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Abstract. The bankruptcy prediction problem can be considered an or-
dinal classi�cation problem. The classical theory of Rough Sets describes
objects by discrete attributes, and does not take into account the order-
ing of the attributes values. This paper proposes a modi�cation of the
Rough Set approach applicable to monotone datasets. We introduce re-
spectively the concepts of monotone discernibility matrix and monotone
(object) reduct. Furthermore, we use the theory of monotone discrete
functions developed earlier by the �rst author to represent and to com-
pute decision rules. In particular we use monotone extensions, decision
lists and dualization to compute classi�cation rules that cover the whole
input space. The theory is applied to the bankruptcy prediction problem.
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1 The Bankruptcy Prediction Problem

The research in bankruptcy prediction has a long history dating back to the
1930s. A number of statistical methods were applied for developing models able
to predict in advance whether a company will go bankrupt or not. The analysis
is based on �nancial information about the company in the form of �nancial
indicators and ratios obtained from the company's annual reports. The main goal
is to describe the relationship between these indicators and bankruptcy using
available data about companies that already went bankrupt and data about
'healthy' companies.

A major breakthrough in the research was achieved in the 1960s by applying
the method of discriminant analysis for bankruptcy prediction. In 1968 Altman
proposed multivariate discriminant analysis for developing the prediction model
[1] and the approach has been further improved and tested in a number of studies
since then. However, this method makes several assumptions that are not always
present in real-life data. This encouraged the researchers to look for alternatives.
One of them is the logistic analysis that was proposed in the 1980s. It was applied
on bankruptcy data and gave very good results.

The success of the machine learning methods in a number of application
domains suggested that they might be useful for predicting bankruptcy as well.
Neural networks, decision trees, genetic algorithms, rough sets and other machine



learning approaches were applied on bankruptcy data with promising results [2,
17, 20, 22, 23]. In a number of studies these methods are tested and compared to
the traditional statistical techniques. Some of the articles suggest that the new
approaches outperform the classical methods on datasets from a number of areas
including bankruptcy prediction.

In this paper the bankruptcy prediction problem is interpreted as an ordinal
classi�cation problem and an extension of the rough sets theory is proposed for
extracting classi�cation rules from ordinal datasets.

2 Ordinal Classi�cation

Ordinal classi�cation refers to the category of problems, in which the attributes
of the objects to be classi�ed are ordered. Ordinal classi�cation has been studied
by a number of authors, e.g. [3, 18, 6, 21, 13]. The classical theory of Rough Sets
does not take into account the ordering of the attribute values. While this is
a general approach that can be applied on a wide variety of data, for speci�c
problems we might get better results if we use this property of the problem. This
paper proposes a modi�cation of the Rough Sets approach applicable to mono-
tone datasets. Monotonicity appears as a property of many real-world problems
and often conveys important information. Intuitively it means that if we in-
crease the value of a condition attribute in a decision table containing examples,
this will not result in a decrease in the value of the decision attribute. There-
fore, monotonicity is a characteristic of the problem itself and when analyzing
the data we get more appropriate results if we use methods that take this ad-
ditional information into account. Our approach uses the theory of monotone
discrete functions developed earlier in [4]. We introduce respectively monotone
decision tables/datasets, monotone discernibility matrices and monotone reducts
in section 3 and consider some issues of complexity. In section 4 we introduce
monotone discrete functions and show the relationship with Rough Set Theory.
As a corollary we �nd an eÆcient alternative way to compute classi�cation rules.
In section 5 we discuss the application of the theory to the bankruptcy dataset
earlier investigated in [13]. It appears that our method is more advantageous in
several aspects. Conclusions are given in section 6.

3 Monotone Information Systems

An information system S is a tuple S = fU;A; V g where: U = fx1; x2; : : : ; xng is
a non-empty, �nite set of objects (observations, examples), A = fa1; a2; : : : ; amg
is a non-empty, �nite set of attributes, and V = fV1; V2; : : : ; Vmg is the set of
domains of the attributes in A. A decision table is a special case of an information
system where among the attributes in A we distinguish one called a decision
attribute. The other attributes are called condition attributes. Therefore: A = C[
fdg, C = fa1; a2; : : : ; amg where ai - condition attributes, d - decision attribute.



We call the information system S = fU;C[fdg; V g monotone when for each
couple xi; xj 2 U the following holds:

ak(xi) � ak(xj);8ak 2 C ) d(xi) � d(xj) ; (1)

where ak(xi) is the value of the attribute ak for the object xi. The following
example will serve as a running example for this paper.

Example 1. The following decision table represents a monotone dataset:

Table 1. Monotone decision table

U a b c d

1 0 1 0 0
2 1 0 0 1
3 0 2 1 2
4 1 1 2 2
5 2 2 1 2

3.1 Monotone Reducts

Let S = fU;C [ fdg; V g be a decision table. In the classical rough sets theory,
the discernibility matrix (DM) is de�ned as follows:

(cij) =

�
fa 2 A : a(xi) 6= a(xj)g for i; j : d(xi) 6= d(xj)
; otherwise .

(2)

The variation of the DM proposed here is the monotone discernibility matrix
Md(S) de�ned as follows:

(cij) =

�
fa 2 A : a(xi) > a(xj)g for i; j : d(xi) > d(xj)
; otherwise .

(3)

Based on the monotone discernibility matrix, the monotone discernibility
function can be constructed following the same procedure as in the classical
Rough Sets approach. For each non-empty entry of the monotone Md cij =
fak1 ; ak2 ; : : : ; aklg we construct the conjunction C = ak1 ^ ak2 ^ : : : ^ akl . The
disjunction of all these conjunctions is the monotone discernibility function:

f = C1 _ C2 _ : : : _ Cp : (4)

The monotone reducts of the decision table are the minimal transversals of
the entries of the monotone discernibility matrix. In other words the monotone
reducts are the minimal subsets of condition attributes that have a non-empty
intersection with each non-empty entry of the monotone discernibility matrix.
They are computed by dualizing the Boolean function f , see [5, 4, 16]. In section



3.3 we give another equivalent de�nition for a monotone reduct described from
a di�erent point of view.

Example 2. Consider the decision table from example 1. The general and mono-
tone discernibility matrix modulo decision for this table are respectively:

Table 2. General decision matrix

1 2 3 4 5

1 ;
2 a; b ;
3 b; c a; b; c ;
4 a; c b; c ; ;
5 a; b; c a; b; c ; ; ;

Table 3. Monotone decision matrix

1 2 3 4 5

1 ;
2 a ;
3 b; c b; c ;
4 a; c b; c ; ;
5 a; b; c a; b; c ; ; ;

The general discernibility function is f(a; b; c) = ab _ ac _ bc. Therefore, the
general reducts of table 1 are respectively: fa; bg, fa; cg and fb; cg and the core is
empty. However, the monotone discernibility function is g(a; b; c) = a_bc. So the
monotone reducts are: fa; bg andfa; cg, and the monotone core is fag. It can be
proved that monotone reducts preserve the monotonicity property of the dataset.

Complexity Generating a reduct of minimum length is an NP-hard problem.
Therefore, in practice a number of heuristics are preferred for the generation of
only one reduct. Two of these heuristics are the "Best Reduct" method [14] and
Johnson's algorithm [15]. The complexity of a total time algorithm for the prob-
lem of generating all minimal reducts (or dualizing the discernibility function)
has been intensively studied in Boolean function theory, see [5, 11, 4]. Unfortu-
nately, this problem is still unsolved, but a quasi-polynomial algorithm is known
[12]. However, these results are not mentioned yet in the rough set literature,
see e.g. [16].

3.2 Heuristics

As it was mentioned above, two of the more successful heuristics for generat-
ing one reduct are the Johnson's algorithm and the "Best reduct" heuristic.
Strictly speaking these methods do not necessarily generate reducts, since the
minimality requirement is not assured. Therefore, in the sequel we will make the
distinction between reducts vs minimal reducts. A good approach to solve the
problem is to generate the reduct and then check whether any of the subsets is
also a reduct. The Johnson heuristic uses a very simple procedure that tends
to generate a reduct with minimal length (which is not guaranteed, however).
Given the discernibility matrix, for each attribute the number of entries where it
appears is counted. The one with the highest number of entries is added to the
future reduct. Then all the entries containing that attribute are removed and



the procedure repeats until all the entries are covered. It is logical to start the
procedure with simplifying the set of entries (removing the entries that contain
strictly or non strictly other elements). In some cases the results with and with-
out simpli�cation might be di�erent. The "Best reduct" heuristic is based on
the signi�cance of attributes measure. The procedure starts with the core and
on each step adds the attribute with the highest signi�cance, if added to the
set, until the value reaches one. In many of the practical cases the two heuristics
give the same result, however, they are not the same and a counter example can
be given. The dataset discussed in section 4, for example, gives di�erent results
when the two heuristics are applied.

3.3 Rule Generation

The next step in the classical Rough Set approach [19, 16] is, for the chosen
reduct, to generate the value (object) reducts using a similar procedure as for
computing the reducts. A contraction of the discernibility matrix is generated
based only on the attributes in the reduct. Further, for each row of the matrix, the
object discernibility function is constructed - the discernibility function relative
to this particular object. The object reducts are the minimal transversals of the
object discernibility functions.

Using the same procedure but on the monotone discernibility matrix, we can
generate the monotone object reducts. Based on them, the classi�cation rules
are constructed. For the monotone case we use the following format:

if (ai1 � v1) ^ (ai2 � v2) ^ : : : ^ (ail � vl) then d � vl+1 : (5)

It is also possible to construct the classi�cation rules using the dual format:

if (ai1 � v1) ^ (ai2 � v2) ^ : : : ^ (ail � vl) then d � vl+1 : (6)

This type of rules can be obtained by the same procedure only considering
the columns of the monotone discernibility matrix instead of the rows. As a
result we get rules that cover at least one example of class smaller than the
maximal class value and no examples of the maximal class.

It can be proved that in the monotone case it is not necessary to generate
the value reducts for all the objects - the value reducts of the minimal vectors
of each class will also cover the other objects from the same class. For the rules
with the dual format we consider respectively the maximal vectors of each class.
Tables 4 and 5 show the complete set of rules generated for the whole table.

A set of rules is called a cover if all the examples with class d � 1 are covered,
and no example of class 0 is covered. The minimal covers (computed by solving
a set-covering problem) for the full table are shown in tables 6 and 7. In this
case the minimal covers correspond to the unique minimal covers of the reduced
tables associated with respectively the monotone reducts fa,bg and fa,cg.

The set of rules with dual format is not an addition but rather an alternative
to the set rules of the other format. If used together they may be conicting
in some cases. It is known that the decision rules induced by object reducts in



Table 4. Monotone decision rules

class d � 2 class d � 1

a � 2 a � 1
b � 2
a � 1 ^ b � 1
c � 1

Table 5. The dual format rules

class d � 0 class d � 1

a � 0 ^ b � 1 b � 0
a � 0 ^ c � 0 c � 0

Table 6. mincover ab

class d � 2 class d � 1

a � 1 ^ b � 1 a � 1
b � 2

Table 7. mincover ac

class d � 2 class d � 1

c � 1 a � 1

general do not cover the whole input space. Furthermore, the class assigned by
these decision rules to an input vector is not uniquely determined. We therefore
briey discuss the concept of an extension of a discrete data set or decision table
in the next section.

4 Monotone Discrete Functions

The theory of monotone discrete functions as a tool for data-analysis has been
developed in [4]. Here we only briey review some concepts that are crucial for
our approach. A discrete function of n variables is a function of the form:

f : X1 �X2 � : : :�Xn ! Y ;

where X = X1�X2 � : : :�Xn and Y are �nite sets. Without loss of generality
we may assume: Xi = f0; 1; : : : ; nig and Y = f0; 1; : : : ;mg. Let x; y 2 X be two
discrete vectors. Least upper bounds and greatest lower bounds will be de�ned
as follows:

x _ y = v; where vi = maxfxi; yig (7)

x ^ y = w; where wi = minfxi; yig : (8)

Furthermore, if f and g are two discrete functions then we de�ne:

(f _ g)(x) = maxff(x); g(x)g (9)

(f ^ g)(x) = minff(x); g(x)g : (10)

Table 8. mincover ab (dual format)

class d � 0 class d � 1

a � 0 ^ b � 1 b � 0

Table 9. mincover ac (dual format)

class d � 0 class d � 1

a � 0 ^ c � 0 c � 0



(Quasi) complementation for X is de�ned as: x = (x1; x2; : : : ; xn), where xi =
ni � xi. Similarly, the complement of j 2 Y is de�ned as j = m � j. The
complement of a discrete function f is de�ned by: f(x) = f(x). The dual of a
discrete function f is de�ned as: fd(x) = f(x): A discrete function f is called
positive (monotone non-decreasing) if x � y implies f(x) � f(y).

4.1 Representations

Normal Forms Discrete variables are de�ned as:

xip = if xi � p then m else 0, where 1 � p � ni; i 2 (n] = f1; : : : ; ng : (11)

Thus: xip+1 = if xi � p then m else 0: Furthermore, we de�ne xini+1 = 0 and
xini+1 = m: Cubic functions are de�ned as:

cv;j = j:x1v1x2v2 � � �xnvn : (12)

Notation: cv;j(x) = if x � v then j else 0; j 2 (m]:
Similarly, we de�ne anti-cubic functions by:

aw;i = i _ x1w1+1 _ x2w2+1 � � � _ xnwn+1 : (13)

Notation: aw;i(x) = if x � w then i else m; i 2 [m) = f0; : : : ;m � 1g: Note,
that j:xip denotes the conjunction j ^xip, where j 2 Y is a constant, and xipxjq
denotes xip^xiq . A cubic function cv;j is called a prime implicant of f if cv;j � f
and cv;j is maximal w.r.t. this property. The DNF of f :

f =
_
v;j

fcv;j j v 2 j 2 (m]g ; (14)

is a unique representation of f as a disjunction of all its prime implicants (v is
a minimal vector of class d � j).

If xip is a discrete variable and j 2 Y a constant then xdip = xip+1 and

jd = j: The dual of the positive function f =
W

v;j j:cv;j equals f
d =
V

v;j j_av;j :

Example 3. Let f be the function de�ned by table 6 and let e.g. x11 denote
the variable: if a � 1 then 2 else 0, etc. Then f = 2:(x11x21 _ x22) _ 1:x11, and
fd = 2:x12x21 _ 1:x22.

Decision Lists

In [4] we have shown that monotone functions can e�ectively be represented by
decision lists of which the minlist and the maxlist representations are the most
important ones. We introduce these lists here only by example. The minlist
representation of the functions f and fd of example 2 are respectively:

f(x) = if x � 11; 02 then 2 else if x � 10 then 1 else 0, and
fd(x) = if x � 21 then 2 else if x � 02 then 1 else 0.



The meaning of the minlist of f is given by:
if (a � 1 ^ b � 1) _ b = 2 then 2 else if a � 1 then 1 else 0.

The maxlist of f is obtained from the minlist of fd by complementing the mini-
mal vectors as well as the function values, and by reversing the inequalities. The
maxlist representation of f is therefore:

f(x) = if x � 01 then 0 else if x � 20 then 1 else 2, or equivalently:
if a = 0 ^ b � 1 then 0 else if b = 0 then 1 else 2.

The two representations are equivalent to the following table that contains re-
spectively the minimal and maximal vectors for each decision class of f . Each
representation can be derived from the other by dualization.

Table 10. Two representations of f

minvectors maxvectors class
11, 02 2
10 20 1

01 0

4.2 Extensions of Monotone Datasets

A partially de�ned discrete function (pdDf) is a function: f : D 7! Y; where D �
X: We assume that a pdDf f is given by a decision table such as e.g. table 1.
Although pdDfs are often used in practical applications, the theory of pdDfs is
only developed in the case of pdBfs (partially de�ned Boolean functions). Here
we discuss monotone pdDfs, i.e. functions that are monotone on D. If the func-
tion f̂ : X 7! Y , agrees with f on D: f̂(x) = f(x); x 2 D; then f̂ is called an
extension of the pdDf f . The collection of all extensions forms a lattice: for, if f1
and f2 are extensions of the pdDf f , then f1 ^ f2 and f1 _ f2 are also extensions
of f . The same holds for the set of all monotone extensions. The lattice of all
monotone extensions of a pdDf f will be denoted here by E(f). It is easy to see
that E(f) is universally bounded: it has a greatest and a smallest element. The
maxlist of the maximal element called the maximal monotone extension can be
directly obtained from the decision table.

De�nition 1 Let f be a monotone pdDf. Then the functions fmin and fmax are
de�ned as follows:

fmin(x) =

�
maxff(y) : y 2 D \ #xg if x 2 "D
0 otherwise

(15)

fmax(x) =

�
minff(y) : y 2 D \ "xg if x 2 #D
m otherwise .

(16)

Lemma 1 Let f be a monotone pdDf. Then



a) fmin; fmax 2 E(f):

b) 8f̂ 2 E(f) : fmin � f̂ � fmax :

Since E(f) is a distributive lattice, the minimal and maximal monotone ex-
tension of f can also be described by the following expressions:

fmax =
_
f f̂ j f̂ 2 E(f)g and fmin =

^
f f̂ j f̂ 2 E(f)g : (17)

Notation: Let Tj(f) := fx 2 D : f(x) = jg. A minimal vector v of class j is a
vector such that f(v) = j and no vector strictly smaller than v is also in Tj(f).
Similarly, a maximal vector w is a vector maximal in Tj(f), where j = f(w).
The sets of minimal and maximal vectors of class j are denoted by minTj(f)
and maxTj(f) respectively.

According to the previous lemma fmin and fmax are respectively the minimal
and maximal monotone extension of f . Decision lists of these extensions can be
directly constructed from f as follows. Let Dj := D\Tj(f), then minTj(fmin) =
minDj and maxTj(fmax) = maxDj .

Example 4. Consider the pdDf given by table 1, then its maximal extension is:

f(x) = if x � 010 then 0
else if x � 100 then 1

else 2 .

As described in the last subsection, from this maxlist representation we can de-
duce directly the minlist representation of the dual of f and �nally by dualization
we �nd that f is:

f = 2:(x12 _ x11x21 _ x22 _ x31) _ 1:x11 : (18)

However, f can be viewed as a representation of table 4! This suggests a close re-
lationship between minimal monotone decision rules and the maximal monotone
extension fmax. This relationship is discussed in the next section.The relation-
ship with the methodology LAD (Logical Analysis of Data) is briey discussed
in subsection 3.5.

4.3 The relationship between monotone decision rules and fmax

We �rst rede�ne the concept of a monotone reduct in terms of discrete functions.
Let X = X1 �X2 � : : :�Xn be the input space, and let A = [1; : : : ; n] denote
the set of attributes. Then for U � A, x 2 X we de�ne the set U:x respectively
the vector x:U by:

U:x = fi 2 U : xi > 0g (19)

and

(x:U)i =

�
xi if i 2 U
0 if i =2 U .

(20)

Furthermore, the characteristic set U of x is de�ned by U = A:x.



De�nition 2 Suppose f : D ! Y is a monotone pdDf, w 2 D and f(w) = j.
Then V � A is a monotone w-reduct i� 8x 2 D : (f(x) < j ) w:U 6� x:U).

Note, that in this de�nition the condition w:U 6� x:U is equivalent to w:U 6� x.
The following lemma is a direct consequence of this de�nition.

Lemma 2 Suppose f is a monotone pdDf, w 2 Tj(f). Then V � A is a mono-
tone w-reduct , 8x(f(x) < j ) 9i 2 V such that wi > xi) .

Corollary 1 V is a monotone w-reduct i� V:w is a monotone w-reduct. There-
fore, w.l.o.g. we may assume that V is a subset of the characteristic set W of
w: V �W .

Monotone Boolean functions

We �rst consider the case that the dataset is Boolean: so the objects are described
by condition and decision attributes taking one of two possible values f0; 1g. The
dataset represents a partially de�ned Boolean function (pdBf) f : D ! f0; 1g
where D � f0; 1gn. As we have only two classes, we de�ne the set of true vectors
of f by T (f) := T1(f) and the set of false vectors of f by F (f) := T0(f) .

Notation: In the Boolean case we will make no distinction between a set V and
its characteristic vector v.

Lemma 3 Let f : D ! f0; 1g be a monotone pdBf, w 2 D, w 2 T (f). Suppose
v � w. Then v is a w-reduct , v 2 T (fmax) .

Proof: Since v � w, we have
v is a w-reduct , 8x(x 2 D \ F (f)) v 6� x), v 2 T (fmax) .

Theorem 1 Suppose f : D ! f0; 1g is a monotone pdBf, w 2 D, w 2 T (f).
Then, for v � w, v 2 minT (fmax), v is a minimal monotone w-reduct.

Proof: Let v 2 minT (fmax) and v � w for some w 2 D: Then v is a monotone
w-reduct. Suppose 9u < v and u is a monotone w-reduct. Then by de�nition 2
we have: u 2 T (fmax), which contradicts the assumption that v 2 minT (fmax).

Conversely, let v be a minimal monotone w-reduct. Then by lemma 3 we have:
v 2 T (fmax). Suppose 9u < v : u 2 T (fmax). However, v � w ) u < w ) U
is a monotone w-reduct, which contradicts the assumption that v is a minimal
w-reduct.

The results imply that the irredundant (monotone) decision rules that cor-
respond to the object reducts are just the prime implicants of the maximal
extension.

Corollary 2 The decision rules obtained in rough set theory can be obtained by
the following procedure: a) �nd the maximal vectors of class 1 (positive examples)
b) determine the minimal vectors of the dual of the maximal extension and c)
compute the minimal vectors of this extension by dualization. The complexity of
this procedure is the same as for the dualization problem.



Although the above corollary is formulated for monotone Boolean functions,
results in [10] indicate that a similar statement holds for Boolean functions in
general.

Monotone discrete functions

Lemma 4 Suppose f is a monotone pdDf, w 2 Tj(f) and v � w. If v 2
Tj(fmax) then the characteristic set V of v is a monotone w-reduct.

Proof: fmax(v) = j implies 8x(f(x) < j ) v 6� x). Since w � v we therefore
have 8x(f(x) < j ) 9i 2 V such that wi � vj > xi) .

Remark: Even if in lemma 4 the vector v is minimal: v 2 minTj(fmax), then
still V = A:v is not necessarily a minimal monotone w-reduct.

Theorem 2 Suppose f is a monotone pdDf and w 2 Tj(f) . Then V � A is a
monotone w-reduct , fmax(w:V ) = j .

Proof: If V is a monotone w-reduct, then by de�nition 8x(f(x) < j ) w:V 6� x).
Since w:V � w and f(w) = j we therefore have fmax(w:V ) = j .

Conversely, let fmax(w:V ) = j, V � A. Then, since w:V � w and the
characteristic set of w:V is equal to V , lemma 4 implies that V is a monotone
w-reduct.

Theorem 3 Let f be a monotone pdDf and w 2 Tj(f). If V � A is a minimal
monotone w-reduct, then 9u 2 minTj(fmax) such that V = A:u .

Proof: Since V is a monotone w-reduct, theorem 2 implies that fmax(w:V ) = j.
Therefore, 9u 2 minTj(fmax) such that u � w:V . Since A:u � V and A:u is a
monotone w-reduct (by lemma 4), the minimality of V implies A:u = V .

Theorem 3 implies that the minimal decision rules obtained by monotone w-
reducts are not shorter than the minimal vectors (prime implicants) of fmax.
This suggests that we can optimize a minimal decision rule by minimizing the
attribute values to the attribute values of a minimal vector of fmax. For example,
if V is a minimal monotone w-reduct and u 2 minTj(fmax) such that u � w:V
then the rule: 'if xi � wi then j', where i 2 V can be improved by using the
rule: 'if xi � ui then j', where i 2 V . Since ui � wi, i 2 V , the second rule is
applicable to a larger part of the input space X .

The results so far indicate the close relationship between minimal monotone
decision rules obtained by the rough sets approach and by the approach using
fmax. To complete the picture we make the following observations:

Observation 1: The minimal vector u (theorem 3) is not unique.

Observation 2: Lemma 4 implies that the length of a decision rule induced by
a minimal vector v � w, v 2 minTj(fmax) is not necessarily smaller than that



of a rule induced by a minimal w-reduct. This means that there may exist an
x 2 X that is covered by the rule induced by v but not by the decision rules
induced by the minimal reducts of a vector w 2 D.

Observation 3: There may be minimal vectors of fmax such that 8w 2 D
v 6� w. In this case if x � v then fmax(x) = m but x is not covered by a minimal
decision rule induced by a minimal reduct.

In the next two subsections we briey compare the rough set approach and the
discrete function approach with two other methods.

4.4 Monotone Decision Trees

Ordinal classi�cation using decision trees is discussed in [3, 6, 21]. A decision tree
is called monotone if it represents a monotone function. A number of algorithms
are available for generating and testing the monotonicity of the tree [6, 21]. Here
we demonstrate the idea with an example.

Example 5. A monotone decision tree corresponding to the pdDf given by table
1 and example 3 is represented in �gure 1.
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Fig. 1. Monotone decision tree representation of f

It can be seen that the tree contains information both on the corresponding
extension and its complement (or equivalently its dual). Therefore the decision
list representation tends to be more compact since we only need the information
about the extension - the dual can always be derived if necessary.



4.5 Rough Sets and Logical Analysis of Data

The Logical Analysis of Data methodology (LAD) was presented in [10] and
further developed in [9, 7, 8]. LAD is designed for the discovery of structural
information in datasets. Originally it was developed for the analysis of Boolean
datasets using partially de�ned Boolean functions. An extension of LAD for the
analysis of numerical data is possible through the process of binarization. The
building concepts are the supporting set, the pattern and the theory.

A set of variables (attributes) is called a supporting set for a partially de�ned
Boolean function f if f has an extension depending only on these variables. A
pattern is a conjunction of literals such that it is 0 for every negative example
and 1 for at least one positive example. A subset of the set of patterns is used to
form a theory - a disjunction of patterns that is consistent with all the available
data and can predict the outcome of any new example. The theory is therefore
an extension of the partially de�ned Boolean function.

Our research suggests that the LAD and the RS theories are similar in several
aspects (for example, the supporting set corresponds to the reduct in the binary
case and a pattern with the induced decision rule). The exact connections will
be a subject of future research.

5 Experiments

5.1 The Bankruptcy Dataset

The dataset used in the experiments is discussed in [22, 13]. The sample consists
of 39 objects denoted by F1 to F39 - �rms that are described by 12 �nancial
parameters. To each company a decision value is assigned - the expert evaluation
of its category of risk for the year 1988. The condition attributes denoted by A1
to A12 take integer values from 0 to 4.

The decision attribute is denoted by d and takes integer values in the range 0
to 2 where: 0 means unacceptable, 1 means uncertainty and 2 means acceptable.

The data was �rst analyzed for monotonicity. The problem is obviously mono-
tone (if one company outperforms another on all condition attributes then it
should not have a lower value of the decision attribute). Nevertheless, one noisy
example was discovered, namely F24. It was removed from the dataset and was
not considered further.

5.2 Reducts and Decision Rules

The minimal reducts have been computed using our program 'the Dualizer'.
There are 25 minimal general reducts (minimum length 3) and 15 monotone
reducts (minimum length 4). We have also compared the heuristics to approxi-
mate a minimum reduct: the best reduct method (for general reducts) and the
Johnson strategy (for general and monotone reducts).

Table 11 shows the two sets of decision rules obtained by computing the
object (value)- reducts for the monotone reduct (A1; A3; A7; A9). Both sets of



rules have minimal covers, of which the ones with minimum length are shown
in table 12. A minimum cover can be transformed into an extension if the rules
are considered as minimal/maximal vectors in a decision list representation. In
this sense the minimum cover of the �rst set of rules can be described by the
following function:

f = 2:x73x93 _ 1:(x33 _ x73 _ x11x93 _ x32x72) : (21)

The maximal extension corresponding to the monotone reduct (A1; A3; A7; A9)
is represented in table 13.

Table 11. The rules for (A1; A3; A7; A9)

class d � 2 class d � 1

A1 � 3 A1 � 3
A7 � 4 A3 � 3
A9 � 4 A7 � 3
A1 � 2 ^A7 � 3 A9 � 4
A3 � 2 ^A7 � 3 A1 � 1 ^A3 � 2
A7 � 3 ^A9 � 3 A1 � 1 ^A9 � 3

A3 � 2 ^A7 � 2
A3 � 2 ^A7 � 1 ^A9 � 3

class d � 0 class d � 1

A7 � 0 A7 � 2
A9 � 1 A9 � 2
A1 � 0 ^A3 � 0
A1 � 0 ^A3 � 2 ^A7 � 1
A1 � 0 ^A3 � 1 ^A7 � 2
A1 � 0 ^A3 � 2 ^A9 � 2
A3 � 0 ^A9 � 2
A3 � 1 ^A7 � 2 ^A9 � 2
A3 � 2 ^A7 � 1 ^A9 � 2

Table 12. The minimum covers for (A1; A3; A7; A9)

class d � 2 class d � 1

A7 � 3 ^A9 � 3 A3 � 3
A7 � 3
A1 � 1 ^A9 � 3
A3 � 2 ^A7 � 2

class d � 0 class d � 1

A1 � 0 ^A3 � 2 ^A7 � 1 A7 � 2
A1 � 0 ^A3 � 1 ^A7 � 2 A9 � 2
A3 � 1 ^A7 � 2 ^A9 � 2



Table 13. The maximal extension for (A1; A3; A7; A9)

class d = 2 class d = 1

A1 � 3 A3 � 3
A3 � 4 A7 � 3
A7 � 4 A1 � 1 ^A3 � 2
A9 � 4 A1 � 1 ^A9 � 3
A1 � 2 ^A7 � 3 A3 � 2 ^A7 � 2
A3 � 2 ^A7 � 3 A3 � 2 ^A7 � 1 ^A9 � 3
A7 � 3 ^A9 � 3

The function f or equivalently its minlist we have found consists of only 5
decision rules (prime implicants). They cover the whole input space. Moreover,
each possible vector is classi�ed as d = 0; 1 or 2 and not as d � 1 or d � 2 like
in [13]. The latter paper uses both the formats shown in table 11 to describe
a minimum cover, resulting in a system of 11 rules. Using both formats at the
same time can result in much (possibly exponential) larger sets of rules. Another
di�erence between our approach and [13] is our use of the monotone discernibility
matrix. Therefore, we can compute all the monotone reducts and not only a
generalization of the 'best reduct' as in [13].

6 Discussion and Further Research

Our approach using the concepts of monotone discernibility matrix/function and
monotone (object) reduct and using the theory of monotone discrete functions
has a number of advantages summarized in the discussion on the experiment with
the bankruptcy dataset in section 4. Furthermore , it appears that there is close
relationship between the decision rules obtained using the rough set approach
and the prime implicants of the maximal extension. Although this has been
shown for the monotone case this also holds at least for non-monotone Boolean
datasets. We have discussed how to compute this extension by using dualization.
The relationship with two other possible approaches for ordinal classi�cation is
discussed in subsections 3.4 and 3.5. We also computed monotone decision trees
[6, 21] for the datasets discussed in this paper. It appears that monotone decision
trees are larger because they contain the information of both an extension and
its dual! The generalization of the discrete function approach to non-monotone
datasets and the comparison with the theory of rough sets is a topic of further
research. Finally, the sometimes striking similarity we have found between Rough
Set Theory and Logical Analysis of Data remains an interesting research topic.
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