
LEARNING FROM NEIGHBORS

Venkatesh Bala1

and
Sanjeev Goyal1

First Version: October 1993
This Version: July 1996

Abstract

When payo�s from di�erent actions are unknown, agents use their own past experience
as well as the experience of their neighbors to guide their current decision making. This
paper develops a general framework to study the relationship between the structure of
information 
ows and the process of social learning.

We show that in a connected society, local learning ensures that all agents obtain the
same utility, in the long run. We develop conditions under which this utility is the max-
imal attainable, i.e. optimal actions are adopted. This analysis identi�es a structural
property of information structures { local independence { which greatly facilitates social
learning. Our analysis also suggests that there exists a negative relationship between
the degree of social integration and the likelihood of diversity. Simulations of the model
generate spatial and temporal patterns of adoption that are consistent with empirical
work.
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1. Introduction

In a wide variety of economic environments, individual agents are obliged to choose a

course of action without being fully informed about the true payo� from the di�erent

options. As time goes by, they learn from their own past experience; moreover, since

experiments are often expensive and time consuming, they also try and gather informa-

tion from the experience of others, both through personal communication as well through

magazines and professional journals.2 In this paper we develop a general framework

to understand how the structure of information links in a society a�ects the genera-

tion of information (via the actions individuals choose) as well as its social dissemina-

tion.

We consider a society with a large number of agents, each of whom faces a similar de-

cision problem: choose an action at regular intervals without knowing the true payo�s

from di�erent actions. The action chosen generates a random reward and also provides

information concerning the true payo�s. Before choosing an action, an agent uses her own

past experience as well as the experience of a subset of the society, viz. her neighbors, to

revise her beliefs about the true payo�s.3 Given these beliefs, an agent chooses an optimal

action. In this setting, we study the evolution of agents' beliefs, actions and utilities. Our

interest is in the following types of questions:

� What features of an information structure facilitate/hinder the social adoption of an

optimal action?

� What type of neighborhood structures sustain diversity/conformism?4

2Examples of such environments include consumers learning about di�erent brands, farmers learning
about the productivity of a new crop and doctors learning about the e�cacy of new treatments. Empirical
work has documented the importance of learning from `others' in several contexts, such as the adoption
of new crops (Ryan and Gross, 1943), the di�usion of patent drugs (Coleman, 1966), the choice of new
agricultural techniques (Hagerstrand, 1969; Rogers, 1983), economic demography (Watkins, 1991) and the
purchase of consumer products (Kotler, 1986).

3This experience includes the choice of action as well as the corresponding outcome. This is a natural
formulation in the examples mentioned in footnote 1 above. We assume that agents use only the informa-
tion available from the realizations of actions taken by their neighbors, and that they do not attempt to

make any inferences from the choices of their neighbors per se. Thus, we suppose that agents are `bounded
Bayesians'. Our assumptions concerning individual decision rules are discussed in greater detail in section
2.3.

4Diversity refers to a situation in which di�erent groups of agents choose di�erent actions, while con-
formism describes the outcome with everyone choosing the same action.
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� What are the spatial and temporal patterns of adoption when individuals learn from

their neighbors? Are these patterns consistent with empirical observations?

Our analysis is restricted to connected societies5 and we start by establishing an important

property of such societies: the limiting (expected) utilities of all agents are equal (Theorem

3.2). The proof of this theorem uses the following arguments. We �rst establish that if

an agent i takes some action x in�nitely often then the limiting utility is equal to the

true payo� from action x. Next, we consider two agents i and j and suppose that j is

a neighbor of i. If agent j takes some action x0 in�nitely often then her limiting util-

ity is equal to the true payo� from action x0. We then establish the following intuitive

property: if i observes j then the true payo� from x must be at least as high the true

payo� from x0. We note that this property of limiting utilities is transitive. The proof is

completed by using the de�nition of connectedness along with this transitivity of limiting

utilities.

Theorem 3.2 implies that, in the long run, agents cannot choose actions yielding di�erent

payo�s. This motivates the study of two related questions: one, do agents choose the

optimal action, and two, can di�erent actions with the same payo� survive, in the long

run?

We �rst study the complete learning question. In this analysis we focus on large soci-

eties, i.e. societies with a countably in�nite number of agents.6 We begin with an ex-

ample of incomplete learning. In this example, every agent has to choose between two

actions, one whose payo� is known and a second action whose payo� is unknown; thus

agents do not know which action is optimal. We suppose that agents are located on in-

teger points of the real line and each agent observes the agent on either side of her. In

addition, there exists a `Royal Family', i.e. a small set of agents who are observed by

everyone.7 We suppose that the action with unknown payo� is the optimal action and

5A society is said to be connected, if for very pair of agents i and j, either j is a neighbor of i or there
exist agents fi1; � � � ; img, such that i1 is a neighbor of i, i2 is a neighbor of i1 and so on, until j is a neighbor
of im. This is a very general class of societies. Familiar examples of connected societies are (a) agents
located on points of a d-dimensional lattice in which every agent observes her immediate 2d neighbors;
(b) an organization tree where each person observes their immediate superior and subordinates; (c) agents
located around a circle, observing their immediate neighbors and in addition observing a common set of
agents who are sampled by a consumer magazine; (d) a group of agents with public observability.

6Using standard arguments it can be shown that learning is generally incomplete in �nite agent societies.
7This structure corresponds to situations in which individuals have access to local as well as a common

public source of information. Thus it is quite prevalent in everyday life. For example, such a structure
arises naturally in the context of agriculture where individual farmers observe their neighboring farmers
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also that initially everyone's prior beliefs favor the adoption of this action. Thus an in-

�nite number of independent trials of this action are undertaken in the society; despite

this, we show that there is a positive probability that the society will choose the sub-

optimal action eventually. This happens because, in our example, the Royal Family can

generate su�cient negative information that can overwhelm any locally gathered posi-

tive information, thereby inducing all agents to switch to the action with known payo�s.

This means that no further information is generated and thus the society is locked into

an inferior choice. We can also show that in the absence of the Royal Family, the so-

ciety will choose the optimal action in the long run. Thus, this example illustrates an

interesting aspect of social learning: more information links can make the society worse

o� .

The example with incomplete learning also helps us identify alternative sets of condi-

tions on the structure of neighborhoods, the distribution of prior beliefs and the infor-

mativeness of actions, that are su�cient for complete learning (Theorems 4.1-4.2 and

Proposition 4.1). Our results on complete learning highlight the role of locally indepen-

dent agents. The general argument proceeds as follows. First, given an agent i, we can

choose a set of sample paths Ai having positive probability with the following proper-

ties: Ai depends only upon the realizations agent i observes, and moreover sample paths

in Ai have a uniform upper bound on the amount of negative information concerning

optimal actions.8 The conditions in Theorem 4.1 ensure that the prior beliefs of some

agents are su�ciently optimistic to overcome this negative information; thus an agent i

with `optimistic beliefs' will choose an optimal action forever on the set Ai.
9 We say

that two agents i and i0 are locally independent if they have non-overlapping neighbor-

hoods, i.e. they observe di�erent sets of agents. For two such agents the corresponding

events Ai and Ai0 are independent. This implies that the probability that neither i nor

i0 tries an optimal action forever is bounded above by the product of the probabilities

but all the farmers observe a few large farmers and research laboratories. Another setting with this struc-
ture is a consumer goods market; individual consumers discuss purchase decisions with their colleagues
and friends and all potential customers read one or two consumer magazines which report on some ex-
periments/consumer experiences. A third example pertains to research activity; individual researchers
typically keep abreast of developments in their own narrow area of specialization, and also try to keep
informed about the work of the pioneers/intellectual leaders in their subject more broadly de�ned.

8This construction is possible in our model because agents do not make inferences from the choices of
their neighbors, but only from the realizations of the choices.

9Our other complete learning results, Proposition 4.1 and Theorem 4.2, impose restrictions on the
informativeness of actions to ensure that an agent will choose only optimal actions from a �nite point
onwards, with positive probability.
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that neither Ai nor Ai0 occur. Hence the probability bound on the event that no one

from a set of locally independent agents chooses an optimal action forever is exponen-

tially decreasing in the number of such agents and in the limit equals 0. The �nal step

in the argument invokes Theorem 3.2 to show that in a connected society the probabil-

ity of a society choosing suboptimal actions in the long run is subject to the same upper

bound.

We next study the conformism vs. diversity question: can di�erent groups of agents in a

connected society take di�erent actions (having the same payo�s)? Diversity suggests that

there exist boundaries, with agents on one side of the boundary choosing one action while

agents on the other side choose a di�erent action. Our analysis focuses on the sources of

information of the boundary agents. We argue, with the help of an example, that diversity

is easier to sustain when agents on each side of the boundary have more information links

with agents who choose as they do, i.e. with agents on the same side of the boundary

(Proposition 5.1). The proof of this result uses the law of iterated logarithm and is of

independent technical interest. We also show that, in the context of this example, public

observability implies conformism (Proposition 5.2). Taken together, the propositions also

make the more general point that the structure of information 
ow in societies have a

direct bearing on the likelihood of diversity.

We study the temporal and spatial patterns of di�usion by simulating the choices of a

group of farmers trying to learn the true productivity of a new crop. We �nd that the

temporal pattern (percentage of adopters vs. time) is described quite well by the logistic

function, and that the rate of adoption is positively related to the pro�tability of the new

crop. These results are consistent with empirical �ndings (Griliches, 1959; Feder, Just and

Zilberman, 1985). We also observe that for di�erent model speci�cations and parameter

values the speed of convergence is fairly rapid. Finally, with regard to the spatial patterns

we �nd that initially small groups of farmers adopt the new crops and then it slowly spreads

as neighboring agents adopt it as well. Eventually these regions join up and the pace of

di�usion accelerates. These �ndings match the empirically observed spatial patterns (see

e.g., Hagerstrand (1969)).

Our paper is a contribution to the theory of social learning; we now discuss its relation-

ship with some recent work by Ellison and Fudenberg (1993, 1995).10 In Ellison and

Fudenberg's models, agents use only currently available social information such as recent

10Some other papers in this area are An and Kiefer (1992) and Smallwood and Conlisk (1983).
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popularity weighting and disregard historical data (including their own past experience) in

making decisions. By contrast, in our model agents do use historical information; moreover,

the bounded Bayesian decision rule they employ precludes the use of popularity weighting.

Ellison and Fudenberg study the possibility of obtaining e�cient outcomes and social diver-

sity under di�erent levels of popularity weighting and sample sizes. While our paper also

studies e�ciency and conformism, we focus on the role of prior beliefs and neighborhood

structures. These di�erences suggest that our paper should be viewed as complementary

to their work.

More generally, our paper should be seen as contributing to the theory of Bayesian learn-

ing. Research in this tradition has focused on cases where individual agents privately

observe a signal and also have access to some central statistic. This central statistic

varies depending on the model; in models of rational expectations learning, for instance,

market prices are the central statistic, while in the recent work on herding/information

cascades the actions of all previous agents are publicly observable.11 The work on herd-

ing/information cascades considers situations where a sequence of individuals (who make

one-shot decisions) learn from the actions of their predecessors. By contrast, in our frame-

work, agents take actions repeatedly and learn from their own past experience as well as

the experience of their neighbors. Our formulation of neighborhoods captures in a natural

form the 
ow of information in such settings, thereby enabling us to explore the rela-

tionship between social structure and learning. Our paper can be viewed as integrating

the two strands of literature dealing with social learning and Bayesian learning respec-

tively.

Finally, our paper can also be regarded as studying the dynamics of technology adop-

tion. Our example on incomplete learning in the presence of a Royal Family provides

new insights about how the structure of information 
ows can generate `lock-ins' into in-

ferior technologies.12 In this connection we would also like to mention the early work of

Allen (1982a, 1982b) which explores the role of neighborhood in
uence on the invariant

distribution of a process of technology adoption. Our paper extends her work by consid-

ering social learning in an explicit model of (Bayesian) individual decision making and

learning.

11See Blume and Easley (1992) for a survey of the rational expectations learning literature; recent
papers on multi-agent models of Bayesian learning include Aghion, Paz-Espinosa and Jullien (1993), Bala
and Goyal (1994, 1995) and Bolton and Harris (1992). Banerjee (1992) and Bikchandani, Hirshleifer and
Welch (1992) are the standard references on herding/information cascades.

12See e.g. Arthur(1989).
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The rest of the paper is organized as follows. Section 2 describes the model. Section 3-5

presents our results while section 6 discusses simulations of spatial and temporal patterns

of learning. Section 7 concludes.

2. The Model

2.1 Preliminaries: Let � be a �nite set of possible states of the world, X be a �nite

set of actions and let Y be the space of outcomes. If the state of the world is � 2 �

and an agent chooses action x 2 X, he observes outcome y with conditional density

�(y; x; �) and obtains reward r(x; y). We make the following assumptions about Y , � and

r(x; y).

(A.1) Y is a non-empty, separable metric space. The distribution of outcomes13 condi-

tional on x and � can be represented by the density �(�; x; �) with respect to a measure �

de�ned on the Borel subsets of Y .

(A.2) For each x 2 X, r(x; �) is bounded and measurable in Y .

Agents do not know the true state of the world, and they enter with a prior belief in the

set D(�) of beliefs (probability distributions) over the state of nature :

D(�) = f� = f�(�)g�2� j for all � 2 �; �(�) � 0 and
X
�2�

�(�) = 1g: (2:1)

Given belief � an agent's one-period expected utility u(x; �) from taking action x is :

u(x; �) =
X
�2�

�(�)
Z
Y

r(x; y)�(y; x; �)d�(y): (2:2)

Note that u(x; �) is linear on D(�) for every x 2 X. We assume that individuals have

the same preferences.14 Let G : D(�) ! X be the one-period optimality correspon-

dence:

G(�) = fx 2 X j u(x; �) � u(x0; �) for all x0 2 Xg; � 2 D(�): (2:3)

Let �� be the point mass belief on the state �; then G(��) denotes the set of expost optimal

actions if the true state is � 2 D(�). (In the rest of the paper, we refer to expost optimal

actions as `optimal actions').

13In what follows, we shall use the words outcomes/realizations/observations interchangeably.
14We have also explored the learning process when agents have heterogeneous utilities. Our results

on limiting utilities and learning carry over if for each group of agents of a given preference type, taken
separately, connectedness obtains.
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We now give two examples which are special cases of the above framework. The �rst

example helps to clarify the basic structure, while the second example is the canoni-

cal bandit model (Berry and Fristedt, 1985) and illustrates the generality of our frame-

work.

Example 2.1: There are two actions xo and x1 and two states, �o and �1. In state �1,

action x1 yields Bernoulli distributed payo�s with parameter � 2 (1=2; 1); in state �o pay-

o�s from x1 are Bernoulli distributed with parameter 1 � �. Furthermore, in both states

action xo yields payo�s which are Bernoulli distributed with parameter 1=2. Hence, x1 is

the optimal action if the true state is �1 while xo is the optimal action if �o is the true

state. The belief of an agent is a number � 2 (0; 1), which represents the probability that

the true state is �1.
15 In this example, the one period optimality correspondence is given

by:

G(�) =
�
x1 if � � 1=2;
xo if � � 1=2.

(2:4)

Example 2.2: There is a �nite set of actions X; each of the actions can be one of s � 2

quality levels or types. We suppose that the s quality types are labelled fq1; : : : ; qsg. If an

action x is of quality qm then it generates observations with a density �m(y) and a reward

r(y). The expected value of an action of type qm is

Vm �

Z
Y

r(y)�m(y)d�(y): (2:5)

Let the quality levels be strictly ordered according to ascending expected value, i.e. V1 <

V2 < : : : < Vs. This induces an ordering � among quality levels where qj � qk if and only

if Vj < Vk. Any two distinct actions are independent. This implies that a belief � can be

written as

� = ff�(x; q)g j
X

q2fq1;:::;qsg

�(x; q) = 1; �(x; q) � 0; 8x and qg: (2:6)

In terms of the model presented earlier, a state � 2 � is a speci�cation of the quality types

of the various actions. Let � be the initial belief of an agent in the society. We assume as

before that the belief is interior, i.e. for each x and each quality type q, �(x; q) > 0. Recall

15A natural interpretation of this example is to view action xo as an established technology, whose payo�
is known, and action x1 as a new technology, whose payo� is uncertain.
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that u(x; �) gives the expected one-period utility of choosing x when the belief is �. Thus,

equation (2.2) can be rewritten as

u(x; �) =
X

qj2fq1;:::;qsg

�(x; qj)Vj: (2:7)

Finally, we also allow for an additional kind of action which is completely uninformative

i.e. provides the same expected payo� in all states of nature.16 The set of actions is thus

given by X = XT [ fxug where XT is the set of actions each of which can be one of s

types and xu is the uninformative action.

2.2 The Social Structure: The set of agents is a non-empty set N which can be �nite or

countably in�nite. For each i 2 N , let N(i) denote the set of neighbors of agent i. The

statement `j is in N(i)' is to be interpreted as saying that agent i has access to the entire

past history of agent j's actions and outcomes. By contrast, if j is not a neighbor of i,

then i does not observe any of j's actions or outcomes. Throughout this paper we shall

suppose i 2 N(i) for every agent i. We also assume that the set N(i) is a �nite set for

all i 2 N . Let N�1(i) = fj 2 N j i 2 N(j)g; the set N�1(i) is the set of all agents who

observe agent i.17 The `Royal Family' is the set R = fj 2 N j N�1(j) = Ng, i.e. those

agents who are observed by everyone.

A society comprises of the set of agents and the neighborhoods of each of the agents.

We shall say that a society is connected if, for every i 2 N and every other agent

j 2 N there exists a sequence of agents fi1; i2; : : : ; img (depending upon i and j) such

that i1 2 N(i); i2 2 N(i1), and so on until j 2 N(im). The analysis in this paper

is restricted to connected societies; we focus on such societies because all other types

of societies can be analyzed as a collection of connected societies. In what follows, for

expositional simplicity, we shall usually omit the term `connected' while referring to soci-

eties.

2.3 The Dynamics of the Model: Time is discrete and is indexed by t = 1; 2; : : :. At the

beginning of period 1, each agent i has a prior belief �i;1 2 D(�). We assume :

(A.3) For all i 2 N; �i;1 2 Int(D(�)):

16In the context of crop choice, this corresponds to a case where the farmer decides not to plant any
crop. Likewise, in situations where consumers are making brand choices this action is the `no purchase'
option.

17If the observation relation is symmetric, this set clearly coincides with N(i). However, there are
many sources of communication (e.g. radio, television, books, journals and gossip!) which do not possess
symmetry. Our framework allows for asymmetric observational links.
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where Int(D(�)) denotes the interior of the belief space. It is worth noting that we do not

restrict the agents to have identical priors.

For each i 2 N , let gi : D(�) ! X be a selection from the one-period optimality corre-

spondence G of equation (2.3) above. In period 1, each agent i plays the action gi(�i;1)

and observes the outcome. Agent i also observes the actions taken and outcomes obtained

by the other agents in N(i). In periods t = 2 and beyond, each agent i �rst computes

her posterior belief �i;t based on the experiences of the agents in N(i). In this regard,

we assume that agents employ a \bounded Bayesian" learning algorithm. This algorithm

speci�es that agents modify their prior beliefs to posterior ones, using Bayes rule in con-

junction with the information obtained from their own and their neighbors' experiences.

However, they do not attempt to extract any information from the observed choices of

their neighbors.18 After forming her posterior �i;t in the manner described above, agent

i then chooses the action gi(�i;t) which maximizes one-period expected utility, and the

process continues in this manner. Thus, agents are being boundedly rational both in

choosing their optimal action myopically given their beliefs and also in forming posterior

beliefs.

The assumptions on individual decision making described above are not standard and

we now discuss the motivation behind them. We are interested in analyzing the process

by which individual agents make use of information gathered from their neighbors and

the implications of this local learning for aggregate social outcomes. This suggests, �rst,

that individual choice should not be arbitrary and, second, that there must be a well de-

�ned mechanism through which information from neighbors is incorporated in individual

decisions. Given that the information observed by agents is partial, a model with fully

rational agents would require that the learning problem of the agents be formulated as a

dynamic Bayesian game of incomplete information. In such a formulation, the in
uence

of neighborhood structure would interact with the incentives for strategic experimenta-

tion in addition to inducing a complex inference problem for agents. In this paper our

concern is with the relationship between neighborhood structure and learning. To keep

the model mathematically tractable and to allow us to focus on this relationship we have

made certain simplifying assumptions on individual decision rules. Thus we assume that

agents are myopic expected utility maximizers, which eliminates incentives for strategic

18This formulation thus rules out the use of popularity weighting and related measures in the learning
process. Note, however, that Bayesian updating provides a relatively simple way for each agent to keep
track of the information in past history. We also remark that while the bounded Bayesian learning rule
employed here may not be e�cient, it is consistent in our framework.
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experimentation. Secondly, we also note that a Bayesian who knows the structure of the

model should be able to incorporate information on the popularity of di�erent choices

among her neighbors in forming posterior beliefs. This possibility is precluded in our

model, thus eliminating the inference problem and simplifying the belief revision process

considerably.

We now brie
y sketch the construction of the probability space since the notation is re-

quired for the results. Details are provided in Appendix A. For a �xed � 2 � we de�ne

a probability triple (
;F ;P�), where 
 is the space containing sequences of realizations

of actions of all agents over time, and P� is the probability measure induced over sample

paths in 
 by the state � 2 �.

Let � be endowed with the discrete topology, and suppose B is the Borel �-�eld on this

space. For rectangles of the form A�H where A � � and H is a measurable subset of 
,

let Pi(A�H) be given by

Pi(A�H) =
X
�2A

�i;1(�)P
�(H): (2:8)

for each agent i 2 N . Each Pi extends uniquely to all of B � F . Since every agent's

prior belief lies in the interior of D(�), the measures fPig are pairwise mutually absolutely

continuous. All stochastic processes are de�ned on the measurable space (�� 
;B � F).

A typical sample path is of the form ! = (�; !0) where � is the state of nature and !0 is

the in�nite sequence of sample outcomes denoted by:

!0 = ((yxi;1)x2X;i2N ; (y
x
i;2)x2X;i2N ; : : :) (2:9)

where yxi;t 2 Y x
i;t � Y . Let Ci;t � gi(�i;t) denote the action of agent i at time t, Zi;t the

outcome of agent i's action at time t (i.e., the signal of her own action from the out-

come space Y ) and let (Zj;t)j2N(i) be the set of outcomes of the neighbors of i at time

t. Also let Ui;t(!) = u(Ci;t; �i;t) be the expected utility of i with respect to her own

action at time t.19 The posterior belief of agent i in period t + 1 is computed as fol-

lows:

�i;t+1(�) =

Q
j2N(i) �(Zj;t;Cj;t; �) �i;t(�)P

�02�

Q
j2N(i) �(Zj;t;Cj;t; �0) �i;t(�0)

: (2:10)

19The outcomes of actions are projections of ! onto the respective coordinates. We assume that if agent

i has chosen action x0 for the tth time on !, he observes the coordinate yx
0

i;t(!).
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The �-�eld of agent i's information at the beginning of time 1 is Fi;1 � f;;� � 
g. For

every t � 2, de�ne Fi;t as the �-�eld generated by the past history of agent i's observa-

tions of her neighbors' actions and outcomes, i.e. the random variables (Cj;1; Zj;1)j2N(i);

: : : ; (Cj;t�1; Zj;t�1)j2N(i). Since by the rules of the process, agents only employ the in-

formation generated by their neighbors, the set classes fFi;tg are the relevant �-�elds

for our purposes. We shall denote by Fi;1 the smallest �-�eld containing all Fi;t for

t � 1.

3. Aggregation of Information

In this section we establish that (roughly speaking) in a connected society every agent

expects the same utility, in the long run. The �rst step in the study of the long run distri-

bution of individual utilities consists of showing the convergence of a typical individual's

beliefs and utilities. The following result shows that the sequence of posterior beliefs of a

typical agent converges almost surely to a limit belief which is measurable with respect to

the (direct) limit information of the agent.20 This result is an immediate consequence of

the Martingale Convergence Theorem.21

Theorem 3.1 . There exists Q 2 B � F satisfying Pi(Q) = 1 for all i 2 N and random

vectors f�i;1gi2N such that

(a) For each i 2 N , �i;1 is Fi;1-measurable.

(b) ! 2 Q) for all i 2 N , �i;t(!)! �i;1(!).

In what follows, we restrict attention to a speci�c state of nature which is taken to be the

true state. We shall denote this state by �1. Clearly, the set

Q�1 � f! = (�; !0) 2 Q j � = �1g:

has P�1 probability 1. (Strictly speaking, the domain of de�nition of P�1 is the measurable

subsets of 
, not of � � 
. However, we can regard P�1 as the conditional probabil-

ity induced by �1 on the product space, which is the same for all agents). Without loss

of generality we assume that the strong law of large numbers holds on Q�1 . In what

follows statements of the form \with probability one" are with respect to the measure

P�1 .

20It is worth emphasizing that Theorem 3.1 does not preclude the possibility of limit beliefs being
di�erent across individual agents.

21Proofs of results in this section are given in Appendix B.
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We next show the convergence of utilities of a typical individual in the society. For

each agent i, given ! 2 Q�1 , let X i(!) be the set of actions which are chosen in�nitely

often on the sample path. We shall refer to X i(!) as the set of limiting actions (of

agent i) on !. Given that every individual is a myopic optimizer, it seems natural

that the set of limiting actions should be optimal with respect to the limiting beliefs.

This is true, as part (a) of the following result shows. This result immediately implies

that each agent's one period expected payo� converges as well. Recall that Ui;t(!) �

u(Ci;t(!); �i;t(!)).

Lemma 3.1 . Suppose ! 2 Q�1.

(a) If x0 2 X i(!) then x0 2 argmaxx2X u(x; �i;1(!)).

(b) There exists a real number Ui;1(!) such that fUi;t(!)g ! Ui;1(!). Furthermore,

Ui;1(!) = u(x0; �i;1(!)) where x
0 is any member of X i(!).

We now examine the distribution of these limiting utilities and actions in the society. Our

analysis is summarized in the following result.

Theorem 3.2 . Suppose that the society is connected. Then Ui;1(!) = Uj;1(!) for all

agents i and j in N , with probability 1.

The proof of this result employs the following arguments. On a �xed sample path, consider

two agents i and j and suppose i 2 N(j). We show that if x0 is an action taken in�nitely

often by j then j's long run expected utility Uj;1 will be u(x0; ��1). Likewise, if i chooses

x in�nitely often, then Ui;1 = u(x; ��1). Furthermore, the assumption that j observes i

is shown to imply that u(x0; ��1) � u(x; ��1). Thus, Uj;1 � Ui;1. Connectedness of the

society now yields the result.

4. Long Run Social Learning

In this section we study the optimality of long run actions.22 Our analysis suggests that

the distribution of prior beliefs, the structure of neighborhoods and the informativeness of

22Suppose that �1 is the true state of the world. We shall say that long run actions of agent i are
optimal on ! if X i(!) � G(��1). Likewise, beliefs of an agent i will be said to converge to the truth
along ! if �i;1(!) = ��1 . We shall say that complete learning (or learning with probability 1) obtains if

P�1(\i2NfX
i(!) � G(��1)g) = 1.
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actions all play an important role in determining whether or not long run actions will be

optimal.23

We start by noting that social learning will typically be incomplete in �nite societies.24

This motivates the study of learning in societies with in�nitely many agents. We begin

our analysis with two observations. The �rst observation concerns the importance of the

initial distribution of priors. It is easy to see (with the help of Example 2.1) that even

in a large (in�nite agent) society, no learning will occur if all agents start out with prior

beliefs that lead them to choose the uninformative action. Thus for learning to occur some

restrictions on the distribution of prior beliefs are necessary. Our second observation is

that even when beliefs are favorable, the social structure of information 
ows may preclude

learning. The following example illustrates this point and also helps us derive su�cient

conditions for complete learning subsequently.

Example 4.1: Consider the setting of Example 2.1. Suppose that the true state is �1 and

that the society has an in�nite number of agents. Assume that the prior beliefs of agents

satisfy the following condition:

inf
i2N

�i;1 >
1

2
; sup

i2N

<
1

1 + p2
: (4:1)

where p = (1 � �)=� 2 (0; 1). The above assumption implies that in period 1 all agents

will choose the optimal (and informative) action x1. We suppose that society N is given

by the one dimensional integer lattice. For i 2 N , the set of neighbors is assumed to be

N(i) = fi � 1; i; i + 1g [ R, where R = f1; 2; 3; 4; 5g constitute the Royal Family. We

23An action x 2 X is said to be fully informative if, for all �, �0 in � such that � 6= �0 we have :

Z
Y

j�(y;x; �) � �(y;x; �0)jd�(y) > 0:

Thus a completely informative action x is statistically capable of distinguishing between any two distinct
states in the long run. Let XI denote the set of completely informative actions. We shall say that an action
xu is uninformative if �(�;xu; �) is independent of �. It is worth noting that if the set of uninformative
actions XU is non-empty, then there is no essential loss of generality in assuming that it consists of a single
element xu.

24To see why this is true consider the set up of Example 2.1. Suppose that the true state is �1 and that
the society is �nite. Prior beliefs of agents are then represented by a number �i;1 which is the probability
that true state is �1. Let infj2N �j;1 > 1=2 and focus on the agent with the highest value of �i;1. Standard
arguments imply that there exists a �nite sequence of T realizations of 0, such that this agent would switch
to action xo. Now consider the set of sample paths on which all agents get realizations of 0 for the �rst
T periods. The probability of this set is positive given that realizations are independent and the number
of agents �nite. The argument is completed by observing that on any sample path in this set every agent
will choose the sub-optimal (and uninformative) action xo after time period T .

14



now note the possibility of incomplete learning: there is a strictly positive probability that

every agent will choose the suboptimal action xo for all t � 2. The proof is as follows:

De�ne �Q = fZj;1 = 0; 8 j 2 Rg; by construction, P�1( �Q) = (1 � �)5 > 0. We show

that if ! 2 �Q, then Ci;t(!) = xo for all t � 2, for i 2 N . Note that on ! 2 �Q, an agent

i 2 N observes 5 `negative' realizations from the Royal Family, while the maximum num-

ber of `positive' realizations that can be observed locally is 3. Thus there is a minimum

amount of residual negative information. Since �i;1 < 1=(1 + p2) this negative residual

information is su�cient to push the posterior belief �i;2 below 1=2, making agent i choose

the uninformative action. The argument is completed by noting that i has been chosen

arbitrarily.25

In the example above, one reason for incomplete learning is that the prior beliefs of

agents are not very dispersed. This allows a `little' bad experience of a few people to

convince everyone to switch to the uninformative action. This aspect of the example

motivates a study of connected societies with dispersed prior beliefs. A second source

of incomplete learning is the structure of individual neighborhoods. This structure al-

lows the negative experience of a few people (the `Royal Family') to overwhelm the lo-

cally gathered positive information of everyone in the society. This insight motivates

the study of structures where the observability level is bounded. It is also worth not-

ing that the example `works' because the negative information generated by the Royal

Family exceeds any positive information that a local neighborhood can generate. This

suggests that if an agent (or a group of them) is able to generate an arbitrarily `large'

amount of positive information with non-zero probability, then complete learning may

obtain.

In the rest of this section, we develop alternative sets of restrictions on these three factors

{ the distribution of prior beliefs, the structure of neighborhoods and the informative-

ness of actions { that are su�cient for complete learning (Theorems 4.1-4.2 and Propo-

sition 4.1). While our analysis generates several useful insights, we are aware that our

results do not provide a full characterization of the conditions under which social learning

occurs.

25We brie
y report simulations which assess the impact of the Royal Family on the probability of
incomplete learning. The simulations have been carried out for a society with jN j = 100 for values of
jRj between 1 and 10, and where the uncertainty is described by a Bernoulli or Normal distribution. The
results indicate that the probability of incomplete learning is not insigni�cant and can be as high as 0:2.
The simulations also suggest that for low values of jRj, there is a roughly positive relationship between
the probability of incomplete learning and the size of the Royal Family.
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Our results exploit the notion of locally independent agents. We shall say that agents i and i0

are locally independent if they have non-overlapping neighborhoods, i.e. N(i)\N(i0) = ;.

A pairwise locally independent group of agents is a subset of N such that any two agents

in the group are locally independent. We begin with Theorem 4.1, a result which focuses

on the distribution of prior beliefs. It requires the following lemma.

Lemma 4.1 . Let K be a given positive integer and suppose i is an agent satisfy-

ing jN(i)j � K. There exists d 2 (0; 1) and � > 0 such that if �i;1(�1) � d then

P�1(\t�1fCi;t(!) 2 G(��1)g) � �.

Proof: Let � 2 D(�). We start by noting that there exists a number d̂ 2 (0; 1) such that

�(�1) � d̂) G(�) � G(��1). This follows since utility is continuous with respect to beliefs

and the number of actions is �nite.

Suppose next that agent i only chooses action x for t � 1 periods, and observes a se-

quence fyxi;�g
t�1
�=1, where each y

x
i;� 2 Y x

i;t � Y . The agent's information about state � 6= �1

based upon her observations can be summarized by the product likelihood ratio rx;�i;t , de�ned

as:

r
x;�

i;t (!) =

Qt�1
�=1 �(y

x
i;�(!); x; �)Qt�1

�=1 �(y
x
i;�(!); x; �1)

: (4:2)

(If t = 1, we follow the convention that rx;�i;t = 1). It follows from an application of the law

of large numbers that rx;�i;t ! �rx;�i where �rx;�i <1, almost surely (see e.g., DeGroot, 1970;

p. 201-204). Since this is true for all � 6= �1 and all x 2 X, there exists � and a set A�
i of

sample paths de�ned as:

A�
i =

Y
x2X

n
max
�2�n�1

sup
t�1

r
x;�

i;t � �
o
�

1Y
t=1

Y
j02Nni

Y
x2X

Y x
j0;t: (4:3)

such that P�1(A�
i ) � �, for some number � > 0. It follows from our convention that

� � 1. Intuitively, on a sample path ! 2 A�
i , the maximum amount of \negative in-

formation" about state �1 vis-a-vis state � that i can obtain from her own actions is

bounded above by �jXj. We now consider each agent j 2 N(i) other than i. Since

observations of individual agents are identically distributed (conditional on �1), it fol-

lows that for each neighbor j 2 N(i)ni, there exists a similarly de�ned set A�
j with

P�1(A�
j ) = P�1(A�

i ) = � > 0. (This is done by just replacing i by j everywhere in
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equation (4.3)). De�ne the set Ai = \j2N(i)A
�
j . Using the independence of individual

observations, it follows that:

P�1(Ai) = �jN(i)j � �K > 0: (4:4)

The weak inequality holds since, by assumption, jN(i)j � K. De�ne � = �K > 0. Note

that individual i's posterior belief about state �1 at time t can be written as:

�i;t(�1)(!) =
�i;1(�1)(!)

�i;1(�1)(!) +
P

� 6=�1

Q
j2N(i)

Q
x2X r

x;�

j;t (!)�i;1(�)(!)
: (4:5)

where rx;�j;t (!) now refers to the product likelihood ratio along the sample path when the

actions fCj;�g are chosen. We have :

�i;t(�1)(!) �
�i;1(�1)(!)

�i;1(�1)(!) +
P

� 6=�1 �
KjXj�i;1(�)(!)

(4:6)

by construction of the set Ai.
26 Since the expression on the right side of (4.6) is in-

dependent of t, it is evident that there will exist a value of d 2 (0; 1) such that if

�i;1(�1) � d and ! 2 Ai, then �i;t(!)(�1) � d̂ for all t � 1. The lemma follows.

2

In the context of Example 2.1 it follows from the theory of random walks that � can

be chosen to be 1. Since d̂ can be any number greater than the cuto� � = 1=2, equa-

tion (4.6) implies that d can be chosen to equal d̂. More generally, d like its counterpart

� will depend upon K. In the rest of this section, we shall suppose K is a �xed num-

ber.

Now consider the collection of agents i 2 N who have at most K neighbors each and

such that �i;1(�1) � d, where d is as given by Lemma 4.1. Let NK;d be a maximal

group of pairwise locally independent agents chosen from this collection, i.e., a subset

of the above collection which has the highest cardinality.27 We can show the following

result:

26On this set of sample paths, irrespective of the choice of actions by j 2 N(i) upto time t � 1 the

corresponding rx;�
j;t

will be bounded above by �. See the discussion following equation (2.9) in Section 2.
27It is worth noting that there may be many such maximal groups of agents. For instance let N be

the set of integers, with N(i) = fi � 1; i; i + 1g for all i 2 N . Fix K = 3 and suppose all agents i 2 N

satisfy �i;1(�1) � d. Then the sets of agents f0; 3; 6; 9; 12; : : :g, and f: : : ;�6;�2; 2; 6; 10; : : :g are just two
of in�nitely many possible candidates for NK;d. Note that for an in�nite society with a Royal Family the

maximal group is at most a singleton.
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Theorem 4.1 . Consider an in�nite agent society which is connected and let d 2 (0; 1)

and � > 0 be as de�ned above. Then

P�1([i2NfX
i(w) 6� G(��1)g) � (1� �)jNK;dj: (4:7)

In particular, if jNK;dj =1 then complete learning obtains.

We note the following observations concerning the above result before providing its proof.

Firstly, if jNK;dj = 1 and G(��1) � XI , where XI is the set of fully informative ac-

tions, then for all i 2 N , �i;1(!) = ��1 , with probability 1: in other words, agents'

beliefs converge almost surely to the truth. We also remark that in Example 4.1, if the

Royal Family is removed, so that only the local neighborhoods remain, i.e., for all i 2 N ,

N(i) = fi � 1; i; i + 1g, then complete learning obtains. This follows directly from the

proof of Theorem 4.1 and shows that in some situations additional information links can

actually lead to a lowering of long run social welfare! Finally, we note that the uni-

form upper bound on the number of neighbors of the locally independent agents can be

relaxed to allow for the number of neighbors to increase at a su�ciently \slow" rate.

Lemma 4.1 is the �rst step in the proof of Theorem 4.1. The remaining steps are now

given:

Step 2: Since agents in the set NK;d are pairwise locally independent, the probability of

every agent i 2 NK;d trying a sub-optimal action is given by

P�1(\i2NK;d
Ac
i) � (1� �)jNK;dj: (4:8)

Step 3: We use connectedness of the society and the following general argument to show

that the probability of incomplete social learning is bounded above by the same expres-

sion. Consider some ! 2 Q�1 . Suppose there is i(!) 2 N such that Ci(!);t 2 G(��1)

all but �nitely often. Since the set of actions X is �nite, this implies the existence of

x0 2 G(��1) such that on ! we have x0 2 X i(!)(!). Remark B.1 (in the appendix) implies

Ui(!);1(!) = u(x0; ��1). This remark further implies that if x 6= x0 also lies in X i(!)(!),

then u(x; ��1) = u(x0; ��1). Hence x 2 G(��1) as well, so that X i(!)(!) � G(��1). Connect-

edness (and hence Theorem 3.2) implies that Uj;1(!) = Ui(!);1(!) for all j 2 N . Hence

Uj;1(!) = u(x0; ��1). Furthermore, using the same remark again, Uj;1(!) = u(x; ��1)

for all x 2 Xj(!). Hence Xj(!) � G(��1) as well. Thus [i2NK;d
Ai � \j2NfX

j(!) �

G(��1)g and (4.8) above implies P�1([i2NfX
i(!) 6� G(��1)g) � (1 � �)jNK;dj as required.

2
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We brie
y discuss some simulations of Example 2.1. We suppose the agents in N are

arranged in a circle with N(i) = fi� 1; i; i + 1g (no Royal Family). Figure 1 displays the

probability of incomplete learning as a function of societal size jN j assuming the payo�s

in Example 2.1 are Bernoulli distributed, while Figure 2 concerns the Normal case. We

note that the probability decays quite rapidly with the size of the society; furthermore,

a regression of the log incomplete learning probability on jN j yields a very good �t (the

R2 values are all above 0.99 and between 0.94 and 0.98 in the Bernoulli and Normal cases

respectively), and suggests that the bound in (4.7) is tight.

Theorem 4.1 allows for fairly general neighborhood structures28 and imposes no restrictions

on the informativeness of actions. The presence of a Royal Family, however, means that

jNK;dj � 1 so that the result no longer ensures complete learning. We now propose some

conditions that are su�cient for learning in societies with a Royal Family. We start by

noting that when the society contains a Royal Family, incomplete learning can arise even

if beliefs of agents are `highly optimistic', so long as they are bounded away from point

mass on the truth.29 This motivates a stronger restriction on beliefs, which we refer to as

the heterogenous priors assumption.

(H) The distribution of prior beliefs is heterogeneous if for every � 2 �, and for any

open neighborhood around ��, there exists an agent whose prior belief lies in that

neighborhood.30

We now show that in any in�nite connected society with supi2N jN(i)j � K <1 and which

satis�es (H), the probability of incomplete learning is less than 1�� for every � 2 (0; 1). In

particular, this is also true in the presence of a Royal Family R where jRj � K. The intu-

ition behind this claim is as follows: from arguments slightly extending those in Lemma 4.1,

28In particular, agents outside NK;d can have any (�nite) number of neighbors. Theorem 4.1 also allows
for complete learning in some societies having agents observed by in�nitely many other agents. For instance
in Example 4.1, if N(i) = fi � 1; i; i + 1g [ R for all i � 0 and N(i) = fi � 1; i; i + 1g for all i < 0,
complete learning occurs.

29To see why this is true, consider Example 4.1 again but suppose that when x1 is chosen, the outcome
is distributed according to the negative exponential distribution �(y;x; �k) = 1fy<0g�

�1

k
exp(y=�k) for

k = 0,1. Assume �o > �1 > 0. Choose u(xo) to lie between u(x1; ��o) = � �o and u(x1; ��1) = � �1.
Suppose �1 is the true state and that all agents i have beliefs of at most �̂ < 1. It is not di�cult to see
that no matter how close �̂ is to 1, there is a strictly positive probability of a large negative shock from
the Royal Family which is enough to push all agents' beliefs to a level where they will only choose the
suboptimal action xo. Note that this can happen even if jRj = 1.

30Heterogeneity of beliefs may be interpreted as saying that the truth must lie in the support of the
distribution of prior beliefs across agents. Since the true state is unknown, this requirement leads naturally
to the formulation above, where for any �, �� lies in the support of the distribution of prior beliefs.
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for every � 2 (0; 1) there is a corresponding � and a set Ai with P�1(Ai) � � such that

the amount of negative information that agent i can get about state �1 from her own as

well as her neighbor's actions is bounded above by �jXjjKj. Using equation (4.6) we can

now establish the existence of a d 2 (0; 1) such that if �i;1(�1) � d and ! 2 Ai, then the

posterior �i;t(�1) � d̂ for all time periods. It follows from (H) that there exists some indi-

vidual i whose priors satisfy �i;1(�1) � d. Thus agent i will try an optimal action forever

with probability at least �. The argument now follows along the lines of Steps 2 and 3 of

Theorem 4.1.

Condition (H) imposes strong restrictions on the distribution of prior beliefs31 and it is

therefore useful to consider alternative conditions under which complete learning may ob-

tain. In our discussion following Example 4.1, we noted that if an agent is able to generate

arbitrarily large amounts of positive information with positive probability, then locally

independent groups of agents may be able to overcome negative information from the

Royal Family, ensuring complete learning. This suggests the following condition on the

informativeness of actions.

(UPI) An action x 2 X generates unbounded positive information concerning the

true state �1, if for every � 2 (0; 1), there is a set Bx;� � Y with
R
Bx;� �(y; x; �1)d� > 0

such that

y 2 Bx;� ) max
�2�n�1

�(y; x; �)

�(y; x; �1)
� �: (4:9)

In the presence of a Royal Family two agents cannot be locally independent. We thus con-

sider the following generalization of local independence: two individuals i 62 R and i0 62 R

are called quasi-locally independent if N(i) \ N(i0) = R. For more than two agents the

corresponding condition is that of pairwise quasi-local independence. Recall that d̂ 2 (0; 1)

is such that if �(�1) � d̂ then G(�) � G(��1). Let N̂
K;d̂

be a maximal group of pairwise

quasi-locally independent agents with at most K neighbors each and having prior beliefs

which satisfy �i;1(�1) � d̂. We now have:

Proposition 4.1 . Consider a connected society with jN̂
K;d̂
j = 1. Suppose each x 2

G(��1) satis�es condition (UPI). Then complete learning obtains.

31In particular, a single agent with a very positive prior on the truth is responsible for virtually all of
the learning carried out by the society.
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We note that since R � N(i) for i 2 N̂
K;d̂

, the fact that jRj � K is implicit in Proposi-

tion 4.1. The proof follows along the lines of Theorem 4.1 and may be found in Appendix C.

The main di�erence arises in the case where jRj > 0. The argument for this case proceeds

by contradiction. If learning is incomplete then there must exist a set which has positive

probability, on which the negative information generated by the Royal Family is bounded

above by some number and yet learning is incomplete. We use a construction similar to

step 2 in Theorem 4.1 to establish that if there are an in�nite number of quasi-locally

independent agents then at least one of them will get su�ciently positive information in

their �rst trial with an optimal action to o�set this negative information. Thus at least one

agent will try an optimal action forever on any sample path of this set. This observation

taken along with the connectedness of society yields a contradiction and completes the

proof.32

In the results described so far, social learning relies on the set of locally independent agents

who each try optimal actions with positive probability from the �rst period onwards. We

now examine the possibilities of complete learning when agents do not necessarily start with

prior beliefs that favor optimal actions. In this setting, the likelihood of social learning

is sensitive to the nature of information generated by non-optimal actions across agents,

both regarding the payo�s of these actions themselves as well as the payo�s of optimal

actions.33

We provide two alternative sets of su�cient conditions on the informativeness of actions.

One set of conditions applies when realizations from an action convey no payo� relevant

information concerning any other action. The second set of conditions deal with the com-

plementary situation when realizations on an action can reveal information about other

actions. The conditions are used in Theorem 4.2.

To state the result we need to introduce additional concepts. First note that x 2 X in-

duces an ordered partition of the states denoted by �1(x) �x �2(x) �x : : : �x �s(x)(x)

such that

32To continue Example 4.1 further, suppose that when x1 is chosen the outcome is distributed according
to the normal, exponential, Poisson or geometric (but not, of course, the negative exponential!) distribu-
tions. Then the above result applies. It also holds more generally: for example if the density functions
take one of the above forms and x 2 G(��1) ) u(x; ��1) > u(x; ��) for all � 6= �1 then complete learning
obtains.

33In this context it is also worth noting that Proposition 4.1 also holds if an in�nite number of quasi-
locally independent agents have priors that lead them to try sub-optimal actions provided that these
actions satisfy the condition (UPI).
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(a) for each k = 1; : : : ; s(x), the expected payo� u(x; ��k) is constant for all �k 2 �k(x).

(b) if �m(x) �x �k(x) then u(x; ��m) < u(x; ��k) for �m 2 �m(x) and �k 2 �k(x).

For x 2 X, let k(x) denote the payo� equivalence set of states of nature which contains

�1, i.e. �1 2 �k(x)(x). Also let �(x)++ � [m>k(x)�m(x), �(x)
+ � [m�k(x)�m(x) and

�(x)� � [m<k(x)�m(x). The �rst set of assumptions on informativeness of actions are

given by condition (I) stated below:

(Ia) For x; x0 2 X, where x0 6= x, if action x0 is chosen and y 2 Y is observed, then for

any � 2 D(�) the posterior belief �(�m(x))
0 = �(�m(x)) for each m = 1; : : : ; s(x).

(Ib) There exists x1 2 G(��1) such that if x1 is chosen and y 2 Y is observed, then

�(y; x1; �)=�(y; x1; �1) = 1 for all � 2 �k(x1)(x1).

(Ic) For x1 as above, there exists a set B
x1 � Y satisfying

R
Bx1 �(y; x1; �1)d�(y) > 0

and � 2 (0; 1) such that

y 2 Bx1 )
�(y; x; �)

�(y; x; �1)
� � < 1: (4:10)

for all � 2 �(x1)
�.

Condition (I) can be best understood in terms of the canonical bandit model of Exam-

ple 2.2. Condition (Ia) requires that there be no essential information 
ows across actions,

i.e. actions are independent of each other. Condition (Ib) says that the action x1 is in-

capable of distinguishing between states which are payo� equivalent for it: in the bandit

model, payo� equivalent states for x1 correspond to states where the quality types of ac-

tions other than x1 vary. As actions are independent, x1 will not be able to distinguish

between these states. Condition (Ic) requires that x1 should be capable of generating a

minimum amount of negative information concerning payo� inferior states. In the bandit

model if the conditional density functions f�(�)g have the standard monotone likelihood

ratio property (MLRP), then (Ic) holds.

We now impose some restrictions on beliefs. Let x1 2 G(��1) be as above. By de�nition,

it must be the case that u(x1; ��1) > maxx2XnG(��1 ) u(x; ��1). Hence we can �nd � 2 (0; 1)

and � > 0 such that

�u(x1; ��1) + (1� �)u(x1; ��L) � max
x2XnG(��1 )

u(x; ��1) + � � umin: (4:11)

22



where �L 2 �1(x1). Recall that �k(x1)(x1) is the set of states payo� equivalent to state �1

for action x1. Consider the collection of agents i 2 N , who have at most K neighbors each

and such that �i;1(�k(x1)(x1)) � � for each i. Let NK;� be a maximal group of pairwise

locally independent agents chosen from this collection. The restriction on the belief of an

agent i 2 NK;� ensures that i will choose x1 at least once; however, it does not preclude

suboptimal actions from being chosen at the outset.

We next consider the class of situations where actions potentially provide information

on states which are payo� relevant for other actions. Recall that XI is the set of fully

informative actions. Assume that X = XI [ fxug and let x1 2 G(��1) be given. The

case where xu 2 G(��1) is trivial and thus there is no loss of generality in assuming

that x1 2 XI . We now state the alternative conditions on the informativeness of ac-

tions.

(Ia�) For each x 2 Xnxu, there exists a set B
x � Y satisfying

R
Bx �(y; x; �1)d�(y) > 0

such that if action x is chosen and y 2 Bx is observed, then for any � 2 D(�) the

posterior belief �(�(x1)
+)0 � �(�(x1)

+).

(Ib�) For each x 2 Xnxu and for Bx as in (Ia�) above there exists �(x) 2 (0; 1) such

that y 2 Bx implies max�2�n�1 �(y; x; �)=�(y; x; �1) � �(x).

Condition (Ia�) requires that for each informative action x, if y 2 Bx is observed then this

does not yield negative information concerning payo�s of the optimal action x1. Condi-

tion (Ib�) requires that all informative actions should be capable of generating a certain

minimum amount of positive information concerning the true state. We note that condi-

tion (I�) is always satis�ed when j�j = 2.

As before, �x � > 0 and �� 2 (0; 1) such that ��u(x1; ��1) + (1� ��)u(x1; ��L) � u(xu) + �

where �L 2 �1(x1). Let NK;�� be a maximal collection of locally independent agents having

at most K neighbors each and whose beliefs satisfy �i;1(�1) � ��. We can now state the

following theorem.

Theorem 4.2 . Consider an in�nite agent society which is connected. (a) Suppose that

actions satisfy condition (I). Then there exists � 2 (0; 1] such that

P�1(
[
i2N

fX i(!) 6� G(��1)g) � (1� �)jNK;� j: (4:12)
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In particular if jNK;�j = 1 then complete learning obtains. (b) The above conclusions

continue to hold if condition (I) is replaced by condition (I�) and NK;� by NK;�� every-

where.

We brie
y intuition behind Theorem 4.2.34 The basic di�erence from the earlier results

lies in the construction of the set Ai. In part (a) we show that for a sample path in Ai,

agent i will observe a critical number of trials T with the optimal action x1. By virtue

of (Ic) this is su�cient to ensure that the agent will choose only the optimal action from

some �nite time onwards.

We brie
y discuss how condition (I�) is used in part (b). As in Lemma 4.1, we can iso-

late a set of sample paths Ai, on which the amount of negative information obtained

by agent j 2 N(i) concerning �1 is uniformly bounded above by �. Recall that d̂ is a

number such that �(�1) � d̂ implies G(�) � G(��1). Let � = maxx2Xnxu �(x); since

� < 1, we can choose T to satisfy ��=(�� + �T�KjXj(1 � ��)) � d̂. De�ne A�
j as fol-

lows:

A�
j =

Y
x2Xnxu

f
TY
t=1

Bx
j;t � f max

�2�n�1
sup
t�T+1

r
x;�

i (T + 1; t) � �gg �
1Y
t=1

Y
j2N(i)

Y
x2X

Y x
j;t (4:13)

where Bx
j;t = Bx for j 2 N(i) and all t � 1. Let Ai = \j2N(i) A

�
j ; familiar arguments can

be used to establish that P�1(Ai) = � > 0. Using condition (Ia�) we next show that along

sample paths in Ai, the choices Ci;t 6= xu, for all t � T . This guarantees that agent i tries

an informative action long enough and generates positive information that is su�cient to

o�set any subsequent negative information concerning state �1. The rest of the proof is

standard.

The discussion so far has focused on the optimality of long run actions: we now summa-

rize our �ndings on the distribution of limit beliefs. Recall that the beliefs of every agent

converge almost surely (Theorem 3.1). An issue of importance is whether agents learn the

truth, i.e., if limit beliefs place point mass on the true state. In general, even in cases

where long run actions are optimal, there is no guarantee that beliefs will converge to the

truth. This is because the support of the limiting beliefs distribution depends crucially on

the informativeness of the optimal actions.35 However, as we remarked after Theorem 4.1,

if an agent chooses optimal actions in the long run and these actions are fully informative

34The proof of part (a) is given in Appendix C. The proof of part (b) is similar, and is omitted.
35It is not di�cult to construct instances of Example 2.2 (the canonical bandit model) where beliefs fail

almost surely to place point mass on the truth despite long run actions being optimal.
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about the true state then the agent will learn the truth. Lastly, we note that in Propo-

sition 5.1 below, with positive probability some agents in a society learn the truth state

while simultaneouly other agents do not.

5. Conformism vs. Diversity

This section studies the relationship between the social structure of information 
ow and

the likelihood of diversity in a connected society.36 We begin by noting an implication

of Theorem 3.2: in a connected society, two actions with di�erent expected payo�s (con-

ditional on the true state of the world) will be chosen in the long run, with probability

zero. This observation leads us to examine the possibility of two equally attractive actions

surviving in the long run.

To analyze issues of conformity/diversity in general is quite a di�cult problem. We there-

fore study these phenomena in the context of an example. Our analysis takes as �xed

an individual decision problem and a certain distribution of priors. We then vary the

structure of neighborhoods and look at how the probability of diversity varies. We use

a combination of analytical and simulation methods. Our �ndings suggest that prob-

ability of diversity is inversely related to the degree of social integration, as elaborated

below.

Example 5.1: We consider the following special case of Example 2.2. There are two

actions x1 and x2 each of two possible types, High (H) and Low (L). An action of High

type yields outcomes (and rewards) y = 1 and 0 with probabilities � and 1 � � respec-

tively, where � 2 (1=2; 1) is a parameter. An action of the Low type also yields outcomes

of 1 and 0 but with probabilities 1 � � and �. Thus there are four states of nature, la-

belled as (H,H), (H,L), (L,H) and (L,L). The types of actions are independent of each

other and the beliefs of an agent are given by a pair (�; �) 2 [0; 1]2 where � is the prob-

ability that x1 is a High type and � the probability that x2 is a High type. Since agents

are assumed to choose actions to maximize single-period expected utility, it is clear by

symmetry that an agent will choose x1 if � > �, x2 if � < � and arbitrarily if � = �.

Furthermore, denoting the outcome (1 or 0) from choosing x1 by Z, the posterior belief is

36We shall say that a society exhibits conformism if all agents choose the same action in the long run,
with probability 1. Correspondingly, a society exhibits diversity if di�erent agents choose di�erent actions
in the long run, with positive probability.
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(�0; �) where

�0 =
��Z(1� �)1�Z

��Z(1� �)1�Z + (1� �)(1� �)Z�1�Z
�

�

�+ (1� �)p2Z�1
: (5:1)

where p � (1 � �)=� 2 (0; 1). A similar expression may be derived for � if x2 is cho-

sen instead of x1. Equation (5.1) implies that if an agent observes n � 0 independent

trials with x1, and m � 0 trials with x2, then x1 will be chosen in the current period

if
�

�+ (1� �)p2Sn�n
>

�

� + (1� �)p2Rm�m
) p2(Sn�Rm)+m�n <

�(1� �)

�(1� �)
: (5:2)

where Sn denotes the number of successes in n trials with x1 and Rm the number of suc-

cesses in m trials with x2. (We adopt the convention that Sn = 0 if n = 0 and Rm = 0 if

m = 0).

We next specify the distribution of priors. We shall suppose there are 2k + 2 agents la-

belled as 1; : : : ; k, �, � and k+1; : : : ; 2k. We shall refer to agents 1 to k and � collectively

as the group N1, and the rest of the agents as group N2. Agents in N1 have the same

prior belief (�1; �1) with �1 > �1; thus they choose x1 in the �rst period. Agents in the

N2 all have the common belief given by (�2; �2) with �2 > �2; thus they choose x2 in

the �rst period. Finally, we shall suppose that the (unknown) true state of nature is

�1 = (H;H).

We consider the following general information structure. All observation relations are as-

sumed to be symmetric. There is public observability within Group N1 (i.e. all agents

in the group observe each other) and likewise within Group N2. The observation links

across the two groups is speci�ed by a degree of integration parameter � 2 f1; : : : ; k + 1g.

If the degree of integration is � this means that agents f1; : : : ; � � 1; �g observe (and are

observed by) agents f�; k + 1; : : : ; k + � � 1g.37 Note that for any k, the case � = k + 1

corresponds to full public observability while � = 1 is the minimum required for a society

to be connected. Figure 3 shows a society with k = 3 (i.e. 8 agents) when � = 1, 2 and

k+1. The �rst result derives conditions on the degree of integration that are su�cient for

diversity to obtain.

37This structure is motivated by examples of societies with well de�ned sub-groups { based on ethnic,
linguistic, spatial or professional considerations { where interaction within a sub-group is very regular and
at a high level but only a few members of a sub-group interact with members from another sub-group.
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Proposition 5.1 . Suppose the society is as described above. If k � � + 1 > �=(2� � 1)

then there is a strictly positive probability that all agents in group N1 will choose x1 forever

and all agents in group N2 will choose x2 forever.

The idea underlying the proof38 can be explained by considering the case of � = 1: First,

applying standard arguments we identify a set of sample paths, which has positive prob-

ability, and on which each agent, acting in isolation, will choose his initial action forever.

We then consider agent �'s behavior when the society is linked in the manner described

above. In each period, agent � observes the other members of N1 choosing x1 and also

sees �, who is choosing x2. If k > 1=(2� � 1) then, with the help of the Law of the

Iterated Logarithm, we can show that agent � will receive positive information about

x1 at a \faster" rate than positive information about x2 and so will choose x1 forever.

Furthermore, all i 2 N1n� will choose x1 forever since they only observe positive infor-

mation on x1 and no information on x2. By symmetry, agent � will choose x2 forever

as will all members of N2. Thus diversity occurs for the following reason: the agents at

the \boundary" maintain their original choices because they are more highly connected to

agents who choose as they do as compared to those who choose di�erently. If the infor-

mation forthcoming from their own experience and experience of like-minded neighbors'

actions is su�ciently positive it `overcomes' the positive information concerning the other

action coming from across the boundary, and the agents maintain their original deci-

sion.

It is worth noting some additional features of this result. As the agents � and � observe

actions x1 and x2 in�nitely often, they will learn the true state in the long run. However,

the remaining agents observe only either x1 or x2 and therefore do not learn the true state.

Thus it is possible for some agents in a connected society to learn the truth while others

simultaneously do not. Secondly, the example described above exhibits \path-dependency"

since there exists another set of sample paths having positive probability such that one

action will become extinct in �nite time. The proof of this statement is not di�cult and

is omitted.

By way of contrast, we now consider the case of a fully integrated society, i.e. with

� = k+1, for which the above proposition does not apply. Our analysis is summarized by

the following result.

38A proof of Proposition 5.1 is presented in Appendix D.
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Proposition 5.2 . Let the society be as described above and suppose that � = k + 1, so

that there is full public observability. Then conformity occurs, i.e. with probability 1, all

agents choose the same action forever after a �nite time.

The intuition39 for this result is as follows: Expressions (5.1)-(5.2) describe the relationship

between information generated by trials, summarized by L � 2(Sn � Rm) � n + m, and

the priors of agents. In particular, they imply that for `high' values of L, both groups of

agents will choose action x1, for `low' values of L both groups of agents will choose action

x2, while for intermediate values of L, group 1 will choose action x1 while group 2 chooses

action x2. The process L can be represented as a stationary Markov Process; the proof

then follows from the observation that for high (low) values of L, the process is a random

walk with a positive drift (negative drift), while for intermediate values it is a symmetric

random walk.

We have so far derived su�cient conditions on the degree of integration for diversity to

obtain and also shown that when a society is fully integrated then conformity obtains.

We now examine how the probability of diversity varies in relation to the parameter of

integration, with the help of simulations. As a check on the robustness of our analysis, we

also consider the case of actions with normally distributed outcomes. These simulations

are summarized in Figures 4 and 5, respectively. Our simulations were carried out for a

society with k = 9 (total number of agents is 20). The �gures suggest that there exists an

inverse relationship between the degree of integration and the likelihood of diversity. The

intuition for this is that as � increases, the information set of agents on the `boundary'

becomes more alike, making di�erent optimal choices by them less likely. Thus the agents

who make the `across-group' observations (such as � and �) choose the same actions. This

allows information about both actions to 
ow into a sub-group thereby precipitating a

breakdown in the `information barrier' separating N1 and N2 and eventually leading to

social conformism.The simulations also suggest that for �xed �, the likelihood of diversity

increases as � and the value of the mean (in the normal distribution case, keeping stan-

dard deviation constant) decreases. Lowering � or the value of the mean in the normal

case both have the e�ect of decreasing the informativeness of action x1, which allows the

in
uence of the initial di�erences in priors of the two groups N1 and N2 to survive more

easily.

39A proof of this result is available from the authors upon request.
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6. Temporal and Spatial Patterns of Learning

While the results of Sections 3-5 characterize the long run outcomes in our framework,

they do not tell us much about the temporal and spatial evolution of social learning. In

this section we discuss simulations of our framework to get some idea about these is-

sues. In particular, we wish to compare the results of our simulations with the �ndings

of the extensive empirical literature on di�usion as a means of validating our theoretical

paradigm.

We assume the following social structure: The set of farmers N is arranged in a k � k

grid, with each farmer owning a single plot of land. In our simulations we take k = 20,

so that we have a total of 400 agents. Each farmer i observes the actions and pay-

o�s (observations) of her surrounding 8 neighbors. We perform simulations under dif-

ferent speci�cations, which are special cases of Example 2.2. We now summarize our

�ndings.40

Temporal Patterns: In the �rst simulation, we assume that there are two crops, one of

which (Crop 0) has a known payo� of 1=2, while the other (Crop 1) represents a new,

unknown technology. Crop 1 can be of quality level q1 = 0:45 or q2 = 0:55; if the crop

is of quality qk for k = 1; 2 then its payo� is Bernoulli-distributed with parameter qk.

We suppose that the true quality of Crop 1 is q2, and so it is better than Crop 0. We

also assume that the farmers' beliefs at the beginning of period 1 are heterogeneous, with

about 1% of the farmers having a prior above 1=2 and therefore experimenting with the

new crop.

The di�usion curve of a typical simulation is given in Figure 6a. As can be seen, the logistic

curve �tted from the data matches the adoption curve quite well. The R2 is 0.987, which

is in the same range as obtained by Griliches (1957) in his study of the di�usion of hybrid

corn. We also report a simulation where the new technology is more pro�table than in the

earlier case (we chose q1 = 0:43 and q2 = 0:57 as the quality levels). The adoption curve for

this simulation is given in the Figure 6b. As can be seen, the logistic still provides a good

�t (R2 = 0:99); however, the adoption rate is far higher, as it takes approximately half

the time for the population to adopt compared to the earlier case. This is consistent with

the result of Griliches, who found that the adoption rate was strongly positively linked

to pro�tability. Finally, we also note that both adoption curves exhibit small downward

40In our simulations, the opposite edges of the rectangular grid are identi�ed with each other to ensure
that all farmers have 8 neighbors, including those living along an edge.
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uctuations, an empirical phenomenon which has been discussed by Rogers (1983). As a

check on the robustness of these patterns, we also ran simulations of a two crop model

in which the returns of the new crop were normally distributed, with unknown means.

Two typical simulations are plotted in Figures 7a and 7b. The R2 values are 0:988 and

0:982 respectively. These �gures corroborate the �ndings that emerged from the Bernoulli

case.41

Spatial Patterns: We begin with a simulation of the two crop model discussed above

when q1 = 0:45 and q2 = 0:55. Figure 8 shows the spatial evolution of such a simula-

tion. Initially, there are only 3 farmers who experiment with the new crop. By t = 25,

one farmer has dropped out due to bad experiences with the new crop. However, a

group of agents around the other two farmers have chosen the new crop as well. By

t = 50 the two clusters are almost in contact with each other, after which the adop-

tion rate increases rapidly. (At t = 50, the proportion of adopters is about 0:15, while

at t = 100 it has almost tripled to 0:41). By t = 200 adoption is nearly complete.

This pattern of spatial di�usion is consistent with empirical evidence (Hagerstrand, 1969;

Rogers 1983).

We next consider a model which allows for the possibility that some of the actions may be

payo� equivalent. This setting is interesting as it allows us to examine whether learning

from neighbors can generate diversity in social structures other than the class explored in

Section 5. In our example, there are a total of 4 crops. There are 3 quality types, with

q1 = 0:45, q2 = 0:55 and q3 = 0:60. As before, Crop 0 has a known payo� of 1=2. In our

simulations, we suppose that crops 1 and crop 3 are the most pro�table, having quality

type q3, while crop 2 is of type q2. The ex-post ranking of crops in increasing order of

pro�tability is therefore f0; 2; (1; 3)g. Finally, farmers have heterogeneous prior beliefs,

which makes the initial choice of crops random.

The results of a typical simulation are presented in Figure 9. This simulation can be sum-

marized as follows : (a) the pattern of crop choice begins to display features of clustering

very quickly. (b) Over time, less pro�table crops get replaced by more pro�table ones.

(c) In the long run, only the most pro�table ones survive, with agents growing the same

crop being linked together re
ecting local conformism.

41All four �gures also reveal high positive serial correlation of the residuals from the logistic �t. Given the
local learning structure of our model, this is intuitive, and suggests a (reduced-form) test of the hypothesis
of neighborhood learning.
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7. Concluding Remarks

When payo�s from di�erent actions are unknown, agents use their own past experience as

well as the experience of their colleagues, friends and acquaintances as a guide for current

decisions. We model these information 
ows across agents in terms of neighborhoods of

individual observation. Our analysis suggests that the structure of these neighborhoods

has important implications for the likelihood of adoption of new technologies, the coexis-

tence of di�erent practices as well as the temporal and spatial patterns of di�usion in a

society. Our conclusions raise an important question: what types of information structures

are likely to occur/emerge in societies?

Appendix A

We begin with a formal construction of the probability space, (
;F ;P�). Fix � 2 �.

For each i 2 N , x 2 X and t = 1; 2; : : : let Y x
i;t � Y . For each t = 1; 2; : : : let


t =
Q
i2N

Q
x2X Y x

i;t be the space of the tth outcomes across all agents and all actions.


t is endowed with the product topology. Let Ht � 
t be of the form

Ht =
Y
i2N

Y
x2X

Hx
i;t (A:1)

where Hx
i;t is a Borel subset of Y x

i;t for each i 2 N and x 2 X. (If the number of agents n

is countably in�nite, Hx
i;t � Y x

i;t for all but a �nite set of i's). De�ne the probability P�
t of

the set Ht as :

P�
t (Ht) =

Y
i2N

Y
x2X

Z
Hx
i;t

�(y; x; �)d�(y): (A:2)

P�
t extends uniquely to the �-�eld on 
t generated by sets of the formHt. Let 
 =

Q
1

t=1 
t.

For cylinder sets H � 
 of the form

H =
TY
t=1

Ht �
1Y

t=T+1


t: (A:3)

let P�(H) be de�ned as P�(H) =
QT
t=1 P

�
t (Ht). Let F be the �-�eld on 
 generated by

sets of the type given by (A.3). P� extends uniquely to the sets in F . This completes the

construction of the probability space (
;F ;P�).
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Let � be endowed with the discrete topology, and suppose B is the Borel �-�eld on this

space. For rectangles of the form A�H where A � � and H is a measurable subset of 
,

let Pi(A�H) be given by

Pi(A�H) =
X
�2A

�i;1(�)P
�(H): (A:4)

for each agent i 2 N . Each Pi extends uniquely to all of B � F . Since every agent's

prior belief lies in the interior of D(�), the measures fPig are pairwise mutually absolutely

continuous.

Appendix B

Proof of Theorem 3.1: For each � 2 �, the belief �i;t(�) of agent i at the beginning

of time t can be regarded as a version of the conditional expectation E[1f�g�
kFi;t] where

the expectation is with respect to the measure Pi. Since this sequence of random variables

is a uniformly bounded martingale (see Easley and Kiefer, 1988) with respect to the in-

creasing sequence of �-�elds fFi;tg the Martingale Convergence Theorem applies, so that

�i;t converges almost surely to the Fi;1-measurable limit belief �i;1. Let Qi be the set of

sample paths where agent i's beliefs converge, where Pi(Qi) = 1. Since the measures are

pairwise mutually absolutely continuous and the set of agents N is at most countable, the

set Q = \i2NQi also has Pi measure 1 for each i. 2

Proof of Lemma 3.1: Let x 2 X. Since x0 2 X i(!) there exists a subsequence ftkg such

that u(x0; �i;tk(!)) � u(x; �i;tk(!)). Taking limits and using the continuity of u on the set

D(�), we get u(x0; �i;1(!)) � u(x; �i;1(!)). Since x is arbitrary, this proves statement (a).

Statement (b) follows from the maximum theorem and part (a). 2

Let supp(�) to denote the support of a probability distribution �. We have:

Lemma 3.2 . Suppose i 2 N(j) and ! 2 Q�1. If, for some � 6= �1, � 2 supp(�j;1(!))

then u(x; ��) = u(x; ��1) for all x 2 X
i(!) [Xj(!).

Proof: Suppose the conditions of Lemma 3.2 hold but u(x; ��1) 6= u(x; ��) for some

x 2 X i(!) [Xj(!). Then, by de�nition, we have
Z
Y

j�(y; x; �1)� �(y; x; �)jd�(y) > 0: (B:1)

Since x is chosen in�nitely often either by agent i or by j (or both), and agent j observes

agent i, the law of large numbers ensures that �j;1(�)(!) = 0, so that � is not in the

support of �j;1(!). This contradiction establishes the result. 2
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Remark B.1: Since i 2 N(i) for every i 2 N , the above lemma implies that for every

x 2 X i(!), u(x; �) is constant on the set

f� j supp(�) � supp(�i;1(!))g:

In particular, Ui;1(!) � u(x; �i;1(!)) = u(x; ��1) for each x 2 X
i(!).

Lemma 3.3 . Suppose ! 2 Q�1. If i 2 N(j), then Uj;1(!) � Ui;1(!).

Proof: We shall show that if x0 2 Xj(!), then u(x0; ��1) � u(x; ��1), for all x 2 X
i(!). This

will su�ce for the proof since from Lemma 3.2 and Remark B.1 we have

Uj;1(!) � u(x0; �j;1(!)) = u(x0; ��1) = u(x0; ��) for all � 2 supp(�j;1): (B:2)

and

Ui;1(!) � u(x; �i;1(!)) = u(x; ��1) = u(x; ��) for all � 2 supp(�j;1): (B:3)

There are two cases: if �j;1(!) = ��1 the result follows trivially from Lemma 3.1. In the

second case, suppose that � 6= �1 also lies in the support of �j;1(!). We now proceed

by contradiction. Assume that u(x0; ��1) < u(x; ��1). Since � 6= �1 lies in the support of

�j;1(!), Lemma 3.2 above together with the facts that x0 2 Xj(!) and x 2 X i(!) implies

that u(x0; �j;1(!)) < u(x; �j;1(!)). However this contradicts Lemma 3.1 above and hence

u(x0; ��1) � u(x; ��1). 2

Proof of Theorem 3.2: If i and j are two agents in N , then either i 2 N(j) or there

exist agents j1; : : : ; jm such that j1 2 N(j), j2 2 N(j1) and so on until i 2 N(jm). In the

�rst case, Lemma 3.3 applies directly to show that Uj;1(!) � Ui;1(!) while in the latter

case the same is true by transitivity. The result follows by interchanging the roles of i and

j. 2

Appendix C

Let i 2 N . If agent i were to choose x 2 X between period t and t0 � 1 and observe the

corresponding outcomes fyxi;ng
t0�1
n=t , the product likelihood ratio of state � with respect to

�1 at the beginning of time t0 would be:

r
x;�

i (t; t0) =
t0�1Y
n=t

�(yxi;n; x; �)

�(yxi;n; x; �1)
: (C:1)
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By convention we assume that rx;�i (t; t0) = 1 if t = t0. Moreover, if t = 1 we write rx;�i (1; t0)

simply as rx;�i;t0 .

Proof of Proposition 4.1 (Sketch): Let j 2 N . For � 2 (0; 1) and x 2 G(��1) let B
x;�

j;1 be

the set Bx;� whose existence is assumed in condition (UPI). Using arguments analogous to

Lemma 4.1, we can establish that there exists a � � 1, an � 2 (0; 1) such that ��KjXj < 1

and a set A�
j de�ned as:

A�
j =

Y
x2G(��1 )

B
x;�

j;1 �f max
x2G(��1 )

sup
��2

r
x;�

j (2; �) � �g�f max
x2XnG(��1 )

sup
t�1

r
x;�

j;t � �g�
1Y
t=1

Y
j02N(j)

Y
x2X

Y x
j0;t:

(C:2)

such that P�1(A�
j ) = � > 0 (by using the assumption that x 2 G(��1) satis�es the (UPI)

property). Fix i 2 N̂
K;d̂

. De�ne Ai = \j2N(i)A
�
j . Clearly P�1(Ai) � �K > 0. Note

that since agent i is assumed to have a belief �i;1(�1) � d̂, she will choose an action

x 2 G(��1); by construction of the set Ai, she will observe an outcome y 2 Bx;�. As

such a y provides su�ciently strong positive information concerning state �1, agent i's

posterior belief will be very close to the truth, as in equation (4.6). The proof for the

case of jRj = 0 now follows along the lines of steps 2 and 3 of Theorem 4.1, and is omit-

ted.

The case jRj > 0: Let Q̂ = f[i2NX
i(!) 6� G(��1)g. We shall assume P�1(Q̂) > 0 initially.

Clearly, there exists � � 1 (without loss of generality having the same value as above) such

that P�1(Q̂ \ A�
R) > 0, where A�

R is the set

A�
R =

\
j2R

f max
�2�n�1

max
x2X

sup
t�1

r
x;�

j;t � �g �
1Y
t=1

Y
j2NnR

Y
x2X

Y x
j;t: (C:3)

For i 2 N̂
K;d̂

consider the set Ai constructed as above, but excluding all j 2 N(i) who are

members of R. The probability of Ai conditional on A
�
R satis�es

P�1(Ai j A
�
R) =

Q
j2N(i)nR P

�1(A�
j )� P�1(A�

R)

P�1(A�
R)

� �K > 0: (C:4)

Using (C.4) we can establish the analog of Step 2 in Theorem 4.1 above, i.e., P�1(\
i2N̂

K;d̂
Ac
i j

A�
R) � lim

jN̂
K;d̂

j!1
(1 � �K)jN̂K;d̂

j = 0. Note that for ! 2 Ai \ A�
R, as �i;1 � d̂, our

construction ensures that G(�i;t) � G(��1) for all t � 1. Thus on the set Ai \ A�
R,

agent i will always choose an action in G(��1), so that we can employ the arguments

in Step 3 in Theorem 4.1 above to ensure that Xj(!) � G(��1) for all agents j 2 N on
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the set A�
R. It follows that P�1([i2NfX

i(!) 6� G(��1)g j A
�
R) = 0. However, this im-

plies P�1(Q̂\A�
R) = P([i2NfX

i(!) 6� G(��1)g \A
�
R) = 0, which contradicts our earlier

statement that P�1(Q̂ \ A�
R) > 0. 2

Proof of Theorem 4.2: We suppose for simplicity that G(��1) is a singleton. The ar-

guments presented below extend easily to cover the case where there are multiple optimal

actions. We �rst establish the following lemma:

Lemma 4.2 . Suppose (Ia)-(Ic) hold. Let � 2 D(�) satisfy �(�k(x1)(x1)) � �. (a) If

action x1 is chosen t times, and outcomes y1 2 B
x1,: : :,yt 2 B

x1 are observed, then the pos-

terior belief �(�(x1)
+)0 � �. (b) The conclusion in (a) is una�ected if an action x 2 Xnx1

has also been chosen and y 2 Y is observed.

The proof exploits condition (Ib) and involves some straightforward calculations. We omit

it due to space constraints. Lemma 4.2 is useful since if � 2 D(�) satis�es �(�(x1)
+) � �

then u(x1; �) � umin.

Proof (Theorem 4.2) Let j 2 N . Arguments analogous to those used in Lemma 4.1

establish that there exists a real number � � 1 such that

P�1(sup
t0>t

max
�2�(x1)�

r
x1;�

j (t; t0) � �) = � > 0: (C:5)

Choose T to satisfy �T�K < 1, where � 2 (0; 1) is the number assumed in condition (Ic).

Let A�
j be de�ned as:

A�
j =

TY
t=1

Bx1
j;t�fsup

t0>T

max
�2�(x1)�

r
x1;�

j (T+1; t0) � �g�
Y

x2Xnx1

1Y
t=1

Y x
j;t�

Y
j02Nnj

Y
x2X

1Y
t=1

Y x
j0;t: (C:6)

where we have written Bx1 as Bx1
j;t to avoid confusion. Fix i 2 NK;�. Let Ai = \j2N(i)A

�
j .

By construction P�1(Ai) = �jN(i)j � �K = � > 0.

We claim that if ! 2 Ai then agent i will choose the optimal action x1, for all time

periods after some �nite point. The �rst step is to show that agent i will observe at

least T trials of action x1. We begin by showing it is tried at least once by some agent

j 2 N(i). The proof is by contradiction. Suppose not. This implies, in particular, agent

i observes in�nitely many trials of some action x 2 Xnx1. Since x is suboptimal, the

strong law of large numbers will ensure that limt!1 �i;t(�) = 0 for all states � where

u(x; ��) > u(x; ��1). Choose �� > 0 such that umin � �� > maxx2Xnx1 u(x; ��1). The above

argument implies that at a �nite time t0, agent i's expected utility u(x; �i;t0) � umin � ��.
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Since x1 has not been chosen and the choice of other actions does not a�ect i's beliefs con-

cerning �k(x1)(x1), we have �i;t0(�k(x1)(x1)) � �. By the observation following Lemma 4.2

this implies u(x1; �i;t0) � umin, which implies that x1 would be preferable to x at the time

of the next choice of x by agent i. Thus action x1 must be tried by agent i at some time

t̂, and this contradicts our original supposition.

We now make the following observation. Suppose that at time t each agent j 2 N(i)

has chosen action x1 for 0 � tj � T periods. Hence upto time t, for each j 2 N(i)

agent i observes the outcomes yx1j;1 2 Bx1
j;1, : : :,y

x1
j;tj

2 Bx1
j;tj

. It follows from Lemma 4.2

that agent i's posterior belief �i;t(�(x1)
+) � �. Note by Lemma 4.2(b) that the pos-

sibility that agents j 2 N(i) may have also chosen actions in Xnx1 does not alter the

conclusion. The same argument used above can be repeated in conjunction with this ob-

servation to show that agent i must observe at least T choices of action x1 by agents

j 2 N(i).

Let t(T ) be the time when agent i has observed a trial of x1 for the T th time. Let

�̂i;t0 2 D(�) be agent i's belief after incorporating all information about actions x 2 Xnx1

upto time t0 � t(T ). We get

�i;t0(�(x1)
�) =

P
�2�(x1)� �̂i;t0(�)

Q
j2N(i) r

x1;�

j (1; tj)

�̂i;t0(�k(x1)(x1)) +
P

�2�(x1)++ �̂i;t0(�)
Q
j2N(i) r

x1;�

j (1; tj) +
P

�2�(x1)� �̂i;t0(�)
Q
j2N(i) r

x1;�

j (1; tj)

(C.7)

Since ! 2 Ai by assumption we have
Q
j2N(i) r

x1;�

j (1; tj) � �T�K < 1 for all � 2 �(x1)
�.

This is because, by construction of the set Ai, for the �rst T observation of x1 by agent

i, the product likelihood ratio rx1;� for any � 2 �(x1)
� is at most �T , and in all subse-

quent trials for each agent j 2 N(i) the product likelihood ratio is at most �. However,

by (Ia) we have �̂i;t0(�k(x1)(x1)) = �i;1(�k(x1)(x1)) � � and �̂i;t0(�(x1)
�) � 1 � �. ThusP

�2�(x1)� �i;t0(�) � �T�K(1 � �) < (1 � �). It follows from (C.7) that �i;t0(�(x1)
�) <

(1� �)=(� + (1 � �)) = 1 � �. Thus �i;t0(�(x1)
+) � � and hence u(x1; �i;t0) � umin. As t

0

is arbitrary, this means that agent i's belief on ! will henceforth never fall below umin. As

all suboptimal actions will fall below umin� �� in �nite time, agent i must choose action x1

from some �nite time onwards. The rest of the proof now proceeds as in steps 2 and 3 of

Theorem 4.1. 2
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Appendix D

Proof of Proposition 5.1: Let N 0
1 = fj 2 N1jN(i) = N1g denote the set of agents who

are linked only to members of their own sub-group, and let N
00

1 = fi 2 N1jN(i) \N2 6= �g

denote the set of agents who are also linked to members of the other sub-group. Simi-

larly de�ne N 0
2 = fi 2 N2jN(i) = N2g and N

00

2 = fi 2 N2jN(i) \ N1 6= �g. Note that

jN
00

1 j = jN
00

2 j = �; also note that �1 = (H;H).

For any agent i 2 N , let Sin (Ri
m) denote the number of successes when agent i chooses

action x1 (x2) for n (m) time periods. Note that since �1 > �1, every i 2 N1 chooses x1

in t = 1. Assume that every agent j 2 N
00

1 chooses x1 in each of the periods t = 1; : : : ; �n,

where �n is some positive integer. A su�cient condition for i 2 N 0
1, to continue to choose

only x1 in every period t = 1; : : : ; �n then follows from (5.2):

p
2(
P

j2N
00

1

S
j
t+
P

j2N0

1

S
j
t )�(k+1)t

<
�1(1� �1)

�1(1� �1)
: (D:1)

for every t = 1; : : : ; �n. Note that �1 > �1 implies that the right hand side of (D.1) is strictly

greater than one, and that 0 < p < 1. Thus a simpler and stronger su�cient condition

than (D.1) is that for every t = 1; : : : ; �n

p
2(
P

j2N
00

1

S
j
t+
P

j2N0

1

S
j
t )�(k+1)t

< 1)
X
j2N

00

1

S
j
t +

X
j2N 0

1

S
j
t �

(k + 1)t

2
: (D:2)

assuming as before that agent every j 2 N
00

1 chooses x1 in each time period up to �n. Since

(H,H) is the true state, for each agent i and time t the random variable 2Sit � t is the

sum of independent and identically distributed random variables of the form 2Z� 1 where

Z has a Bernoulli distribution with parameter 1=2 < � < 1. Since E[Z] = 2� � 1 > 0,

it follows from the standard theory of random walks that P�1(f2Sit � t � 0 for all t =

0; 1; : : :g) > 0: Fix � > 0 and for t � 3 de�ne  (�; t) = (1 + �)
q
2t�(1� �) log log t.

For t � 3, let Ei
t be the event Ei

t = fSin 2 [n� �  (�; n); n� +  (�; n)] for all n �

tg:

Note that the sets Ei
t are increasing in t. The law of the iterated logarithm (see Billings-

ley 1986) implies that P�1(
S
1

t=3E
i
t) = 1:. It follows from the previous equations that

there is some T such that P�1(f2Sit � t � 0 for all t = 0; 1; : : :g \ Ei
T ) > 0: Let Ei denote

the above event, i.e. Ei = f2Sit � t � 0 for all t = 0; 1; : : :g \ Ei
T . The set Ei is such

that agent i's observations will satisfy Sit � t=2 for every t and also from T onwards,

Sit will be within the bounds prescribed by the law of the iterated logarithm. Note that
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given that the previous equation holds for T it also holds from T 0 > T since the sets fEi
tg

are increasing. Thus we shall assume, without loss of generality, that T also satis�es the

condition

T � inf
n
t j ((k � � + 1)(2� � 1)� �)

t

2
� (k � � + 1) (�; t) > 0

o
: (D:3)

Since k � � + 1 > �=(2� � 1) by assumption, the term (k � � + 1)(2� � 1) � � is posi-

tive. As the term (k � � + 1) (�; t) in (D.3) is of the order of t1=2 log log t it is eventually

dominated by ((k � � + 1)(2� � 1)� �)t=2. Hence, T in (D.3) will be �nite. In addition,

for all t � T the expression ((k � � + 1)(2� � 1) � �)t=2 � (k � � + 1) (�; t) > 0 as

well.

We now consider the situation of agent i 2 N
00

1 given that the rest of N1 choose only x1 up

to time �n. We shall assume that agent j 2 N
00

2 choose only x2 in each of the �n periods, and

later isolate a set of sample paths where this will in fact be true. Recall that Rj
t denotes

the number of successes that agent � obtains in t trials from using x2. Using (5.2) and

the arguments underlying (D.1) and (D.2) again, a su�cient condition for agent i 2 N
00

1 to

choose x1 for each t = 1; : : : ; �n is

X
j2N

00

1

S
j
t +

X
j2N 0

1

S
j
t �

X
j2N

00

2

R
j
t +

(k � � + 1)t

2
: (D:4)

We now choose the set of sample paths for agent j 2 N
00

1 which satisfy the following

requirements:
�Ej = fS

j

T = T; S
j
t � T + (t� T )=2; for all t > Tg: (D:5)

Thus, for sample paths in �Ej, agent j 2 N
00

1 gets T successes in the �rst T trials with

x1 and subsequently gets a success rate of at least 50 percent in the remaining periods.

Clearly P�1( �Ej) > 0.

Next, we consider an agent j 2 N2. By de�nition of the set N2, it follows that all j 2 N2

choose action x2 in t = 1. Assuming that j 2 N
00

2 chooses x2 in all periods up to �n, using

arguments as above, it follows that a su�cient condition for each agent i 2 N 0
2 to choose

x2 for each t = 1; : : : ; �n is :

X
j2N

00

2

R
j
t +

X
j2N 0

2

R
j
t �

(k + 1)t

2
: (D:6)

For agents i 2 N 0
2 consider the sample paths fF i

ng de�ned as F i
t = fRi

n 2 [n� �

 (�; n); n� +  (�; n)] for all n � tg. By symmetry with the situation of N1, it follows
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that the event F i de�ned as F i = f2Rj
t � t � 0 for all t � 0g \ F i

T , has strictly positive

probability. Lastly, we de�ne the set �F j corresponding to �Ej where (D.5) will be true

for j 2 N
00

2 in place of j 2 N
00

1 and x2 instead of x1. We now consider the set of sample

paths Y
j2N 0

1

Ej �
Y
j2N

00

1

�Ej �
Y
j2N

00

2

�F j �
Y
j2N 0

2

F j: (D:7)

By construction, the above event has strictly positive probability. We claim that on

this set of sample paths every i 2 N1 chooses x1 and every j 2 N2 chooses x2 for-

ever. We �rst consider the situation for t = 1; : : : ; T . For any i 2 N 0
1, condition (D.2)

is clearly satis�ed, since on our choice of sample paths,
P

j2N 0

1
S
j
t � (k � � + 1)t=2

and
P

j2N
00

1

S
j
t = �t � t=2 so that their sum is at least (k + 1)t=2. Next consider

an agent i 2 N
00

1 . Since
P

j2N
00

1

S
j
t +

P
j2N 0

1
S
j
t � �t + (k � � + 1)t=2 and the right

hand side of (D.4) equals this value (recall that Rj

T = T for j 2 N
00

2 on this set of

sample paths) equation (D.4) also holds, ensuring that j 2 N
00

1 will choose x1 upto

time T . By symmetry, we can show that any agent j 2 N2 chooses x2 upto time

T .

We now consider the position after time T . In this case, for each i 2 N 0
1, we have S

i
t in the

interval t� �  (�; t). Furthermore, for j 2 N
00

1 , S
j
t is at least equal to T + (t� T )=2 while

R
j
t is at most equal to t. From (D.4) we have therefore

X
j2N

00

1

S
j
t +

X
j2N 0

1

S
j
t �

n X
j2N

00

2

R
j
t +

(k � � + 1)t

2

o
�

� �
n
T +

(t� T )

2

o
+ (k � � + 1)

n
t� �  (�; t)

o
�
n
�t+

(k � � + 1)t

2

o

=
�T

2
+
n
(k � � + 1)(2� � 1)� �

o t
2
� (k � � + 1) (�; t): (D.8)

By our choice of T in (D.3) the last expression above is always non-negative. It follows

that provided that every i 2 N 0
1 chooses x1, and j 2 N

00

2 always chooses x2, any agent

j 2 N
00

1 will always choose x1. We next show agents in N 0
1 will continue to choose x1 after

time T given that an agent j 2 N
00

1 chooses x1 forever. This requires condition (D.2) to

hold. However,

X
j2N

00

1

S
j
t +

X
j2N 0

1

S
j
t � �

n
T +

t� T

2

o
+
(k � � + 1)t

2
�

(k + 1)t

2
: (D:9)
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so (D.2) continues to be satis�ed. By symmetry of the agents N2 to the agents N1, anal-

ogous arguments establish that every agent in N2 will always choose x2.

2
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