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Abstract. Several instance-based large-margin classifiers have recently
been put forward in the literature: Support Hyperplanes, Nearest Convex
Hull classifier, and Soft Nearest Neighbor. We examine those techniques
from a common fit-versus-complexity framework and study the links be-
tween them. Finally, we compare the performance of these techniques
vis-a-vis each other and other standard classification methods.

1 Introduction

Recently, three classification methods have been introduced in the literature:
Support Hyperplanes (SH) [8], Nearest Convex Hull classifier (NCH) [10] and
Soft Nearest Neighbor (SNN) [9]. All of them can be classified as instance-based
large-margin penalization classifiers. In the following, we argue why these three
techniques should perform well based on their favorable generalization qualities.
We specifically look at links between Support Vector Machines (SVM), SH, NCH
and SNN and approach them intuitively from a common generalization error-
versus-complexity point of view. The instance-based nature of the SH, NCH,
and SNN arises from the fact that these classifiers do not output an explicit
formulation of a decision boundary between the classes. Rather, the classification
of each test point is carried out independently of the classification of other test
points.

The paper is organized as follows. First, we briefly revise the role of penal-
ization/capacity control for learners in general and argue that the error-versus-
complexity paradigm (see e.g. [4], [15], [13]) could be applied to instance-based
techniques. Second, we make an intuitive comparison between SVM, SH, NCH,
and SNN (in the so-called separable case). Finally, we present some empirical
results and conclude.

2 Penalization in Learning

The need for penalization in learning techniques has long been discussed in both
the statistical and artificial intelligence/machines learning/data mining commu-
nities. Examples of techniques that explicitly employ some kind of penalization
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are Ridge Regression, Lasso, Support Vector Machines, Support Vector Regres-
sion, etc. See, for example, [4] for a review of such methods. Penalization is
referred to the practice of purposefully decreasing the ability of a given learner
to cope with certain tasks. This ability is referred to as the learner’s capacity
(see [15]). Arguably, a decreased learner’s capacity is responsible for a better
prediction performance by mitigating the problem of overfitting. Data overfit-
ting occurs when a learner fits the training data too well, producing very low
amount of errors. The amount of errors is referred to as the empirical risk, the
empirical error, or the loss. The main idea behind penalization techniques is
that the sum empirical error plus capacity control term should be minimized to
achieve good prediction results on new data, or in other words, to achieve good
generalization ability. In general, if the empirical error over the training data
set is rather small, implying a possible overfitting of the training data, then the
capacity of the learner is expected to be high. Thus, the generalization sum –
empirical error plus capacity – would be relatively high. Hence the need to put
up with some increased empirical error over the training data set, which is to
be more than offset by a decrease in the learner’s capacity. The latter decrease
could come about by explicitly penalizing in some way the class of functions to
which a learner belongs.

Instance-based, or lazy classification techniques do not have an explicit rule
or a decision boundary derived from the training data with which to classify all
new observations, or instances. Rather, a new rule for classifying a test instance
is derived each time such an instance is given to the learner. A good example of
a lazy technique is k-Nearest Neighbor (kNN).

At first sight, a direct application of the idea for penalization on instance-
based learners seems hard to materialize. The reason is that penalization in
general is applied to a given class of functions, or learners. In the end, one opti-
mal function out of this class should be chosen to classify any test observation.
This optimal learner produces a minimal generalization sum. The idea for pe-
nalization can however also be applied to instance-based classifiers. In this case
the function (taken from a given function class) that is used for the classification
of a particular test instance should be penalized.

Below we give an intuitive account of three rather new instance-based clas-
sification techniques, SH, NCH, and SNN. We approach them from a common
generalization framework and discuss the links between them and SVM.

3 Three Instance-Based Classification Methods

Given a data set that is separable by a hyperplane and consists of positive and
negative observations, let us assume that we would like to classify a new obser-
vation x using a hyperplane, denoted as h. There are two types of hyperplanes:
(a) hyperplanes that classify correctly all training data points (called for short
consistent hyperplanes) and (b) hyperplanes that do not classify correctly all
training data points (called for short inconsistent hyperplanes). For the sake of
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Fig. 1. Binary classification with SVM, SH, NCH, and SNN in Panels (a), (b), (c)
and (d), respectively. In all cases, the classification of test point x is determined using
hyperplane h, which is in general different for each method. Equivalently, x is labeled
+1 (−1) if it is farther away from set S− (S+).

clarity, we consider any hyperplane to be consistent if it does not misclassify any
training points.

There are two main factors to be considered in choosing the appropriate h.
First, h should not be too close to x. Intuitively speaking, the farther h is from
x, the greater the confidence we have in the classification label h assigns to x.
Second, h should not make too many mistakes when it classifies the training
data. If one chooses h to be extremely far from x, then at one point h will
misclassify either all positive or all negative observations. On the other hand, if
h classifies correctly all training points, then h might be too close to x, in which
case our confidence in the label it assigns to x is smaller. Thus, in general one
cannot have both a big distance between h and x, and a big degree of consistency
of h with respect to the training data. A balance between these two desirable
properties has unavoidably to be sought. The strife to choose an h that is highly
consistent with the training data is referred to as the strife to minimize the
empirical risk, empirical error, or training error. The idea to demand h to be
as far away from x as possible can be thought of as a sort of regularization or
penalization: the smaller the distance between h and x, the greater the penalty
associated with the classification of x. The intuitive assertion here is that the
degree of penalization could be proxied by a certain distance. In sum, when
classifying a test point x using a hyperplane, given a separable binary training
data set, one is faced with the familiar penalty plus error paradigm (see e.g. [4],
[15], [13]). Below we cast four classification methods, SVM, SH, NCH, and SNN,
in the light of this paradigm. The hyperplane h with which to classify a new
observation x is in general different for each of these techniques. See Figure 1
for a running toy example.

The h hyperplane in Support Vector Machine classification (see Figure 1a)
is defined as the farthest-away from x consistent hyperplane that is parallel to
another consistent hyperplane, h2, in such a way that the distance between these
two hyperplanes (referred to as the “margin”) is maximal. Since h is consistent
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with the training data, the empirical error it makes on the data is zero. The
magnitude of the penalty associated with the classification of x can be consid-
ered to be positively related to the inverse of the distance between x and h (1/d1

in terms of Figure 1a). The (theoretical) instance-based SVM classification al-
gorithm can be stated as follows: first add x to the data set with −1 label and
compute the distance d1 to h (as defined above). Second, add x to the data set
with +1 label and compute the distance d∗1 to h2. Third, classify x using h (that
is, as −1) if d1 > d∗1; classify x using h2 (as +1) if d1 < d∗1; otherwise, if d1 = d∗1,
the classification of x is undetermined.

The h hyperplane in SH classification (see Figure 1b) is defined as the
farthest-away from x consistent hyperplane. Since h is consistent with the train-
ing data, the empirical error it makes on the data is zero. The magnitude of the
penalty associated with the classification of x can be considered to be positively
related to the inverse of the distance to h (1/d2 in terms of Figure 1b). It can
be shown that d2 ≥ d1 always. Therefore, the sum empirical error plus penalty
for SH is always smaller than the corresponding sum for SVM, suggesting that
SH may possess better generalization ability than SVM. The SH classification
algorithm can be stated as follows. First, add x to the training data set with −1
label and compute the distance d2 to h. Note that h is consistent with both the
original training data and with x. That is, h assigns label −1 to x. Second, add
x to the original data set with +1 label and compute the distance d∗2 to h2. In
this case, h2 is defined as the farthest-away hyperplane from x that is consistent
with both x and the original training data. Third, classify x using h (that is, as
−1) if d2 > d∗2; classify x using h2 (as +1) if d2 < d∗2; otherwise, if d2 = d∗2, the
classification of x is undetermined.

The h hyperplane in NCH classification (see Figure 1c) is defined as the
farther of two hyperplanes. The first one is the hyperplane farthest away from
x that is consistent with all positive observations and x, where x has label −1.
The second one if the hyperplane farthest away from x that is consistent with all
the negative observations and x, where x has label +1. Effectively, x is classified
as +1 (−1) if it is closer to the convex hull of +1 (−1) points. The magnitude of
the penalty associated with the classification of x is considered to be positively
related to the inverse of the distance from x to h (1/d3 in terms of Figure 1c).
It can be shown that d3 ≥ d2 ≥ d1 always. However, the empirical error on
the training set is not guaranteed to be equal to zero. This happens because h
should be consistent with at least all positive or all negative observations, and
not with both all negative and all positive observations. Thus, the generalization
sum training error plus penalty is not guaranteed to be smaller for NCH than for
SH or SVM. The NCH classification algorithm can be stated as follows. First,
add x to the training data set with −1 label and compute the distance d3 to
h, the hyperplane that is consistent with all +1 points and x. This distance is
the distance between x and the convex hull of the positive points. Second, add
x to the training data set with +1 label and compute the distance d∗3 to h2, the
hyperplane that is consistent with all −1 points and x. Third, classify x using
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h (that is, as −1) if d3 > d∗3; classify x using h2 (as +1) if d3 < d∗3; otherwise, if
d3 = d∗3, the classification of x is undetermined.

The SNN classification can also be presented along similar lines as SVM, SH,
and NCH. In the separable case, SNN is equivalent to the classical First Nearest
Neighbor (1NN) classifier. The h hyperplane in 1NN classification (see Figure
1d) is the farther of two hyperplanes. The first one is farthest away from x
hyperplane that is consistent with the closest positive observation and x, where
x has label −1. The second hyperplane is the farthest away from x hyperplane
that is consistent with the closest negative observation and x, where x has label
+1. Effectively, x is classified as +1 (−1) if its closest training point has label
+1 (−1). The magnitude of the penalty associated with the classification of x is
considered to be positively related to the inverse of the distance from x to h (1/d4

in terms of Figure 1d). It can be shown that d4 ≥ d3 ≥ d2 ≥ d1 always, suggesting
(somewhat counterintuitively) that 1NN provides for the greatest penalization
among the four techniques under consideration. However, the empirical error in
1NN on the training data set is certainly not guaranteed to be equal to zero.
In fact, h is not even guaranteed to be consistent with either all positive or all
negative points, as the case is in NCH classification, as well as in SH and SVM
classification. Thus, the h hyperplane in 1NN is likely to commit the greatest
amount of errors on the training data set as compared to SVM, SH and NCH.
Consequently, the generalizability sum empirical error plus penalty may turn
out to be the highest. Note however that it could also turn out to be the lowest
for some x, in which case 1NN exhibits the highest generalization ability. The
1NN classification algorithm can be (theoretically) stated as follows. First, add
x to the training data set with label −1 and compute the distance d4 to h, the
hyperplane that is consistent with x and the closest positive point. Second, add
x to the training data set with +1 label and compute the distance d∗4 to h2,
the hyperplane that is consistent with x and the closest negative point. Third,
classify x using h (that is, as −1) if d4 > d∗4; classify x using h2 (as +1) if
d4 < d∗4; otherwise, if d4 = d∗4, the classification of x is undetermined.

4 Alternative Specifications

In the separable case, there is an alternative, but equivalent, formulation of the
SVM, SH, NCH, and SNN techniques in terms of distances to sets as opposed to
distances to hyperplanes. The corresponding sets for each technique are depicted
in Figure 1 as shaded areas. A common classification rule for all methods can be
defined as follows: a new point x should be classified as −1 if it is farther from
set S+ than from set S−; x should be classified as +1 if it is farther from set S−
than from set S+; otherwise, if the distance to both S+ and S− is the same, the
class of x is undetermined as x lies on the decision boundary. Sets S+ and S−
are defined differently for each method.

For SVM, set S+ is defined as the set of all points that are classified as +1
by all hyperplanes that lie inside the SVM margin. Set S− is similarly defined
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as the set of all points that are classified as −1 by all hyperplanes that lie inside
the SVM margin.

For SH, set S+ is the set of all points classified as +1 by all hyperplanes
that are consistent with the training data. The latter include all hyperplanes
that lie inside the SVM margin plus all the rest of the consistent hyperplanes.
Analogically, set S− is defined as the set of all points that are classified as
−1 by all consistent hyperplanes. The collection of all consistent hyperplanes is
referred to in the literature as the version space ([7]) of hyperplanes with respect
to a given training data set. A conservative version-space classification rule is to
classify a test point x only if all consistent hyperplanes assign one and the same
classification label to it ([14]), or in other words if x belongs to either S+ or S−.

For the NCH classifier, set S+ is the set of all points that are classified as +1
by all hyperplanes that are consistent with the positively-labeled data points.
In other words, S+ is the convex hull of the positive observations. Set S− is
defined as the set of all points that are classified as −1 by all hyperplanes that
are consistent with the negatively-labeled data points. Thus, S− is the convex
hull of the negative points.

Lastly, for the 1NN classifier, which is the hard-margin version of the SNN
classifier, the S+ set consists of just one point: the closest to x positively-labeled
point. Set S− also consists of just one point: the closest to x negatively-labeled
point.

5 Estimation

We now review the estimation of SVM, SH, NCH, and SNN. Further details can
be found, e.g., in [2], [15], [8], [10], [9]. We examine a common setup for the
four techniques: a binary classification data set {xi, yi}l

i=1, where each xi is an
n-dimensional vector of values for the predictor variables and each yi is either
a +1 or a −1 observation label. The classification task is: given a test point x,
output its predicted label. Each of the techniques solves an optimization problem
to find an optimal hyperplane, w∗′x + b∗ = 0, with which to classify the test
observation in the way presented in Section 3. Here w is a vector of hyperplane
coefficients, b is the intercept, and the asterisk (∗) indicates optimal values.

5.1 Support Vector Machines

SVM solve the classification task by maximizing the so-called margin between
the classes. In the separable case, the margin is equal to the distance between
the convex hulls of the two classes at the optimal SVM solution ([15]). Formally,
the margin is equal to the distance between hyperplanes w′x + b = −1 and
w′x + b = 1, presented already as h and h2 in Figure 1a. Thus, the margin
equals 2/||w||. Maximizing the margin is equivalent to minimizing the term
||w||2/2 = w′w/2. Formally, to find the SVM hyperplane h, one solves the
following optimization problem:
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min
w,b

1
2
w′w (1)

s.t. yi(w′xi + b) ≥ 1, i = 1, 2, . . . , l.

If there is no hyperplane that is able to separate the classes, so-called slack
variables ξi are introduced. This case is referred to as the nonseparable case or
the class-overlapping case. Then, problem (1) becomes:

min
w,b,ξ

1
2
w′w + C

l∑

i=1

ξi (2)

s.t. yi(w′xi + b) ≥ 1− ξi, ξi ≥ 0, i = 1, 2, . . . , l,

where C > 0 is a manually adjustable constant that regulates the trade-off
between the penalty term w′w/2 and the loss

∑l
i=1 ξi.

Optimization problem (2) can be dualized as:

max
α

∑l
i=1 αi − 1

2

∑l
i,j=1 αiαjyiyj(x′ixj) (3)

s.t. 0 ≤ αi ≤ C, i = 1, 2, . . . , l, and
∑l

i=1 yiαi = 0,

where the αi’s are the Lagrange multipliers associated with (2). The advan-
tage of the dual is that different nonlinear mappings x → φ(x) of the data can
easily handled. Thus, if one first transforms the data into a higher-dimensional
space, where the coordinates of the data points are given by φ(x) instead of
x, then the dot product x′ixj will appear as φ(xi)′φ(xj) in the dual optimiza-
tion problem. There exist so-called kernel functions κ(xi,xj) ≡ φ(xi)′φ(xj) that
compute this dot product efficiently, without explicitly carrying the transforma-
tion mapping. Popular kernels are the linear, κ(xi,xj) = x′ixj , polynomial of
degree d, κ(xi,xj) = (x′ixj + 1)d and the Radial Basis Function (RBF) kernel
κ(xi,xj) = exp(−γ||xi − xj ||2). The mapping x → φ(x) when the RBF ker-
nel is used corresponds to a mapping into an infinite-dimensional space. The
manually-adjustable γ parameter of the RBF kernel determines the proximity
of any two points in this infinite-dimensional space.

5.2 Support Hyperplanes

In the separable case, the h hyperplane in SH classification, with which to classify
test point x, can be found as the solution of the following optimization problem:

min
w,b,yl+1

1
2
w′w (4)

s.t. yi(w′xi + b) ≥ 0, i = 1, 2, . . . , l

yl+1(w′x + b) = 1, yl+1 ∈ {−1, 1}.
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This problem is partially combinatorial due to the constraint that the predicted
label of x, yl+1, can take on only two values. Therefore, one usually solves two
separate optimization subproblems: in the first one yl+1 = +1, and in the second
one yl+1 = −1. The value of yl+1 that minimizes the objective function in (4) is
the predicted label of x. Note that the distance between x and h is defined as
1/
√

w∗′w∗ by the equality constraint yl+1(w′x + b) = 1.
In the nonseparable case, SH introduce slack variables ξi, similarly to SVM. As
a result, the nonseparable version of (4) becomes:

min
w,b,yl+1,ξ

1
2
w′w + C

l∑

i=1

ξi (5)

s.t. yi(w′xi + b) ≥ 0− ξi, ξi ≥ 0, i = 1, 2, . . . , l

yl+1(w′xl+1 + b) = 1, yl+1 ∈ {−1, 1}.
As in (4), two separate optimization problems have to be solved to determine
the optimal yl+1. Each of these two subproblems can be dualized as:

max
α

αl+1 − 1
2

∑l+1
i,j=1 αiαjyiyj(x′ixj) (6)

s.t. 0 ≤ αi ≤ C, i = 1, 2, . . . , l, and
∑l+1

i=1 yiαi = 0.

Similarly to SVM, different kernels can be substituted for the dot product x′ixj .

5.3 Nearest Convex Hull Classifier

The optimization problem for the NCH classifier is almost identical to the SH
one. The only difference is that in each of the two optimization subproblems
observations from only one class are considered. This property enables NCH to
handle the multi-class classification case with ease, unlike SVM and SH. In the
two-class problem at hand, let us denote with S+ the set of observations that
belong to the positive class and with S− the set of observations that belong to
the negative class. Next, two optimization problems are solved, one per each
class k:

min
wk,bk

1
2
w′

kwk (7)

s.t. w′
kxi + bk ≥ 0, i ∈ Sk

−(w′
kx + bk) = 1.

The distance from x to the kth class is defined as 1/
√

w∗
k
′w∗

k by the equality
constraint in (7). The class associated with the smallest such distance is assigned
to the test point x. Notice that this distance is inversely related to the objective
function w′

kwk/2. Therefore, the class k that achieves the maximal value for this
objective function should be assigned to x.
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In the nonseparable case, each of the optimization subproblems is expressed
as:

min
wk,bk,ξ

1
2
w′

kwk + C
∑

i∈Sk

ξi (8)

s.t. w′
kxi + bk ≥ 0− ξi, ξi ≥ 0, i ∈ Sk

−(w′
kx + bk) = 1,

where the ξ’s are slack variables. In dual form, (8) becomes:

max
α

αlk+1 − 1
2

∑lk+1
i,j=1 αiαjyiyj(x′ixj) (9)

s.t. 0 ≤ αi ≤ C, i = 1, 2, . . . , lk, and
∑lk+1

i=1 yiαi = 0,

allowing for the employment of kernel functions, as in SVM and SH. Here i =
1, 2, . . . , lk denotes the elements of class k.

5.4 Soft Nearest Neighbor

In the separable case, SNN is equivalent to the 1NN classifier. Instead of comput-
ing the distances between x and all data points to determine the nearest neighbor
of x however, SNN take a different approach. Observe that the distance to the
nearest neighboring point is equal to the maximal radius of a (hyper)sphere with
center x that does not contain any training data points. To find this radius r,
one solves the following optimization problem:

max r2 (10)
s.t. r2 ≤ ||xi − x||2, i = 1, 2, . . . , l.

In SNN classification, one first finds the distances between x and the closest
point from each of the two (or, in general k) classes. Point x is then assigned
to the class, which such point is closer/closest to x. Denoting with S+ and S−
the sets of positive and negative observations, respectively, SNN thus solve one
optimization problem per each class k, of the form:

max r2 (11)
s.t. r2 ≤ ||xi − x||2, i ∈ Sk.

The class that produces the minimal value for the objective function R2 of (11)
is then assigned to point x. Similarly to the SVM, SH and NCH approaches, one
can introduce slack variables ξi. In this case (11) becomes:
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max R2 − C
∑

i∈Sk

ξi (12)

s.t. R2 ≤ ||xi − x||2 + ξi, ξi ≥ 0, i ∈ Sk.

The C > 0 parameter controls the trade-off between the length of the radius
and amount of training errors. A training error occurs if a point lies inside
the hypersphere. Each of the k quadratic optimization problems (12) can be
expressed in dual form as:

min
α

∑

i∈Sk

αi(x′ixi − 2(x′ix) + x′x) (13)

s.t. 0 ≤ αi ≤ C, i ∈ Sk, and
∑

i∈Sk

αi = 1.

This formulation allows for the employment of different kernels, which can re-
place the dot products x′ixi, x′ix and x′x. Notice that unlike (12), (13) is a linear
programming problem.

6 Comparison Results

The basic optimization algorithms for SH, NCH, and SNN classification, (6), (9)
and (13) respectively, are implemented via a modification of the freely available
LIBSVM software ([3]). We tested the performance of SH, NCH, and SNN on
several small- to middle-sized data sets that are freely available from the Slat-
Log and UCI repositories ([11]) and have been analyzed by many researchers
and practitioners (e.g. [1], [5], [6], [12] and others): Sonar, Voting, Wisconsin
Breast Cancer (W.B.C.), Heart, Australian Credit Approval (A.C.A.), and He-
patitis (Hep.). Detailed information on these data sets can be found on the web
sites of the respective repositories. We stop short of carrying out an extensive
experimental study, since this falls out of the main scope of the paper. Further-
more, large data sets are harder to handle due to the instance-based nature of
the SH, NCH, and SNN classifiers.

We compare the results of SH, NCH and SNN to those of several state-of-art
techniques: Support Vector Machines (SVM), Linear and Quadratic Discrimi-
nant Analysis (LDA and QDA), Logistic Regression (LR), Multi-layer Percep-
tron (MLP), k-Nearest Neighbor (kNN), Naive Bayes classifier (NB) and two
types of Decision Trees – Decision Stump (DS) and C4.5. The experiments for
the NB, LR, MLP, kNN, DS and C4.5 methods have been carried out with the
WEKA learning environment using default model parameters, except for kNN.
We refer to [16] for additional information on these classifiers and their imple-
mentation. We measure model performance by the leave-one-out (LOO) accuracy
rate. For our purposes – comparison between the methods – LOO seems to be
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more suitable than the more general k-fold cross-validation (CV), because it al-
ways yields one and the same error rate estimate for a given model, unlike the
CV method, because it involves a random split of the data into several parts.
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Table 1 presents performance results for all methods considered. Some meth-
ods, namely kNN, SH, NCH, SNN and SVM, require tuning of model parame-
ters. In these cases, we report only the highest LOO accuracy rate obtained by
performing a grid search for tuning the necessary parameters.

Overall, the instance-based penalization classifiers SH, NCH and SNN per-
form quite well on all data sets. Most notably, SH achieve best accuracy rates
on five data sets. NCH replicate this success three times. SVM also perform best
on three data sets. The SNN classifier achieves best accuracy rate on just two
data sets, but five times out of six performs better than its direct competitor,
kNN. The rest of the techniques show relatively less favorable and more volatile
results. For example, the C4.5 classifier performs best on the Voting data set,
but achieves rather low accuracy rates on two other data sets – Sonar and Heart.
Note that not all data sets are equally easy to handle. For instance, the perfor-
mance variation over all classifiers on the Voting and Breast Cancer data sets is
rather low, whereas on the Sonar data set it is quite substantial.

7 Conclusion

We have studied from a common generalization perspective three classification
methods recently introduced in the literature: Support Hyperplanes, Nearest
Convex Hull classifier and Soft Nearest Neighbor. In addition, we have compared
them to the popular Support Vector Machines. A common theme in SH, NCH,
and SNN is their instance-based nature. In addition, these methods strive to find
a balance between learner’s capacity and learner’s fit over the training data. Last
but not least, the techniques can be kernelized, which places them also in the
realm of kernel methods. We have provided a rather intuitive treatment of these
techniques and the generalization framework from which they are approached.
Further research could concentrate on more detailed such treatment and on the
derivation of theoretical test-error bounds. Extensive experiments with different
loss functions, such as the quadratic one, have also to be carried out. Last but
not least, ways to improve the computational speed can also be explored.
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