting the Johnsonian schedule σ into two parts. We will do this in such a way that

the makespan of the first part is bounded from above by 4
7Cmax(J ) ≤ 12

7 C∗
max and the

makespan of the second part is bounded from above by 16
21Cmax(J ) ≤ 16

7 C∗
max; remember

from Lemma 1 that Cmax(J ) ≤ 3C∗
max if m = 3. We then use algorithm SPLT1 to cut

the second part into two further parts and guarantee that both these further parts can be

scheduled with a makespan smaller than 12
7 C∗

max.

As before, let the Johnsonian schedule be σ, and let Sij and Cij be the earliest start and

completion times of operations Oij for i = 1, 2 and j = 1, . . . , n. We set T1 = 5
21Cmax(J ),

T2 = 16
21Cmax(J ).

Algorithm 2 SPLT2

Step 1. (Initialization) Re-index the job set J according to the Johnson’s rule.

Let S11 = 0, C11 = S11 + p11, S21 = C11, C21 = S21 + p21.

For j = 2 to n, perform the following computations:
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S1j = C1(j−1), C1j = S1j + p1j, S2j = max{C1j , C2(j−1)}, C2j = S2j + p2j.

Let Cmax(J ) = C2n, and T1 = 5
21Cmax(J ), T2 = 16

21Cmax(J ).

Step 2. Find a job Jh with S1h ≤ T1 ≤ C1h. If job Jh does not exist, find a job Jk with

S2k ≤ T1 ≤ C2k. Let J 1 = {J1, . . . , Jk}, and J 2 = {Jk+1, . . . , Jn}. Stop; otherwise, go to

Step 3 with job Jh.

Step 3. For job Jh, if C2h ≤ 4
7Cmax or C1h = S2h, let J 1 = {J1, . . . , Jh}, and J 2 =

{Jh+1, . . . , Jn}. Stop; otherwise, go to Step 4.

Step 4. Let C ′
1n = S2n and S′

1n = C ′
1n − p1n.

For j = (n − 1) to 1, perform the following computations:

C ′
1j = min{S′

1(j+1), S2j} and S′
1j = C ′

1j − p1j, where S′
1j and C ′

1j are the latest

possible start and completion time of job Jj in machine M1.

Step 5. Find a job Jt with S′
2t ≤ T2 < C ′

2t. If job Jt does not exists, we have solved

this case in Step 3. If S′
1t ≥ 3

7Cmax(J ) or C ′
1t = S′

2t, let J 1 = {Jt, . . . , Jn}, and J 2 =

{J1, . . . , Jt}. Stop; otherwise, go to Step 6.

Step 6. In schedule σ, find the job Ju with p1u ≤ p2u and p1(u+1) > p2(u+1), and let

v = u + 1. Therefore, in schedule σ, we have p1j ≤ p2j for j = 1, . . . , u; and p1j > p2j for

j = v, . . . , n. Then, we branch into the two cases.

Case 1.
∑n

j=v p1j ≥ T1. Find a job Je with e ≥ v such that
∑e−1

j=v p1j < T1 ≤ ∑e
j=v p1j

and a job Jd with d < v such that
∑e−1

j=d+1 p2j < T1 ≤ ∑e−1
j=d p2j. We branch into six

subcases.

Subcase 1.1
∑e

j=v p2j ≥ T1. Let J 1 = {Jv, . . . , Je} and J 2 = {J \J 1}. Stop.

Subcase 1.2
∑e−1

j=1 p2j < T1. Find a job Jk with
∑e

j=k+1 p2j < T1 ≤ ∑e
j=k p2j and

1 ≤ k < e. Let J 1 = {Jk, . . . , Je} and J 2 = {J \J 1}. Stop.

Subcase 1.3
∑v−1

j=d p1j ≥ T1. Let J 1 = {Jd, . . . , Jv−1} and J 2 = {J \J 1}. Stop.

Subcase 1.4
∑v

j=d p1j ≥ T1 and
∑v

j=d p2j ≥ T1. If v < e, let J 1 = {Jd, . . . , Jv} and

J 2 = {J \J 1}. If v = e, find a job Jk with
∑e

j=k+1 p2j < T1 ≤ ∑e
j=k p2j and d ≤ k < e.

Let J 1 = {Jk, . . . , Je} and J 2 = {J \J 1}. Stop.

Subcase 1.5
∑e−1

j=d p1j ≥ T1. Let J 1 = {Jd, . . . , Je−1} and J 2 = {J \J 1}. Stop.

Subcase 1.6
∑e−1

j=d p1j < T1. Find a job Jk with d ≤ k < v such that
∑e

k+1 p2j < T1 ≤
∑e

k p2j, J 1 = {Jk, . . . , Je} and J 2 = {J \J 1}. Stop.

Case 2.
∑u

j=1 p2j ≥ T1. Find a job Jd with d ≤ u such that
∑u

j=d+1 p2j < T1 ≤ ∑u
j=d p2j

and a job Je with e > u such that
∑e−1

j=d+1 p1j < T1 ≤ ∑e
j=d+1 p1j. We branch into six

subcases.
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Subcase 2.1
∑u

j=d p1j ≥ T1. Let J 1 = {Jd, . . . , Ju} and J 2 = {J \J 1}. Stop.

Subcase 2.2
∑n

j=d+1 p1j < T1. Find a job Jk with
∑k−1

j=d p1j < T1 ≤ ∑k
j=d p1j and

u < k ≤ n. Let J 1 = {Jd, . . . , Jk} and J 2 = {J \J 1}. Stop.

Subcase 2.3
∑e

j=u+1 p2j ≥ T1. Let J 1 = {Ju+1, . . . , Je} and J 2 = {J \J 1}. Stop.

Subcase 2.4
∑e

j=u p1j ≥ T1 and
∑e

j=u p2j ≥ T1. If d < u, let J 1 = {Ju, . . . , Je} and

J 2 = {J \J 1}. If d = u, find a job Jk with
∑k−1

j=d p1j < T1 ≤ ∑k
j=d p1j and d < k ≤ e. Let

J 1 = {Jd, . . . , Jk} and J 2 = {J \J 1}. Stop.

Subcase 2.5
∑e

j=d+1 p2j ≥ T1. Let J 1 = {Jd+1, . . . , Je} and J 2 = {J \J 1}. Stop.

Subcase 2.6
∑e

j=d+1 p2j < T1. Find a job Jk with u < k ≤ e such that
∑k−1

d p2j < T1 ≤
∑k

d p2j, J 1 = {Jd, . . . , Jk} and J 2 = {J \J 1}. Stop.

Algorithm SPLT2 gives two job sets J 1 and J 2, with Cmax(J 1) ≤ 12
7 C∗

max and

Cmax(J 2) ≤ 16
7 C∗

max. We can then apply Algorithm SPLT1 to the job set J 2, which

gives two further job sets for which have makespan bounded by 12
7 C∗

max. We have therefore

the following result.

Theorem 2 Algorithm SPLT2 is a 12
7 -approximation for the problem of minimizing makespan

in three parallel two-stage flow shops. �

The detailed proof of Theorem 2 is shown in Appendix A. In Step 1 of the algorithm

SPLT2, the re-indexing process runs in O(n log n) time. In the remaining steps, finding a

job with particular conditions needs O(n) time by checking jobs one by one. Therefore, the

overall time complexity of the algorithm is again O(n log n).

4 Conclusions

We have developed approximation algorithms with worst-case performance guarantees for

scheduling jobs in a flexible manufacturing environment with two and three two-stage par-

allel flow shops. The key idea is to judiciously cut the Johnsonian schedule in two and three

parts, respectively, and schedule each part in a different flow shop.

Our results apply also to the makespan parallel flow shop problem with transportation

times, in which the operations of the same job can be performed in different flow shops

and where transporting job Jj from one flow shop to another requires a transportation time

τj ≥ 0 (j = 1, . . . , n). This is so, since in our algorithms transfer of jobs does not take place.
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If τj = 0 for each j, then the parallel flow shop problem with transportation times reduces

to the hybrid flow shop problem, and our approximation algorithm has the same worst-case

performance guarantee as the algorithms by Chen (1994) and Lee and Vairaktarakis (1994)

when m=2.
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Appendix A: Proof of Theorem 2

Lemma 13 If there exists no job Jh with S1h ≤ T1 ≤ C1h, then let J 1 = {J1, . . . , Jk} and

J 2 = {Jk+1, . . . , Jn} with Jk such that S2k ≤ T1 ≤ C2k. We then have that

Cmax(J 1) ≤ 12
7

C∗
max and Cmax(J 2) ≤ 16

7
C∗

max.

Proof. Since there is no job Jh with S1h ≤ T1 ≤ C1h, machine M1 is idle after T1.

Furthermore, there must exist a job Jk with S2k ≤ T1 ≤ C2k, otherwise machine M2 would
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0 )(max JCT1 T2

  Jk

Figure 15: Cutting the Johnsonian schedule as prescribed in Lemma 13.

be idle after T1, too. We then let J 1 = {J1, . . . , Jk}, and J 2 = {Jk+1, . . . , Jn}. This case

is illustrated by Figure 15.

Since S2k ≤ T1, we have Cmax(J 1) = S2k + p2k ≤ T1 + C∗
max = 5

21Cmax(J ) + C∗
max ≤

12
7 C∗

max. And due to C2k ≥ T1, we get Cmax(J 2) ≤ Cmax(J ) − C2k ≤ 16
21Cmax(J ). �

Lemma 14 If there is a job Jh with S1h ≤ T1 ≤ C1h and C2h ≤ 4
7Cmax(J ) or C1h = S2h,

let J 1 = {J1, . . . , Jh}, and J 2 = {Jh+1, . . . , Jn}. We then have that

Cmax(J 1) ≤ 12
7

C∗
max and Cmax(J 2) ≤ 16

7
C∗

max.

�

Proof. This case is visualized in Figure 16. The proof is similar to the one of Lemma

3. �

0 )(max JCT1 T2

  Jh

)(
7
4

max JC0 )(max JCT1 T2

  Jh

)(
7
4

max JC

Figure 16: Cutting the Johnsonian schedule as indicated in Lemma 14.

Suppose now there is a job Jh with S1h ≤ T1 ≤ C1h for which C2h > 4
7Cmax(J ) and

C1h < S2h. Then machine M2 must be busy in the period [T1,
4
7Cmax(J )], i.e.

∑n
j=1 p2j ≥

4
7Cmax(J ) − 5

21Cmax(J ) = 1
3Cmax(J ) > T1. We now delay all operations Oij in σ as much

as possible within the makespan Cmax(J ). Let S′
ij and C ′

ij denote the modified start and

completion times of Oij and let σ′ denote the modified schedule.
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Lemma 15 In schedule σ′, find a job Jt with S′
2t ≤ T2 ≤ C ′

2t. If S′
1t ≥ 3

7Cmax(J ) or

C ′
1t = S′

2t, let J 1 = {Jt, . . . , Jn}, and J 2 = {J1, . . . , Jt−1}. We then have that

Cmax(J 1) ≤ 12
7

C∗
max and Cmax(J 2) ≤ 16

7
C∗

max.

Proof. Because there is a job Jh with S1h ≤ T1 ≤ C1h for which C2h > 4
7Cmax(J ) and

C1h < S2h, we have
∑n

j=1 p2j > T1. Job Jt does exist. This case is visualized in Figure 17.

0 )(max JCT1 T2)(
7

3
max JC

  Jh

0 )(max JCT1 T2)(
7

3
max JC

  Jh

Figure 17: Cutting the Johnsonian schedule as indicated in Lemma 15.

Since S′
2t ≤ T2, we have

Cmax(J 2) = C2(t−1) ≤ S′
2t ≤ T2 ≤ 16

21
Cmax(J ).

If S′
1t ≥ 3

7Cmax(J ), then Cmax(J 1) ≤ Cmax(J ) − S′
1t ≤ 4

7Cmax(J ) = 12
7 C∗

max. If

S′
1t < 3

7Cmax(J ), then we have C ′
1t = S′

2t, and hence Cmax(J 1) ≤ p1t + p2t + (Cmax(J ) −
C2t) ≤ C∗

max + 5
21Cmax(J ) = 12

7 C∗
max. �

Lemma 13 to Lemma 15 have solved many different cases of this problem. The one

remaining case is where there exists a job Jt with S′
2t ≤ T2 ≤ C ′

2t, S′
1t < 3

7Cmax(J ),

C ′
1t < S′

2t, and a job Jh with S1h ≤ T1 ≤ C1h, C2h > 4
7Cmax(J ) and C1h < S2h. This case

is illustrated in Figure 18.

In this remaining case, machine M2 must be busy in the period [T1,
4
7Cmax(J )] in sched-

ule σ, for otherwise, operation O2h could have been started earlier; in schedule σ′, machine

M1 is busy in the period [37Cmax(J ), T2], for otherwise, operation O1t could have been

started later.

In what follows, we deal with the remaining case with jobs Jh and Jt only. We split

the n jobs into two subsets S1 = {J1, . . . , Ju} = {Jj |p1j ≤ p2j , j = 1, . . . , n} and S2 =

{Jv, . . . , Jn} = {Jj |p1j > p2j , j = 1, . . . , n}. We then branch into two cases: the case
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Figure 18: The remaining case with jobs Jh and Jt.

∑n
j=v p1j ≥ T1, and the case

∑u
j=1 p2j ≥ T1. Since they are symmetrical, we analyze the

first case only.

Since
∑n

j=v p1j ≥ T1, we can find a job Je with e ≥ v such that
∑e−1

j=v p1j < T1 ≤
∑e

j=v p1j . We have the following Lemma.

Lemma 16 If
∑e

j=v p2j ≥ T1, then let J 1 = {Jv, . . . , Je} and J 2 = {J \J 1}. Then

Cmax(J 1) ≤ 12
7

C∗
max and Cmax(J 2) ≤ 16

7
C∗

max.

Proof. This case is illustrated by Figure 19.

0 )(max JCT1 T2
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4

max JC)(
7
3

max JC

Figure 19: Cutting the Johnsonian schedule as indicated in Lemma 16.

Let Cmax(J 1) =
∑w

j=v p1j +
∑e

j=w p2j and v ≤ w ≤ e. We must have p2e ≤ p2w < p1w

and
∑w−1

j=v p1j+
∑e

j=w+1 p2j <
∑e−1

j=v p1j < T1. Then, Cmax(J 1) =
∑w−1

j=v p1j+
∑e

j=w+1 p2j+

p1w+p2w < T1+C∗
max = 12

7 C∗
max. The proof for Cmax(J ) is analogous to the proof of Lemma

7. �

If the condition in Lemma 16 is not satisfied, we need to find a job Jd with d < v such

that
∑e−1

j=d−1 p2j < T1 ≤ ∑e−1
j=d p2j . If there is no such job Jd, we have the following result.
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Lemma 17 If there is no job Jd with d < v such that
∑e−1

j=d−1 p2j < T1 ≤ ∑e−1
j=d p2j, we find

a job Jk with
∑e

j=k+1 p2j < T1 ≤ ∑e
j=k p2j and 1 ≤ k < e, and we let J 1 = {Jk, . . . , Je}

and J 2 = {J\J 1}. We then have that

Cmax(J 1) ≤ 12
7

C∗
max and Cmax(J 2) ≤ 16

7
C∗

max.

0 )(max JCT1 T2)(
7
4

max JC)(
7
3
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  Jv         Je

Figure 20: Cutting the Johnsonian schedule as indicated in Lemma 17.

Proof. This case is visualized in Figure 20, where k = v = 1. In this case, we have e ≥ h,

since
∑e

j=v p1j ≥ T1 and
∑h−1

j=1 p1j ≤ T1. Furthermore, we have k < v, for otherwise we

would have
∑e

j=v p2j ≥ T1, which already has been covered by Lemma 16. With C2h >
4
7Cmax(J ) and machine M2 being busy in the period [ 5

21Cmax(J ), 4
7Cmax(J )], we have

∑e
j=1 p2j > T1. Therefore job Jk exists. Since

∑h
j=1 p2j > T1 and

∑e−1
j=1 p2j < T1, we have

e−1 < h. Since also e ≥ h, we must have that e = h. Then we have
∑e−1

j=k p1j ≤
∑h−1

j=1 p1j <

T1. If Cmax(J 1) =
∑w

j=k p1j +
∑e

j=w p2j and v ≤ w ≤ e, we must have p2e ≤ p2w < p1w and
∑w−1

j=k p1j +
∑e

j=w+1 p2j ≤ ∑e−1
j=k p1j < T1. Then, Cmax(J 1) =

∑w−1
j=d p1j +

∑e
j=w+1 p2j +

p1w + p2w < T1 + C∗
max = 12

7 C∗
max. If Cmax(J 1) =

∑w
j=k p1j +

∑e
j=w p2j and k ≤ w < v,

we must have p1k ≤ p1w ≤ p2w and
∑w−1

j=k p1j +
∑e

j=w+1 p2j ≤ ∑e
j=k+1 p2j < T1. Then,

Cmax(J 1) =
∑w−1

j=d p1j +
∑e

j=w+1 p2j + p1w + p2w < T1 +C∗
max = 12

7 C∗
max. Because of k < v,

we also have
∑e

j=k p1j ≥ T1. Since
∑e

j=k p2j ≥ T1, the proof of Cmax(J 2) is analogous to

Lemma 7. �

If there exists a job Je with e ≥ v such that
∑e−1

j=v p1j < T1 ≤ ∑e
j=v p1j and a job Jd

with d < v such that
∑e−1

j=d−1 p2j < T1 ≤ ∑e−1
j=d p2j , we have the following Lemmata 18 - 21.

Their proofs are similar to those of Lemma 8 - 11.

Lemma 18 If
∑v−1

j=d p1j ≥ T1, let J 1 = {Jd, . . . , Jv−1} and J 2 = {J \J 1}. We then have

that

Cmax(J 1) ≤ 12
7

C∗
max and Cmax(J 2) ≤ 16

7
C∗

max.
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Lemma 19 If
∑v

j=d p1j ≥ T1 and
∑v

j=d p2j ≥ T1, we have two cases. If v < e, let J 1 =

{Jd, . . . , Jv} and J 2 = {J \J 1}. If v = e, find a job Jk with
∑e

j=k+1 p2j < T1 ≤ ∑e
j=k p2j

and d ≤ k < e. Let J 1 = {Jk, . . . , Je} and J 2 = {J \J 1}. We then have that

Cmax(J 1) ≤ 12
7

C∗
max and Cmax(J 2) ≤ 16

7
C∗

max.

�

Lemma 20 In case of
∑e−1

j=d p1j ≥ T1, let J 1 = {Jd, . . . , Je−1} and J 2 = {J \J 1}. We

then have that

Cmax(J 1) ≤ 12
7

C∗
max and Cmax(J 2) ≤ 16

7
C∗

max.

�

Lemma 21 In case of
∑e−1

j=d p1j < T1, find a job Jk with d ≤ k < v such that
∑e

k+1 p2j <

T1 ≤ ∑e
k p2j, J 1 = {Jk, . . . , Je} and J 2 = {J \J 1}. We then have that

Cmax(J 1) ≤ 12
7

C∗
max and Cmax(J 2) ≤ 16

7
C∗

max.

�

Using Lemmata 16 - 21, we have solved the case
∑n

j=v p1j ≥ T1. The algorithm for

the case
∑u

j=1 p2j ≥ T1 is symmetrical. For the makespan parallel flow shop problem with

m = 3, Lemma 12 still holds.

We have now developed an approximation algorithm, referred to as Algorithm SPLT2,

for the parallel flow shop problem with m = 3 with worst-case performance guarantee 12
7 .
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Highlights 

>We consider the problem of scheduling n jobs in m two-stage parallel flow shops. >For 
m=2, we present a 3/2-approximation algorithm so as to minimize the makespan. >For 
m=3, we present a 12/7-approximation algorithm.> Both these algorithms run in 
O(nlogn) time. >These are the first approximation algorithms with fixed worst-case 
guarantees. 

 


