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l)ADVANCES IN INVENTORY MANAGEMENT
DYNAMIC MODELS

Due to rapid developments in technology and information systems, the speed and the
nature of the flow of goods in supply chains have changed drastically. Today, to meet the
increased customer expectations, companies need to offer larger assortments, shorter
delivery times and better quality for lower prices. As more and newer products are
developed and introduced to the markets, the average product life cycles got shorter.
Obsolescence risk as well as demand uncertainty has increased significantly. The higher
dynamism of markets made the costs more volatile and difficult to predict. As a result of
these changes in the surrounding environment, inventory systems became more dynamic.

In this study, we develop and analyze models incorporating two dynamic aspects
affecting the inventory systems: nonstationarity in demand and unfixed purchasing prices. 

In the first part, we consider an inventory system with a nonstationary demand rate. In
particular, we focus on critical service parts. Inventory management of such items is
notoriously difficult due to their slow moving character, high downtime costs and high
obsolescence risk. We propose an obsolescence based control policy and investigate its
impacts on costs. We find that ignoring obsolescence increases costs significantly and an
early adaptation of base stock levels can lead to important savings. 

In the second part, we consider an inventory system where the supplier offers price
discounts at random points in time. We extend the literature by assuming a more general
backordering structure and demonstrate that allowing backorders in face of random deal
offerings can result in considerable savings.
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during my stay.

I shall thank Michiel Kuipers and Jaap Hazewinkel from IBM for the kind interest they

show to my work and giving important feedback about possible applications of the policy

proposed in Chapter 3. I also thank Willem van Jaarsveld for the insightful discussion on

the practices at Fokker Services.

I thank Francesco, Michiel, Chen and Sandra for helping me to integrate into the ‘TI

world’ during my first days at the university. I also thank Nuno, Nalan, Cem, Morteza,

Gus, Sjoerd, Adriana and Wilco for their enjoyable company during lunches, coffee breaks,

drinks and conferences abroad. Many thanks to Daniel who shared the office with me for

four years for always being kind and helpful. In the same note, I also thank my other

officemates Twan, Martijn, Carlos and Lanah.

The people who make Rotterdam a more special place to me are Johannes, Luciana,

Bernardo, Philipp and Bettina. Our friendship will last a lifetime, that I know. I thank

Johannes for his efforts as a paranymph, and helping me to select the cover picture and

providing the philosophy behind it. I also thank Esen, Baris, Chris, Zsuzsi, Nadya, Romy

and Ronald for so many nice moments we had together.

Onur, I am thankful to you for many things. Your unbounded support and true

friendship are just a few to mention here.

I thank to my mother and brother for being so supportive and understanding. It

wasn’t easy to be apart from you for so long and I hope that the future will bring us only

closer.

And Ewa, you are the best thing happened to me in Netherlands. Thank you...



Contents

Acknowledgements v

1 Introduction 1

1.1 Inventory Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 After Sales Services & Service Parts Inventories . . . . . . . . . . . . . . . 3

1.3 Random Deal Offerings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

I Service Parts & Obsolescence 13

2 An Inventory Model for Slow Moving Items Subject to Obsolescence 15

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Operating Characteristics of the Second Period . . . . . . . . . . . . . . . 23

2.3.1 Analysis of the Regular Operation Phase . . . . . . . . . . . . . . . 27

2.3.2 Objective Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.3 Full Obsolescence Case (λ1 = 0) . . . . . . . . . . . . . . . . . . . . 31

2.3.4 General Behavior of Objective Function and Operating Character-

istics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4 Numerical Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4.1 General Behavior of Optimal Policy Parameters and Total Cost

Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4.2 Overall Performance of X∗ . . . . . . . . . . . . . . . . . . . . . . . 39

2.4.3 Value of Advance Policy Change . . . . . . . . . . . . . . . . . . . . 40

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3 Service Parts Inventory Control under Obsolescence 55

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55



viii CONTENTS

3.2 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3 Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3.1 Analysis of the (x, S0, S1) Policy . . . . . . . . . . . . . . . . . . . . 60

3.3.2 Analysis of the Special Case: S0 = S1 . . . . . . . . . . . . . . . . . 66

3.4 Optimization of TC(x, S0, S1) . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.4.1 Heuristic upper bound for S∗
0 . . . . . . . . . . . . . . . . . . . . . 69

3.5 Numerical Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.5.1 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.5.2 Value of Policy Change Option . . . . . . . . . . . . . . . . . . . . 73

3.5.3 Cost of Ignoring Obsolescence . . . . . . . . . . . . . . . . . . . . . 76

3.5.4 Value of Advance Policy Change . . . . . . . . . . . . . . . . . . . . 78

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

II Random Deal Offerings 95

4 Random Deal Offerings and Partial Backordering 97

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.2 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.4 Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.5 Optimization of TC(r, R, s,Q) . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.5.1 Structural Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.5.2 Candidate Points for the Optimal Solution . . . . . . . . . . . . . . 115

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

4.7 Numerical Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

4.9 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5 Summary & Conclusion 173

Nederlandse Samenvatting (Summary in Dutch) 179

Bibliography 181

Curriculum Vitae 187



Chapter 1

Introduction

1.1. Inventory Management

Inventories play a crucial role in every economy. For example, in the United States total

value of business inventories is about 1.3 trillion dollars, representing 9% of the country’s

current GDP (U.S. Census Bureau, 2010). One of the main reasons for a company to

carry inventories is the mismatch between supply and demand due to uncertainty. For

a company selling products, it is often very difficult to predict the exact moment the

demand occurs. Thus, without inventories, the company would make all of its customers

wait until the product is manufactured or replenished from an outside supplier. Further-

more, the quantity and quality of the products manufactured or received from an outside

supplier might be variable due to the uncertainties involved in the in-house or the sup-

plier’s production process. Replenishment lead-times might be affected from disruptions

in the production process and add up to the uncertainty of the supply process. Thus,

inventories exist to bridge the gap between demand and supply due to the uncertainties

involved in a supply chain. Moreover, they are instrumental in exploiting the economies

of scale in production, transportation and purchasing.

In general, inventory management concerns two fundamental questions: when to order

and how much to order. Although in practice, an inventory manager might make different

decisions depending on the complexity of the inventory system, essentially most of the

decisions are centered around these two fundamental questions. The scientific inventory



2 Introduction

management literature is mainly focused on answering these two questions for various

inventory systems with different characteristics.

In this study, we focus on single item, single location inventory systems. Models

studying such systems can be seen as the building blocks of the inventory theory. The

earliest and probably the best known model on single item, single location inventory

system is the economic-order-quantity (EOQ) model by Harris (1913). The widely used

EOQ formula is a fundamental result in inventory theory and generally accepted as the

beginning of scientific inventory management. In a simple and elegant way the EOQ

formula reveals the relation between the order quantity and the costs of ordering and

carrying inventory.

Due to rapid developments in technology and information systems, the speed and

the nature of the flow of goods in supply chains have changed drastically compared to

the times when the EOQ formula was invented. Today, to meet increased customer

expectations, companies need to offer larger assortments, shorter delivery times and better

quality for lower prices. As more and newer products are developed and introduced to the

markets, the average product life cycles got shorter. Obsolescence risk as well as demand

uncertainty has increased significantly. The higher dynamism of markets made the costs

more volatile and difficult to predict. As a result of these changes in the surrounding

environment, inventory systems became more dynamic.

In this study, we develop and analyze models incorporating two dynamic aspects

affecting the inventory systems: nonstationarity in demand and unfixed purchasing prices.

In Part I, we consider an inventory system with a nonstationary demand rate. In

particular, we focus on an inventory system of a critical service part where the demand

rate drops to a lower level at a known future time. Inventory management of such items

is notoriously difficult due to their slow moving character, high downtime costs and high

obsolescence risk. In practice, there is a need for policies tailored for service parts taking

these aspects into account and easy to implement. We propose an obsolescence based

control policy and investigate its performance and impact on costs. We find that ignoring

obsolescence in the control policy increases costs significantly and early adaptation of base

stock levels can lead to important savings.
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In Part II, we consider an inventory system with unfixed purchasing prices. In partic-

ular, we focus on an inventory system where the supplier offers price discounts at random

points in time. We extend the literature by assuming a more general backordering struc-

ture while waiting for a deal. That is, when the system is out of stock, an arriving

customer either decides to be backlogged with a certain probability or leaves the system

and becomes a lost sale. Such behavior is more general compared to the full backorder-

ing or lost sales assumptions which are common in the literature. We derive expressions

of the operating characteristics and equations to calculate optimal policy parameters.

We demonstrate that allowing backorders in face of random deal offerings can result in

considerable savings.

In the following sections, we explain our motivation for the problems considered in

Part I and Part II in more detail and give brief outline of the chapters.

1.2. After Sales Services & Service Parts Inventories

Many companies hold service parts inventories either to keep their own products running

or to support their customers through after sales services. For example, in commercial

aviation industry about 60% of the inventories needed for maintenance, repair and over-

haul (MRO) operations are carried by the airlines themselves. Since a commercial aircraft

is a complex equipment composed of thousands of parts, on average, a legacy airline car-

ries inventory worth of 2 million dollars in book value per aircraft. The book value of

inventories might well exceed 100 million dollars for medium to large commercial MRO

service providers. Similarly high costs are observed in the defense industry for military

aircrafts or weapon systems.

The need for service parts to keep the critical and durable equipment in operating con-

dition creates a lucrative, robust and long-lasting after sales market. For many durables,

margins for after sales services are much higher than margins for sale of the original

equipment (Cohen and Whang, 1997) and the revenue streams generated by services are

less affected by economical downturns compared to original product sales. Moreover,

complexity and number of components and parts used in the final products are increased

due to the developments in technology. This makes MRO operations more complicated
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requiring specialized knowledge about the equipment and therefore, creates a natural de-

mand for after sales services. As a result, in many industries, more and more companies

prefer to outsource after sales services in order to avoid technical and logistical difficulties

associated with management of service parts.

Therefore, it is no surprise that original equipment manufacturers (OEM) steadily

invested in increasing their service capabilities to position themselves as service providers

rather than sole manufacturers (Oliva and Kallenberg, 2003). According to a benchmark-

ing study by Cohen et al. (1997), in computing, communication and electronic industries

30% of the product sales revenues are generated by after sales services.

As a result of changes in demand for after sales services, the role of service parts became

more significant in service-centric supply chains. Service providers are competing for fast

and reliable service delivery due to the customers’ demand for prompt response. Simul-

taneously, maintaining high service levels has become more costly since service providers

have to manage a large assortment of complex and expensive service parts. Thus, efficient

management of service parts inventories becomes necessary to be competitive in the after

sales market.

The term service parts can refer to different types of parts or components depending

on their function, reparability, cost and demand rate. A service part is called critical if the

equipment cannot function properly or safely upon failure of the part or the component.

For example, a commercial aircraft can still operate safely if a passenger seat is not

properly working but the same is not true for a critical component of engine or landing

gear. In commercial aviation such critical items are called no-go items since the aircraft

can be grounded due to safety regulations until the parts are repaired or replaced. This is

a highly undesirable situation for an airline since the revenue loss over a grounded airplane

might be more than $150,000 per day.

In general, for equipments requiring regular maintenance and parts replacements

downtime costs are very high due to the equipments’ critical functionality. For instance,

one hour downtime of an electronic tester used in semiconductor production can cost as

much as $50,000 since availability of the tester is crucial for smooth production (Cohen

et al., 1999). Further examples of critical equipment are mainframe computers, medical

electronics, military radar systems. In all these examples, prompt replacement of critical
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service parts is vital in particular for the operation of the equipment and in general for

the whole system.

However, many critical parts and components used in a critical equipment are them-

selves expensive high-tech products. Due to the advanced technology used in their design

and production phases, the reliability of such critical parts and components is often very

high. Therefore, they have relatively low failure rates and the inventories of these parts

are often slow moving, i.e., the inventories remain on the shelf for long time periods before

being used. Thus, characterized as slow moving and expensive, critical service parts tend

to incur significant inventory holding costs. Moreover, due to their specific nature, the

procurement lead-times of critical parts are usually long. Consequently, in many cases,

companies have to stock critical service parts to maintain the availability of the system.

Therefore, for a company or service provider supporting broad installed base of critical

equipments, carrying a large and diverse portfolio of expensive and slow moving items

results in substantial inventory costs.

The main tradeoff in the management of critical service parts inventories should be

more clear now. On the one hand, high downtime costs of the critical equipment and

long procurement lead times require to stock critical parts to guarantee availability of the

system. On the other hand, maintaining high inventory levels of such slow moving and

expensive items results in high holding costs. Hence, striking the right balance between

the two ends of the tradeoff brings a significant competitive advantage for a company

conducting service-centric operations.

Most of the available models in the inventory control literature assume stationary

demand. This is mainly because the assumption of stationarity yields some nice math-

ematical properties making the analysis of the inventory system relatively easier. The

models developed under stationary demand assumption remain fairly practical for items

with nonstationary demand as long as the demand rate can be forecasted from historical

data and the life-cycle of the item is long enough. That is, the demand rate is re-estimated

in periodic intervals and policy parameters are updated accordingly.

However, lack of historical data and nonstationarity of demand is a fundamental prob-

lem in inventory management of service parts. Shortened product life-cycles, increased

product quality and diversity make service parts demand low and nonstationary (Fortuin
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and Martin, 1999; Cohen and Lee, 1990). Since demand is slow moving, the data points

to be used for forecast updates are scarce. When demand data is scarce and intermittent,

standard black-box forecasting methods usually lag behind the changes in demand rate

and yield biased estimates (Shale et al., 2006). Consequently, using stationary inventory

control models combined with standard forecasting methods based on historical data are

usually not very effective for service parts. The option to increase the safety stocks to

hedge against poor forecasts is either very costly or infeasible since most of the critical

parts are expensive.

In order to cope with these difficulties, companies keep track of their installed base to

collect more information about the changes in demand rate. In principle, the information

obtained from installed base tracking can be used to identify a certain pattern for the

demand rate of a particular service part. For example, the demand for a specific service

part is correlated with the number of equipment in the installed base. Similarly, age,

operating conditions, intensity of use and geographical location of the equipment in the

installed base affect the demand for the service part directly. The idea of installed base

tracking is therefore to exploit these dependencies and to identify the underlying demand

pattern for the service part.

The advantage of such approach is that the inventory control would become proactive

rather than reactive to the changes in demand rate. For example, when a demand rate

of a critical service part is expected to change at certain time points, one can device an

inventory control policy based on these expectations. Such a policy would build-up or

run-down inventories according to the nonstationarity in demand.

For critical service parts, there are not many models in the inventory literature with

nonstationary demand. The models incorporating nonstationarity are mostly periodic

review models and mainly suitable for items for which historical data is not scarce. More-

over, for critical service parts, in general, continuous review policies are more suitable

since they allow tighter monitoring than periodic review policies.

In this study, we try to fill this gap by proposing a continuous review inventory model

specifically for critical service parts and incorporating nonstationarity in demand. How-

ever, incorporating nonstationary demand in continuous review control models is math-

ematically challenging. Even the exact analysis of relatively simple models with linear
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changes in demand rate is very tedious or intractable. Therefore, in developing the model

we limit ourselves to a relatively simple form of nonstationarity. That is, we analyze a case

with single drop in demand rate which resembles an obsolescence situation in practice.

We define obsolescence as a single drop in demand rate that is not necessarily to

zero. In other words, even after obsolescence occurs the demand might not disappear

completely. As such, our definition of obsolescence is more general compared to the

conventional definition of obsolescence implying that the demand drops to zero and the

inventory is not salable anymore. Since service parts are slow moving items, a large drop

in demand rate increases the inventory holding costs significantly and virtually creates

an obsolescence situation. Hence, we prefer to use a broader definition of obsolescence.

In practice, many critical service parts are subject to this type of obsolescence due to

contract expirations, generation upgrades or relocations of installed base.

When there is such a large drop in demand rate it results in excess inventories. Since

most of the critical service parts are very specific products it is in general difficult to

salvage the excess stock of these specific products. Consequently, most of the excess in-

ventories end up as obsolete stocks increasing holding costs and waiting to be scrapped

at a great expense. These issues were first brought to our attention during the meet-

ings at a Netherlands based knowledge platform called Service Logistics Forum Research.

At those meetings, occasionally, the logistics managers dealing with critical service parts

were complaining about obsolescence problem and looking for methods that help to min-

imize obsolete stocks. Hence, with this research, we also aim to bring guidance to those

managers in their decision making.

In this study, we provide a practical policy for slow movers taking into account obsoles-

cence and give insights about the interplay between backordering costs and obsolescence

related holding costs. To this end, we incorporate obsolescence into the one-for-one policy

and propose a transition control policy allowing early adaptation of stock levels to reduce

obsolete stocks while balancing availability.
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1.3. Random Deal Offerings

Temporary price cuts offered by suppliers to retailers are prevalent in practice. Such form

of trade promotions often referred to as deals in marketing literature are characterized as

short-term price cuts which can occur with or without prior announcement. After a deal

is over the price goes back to its previous level.

Depending on market fluctuations, inventory holding costs, seasonal effects, shifts in

consumer taste and many other factors the degree and frequency of deals can change

significantly. Therefore, for suppliers, deals are instrumental in liquidating short term in-

ventory, increasing cashflow or market share, or influencing retailers’ promotion activities.

Blattberg et al. (1981) suggest that one of the main motivations behind price discounts is

to transfer inventory holding costs to consumers. Ailawadi et al. (1999) demonstrate that

well-designed trade promotions can influence the retailer’s selling activity and coordinate

the channel. As a result, a supplier might increase its profits to levels which are not

achievable by fixed prices.

On the retailers side, deal offerings necessitate reconsideration of their inventory con-

trol policy. One reason is the well known side effect of trade promotions called forward

buying, i.e., retailers stockpile by taking the advantage of discounted price (Blattberg and

Levin, 1987). By forward buying retailers basically trading off the inventory carrying costs

with savings obtained by purchasing at the reduced price. In order to exploit occasional

deal offerings, some retailers even invest in extra stocking space to stock excess inventory

bought during the deal periods (Moinzadeh, 1997).

For a retailer decided to practice forward buying, finding the right balance between the

extra inventory carrying costs and the savings by the reduced price is crucial. Otherwise,

excess inventories build up and that might be detrimental rather than beneficial. The

balance is especially more delicate for goods that are perishable, expensive or subject to

sudden obsolescence. Thus, a forward buying retailer shall find the right answers to the

questions of how much to order in a deal period to take advantage of the low price and

how the regular orders should be adjusted.

Deals do not always have to be initiated by the supplier. Silver et al. (1993) provides a

practical example where occasional peaks in otherwise stable demand for a certain product
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urge the company to place special orders to its supplier besides the regular orders. As a

result, large demands are usually met directly from the supplier via special orders and do

not affect the stock. In case, the supplier gives quantity discounts and special orders are

large enough to receive a discount then the special order occasions can be used to order

extra units from the discounted price. Consequently, how much extra should be ordered

and what should be the regular order size are two questions to be answered.

There is a substantial literature on inventory systems with fluctuating prices or occa-

sional deal offerings. The discussion in the studies with periodic review models mostly

centered around the optimal policy structure when the prices or in general the envi-

ronment is fluctuating (Golabi, 1985; Özekici and Parlar, 1999). Whereas the focus in

continuous review models is mostly on the analysis of the operating characteristics and

the computation of the optimal policy parameters concerning stocking and replenishment

decisions (Hurter and Kaminsky, 1968; Silver et al., 1993; Moinzadeh, 1997).

Most of the continuous review models with random deal offerings assume that stock-

outs are not allowed. Since deal offerings already complicate the analysis considerably

one can argue that the assumption of no stockouts significantly decreases the mathemat-

ical tedium. However, occasional stockouts are prevalent in many real inventory systems.

Moreover, for a system with deal offerings it is intuitive to expect a tradeoff between

stockout penalties and the savings obtained by postponing the purchasing decision until

the next deal arrives.

In general, many inventory models assume two extreme scenarios when the system

is out of stock. Either all demand arriving during the stockout period is backordered

(full backordering) or all demand arriving during the stockout period is lost (lost sales).

However, in many practical situations backorders and lost sales are mixed. In the liter-

ature, this type of backordering structure commonly referred to as partial backordering,

i.e., during a stockout period a fraction of demand can be backordered and the rest is

lost.

Moinzadeh (1989) states that partial backorders can be observed in two situations: i)

some of the customers are highly loyal compared to others and they wait when the system

is out of stock ii) some customers have a higher priority compared to others and they are

replenished immediately at an expense (e.g., emergency replenishment) when the system
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is out of stock. Here the extra cost of replenishing the high priority customers during a

stockout can be interpreted as the lost sales cost.

Kim and Park (1985) show that for the systems where backorders and lost sales are

mixed, the assumptions of full backordering and lost sales significantly increase the in-

ventory costs. Thus, assuming partial backorders not only leads to a more general model

but also leads to significant cost savings in case the underlying system is not close to one

of the two extreme scenarios.

However, partial backorders complicates the analysis of the inventory policies. Even for

relatively simple policies like (S− 1, S) the handling of partial backorders is not straight-

forward (Moinzadeh, 1989). The main difficulty in handling partial backorders emerges

from the lost sales. Under lost sales the simple relation between the inventory position,

the net inventory level and demand during lead time does no longer hold. Thus, espe-

cially for stochastic demand case, the analysis of the policies and operating characteristics

becomes much more difficult.

To our knowledge there is no study in the literature assuming partial backorders for

a system where supplier offers price discounts. Feng and Sun (2001) consider full back-

ordering in a continuous review inventory system facing stochastic demand and random

deal offerings. However, the focus of their study is on computation of the optimal policy

parameters rather than the tradeoff between backordering costs and savings by waiting

for deals by allowing backorders.

In this study, we incorporate partial backorders to a continuous review inventory

system with random deal offerings. A deal is a discount over the unit purchasing price

of the item. Our aim is to provide relatively simple formulas to calculate the optimal

policy parameters and give insights about the impact of partial backorders on policy

parameters and costs in a system facing random deal offerings. As we discussed above

the analysis of the partial backorders already complicates the analysis even for inventory

systems without deals offerings. Thus, in this study, we confined ourselves to a relatively

simple assumption of constant demand rate. Furthermore, we assume that the deals arrive

according to a Poisson process and they are instantaneous (i.e., deal duration is zero). As

such, we extend the model offered by Moinzadeh (1997) by allowing partial backorders.
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1.4. Outline

In Chapter 2, we analyze a single location inventory system of a service part with Poisson

demand where the demand rate drops to a lower level at a known future time. The

inventory system is controlled according to a one-for-one replenishment policy with fixed

lead time and full backordering. Adaptation to the lower demand rate is achieved by

reducing the base stock level in advance and letting the demand take away the excess

stocks.

Our aim in this chapter is to provide a first-cut, qualitative understanding of the

impact of the timing of the policy change on obsolescence costs. As such, we assume that

pre- and post-obsolescence base stock levels are fixed and the only decision parameter is

the time to reduce the base stock level from high to low.

We showed that the timing of the base stock level primarily determines the tradeoff

between backordering penalties and obsolescence costs. We propose an approximate so-

lution for the optimal time to shift to the lower base stock level minimizing the expected

total cost during the transient period. We found that an advance policy change results in

significant cost savings and our model yields near optimal expected total costs when the

decision parameter is only the timing of the shift.

In Chapter 3, we consider the same inventory system as in Chapter 2 and propose a

three parameter policy allowing not only to control the shift time but also the base stock

levels. We carried an exact analysis of the system under the three parameter policy. For

the special case of identical base stock levels, we show that the optimal base stock level

can be calculated from a critical ratio inequality. For different base stock levels, we derive

the exact expression for the expected total discounted cost function by partly relying on

the Fast Fourier Transform method and suggest a numerical optimization procedure to

find the optimal values of the policy parameters. Our results suggest that the policy

change option leads to pronounced cost savings especially when obsolescence requires a

relatively large adjustment in base stock level. We find that ignoring obsolescence in the

control policy increases costs significantly. Moreover, when obsolescence can be foreseen,

early adaptation of base stock levels can lead to important savings.
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We do not pursue a comparison between the policies considered in Chapter 2 and

Chapter 3. The main reason is that the policy discussed in Chapter 2 is a special case

of the policy proposed in Chapter 3. Moreover, in Chapter 3, we conduct an extensive

numerical experiment to understand the behavior of optimal policy parameters and bench-

mark the performance of the three parameter policy. In those experiments, we observe

that the interaction between the three policy parameters, i.e., base stock levels and the

policy change time, are quite complex. Therefore, we do not think that investigating the

performance of a single parameter policy vis-á-vis the three parameter policy would yield

interesting insights. Furthermore, such comparison is impractical and limited for the cost

criteria are different for both policies. In Chapter 2, we use expected total cost criterion

whereas in Chapter 3, we use expected total discounted cost criterion. The reason for the

difference is that in Chapter 2 we are dealing with a finite horizon problem where using

a total cost function provides better tractability. Moreover, in Chapter 2, assuming that

the total cost is not discounted throughout the finite horizon seems to be a reasonable

assumption for the length of the finite horizon is not too long as it is a transient period.

In Chapter 4, we consider a single item, single location continuous review inventory

system with random deal offerings. We extend the model by Moinzadeh (1997) by letting

the reorder point for regular list replenishment to be nonpositive. In other words, we allow

the net inventory level to drop below zero while waiting for a deal. Moreover, we assume

that when the system is out of stock a fraction of demand can be backordered and the

rest is lost, i.e., partial backordering. We derive the exact expressions for operating char-

acteristics of the model and the equations to calculate the optimal policy parameters. We

provide qualitative results about the relation between the optimal solution and the sys-

tem parameters, and demonstrate that allowing backorders in a random deal environment

might lead to important cost savings.

In Chapter 5, we summarize our findings and conclude.
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Service Parts & Obsolescence





Chapter 2

An Inventory Model for Slow

Moving Items Subject to

Obsolescence∗

Abstract

In this chapter, we consider a continuous review inventory system of a slow moving

item for which the demand rate drops to a lower level at a pre-determined time.

Inventory system is controlled according to one-for-one replenishment policy with

fixed lead time. Adaptation to the lower demand rate is achieved by changing the

control policy in advance and letting the demand take away the excess stocks. We

show that the timing of the control policy change primarily determines the tradeoff

between backordering penalties and obsolescence costs. We propose an approximate

solution for the optimal time to shift to the new control policy minimizing the

expected total cost during the transient period. We find that the advance policy

change results in significant cost savings and our model yields near optimal expected

total costs.

2.1. Introduction

In Chapter 1, we discussed about the challenges in managing the inventories of critical

service parts and the need for the control policies taking into account the changes in

demand rate. Moreover, we briefly introduced our motivation to study the inventory

management under obsolescence, a special form of nonstationarity in demand rate, for

critical service parts. In this chapter and the next one, we will elaborate on this problem.

∗This chapter is based on Pinçe and Dekker (2009)
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As we mentioned in Section 1.2, one of the main challenges in the inventory control of

critical service parts is to minimize obsolete stocks while balancing availability. Typically,

companies try to mitigate their downtime risk by outsourcing parts management, repair

and maintenance activities to a service provider. Since availability of the equipment is

crucial for companies’ operations, usually service contracts include high penalties for the

provider in case it fails to fulfill the specified service target. Moreover, in a competitive

service market, occasional stockouts can be detrimental to service provider’s business due

to loss of good will.

On the other hand, service parts are very specific, high-tech products. When there

is a sudden drop in demand rate due to the changes in customer’s operations or service

preferences, the resulting excess parts are difficult to dispose and likely to become obsolete.

Although service providers might try to dispose them via service promotions or secondary

markets, the inherent specificity of service parts usually results in low disposal rates and

high value loss.

Another example comes from a mainframe computer manufacturer providing after

sales services for its customers through different type of service contracts. A manager at

the company reports that the decision to relocate or remove the excess service parts often

comes too late after a service contract expires. Consequently, due to the drop in demand

rate, excess inventories increase holding costs, and usually end up as obsolete stocks to

be scrapped at a great value loss. One of the main reasons behind the excess parts is

disregarding the contract expiration dates in stocking decisions. In other words, the stock

control policy used by the company simply ignores the upcoming drop in demand rate due

to contract expirations, and therefore, results in delayed stock adjustments and higher

chance of obsolescence.

Companies realizing these facts start keeping track of the changes in their own or

customers’ base of installed products (installed base) to trace customers and operating

units more closely and to react to the changes in demand rate as early as possible. A

recent study by Jalil et al. (2009) revealed that at IBM, tracking of the installed base for

spare parts can lead to savings up to 58% in transportation and inventory holding costs.

When contextual information is combined with installed base tracking, the timing

and the size of the shift in demand rate are either known in advance or can be estimated
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within a reasonable accuracy. In practice, such shifts typically occur when the size of

the installed base at certain geographical location changes. For example, when a cus-

tomer announces that it is going to relocate its production equipments, after sales service

provider anticipates a change in demand for parts between the locations. Similarly, when

a customer decides to upgrade its machinery, the old generation equipments usually leave

the installed base of the service provider or manufacturer as a result of discarding or

salvaging.

When a sudden change in demand rate can be foreseen, timely adaptation of the base

stock levels is crucial for optimal stock control. In such cases, upward jumps in demand

rate can be handled relatively easily by giving advance or emergency replenishment orders

to be delivered before the jump occurs. However, adaptation to the drop in demand rate

is more difficult since running down of excess stocks depends on the demand process. For

example, when a certain proportion of the installed base is relocated, service providers

usually suffer from excess inventories remaining at the previous location. When relocation

of spare parts with the installed base is not feasible, it becomes much more difficult to

get rid of the excess stocks due to the diminished demand. Consequently, in many cases

these excess stocks end up as obsolete stocks.

Generation upgrades may result in a similar problem as well. For example, when

an airline announces the selling of their old generation aircrafts to the countries outside

Europe, service providers of this airline expect a sudden drop in demand for relevant parts

at their service locations in Europe. In such cases, if a prior action is not taken to adjust

the base stock levels then the excess stocks might become obsolete.

Motivated by these examples, in this chapter, our aim is to provide a practical policy

for slow movers incorporating obsolescence and allowing timely adaptation of stock levels

to reduce obsolete stocks while balancing availability.

We assume that the time and the size of obsolescence can be predicted with a high

accuracy. As discussed above, in practice, such accurate predictions are possible when

a customer announces that it will not extend the service contract for another period,

relocate its equipment outside the serviceable area or upgrade it to a newer generation.

In all of these scenarios, service provider anticipates a drop in demand rate of the service

parts at a predictable time point.
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Even when the timing and the size of the drop is known exactly, when to change the

inventory control policy to minimize obsolete stocks without staking availability remain

as a challenging question. If the adaptation is too early before the drop occurs then the

risk of backordering increases as a result of lower base stock level. Since availability is

crucial for many companies operations, stockouts can be detrimental to their businesses.

On the other hand, if the adaptation is too late or postponed after the drop then the

costs associated with obsolescence increase.

We address this issue by focusing on a continuous review inventory system of a slow

moving item for which the demand rate drops to a lower level at a known future time. We

assume that the inventory system is controlled according to a one-for-one replenishment

policy with fixed lead time. Adaptation to the lower demand rate is achieved by changing

the control policy in advance and letting the demand process take away the excess stocks.

Our goal is to find the optimal time for a policy change and to investigate its impacts on

the costs incurred during the transient period. We assume that pre- and post-obsolescence

base stock levels are fixed to their steady state levels and the only decision variable is

the time to shift the base stock level from high to low. Thus, in this chapter, our aim

is to provide a first-cut, qualitative understanding of the impact of policy change time

on transient period costs. We demonstrate the interplay between obsolescence costs and

stockout penalties during this period. In Chapter 3, we will relax this assumption and

consider a more general three parameter policy where not only the policy change time

but also pre- and post-obsolescence base stock levels are the decision variables.

Our work is related to the inventory management models considering obsolescence.

Hadley and Whitin (1962) were early contributors in this area. They analyzed a finite

horizon periodic review inventory system in which the mean demand rate may vary in

every period and there is a finite number of possible obsolescence dates. Pierskalla (1969)

studied a similar problem with independent and identically distributed demands and zero

lead times.

Brown et al. (1964) offered a more general model for obsolescence in which the demand

in each period is generated according to an underlying Markov chain and the state proba-

bilities are updated in Bayesian fashion. Song and Zipkin (1996) also employed a similar

Markovian submodel to reflect the processes leading to obsolescence by assuming that the
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current state of the process is completely observable. They found that the obsolescence

has substantial effects on inventory costs and these effects cannot be remedied by simple

parameter adjustments.

Masters (1991), Joglekar and Lee (1993), David and Mehrez (1995) considered the

EOQ model in which the time to obsolescence is exponentially distributed.

Relative to some of the models available in the obsolescence literature, our model

makes the simplifying assumption that the time of obsolescence is deterministic. Although

this seems to be a reasonable assumption in the context discussed above, nevertheless, it

might be violated if there is gradual obsolescence. However, different than those in the

obsolescence literature, we propose a simpler, more practical control policy incorporating

obsolescence into a one-for-one policy that is commonly used for slow moving inventories.

Another stream of literature that is related to our study consists of the so called excess

stock disposal models. In these models the problem is to determine the economic retention

quantity or the time period given the excess stock of an inventory item. Earlier works by

Simpson (1955), Mohan and Garg (1961) and Hart (1973) investigated the excess inven-

tory disposal problem for deterministic demand case with the possibility of obsolescence.

Stulman (1989) considered continuous review inventory system with stochastic demand

but without obsolescence. Rosenfield (1989) investigated the similar problem for slow

moving items by including perishability or obsolescence but without stockout penalties.

In all of these studies it is assumed that the excess stocks are a result of over purchasing

or a drop in demand rate in the past. Therefore, the inventory level is found higher than

the maximum level at time zero and the excess inventory is reduced by first disposing, and

then letting the demand take away the retained quantity. Although some of the models

mentioned above deal with natural attrition of stocks and obsolescence, our model funda-

mentally differs from these studies in its objective to minimize excess stocks before they

occur. As such, different than the excess stock disposal models, we let the demand to

take away the stocks before the excess occurs.

In another related study, Teunter and Haneveld (2002) consider the inventory control

of a service part in the final phase. After time zero, the price of the part increases since

its production ends and the Poisson demand rate drops to zero at a deterministic time

point. They propose an ordering policy consisting of initial order-up-to level to take the
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advantage of low price at time zero and a subsequent series of order-up-to levels gradually

decreasing as the obsolescence time approaches. Their objective is to minimize the total

undiscounted cost incurred during the final phase under the assumptions that all obsolete

stock can be disposed of and backorders occurring within one lead time before obsolescence

are lost. Our model mainly differs from theirs in that partial obsolescence is allowed, i.e.,

demand does not necessarily drop to zero, and all backorders are fulfilled regardless of

obsolescence time.

The remainder of this chapter is organized as follows: In Section 2.2, we introduce the

model and the transition control policy. In Section 2.3, we give the expressions for the

operating characteristics of the transient period and the objective function, and discuss

their general behaviors. In Section 2.4, we discuss the results of our numerical study. In

Section 2.5, we conclude and provide some future research paths. All proofs are provided

in the Appendix 2.6.

2.2. Model

We consider a single item, single location continuous review inventory system for slow

moving items with nonstationary demand process and fixed lead times. It is assumed

that the demand follows a Poisson process with rate λ0 up to a pre-determined time point

T after which the demand rate drops to a lower state λ1 and stays there (i.e. λ0 > λ1 ≥ 0).

The inventory control policy is based on the (S − 1, S) policy which is commonly used

for high cost low demand items (Hadley and Whitin, 1963). According to this policy

whenever a demand occurs a replenishment order is placed.

We denote the steady state optimal base stock levels for demand rates λ0 and λ1

with S0 and S1, respectively. They are calculated with the standard formulas given in

Hadley and Whitin (1963). We assume that the shift in demand rate is downward (i.e.

S0 > S1 ≥ 0). In order to adapt to the new base stock level, we employ the following

transition control policy based on the inventory position (the net inventory level plus the

quantity on order):
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Policy: Up to time T − X a replenishment order of size one is placed whenever the

inventory position drops to the reorder level S0 − 1. After time T − X a replenishment

order of size one is placed whenever the inventory position drops to the reorder level S1−1.

In other words, we use (S0 − 1, S0) policy until time T − X and (S1 − 1, S1) policy

thereafter. Observe that according to this control policy adaptation to the new base stock

level is achieved by not giving N (= S0 − S1) consecutive orders starting at X ≥ 0 time

units earlier from time T . Hence, we let the demand take away N excess stocks starting

from T − X. Our goal is to find the optimal time to initiate the excess stock removal

process.

The rationale behind the proposed policy is that once the obsolescence date is known

with certainty, early adaptation of base stock level should tradeoff the risk of backordering

and obsolescence, and decrease the number of excess or obsolete stocks. We do not

claim that the transition control policy is optimal. However, as we will demonstrate in

our numerical experiments, it indeed leads to significant reduction on obsolescence costs

compared to policy without an early adaptation (X = 0).

Figure 2.1 shows a possible realization of the net inventory level process {IL(t) : t ≥
0} and the corresponding inventory position process {IP (t) : t ≥ 0}. Note that the

trajectories of these processes can be analyzed in three different periods. The first period

starts at time zero and ends at time T −X. Since a replenishment order is placed upon

each demand arrival the inventory position is fixed at S0 during the first period. We

assume that T −X is long enough such that IL(t) is in steady state. This is reasonable

since life cycles of many products requiring parts replacements and service support are

very long. For example, the average useful life time of a commercial aircraft may last

up to 30 years. Thus, the inventory system of a spare part supporting such product has

enough time to reach to steady state before the obsolescence occurs.

The second period begins at time T − X and the excess stocks are removed by not

giving replenishment orders for N consecutive demands. Hence, the inventory position

decreases by one at every demand arrival until it hits the target base stock level S1. In

Figure 2.1, examples of stock removal instances are marked by circles on the inventory level

process. If the inventory position process hits S1 before time T then the replenishment

orders are placed again whenever a demand occurs. Thus, the end of the second period
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Figure 2.1: Possible realization of IL(t) and IP (t) with stock removals

is the random time point greater or equal to T at which the inventory position is equal

to S1 and all outstanding orders given before time T have arrived (see Figure 2.1).

Note that, the second period is the transient period in which the inventory system

adapts itself to the anticipated obsolescence. Since all orders given before time T are

replenished before the second period ends, the third period can be seen as a separate

inventory system with demand rate λ1 ≥ 0. If λ1 is positive then we assume that the net

inventory level process during the third period can be described by the stationary process.

In many practical situations relocation of installed base or generation upgrades might

result in such partial obsolescence situations where the demand is severely diminished

but not necessarily vanished. In that case, the third period is similar to the first one but

the system is controlled according to (S1−1, S1) policy. Clearly, in case of full obsolescence

(λ1 = 0) there is no third period.

Our main goal is to find the optimal X minimizing the total expected cost incurred in

the second (transient) period. As we will demonstrate in the numerical section, the tran-

sient period costs are significant since they include the costs related with obsolescence.

Unless a prior action is taken, partial obsolescence (λ1 > 0) results in excess stock situ-

ations whereas full obsolescence (λ1 = 0) results in obsolete stocks. As discussed earlier,

for many slow movers the costs due to obsolescence are very high under both scenarios.
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Hence, in the sequel, we only focus on the analysis of the transient period since savings

over obsolescence costs can be achieved only within this period.

Since fixed costs are irrelevant for optimization under one-for-one replenishment policy,

we only consider holding and backordering costs incurred per unit per time, denoted by h

and π respectively. In addition to that the unit obsolescence/relocation cost co is incurred

per remaining on hand inventory after T if full obsolescence occurs (λ1 = 0).

In the next section, we explain the transient analysis of the net inventory level process,

give the expressions for the operating characteristics of the second period and state the

optimization problem.

2.3. Operating Characteristics of the Second Period

Our model differs from the standard inventory models due to removal of excess stocks

and nonhomogenous demand process. These differences necessitate the transient analysis

of the net inventory level process. Unfortunately, outstanding orders before time T −X

complicate the analysis considerably. Since the complication results from outstanding

orders, conditioning on the net inventory level at time T −X or its expectation does not

yield closed form expressions for the operating characteristics. In order to overcome this

analytical difficulty and provide approximate formulas for operating characteristics that

can be calculated easily, we assume that the net inventory level is equal to S0 at time

T −X. We can justify this assumption by appealing to the characteristics of the problem.

For slow movers, the base stock levels are usually not very high due to low demand rates

and high opportunity costs. On the other hand, due to high backordering penalties the

net inventory level process mostly stays in the positive half-plane. Therefore, the average

net inventory level at any time is not very far from S0. Indeed, for all the instances

used in our numerical experiments, which are generated to reflect real life scenarios,

the average S0 is found to be 3.24 with maximum of 10. For the same instances, the

average difference between S0 and E(IL(T − X)) is found to be 1.1 with maximum of

5. Consequently, we observed that our approximate model performs quite satisfactorily

compared to simulation. The effects of our assumptions will be discussed in more detail

under Section 2.3.4. Moreover, as we will demonstrate in the numerical section, the
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optimal X found by using our approximate formulas yields near optimal expected total

costs. Hence, we conclude that this assumption does not change the main implications of

our study.

The analysis of the net inventory level process is independent of the time axis due to

Poisson demand arrivals. Therefore, in the sequel, we shift the beginning of the second

period from T −X to 0 for the sake of clarity. Let τi, i = 1, . . . , N denote the interarrival

times between not replenished demand instances when the arrival rate is λ0. We refer to

Ak :=
∑k

i=1 τi as the arrival time of the kth demand before the drop occurs.

Figure 2.2: Possible realization of IL(t) and IP (t) during 2nd period (AN > X)

Figure 2.2 shows a realization in which the new base stock level S1 (= S0−N) is hit by

the net inventory level process after the drop in demand rate occurs at time X. Observe

that, as a result of our assumption about the outstanding orders (IL(T − X) = S0),

the net inventory level process is tantamount to the inventory position process until the

N + 1st demand arrives. In the figure, ϕj, j = 3, . . . , N denote the interarrival times

between not replenished demands arriving after time X. Hence, ϕjs are exponentially

distributed with mean λ1. Note that, in Figure 2.2, the second period ends immediately

after the arrival of the Nth demand since the inventory position is equal to S1 and there

are no outstanding orders before time X. On the other hand, if S1 is reached before time

X then replenishment orders are placed again for every demand arriving thereafter. A
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realization of this scenario can be seen in Figure 2.3. Observe that, in Figure 2.3, the

second period ends at the moment the last order given between AN and X is replenished.

Figure 2.3: Possible realization of IL(t) and IP (t) during 2nd period (AN ≤ X)

From Figure 2.2 and Figure 2.3, it is clear that the net inventory level process in the

second period can be analyzed in two different phases. The first one is the stock removal

phase. This is the time period in which the excess stocks are taken away by the demand.

Thus, the stock removal phase starts at the beginning of the second period and ends

when the Nth demand arrives. The second one is the regular operation phase. This is

the time period in which the replenishment orders are placed again upon every demand

arrival since all of the excess stocks are removed before the drop in demand rate occurs.

Hence, the regular operation phase starts at AN and ends when the second period ends

(see Figure 2.3). Note that the regular operation phase of the second period exists if and

only if the Nth excess stock is removed before time X (i.e. AN ≤ X).

We begin our analysis with the calculation of the expected total inventory carried

during the second period denoted by E[OH]. Observe that the random variable OH

depends on the arrival time of the kth demand during the stock removal phase, and

therefore it can be calculated by conditioning on Ak, k = 1, . . . , N . If the arrival time

of the first demand A1 is greater than X then the second period ends at the moment

Nth demand arrives. Thus, OH is equal to the inventory carried until time X (= S0X)

plus another random variable OH
′
1 (=

∑N
i=1(S0 − i + 1)ϕi) representing the inventory
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carried from time X until the second period ends. Note that if the stock removal phase

extends after time X then the trajectory of IL(t) should be analyzed separately for the

periods before and after time X due to different demand rates. Hence, the need for an

additional random variable OH
′
1. On the other hand, if A1 is less than or equal to X then

OH is equal to the inventory carried until the first demand arrives (= S0τ1) plus another

random variable OH2. Essentially, OH2 is similar to OH but it depends on A2 and the

new inventory level S0 − 1. Put more formally,

OH =

{
S0X +OH

′
1 if A1 > X

S0τ1 +OH2 if A1 ≤ X
(2.1)

If we continue in this fashion for k = 2, 3, . . . , N when N ≥ 2 then we come up with the

following recursive equations to calculate the total inventory carried during the second

period:

OHk =

⎧⎨⎩
(S0 − k + 1) (X − Ak−1) +OH

′
k if Ak−1 ≤ X, Ak > X

(S0 − k + 1)τk +OHk+1 if Ak ≤ X

0 o.w.

(2.2)

where

OH
′
k =

N∑
i=k

(S0 − i+ 1)ϕi, k = 1, . . . , N. (2.3)

represents the inventory carried from time X until the end of the stock removal phase

when N − k + 1 stocks are yet to be removed.

The recursive structure of equations (2.1) and (2.2) gives the positive area under the

net inventory level process depending on whether the kth excess stock is removed before

time X or not. For example, if all excess stock is not removed before time X (i.e. Ak > X

for some k) then equations (2.1) and (2.2) give the area under a similar scenario depicted

in Figure 2.2. Otherwise, they give the area similar to the one shown in Figure 2.3.

Note that the equations (2.1)-(2.3) mainly generate the expressions for the total in-

ventory carried during the stock removal phase. Since no orders are given in this phase,

the equations are independent of the lead time. The total inventory carried in the regu-

lar operation phase is represented implicitly in those equations with the random variable

OHN+1. The shaded region in Figure 2.3 shows a possible realization of OHN+1. We will

analyze the regular operation phase in detail in the sequel.
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Let p(n;λ) = e−λλn/n!, n = 0, 1, 2, ... be the pdf of Poisson distribution with pa-

rameter λ ≥ 0 and denote its cdf with P (n;λ) =
∑n

k=0 p(k;λ). Also, let 1(·) denote the

indicator function. Taking expectations of (2.1) and (2.2), and exploiting the recurrence

structure, we find E [OH] as follows:

E[OH] = F(X) + E[OHN+11(AN ≤ X)] (2.4)

where

F(X) := λ−1
0 N

[
S0 − N − 1

2

]
+

λ0 − λ1

λ0λ1

N−1∑
i=0

(S0 − i)P (i;λ0X), λ1 > 0 (2.5)

In equation (2.4), F(X) represents the expected inventory carried during the stock

removal phase whereas E[OHN+11(AN ≤ X)] is the expected inventory carried during

the regular operation phase. Note that, OHN+1 exists only if the new base stock level is

reached before X (i.e. AN ≤ X).

So far we derived the closed form expressions only for the expected inventory carried

during the stock removal phase. In the sequel, we provide an exact transient analysis of

the inventory level process during the regular operation phase and derive the expressions

for the operating characteristics of this phase.

2.3.1 Analysis of the Regular Operation Phase

We want to compute the expected on hand carried and the expected time weighted back-

orders incurred in the regular phase which starts at time AN(≤ X) and lasts until the

end of the second period. To compute these operating characteristics we represent the

inventory level process in terms of the demand process. Since we are only interested in

the time period after AN , in the sequel, we shift the time axis from AN to 0 for clarity.

Hence, the drop in demand rate occurs at X −AN time units after the regular operation

phase begins (see Figure 2.3). Thus, for t ≥ 0 the inventory level IL(t) conditional on

AN can be given as:

IL(t)|AN =

{
S1 −D(t) if t ≤ L

S1 − (D(t)−D(t− L)) if t > L
(2.6)
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where {D(t) : t ≥ 0} is a nonhomogenous Poisson process with intensity function Λ(t) :

[0,∞) → [0,∞) given by

Λ(t) =

∫ t

0

λ(z)dz (2.7)

with arrival rate

λ(z) =

{
λ0 if z ≤ X − AN

λ1 if z > X − AN
(2.8)

Substituting (2.8) in (2.7) yields

Λ(t) =

{
λ0t if t ≤ X − AN

(λ0 − λ1)(X − AN) + λ1t if t > X − AN
(2.9)

Equation (2.6) is the representation of the net inventory level at any time point based

on the demand up to time t, the lead time demand and inventory position. Recall that

the inventory position remains constant at the level S1 during the regular operation phase

since an order is placed each time there is a demand. Therefore, if t ≤ L then IL(t) is

equal to the inventory position minus the total demand up to time t. Whereas, if t > L

then IL(t) is equal to the inventory position minus the lead time demand.

The end of the regular operation phase is a random time point depending on the

inventory level at time X. For example, if the net inventory level at time X is equal

to S0 − N then there are no outstanding orders and the regular operation phase ends.

Otherwise, it ends when all outstanding orders given between X−L andX are replenished

up to time X + L. However, dealing with the random end time complicates the analysis

beyond tractability. Hence, we assume that the regular operation phase always ends at

time X+L. This approximation simply results in the overestimation of the expected total

cost due to extended calculation period but does not change the optimal X drastically

since the shift in the expected total cost is mainly upwards.

We start with the computation of E[OHN+11(AN ≤ X)] by conditioning on AN such

that,

E[OHN+11(AN ≤ X)] =

∫ X

0

E[OHN+11(AN ≤ X)|AN = s]fAN
(s) ds (2.10)

where

fAN
(s) =

λ0e
−λ0s(λ0s)

N−1

(N − 1)!
, s ≥ 0.
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is the pdf of the Erlang distribution with parameters N and λ0.

We are interested in expected on hand carried from time AN until X + L. Since the

time axis is shifted, the expected inventory carried during this period is the positive area

under the expected trajectory of the net inventory level process from 0 to X − AN + L.

Thus, for a given AN this area can be computed as follows:

E[OHN+11(AN ≤ X)|AN = s] =

∫ X−s+L

0

E
[
(IL(t))+|AN = s

]
dt (2.11)

From (2.6),

E
[
(IL(t))+|AN = s

]
=

S1−1∑
n=0

(S1 − n)P (D(t) = n)1(t ≤ L)

+

S1−1∑
n=0

(S1 − n)P (D(t)−D(t− L) = n)1(t > L) (2.12)

Substituting (2.12) in (2.11) yields

E[OHN+11(AN ≤ X)|AN = s] =

S1−1∑
n=0

(S1 − n)

[∫ L

0

e−Λ(t)(Λ(t))n

n!
dt

+

∫ X−s+L

L

e−[Λ(t)−Λ(t− L)] (Λ(t)− Λ(t− L))n

n!
dt

]
(2.13)

and using the result in (2.10) gives that,

E[OHN+11(AN ≤ X)] =

S1−1∑
n=0

(S1 − n)

∫ X

0

[∫ L

0

e−Λ(t)(Λ(t))n

n!
dt

+

∫ X−s+L

L

e−[Λ(t)−Λ(t− L)] (Λ(t)− Λ(t− L))n

n!
dt

]
fAN

(s) ds (2.14)

We define the following functions,

bN(r;n, ρ) :=

(
r + n− 1

n− 1

)
ρn(1− ρ)r

and

ξ(r, n) := np(r + n;λ0X)

(
r + n

n

) r∑
k=0

(
r

k

)
(−1)k

n+ k

(
X − L

X

)n+k
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where r ∈ {0, 1, 2, ...}, n ∈ {1, 2, ...} and ρ ∈ R. Moreover, we let P̄ (n;λ) := 1−P (n−1;λ)

denote the complementary cdf of Poisson distribution.

The integrals in equation (2.14) can be calculated with respect to the relationship

between X and L. Thus, for λ1 > 0, the expected on-hand inventory carried during the

regular operation phase is found as follows:

E[OHN+11(AN ≤ X)] =

{ ∑S1−1
n=0 (S1 − n) [f(n) + g1(n)] if L ≤ X∑S1−1
n=0 (S1 − n) [f(n)− g2(n)] if L > X

(2.15)

where

f(n) =

[
1

λ0

+
P (n;λ1L)

λ0 − λ1

]
P̄ (N ;λ0X) +

λ0 − λ1

λ0λ1

[P (N + n;λ0X)− P (N − 1;λ0X)] (2.16)

g1(n) = p(n;λ0L)
[
(X − L)P̄ (N ;λ0(X − L))− λ−1

0 NP̄ (N + 1;λ0(X − L))
]

− 2λ0 − λ1

λ0(λ0 − λ1)
P (n;λ0L)P̄ (N ;λ0(X − L))− (λ0 − λ1)

λ0λ1

n∑
i=0

ξ(i, N)

− λ0

λ1(λ0 − λ1)

n∑
i=0

i∑
k=0

p (i− k;λ1L+ (λ0 − λ1)X) bN

(
k;N,

λ0

λ1

)
δ(k) (2.17)

with δ(k) = P (N + k − 1;λ1(X − L))− P (N + k − 1;λ1X).

g2(n) =
λ0

λ1(λ0 − λ1)

n∑
i=0

i∑
k=0

p(i− k;λ1L+ (λ0 − λ1)X)bN

(
k;N,

λ0

λ1

)
P̄ (N + k;λ1X) (2.18)

The expected time weighted backorders incurred during the regular operation phase

can be calculated essentially the same way as described above. Hence, we skip the analysis

for brevity and directly give the result:

E[BO] =

{ ∑∞
n=S1

(n− S1) [f(n) + g1(n)] if L ≤ X∑∞
n=S1

(n− S1) [f(n)− g2(n)] if L > X
(2.19)

2.3.2 Objective Function

We can now obtain the expected total cost incurred in the second period by using the

operating characteristics derived above. The general structure of the expected total cost

incurred in the second period can be given as follows:

TC(X) = hE [OH] + πE [BO] (2.20)
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Using equations (2.4), (2.15) and (2.19) in (2.20) and defining,

c(x) :=

{
hx if x > 0

−πx if x ≤ 0
(2.21)

we obtain that,

TC(X) = hF(X) +

{ ∑∞
n=0 c(S1 − n) [f(n) + g1(n)] if L ≤ X∑∞
n=0 c(S1 − n) [f(n)− g2(n)] if L > X

(2.22)

Our goal is to find the optimal time for policy change that minimizes the expected

total cost incurred during the second period. That is, we want to minimize TC(X) where

X ≥ 0.

Despite the complicated appearance of equation (2.22) the optimal solution of the

problem can be found easily. This is because the equations (2.16)-(2.18) are mainly

composed of elementary probability functions and some combinatorial expressions. For

the dimensions that we are interested in all of the functions can be calculated easily with

a general purpose programming language. Besides, as we will discuss in more detail in

Section 2.3.4, TC(X) is observed to be unimodal in X. Hence, X∗ can be searched very

efficiently with standard nonlinear optimization methods.

2.3.3 Full Obsolescence Case (λ1 = 0)

So far we have considered an inventory system facing obsolescence in which the demand

drops to a lower level but does not vanish (λ1 > 0). However, in some practical cases the

demand might disappear after a certain time point and the remaining stocks are either

sold in secondary markets or sent to locations where the demand is still healthy. Although

the analysis of the net inventory level process for full obsolescence case is essentially the

same as described in the previous section, the operating characteristics and the objective

function have to be slightly modified.

When λ1 = 0 the number of excess stocks to be removed is equal to S0, and there-

fore the inventory is carried only during the stock removal phase. Hence, the term

E[OHN+11(AN ≤ X)] drops from the equation (2.4). Similarly, in equation (2.5) the term

representing the expected inventory carried after the drop (=λ−1
1

∑N−1
i=0 (S0− i)P (i;λ0X))

becomes irrelevant since under full obsolescence the stock removal can only be possible
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before time X. Thus, the expected total inventory carried during the second period can

be given as:

E [OH] = λ−1
0

[
S0(S0 + 1)

2
−

S0−1∑
i=0

(S0 − i)P (i;λ0X)

]
(2.23)

If full obsolescence occurs before all of the excess stocks are removed then the remaining

on hand inventory is usually salvaged (disposed) or relocated. In that case the obsolescence

cost co is incurred per unit of remaining inventory at the end of the second period. In case

of salvaging co can be interpreted as the overage cost of the well known newsboy problem.

Otherwise, it can be seen as the cost of transporting per unit of remaining inventory to

a location where the demand is healthier. Since S0 items should be removed before time

X the expected number of remaining stock at the end of the second period can be given

by the following expression:

E [RS] =

S0−1∑
i=0

(S0 − i)p(i;λ0X) (2.24)

where p(i;λ0X) is the probability that i items are demanded from the beginning of the

second period until the obsolescence occurs. Note that E [RS] is not affected by our

assumption that there are no outstanding orders at the beginning of the second period

since the number of stocks removed before time X only depends on the demand arrival

process but not the net inventory level process. Moreover, it can be easily shown that

E [RS] is convex in X.

The analysis of the regular operation phase is similar to the one with positive λ1.

However, under full obsolescence there are no inventory carried during the regular oper-

ation phase since the base stock level is zero. Thus, the expression for the expected time

weighted backorders incurred during this phase is found as:

E [BO] =

{ ∑∞
n=0 n [f(n) + g(n)] if L ≤ X∑∞
n=0 nf(n) if L > X

(2.25)
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where

f(n) = λ−1
0

[
2P̄ (N + n+ 1;λ0X) +Np(N + n+ 1;λ0X)

]

− (X − L)p(N + n;λ0X) (2.26)

g(n) = p(n;λ0L)
[
(X − L)P̄ (N ;λ0(X − L))− λ−1

0 NP̄ (N + 1;λ0(X − L))
]

− 2λ−1
0

[
P (n;λ0L)P̄ (N ;λ0(X − L))−

n∑
i=0

ξ(i, N)

]

+ (X − L)ξ(n,N)− λ−1
0 Nξ(n,N + 1) (2.27)

Therefore, the expected total cost incurred during the second period under full obso-

lescence can be given as,

TC(X) = hE [OH] + coE [RS] + πE [BO] (2.28)

In our numerical experiments, we observed that equation (2.28) is unimodal in X. Hence,

the optimal solution of TC(X) can be found very easily for the full obsolescence case as

well.

2.3.4 General Behavior of Objective Function and Operating

Characteristics

In this section, we investigate the general behavior of the objective function and the

operating characteristics. For comparison purposes we conducted 5000 simulations of

the demand arrival process for given λ0 and λ1 pair. Then for a given X value, the

operating characteristics and the objective function are found by averaging the values

calculated at each of the simulated trajectories. In the sequel, we use subscript ‘s’ to

denote the simulated values for clarity. Figures 2.4 - 2.5 illustrate the general behavior of

the objective function and the operating characteristics. In the figures simulated values

are given along with their 95% confidence intervals.
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Throughout our numerical study we observed that the expected total cost function

is unimodal in X (see Figure 2.4). The intuition behind this behavior can be explained

as follows: If X is too short then the inventory system does not have enough time to

remove all of the excess stocks (N) before the drop in demand rate occurs. Therefore,

the remaining excess stocks either increase the holding costs since the natural attrition of

these stocks takes longer due to diminished demand or they result in obsolescence cost -in

case of full obsolescence- due to disposal or relocation. In both cases the system incurs

extra holding cost or obsolescence cost for not removing all of the excess stocks before the

drop. Hence, we observe a decrease in expected total cost function as X diverges from

zero.

On the other hand, if X is too long then all of the excess stocks are removed too

early and the inventory system returns to its regular operation mode before the drop in

demand rate occurs. Consequently, the system operates under a lower base stock level

S1 in order to satisfy the demand until the drop occurs and incurs more backordering

costs. Figure 2.5b shows how the expected backorders increase in X. Therefore, there

exists an optimal X value balancing the obsolescence related costs (extra holding cost,

obsolescence/relocation cost) with the cost of backordering.

Figure 2.4: Behavior of Objective Functions (λ0 = 10, λ1 = 2, L = 0.15, π = 10, h =

1, N = 2)
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Figure 2.5a presents an example of the rapid decrease in the expected on hand as

X diverges from zero when λ1 is positive. For the full obsolescence case, however, the
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Figure 2.5: Behavior of Operating Characteristics (λ0 = 10, λ1 = 2, L = 0.15, π =

10, h = 1, N = 2)
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behavior of the expected on hand is different. The inventory is carried only in the stock

removal phase and for small X values it usually ends before all of the excess stocks are

removed. Therefore, when λ1 = 0 the expected on hand is generally increasing in X

until it converges to a constant (the expected positive area under the net inventory level

process when the stock removal ends before the drop occurs). Although the inventory

system tends to carry less stock as X decreases, the expected total cost increases due to

the increase in the expected number of remaining stocks.

Comparison with Simulation

Our two assumptions about the initial inventory level and the end of the second period

result in different sample paths of the net inventory level process for our model and

simulation in periods [T − X, T − X + L] and [T, T + L]. When λ1 is positive E [OH]

always overestimates E [OHs] due to higher on hand inventory level between T −X and

T − X + L, and the extended calculation period. This can be observed in Figure 2.5a.

On the other hand, when λ1 = 0, E [OHs] is larger for X values near zero since the

outstanding orders at time T − X are likely to arrive after time T and therefore, in

simulations the second period is likely to be longer compared to our model.

When λ1 is positive expected backorders are underestimated by E [BO] as long as the

initial inventory level S0 is high enough to cover the demand before time T . However, as

X gets larger, the system returns to its regular operation mode earlier and E [BO] begins
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to overestimate E [BOs] due to the extended calculation period. For example, in Figure

2.5b, we observe that E [BO] starts to overestimate E [BOs] for the X values greater than

0.25. Furthermore, we found that the performance of E [BO] is much better for the full

obsolescence case. Because when the stock removal phase ends before T , the sample path

differences between simulation and our model are only from T −X until T −X + L.

For positive λ1 and X values small enough we observe that the percent difference

between TC(X) and TCs(X) is relatively low since the overestimation of E [OHs] is com-

pensated by the underestimation of E [BOs]. Moreover, TC(X) underestimates TCs(X)

as long as the real backordering cost is larger than the overestimated quantity in holding

cost (i.e. πE [BOs] > h[E [OH]−E [OHs]]). Otherwise, TC(X) is larger than TCs(X) as

a result of overestimation in holding costs. Similar intuitive results are observed for the

full obsolescence case as well. Finally, for 256 experiment instances, we found that the

average absolute percent difference between TC(X) and TCs(X) is approximately 11%

for positive λ1 while it is only 1.25% when λ1 = 0 as a result of increased accuracy in

E [BO] and the exact calculation of E [RS].

2.4. Numerical Study

In this section, we first investigate the changes in optimal policy parameter and expected

total cost function under different parameter sets. Then, we identify the performance

of our model and its impact on expected total costs by comparing it with simulation

optimization. Finally, we close the section with a discussion about the value of advance

policy change. In the sequel, we use ‘∗’ to indicate optimality and denote the optimal X

value found by simulation optimization with X∗
s .

Throughout the numerical study we assume that simulation is representative of un-

derlying real world model. Thus, we compare TCs(X
∗) with TC∗

s (X
∗
s ) to measure the

impact of operating under X∗. As a simulation optimization technique, we employ re-

sponse surface methodology as described in Myers and Montgomery (1995).

The experiment instances used in our numerical study is generated with the following

parameter set: λ0 ∈ {0.5, 0.7, 1, 5, 7, 10} per year, λ1 ∈ {0, 0.2, 2} per year, h = 1 per

unit per year, π ∈ {5, 15, 25, 50, 75, 150, 300} per unit per year, co ∈ {5, 10} per unit,
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L ∈ {0.15, 0.25, 0.50, 0.75, 1} years. In total, we generate 281 instances for which the

average number of excess stocks to be removed is approximately 3 units. Some of the

results from the numerical study are tabulated in Table 2.1-2.2.

Table 2.1: Performance of X∗ and Value of Advance Policy Change When λ1 > 0

h = 1

λ0 λ1 π L S0 N X∗
s X∗ Δx% TC∗

s (X
∗
s ) TCs(X∗) Δc% TCs(0) Δo%

0.5 0.2 50 0.50 2 1 1.80 1.64 -8.94 7.66 7.73 0.88 10.17 31.61

0.75 2 1 1.29 1.11 -13.77 8.35 8.51 1.89 10.19 19.73

1.00 2 1 0.96 0.80 -16.60 9.06 9.25 2.07 10.33 11.69

300 0.50 2 0 - - - - - - - -

0.75 3 1 1.65 1.45 -11.88 11.73 11.80 0.65 15.22 28.96

1.00 3 1 1.24 1.05 -15.43 12.52 12.62 0.81 15.28 21.10

1 0.2 50 0.50 2 1 1.02 0.87 -15.02 6.88 6.88 0.01 10.07 46.34

0.75 3 2 1.71 1.58 -7.24 14.47 14.53 0.40 24.88 71.21

1.00 3 2 1.40 1.31 -6.07 16.22 16.41 1.12 24.94 52.03

300 0.50 3 1 1.16 1.06 -8.32 9.20 9.24 0.42 15.08 63.23

0.75 4 2 1.74 1.65 -4.78 19.86 20.12 1.28 34.84 73.17

1.00 5 3 2.26 2.19 -2.98 32.32 32.77 1.40 59.46 81.45

5 2 5 0.05 1 1 0.18 0.15 -13.36 0.39 0.40 1.60 0.50 24.38

0.15 2 1 0.24 0.19 -20.66 0.70 0.71 0.74 0.96 35.62

0.25 2 1 0.16 0.12 -23.52 0.84 0.86 2.11 0.98 13.95

50 0.05 2 1 0.19 0.16 -13.33 0.78 0.78 1.25 0.99 26.33

0.15 3 1 0.18 0.14 -23.67 1.15 1.19 3.42 1.48 23.79

0.25 4 2 0.29 0.25 -14.17 2.51 2.55 1.75 3.39 32.75

10 2 5 0.05 1 1 0.12 0.09 -21.22 0.34 0.34 0.19 0.51 47.96

0.15 3 2 0.29 0.25 -14.01 1.02 1.04 1.30 2.42 133.47

0.25 4 3 0.35 0.30 -13.07 1.81 1.82 0.27 4.28 135.56

50 0.05 2 1 0.11 0.09 -20.35 0.68 0.69 1.69 1.02 46.98

0.15 4 2 0.21 0.18 -12.23 1.88 1.89 0.51 3.44 82.05

0.25 6 4 0.33 0.31 -6.55 4.27 4.33 1.22 8.79 103.16

2.4.1 General Behavior of Optimal Policy Parameters and Total

Cost Functions

As can be seen from Table 2.1, when λ1 is positive, we do not always observe a monotonic

behavior in optimal X values and expected total costs due to discrete jumps in S0 or

S1 as L or π increases. However, when all other parameters are constant if an increase

in L or π does not effect S0 and S1 then the optimal X decreases to reduce the risk of

backordering.

For the full obsolescence case, we observe a similar non-monotonic behavior in the

optimal values with respect to the changes in L or π. However, optimal X and TCs(·)
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Table 2.2: Performance of X∗ and Value of Advance Policy Change When λ1 = 0

L = 0.25, h = 1

λ0 π co N X∗
s X∗ Δx% TC∗

s (X
∗
s ) TCs(X∗) Δc% TCs(0) Δo%

0.5 50 5 1 0.44 0.43 -2.34 4.73 4.74 0.16 5.03 6.17

10 1 1.00 0.99 -1.25 8.22 8.22 0.02 10.03 21.99

300 5 2 0.36 0.40 9.40 9.88 9.89 0.11 10.02 1.35

10 2 0.93 0.94 1.27 18.11 18.14 0.16 20.02 10.36

1 50 5 2 0.86 0.87 1.19 8.26 8.28 0.28 10.03 21.16

10 2 1.40 1.40 -0.51 13.31 13.31 0.04 20.03 50.50

300 5 2 0.29 0.32 11.00 9.44 9.48 0.44 10.06 6.17

10 2 0.50 0.53 6.05 17.40 17.40 0.03 20.06 15.30

5 5 5 2 0.59 0.59 -0.78 3.37 3.38 0.45 10.14 199.65

10 2 0.75 0.75 -0.65 4.32 4.34 0.40 20.14 363.86

50 5 4 0.52 0.52 0.33 11.77 11.82 0.47 20.30 71.73

10 4 0.67 0.67 0.07 18.33 18.35 0.12 40.30 119.65

10 5 5 4 0.56 0.55 -1.99 4.74 4.74 0.15 20.38 329.45

10 4 0.66 0.65 -1.79 5.88 5.90 0.36 40.38 584.32

50 5 6 0.43 0.44 1.09 14.74 14.76 0.12 30.68 107.88

10 6 0.53 0.53 -0.14 22.75 22.79 0.19 60.68 166.20

are monotonically increasing in co since N is independent of the obsolescence cost. Thus,

as co increases optimal X values also increase to reduce the number of remaining stocks

and the expected total costs increase as a result of higher obsolescence penalty (see Table

2.2).

An important indicator for the behavior of the optimal X is the ratio N/λ0, average

time needed to remove Nth excess stock before the drop occurs. In general, we observe

that optimal X values and corresponding expected total costs are increasing in N/λ0

(Figure 2.6). This is to be expected since as the ratio increases more time is needed to

complete the stock removal process before the drop occurs. Hence, the system adjusts

itself accordingly. On the other hand, the increase in optimal values is not monotonic.

This is because the ratio is only a measure of the stock removal process but not the

regular operation phase. In other words, the inventory system might incur backordering

cost once the stock removal is completed. Hence, the optimal values are not monotonically

increasing in N/λ0.



2.4 Numerical Study 39

Figure 2.6: Change in Optimal Values wrt N/λ0

(a) Optimal X Values
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Note. In the figures above, λ0 is varying from 5 to 10 and N is varying from 1 to 6

2.4.2 Overall Performance of X∗

Next, we compare the performance of X∗ vis à vis X∗
s . For comparison purposes we

use percent error which gives the percentage deviation from the optimal values found by

simulation optimization. Hence, we define Δx% = X∗−X∗
s

X∗
s

× 100 as the percent deviation

from X∗
s whereas Δc% = TCs(X∗)−TC∗

s (X
∗
s )

TC∗
s (X

∗
s )

× 100 is defined as the percent deviation from

the optimal expected total cost TC∗
s (X

∗
s ) as a result of using X∗ instead of X∗

s . Figure

2.7 illustrates a comparison of optimal X values and corresponding expected total costs.

Figure 2.7: Performance of X∗ (λ0 = 10, λ1 = 2, N = 4)

(a) X∗
s = 0.40, |Δx|% = 9.21%
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(b) TC∗
s = 3.86, Δc% = 0.67%
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We observed that the expected total cost is quite robust to the changes in X∗
s . For

example, for the instances considered in Figure 2.7 we found that X∗ underestimates X∗
s
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on average by 9.21%. For the same instances, however, the average deviation from the

optimal expected total cost is only 0.67%. The robust behavior of the expected total

cost function can also be observed in Figure 2.6b. Moreover, we found that X∗ might

underestimate or overestimate X∗
s depending on the interplay between the extra costs

resulting from our two main assumptions and the costs related with obsolescence. This

can be best observed in Table 2.2.

For all instances with positive λ1 (89 instances out of 281), the mean absolute devi-

ation from X∗
s is found to be 11.87%. For the same instances we found that using X∗

instead of X∗
s results in a deviation from the optimal expected total cost on average 1.03%

and maximum 4.42%. For the full obsolescence case, we found that the mean absolute

deviation from X∗
s is 5.42% and the average deviation from the optimal expected total

costs is 0.56% with a maximum of 3.44%. Thus, we conclude that X∗ performs satisfac-

torily and it gives near optimal results for expected total costs. For more detailed results

we refer the reader to Tables 2.1-2.2.

2.4.3 Value of Advance Policy Change

Next, we discuss the value of changing the control policy to initiate the stock removal

process before the drop in demand rate occurs. To this end, we compare the expected

total cost incurred by changing the policy X∗ time units earlier before the drop occurs

with the expected total cost incurred by changing it immediately after the drop occurs

(X = 0). We use the benchmark case where it is possible to change the policy in advance,

that is, the decision maker uses X∗ and incurs the cost TCs(X
∗). Alternatively, she can

postpone the policy change to obsolescence time. As such, the increase in total cost by

postponing the policy change reflects the value that the decision maker gets by changing

the policy in advance. For comparison purposes we use percent deviation in expected

total cost functions defined as Δo% = TCs(0)−TCs(X∗)
TCs(X∗) × 100. Figure 2.8 illustrates the

changes in Δo% for different λ0 and λ1 values.

We found that the impact of advance policy change on costs is significant. For example,

in Figure 2.8a when λ0 = 5 the average TCs(X
∗) is found to be 2.11. For these instances,

waiting until the drop occurs increases the expected total costs on average by 30%. The

increase in total cost is due to the increase in holding costs since the natural attrition of
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Figure 2.8: Value of Advance Policy Change (Δo%)
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the remaining excess stocks takes longer once the drop occurs. Moreover, we found that

when all other parameters are constant, the cost of postponing the policy change increases

very rapidly in λ0 (see Table 2.1). This can be seen clearly from Figure 2.8a; when λ0

increases from 5 to 10 the average percent deviation due to postponement increases from

30% to 136%.

Our observations for the full obsolescence case are similar. However, when λ1 = 0

the increase in total cost is mainly due to the obsolescence/relocation cost charged per

remaining excess stock. For the instances given in Figure 2.8b, we found that when

λ0 = 5, the average Δo% increases from 129.07% to 228.12% as co doubles. Moreover,

we observed that Δo% is decreasing in π. This is because as π increases the cost of

obsolescence becomes relatively cheaper compared to backordering and the system tends

to postpone the policy change towards the obsolescence time. These behaviors can be

seen in more detail in Table 2.2.

We close our discussion about the value of advance policy change by giving the sum-

maries about Δo%. Over all the numerical experiments conducted, we found that for

positive λ1, changing the control policy after the drop occurs increases the expected to-

tal costs on average by 60%. In case of full obsolescence, we found that the expected

total costs are on average more than doubled as a result of not taking an early action

(Δo% = 133.04%). These findings show us that employing an advance policy change

when obsolescence is expected, results in important savings.
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2.5. Conclusion

In this chapter, we considered a continuous review inventory system of a slow moving

item in which the demand rate drops to a lower level at a known time in the future.

Adaptation to the new demand rate is achieved by changing the control policy before the

drop occurs, and therefore letting the demand process to take away the excess stocks.

We focused on the behavior of the net inventory level process during the transient period

and proposed an approximate solution for the optimal time to shift to the new control

policy minimizing the expected total cost incurred during this period. We found that

the advance policy change results in significant cost savings and our model yields near

optimal solutions for the expected total costs.

The key contribution of this chapter lies in the analysis of a continuous review in-

ventory system facing nonstationary stochastic demands in the context of obsolescence

problem for slow moving, expensive items. Earlier works on obsolescence were focused

mostly on periodic review models. The main insights from these works were that the

obsolescence has a substantial impact on optimal policies and it should be incorporated

into inventory control models explicitly. In our study, we extended these findings for a

continuous review system and show that advance policy change in case of known obso-

lescence time results in significant cost savings. Our numerical experiments revealed that

for slow movers the timing of the control policy change primarily determines the tradeoff

between backordering penalties and obsolescence costs.

The practical importance of our model comes from its consideration of expensive, slow

moving items with high downtime costs for which continuous review policies are preferred

over periodic review ones due to lower safety stock requirements. For this class of items,

efficient management of inventories is notoriously difficult. Not surprisingly, inventory

managers of many companies in after sales service industry are recurrently facing the

problem of obsolete or excess inventories of such items. Knowing when to change the

control policy is the key to reduce obsolete inventories while balancing the availability. If

the change is too early then the risk of backordering is too high and the stockouts can be

detrimental to companies’ operations. On the other hand, if the change is too late then the

risk of obsolescence is too high and obsolete stocks lay as dead weight on the books which



2.6 Appendix 43

in return reduces the competitiveness of companies. Our model can be used to study the

impact of the timing of policy change on operational costs and to identify the optimum

time that balances the tradeoff between the risk of obsolescence and backordering.

While developing our model, we employed a couple of assumptions to keep the analysis

in the boundaries of mathematical tractability. Although some of these assumptions limit

the generality of the model, the analysis offers an increased understanding of the transient

behavior of inventory systems and the impacts of advance policy change on operational

costs. Given the scarcity of research on continuous review systems facing obsolescence, we

consider that our model bears a reasonable balance between realism and tractability for

the insights obtained. Therefore, it can stand as a building block for more complicated

and realistic models.

There are a couple of directions for future research. It would be useful to extend

the model with demand rate decreasing by time. Such a model would be more suitable

for the products at the the end of their life cycles. Another possibility is to incorporate

the uncertainty into the timing of the obsolescence or into the size of the drop in de-

mand rate. These extensions would yield interesting insights about the timing of a policy

change. Extending the model for a general class of continuous review control policies

seems particularly worthwhile because for many products, the prospect of obsolescence

has increased drastically due to the rapid changes in consumer taste and technological

innovations.

2.6. Appendix

Proof of Equation (2.4). Taking the expectation of equation (2.2) yields that for

k = 2, . . . , N and N ≥ 2,

E[OHk] =
[
(S0 − k + 1)X + E[OH

′
k]
]
P (Ak−1 ≤ X, Ak > X)

+ (S0 − k + 1)[E [τk 1(Ak ≤ X)]− E [Ak−11(Ak−1 ≤ X, Ak > X)]]

+ E[OHk+11(Ak ≤ X)] (2.29)
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Observe that the event {Ak−1 ≤ X, Ak > X} implies that there are exactly k−1 demands

during the period of length X. Since the total demand during this period is Poisson

distributed with rate λ0 we obtain that,

P (Ak−1 ≤ X, Ak > X) = p(k − 1;λ0X), k = 2, 3, . . . (2.30)

Denote,

ε′k := E [τk 1(Ak ≤ X)] , k = 2, 3, . . .

and observe that Ak = Ak−1+ τk. Hence, by conditioning on Ak−1 and after some algebra

we get,

ε′k =

∫ X

0

∫ X−s

0

tfτk(t) fAk−1
(s) dt ds = λ−1

0 [1− P (k − 1;λ0X)] (2.31)

Denote,

ε′′k := E [Ak−11(Ak−1 ≤ X, Ak > X)] , k = 2, 3, . . .

Similarly, conditioning on Ak−1 yields,

ε′′k =

∫ X

0

sP (τk > X − s) fAk−1
(s)ds = λ−1

0 (k − 1)p(k;λ0X) (2.32)

Thus, the difference between ε′k and ε′′k is found as follows:

ε′k − ε′′k = λ−1
0 [1− P (k − 1;λ0X)]−Xp(k − 1;λ0X), k = 2, 3, . . . (2.33)

Also, note that

E[OH
′
k] = λ−1

1

N∑
i=k

(S0 − i+ 1), k = 1, . . . , N. (2.34)

Therefore, substituting (2.30), (2.33) and (2.34) in (2.29), and making necessary simpli-

fications yields that for k = 2, . . . , N and N ≥ 2,

E[OHk] = λ−1
1 p(k − 1;λ0X)

N∑
i=k

(S0 − i+ 1)

+ λ−1
0 (S0 − k + 1) [1− P (k − 1;λ0X)]

+ E[OHk+11(Ak ≤ X)] (2.35)
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Observe that E[OHk] = E[OHk1(Ak−1 ≤ X)] since E[OHk1(Ak−1 > X)] = 0. Thus,

by exploiting the recursive structure of (2.35) and after some algebra we obtain that for

N ≥ 1,

E[OH21(A1 ≤ X)] = λ−1
1

N−1∑
i=1

(S0 − i)
i∑

j=1

p(j;λ0X) + λ−1
0 (N − 1)

[
S0 − N

2

]

− λ−1
0

N−1∑
i=1

(S0 − i)P (i;λ0X) + E[OHN+11(AN ≤ X)] (2.36)

with the convention that
∑N

i=k() = 0 for N < k. Now, taking the expectation of equation

(2.1) gives,

E [OH] =
[
S0X + E[OH

′
1]
]
P (A1 > X) + S0E [A11(A1 ≤ X)] + E[OH21(A1 ≤ X)] (2.37)

Thus, using (2.34) and (2.36) in (2.37), and rearranging the terms yield the expected

on-hand as given by equation (2.4).

Before starting the analysis of E[OHN+11(AN ≤ X)] we need the following lemma

which is important for our derivations.

Lemma 2.1. Let fE(t) be the pdf of Erlang distribution with parameters α ∈ {1, 2, ...},
β > 0 and define

I =

∫ b

a

p(r;λt+ γ)fE(t)dt. (2.38)

(i) If λ 	= −β then

I =
r∑

k=0

p(r − k; γ)bN

(
k;α,

β

λ+ β

)
δ(k) (2.39)

where

δ(k) = P (α + k − 1; (λ+ β)a)− P (α + k − 1; (λ+ β)b)

(ii) If λ = −β then

I =
βα

(α− 1)!

r∑
k=0

p(r − k; γ)
(−β)k

(
bα+k − aα+k

)
k!(α + k)

(2.40)
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Proof of Lemma 2.1.

(i) From (2.38) we have,

I =
e−γβα

r!(α− 1)!

∫ b

a

(λt+ γ)rtα−1e−(λ+β)tdt

Using the binomial theorem and after some algebra,

I =
e−γβα

r!(α− 1)!

∫ b

a

r∑
k=0

(
r

k

)
γr−k(λt)ktα−1e−(λ+β)tdt

=
r∑

k=0

e−γγr−k

(r − k)!

(
k + α− 1

α− 1

)
βα

(λ+ β)α−1

(
λ

λ+ β

)k ∫ b

a

p(α + k − 1; (λ+ β)t)dt (2.41)

It can be easily shown that for any λ 	= 0 the following holds,∫ b

a

p(n;λt+ γ)dt =
1

λ
[P (n;λa+ γ)− P (n;λb+ γ)] (2.42)

Hence, applying (2.42) to the integral on the right-hand side of (2.41) yields,

I =
r∑

k=0

p(r − k; γ)

(
k + α− 1

α− 1

)(
β

λ+ β

)α(
λ

λ+ β

)k

[P (α + k − 1; (λ+ β)a)

− P (α + k − 1; (λ+ β)b)]

=
r∑

k=0

p(r − k; γ)bN

(
k;α,

β

λ+ β

)
[P (α + k − 1; (λ+ β)a)− P (α + k − 1; (λ+ β)b)] .

(ii) When λ = −β (2.38) can be simplified as,

I =
e−γβα

r!(α− 1)!

∫ b

a

(−βt+ γ)rtα−1dt

and the result follows from the binomial theorem:

I =
e−γβα

r!(α− 1)!

r∑
k=0

(
r

k

)
γr−k(−β)k

∫ b

a

tα+k−1dt

=
βα

(α− 1)!

r∑
k=0

p(r − k; γ)
(−β)k

(
bα+k − aα+k

)
k!(α + k)
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Proof of Equation (2.15).

Denote,

E[OHN+11(AN ≤ X)] =

S1−1∑
n=0

(S1 − n) [K1 +K2]

with

K1 :=

∫ X

0

∫ L

0

e−Λ(t)(Λ(t))n

n!
fAN

(s) dt ds (2.43)

K2 :=

∫ X

0

∫ X−s+L

L

e−[Λ(t)−Λ(t− L)] (Λ(t)− Λ(t− L))n

n!
fAN

(s) dt ds (2.44)

(i) If L ≤ X then using the definition of Λ(t) we can partition the integrals in (2.43) and

(2.44) as follows:

K1 =

∫ X−L

0

∫ L

0

p(n;λ0t) dtfAN
(s) ds

+

∫ X

X−L

[∫ X−s

0

p(n;λ0t) dt+

∫ L

X−s

p(n; η1(t, s)) dt

]
fAN

(s) ds (2.45)

K2 =

∫ X−L

0

[∫ X−s

L

p(n;λ0L) dt+

∫ X−s+L

X−s

p(n; η2(t, s)) dt

]
fAN

(s) ds

+

∫ X

X−L

∫ X−s+L

L

p(n; η2(t, s)) dtfAN
(s) ds (2.46)

where η1(t, s) := λ1t+ (λ0 − λ1)(X − s) and η2(t, s) := η1(t, s)− λ0(t−L). From identity

(2.42) we obtain that,

K1 =

∫ X−L

0

1

λ0

[1− P (n;λ0L)]fAN
(s) ds+

∫ X

X−L

[
1

λ0

[1− P (n;λ0(X − s))]

+
1

λ1

[P (n;λ0(X − s))− P (n; υ(s)]

]
fAN

(s) ds (2.47)

K2 =

∫ X−L

0

[
p(n;λ0L)(X − s− L)− 1

λ0 − λ1

[P (n;λ0L)− P (n;λ1L)]

]
fAN

(s) ds

+

∫ X

X−L

1

λ0 − λ1

[P (n;λ1L)− P (n; υ(s))]fAN
(s) ds (2.48)
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with υ(s) := λ1L + (λ0 − λ1)(X − s). Summing K1 and K2 and rearranging the terms

yields,

K1 +K2 =

[
1

λ0

− 2λ0 − λ1

λ0(λ0 − λ1)
P (n;λ0L) + p(n;λ0L)(X − L)

+
P (n;λ1L)

λ0 − λ1

] ∫ X−L

0

fAN
(s) ds− p(n;λ0L)

∫ X−L

0

sfAN
(s) ds

+

[
1

λ0

+
P (n;λ1L)

λ0 − λ1

] ∫ X

X−L

fAN
(s) ds

+
λ0 − λ1

λ0λ1

∫ X

X−L

P (n;λ0(X − s))fAN
(s) ds

− λ0

λ1(λ0 − λ1)

∫ X

X−L

P (n; υ(s))fAN
(s) ds (2.49)

Note that,∫ X

X−L

P (n;λ0(X − s))fAN
(s) ds =

n∑
i=0

∫ X

X−L

p(i;λ0(X − s))fAN
(s) ds (2.50)

∫ X

X−L

P (n; υ(s))fAN
(s) ds =

n∑
i=0

∫ X

X−L

p(i; υ(s))fAN
(s) ds (2.51)

and denote,

I1 :=

∫ X

X−L

p(i;λ0(X − s))fAN
(s) ds (2.52)

I2 :=

∫ X

X−L

p(i; υ(s))fAN
(s) ds (2.53)

Using part (ii) of Lemma 2.1 and after some algebraic manipulations we obtain that,

I1 =
λ0

N

(N − 1)!

i∑
k=0

p(i− k;λ0X)
(−λ0)

k
(
XN+k − (X − L)N+k

)
k!(N + k)

= p(N + i;λ0X)

[
1−N

(
N + i

N

) i∑
k=0

(
i

k

)
(−1)k

N + k

(
X − L

X

)N+k
]

= p(N + i;λ0X)− ξ(i, N) (2.54)
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Thus, substituting (2.54) in (2.50) yields,∫ X

X−L

P (n;λ0(X − s))fAN
(s) ds = P (N + n;λ0X)−P (N − 1;λ0X)−

n∑
i=0

ξ(i, N) (2.55)

Similarly, from part (i) of Lemma 2.1 we found that

I2 =
i∑

k=0

p(i− k;λ1L+ (λ0 − λ1)X)bN

(
k;N,

λ0

λ1

)
δ(k) (2.56)

with

δ(k) = P (N + k − 1;λ1(X − L))− P (N + k − 1;λ1X)

Substituting (2.56) in (2.51) gives,∫ X

X−L

P (n; υ(s))fAN
(s) ds =

n∑
i=0

i∑
k=0

p(i− k;λ1L+ (λ0 − λ1)X)bN

(
k;N,

λ0

λ1

)
δ(k) (2.57)

Therefore, employing equations (2.55) and (2.57) in (2.49), and using the following iden-

tities ∫ x

0

fAN
(s) ds = P̄ (N ;λ0x) (2.58)∫ x

0

sfAN
(s) ds = λ−1

0 NP̄ (N + 1;λ0x) (2.59)

yield that,

E[OHN+11(AN ≤ X)] =

S1−1∑
n=0

(S1 − n) [f(n) + g1(n)] .

with

f(n) =

[
1

λ0

+
P (n;λ1L)

λ0 − λ1

]
P̄ (N ;λ0X) +

λ0 − λ1

λ0λ1

[P (N + n;λ0X)− P (N − 1;λ0X)]

g1(n) = p(n;λ0L)
[
(X − L)P̄ (N ;λ0(X − L))− λ−1

0 NP̄ (N + 1;λ0(X − L))
]

− 2λ0 − λ1

λ0(λ0 − λ1)
P (n;λ0L)P̄ (N ;λ0(X − L))− (λ0 − λ1)

λ0λ1

n∑
i=0

ξ(i, N)

− λ0

λ1(λ0 − λ1)

n∑
i=0

i∑
k=0

p (i− k;λ1L+ (λ0 − λ1)X) bN

(
k;N,

λ0

λ1

)
δ(k)
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(ii) If L > X then by the definition of Λ(t) the integrals in (2.43) and (2.44) can be

partitioned as follows:

K1 =

∫ X

0

[∫ X−s

0

p(n;λ0t) dt+

∫ L

X−s

p(n; η1(t, s)) dt

]
fAN

(s) ds (2.60)

K2 =

∫ X

0

∫ X−s+L

L

p(n; η2(t, s)) dtfAN
(s) ds (2.61)

Using the identity (2.42) in K1 and K2, and summing the results yield that,

K1 +K2 =

[
1

λ0

+
P (n;λ1L)

λ0 − λ1

]
P̄ (N ;λ0X) +

λ0 − λ1

λ0λ1

n∑
i=0

∫ X

0

p(i;λ0(X − s))fAN
(s) ds

− λ0

λ1(λ0 − λ1)

n∑
i=0

∫ X

0

p(i; υ(s))fAN
(s) ds (2.62)

Denote,

I3 :=

∫ X

0

p(i;λ0(X − s))fAN
(s) ds

I4 :=

∫ X

0

p(i; υ(s))fAN
(s) ds

By employing part (ii) of Lemma 2.1 in I3 we obtain that,

I3 =
λ0

N

(N − 1)!

i∑
k=0

p(i− k;λ0X)
(−λ0)

kXN+k

k!(N + k)
= p(N + i;λ0X) (2.63)

Similarly, from part (i) of Lemma 2.1 we have,

I4 =
i∑

k=0

p(i− k;λ1L+ (λ0 − λ1)X)bN

(
k;N,

λ0

λ1

)
P̄ (N + k;λ1X) (2.64)

Therefore, employing (2.63) and (2.64) in (2.62) yields that,

E[OHN+11(AN ≤ X)] =

S1−1∑
n=0

(S1 − n) [f(n)− g2(n)]

with

g2(n) =
λ0

λ1(λ0 − λ1)

n∑
i=0

i∑
k=0

p(i− k;λ1L+ (λ0 − λ1)X)bN

(
k;N,

λ0

λ1

)
P̄ (N + k;λ1X)
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Proof of Equation (2.25).

Note that the integral expression for the expected time weighted backorders can be found

similar to the expected on hand carried during the regular operation phase as described

in section 2.3.1. Thus, for λ1 = 0 we found that,

E[BO] =
∞∑
n=0

n

∫ X

0

[∫ L

0

e−Λ(t)(Λ(t))n

n!
dt

+

∫ X−s+L

L

e−[Λ(t)−Λ(t− L)] (Λ(t)− Λ(t− L))n

n!
dt

]
fAN

(s) ds

=
∞∑
n=0

n [K1 +K2]

(i) If L ≤ X then from the definition of Λ(t) the integral expressions K1 and K2 can be

partitioned as in equations (2.45) and (2.46) with λ1 = 0. Using the identity (2.42) in K1

and K2 and summing the results yield that,

K1 +K2 =
[
2λ−1

0 [1− P (n;λ0L)] + p(n;λ0L)(X − L)
] ∫ X−L

0

fAN
(s) ds

− p(n;λ0L)

∫ X−L

0

sfAN
(s) ds+ 2λ−1

0

∫ X

X−L

[1− P (n;λ0(X − s))]fAN
(s) ds

− (X − L)

∫ X

X−L

p(n;λ0(X − s))fAN
(s) ds+

∫ X

X−L

p(n;λ0(X − s))sfAN
(s) ds (2.65)

Using the identities (2.58) and (2.59) in (2.65), and simplifying gives that,

K1 +K2 = 2λ−1
0

[
P̄ (N ;λ0X)− P (n;λ0L)P̄ (N ;λ0(X − L))

]

− p(n;λ0L)
[
(X − L)P̄ (N ;λ0(X − L))− λ−1

0 NP̄ (N + 1;λ0(X − L))
]

− 2λ−1
0

∫ X

X−L

P (n;λ0(X − s))fAN
(s) ds− (X − L)

∫ X

X−L

p(n;λ0(X − s))fAN
(s) ds

+

∫ X

X−L

p(n;λ0(X − s))sfAN
(s) ds (2.66)



52 An Inventory Model for Slow Moving Items Subject to Obsolescence

Observe that,∫ X

X−L

p(n;λ0(X − s))sfAN
(s) ds = λ−1

0 N

∫ X

X−L

p(n;λ0(X − s))fAN+1
(s) ds (2.67)

where fAN+1
is the pdf of Erlang distribution with parameters λ0 and N + 1. Thus, by

applying part (ii) of Lemma 2.1 to the right-hand side of (2.67) we obtain that,∫ X

X−L

p(n;λ0(X − s))sfAN
(s) ds = λ−1

0 N [p(N + 1 + n;λ0X)− ξ(n,N + 1)] (2.68)

Therefore, employing the results (2.54), (2.55) and (2.68) in (2.66), and making necessary

simplifications yield the expected backorder as follows:

E[BO] =
∞∑
n=0

n [f(n) + g(n)]

with

f(n) = λ−1
0

[
2P̄ (N + n+ 1;λ0X) +Np(N + n+ 1;λ0X)

]− (X − L)p(N + n;λ0X) (2.69)

g(n) = p(n;λ0L)
[
(X − L)P̄ (N ;λ0(X − L))− λ−1

0 NP̄ (N + 1;λ0(X − L))
]

− 2λ−1
0

[
P (n;λ0L)P̄ (N ;λ0(X − L))−

n∑
i=0

ξ(i, N)

]

+ (X − L)ξ(n,N)− λ−1
0 Nξ(n,N + 1)

(ii) If L > X then from the definition of Λ(t) the integral expressions K1 and K2 can be

partitioned as in equations (2.47) and (2.48) with λ1 = 0. Using the identity (2.42) in K1

and K2, and summing the results yield that,

K1 +K2 = 2λ−1
0

[
P̄ (N ;λ0X)−

n∑
i=0

∫ X

0

p(i;λ0(X − s))fAN
(s) ds

]

− (X − L)

∫ X

0

p(n;λ0(X − s))fAN
(s) ds+

∫ X

0

p(n;λ0(X − s))sfAN
(s) ds (2.70)

Observe that∫ X

0

p(n;λ0(X − s))sfAN
(s) ds = λ−1

0 N

∫ X

0

p(n;λ0(X − s))fAN+1
(s) ds (2.71)
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Thus, using part (ii) of Lemma 2.1 in (2.71) yields that,∫ X

0

p(n;λ0(X − s))sfAN
(s) ds = λ−1

0 Np(N + 1 + n;λ0X) (2.72)

Finally, using (2.63) and (2.72) in (2.70), and after some simplifications we obtain the

expected backorder as follows:

E[BO] =
∞∑
n=0

nf(n)

with f(n) as given in (2.69).





Chapter 3

Service Parts Inventory Control

under Obsolescence ∗

Abstract

In this chapter, we consider a single location inventory system of a slow moving

item with Poisson demand where the demand rate drops to a lower level at a known

future time. Under the assumptions of full backordering and fixed lead times, we

incorporate obsolescence into a one-for-one policy with the option to reduce the

base stock level in advance. We propose a three parameter policy to control the

timing of the shift from high base stock level to the low one. For the special

case of identical base stock levels, we show that the optimal base stock level can

be calculated from a critical ratio inequality. For different base stock levels, we

derive the exact expression for the expected total discounted cost function by partly

relying on Fast Fourier Transform method and suggest a numerical optimization

procedure to find the optimal values of the policy parameters. Our results suggest

that the policy change option leads to pronounced cost savings especially when

obsolescence requires a relatively large adjustment in base stock level. We find

that ignoring obsolescence in control policy increases costs significantly. Moreover,

when obsolescence can be foreseen, early adaptation of base stock levels can lead to

important savings.

3.1. Introduction

In this chapter, we analyze the inventory system introduced in Chapter 2 under a more

general policy. In the previous chapter, the only decision variable was the policy change

∗This chapter is based on Pinçe, Frenk, and Dekker (2009)
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time. There, we analyzed the system in an approximate fashion to derive heuristic formu-

las for the operating characteristics and provide qualitative results about the impact of

policy change time on transient period costs. In this chapter, we propose a more general

three parameter policy including pre- and post-obsolescence base stock levels besides the

policy change time. Moreover, in this chapter, the analysis of the model is exact and the

optimization involves the infinite horizon discounted total cost rather than the transient

period total cost.

As in the previous chapter, we consider a continuous review inventory system of a

slow moving item for which the Poisson demand rate drops to a lower level at a known

future time. We assume a one-for-one replenishment policy with full backordering and

a fixed lead time. We propose a transition control policy with advance policy change

option. That is, adaptation to the lower demand rate is achieved by reducing the base

stock level before the obsolescence occurs and letting the demand process take away the

difference. The objective is to find the optimal base stock levels and the optimal policy

change time minimizing the expected total discounted cost over infinite horizon. We show

that when base stock levels are identical, the optimal base stock level can be calculated

from a critical ratio inequality. For different base stock levels, we compute the total

discounted cost function by partly relying on Fast Fourier Transform method and suggest

a numerical optimization procedure to find the optimal values of the policy parameters.

The rest of the chapter is organized as follows: Section 3.2 introduces the model and

states the three parameter transition control policy. Section 3.3 presents the analysis of

the three parameter policy and its special case. Section 3.4 presents the optimization

method. Section 3.5 presents the numerical study and discusses the results. Section 3.6

concludes and outlines future research directions.

3.2. The Model

We consider a single item, single location continuous review inventory system of a slow

moving item where demand rate drops to a lower level at a known future time T . It is

assumed that demand follows a non-homogenous Poisson process NΛ := {NΛ(t) : t ≥ 0}



3.2 The Model 57

with time transformation

Λ(t) =

∫ t

0

λ(s)ds (3.1)

and arrival rate function

λ(s) =

⎧⎨⎩ λ0 if 0 ≤ s ≤ T

λ1 if s > T

where λ0 denotes the initial (healthy) demand rate and λ1 denotes the demand rate after

obsolescence, and λ0 > λ1 ≥ 0.

The inventory control policy is based on one-for-one policy which is commonly used

for expensive, slow moving items (see Hadley and Whitin, 1963). According to the one-

for-one policy a replenishment order is placed whenever a demand occurs. We assume

that all unfilled demand is backordered and there is a fixed replenishment lead time L.

The objective is to minimize the expected total discounted cost over an infinite horizon.

The total cost function is composed of holding cost h and backordering penalty π both

incurred per unit per time. Since unit and fixed ordering costs are independent of the

order quantity under one-for-one policy, they are irrelevant for optimization. Therefore,

we exclude the ordering costs from total cost calculations.

Moreover, we assume that the inventory system starts to operate only after the base

stock quantity is installed. Thus, we ignore the replenishment lead time and the acquisi-

tion cost of the base stock quantity.

As we will show in section 3.3.2, by using NΛ, it is possible to incorporate obsolescence

into the one-for-one policy and calculate the optimal base stock level such that the drop

in demand rate is taken into account. However, using a single base stock level for pre-

and post-obsolescence periods may not be efficient under many obsolescence scenarios.

For example, when the drop in demand rate is large and not expected to occur at a very

near future then balancing backordering cost with obsolescence cost by a single base stock

level might be very difficult.

Alternatively, two different base stock levels can be used to bridge the gap between the

demand rates. In that case, a transition rule is needed to control the shift from the high

base stock level S0 to the low base stock level S1. Thus, we propose the following con-
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tinuous review, three parameter transition control policy based on the inventory position

process:

Policy: Up to time x a replenishment order of size one is placed whenever the inventory

position drops to the reorder level S0 − 1. After time x a replenishment order of size one

is placed whenever the inventory position drops to the reorder level S1 − 1.

In other words, we use (S0−1, S0) policy until time x and (S1−1, S1) policy thereafter.

We refer to this policy as the (x, S0, S1) policy, where x is the decision variable for policy

change, and S0 and S1 are the decision variables for stock control. According to the

(x, S0, S1) policy adaptation to the lower base stock level is achieved by letting the demand

take away the removal quantity N(= S0 − S1) starting from time x. Our goal is to find

the optimal base stock levels S0 and S1, and the optimal policy change time x minimizing

the expected total discounted cost.

It is intuitive that when S0 = S1, the parameter x becomes redundant and the

(x, S0, S1) policy boils down to the aforementioned obsolescence based one-for-one policy

with single base stock level S0. In section 3.3.1, we analyze this special case separately

and provide a critical ratio inequality to calculate the optimal base stock level.

We let 0 ≤ x ≤ T since postponing the policy change after T would be suboptimal

unless the base stock levels are identical.

The rationale behind the (x, S0, S1) policy is intuitive: when the time and the size of

the drop in demand rate can be foreseen, early adaptation of base stock levels tradeoffs

backordering costs with holding costs due to obsolescence, and reduces the number of

obsolete stocks while balancing the availability. We do not claim that the (x, S0, S1)

policy is optimal. Optimal policy structure would probably involve gradual decrease of

the base stock level rather than a single adjustment. However, a more sophisticated

policy puts the analysis of operating characteristics and the total cost function beyond

tractability. Moreover, a policy with multiple base stock adjustments may not be always

practical due to increased complexity of execution. Our numerical experiments indicate

that the (x, S0, S1) policy is a significant improvement over one-for-one policy ignoring

obsolescence and a policy without early adaptation (x = T ). Hence, we claim that the

proposed policy brings a good balance between marginal increase in improvement and

execution efforts.
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Figure 3.1: Possible Realization of IN(t) and IP (t) with Stock Removals

We define the net inventory level process IN := {IN(t) : t ≥ 0} and the inventory

position process IP := {IP(t) : t ≥ 0}. To better understand the (x, S0, S1) policy, we

first look at the sample paths of IN and IP depicted in Figure 3.1. At time zero, the

base stock level S0 is already installed and the inventory system is ready to serve the first

demand. Until time x, the system is governed according to (S0 − 1, S0) policy, hence,

every demand generates a replenishment order. At time x, the ordering policy is changed

by reducing the base stock level from S0 to S1, and the removal quantity is taken away

by N consecutive demand instances. Thus, the inventory position decreases by one at

every demand arrival until it hits S1. In Figure 1, stock removal instances are marked by

circles on the sample path of the net inventory level process. In order to determine the

time point at which the stock removal process ends, we introduce the hitting time,

σx
Λ(N) = inf{t ≥ 0 : NΛ(t+ x)−NΛ(x) ≥ N} (3.2)

The probability density function of σx
Λ(N) can be given as,

fσx
Λ
(t) =

dΛ(t+ x)

dt
e−(Λ(t+x)−Λ(x)) (Λ(t+ x)− Λ(x))N−1

(N − 1)!
(3.3)

Observe that x + σx
Λ(N) is the random time point at which the inventory position

process hits S1 for the first time, that is, adaptation to the lower base stock level is
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completed. After x+ σx
Λ(N), the replenishment orders are placed again at every demand

arrival.

After T , the net inventory level tends to increase due to the drop in demand rate and

the arrival of orders given before T . If the net inventory level coincides with the inventory

position and the adaptation to the lower base stock level S1 is not completed yet then

both processes slowly decrease due to the diminished demand until they hit S1. The

increase followed by a slow decrease in the net inventory level observed after T is called

inventory hump (Song and Zipkin, 1996). Long lead times and large removal quantities

result in bigger inventory hump, and therefore, higher holding costs. Since the inventory

hump is the result of obsolescence, the holding costs incurred during the inventory hump

can be considered as a good proxy for obsolescence costs. With the option to change the

base stock level before T , the (x, S0, S1) policy mainly reduces the inventory hump while

balancing backorders.

3.3. Operating Characteristics

3.3.1 Analysis of the (x, S0, S1) Policy

To analyze the net inventory level process, we use the inventory position process which

provides an easier and more transparent sample path representation. By definition,

IP(t) = IN(t) +O(t), t ≥ 0

where O(t) is the number of outstanding orders at time t ≥ 0. By the structure of the

considered policy we have,

IP(t) =

⎧⎨⎩
S0 if 0 ≤ t < x

S0 − (NΛ(t)−NΛ(x)) if x ≤ t < x+ σx
Λ(N)

S0 −N if t ≥ x+ σx
Λ(N)

(3.4)

By the definition of the net inventory level process, the inventory position process and

the complete backordering assumption, we obtain that,

IN(t) =

{
S0 −NΛ(t) if 0 ≤ t < L

IP(t− L)− (NΛ(t)−NΛ(t− L)) if t ≥ L
(3.5)
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Since we let IN(0) = IP(0) = S0, from time zero to L, the net inventory level only

decreases from S0 as demand arrives. After time L, the net inventory level can be described

by the well known equation relating the net inventory level at time t to the inventory

position at time t−L and the lead time demand. Moreover, by the independent increments

of the nonstationary Poisson process, we know that IP(t− L) is independent of the lead

time demand NΛ(t)−NΛ(t− L) for any t ≥ L.

The expected total discounted cost of operating under the (x, S0, S1) policy is calcu-

lated with the following function,

TC(x, S0, S1) := E

(∫ ∞

0

e−αtc(IN(t))dt

)
(3.6)

where α > 0 is the fixed discount rate and c : R → R is the convex cost rate function

defined as

c(y) :=

{
hy if y > 0

−πy if y ≤ 0

Then, the optimization problem can be stated as

min TC(x, S0, S1) (3.7)

s.t. 0 ≤ x ≤ T,

0 ≤ S1 ≤ S0,

S0, S1 ∈ Z+.

Let Y be an exponentially distributed random variable with parameter α > 0 and let

f(y;α) denote the probability density function of Y. Observe that Y is independent of

the process IN and we have

E (c(IN(Y))) =

∫ ∞

0

E (c(IN(Y))|Y = t) f(t;α)dt

=

∫ ∞

0

E (c(IN(t)))α e−αt dt

= αE

(∫ ∞

0

e−αtc(IN(t))dt

)
(3.8)

where the last step follows from the Fubini’s theorem.
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Thus, (3.6) can be written in an alternative way as follows

TC(x, S0, S1) = α−1E (c(IN(Y))) (3.9)

Observe that from the definition of c(y) and (3.8) we obtain,

E (c(IN(Y))) = (h+ π)E (IN(Y))+ − πE (IN(Y)) (3.10)

Let F (y;α) and F (y;α) denote the cumulative distribution function and the tail function

of Y. Moreover, let p(n;λ) = e−λλn/n!, n = 0, 1, ... with parameter λ ∈ C and P (n;λ) =∑n
k=0 p(k;λ). Define the functions g (n; ρ) = ρ(1 − ρ)n, n = 0, 1, 2, ... with ρ ∈ C,

b(T, h) = (λ0 − λ1)T + λ1h with T, h ≥ 0 and ηz = α− (λ0 − λ1)(1− z) with z ∈ C.

It can easily be shown by (3.5) and E (NΛ(t)) = Λ(t) that

E (IN(Y)) = F (L;α)(S0 − E (Λ(Y))) + F (L;α)E (IP(Y)) (3.11)

where

E (Λ(Y)) = α−1 ((λ0 − λ1)F (T ;α) + λ1) (3.12)

and

E (IP(Y)) = S0 − F (x;α)

(
N−1∑
k=0

k(μk+1 − μk) +N(1− μN)

)
(3.13)

with μ0 = 0 and for k = 1, 2, ..., N

μk =
k−1∑
n=0

n∑
	=0

p(n− �; (λ0 − λ1)(T − x))g
(
�; α

λ1+α

)
P (�; (λ1 + α)(T − x))

+
k−1∑
n=0

g
(
n; α

λ0+α

)
[1− P (n; (λ0 + α)(T − x))] (3.14)

The proofs of (3.12) and (3.13) can be found in the Appendix 3.7.

Observe from (3.4) that when S0 = S1, IP(t) is equal to S0 for all t ≥ 0 since

σx
Λ(0) = 0. Under fixed inventory position, the analysis of the E (IN(Y))+ becomes

relatively simple as we will show in Section 3.3.1. However, when S0 > S1, a closed form

expression of E (IN(Y))+ is not available. The difficulty arises from the random hitting

time σx
Λ(N) which appears in (3.4). By definition, σx

Λ(N) depends on the nonhomogenous

Poisson process after time x. Therefore, the computation of E (IN(Y))+ requires the



3.3 Operating Characteristics 63

calculation of integrals where the dependent random variables σx
Λ(N) and NΛ(t) for t ≥ x

are entangled through the maximum function. Unfortunately, analytical computation of

such integrals increases the mathematical tedium drastically. To overcome this difficulty,

we rely on numerical inversion of probability generating functions as explained below.

Computation of E (IN(Y))+ for S1 < S0

Introduce the integer valued nonnegative random variable

D := S0 − IN(Y) (3.15)

representing the deviation from the maximum value of the IN process. By relation (3.15)

it follows that

E (IN(Y))+ = E (S0 −D)+ =

S0−1∑
k=0

(S0 − k)pk (3.16)

where

pk = P (D = k), k = 0, 1, ...

Since direct computation of pk is difficult due to the reasons discussed above, we derive

E
(
zD

)
, the probability generating function of D, analytically and use a numerical inver-

sion technique, e.g., Fast Fourier Transform, to recover the original pk sequence. We refer

the reader to Abate and Whitt (1992) for a detailed discussion on recovering the sequence

pk by using the probability generating function.

By relation (3.15), for every z ∈ C satisfying |z| ≤ 1 , we have

E
(
zD

)
= zS0E

(
z−IN(Y)

)
(3.17)

and by (3.5), we obtain that

E
(
z−IN(Y)

)
= α(z−S0V (α) + e−αLW (α)) (3.18)

with

V (α) :=

∫ L

0

e−αtE
(
zNΛ(t)

)
dt (3.19)

and

W (α) :=

∫ ∞

0

e−αtE
(
z−IP(t)+NΛ(t+ L)−NΛ(t)

)
dt (3.20)
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Observe by relation (3.1) that the time transformation of NΛ can be written explicitly

as,

Λ(t) =

{
λ0t if 0 ≤ t ≤ T

(λ0 − λ1)T + λ1t if t > T
(3.21)

Since NΛ(t) is Poisson distributed with parameter Λ(t), using (3.21) in (3.19) yields,

V (α) = φ−1
0

(
1− e−φ0 min(T,L)

)
+ φ−1

1 e−(λ0−λ1)T (1−z)
(
e−φ1 min(T,L) − e−φ1L

)
(3.22)

where φi := α + λi(1− z) for i ∈ {0, 1}.
To analyze W (α), first observe that IP(t) and NΛ(t+ L) − NΛ(t) are independent.

Second, that NΛ(t+ L) −NΛ(t) is Poisson distributed with parameter Λ(t+ L) − Λ(t).

Thus, we can rewrite (3.20) as

W (α) =

∫ ∞

0

e−(αt+(Λ(t+ L)−Λ(t))(1−z))E
(
z−IP(t)

)
dt (3.23)

Using the definitions of IP(t) and Λ(t), (3.23) can be divided into separate integrals

for which the analytical expressions can be derived. Thus, the explicit form of W (α) can

be given as follows,

W (α) = W1 (α) +W2 (α) +W3 (α) (3.24)

where

W1 (α) = z−S0
[
α−1e−λ0L(1−z)F ([min(T − L, x)]+;α)

+ η−1
z e−b(T,L)(1−z)(e−ηz [min(T−L,x)]+ − e−ηzx)

]
(3.25)

W2 (α) = z−S0e−αx

N−1∑
k=0

zk(ξ
k+1

− ξ
k
) (3.26)
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with

ξ
k

= f1 + f2 + f3

f1 := e−b(T−x,L)(1−z)

⎧⎪⎨⎪⎩
η−1
z

∑k−1
n=0 g

(
n; ηz

λ0+ηz

)
ΔPn if λ0 	= −ηz

λ−1
0

∑k−1
n=0 Δpn if λ0 = −ηz

ΔPn := P (n; (λ0 + ηz)(T − x− L)+)− P (n; (λ0 + ηz)(T − x))

Δpn := eλ0(T−x)p(n+ 1;λ0(T − x))− eλ0(T−x−L)+p(n+ 1;λ0(T − x− L)+)

f2 := α−1e−λ1L(1−z)

k−1∑
n=0

n∑
	=0

p(n− �; (λ0 − λ1)(T − x))g
(
�; α

λ1+α

)
P (�; (λ1 + α)(T − x))

f3 := α−1e−λ0L(1−z)

k−1∑
n=0

g
(
n; α

λ0+α

)
[1− P (n; (λ0 + α)(T − x− L)+)]

and

W3 (α) = z−S1e−αxξN (3.27)

with

ξN = g1 + g2 + g3 − ξ
N

g1 := α−1e−λ1L(1−z)F (T − x;α)

g2 := η−1
z e−b(T−x,L)(1−z)

(
e−ηz(T−x−L)+ − e−ηz(T−x)

)

g3 := α−1e−λ0L(1−z)F ((T − x− L)+;α)

The proofs of equations (3.24)–(3.27) can be found in the Appendix 3.7.
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Thus, pk sequence can be recovered by a standard inversion algorithm where the

probability generating function of D is calculated by using equations (3.18), (3.22) and

(3.24). Although equations (3.25)–(3.27) appear to be somewhat tedious, they can be

computed easily since they are composed of well-behaved elementary functions.

In our numerical experiments, we used the inversion algorithm proposed by Abate and

Whitt (1992) and found that TC(x, S0, S1) can be computed accurately within a couple

of seconds for most of the parameter sets considered. Computation time is increasing in

S0 yet it remains feasible for optimization purposes since base stock levels are never too

high for expensive, slow moving items.

3.3.2 Analysis of the Special Case: S0 = S1

When S0 = S1, no policy change takes place and the (x, S0, S1) policy boils down to one-

for-one policy with fixed base stock level. We refer to this special case of the (x, S0, S1)

policy shortly as the fixed policy. Note that with the fixed policy, the obsolescence is still

taken into account via the nonstationary demand process NΛ although the base stock

level is not changed. In the sequel, we suppress the subscript in S0 and denote base stock

level of the fixed policy with S, for brevity.

When the inventory position process is equal to S for all t ≥ 0, the net inventory level

process given by relation (3.5) becomes,

IN(t) =

{
S −NΛ(t) if 0 ≤ t < L

S − (NΛ(t)−NΛ(t− L)) if t ≥ L
(3.28)

From (3.13), we have E (IP(Y)) = S since N = 0. Thus, (3.11) becomes,

E (IN(Y)) = S − F (L;α)E (Λ(Y)) (3.29)

When there is no policy change, we can directly calculate the expression E (IN(Y))+.

Therefore, using relation (3.28) and after some algebra we get

E (IN(Y))+ =
S−1∑
n=0

(S − n)
[
A1(n) + e−αLA2(n)

]
(3.30)
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where

A1(n) =
n∑

	=0

p(n− �; (λ0 − λ1)T )g
(
�; α

λ1+α

)
[P (�; (λ1 + α)min(T, L))− P (�; (λ1 + α)L)]

+ g
(
n; α

λ0+α

)
[1− P (n; (λ0 + α)min(T, L))]

A2(n) = p(n;λ0L)F ((T − L)+;α) + p(n;λ1L)F (T ;α) + fA(n)

with

fA(n) =

⎧⎨⎩
∑n

	=0 p(n− �; b(T, L)) g (�;α/η0) [P (�; η0(T − L)+)− P (�; η0T )] if η0 	= 0∑n
	=0 p(n− �; b(T, L)) (−α)�+1

(	+1)!

[
((T − L)+)	+1 − T 	+1

]
if η0 = 0

(3.31)

and η0 := α− (λ0 − λ1).

The proof of equation (3.30) can be found in the Appendix 3.7.

For notational convenience, we delete the unnecessary policy parameters in TC(x, S0, S1)

and let TC(S) denote the expected total discounted cost of the fixed policy for the base

stock level S. Thus, TC(S) can be calculated from (3.9) by using (3.29) and (3.30).

Observe that for S0 = S1, the optimization problem given by (3.7) simplifies to

min TC(S) (3.32)

s.t. S ≥ 0 and S ∈ Z+.

It can be easily shown that for any random variable K taking values in R, E(c(S−K))

is convex in S. Thus, from (3.28) it follows that E(c(IN(t))) is convex in S for all

t ≥ 0. Since e−αt is positive for all t ≥ 0 and nonnegative weighted sum of convex

functions is also convex, it follows from (3.6) that TC(S) is convex in S. Therefore, the

optimal base stock level of the fixed policy S∗
f is the minimum integer S (≥ 0) satisfying

TC(S + 1)− TC(S) ≥ 0. That is the smallest S satisfying

S∑
n=0

[
A1(n) + e−αLA2(n)

] ≥ π

π + h
(3.33)

Therefore, the optimal solution for the original problem (3.7) can be obtained by

solving it only for S1 < S0 and then choosing the optimal policy, i.e., (x∗, S∗
0 , S

∗
1) or S

∗
f ,
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yielding the minimum total cost. In the next section, we will explain this procedure in

detail.

3.4. Optimization of TC(x, S0, S1)

In our numerical experiments, we observed that TC(x, S0, S1) is quasi-convex in x. The

intuition behind this observation can be explained as follows: For a given S0 and S1 such

that S0 > S1, if the base stock policy is changed too late, i.e., if x is near T , then there is

not enough time for the demand to take away all of the removal quantity before the drop

occurs. Thus, the remaining stocks after T increase the holding costs due to obsolescence.

On the other hand, if the policy is changed too early then the system might adapt to the

lower base stock level too soon before the obsolescence occurs. Consequently, backordering

costs increase due to the suboptimal base stock level used from the time the adaptation

is completed until the drop in demand rate occurs. Therefore, there should be an optimal

x value that balances the holding costs due to obsolescence with the backordering costs.

Figure 3.2 illustrates the behavior of the total discounted cost function in x.

Figure 3.2 Behavior of TC(x|S0, S1)
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Note. λ0 = 5, ρ = 1, T = 1, π = 100, L = 0.25, α = 0.1, S0 = 3, S1 = 0

Since optimal S0 is never too high for slow moving, expensive items, once a reasonably

high upper bound S is established for the optimal S0, the minimizer of TC(x, S0, S1)
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can be found by enumerating over the base stock levels and optimizing over the policy

change time. More precisely, if we let TC(x|S0, S1) denote the total discounted cost as a

function of x given (S0, S1) then TC(x|S0, S1) is minimized over the continuous variable

x ∈ [0, T ] for every (S0, S1) in S = {(S0, S1) : 0 ≤ S1 < S0 ≤ S; S0, S1 ∈ Z+}. If we

let x∗ denote the optimal x given (S∗
0 , S

∗
1) ∈ S and TC(x∗|S∗

0 , S
∗
1) denote the smallest

of the total discounted cost functions minimized over x then the tuple (x∗, S∗
0 , S

∗
1) is the

optimal solution to (3.7) given that S1 < S0. For S0 = S1, the optimal solution is S∗
f and

it can be calculated by (3.33). Therefore, if TC(x∗, S∗
0 , S

∗
1) is smaller than TC(S∗

f ) then

the optimal solution to (3.7) is the three parameter policy with (x∗, S∗
0 , S

∗
1). Otherwise,

the optimal solution to (3.7) is the fixed policy with base stock level S∗
f . We denote the

minimum total cost by TC∗ := min
{
TC(x∗, S∗

0 , S
∗
1), TC(S∗

f )
}
.

For a given (S0, S1), the optimal x can be searched very efficiently with standard

nonlinear optimization methods. Moreover, optimal base stock level of a slow moving item

being very large is rather unlikely in practice. Thus, we conclude that the computational

demands of the optimization procedure described above is reasonable for most of the

realistic problems.

Next, we derive the optimal base stock level of the one-for-one policy when there is

discounting but no obsolescence. In our numerical experiments, we use the optimal base

stock level of the no obsolescence scenario as an heuristic upper bound on optimal S0.

3.4.1 Heuristic upper bound for S∗
0

Let TC∞(S) denote the expected total discounted cost of the one-for-one policy when

there is no obsolescence, i.e., demand rate is constant at λ0. By definition,

TC∞(S) = lim
T→∞

TC(S) (3.34)

Thus, letting T → ∞ in equation (3.29) yields

lim
T→∞

E (IN(Y)) = S − α−1λ0F (L;α) (3.35)

Similarly, as T goes to infinity (3.31) converges to zero and the equation (3.30) becomes,

lim
T→∞

E (IN(Y))+ =
S−1∑
n=0

(S − n)
[
g
(
n; α

λ0+α

)
[1− P (n; (λ0 + α)L)] + e−αLp(n;λ0L)

]
(3.36)
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Therefore,

TC∞(S) = α−1(h+ π)
S−1∑
n=0

(S − n)H(n)− α−1π(S − α−1λ0F (L;α)) (3.37)

with

H(n) = g
(
n; α

λ0+α

)
[1− P (n; (λ0 + α)L)] + e−αLp(n;λ0L)

As expected, as α goes to zero αTC∞(S) converges to the well known average-cost

function of the one-for-one policy (Hadley and Whitin, 1963).

Since TC(S) is a convex function of S, TC∞(S) is also convex by (3.34). Thus, the

optimal solution for (3.37), denoted by S∗
∞, is the minimum integer S (≥ 0) satisfying

TC∞(S + 1)− TC∞(S) ≥ 0. That is the smallest S satisfying,

S∑
n=0

H(n) ≥ π

π + h
(3.38)

It makes intuitive sense that when there is obsolescence risk, the inventory system

would operate under a lower optimal base stock level than it would when there is no

obsolescence in order to hedge against obsolete stocks. Therefore, S∗
0 should not be

greater than S∗
∞. Song and Zipkin (1996) gave a similar upper bound on the optimal

base stock level of the world-dependent base stock policy when the obsolescence time is

exponentially distributed and the optimal base stock level is changed immediately after

the obsolescence occurs. Unfortunately, we were not able to prove our conjecture about

the upper bound due to analytical intractability. However, our numerical experiments

indicate that as T goes to infinity, S∗
0 increases to S∗

∞ and TC∗ converges to TC∗
∞ (see

Figure 3.3). Thus, in our numerical studies, we use S∗
∞ (≥ 0) as an heuristic upper bound

on S∗
0 .

3.5. Numerical Study

The structure of our numerical study can be summarized as follows: First, we analyze the

sensitivity of optimal parameters and optimal total cost of the (x, S0, S1) policy due to

the changes in system parameters. Second, we investigate the value of the policy change

option of the (x, S0, S1) policy by comparing the performance of the best (x, S0, S1) policy
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Figure 3.3 Convergence of S∗
0 and TC∗ in T

(a) Convergence of S∗
0 to S∗
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(b) Convergence of TC∗ to TC∗
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Note. The following parameter set is used in both figures: λ0 = 5, ρ = 0.9, π = 100, L =

0.5, α = 0.1

and its special case, the fixed policy. Third, we assess the cost of ignoring obsolescence by

comparing the performance of the best (x, S0, S1) policy and the best one-for-one policy

without obsolescence. Fourth, we identify the value of advance policy change option by

comparing the performance of the best (x, S0, S1) policy when policy change is optimal

(i.e., S∗
0 	= S∗

1) and the best (T, S0, S1).

The instances used in our numerical experiments are generated from the following

input parameter set: λ0 ∈ {0.5, 1, 5, 10} units per year and λ1 = (1 − ρ)λ0 where ρ ∈
{0.50, 0.75, 0.90, 1} is the percentage drop in λ0. T ∈ {0.10, 0.50, 1, 2.5, 5} years, L ∈
{0.05, 0.15, 0.25, 0.50} years. Holding cost of an item is normalized to 1 per year and

π = {10, 50, 100, 500} per unit per year. α = {0.05, 0.10} per year. In total, we generated

2560 instances from all possible combinations of this parameter set.

In the sequel, we use the notation X and X̂ to denote the mean and maximum of X,

respectively. The summary of the results of our numerical study is tabulated in Table 3.1.

The meaning of Δ symbols in Table 3.1 will be explained throughout the Sections 3.5.2 –

3.5.4.
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Table 3.1: Summary of Numerical Experiments

x∗ S∗
0 S∗

1 N∗ TC∗ S∗
f Δ% Δ̂% S∗

∞ Δo% Δa%

T 0.1 0.02 1.39 1.13 0.25 19.6 1.21 2.5 56.6 3.16 585.7 12.8

0.5 0.23 2.22 1.14 1.08 22.3 1.54 14.3 127.3 3.16 167.1 29.3

1 0.61 2.57 1.15 1.42 23.7 1.79 22.9 177.5 3.16 113.1 31.4

2.5 1.88 2.88 1.17 1.71 25.8 2.20 31.6 260.6 3.16 72.6 28.4

5 4.16 3.03 1.18 1.85 28.1 2.50 31.0 234.2 3.16 49.9 24.0

λ0 0.5 1.85 0.74 0.47 0.27 12.4 0.64 3.6 51.5 1.25 250.3 13.2

1 1.90 1.10 0.68 0.42 15.9 0.93 7.8 96.9 1.63 193.9 19.0

5 1.80 3.03 1.43 1.60 29.0 2.24 27.2 166.1 3.88 177.7 27.1

10 1.67 4.81 2.05 2.76 38.3 3.59 43.3 260.6 5.88 168.8 34.3

ρ 0.50 1.97 2.80 2.13 0.68 32.0 2.34 3.4 29.9 3.16 21.3 0.7

0.75 1.84 2.59 1.44 1.15 25.9 1.94 12.8 77.4 3.16 56.5 2.7

0.9 1.74 2.41 0.98 1.43 21.0 1.71 25.3 137.1 3.16 111.6 9.4

1 1.63 1.88 0.09 1.79 16.7 1.41 40.3 260.6 3.16 601.3 80.9

π 10 1.83 1.46 0.60 0.86 12.6 0.84 19.0 260.6 2.06 343.4 53.7

50 1.82 2.27 1.08 1.20 21.8 1.69 22.1 177.5 3.00 230.4 28.3

100 1.76 2.63 1.22 1.41 25.9 2.03 21.8 155.2 3.44 146.0 20.8

500 1.70 3.32 1.73 1.59 35.4 2.83 19.0 123.7 4.13 70.9 12.9

L 0.05 1.91 1.11 0.58 0.53 13.5 0.82 14.2 177.5 1.44 224.7 41.7

0.15 1.80 1.98 0.94 1.04 20.9 1.46 18.8 228.9 2.50 180.7 23.7

0.25 1.76 2.65 1.28 1.37 26.0 1.99 21.7 243.9 3.44 213.4 22.6

0.5 1.66 3.94 1.83 2.11 35.2 3.13 27.2 260.6 5.25 172.0 23.9

Overall 1.77 2.42 1.16 1.26 23.9 1.85 20.5 260.6 3.16 197.7 26.8

3.5.1 Sensitivity Analysis

As T increases, the contribution of obsolete stocks to the total costs starts to decrease

compared to the contribution of backorders, and therefore, x∗ and S∗
0 both increase to

balance backordering costs. In general, S∗
1 is not significantly affected by the increase

in T since it is a policy parameter mainly related with the post-obsolescence period.

Furthermore, TC∗ is increasing in T due to higher S∗
0 .

As the drop in demand rate ρ increases, S∗
1 decreases due to lower λ1. Although slower

than S∗
1 , we observed that S∗

0 is also decreasing in ρ to balance the removal quantity.

Consequently, as ρ increases, N∗ either increases or stays the same. If N∗ increases with

ρ, x∗ decreases since the average time for the natural attrition of N∗ stocks before the
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obsolescence occurs (N∗/λ0) increases. On the other hand, if N∗ remains the same then

x∗ tends to increase in ρ to balance backorders. Moreover, TC∗ is decreasing in ρ due

to lower S∗
0 and S∗

1 . This result indicates that under the (x, S0, S1) policy the inventory

system is able to carry less stocks without significantly increasing backorders as a result

of the policy change option.

As λ0 increases, S
∗
0 increases to satisfy demand. S∗

1 is slowly increasing in λ0 to hedge

against backorders in case the adaptation to S∗
1 is completed before T . The behavior of

x∗ is nonmonotic in λ0. It can decrease or increase depending on the changes in N∗ and

N∗/λ0. Moreover, TC∗ is increasing in λ0 as a result of higher base stock levels.

For a given λ0, if the optimal removal quantityN∗ increases with L then x∗ decreases to

initiate the stock removal process earlier to prevent high holding costs due to obsolescence.

If N∗ does not increase with L then x∗ increases to balance backorders by postponing the

policy change. Similarly, as π increases, the system adjusts itself by increasing x∗ until

the holding costs become significant again. Moreover, as π or L increases, S∗
0 and S∗

1 both

increase to balance the backordering costs, and TC∗ increases due to higher base stock

levels.

We find that TC∗ is decreasing in α. For some instances, x∗ is slightly increasing in

α since a higher discount rate mainly reduces the effect of obsolescence related costs. In

general, S∗
0 and S∗

1 remain unaffected as α increases.

3.5.2 Value of Policy Change Option

In this section, our aim is to investigate the value of policy change option of the (x, S0, S1)

policy and identify the parametric regions where the three parameter policy can be sub-

stituted with the simpler fixed policy. Although the fixed policy is the special case of

the (x, S0, S1) policy, when three parameter policy (i.e., policy change) is optimal, the

deviation from the optimal cost by imposing a suboptimal fixed policy is not immediately

evident. Since in both policies obsolescence is taken into account in base stock calcula-

tions, if the deviation from the optimal cost is not too high then the fixed policy may be

preferred over the three parameter policy due to its simplicity. Therefore, by comparing

the two obsolescence based policies, we are able to measure the added value of policy

change option and distinguish the scenarios where policy change makes most sense.
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For comparison purposes, we use the percent difference between the total cost of the

best fixed policy TC(S∗
f ) and the optimal cost TC∗, Δ% =

TC(S∗
f )−TC∗

TC∗ × 100. A positive

Δ% value indicates the percent increase in total costs by imposing the fixed policy when

three parameter policy is optimal. Whereas, the fixed policy is optimal if Δ% is equal to

zero.

Over all the experiment instances considered, we find that Δ% has an average of 20.5%

and a maximum of 260.6%. We conclude that the policy change option of the (x, S0, S1)

policy on average leads to important savings. The savings are largest when the optimal

removal quantity N∗ is large. The savings are diminishing as obsolescence time T , initial

demand rate λ0 and drop in demand rate ρ decrease. When N∗ is low, the suboptimal

fixed policy might be used instead of the optimal three parameter policy depending on

the system parameters.

As N∗ gets larger, the impact of policy change option on costs tends to increase (Figure

3.4). This is because a larger N∗ indicates a bigger tradeoff between obsolescence and

backordering and it becomes more difficult to balance these costs with a single base stock

level. With the option to change the base stock level, the inventory system can operate

under a higher base stock level for the pre-obsolescence period to avoid backordering and

then reduce it to a lower level to minimize obsolete stocks. Since the fixed policy does not

have this flexibility, the performance of the fixed policy decreases in N∗. For example,

Δ% increases from 17.2% to 70% as N∗ increases from 1 to 4.

This indicates that the optimal three parameter policy might be substituted with the

suboptimal fixed policy only if the optimal removal quantity is low. For the instances

with positive Δ% (1497 out of 2560 instances), we find that Δ% is less than or equal to

5% for 282 instances. Fixed policy substitution might be reasonable for those instances

due to low Δ%. In 261 out of 282 instances, N∗ is found to be one. The maximum N∗

is found to be three (2 out of 282 instances). However, we shall emphasize that low N∗

does not necessarily implies low Δ%. As can be seen from Figure 3.4, even for low N∗

values, the deviation from the optimal costs can be very high depending on the system

parameters.

As T increases, Δ% first increases and then decreases until it converges to zero. Ex-

amples of this behavior for different drop rates can be seen in Figure 3.5. When T is
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Figure 3.4 Distribution of Δ% in Optimal Removal Quantity
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near zero, the inventory system does not have enough time for a policy change due to

the immediate risk of obsolescence. Therefore, for small T values, either the fixed pol-

icy is optimal or the improvement by policy change is usually low (e.g., Δ% = 2.5% for

T = 0.1). As T diverges from zero, however, backordering cost increases and the impact of

policy change option on costs becomes more pronounced since it delivers a better balance

between holding costs and backordering costs. As T approaches to infinity, obsolescence

becomes less significant and the total costs of both policies converge to TC∗
∞, and thus,

Δ% approaches zero.

Figure 3.5 Behavior of Δ% in Obsolescence Time for Different Drop Rates (ρ)
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Note. λ0 = 5, π = 100, L = 0.5, α = 0.1
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The average Δ% increases as the demand rate and the percentage drop increases due

to the increase in N
∗
(see Table 3.2). Especially for high λ0 and ρ values, the policy change

option has pronounced effects on costs as a result of relatively large removal quantities.

For instance, in Table 3.2, when λ0 = 10 and ρ = 1, the optimal removal quantity is 3.84

and Δ% is equal to 84.95%. On the other hand, for low λ0 and ρ values, the average

contribution of the policy change option is small due to low removal quantities.

Table 3.2: Average Behavior of Δ% and N∗ in λ0 and ρ

Δ% N
∗

ρ ρ

λ0 0.50 0.75 0.90 1 0.50 0.75 0.90 1

0.5 0.58 2.19 4.25 7.34 0.16 0.26 0.27 0.39

1 0.72 4.90 9.97 15.61 0.14 0.40 0.49 0.67

5 4.94 16.72 33.72 53.29 0.93 1.42 1.79 2.26

10 7.45 27.20 53.43 84.95 1.48 2.53 3.19 3.84

As the unit backordering penalty π increases, Δ% first increases and then decreases

depending on the interplay between obsolete stocks and backorders (see Table 3.1). Ini-

tially, Δ% increases in π since it becomes more difficult to balance obsolescence and

backordering costs with a single base stock level. Essentially, the three parameter policy

reacts to the increase in π by postponing the policy change towards time T to reduce

backorders. Since average N∗ increases with π, the postponement tends to increase the

number of obsolete stocks while trying to balance backorders. Therefore, after π gets

large enough, Δ% starts to decrease due to the relative increase in obsolescence costs as

a result of postponement.

Δ% is increasing in lead time since longer lead times require larger stocks and result

in higher removal quantities.

3.5.3 Cost of Ignoring Obsolescence

In this section, our aim is to assess the cost of ignoring obsolescence by using a one-for-

one policy which does not take into account the drop in demand rate. We assume that

if obsolescence is not taken into account then the system is governed with (S∗
∞ − 1, S∗

∞)

policy. That is the decision maker blindly assumes that the demand rate is constant

at level λ0 and uses the “optimal” base stock level S∗
∞ to satisfy demand where in fact
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obsolescence occurs at time T . Thus, the expected total discounted cost incurred under

this scenario is equal to TC(S∗
∞) since the system is effectively controlled by the fixed

policy with the base stock level S∗
∞.

In order to measure the cost of ignoring obsolescence, we compare TC(S∗
∞) to the

total cost of the best (x, S0, S1) policy, i.e., the fixed policy or the three parameter policy.

The percentage deviation from the cost of best (x, S0, S1) policy is given by Δo% =
TC(S∗∞)−TC∗

TC∗ × 100. A positive value of Δo% shows a percentage increase in total costs as

a result of ignoring obsolescence in policy choice or, equivalently, the savings obtained

by using the obsolescence based (x, S0, S1) policy. The average Δo%s with respect to

different parameters can be seen from Table 3.1.

We conclude that ignoring obsolescence might lead to substantial cost increases. For

all the experiment instances considered, we find that Δo% has the mean 197.7%. The

savings obtained by (x, S0, S1) policy are largest when obsolescence occurs at a near future

and the drop in demand rate is sharp. As the initial demand rate and unit backordering

penalty increases, average savings decrease due to the increase in backordering costs and

obsolete stocks.

As T decreases or ρ increases, S∗
0 and S∗

1 decrease to balance obsolete stocks while

S∗
∞ stays the same (see Table 3.1). Thus, the holding costs of the (S∗

∞ − 1, S∗
∞) policy

increase as a result of the increase in obsolete stocks and, therefore, Δ% increases.

The (x, S0, S1) policy yields the largest savings when obsolescence is expected at a

near future since the increase in the holding costs is most pronounced when discounting

period is short (see Table 3.1). On the other hand, the average savings remain significant

even when the obsolescence is expected in the mid- or the long-term. For example, in

Table 3.1, when T = 5, Δo% is 49.9%.

Δo% is increasing in ρ since it takes more time for the demand to take away the

obsolete stocks under lower λ1. The average Δo% increases nonlinearly in ρ and there is

a large jump in its value for ρ = 1 (see Table 3.1). For instance, Δo% is 63% when ρ < 1

while it is almost ten times bigger when ρ = 1. This is because, in our model, the only

removal option is the natural attrition of removal quantity by demand. Thus, the holding

cost increases sharply if the natural attrition of stocks is not possible after obsolescence

occurs.
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Moreover, we observe that when a large drop is expected within a relatively short time

horizon, the cost of ignoring obsolescence increases steeply due to the compounding effect

of sharp drop in demand rate; e.g., when T = 0.1 and ρ = 0.9, the average Δo% is equal

to 165%, while the same figure drops to 26% if ρ = 0.5.

The relative importance of obsolescence decreases as the weight of backordering in-

creases in total costs. Therefore, as π increases, the average savings by taking obsolescence

into account tends to diminish. For example, in Table 3.1, Δo% decreases from 343.4%

to 70.9% as π increases from 10 to 500.

3.5.4 Value of Advance Policy Change

Next, we investigate the impact of the timing of policy change on total costs and identify

the value of changing the control policy before the obsolescence occurs. In order to

measure the value of advance policy change, we compute the percentage cost difference

between the best (x, S0, S1) policy where S∗
0 is not equal to S∗

1 and the best (T, S0, S1)

policy. We denote the expected total discounted cost of the best (T, S0, S1) policy by TC∗
T .

The percent deviation from TC∗ is defined as Δa% =
TC∗

T−TC∗

TC∗ . Note that a positive Δa%

value indicates the percent increase in total cost as a result of postponing the policy

change to T . Average Δa%s for various system parameters are reported in Table 3.1.

We conclude that advance policy change leads to significant cost savings. Over all

the experiment instances where policy change is optimal (1497 out of 2560 instances), we

find that Δa% has the mean 26.84%. The policy change takes place on average 6 months

before the obsolescence occurs and it can be as early as 4.5 years. Savings are most

pronounced for the instances with moderate demand rate and full obsolescence. Savings

are diminishing as λ0 decreases, ρ decreases or π increases.

As T diverges from zero, N
∗
increases due to the increase in S0 and the system starts

to carry more stocks. Therefore, early initiation of stock removal becomes necessary and

the average Δa% increases in T . However, as obsolescence time goes to infinity, the impact

of obsolescence on costs decreases and the average Δa% decreases. Hence, Δa% is first

increasing and then decreasing in T (see Table 3.1).

Δa% increases as the drop in demand rate gets larger. This is because the natural

attrition of removal quantity takes more time under a lower λ1, and therefore, the obso-
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lescence becomes more costly as the policy change is postponed to time T . Δa% increases

sharply for the full obsolescence case since the removal of obsolete stocks is not possible

after T .

Postponing the policy change has significant effects on total costs for all λ0 values.

Even for relatively low demand rates, the average Δa% is found to be high due to the

simultaneous effect of large drops (e.g., when λ0 = 0.5, Δa% is equal to 13.2%). Moreover,

as λ0 increases, the average optimal removal quantityN
∗
increases and the system becomes

more susceptible to sharp drops in demand rate. As a result, advance policy change yields

the largest savings when both λ0 and ρ are high. For instance, when λ0 = 10, the average

Δa% is equal to 118% for ρ = 1 while the same figure drops to 2.5% for ρ = 0.75.

As unit backordering cost π increases, the (x∗, S∗
0 , S

∗
1) policy tends to postpone the

policy change towards the obsolescence time to decrease backordering costs. Thus, the

average Δa% is decreasing in π (see Table 3.1).

3.6. Conclusion

In this chapter, we consider a single location inventory system of a slow moving item with

Poisson demand where the demand rate drops to a lower level at a known future time.

We assume a one-for-one policy with a fixed lead time, full backordering and two base

stock levels. We propose a continuous review control policy to determine the optimal

base stock levels and the optimal time to reduce the base stock level, if necessary. That

is, if the base stock levels are different, adaptation to lower demand rate is achieved by

reducing the base stock level in advance and letting the demand take away the excess

stocks. We derive the exact expression for the expected total discounted cost function by

partly relying on the Fast Fourier Transform method and obtain the optimal values of the

policy parameters by numerical optimization. Moreover, for the special case of identical

base stock levels, we derive a critical ratio inequality to calculate the optimal base stock

level.

The key insight from our study is that when obsolescence can be foreseen, early adap-

tation of base stock level can lead to important savings. Our numerical study shows that

when obsolescence necessitates a reduction in base stock level, using the proposed three
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parameter policy decreases the post-obsolescence inventory build-up while balancing the

availability. Moreover, we find that ignoring obsolescence in control policy leads to signif-

icant cost increases. Important savings over the one-for-one policy without obsolescence

indicates that for slow movers, there is a great incentive to incorporate the obsolescence

information in stocking decisions.

Our work can be extended in a couple of directions. A model with multiple drops in

demand rate and multiple base stock adjustments would be more suitable to capture grad-

ual obsolescence. Incorporating fixed ordering cost into our model would be particularly

useful for more general class of products subject to obsolescence.

3.7. Appendix

Before going into the detailed derivations of the equations given in Section 3.3 first observe

that if we shift the time axis from x to 0 the shifted process Nx
Λ := {Nx

Λ(t) : t ≥ 0} with

Nx
Λ(t) = NΛ(t+ x)−NΛ(x) (3.39)

is independent of {NΛ(t) : t ≤ x} and this shifted process is a nonstationary Poisson

process with time transformation Λx : [0,∞) → R given by

Λx(t) := Λ(t+ x)− Λ(x) (3.40)

Therefore, from relation (3.39) we see that

Nx
Λ

d
= NΛx (3.41)

This implies by relation (3.2) that

σx
Λ(N)

d
= σΛx(N) (3.42)

and σx
Λ(N) is independent of {NΛ(t) : t ≤ x}.

These observations show that our analysis is independent of the time axis. Thus, in

the sequel we use the shifted process when necessary for the sake of clarity.

Lemma 3.1. Let f(t) = βe−βt, t ≥ 0 with parameter β ∈ C and for λ, γ ∈ R define,

I =

∫ b

a

p(r;λt+ γ)f(t)dt. (3.43)
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(i) If λ 	= −β then

I =
r∑

k=0

p(r − k; γ)g
(
k; β

λ+β

)
[P (k; (λ+ β)a)− P (k; (λ+ β)b)] (3.44)

(ii) If λ = −β then

I =
r∑

k=0

p(r − k; γ)
λk+1(ak+1 − bk+1)

(k + 1)!
(3.45)

Proof of Lemma 3.1. (i) Observe that (3.43) can be rewritten as follows,

I =
e−γβ

r!

∫ b

a

(λt+ γ)re−(λ+β)tdt

From the binomial theorem and after some algebra we obtain that

I =
e−γβ

r!

∫ b

a

r∑
k=0

(
r

k

)
γr−k(λt)ke−(λ+β)tdt

=
r∑

k=0

e−γγr−k

(r − k)!
β

(
λ

λ+ β

)k ∫ b

a

p(k; (λ+ β)t)dt (3.46)

It can be easily shown that for any λ 	= 0 and γ ∈ R the following holds,∫ b

a

p(n;λt+ γ)dt =
1

λ
[P (n;λa+ γ)− P (n;λb+ γ)] (3.47)

Since λ 	= −β, using the relation (3.47) in (3.46) yields the result as follows,

I =
r∑

k=0

p(r − k; γ)

(
β

λ+ β

)(
λ

λ+ β

)k

[P (k; (λ+ β)a)− P (n; (λ+ β)b)]

=
r∑

k=0

p(r − k; γ)g
(
k; β

λ+β

)
[P (k; (λ+ β)a)− P (n; (λ+ β)b)]

(ii) When λ = −β, the integral equation (3.43) can be written as

I =
e−γβ

r!

∫ b

a

(λt+ γ)rdt

Applying the binomial theorem and after some algebra, the result can be obtained as

follows,

I =
e−γβ

r!

r∑
k=0

(
r

k

)
γr−kλk

∫ b

a

tkdt

=
r∑

k=0

p(r − k; γ)
λk+1(ak+1 − bk+1)

(k + 1)!
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Lemma 3.2. Let {NΛ(t) : t ≥ 0} be a non-homogeneous Poisson process with time

transformation

Λ(t) =

{
λ0t if 0 ≤ t ≤ T

(λ0 − λ1)T + λ1t if t > T

and introduce the hitting time

σΛ(k) = min{t ≥ 0 : NΛ(t) ≥ k}, k = 1, 2, ...

Define,

ξ
k
(T, h) := E

(∫ σΛ(k)

0
e−a(t, h; Λ)dt

)
and ξk(T, h) := E

(∫∞
σΛ(k)

e−a(t, h; Λ)dt
)

with

a(t, h; Λ) := αt+ (Λ(t+ h)− Λ(t))(1− z), ∀t, h ≥ 0

Then,

ξ
k
(T, h) = f1 + f2 + f3

where

f1 := e−b(T, h)(1−z)

⎧⎪⎨⎪⎩
η−1
z

∑k−1
n=0 g

(
n; ηz

λ0+ηz

)
ΔPn if λ0 	= −ηz

λ−1
0

∑k−1
n=0 Δpn if λ0 = −ηz

ΔPn := P (n; (λ0 + ηz)(T − h)+)− P (n; (λ0 + ηz)T )

Δpn := eλ0Tp(n+ 1;λ0T )− eλ0(T−h)+p(n+ 1;λ0(T − h)+)

f2 := α−1e−λ1h(1−z)

k−1∑
n=0

n∑
	=0

p(n− �; (λ0 − λ1)T )g
(
�; α

λ1+α

)
P (�; (λ1 + α)T )

f3 := α−1e−λ0h(1−z)

k−1∑
n=0

g
(
n; α

λ0+α

)
[1− P (n; (λ0 + α)(T − h)+)]

and

ξk(T, h) = g1 + g2 + g3 − ξ
k
(T, h)
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where

g1 := α−1e−λ1h(1−z)F (T ;α)

g2 := η−1
z e−b(T, h)(1−z)

(
e−ηz(T−h)+ − e−ηzT

)

g3 := α−1e−λ0h(1−z)F ((T − h)+;α)

Proof of Lemma 3.2. Observe that ξ
k
(T, h) can be rewritten as follows

ξ
k
(T, h) = E

(∫∞
0

e−a(t, h; Λ) 1{t<σΛ(k)} dt
)

Using relation

σΛ(k) > t ⇐⇒ NΛ(t) < k

we obtain

ξ
k
(T, h) = E

(∫∞
0

e−a(t, h; Λ) 1{NΛ(t)<k} dt
)

=

∫ ∞

0

e−a(t, h; Λ)P (NΛ(t) < k)dt

=
k−1∑
n=0

∫ ∞

0

e−a(t, h; Λ)p(n; Λ(t))dt (3.48)

Moreover let,

ξ(T, h) :=

∫ ∞

0

e−a(t, h; Λ)dt (3.49)

and observe that ξ(T, h) = ξ
k
(T, h) + ξk(T, h) for any k ∈ {1, 2, ...}. Therefore, ξk(T, h)

can be given as

ξk(T, h) = ξ(T, h)− ξ
k
(T, h) (3.50)

(i) If T < h then by the definition of Λ(t) we obtain that

Λ(t+ h)− Λ(t) =

{
(λ0 − λ1)T + λ1h− (λ0 − λ1)t if 0 ≤ t ≤ T

λ1h if t > T
(3.51)
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From the definition of Λ(t) and (3.51) the integral in (3.48) can be written as follows∫ ∞

0

e−a(t, h; Λ)p(n; Λ(t))dt = e−((λ0−λ1)T+λ1h)(1−z)

∫ T

0

e−(α−(λ0−λ1)(1−z))tp(n;λ0t)dt

+ e−λ1h(1−z)

∫ ∞

T

e−αtp(n; (λ0 − λ1)T + λ1t)dt

= e−b(T, h)(1−z)

∫ T

0

e−ηztp(n;λ0t)dt

+ e−λ1h(1−z)

∫ ∞

T

e−αtp(n; b(T, t))dt (3.52)

From Lemma 3.1, the first integral in (3.52) can be obtained as

If λ0 	= −ηz then∫ T

0

e−ηztp(n;λ0t)dt = η−1
z

n∑
	=0

p(n− �; 0)g
(
�; ηz

λ0+ηz

)
[P (�; 0)− P (�; (λ0 + ηz)T )]

= η−1
z g

(
n; ηz

λ0+ηz

)
[1− P (n; (λ0 + ηz)T )] (3.53)

If λ0 = −ηz then∫ T

0

e−ηztp(n;λ0t)dt = −η−1
z

n∑
	=0

p(n− �; 0)eλ0Tp(�+ 1;λ0T )

= λ−1
0 eλ0Tp(n+ 1;λ0T ) (3.54)

Since α > 0, λ1 	= −α always holds, and from Lemma 3.1, the second integral in (3.52) is

found as,∫ ∞

T

e−αtp(n; b(T, t))dt = α−1

n∑
	=0

p(n− �; (λ0 − λ1)T )g
(
�; α

λ1+α

)
P (�; (λ1 + α)T ) (3.55)

Hence, using (3.52), (3.53),(3.54) and (3.55) in (3.48) yields ξ
k
(T, h) as follows:

ξ
k
(T, h) = e−b(T, h)(1−z)

⎧⎪⎨⎪⎩
η−1
z

∑k−1
n=0 g

(
n; ηz

λ0+ηz

)
[1− P (n; (λ0 + ηz)T )] if λ0 	= −ηz

λ−1
0

∑k−1
n=0 e

λ0Tp(n+ 1;λ0T ) if λ0 = −ηz

+ α−1e−λ1h(1−z)

k−1∑
n=0

n∑
	=0

p(n− �; (λ0 − λ1)T )g
(
�; α

λ1+α

)
P (�; (λ1 + α)T ) (3.56)



3.7 Appendix 85

Similarly, ξ(T, h) can be found by using the definition of Λ(t) and (3.51) as follows:

ξ(T, h) = e−b(T, h)(1−z)

∫ T

0

e−ηztdt+ e−λ1h(1−z)

∫ ∞

T

e−αtdt

= η−1
z e−b(T, h)(1−z)(1− e−ηzT ) + α−1e−λ1h(1−z)F (T ;α) (3.57)

Thus, ξk(T, h) can be easily obtained by substituting (3.56) and (3.57) in (3.50).

(ii) If T ≥ h then by the definition of Λ(t) we obtain that

Λ(t+ h)− Λ(t) =

⎧⎨⎩
λ0h if 0 ≤ t ≤ T − h

(λ0 − λ1)T + λ1h− (λ0 − λ1)t if T − h < t ≤ T

λ1h if t > T

(3.58)

From the definition of Λ(t) and (3.58), the integral in (3.48) can be given as follows∫ ∞

0

e−a(t, h; Λ)p(n; Λ(t))dt = e−λ0h(1−z)

∫ T−h

0

e−αtp(n;λ0t)dt

+ e−b(T, h)(1−z)

∫ T

T−h

e−ηztp(n;λ0t)dt

+ e−λ1h(1−z)

∫ ∞

T

e−αtp(n; b(T, t))dt (3.59)

Note that the last integral in (3.59) is already given by equation (3.55). Then, from

Lemma 3.1, the first two integrals are found as:∫ T−h

0

e−αtp(n;λ0t)dt = α−1g
(
n; α

λ0+α

)
[1− P (n; (λ0 + α)(T − h))] (3.60)

∫ T

T−h

e−ηztp(n;λ0t)dt =

⎧⎪⎨⎪⎩
η−1
z g

(
n; ηz

λ0+ηz

)
ΔPn if λ0 	= −ηz

λ−1
0 Δpn if λ0 = −ηz

(3.61)
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Using (3.55), (3.59), (3.60) and (3.61) in (3.48) yields ξ
k
(T, h) as follows:

ξ
k
(T, h) = α−1e−λ0h(1−z)

k−1∑
n=0

g
(
n; α

λ0+α

)
[1− P (n; (λ0 + α)(T − h))]

+ e−b(T, h)(1−z)

⎧⎪⎨⎪⎩
η−1
z

∑k−1
n=0 g

(
n; ηz

λ0+ηz

)
ΔPn if λ0 	= −ηz

λ−1
0

∑k−1
n=0 Δpn if λ0 = −ηz

+ α−1e−λ1h(1−z)

k−1∑
n=0

n∑
	=0

p(n− �; (λ0 − λ1)T )g
(
�; α

λ1+α

)
P (�; (λ1 + α)T ) (3.62)

ξ(T, h) can be found by using the definition of Λ(t) and (3.58) as follows:

ξ(T, h) = e−λ0h(1−z)

∫ T−h

0

e−αtdt+ e−b(T, h)(1−z)

∫ T

T−h

e−ηztdt+ e−λ1h(1−z)

∫ ∞

T

e−αtdt

= α−1e−λ0h(1−z)F (T − h;α) + η−1
z e−b(T, h)(1−z)

(
e−ηz(T−h) − e−ηzT

)
+ α−1e−λ1h(1−z)F (T ;α) (3.63)

Thus, ξk(T, h) can be easily obtained by substituting (3.62) and (3.63) in (3.50).

Proof of Equation (3.12). By conditioning on Y and from the definition of Λ(t),

we obtain that

E (Λ(Y)) =

∫ ∞

0

αe−αtΛ(t)dt

=

∫ T

0

αe−αtλ0tdt+

∫ ∞

T

αe−αt((λ0 − λ1)T + λ1t)dt

= (λ0 − λ1)

(∫ T

0

tαe−αtdt+ TF (T ;α)

)
+ α−1λ1 (3.64)

Observe that, ∫ T

0

tαe−αtdt = α−1F (T ;α)− TF (T ;α) (3.65)

Hence, using (3.65) in (3.64) yields the result.
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Proof of Equation (3.13). By conditioning on Y and from (3.4), we obtain that

E (IP(Y)) = E
(∫∞

0
αe−αtIP(t)dt

)
= U1 (α) + U2 (α) + U3 (α) (3.66)

with

U1 (α) := S0

∫ x

0

αe−αtdt = S0(1− e−αx) (3.67)

U2 (α) := E
(∫ x+σx

Λ(N)

x
αe−αt(S0 − (NΛ(t)−NΛ(x)))dt

)
(3.68)

U3 (α) := (S0 −N)E
(∫∞

x+σx
Λ(N)

αe−αtdt
)

(3.69)

By shifting the time axis from [x, x + σx
Λ(N)] to [0, σx

Λ(N)] and using the relations

(3.39), (3.40) and (3.42) it follows that:

U2 (α) = E
(∫ σx

Λ(N)

0
αe−α(t+x)(S0 − (NΛ(t+ x)−NΛ(x)))dt

)

= e−αxE
(∫ σΛx (N)

0
αe−αt(S0 −NΛx(t))dt

)

= e−αx
[
S0E

(∫ σΛx (N)

0
αe−αtdt

)
− E

(∫ σΛx (N)

0
αe−αtNΛx(t)dt

)]
(3.70)

Let, for k = 0, 1, 2, ...

μk := E
(∫ σΛx (k)

0
αe−αtdt

)
(3.71)

and observe that μ0 = 0 and for k = 1, 2, ...

μk = αξ
k
(T − x, 0) (3.72)

Hence, from Lemma 3.2 it follows that for k = 1, 2, ...

μk =
k−1∑
n=0

n∑
	=0

p(n− �; (λ0 − λ1)(T − x))g
(
�; α

λ1+α

)
P (�; (λ1 + α)(T − x))

+
k−1∑
n=0

g
(
n; α

λ0+α

)
[1− P (n; (λ0 + α)(T − x))]
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Let,

U4 (α) := E
(∫ σΛx (N)

0
αe−αtNΛx(t)dt

)
Observe that U4 (α) can be computed by dividing the interval [0, σΛx(N)) into non-

overlapping parts such that

[0, σΛx(N)) =
N−1⋃
k=0

[σΛx(k), σΛx(k + 1))

with σΛx(0) = 0. Moreover, for any k = 0, 1, ..., N − 1 it is clear that

NΛx(t) = k for t ∈ [σΛx(k), σΛx(k + 1)).

Hence, using these observations and (3.71), U4 (α) can be given as

U4 (α) =
N−1∑
k=0

kE
(∫ σΛx (k + 1)

σΛx (k)
αe−αtdt

)

=
N−1∑
k=0

k(μk+1 − μk) (3.73)

Moreover, substituting (3.71) and (3.73) in (3.70) yields,

U2 (α) = S0e
−αxμN − e−αx

N−1∑
k=0

k(μk+1 − μk) (3.74)

Similarly, by shifting the time axis from [x, x + σx
Λ(N)] to [0, σx

Λ(N)] and using the

relations (3.42), (3.72) and the definition of ξk(T, h), we can obtain U3 (α) as follows:

U3 (α) = (S0 −N)e−αxE
(∫∞

σΛx (N)
αe−αtdt

)

= (S0 −N)e−αxαξN(T − x, 0)

= (S0 −N)e−αx(1− μN) (3.75)

Therefore, substituting (3.67), (3.74) and (3.75) in (3.66) and simplifying yields the re-

sult.
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Proof of W (α). From (3.4) it follows that W (α) can be written as a summation of

the three integrals such that

W (α) = W1 (α) +W2 (α) +W3 (α)

with

W1 (α) := z−S0

∫ x

0

e−a(t, L; Λ)dt (3.76)

W2 (α) := z−S0E
(∫ x+σx

Λ(N)

x
e−a(t, L; Λ)zNΛ(t)−NΛ(x)dt

)
(3.77)

W3 (α) := z−S0+NE
(∫∞

x+σx
Λ(N)

e−a(t, L; Λ)dt
)

(3.78)

The analysis of W1 (α) depends on the relationship between T and L. Therefore, we

divide the analysis into two main cases:

(i) If T < L then from the definition of Λ(t), for 0 ≤ t ≤ T , we have

Λ(t+ L)− Λ(t) = (λ0 − λ1)T + λ1L− (λ0 − λ1)t (3.79)

Thus, using (3.79) in (3.76) yields

W1 (α) = z−S0e−((λ0−λ1)T+λ1L)(1−z)

∫ x

0

e−(α−(λ0−λ1)(1−z))tdt

= z−S0η−1
z e−b(T,L)(1−z)(1− e−ηzx) (3.80)

(ii) If T ≥ L then the analysis depends on the relation between x+ L and T . Hence, we

have two subcases:

(a) If x+ L ≤ T then from the definition of Λ(t), for 0 ≤ t ≤ T , we obtain that

Λ(t+ L)− Λ(t) = λ0L (3.81)

Using (3.81) in (3.76) yields

W1 (α) = z−S0α−1e−λ0L(1−z)F (x;α) (3.82)
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(b) If x+ L > T then by the definition of Λ(t) we obtain that

Λ(t+ L)− Λ(t) =

{
λ0L if 0 ≤ t ≤ T − L

(λ0 − λ1)T + λ1L− (λ0 − λ1)t if T − L < t ≤ x
(3.83)

Using (3.83) in (3.76) yields

W1 (α) = z−S0

[
e−λ0L(1−z)

∫ T−L

0

e−αtdt

+ e−((λ0−λ1)T+λ1L)(1−z)

∫ x

T−L

e−(α−(λ0−λ1)(1−z))tdt

]

= z−S0
[
α−1e−λ0L(1−z)F (T − L;α) + η−1

z e−b(T,L)(1−z)(e−ηz(T−L) − e−ηzx)
]

(3.84)

Therefore, combining (3.80), (3.82) and (3.84) into a single equation yields W1 (α) as

given by (3.25).

By shifting the time axis from [x, x + σx
Λ(N)] to [0, σx

Λ(N)] and using the relations

(3.39), (3.40) and (3.42), we can rewrite W2 (α) as follows:

W2 (α) = z−S0E
(∫ σx

Λ(N)

0
e−a(t+x,L;Λ)zNΛ(t+ x)−NΛ(x)dt

)

= z−S0e−αxE
(∫ σΛx (N)

0
e−a(t, L; Λx)zNΛx (t)dt

)
(3.85)

Let,

W4 (α) := E
(∫ σΛx (N)

0
e−a(t, L; Λx)zNΛx (t)dt

)
Observe that W4 (α) can be computed by dividing the interval [0, σΛx(N)) into non-

overlapping parts such that

[0, σΛx(N)) =
N−1⋃
k=0

[σΛx(k), σΛx(k + 1))

with σΛx(0) = 0. Moreover,NΛx(t) = k for any k = 0, 1, ..., N−1 and t ∈ [σΛx(k), σΛx(k + 1)).

Thus, it follows that

W4 (α) =
N−1∑
k=0

zkE
(∫ σΛx (k + 1)

σΛx (k)
e−a(t, L; Λx)dt

)
(3.86)
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Let, for k = 1, 2, ...

ξ
k
:= ξ

k
(T − x, L) := E

(∫ σΛx (k)

0
e−a(t, L; Λx)dt

)
(3.87)

and note that ξ
k
can be computed from Lemma 3.2. Therefore, W4 (α) can be written as

the summation of the differences of ξ
k
s as follows

W4 (α) =
N−1∑
k=0

zk(ξ
k+1

− ξ
k
) (3.88)

with ξ
0
= 0. Hence, substituting (3.88) in (3.89) yields W2 (α) as given in (3.26).

Similarly, by shifting the time axis from [x, x + σx
Λ(N)] to [0, σx

Λ(N)] and using the

relations (3.39)-(3.42), W3 (α) can be obtained as follows:

W3 (α) = z−S0+Ne−αxE
(∫∞

σx
Λ(N)

e−a(t+x,L;Λ)dt
)

= z−S1e−αxE
(∫∞

σΛx (N)
e−a(t, L; Λx)dt

)

= z−S1e−αxξN (3.89)

where ξN := ξN(T − x, L) can be computed by Lemma 3.2.

Proof of Equation (3.30). By conditioning on Y and from the relation (3.28), we

obtain that

E (IN(Y))+ = M1(α) + e−αLM2(α) (3.90)

with

M1(α) :=

∫ L

0

αe−αtE(S −NΛ(t))
+dt

M2(α) :=

∫ ∞

0

αe−αtE(S − (NΛ(t+ L)−NΛ(t)))
+dt
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Recall that NΛ(t) and NΛ(t+ L) − NΛ(t) are Poisson distributed with parameter Λ(t)

and Λ(t+ L)− Λ(t), resp. Hence,

M1(α) :=

Sf−1∑
n=0

(S − n)

∫ L

0

αe−αtp(n; Λ(t))dt

M2(α) :=

Sf−1∑
n=0

(S − n)

∫ ∞

0

αe−αtp(n; Λ(t+ L)− Λ(t))dt

and

E (IN(Y))+ =

Sf−1∑
n=0

(S − n)
[
A1(n) + e−αLA2(n)

]
(3.91)

with

A1(n) :=

∫ L

0

αe−αtp(n; Λ(t))dt

A2(n) :=

∫ ∞

0

αe−αtp(n; Λ(t+ L)− Λ(t))dt

The integral equations A1(n) and A2(n) can be analyzed by conditioning on the relation

between T and L as follows:

(i) If T < L then by the definition of Λ(t) we have

A1(n) =

∫ T

0

αe−αtp(n;λ0t)dt+

∫ L

T

αe−αtp(n;λ1t+ (λ0 − λ1)T )dt (3.92)

Applying Lemma 3.1 to the integrals in (3.92) gives,

A1(n) = g
(
n; α

λ0+α

)
[1− P (n; (λ0 + α)T )]

+
n∑

	=0

p(n− �; (λ0 − λ1)T )g
(
�; α

λ1+α

)
[P (�; (λ1 + α)T )− P (�; (λ1 + α)L)]

From (3.51), the integral equation A2(n) can be written as,

A2(n) =

∫ T

0

αe−αtp(n;−(λ0 − λ1)t+ b(T, L))dt+

∫ ∞

T

αe−αtp(n;λ1L)dt (3.93)

Let, η0 := α− (λ0 − λ1) and

fA(n) :=

∫ T

0

αe−αtp(n;−(λ0 − λ1)t+ b(T, L))dt
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Then,

A2(n) = fA(n) + p(n;λ1L)F (T ;α)

and fA(n) is found by Lemma 3.1 as follows

fA(n) =

⎧⎨⎩
∑n

	=0 p(n− �; b(T, L)) g (�;α/η0) [1− P (�; η0T )] if η0 	= 0∑n
	=0 p(n− �; b(T, L)) (−α)�+1

(	+1)!
(−T 	+1) if η0 = 0

(ii) If T ≥ L then from the definition of Λ(t) and Lemma 1, we obtain that

A1(n) =

∫ L

0

αe−αtp(n;λ0t)dt

= g
(
n; α

λ0+α

)
[1− P (n; (λ0 + α)L)]

From relation (3.58), the integral equation A2(n) can be written as,

A2(n) =

∫ T−L

0

αe−αtp(n;λ0L)dt+

∫ T

T−L

αe−αtp(n;−(λ0 − λ1)t+ b(T, L))dt

+

∫ ∞

T

αe−αtp(n;λ1L)dt (3.94)

Let,

fA(n) :=

∫ T

T−L

αe−αtp(n;−(λ0 − λ1)t+ b(T, L))dt

then

A2(n) = p(n;λ0L)F (T − L;α) + fA(n) + p(n;λ1L)F (T ;α)

and from Lemma 3.1, we obtain that

fA(n) =

⎧⎨⎩
∑n

	=0 p(n− �; b(T, L)) g (�;α/η0) [P (�; η0(T − L))− P (�; η0T )] if η0 	= 0∑n
	=0 p(n− �; b(T, L)) (−α)�+1

(	+1)!

[
(T − L)	+1 − T 	+1

]
if η0 = 0

Therefore, combining the expressions of A1(n), A2(n) and fA(n) for the cases T < L

and T ≥ L yields the result as given in (3.30).
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Chapter 4

An Inventory Model for Systems

with Random Deal Offerings and

Partial Backordering∗

Abstract

In this chapter, we consider a single item, single location, continuous review inven-

tory system where the supplier offers price discounts at random points in time. The

demand is assumed to be deterministic and lead times are negligible. When the

system is out of stock a fraction of demand can be backordered and the rest is lost,

i.e., partial backordering. The replenishment and stocking decisions at deal and list

prices are controlled by a four parameter control policy. We derive exact expressions

for operating characteristics and equations to compute the optimal policy param-

eters. We provide qualitative results about the optimal solution and demonstrate

that allowing backorders in a random deal environment might lead to important

cost savings.

4.1. Introduction

In this chapter, our aim is to investigate the impact of price discounts given by a supplier

on replenishment and stocking decisions of a firm. We consider a single item, single

location, continuous review inventory system where a supplier offers deals (price discounts)

at random points in time. We assume that deals arrive according to the Poisson process

and the deal price is known and fixed. Moreover, we assume that demand is deterministic

∗This chapter is based on Pinçe and Berk (2006)
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and lead times are negligible. If an arriving customer finds the inventory system out of

stock then she may either choose to be backlogged or leave the system and become a lost

sale. In other words, when the system is out of stock, a certain fraction of demand can

be backordered and the rest is lost. We assume that the fraction is known and fixed.

In the literature, this type of backordering structure is generally referred to as partial

backordering.

There are two types of replenishments: at the deal price and at the regular list price.

We propose a four parameter control policy to decide the timing (in terms of inventory)

and the size for both types of replenishment. That is, the deals can be taken only if the

inventory level is below a can-order level and the regular list replenishments are given

whenever the inventory level hits the reorder point. Both types of replenishment are as-

sumed to be instantaneous. As such, we extend the policy offered by Moinzadeh (1997)

by including reorder point and allowing partial backordering. The objective is to deter-

mine the optimal reorder point, the deal threshold (can-order level) and the replenishment

quantities minimizing the expected total cost rate. We derive the exact expression for

the expected total cost rate function and use analytical optimization to determine the

optimal policy parameters. We find that allowing backorders while waiting for a deal can

lead to considerable savings. Especially, when the expected discount is deep, the benefit

of making a good deal replenishment offsets the stockout costs on average.

The literature of the inventory systems with price fluctuations can be categorized into

three different classes. The papers in the first class consider the systems with deterministic

demand rate where a single future price change is announced by supplier or known by

experience. Taylor and Bradley (1985) consider an inventory system where the supplier

announces a price increase that will occur in a future time and develop optimal ordering

strategies for the cases where the price increase does not coincide with the end of an EOQ

cycle. Ardalan (1988) investigates the effects of special orders when a supplier reduces the

price of a product temporarily and develops EOQ type optimal ordering policies according

to the relation between the duration of sale period, replenishment time and on-hand

inventory at the replenishment time. Lev et al. (1981) consider EOQ systems in which any

or all system parameters may change at some future time known by announcement or prior

experience. The demand rate is assumed to be affected by the changes in cost parameters.



4.1 Introduction 99

They develop myopic and optimal ordering policies depending on the inventory level at

the time of the cost change and present a simple method for computing the optimal

policy. Lev and Weiss (1990) consider the same model for finite and infinite horizon cases

and present more specific results on the structure of the optimal policy. For the infinite

horizon case, they show that the model offered is the generalization of the model proposed

by Taylor and Bradley (1985) and demonstrate that the results by Taylor and Bradley

(1985) are not optimal.

The studies in the second class are mostly periodic review models and their main focus

is the optimal policy structure. One of the earliest models in this class belongs to Kalymon

(1971). He studies a single item, periodic review inventory system where the prices of

future periods are governed by a Markov process and the distribution of period demand is

determined by the current price. For finite and infinite horizon cases the optimality of the

price dependent (s, S) policy is shown and bounds on the optimal policies are provided.

Özekici and Parlar (1999) consider a similar Markov modulated model where the randomly

changing environment affects not only demand but also supply and cost parameters. They

show that the environment-dependent-basestock policy is optimal when there is no fixed

ordering cost and the environment-dependent (S, s) policy is optimal when the fixed

ordering cost is positive.

Golabi (1985) examines a periodic review system where random unit prices are deter-

mined according to a known distribution function at the beginning of each period. Under

deterministic demand assumption, he shows that in any period, the optimal strategy is

to order up to a level that satisfies the demands of next n periods when the random unit

price is between the critical price levels. Gurnani (1996) presents an optimal ordering

policy for a periodic review inventory system with random demands and random deal

offerings. He considers two models according to the firm’s decision on sharing the cost

savings information with customers and presents the optimal policy structure. Recently,

Wang (2001) studies a periodic review inventory system where the purchasing prices of

successive periods decrease according to a stochastic process. It is assumed that random

demands and purchasing prices are independent and the fixed ordering cost is equal to

zero. The conditions for cost parameters are derived and the optimal myopic order-up-to

levels for each period are determined. Assunção and Meyer (1993) extend the periodic
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review inventory control systems such as those proposed by Golabi (1985) and Kalymon

(1971) by modeling consumer’s rate of consumption as a decision variable and the future

prices as a first-order stochastic process.

The studies in the third class are composed of continuous review models. Hurter

and Kaminsky (1968) analyze a system where the demand arrival process is Poisson and

the unit price of an item fluctuates between low and high periods according to another,

independent Poisson process. All replenishments are instantaneous and stockouts are not

allowed. They propose a three parameter control policy consisting of a deal replenishment

threshold and order-up-to points for regular and deal replenishments. According to the

policy the regular order-up-to point is used when the price is high and the inventory level is

depleted. A deal is taken only if the inventory level is lower than the deal threshold. They

suggest 3-dimensional discrete search method to determine the optimal policy parameters.

Silver et al. (1993) offer a simple, analytical approximate solution procedure for the model

considered by Hurter and Kaminsky (1968). They showed that the procedure of graphical

lookup and a single one-dimensional search yields usually optimal values of the three

policy parameters. Moreover, they provide a closed form expression for the optimal policy

parameters when the deal order-up-to level is equal to the deal threshold.

Moinzadeh (1997) considers the same model with deterministic demand. Under the

same three parameter control policy, the exact expressions of the optimal policy parame-

ters are derived and the properties resembling EOQ based intuitions are stated. Further-

more, a heuristic solution is offered for the calculation of the optimal policy parameters

and a numerical analysis is provided to investigate the performance of this solution.

Feng and Sun (2001) extend the model considered by Hurter and Kaminsky (1968)

and Silver et al. (1993) to allow backorders. They propose a four parameter policy with

the three parameters being the same as before and the reorder point for regular replen-

ishments. They suggest a bisection algorithm to obtain the optimal policy parameters.

Abad (2003) considers a model where price discounts offered by supplier lasts a finite

time interval. The demand is deterministic and sensitive to reseller’s selling price. He

formulates the objective function of reseller as a profit maximizing problem and derives the

optimal selling price and optimal lotsize expressions for the cases with or without forward-

buying possibility. Arcelus et al. (2003) study a similar problem where the promotions
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offered by supplier lasts for a fixed minimum guaranteed duration but of uncertain total

discount period. Such trade promotions are commonly called as “while supplies last”

promotion.

The rest of the chapter is organized as follows. Section 4.2 states the assumptions of

the model and the control policy. Section 4.3 provides the preliminary results used for

the derivation of the operating characteristics. Section 4.4 presents the expressions for

the operating characteristics and the equations to calculate optimal policy parameters.

Section 4.7 presents the results of the numerical study. Section 4.8 concludes.

4.2. The Model

We consider a single item, single location, continuous review inventory system where

the supplier offers price discounts at random points in time. That is, the item can be

replenished at the list price cL at any time and at the discount price cD when a deal

opportunity occurs. Although the deal price can be random in general, in our analysis,

we assume that it is fixed. The demand is constant at rateD and the deals arrive according

to the Poisson process with rate μ. We assume that the deal duration is negligible and

the delivery lead times for both types of replenishment are zero.

There are fixed ordering costs for list and deal replenishments denoted by AL and AD,

resp. Inventory carrying cost h is incurred per unit per time. When there is no inventory

on hand, a certain fraction of demand can be backordered. We denote the backordering

fraction with p̂ ∈ (0, 1). Backordering cost is composed of a fixed component π incurred

per unit and π̂ incurred per unit per unit of time. The fraction of demand not backordered

is lost against the lost sales cost θ incurred per unit.

To control the timing and the size of the replenishment decisions, we use the following

four parameter policy based on the net inventory level (on-hand minus backorders):

Policy: If a deal is offered and the net inventory level is below the deal replenishment

threshold s then a replenishment order from the deal price is placed to increase the net

inventory level up to s+Q. Otherwise, a replenishment order from the list price is placed

to increase the net inventory level up to R̃ whenever the net inventory level hits the reorder

point −r.
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We refer to this policy as the (r, R, s,Q) control policy. We let r, R, s,Q ≥ 0 and

R̃ ∈ R. That is, according to the particular policy choice, the sign of R can vary and

therefore, R̃ is either equal to R or −R. In the sequel, we identify three different cases

according to the sign of R and the relation between s and R. Moreover, we only consider

the cases where the deal threshold s cannot be negative. This is because a negative

s implies somewhat exotic scenarios where the deals can be accepted only if there are

enough stockouts. Although those cases can be analyzed for the sake of completeness, in

the same line with the literature, in this study, we limit our attention to the more realistic

cases where s ≥ 0.

Our objective is to find the optimal policy parameters minimizing the expected total

cost rate. Depending on the relation between R and s and the sign of R, we can analyze

the expected total cost rate function for three different cases:

Case 1: −r ≤ 0 ≤ R ≤ s

Case 2: −r ≤ 0 ≤ s ≤ R ≤ s+Q

Case 3: −r ≤ −R ≤ 0 ≤ s

Note that for Case 1 and Case 2, R̃ = R and for Case 3, R̃ = −R. Figures 4.1–4.3 show

realizations of the net inventory level for the three cases.

Figure 4.1: Possible realization of the net inventory level for Case 1
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As in Moinzadeh (1997), the cycle is defined as the duration between two consecutive

deal replenishments. Observe from Figures 4.1–4.3 that under the (r, R, s,Q) policy, the

length of a cycle is a random variable depending not only the deal arrival process but

also the net inventory level. If a deal arrives when the inventory level is larger than the

threshold s then a deal is not taken. For example, in Figure 4.1, we see three different

cycle types according to their end points. Type (i) cycle ends when the net inventory

level is between 0 and R, type (ii) cycle ends when the net inventory level is between

−r and 0 and type (iii) cycle ends when the net inventory level is between s and R. In

the sequel, we will analyze different cycle types for each case to calculate the expected

number of list replenishments and the expected cycle length.

Moreover, observe from the figures that the slope of the net inventory level decreases

below zero due to partial backordering. In Figure 4.1 and Figure 4.2, list replenishments

raise the net inventory up to a nonnegative level R. While in Figure 4.3, the net inventory

level might remain nonpositive until a deal arrives since list replenishments do not increase

it to a positive level. Intuitively, such a policy might be optimal when the stockout costs

are relatively low and deals are very attractive compared to regular list replenishments.

Therefore, the system might be better off by incurring stockout costs while waiting for a

good deal.

Figure 4.2: Possible realization of the net inventory level for Case 2
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Figure 4.3: Possible realization of the net inventory level for Case 3

In the next section, we provide some preliminary results to be used in the derivation

of operating characteristics.

4.3. Preliminaries

Let Y be an exponential random variable with parameter μ representing the duration of

the time between two consecutive deal offers.

Preliminaries for Case 1 and Case 2:

Let x = min(s, R) and βx be the probability that a deal arrives when the net inventory

level is between s and x. Example of this scenario can be seen in cycle (iii) in Figure 4.1.

In order to calculate βx, we only need to consider the time interval for the net inventory

level to decrease from s to x, i.e., the interval of length (s−x)/D, due to the memoryless

property of the interarrival time Y . Thus, we have

βx = P

(
Y ≤ s− x

D

)
= 1− e−μ(s−x)/D (4.1)

Let αx be the probability that a deal arrives when the net inventory level is at or below

x (see cycles (i) and (ii) in Figure 4.1 and Figure 4.2). Similarly, by only considering the
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time interval for the net inventory level to decrease from x to −r, we obtain that

αx = P

(
Y ≤ x

D
+

r

p̂D

)
= 1− e−μ(p̂x+r)/p̂D (4.2)

Next, we shall consider the two random time intervals τ1:x and τ2:x which are associated

with the events described above.

For x = R, given that a deal arrives when the net inventory level is between s and R,

τ1:x is the time interval between the first time the net inventory level hits s until the deal

arrives (see cycle (iii) in Figure 4.1). Thus, τ1:x has an exponential distribution truncated

from the right at (s−R)/D and its pdf can be given as

gτ1:x(t) =
fY (t)

P (Y ≤ s−R
D

)
=

μe−μt

1− e−μ(s−R)/D
for 0 ≤ t ≤ s−R

D

Similarly, given that a deal arrives when the net inventory level is at or below R, τ2:x is

the time interval between the last time the net inventory level hits R until a deal arrives

(see cycles (i) and (ii) in Figure 4.1). Therefore, τ2:x has an exponential distribution

truncated from the right at R/D + r/p̂D and its pdf is found as

gτ2:x(t) =
fY (t)

P (Y ≤ R
D
+ r

p̂D
)
=

μe−μt

1− e−μ(p̂R+r)/p̂D
for 0 ≤ t ≤ R

D
+

r

p̂D

For x = s, τ1:x is always zero and τ2:x has an exponential distribution truncated from

right at s/D + r/p̂D (see Figure 4.2).

Observe that depending on the value of x, we can give a general expression for the

pdfs of τ1:x and τ2:x as follows:

gτ1:x(t) =
μe−μt

βx

for 0 ≤ t ≤ s− x

D
(4.3)

gτ2:x(t) =
μe−μt

αx

for 0 ≤ t ≤ p̂x+ r

p̂D
(4.4)

From (4.3) and (4.4), the first moments of τ1:x and τ2:x can be found as,

E[τ1:x] =
1

μ
− (s− x)(1− βx)

Dβx

(4.5)

E[τ2:x] =
1

μ
− (p̂x+ r)(1− αx)

p̂Dαx

(4.6)
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and the second moment of τ1:x is found as,

E[τ1:x
2] =

2

μ2
− (s− x)(1− βx)

Dβx

[
2

μ
+

s− x

D

]
(4.7)

Preliminaries for Case 3:

Let β3 denotes probability that a deal is offered when the net inventory level is between

s and −R. Moreover, let α3 denotes the probability that a deal is offered when the net

inventory level is at or below −R. Thus, from the memoryless property of Y , we have

β3 = P

(
Y ≤ s

D
+

R

p̂D

)
= 1− e−μ(p̂s+R)/p̂D (4.8)

α3 = P

(
Y ≤ r −R

p̂D

)
= 1− e−μ(r−R)/p̂D (4.9)

Given that a deal is offered when the net inventory level is between s and −R, τ1:3 is

the time interval between the first time the inventory net level hits s until a deal is offered

(see cycles (ii) and (iii) in Figure 4.3). Thus, it has a truncated exponential distribution

such that

gτ1:3(t) =
μe−μt

β3

for 0 ≤ t ≤ p̂s+R

p̂D
(4.10)

Similarly, given that a deal is offered when the net inventory level is at or below −R,

τ2:3 is the elapsed time from the last time the net inventory level hits −R until a deal is

offered (see cycle (i) in Figure 4.3). Thus, the pdf of τ2:3 can be given as

gτ2:3(t) =
μe−μt

α3

for 0 ≤ t ≤ r −R

p̂D
(4.11)

From (4.10) and (4.11), the first moments of τ1:3 and τ2:3 are found as

E[τ1:3] =
1

μ
− (p̂s+R)(1− β3)

p̂Dβ3

(4.12)

E[τ2:3] =
1

μ
− (r −R)(1− α3)

p̂Dα3

(4.13)

and the second moment of τ2:3 can be given as

E[τ2:3
2] =

2

μ2
− (r −R)(1− α3)

p̂Dα3

[
2

μ
+

r −R

p̂D

]
(4.14)
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4.4. Operating Characteristics

We want to determine the optimal policy parameters by using the average cost criterion.

Let CC(t) be the total cycle cost incurred by time t. Therefore, according to the

renewal reward theorem (Ross, 1983) we can write the expected total cost rate function

as follows:

TC(r, R, s,Q) = lim
t→∞

CC(t)

t
=

E[CC]

E[T ]
(4.15)

where E[CC] denotes the expected cycle cost and E[T ] denotes the expected cycle length.

The expected cycle cost under the (r, R, s,Q) policy can be given as,

E[CC] = E[RC] + hE[OH] + π̂E[BO1] + πE[BO2] + θE[LS] (4.16)

where E[OH] is the expected on-hand inventory carried per cycle, E[RC] is the expected

replenishment cost per cycle, E[NL] is the expected number of list replenishments given

in a cycle, E[BO1] is the expected time-weighted backorders per cycle, E[BO2] is the

expected number of units backordered per cycle, and E[LS] expected number of lost sales

per cycle.

Our objective is to find the policy parameters minimizing (4.15). However, depending

on the relation between policy parameters given by three different cases above, both the

form of (4.15) and the constraint set of the optimization problem are changing. Therefore,

we calculate and optimize (4.15) for each case separately and then select the best policy

parameter values yielding the minimum average cost.

The operating characteristics for the three cases can be given with the following propo-

sition. We refer the reader to Appendix 4.9 for the proof.

Proposition 4.1. Under the (r, R, s,Q) policy the operating characteristics can be given

as follows,

1. For Case 1 and Case 2,

E[NL] =
(1− βx)(1− αx)

αx

(4.17)

E[T ] =
Q

D
+

1

μ
+

(R− x)

D
E[NL] (4.18)
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E[RC] = AD + cDDE[T ] +

[
AL + (cL − cD)(r +R) +

cDD(1− p̂)

μ

]
E[NL]

− cDD(1− βx)(1− p̂)e−μx/D

μαx

(4.19)

E[OH] =
Q(Q+ 2s)

2D
+

s

μ
− D

μ2

[
βx +

(1− e−μx/D )(1− βx)

αx

]

+

[
R2 − x2 +

2Dx

μ

]
E[NL]

2D
(4.20)

E[BO1] =
p̂D(1− βx)

μ2

[
1− (1− e−μx/D )

αx

]
− rE[NL]

μ
(4.21)

E[BO2] =
p̂D(1− βx)

μ

[
1− (1− e−μx/D )

αx

]
(4.22)

E[LS] =
(1− p̂)D(1− βx)

μ

[
1− (1− e−μx/D )

αx

]
(4.23)

2. For Case 3,

E[NL] =
(1− β3)(1− α3)

α3

(4.24)

E[T ] =
Q

D
+

1

μ
E[RC] = AD + cDDE[T ] + [AL + (cL − cD)(r −R)]E[NL]

− cDDe−μs/D (1− p̂)

μ
(4.25)

E[OH] =
Q(Q+ 2s)

2D
+

s

μ
− D(1− e−μs/D )

μ2
(4.26)

E[BO1] =
p̂De−μs/D

μ2
− (r −R)E[NL]

μ
(4.27)
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E[BO2] =
p̂De−μs/D

μ
(4.28)

E[LS] =
(1− p̂)De−μs/D

μ
(4.29)

4.5. Optimization of TC(r, R, s,Q)

Next, we will state the optimal policy parameters that optimize (4.15) for the three

different cases. As can be seen from Proposition 4.1, the form of TC(r, R, s,Q) changes

according to different cases. Thus, in order to optimize TC(r, R, s,Q), we need to solve

three different optimization problems for different cases.

Define the sets corresponding to the feasible region of the objective function for three

cases as follows,

Ω1 := {(r, R, s,Q) : 0 ≤ R ≤ s; r,Q ≥ 0}

Ω2 := {(r, R, s,Q) : 0 ≤ s ≤ R ≤ s+Q; r,Q ≥ 0}

Ω3 := {(r, R, s,Q) : 0 ≤ R ≤ r; s,Q ≥ 0}

Thus, the optimization problem for each case is to minimize TC(r, R, s,Q) subject to the

constraint set Ω i with i = 1, 2, 3.

For each case, by using differential calculus, we identify a set of candidates for the

optimal solution. The candidates are found either at critical (stationary) points or at the

boundaries of the feasible region of the corresponding case. In the sequel, we state rules to

eliminate some of the candidates due to the relation between certain system parameters

and provide equation systems from which the candidates can be computed easily. Once

the candidates are identified for each case, the global optimal solution can be found by

picking the candidate yielding the smallest expected total cost rate.

We need the following structural results in order to analyze the objective function and

identify the candidates for different cases.
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4.5.1 Structural Results

We start with the following lemmas which are useful in the analysis of the derivatives of

the objective function with respect to the policy parameters.

Lemma 4.1. Define f : [0,∞)→R by

f(x) = A(1− ae−x − x) + B

with 0 < a ≤ 1, A ∈ R \ {0} and B ∈ R. Then,

1. If A > 0 then f(x) is concave decreasing function and

(a) If A(1− a) + B = 0 then f(x) < 0 for x > 0 and has a unique root at x0 = 0

(b) If A(1− a) + B < 0 then f(x) < 0 for x ≥ 0

(c) If A(1−a)+B > 0 then f(x) has a unique positive root x0 ∈
(
1 + B

A
− a, 1 + B

A

)
2. If A < 0 then f(x) is convex increasing function and

(a) If A(1− a) + B = 0 then f(x) > 0 for x > 0 and has a unique root at x0 = 0

(b) If A(1− a) + B > 0 then f(x) > 0 for x ≥ 0

(c) If A(1−a)+B < 0 then f(x) has a unique positive root x0 ∈ (1+ B
A
−a, 1+ B

A
)

Proof of Lemma 4.1. If A > 0 then f ′(x) = A(ae−x − 1) ≤ 0 and f ′′(x) = −Aae−x ≤ 0

since 0 < a ≤ 1 and x ≥ 0. Thus, f(x) is concave decreasing in x. Since f(0) =

A(1 − a) + B, if A(1 − a) + B ≤ 0 then f(x) ≤ 0 for x ≥ 0. On the other hand, if

A(1− a) + B > 0 then 1 +B/A > a > 0 and

f

(
1 +

B

A
− a

)
= Aa

(
1− e−(1+

B
A
−a)

)
> 0

and

f

(
1 +

B

A

)
= −Aae−(1+

B
A) < 0

Thus, f(x) has a unique root in the interval
(
1 + B

A
− a, 1 + B

A

)
.

If A < 0 then f ′(x) ≥ 0 and f ′′(x) ≥ 0 and therefore, f(x) is convex increasing in

x. Moreover, if A(1 − a) + B ≥ 0 then f(x) ≥ 0 for x ≥ 0. On the other hand, if

A(1−a)+B < 0 then 1+B/A > a > 0 and f
(
1 + B

A
− a

)
< 0 and f

(
1 + B

A

)
> 0. Thus,

f(x) has a unique root in the interval
(
1 + B

A
− a, 1 + B

A

)
�
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Lemma 4.2. Define f : R+→R by

f(x) = a+ bx+ d−1ce−dx

with b, d > 0 and a, c ∈ R, and let x∗ denotes the minimizer of f(x). Therefore,

1. If b ≥ c then x∗ = 0

2. If b < c then x∗ = −d−1 ln
(
b
c

)
Proof of Lemma 4.2. Taking the first and second derivatives of f yield,

df(x)

dx
= b− ce−dx (4.30)

and
d2f(x)

dx2
= dce−dx (4.31)

If c < 0 then df(x)/dx > 0 and d2f(x)/dx2 < 0. Thus, f(x) is increasing and convex

function and it has a minimum at x∗ = 0.

If c ≥ 0 then d2f(x)/dx2 ≥ 0. Thus, f(x) is convex but the sign of (4.30) depends on the

relation between b and c such that:

if b ≥ c then df(x)/dx ≥ 0 since 0 < e−dx ≤ 1 for x ≥ 0. Thus, f(x) is increasing and

convex function and x∗ = 0.

if b < c then df(x)/dx has a unique positive root. Thus, setting (4.30) to zero yields

x∗ as given above.

As it will be clear in the sequel, for some cases, optimal (r, R) can be determined

independently from (s,Q). In other words, optimization problem can be decomposed.

Thus, once the optimal (r, R) is determined, the objective function becomes a function of

s and Q which can be represented in a special form. We use the following lemma to find

the optimal (s,Q) when decomposition is possible.

Lemma 4.3. Define f̃ : R2
+→R+ by

f̃(s,Q) = AD +
cDD

μ
− hD

μ2
+

hQ2

2D
+ cDQ+ h

(
Q

D
+

1

μ

)
s

+
D

μ

(
h

μ
+ U

)
e−μs/D (4.32)
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with U ∈ R and let

T̃C(s,Q) =
f̃(s,Q)
Q
D
+ 1

μ

(4.33)

Then the optimal (s∗, Q∗) minimizing T̃C(s,Q) can be given as

1. If AD/D + U/μ ≤ 0 then s∗ = Q∗ = 0.

2. If AD/D + U/μ > 0 then

(a) if
√
2ADDh > DU then s∗ = 0 and

Q∗ =
D

μ

(
−1 +

√
1 +

2μ2

h

(
AD

D
+

U

μ

))

(b) If
√
2ADDh ≤ DU then

s∗ =
−D

μ
ln

⎛⎝ h
μ
+
√

2ADh
D

h
μ
+ U

⎞⎠
and

Q∗ =

√
2ADD

h

Proof of Lemma 4.3. For any given Q ≥ 0, f̃(s,Q) can be represented in the form of

f(s) given by Lemma 4.2 since h,μ, D and
(

Q
D
+ 1

μ

)
are all positive. Therefore, depending

on the relation between

h

(
Q

D
+

1

μ

)
and

h

μ
+ U

the optimal s minimizing f̃(s,Q) and T̃C(s,Q) can be found from Lemma 4.2 as follows:

(a) if hQ/D ≥ U then s∗ = 0

(b) if hQ/D < U then

s∗ =
−D

μ
ln

(
h
μ
+ hQ

D

h
μ
+ U

)
(4.34)

Next, we minimize T̃C(s,Q) in Q. We found that for any given Q, T̃C(s,Q) is

minimized at either s∗ = 0 or s∗ given by (4.34). Therefore, we consider these cases

separately in order to minimize T̃C(s∗, Q) according to Q.
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Taking the first derivative of T̃C(s,Q) with respect to Q yields

∂T̃C(s,Q)

∂Q
=

F (Q)(
Q
D
+ 1

μ

)2 (4.35)

where

F (Q) :=
∂f̃(s,Q)

∂Q

(
Q

D
+

1

μ

)
− f̃(s,Q)

D
(4.36)

It is immediately evident from (4.35) and (4.36) that the behavior of T̃C(s,Q) in Q is

determined by the sign of F (Q). Thus, in the sequel, we analyze F (Q) for the two cases

of s∗ mentioned above.

If s∗ = 0 then from (4.32) we have that

f(s∗, Q) = AD +
cDD

μ
− hD

μ2
+

hQ2

2D
+ cDQ+

D

μ

(
h

μ
+ U

)
(4.37)

and
∂f(s∗, Q)

∂Q
=

hQ

D
+ cD (4.38)

Substituting (4.37) and (4.38) in (4.36) and making necessary simplifications yields

F (Q) =
hQ2

2D2
+

hQ

μD
−
(
AD

D
+

U

μ

)
(4.39)

Observe from (4.39) that F (Q) is a second-order convex polynomial since h, μ,D > 0 and

it is increasing for Q ≥ 0. Therefore,

(a) if AD/D+U/μ ≤ 0 then F (Q) ≥ 0 for all Q ≥ 0. Thus, from (4.35), T̃C(s∗, Q) is

nondecreasing in Q and minimized at Q∗ = 0.

Since s∗ = 0 holds only for Q ≥ DU/h, optimal Q shall satisfy

Q∗ ≥ DU/h (4.40)

Since AD/D + U/μ ≤ 0 this implies that U ≤ 0 and the above condition is satisfied.

Thus, s∗ = Q∗ = 0.

(b) if AD/D + U/μ > 0 then F (Q) has a unique positive root Q∗ and T̃C(s∗, Q) is

minimized at Q∗. Moreover, it can be showed that T̃C(s∗, Q) is convex in Q. Thus,

applying quadratic formula for (4.39) and simplifying yields Q∗ as follows
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Q∗ =
D

μ

(
−1 +

√
1 +

2μ2

h

(
AD

D
+

U

μ

))
(4.41)

Since s∗ = 0 is true only if the condition (4.40) is satisfied, substituting (4.41) in (4.40)

gives, √
1 +

2μ2

h

(
AD

D
+

U

μ

)
≥ 1 +

μU

h

Squaring both sides of inequality and making necessary simplifications yields the condition√
2ADDh ≥ DU (4.42)

Note that when
√
2ADDh = DU , (4.41) simplifies to

Q∗ =

√
2ADD

h

If s∗ is given by (4.34) then from (4.32) we have

f̃(s∗, Q) = AD +
cDD

μ
− hD

μ2
+

hQ2

2D
+ cDQ

+

(
hQ

μ
+

hD

μ2

)(
1− ln

(
h
μ
+ hQ

D

h
μ
+ U

))
(4.43)

and
∂f̃(s∗, Q)

∂Q
=

hQ

D
+ cD − h

μ
ln

(
h
μ
+ hQ

D

h
μ
+ U

)
(4.44)

Substituting (4.43) and (4.44) in (4.36) and after some algebra we obtain that

F (Q) =
hQ2

2D2
− AD

D
(4.45)

Since h,D > 0 and AD ≥ 0, F (Q) is increasing convex function for Q ≥ 0 and has a

unique nonnegative root at

Q∗ =

√
2ADD

h
(4.46)

Thus, T̃C(s∗, Q) is minimized at (4.46) and it can be shown that T̃C(s∗, Q) is convex

in Q. Substituting (4.46) in (4.34) yields

s∗ =
−D

μ
ln

⎛⎝ h
μ
+
√

2ADh
D

h
μ
+ U

⎞⎠ (4.47)
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Since (4.34) holds only for Q < DU/h, (4.46) and (4.47) are valid if√
2ADD

h
< DU/h

That is, √
2ADDh < DU (4.48)

Observe that if AD/D + U/μ ≤ 0 then U ≤ 0. This violates the condition (4.48) and

therefore, (4.46) and (4.47) cannot be valid for this case.

On the other hand, when AD/D+U/μ > 0 the optimal (s,Q) is uniquely determined

by the conditions (4.42) and (4.48).

4.5.2 Candidate Points for the Optimal Solution

Define,

γ := cL − cD − π̂

μ

η := cL − cD +
h

μ

Π :=
π̂

μ
+ π +

θ(1− p̂)

p̂

Γ :=
h

μ
+ p̂Π− (1− p̂)cD

K := AD − AL − D(cL − cD)
2

2h
+

D

μ
(p̂π + (1− p̂)(θ − cL))

The following theorems identify possible candidate points for the optimal solution.

Theorem 4.1. For Case 1, the optimal solution can be found at one of the following

candidate points,

1. If cL − cD ≥ π̂/μ then there are two candidates

(a) r∗ = 0 and (R∗, s∗, Q∗) are found as given by Moinzadeh (1997).
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(b) r∗→∞ and R becomes an irrelevant policy parameter. Let U = p̂Π− (1− p̂)cD

then (s∗, Q∗) can be given as

i. If AD/D + U/μ ≤ 0 then s∗ = Q∗ = 0.

ii. If AD/D + U/μ > 0 then

A. if
√

2ADh/D > U then s∗ = 0 and

Q∗ =
D

μ

(
−1 +

√
1 +

2μ2

h

(
AD

D
+

U

μ

))

B. if
√

2ADh/D ≤ U then

s∗ =
−D

μ
ln

⎛⎝ h
μ
+
√

2ADh
D

h
μ
+ U

⎞⎠
and

Q∗ =

√
2ADD

h

2. If cL − cD < π̂/μ then there are two candidates

(a) r∗ = 0 and (R∗, s∗, Q∗) are found as given by Moinzadeh (1997).

(b) R∗ is the solution of

AL − D

μ
(p̂γ − η + Γ) + ηR∗ − p̂Dγ

μ
ln

(
η eμR

∗/D − Γ

p̂γ

)
= 0 (4.49)

and r∗ can be found from

r∗ = − p̂D

μ
ln

(
η eμR

∗/D − Γ

p̂γ

)
(4.50)

Let U = cL − cD then AD/D + U/μ > 0 and (s∗, Q∗) can be given as

i. If
√

2ADh/D > U then s∗ = R∗ and

Q∗ =
D

μ

(
−1 +

√
1 +

2μ2

h

(
AD

D
+

U

μ

))
(4.51)
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ii. If
√
2ADh/D ≤ U then

s∗ = R∗ − D

μ
ln

⎛⎝ h
μ
+
√

2ADh
D

h
μ
+ U

⎞⎠ (4.52)

and

Q∗ =

√
2ADD

h
(4.53)

Proof of Theorem 4.1:

First, we shall rewrite the expected cycle cost function in a form more convenient for

optimization purposes:

E[CC] = f(s,Q) +

[
AL + γr + ηR +

DΓ

μ

(
eμr/p̂D − 1

)] e−μs/D

eμr/p̂D − e−μR/D
(4.54)

with

f(s,Q) := AD +
cDD

μ
− hD

μ2
+

hQ2

2D
+ cDQ+ h

(
Q

D
+

1

μ

)
s (4.55)

and the total cost rate function can be given as

TC(r, R, s,Q) =
E[CC]
Q
D
+ 1

μ

(4.56)

Observe that as R, s or Q goes to infinity both E[CC] and TC(r, R, s,Q) go to infinity.

This implies that for a given r if the objective function has a minimum then the minimum

is found at a finite point (R∗, s∗, Q∗). However, for a given (R, s,Q) the objective function

does not necessarily attains its minimum at a finite r. Observe that as r goes to infinity,

lim
r→∞

r

eμr/p̂D − e−μR/p̂D
= 0

lim
r→∞

eμr/p̂D − 1

eμr/p̂D − e−μR/p̂D
= 1

and the expected cycle cost becomes

E[CC]|r→∞ = f(s,Q) +
DΓ

μ
e−μs/D (4.57)

Thus, the objective function converges to a positive value as r→∞. In the sequel, we iden-

tify the parametric regions where the objective function attains its minimum as r→∞.
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Since E[T ] is independent of r, we begin the analysis of the objective function by inves-

tigating the behavior of E[CC] in r.

First Derivative of E[CC] w.r.t. r:

Taking the derivative of (4.54) with respect to r yields,

∂E[CC]

∂r
=

(
γ + Γ

p̂
eμr/p̂D

)
e−μs/D

eμr/p̂D − e−μR/D

−
[
AL + γr + ηR + DΓ

μ

(
eμr/p̂D − 1

)]
e−μs/D μ

p̂D
eμr/p̂D

(eμr/p̂D − e−μR/D )2

=
e−μs/D eμr/p̂D f( μr

p̂D
)

(eμr/p̂D − e−μR/D )2
(4.58)

with

f

(
μr

p̂D

)
:= γ

(
1− e−μr/p̂D e−μR/D − μr

p̂D

)
− μ

p̂D

(
AL + ηR− DΓ

μ
(1− e−μR/D )

)
(4.59)

For any given 0 ≤ s < ∞, let r∗ be a critical point satisfying the first order condition

∂E[CC]/∂r = 0. It is clear from (4.58) that the first order condition is satisfied when

f (μr∗/p̂D) = 0

Second Derivative of E[CC] w.r.t. r:

The second derivative of E[CC] with respect to r can be given as,

∂2E[CC]

∂r2
=

e−μs/D eμr/p̂D

(eμr/p̂D − e−μR/D )2

[
μ

p̂D
f +

∂f

∂r
− 2μeμr/p̂D f

p̂D(eμr/p̂D − e−μR/D )

]
(4.60)

Observe from (4.59) that

∂f

∂r
=

γμ

p̂D

(
e−μr/p̂D e−μR/D − 1

)
(4.61)

Thus, evaluating (4.60) at r = r∗ and using the identity f (μr∗/p̂D) = 0 and (4.61) yield

∂2E[CC]

∂r2
|r=r∗ = − μe−μs/D eμr

∗/p̂D

p̂D(eμr
∗/p̂D − e−μR/D )

γ (4.62)

Observe from (4.62) that for any 0 ≤ s < ∞,

μe−μs/D eμr
∗/p̂D

p̂D(eμr
∗/p̂D − e−μR/D )

> 0
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and therefore the sign of (4.62) depends only on the the sign of γ. Therefore, for any

given 0 ≤ s < ∞,

1. If γ ≥ 0 then TC is quasiconcave in r since

∂2E[CC]

∂r2
|r=r∗ ≤ 0

Thus, TC is minimized either at r = 0 or as r→∞ depending on the relation

between E[CC]|r=0 and E[CC]|r→∞.

2. If γ < 0 then TC is strictly quasiconvex in r since

∂2E[CC]

∂r2
|r=r∗ > 0

Thus, r∗ is unique solution of (4.59) f (μr∗/p̂D) = 0 and it is the global minimum

of TC. Therefore, if r∗ < 0 then TC is minimized at r = 0 otherwise r∗ is the

unique minimizer.

We established that for γ < 0, TC is minimized either at r = 0 or at the critical point

r∗ ≥ 0 found by solving f (μr∗/p̂D) = 0. Thus, in the sequel, we analyze the case where

γ < 0 by assuming that there exists a feasible point 0 ≤ r∗ < ∞ satisfying the first order

condition f (μr∗/p̂D) = 0.

First Derivative of E[CC] w.r.t. R:

Taking the derivative of (4.54) with respect to R yields,

∂E[CC]

∂R
=

ηe−μs/D

eμr/p̂D − e−μR/D

−
[
AL + γr + ηR + DΓ

μ

(
eμr/p̂D − 1

)]
e−μs/D μ

D
e−μR/D

(eμr/p̂D − e−μR/D )2

=
e−μs/D e−μR/D h(R)

(eμr/p̂D − e−μR/D )2
(4.63)

with

h(R) := η

(
eμr/p̂D eμR/D − 1− μR

D

)
− μ

D

(
AL + γr +

DΓ

μ
(eμr/p̂D − 1)

)
(4.64)
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For any given 0 ≤ r, s < ∞, let R∗ be a critical point satisfying the first order condition

∂E[CC]/∂R = 0. It is clear from (4.63) that the first order condition is satisfied when

h(R∗) = 0.

Second Derivative of E[CC] w.r.t. R:

The second derivative of E[CC] with respect to R can be given as,

∂2E[CC]

∂R2
=

e−μs/D e−μR/D

(eμr/p̂D − e−μR/D )2

[
− μ

D
h+

∂h

∂R
− 2μe−μR/D h

D(eμr/p̂D − e−μR/D )

]
(4.65)

Observe from (4.64) that

∂h

∂R
=

ημ

D
eμR/D

(
eμr/p̂D − e−μR/D

)
(4.66)

Thus, evaluating (4.65) at R = R∗ and using (4.66) and the identity h(R∗) = 0 yield

∂2E[CC]

∂R2
|R=R∗ =

ημe−μs/D

D(eμr
∗/p̂D − e−μR∗/D )

(4.67)

Note that for any given 0 ≤ r, s < ∞, if (4.64) has a feasible solution R∗ ≥ 0 then

∂2E[CC]

∂R2
|R=R∗ > 0

and R∗ is the local minimum of TC.

Computation of the Critical Point (r∗, R∗):

For any given (s,Q), let (r∗, R∗) be a critical point satisfying f (μr∗/p̂D) = 0 and

h(R∗) = 0. That is,

γ

(
1− e−μr∗/p̂D e−μR∗/D − μr∗

p̂D

)
− μ

p̂D

(
AL + ηR∗ − DΓ

μ
(1− e−μR∗/D )

)
= 0 (4.68)

η

(
eμr

∗/p̂D eμR
∗/D − 1− μR∗

D

)
− μ

D

(
AL + γr∗ +

DΓ

μ
(eμr

∗/p̂D − 1)

)
= 0 (4.69)

Reorganizing the terms in (4.68) yields

p̂γ

(
1− e−μr∗/p̂D e−μR∗/D − μr∗

p̂D

)
=

μ

D

(
AL + ηR∗ − DΓ

μ

)
+ Γe−μR∗/D (4.70)

and reorganizing (4.69) gives

η
(
eμr

∗/p̂D eμR
∗/D − 1

)− μ

D

(
γr∗ +

DΓ

μ
eμr

∗/p̂D
)

=
μ

D

(
AL + ηR∗ − DΓ

μ

)
(4.71)
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Substituting (4.71) in (4.70) and after some algebra, we obtain that

p̂γ
(
1− e−μr∗/p̂D e−μR∗/D

)
= η

(
eμr

∗/p̂D eμR
∗/D − 1

)− Γ(eμr
∗/p̂D − e−μR∗/D )

p̂γe−μr∗/p̂D = ηeμR
∗/D − Γ (4.72)

Using (4.72) in (4.70) yields,

p̂γ

(
1− η

p̂γ
+

Γ

p̂γ
e−μR∗/D − μr∗

p̂D

)
=

μ

D

(
AL + ηR∗ − DΓ

μ

)
+ Γe−μR∗/D

making necessary simplification gives

p̂γ − η − γμr∗

D
=

μ

D

(
AL + ηR∗ − DΓ

μ

)
D

μ
(p̂γ − η + Γ)− γr∗ = AL + ηR∗

and reorganizing the terms yields that

AL − D

μ
(p̂γ − η + Γ) + ηR∗ + γr∗ = 0 (4.73)

Observe from (4.72) that r∗ can be given as a function of R∗ as follows

r∗ = − p̂D

μ
ln

(
η eμR

∗/D − Γ

p̂γ

)
(4.74)

Thus, substituting (4.74) in (4.73) yields

AL − D

μ
(p̂γ − η + Γ) + ηR∗ − p̂Dγ

μ
ln

(
η eμR

∗/D − Γ

p̂γ

)
= 0 (4.75)

Therefore, the critical point (r∗, R∗) satisfying (4.68) and (4.69) can be found by

solving (4.75) for R∗ and then calculating r∗ from (4.74).

Computation of (s∗, Q∗) Given (r∗, R∗):

Define the function

g(r, R) :=
AL + γr + ηR + DΓ

μ

(
eμr/p̂D − 1

)
eμr/p̂D − e−μR/D

(4.76)

and observe that (4.54) can be expressed as

E[CC] = f(s,Q) + g(r, R)e−μs/D (4.77)
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For any given 0 ≤ s,Q < ∞, let (r∗, R∗) be a feasible critical point, that is, 0 ≤ R∗ ≤
s < ∞. Note that we only need to check R∗ since we assume that r∗ is always in the

feasible region. Then using (4.73) in (4.76), we obtain that

g(r∗, R∗) =
D
(
p̂γ − η + Γeμr

∗/p̂D
)

μ(eμr
∗/p̂D − e−μR∗/D )

(4.78)

Substituting Γ from (4.72) in (4.78) and making necessary simplifications yields that

g(r∗, R∗) =
D
(
p̂γ − η + (ηeμR

∗/D − p̂γe−μr∗/p̂D )eμr
∗/p̂D

)
μ(eμr

∗/p̂D − e−μR∗/D )

=
Dη

(
eμR

∗/Deμr
∗/p̂D − 1

)
μ(eμr

∗/p̂D − e−μR∗/D )

=
D

μ
η eμR

∗/D (4.79)

Thus, from (4.77) and (4.79), the expected cycle cost can evaluated at (r∗, R∗) can be

given as

E[CC]|r∗,R∗ = f(s,Q) +
D

μ
η eμR

∗/De−μs/D (4.80)

Next, we optimize (4.80) with respect to s and Q given (r∗, R∗). First, rewrite (4.80)

as follows,

E[CC]|r∗,R∗ = f(s,Q) +
D

μ
η eμR

∗/De−μs/D − h

(
Q

D
+

1

μ

)
R∗ + h

(
Q

D
+

1

μ

)
R∗ (4.81)

Define s̃ := s−R∗ and reorganize (4.81) as follows

E[CC]|r∗,R∗ = f̃(s̃, Q) + h

(
Q

D
+

1

μ

)
R∗ (4.82)

with

f̃(s̃, Q) := AD +
cDD

μ
− hD

μ2
+

hQ2

2D
+ cDQ+ h

(
Q

D
+

1

μ

)
s̃

+
D

μ

(
h

μ
+ cL − cD

)
e−μs̃/D (4.83)

Note that, for clarity, we substituted η by its definition cL − cD + h
μ
in (4.83).
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Then, the total cost rate function becomes,

TC(r∗, R∗, s, Q) =
f̃(s̃, Q)
Q
D
+ 1

μ

+R∗ (4.84)

Observe that for a given R∗, optimizing (4.84) according to (s,Q) is equivalent to opti-

mizing

T̃C(s̃, Q) =
f̃(s̃, Q)
Q
D
+ 1

μ

(4.85)

according to (s̃, Q). Therefore, the optimal (s̃, Q) can be found from Lemma 4.3 by

substituting U = cL − cD, and the optimal s follows from s∗ = R∗ + s̃ ∗.

Theorem 4.2. For Case 2, the optimal solution can be found at one of the following

candidate points,

1. If cL − cD > π̂/μ then

(a) r∗ = 0 and (R∗, s∗, Q∗) are found as given by Moinzadeh (1997).

(b) r∗→∞ and R becomes an irrelevant policy parameter. Let U = p̂Π− (1− p̂)cD

then (s∗, Q∗) can be given as

i. If AD/D + U/μ ≤ 0 then s∗ = Q∗ = 0.

ii. If AD/D + U/μ > 0 then

A. if
√

2ADh/D > U then s∗ = 0 and

Q∗ =
D

μ

(
−1 +

√
1 +

2μ2

h

(
AD

D
+

U

μ

))

B. if
√

2ADh/D ≤ U then

s∗ =
−D

μ
ln

⎛⎝ h
μ
+
√

2ADh
D

h
μ
+ U

⎞⎠
and

Q∗ =

√
2ADD

h
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2. If cL − cD < π̂/μ then

(a) r∗ = 0 and (R∗, s∗, Q∗) are found as given by Moinzadeh (1997).

(b)

R∗ = s∗ +

√
2ADD

h
− D(cL − cD)

h
(4.86)

r∗ =
K − ηR∗

γ
(4.87)

and define

U(s∗) := p̂ (Π + γe−μr∗/p̂D )− (1− p̂)cD

then s∗ can be found by solving

s∗ =
D

μ
ln

⎛⎝ h
μ
+ U(s∗)

h
μ
+
√

2ADh
D

⎞⎠ (4.88)

and

Q∗ =

√
2ADD

h
(4.89)

(c) s∗ = 0 and

R∗ = Q∗ − D(cL − cD)

h
(4.90)

r∗ =
K − ηR∗

γ
(4.91)

and Q∗ can be found by solving(
hQ∗2

2D
+

hQ∗

μ
− AD − D

μ
(p̂Π− (1− p̂)cD)

)
eμr

∗/p̂D − p̂Dγ

μ
= 0 (4.92)

(d) R∗ = s∗ and let

g(r∗, s∗) := AL + γr∗ + ηs∗ +
DΓ

μ

(
eμr

∗/p̂D − 1
)

u(r∗, s∗) :=
e−μs∗/D

eμr
∗/p̂D − e−μs∗/D (4.93)
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then (r∗, s∗, Q∗) can be found by solving the following equations simultaneously

p̂γ + Γ eμr
∗/p̂D =

μ

D
(1 + u(r∗, s∗))g(r∗, s∗) (4.94)

r∗ = − p̂D

μ
ln

⎛⎝h
(

Q∗
D

+ 1
μ

)
eμs

∗/D − Γ

h
(

Q∗
D

+ 1
μ

)
− η + p̂γ

⎞⎠ (4.95)

Q∗ =
D

μ

(
−1 +

√
1 +

2μ2

h

(
AD

D
− h

μ2
+

g(r∗, s∗)u(r∗, s∗)
D

))
(4.96)

(e) R∗ = s∗, Q∗ = 0 and (r∗, s∗) can be found by solving (4.94) and (4.95) simul-

taneously.

Proof of Theorem 4.2:

The expected cycle cost for Case 2 can be rewritten as follows,

E[CC] = f(s,Q) + g(r, R, s) u(r, s) (4.97)

with

f(s,Q) := AD +
cDD

μ
− hD

μ2
+

hQ2

2D
+ cDQ+ h

(
Q

D
+

1

μ

)
s (4.98)

g(r, R, s) := AL + γr + ηs+ cL(R− s) +
h

2D
(R2 − s2) +

DΓ

μ

(
eμr/p̂D − 1

)
(4.99)

u(r, s) :=
e−μs/D

eμr/p̂D − e−μs/D
(4.100)

and the total cost rate function can be given as

TC(r, R, s,Q) =
E[CC]

E[T ]
(4.101)

with

E[T ] =
Q

D
+

1

μ
+

(
R− s

D

)
u(r, s) (4.102)

For the sake of clarity, in the sequel, we suppress the arguments of the functions of

the variables r,R,s,Q.
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First Derivative of TC w.r.t. r:

Taking the derivative of (4.101) with respect to r yields

∂TC

∂r
=

∂E[CC]
∂r

E[T ]− ∂E[T ]
∂r

E[CC]

E[T ]2
(4.103)

The derivative of expected cycle cost with respect to r can be found as

∂E[CC]

∂r
=

∂g

∂r
u+

∂u

∂r
g

=

(
γ +

Γ

p̂
eμr/p̂D

)
u− μ

p̂D
u(1 + u)g (4.104)

By adding and subtracting the term (μu/p̂D)f on the right-hand side of (4.104), we

obtain that

∂E[CC]

∂r
=

μu

p̂D

(
p̂Dγ

μ
+

D

μ
Γeμr/p̂D − g + f

)
− μu

p̂D
(f + g u) (4.105)

From (4.97) and after some algebra (4.105) boils down to

∂E[CC]

∂r
=

μu

p̂D
(v − E[CC]) (4.106)

with

v = v(r, R, s,Q) := AD − AL − γr + cD(Q+ s)− cLR− h

2D
(R2 − s2)

+
hQ2

2D
+

hQs

D
+

D

μ
(p̂(cL + π) + (1− p̂)θ) (4.107)

The derivative of (4.102) with respect to r can be found as

∂E[T ]

∂r
= − μ

p̂D
u(1 + u)

(
R− s

D

)
(4.108)

By adding and subtracting the term (μu/p̂D)(Q/D + 1/μ) on the right-hand side of

(4.108) and reorganizing the terms yield

∂E[T ]

∂r
=

μu

p̂D

(
Q+ s−R

D
+

1

μ
− E[T ]

)
(4.109)
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Using (4.109) and (4.106) in (4.103) yield

∂TC

∂r
=

μu

p̂DE[T ]2

[
(v − E[CC])E[T ]−

(
Q+ s−R

D
+

1

μ
− E[T ]

)
E[CC]

]

=
μu

p̂DE[T ]

[
v −

(
Q+ s−R

D
+

1

μ

)
TC

]
(4.110)

First Order Condition of TC w.r.t. r:

For any given (R, s,Q), let r∗ be a critical point satisfying the first order condition

∂TC/∂r = 0. Since μu/p̂DE[T ] > 0 for 0 ≤ Q < ∞ and 0 ≤ s ≤ R ≤ s + Q, it is clear

from (4.110) that the first order condition is satisfied when

v(r∗, R, s,Q) =

(
Q+ s−R

D
+

1

μ

)
TC(r∗, R, s,Q) (4.111)

Second Derivative of TC w.r.t. r:

Define the function

z := z(r, R, s,Q) := v(r, R, s,Q)−
(
Q+ s−R

D
+

1

μ

)
TC(r, R, s,Q)

Thus, (4.110) becomes,
∂TC

∂r
=

μuz

p̂DE[T ]

and the second derivative of TC with respect to r can be given as,

∂2TC

∂r2
=

μ

p̂DE[T ]2

[(
∂u

∂r
z + u

∂z

∂r

)
E[T ]− uz

∂E[T ]

∂r

]
(4.112)

Observe that
∂z

∂r
= −γ −

(
Q+ s−R

D
+

1

μ

)
∂TC

∂r
(4.113)

and
∂z

∂r
|r=r∗ = −γ (4.114)

Moreover, from (4.111) it is clear that z(r∗, R, s,Q) = 0. Therefore, evaluating (4.112) at

r = r∗ yields
∂2TC

∂r2
|r=r∗ = − μuγ

p̂DE[T ]
(4.115)

Observe that for any 0 ≤ s ≤ R < ∞ and 0 ≤ Q < ∞, μu/p̂DE[T ] > 0 and

therefore the sign of (4.115) depends only on the the sign of γ. Therefore, for any given

0 ≤ s ≤ R < ∞ and 0 ≤ Q < ∞,



128 Random Deal Offerings and Partial Backordering

1. If γ ≥ 0 then TC is quasiconcave in r since

∂2TC

∂r2
|r=r∗ ≤ 0

Thus, TC is minimized either at r = 0 or as r→∞.

2. If γ < 0 then TC is strictly quasiconvex in r since

∂2TC

∂r2
|r=r∗ > 0

Thus, r∗ is unique solution of (4.111) and it is the global minimum of TC. Therefore,

if r∗ < 0 then TC is minimized at r = 0 otherwise r∗ is the unique minimizer.

We established that for γ ≥ 0, there are two possibilities for the optimal r. It is either

equal to zero and the system boils down to the one analyzed by Moinzadeh (1997) or,

the optimal r goes to infinity, R becomes an irrelevant policy parameter and the optimal

(s,Q) follows from Lemma 4.3. Similarly, for γ < 0 the optimal r is either at zero or at

the critical point r∗ ≥ 0.

Next, we analyze the case where γ < 0 by assuming that there exists a critical point

r∗ ≥ 0 satisfying the first order condition (4.111).

First Derivative of TC w.r.t. R:

Taking the derivative of (4.101) with respect to R yields,

∂TC

∂R
=

∂E[CC]
∂R

E[T ]− ∂E[T ]
∂R

E[CC]

E[T ]2
(4.116)

From (4.97) and (4.102), the derivatives of E[CC] and E[T ] with respect to R can be

given as
∂E[CC]

∂R
=

∂g

∂R
u =

u

D
(cLD + hR) (4.117)

and
∂E[T ]

∂R
=

u

D
(4.118)

Substituting (4.117) and (4.118) in (4.116) yields,

∂TC

∂R
=

u

DE[T ]
[cLD + hR− TC] (4.119)
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First Order Condition of TC w.r.t. R:

For any given (r, s, Q), let R∗ be a critical point satisfying the first order condition

∂TC/∂R = 0. Since at any feasible point E[T ] > 0 and u > 0 for 0 ≤ r, s < ∞, it follows

that u/p̂DE[T ] > 0. Thus, from (4.119) it is evident that the first order condition is

satisfied when

cLD + hR∗ = TC(r, R∗, s, Q) (4.120)

Second Derivative of TC w.r.t. R:

From (4.119), the second derivative of TC with respect to R yields,

∂2TC

∂R2
=

u

DE[T ]2

[(
h− ∂TC

∂R

)
E[T ]− [cLD + hR− TC]

∂E[T ]

∂R

]
(4.121)

Evaluating (4.121) at R = R∗ and using (4.120) gives,

∂2TC

∂R2
|R=R∗ =

uh

DE[T ]
(4.122)

Thus, for any given 0 ≤ r, s,Q < ∞, if (4.120) has a feasible solution R∗ ≥ s then

∂2TC

∂R2
|R=R∗ > 0

and R∗ is a local minimum of TC.

First Derivative of TC w.r.t. Q:

Taking the derivative of (4.101) with respect to Q yields,

∂TC

∂Q
=

∂E[CC]
∂Q

E[T ]− ∂E[T ]
∂Q

E[CC]

E[T ]2
(4.123)

From (4.97) and (4.102), the derivatives of E[CC] and E[T ] with respect to Q can be

given as
∂E[CC]

∂Q
=

∂f

∂Q
=

1

D
(cDD + h(Q+ s)) (4.124)

and
∂E[T ]

∂Q
=

1

D
(4.125)

Using (4.124) and (4.125) in (4.123) gives,

∂TC

∂Q
=

1

DE[T ]
[cDD + h(Q+ s)− TC] (4.126)
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First Order Condition of TC w.r.t. Q:

For any 0 ≤ r < ∞ and 0 ≤ s ≤ R < ∞, let Q∗ be a critical point satisfying the first

order condition ∂TC/∂Q = 0. It is clear from (4.126) that the first order condition is

satisfied when

cDD + h(Q∗ + s) = TC(r, R, s,Q∗) (4.127)

Second Derivative of TC w.r.t. Q:

From (4.126), the second derivative of TC with respect to Q can be given as,

∂2TC

∂Q2
=

1

DE[T ]2

[(
h− ∂TC

∂Q

)
E[T ]− [cDD + h(Q+ s)− TC]

∂E[T ]

∂Q

]
(4.128)

Substituting Q = Q∗ in (4.128) and using (4.127) gives,

∂2TC

∂Q2
|Q=Q∗ =

h

DE[T ]
(4.129)

Therefore, for any 0 ≤ r < ∞ and 0 ≤ s ≤ R < ∞, if (4.127) has a feasible solution

Q∗ ≥ 0 then
∂2TC

∂Q2
|Q=Q∗ > 0

and Q∗ is a local minimum of TC.

A Relation Between R∗, Q∗ and s:

For any given 0 ≤ s, r < ∞, if a critical point (R∗,Q∗) satisfies (4.120) and (4.127),

we have the relation

R∗ = s+Q∗ − (cL − cD)D

h
(4.130)

Moreover, from (4.130), it can be easily shown that

hQ∗(Q∗ + 2s)

2D
=

h(R∗2 − s2)

2D
+ (cL − cD)R

∗ +
D(cL − cD)

2

2h
(4.131)

Therefore, for any given 0 ≤ r, s < ∞, by using the relations (4.130) and (4.131), we can

express (4.127) as a function of Q∗ as follows,

hQ∗2

2D
+
hQ∗

μ
−AD+

hD

μ2
=

[
AL + γr + ηs− D

2h

(
hQ∗

D
− (cL − cD)

)2

+
DΓ

μ
(eμr/p̂D − 1)

]
u
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After substituting u, it can be rewritten as(
hQ∗2

2D
+

hQ∗

μ
− AD +

hD

μ2

)
(eμr/p̂D eμs/D − 1) = AL + γr + ηs− D

2h

(
hQ∗

D
− (cL − cD)

)2

+
DΓ

μ
(eμr/p̂D − 1) (4.132)

First Derivative of TC w.r.t. s:

Taking the derivative of (4.101) yields,

∂TC

∂s
=

∂E[CC]
∂s

E[T ]− ∂E[T ]
∂s

E[CC]

E[T ]2
(4.133)

The derivative of expected cycle cost with respect to s can be found as

∂E[CC]

∂s
=

∂f

∂s
+

∂g

∂s
u+

∂u

∂s
g

= h

(
Q

D
+

1

μ

)
+

(
η − cL − hs

D

)
u− μ

D
u(1 + u)g (4.134)

By adding and subtracting the term fμ(1 + u)/D on the right hand side of (4.134), we

obtain that

∂E[CC]

∂s
=

μ(1 + u)

D

(
hD

μ(1 + u)

(
Q

D
+

1

μ

)
+

(
η − cL − hs

D

)
uD

μ(1 + u)
+ f

)

− μ(1 + u)

D
(f + g u) (4.135)

Recall from (4.97) that E[CC] = f+g u. Thus, after some simplifications (4.135) becomes

∂E[CC]

∂s
=

μ(1 + u)

D
(w − E[CC]) (4.136)

with

w = w(r, s, Q) := AD + cDQ+
hQ2

2D
+

hQs

D
+

cDD + h(Q+ s)

μ(1 + u)
(4.137)

The derivative of (4.102) with respect to s can be found as

∂E[T ]

∂s
= − u

D
− μ

D
u(1 + u)

(
R− s

D

)
(4.138)
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By adding and subtracting the term (μ(1 + u)/D)(Q/D+ 1/μ) on the right-hand side of

(4.138) and reorganizing the terms give

∂E[T ]

∂s
=

μ(1 + u)

D

(
Q

D
+

1

μ(1 + u)
− E[T ]

)
(4.139)

Using (4.139) and (4.136) in (4.133) yields

∂TC

∂s
=

μ(1 + u)

DE[T ]2

[
(w − E[CC])E[T ]−

(
Q

D
+

1

μ(1 + u)
− E[T ]

)
E[CC]

]

=
μ(1 + u)

DE[T ]

[
w −

(
Q

D
+

1

μ(1 + u)

)
TC

]
(4.140)

First Order Condition of TC w.r.t. s:

For any 0 ≤ r, R,Q < ∞, let s∗ be a critical point satisfying the first order condition

∂TC/∂s = 0. Since μ(1+ u)/DE[T ] 	= 0 for any finite (r, R, s,Q), it is clear from (4.140)

that the first order condition is satisfied when

w(r, s∗, Q) =

(
Q

D
+

1

μ(1 + u(r, s∗))

)
TC(r, R, s∗, Q) (4.141)

Q∗ as Economic Order Quantity:

Observe that for any Q∗ and s∗ satisfying (4.127) and (4.141), we have

w(r, s∗, Q∗) =
(
Q∗

D
+

1

μ(1 + u(r, s∗))

)
(cDD + h(Q∗ + s∗)) (4.142)

Substituting (4.137) in (4.142) and making necessary simplifications yields

Q∗

D
(cDD + h(Q∗ + s∗)) = AD + cDQ

∗ +
hQ∗2

2D
+

hQ∗s∗

D

hQ∗2

D
= AD +

hQ∗2

2D

Q∗ =

√
2ADD

h
(4.143)

Second Derivative of TC w.r.t. s:

Define the function

y := y(r, R, s,Q) := w(r, s, Q)−
(
Q

D
+

1

μ(1 + u(r, s))

)
TC(r, R, s,Q)
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Thus, (4.140) becomes,
∂TC

∂s
=

μ(1 + u)y

DE[T ]

and the second derivative of TC with respect to s can be given as,

∂2TC

∂s2
=

μ

DE[T ]2

[(
∂u

∂s
y + (1 + u)

∂y

∂s

)
E[T ]− (1 + u)y

∂E[T ]

∂s

]
(4.144)

Observe that
∂y

∂s
=

∂w

∂s
+

∂u

∂s

TC

μ(1 + u)2
−
(
Q

D
+

1

μ(1 + u)

)
∂TC

∂s
(4.145)

and

∂y

∂s
|s=s∗ =

hQ

D
+

1

μ(1 + u)

(
h+

uμ(cDD + h(Q+ s∗))
D

)
− u

D(1 + u)
TC|s=s∗ (4.146)

Moreover, from (4.141) it is clear that y(r, R, s∗, Q) = 0. Therefore, evaluating (4.144) at

s = s∗ yields

∂2TC

∂s2
|s=s∗ =

μ(1 + u)

DE[T ]

∂y

∂s
|s=s∗

=
μ

DE[T ]

[
hQ(1 + u)

D
+

h

μ
+

u

D
(cDD + h(Q+ s∗)− TC|s=s∗)

]
(4.147)

Recall that Q∗ satisfies (4.127). Thus, for Q = Q∗, (4.147) becomes,

∂2TC

∂s2
|s=s∗,Q=Q∗ =

μ

DE[T ]

[
hQ∗(1 + u)

D
+

h

μ

]
(4.148)

Note that in (4.148), Q∗ =
√
2ADD/h since (4.127) and (4.141) are both satisfied. Thus,

for any 0 ≤ r, R < ∞, if (4.127) and (4.141) has a feasible solution (s∗,Q∗) such that

0 ≤ s∗ ≤ R and Q∗ ≥ 0 then
∂2TC

∂s2
|s=s∗,Q=Q∗ > 0

Computation of Critical Point Candidate:

For any given 0 ≤ r < ∞, if a critical point (R∗,s∗,Q∗) satisfies (4.120), (4.127) and

(4.141) then Q∗ =
√
2ADD/h and (4.132) becomes,

D

μ

(√
2ADh

D
+

h

μ

)
(eμr/p̂D eμs

∗/D − 1) = AL + γr + ηs∗ − D

2h

(√
2ADh

D
− (cL − cD)

)2

+
DΓ

μ
(eμr/p̂D − 1) (4.149)
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Here, we shall note that for r = 0, (4.149) boils down to the equation given by Moinzadeh

(1997) to find s∗. Similarly, (4.130) becomes

R∗ = s∗ +

√
2ADD

h
− (cL − cD)D

h
(4.150)

For any given 0 ≤ s < ∞, let (r∗,R∗,Q∗) be a critical point satisfying (4.111), (4.120)

and (4.127). Then, using (4.130) and (4.131) in (4.111), we obtain that[
cL − cD

h
+

1

μ

]
TC(r∗, R∗, s, Q∗) = AD − AL − γr∗ +

D(cL − cD)cD
h

+
D(cL − cD)

2

2h

+
D

μ
(p̂(cL + π) + (1− p̂)θ) (4.151)

Substituting (4.120) in (4.151) and reorganizing the terms yield the following relation

between r∗ and R∗,

ηR∗ + γr∗ = K (4.152)

with

K := AD − AL − D(cL − cD)
2

2h
+

D

μ
(p̂π + (1− p̂)(θ − cL)) (4.153)

Note that by using (4.130), (4.152) can also be given as a relation between r∗ and Q∗

as follows,

γr∗ = K − η

(
s+Q∗ − D(cL − cD)

h

)
(4.154)

Moreover, if (s∗, Q∗) is a point satisfying (4.127) and (4.141) then Q∗ =
√
2ADD/h

and (4.154) becomes,

AL + γr∗ + ηs∗ =
D

2h

(√
2ADh

D
− (cL − cD)

)2

− D

μ

(√
2ADh

D
− (cL − cD)

)

+
D

μ
(p̂(cL + π) + (1− p̂)θ) (4.155)

Thus, using (4.155) in (4.149) and making necessary simplifications yields(√
2ADh

D
+

h

μ

)
eμr

∗/p̂D eμs
∗/D = Γeμr

∗/p̂D + p̂γ (4.156)
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Using the definition of Γ and rewriting (4.156) gives s∗ as follows

s∗ =
D

μ
ln

⎛⎝ h
μ
+ p̂ (Π + γe−μr∗/p̂D )− (1− p̂)cD

h
μ
+
√

2ADh
D

⎞⎠ (4.157)

Therefore, if (r∗,R∗,s∗,Q∗) is a critical point satisfying the first order conditions (4.111),

(4.120), (4.127) and (4.141) then Q∗ =
√
2ADD/h and r∗, R∗ and s∗ can be found by

solving (4.157) by using (4.150) and (4.152).

Computation of Boundary Point Candidate at s=0 :

If the first order condition (4.141) does not yield a feasible critical point s∗ then we

need to check the boundary s = 0 for the optimal solution. We impose s = 0 and let

(r∗, R∗, Q∗) be a critical point satisfying (4.111), (4.120) and (4.127). Observe that most

of the relations derived above for any given 0 ≤ s ≤ ∞ remains valid. Thus, (4.130)

becomes,

R∗ = Q∗ − (cL − cD)D

h
(4.158)

and (4.132) becomes(
hQ∗2

2D
+

hQ∗

μ
− AD +

hD

μ2

)
(eμr/p̂D − 1) = AL + γr − D

2h

(
hQ∗

D
− (cL − cD)

)2

+
DΓ

μ
(eμr/p̂D − 1) (4.159)

Moreover, the relation between R∗ and r∗ given by (4.152) remains the same and the

relation between r∗ and Q∗ given by (4.154) becomes

γr∗ = K − η

(
Q∗ − D(cL − cD)

h

)
(4.160)

Substituting (4.160) in (4.159) and after some algebra we obtain(
hQ∗2

2D
+

hQ∗

μ
− AD − D

μ
(p̂Π− (1− p̂)cD)

)
eμr

∗/p̂D − p̂Dγ

μ
= 0 (4.161)

Thus, (r∗, R∗, Q∗) can be found by using (4.152) and (4.158) in (4.161) and solving for

Q∗.



136 Random Deal Offerings and Partial Backordering

Computation of Boundary Point Candidate at R=s:

If R = s then the expected cycle cost given by (4.97) becomes,

E[CC] = f(s,Q) + g(r, s)u(r, s) (4.162)

with f(s,Q) and u(r, s) being the same and

g(r, s) := AL + γr + ηs+
DΓ

μ

(
eμr/p̂D − 1

)
(4.163)

and the total cost rate function can be given as

TC(r, s,Q) =
E[CC]

E[T ]
(4.164)

with the expected cycle time,

E[T ] =
Q

D
+

1

μ
(4.165)

It is clear from (4.164) that the behavior of TC(r, s, Q) in (r, s) depends only on the

behavior of E[CC] in (r, s). Thus, taking the derivative of (4.162) with respect to r

yields,

∂E[CC]

∂r
=

∂g

∂r
u+

∂u

∂r
g

= u

(
γ +

Γ

p̂
eμr/p̂D − μ

p̂D
(1 + u)g

)
(4.166)

For any given (s,Q), let r∗ be a critical point satisfying the first order condition

∂TC/∂r = 0. Since u > 0 for 0 ≤ s < ∞, we observe from (4.166) that the first order

condition is satisfied when

γ +
Γ

p̂
eμr

∗/p̂D =
μ

p̂D
(1 + u(r∗, s))g(r∗, s) (4.167)

Similarly, the derivative of (4.162) with respect to s can be found as

∂E[CC]

∂s
=

∂f

∂s
+

∂g

∂s
u+

∂u

∂s
g

= u

(
h

u

(
Q

D
+

1

μ

)
+ η − μ

D
(1 + u)g

)
(4.168)
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For any given (r,Q), let s∗ be a critical point satisfying the first order condition

∂TC/∂s = 0. Since u > 0 for 0 ≤ r < ∞, it is evident from (4.168) that the first order

condition is satisfied when

h

u(r, s∗)

(
Q

D
+

1

μ

)
=

μ

D
(1 + u(r, s∗))g(r, s∗)− η (4.169)

Thus, for any given Q, if (r∗, s∗) is a critical point satisfying (4.167) and (4.169) then

using (4.167) in (4.169) gives

h

u(r∗, s∗)

(
Q

D
+

1

μ

)
= p̂γ + Γ eμr

∗/p̂D − η (4.170)

Using the definition of u(r, s) and reorganizing the terms in (4.170) yields

r∗ = − p̂D

μ
ln

⎛⎝h
(

Q
D
+ 1

μ

)
eμs

∗/D − Γ

h
(

Q
D
+ 1

μ

)
− η + p̂γ

⎞⎠ (4.171)

Therefore, for any given 0 ≤ Q < ∞, (r∗, s∗) can be found by solving any two of the

equations (4.167), (4.169) and (4.171).

Taking the derivative of (4.164) with respect to Q yields,

∂TC

∂Q
=

∂E[CC]
∂Q

E[T ]− ∂E[T ]
∂Q

E[CC]

E[T ]2
(4.172)

From (4.162) and (4.165), the derivatives of E[CC] and E[T ] with respect to Q can be

given as
∂E[CC]

∂Q
=

∂f

∂Q
=

1

D
(cDD + h(Q+ s)) (4.173)

and
∂E[T ]

∂Q
=

1

D
(4.174)

Using (4.173) and (4.174) in (4.172) gives,

∂TC

∂Q
=

1

DE[T ]
[cDD + h(Q+ s)− TC] (4.175)

For any 0 ≤ r, s < ∞, let Q∗ be a critical point satisfying the first order condition

∂TC/∂Q = 0. It is clear from (4.175) that the first order condition is satisfied when

cDD + h(Q∗ + s) = TC(r, s, Q∗) (4.176)



138 Random Deal Offerings and Partial Backordering

Observe that (4.176) can be rewritten as

(cDD + h(Q∗ + s))

(
Q∗

D
+

1

μ

)
= f(s,Q∗) + g(r, s) u(r, s) (4.177)

Using the definition of f(s,Q) and after some algebra (4.177) becomes

hQ∗2

2D2
+

hQ∗

μD
− AD +

hD

μ2
− g(r, s)u(r, s) = 0 (4.178)

Applying the quadratic formula to (4.178) yields

Q∗ =
D

μ

(
−1 +

√
1 +

2μ2

h

(
AD

D
− h

μ2
+

g(r, s)u(r, s)

D

))
(4.179)

Therefore, a critical point (r∗, s∗, Q∗) of the function TC(r, s, Q) can be found by solving

(4.167), (4.171) and (4.179).

For R = s, we shall also check the boundary Q = 0 for the optimal solution. Thus,

we impose Q = 0 and let (r∗, s∗) be a critical point satisfying the first order conditions

(4.167) and (4.169). Observe that for Q = 0, (4.171) becomes

r∗ = − p̂D

μ
ln

(
h
μ
eμs

∗/D − Γ

p̂γ − (cL − cD)

)
(4.180)

Thus, (r∗, s∗) can be found by solving (4.167) and (4.180) simultaneously.

Boundary Point Candidate at R=s+Q :

If an optimal solution exists at the boundary R = s+Q then it means that the system

tries to exploit the economies of scale as much as possible in every list replenishment.

Since cL > cD, the optimal R being at its upper bound implies that the deals leads to a

marginal cost reduction compared to the reduction obtained by exploiting economies of

scale in list replenishments. Such scenario might occur when price discounts are relatively

small and the fixed cost of replenishing from the list price is very high compared to the

fixed cost of replenishing from the deal price (AL >> AD). However, this scenario does

not seem to be realistic for systems with deal offerings. Although such parameter sets

can be constructed for the sake of completeness, we do not think that investigating such

sets would yield interesting insights. Thus, we ignore these exotic scenarios and neglect

the candidates at the boundary R = s+Q.
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Theorem 4.3. For Case 3, the optimal solution can be found at one of the following

candidate points,

1. If cL − cD = π̂/μ then

(a) if AL = 0 then any r and R satisfying 0 ≤ R ≤ r is optimal. Let

U = p̂Π− (1− p̂)cD

then (s∗, Q∗) can be given as

i. If AD/D + U/μ ≤ 0 then s∗ = Q∗ = 0.

ii. If AD/D + U/μ > 0 then

A. if
√

2ADh/D > U then s∗ = 0 and

Q∗ =
D

μ

(
−1 +

√
1 +

2μ2

h

(
AD

D
+

U

μ

))

B. if
√

2ADh/D ≤ U then

s∗ =
−D

μ
ln

⎛⎝ h
μ
+
√

2ADh
D

h
μ
+ U

⎞⎠
and

Q∗ =

√
2ADD

h

(b) if AL > 0 then r∗→∞ and R becomes an irrelevant policy parameter. (s∗, Q∗)

can be given as in part 1(a).

2. If cL−cD > π̂/μ then r∗→∞ and R becomes an irrelevant policy parameter. (s∗, Q∗)

can be given as in part 1(a).

3. If cL − cD < π̂/μ then R∗ = 0 and

(a) if AL = 0 then r∗ = 0. Let

U = p̂ (Π + γ)− (1− p̂)cD (4.181)

then (s∗, Q∗) can be found by the formulas given in part 1(a) by substituting U

with (4.181).
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(b) if AL > 0 then −AL/γ < r∗ < −AL/γ + p̂D/μ and r∗ is the solution of

1− e−μr∗/p̂D − μr∗

p̂D
− ALμ

γp̂D
= 0 (4.182)

Let

U = p̂ (Π + γe−μr∗/p̂D )− (1− p̂)cD (4.183)

then (s∗, Q∗) can be found by the formulas given in part 1(a) by substituting U

with (4.183).

Proof of Theorem 4.3:

For the optimization of the total cost function according to parameters r and R, we

shall first rewrite the expected cycle cost for Case 3 as follows:

E[CC] = f(s,Q) + [AL + γ(r −R)]
e−μs/D

eμr/p̂D − eμR/p̂D
(4.184)

with

f(s,Q) := AD +
cDD

μ
− hD

μ2
+

hQ2

2D
+ cDQ+ h

(
Q

D
+

1

μ

)
s+

DΓ

μ
e−μs/D(4.185)

Taking the first derivative of (4.184) with respect to r yields

∂E[CC]

∂r
=

γe−μs/D (eμr/p̂D − eμR/p̂D )− [AL + γ(r −R)] e−μs/D μ
p̂D

eμr/p̂D

(eμr/p̂D − eμR/p̂D )2

=
γe−μs/D eμr/p̂D f(μ(r−R)

p̂D
)

(eμr/p̂D − eμR/p̂D )2
(4.186)

with

f

(
μ(r −R)

p̂D

)
:= 1− e−μ(r−R)/p̂D − μ(r −R)

p̂D
− ALμ

γp̂D

Observe that we can analyze the behavior of E[CC] according to the sign of γ such

that,

1. If γ = 0 we have to consider two different cases according to the sign of AL:

(a) If AL = 0 then E[CC] = f(s,Q) and, therefore, any r and R satisfying the

relation 0 ≤ R ≤ r is optimal.



4.5 Optimization of TC(r, R, s,Q) 141

(b) If AL > 0 then

E[CC] = f(s,Q) +
ALe

−μs/D

eμr/p̂D − eμR/p̂D

and it can be easily seen that for any given 0 ≤ Q < ∞, 0 ≤ s < ∞ and

0 ≤ R ≤ r, E[CC] goes to infinity when r = R and E[CC] is decreasing

in r. Hence, for any given 0 ≤ Q < ∞, 0 ≤ s < ∞ and 0 ≤ R ≤ r,

E[CC] attains its minimum as r→∞, and, therefore, R becomes an irrelevant

policy parameter. Moreover, observe from (4.184) that as r goes to infinity

(r − R)/(eμr/p̂D − eμR/p̂D ) goes to zero, and E[CC] goes to f(s,Q). Thus,

E[CC]|r∗→∞ = f(s,Q) and the optimal (s,Q) follows from Lemma 4.3.

2. If γ > 0 then f(μ(r − R)/p̂D) ≤ 0 and the numerator of (4.186) is less than or

equal to zero. Thus, ∂E[CC]/∂r ≤ 0 and for any given 0 ≤ Q < ∞, 0 ≤ s < ∞,

0 ≤ R ≤ r, E[CC] attains its minimum value as r→∞ and R becomes irrelevant.

3. If γ < 0 then we start by analysing the behavior of E[CC] in R.

The first derivative of (4.184) with respect to R can be given as,

∂E[CC]

∂R
=

−γe−μs/D (eμr/p̂D − eμR/p̂D ) + [AL + γ(r −R)] e−μs/D μ
p̂D

eμR/p̂D

(eμr/p̂D − eμR/p̂D )2

=
γe−μs/D eμR/p̂D g(μ(r−R)

p̂D
)

(eμr/p̂D − eμR/p̂D )2
(4.187)

with

g

(
μ(r −R)

p̂D

)
:= 1− eμ(r−R)/p̂D +

μ(r −R)

p̂D
+

ALμ

γp̂D

It can be easily shown that the function g(x) := 1− ex + x+A is less than or equal

to zero for x ≥ 0 and A ≤ 0. Thus, if γ < 0 then g(μ(r − R)/p̂D) ≤ 0 and the

numerator of (4.187) is greater than or equal to zero. Therefore, ∂E[CC]/∂R ≥ 0

and for any given 0 ≤ Q < ∞, 0 ≤ s < ∞, r ≥ R, E[CC] attains its minimum at

R∗ = 0.

Substituting R∗ = 0 in (4.184) yields,

E[CC]|R∗=0 = f(s,Q) + [AL + γr]
e−μs/D

eμr/p̂D − 1
(4.188)



142 Random Deal Offerings and Partial Backordering

Taking the first derivative of E[CC]|R∗=0 with respect to r gives

∂E[CC]|R∗=0

∂r
=

γe−μs/D eμr/p̂D f( μr
p̂D

)

(eμr/p̂D − 1)2
(4.189)

with

f

(
μr

p̂D

)
:= 1− e−μr/p̂D − μr

p̂D
− ALμ

γp̂D
(4.190)

Observe that for any s ≥ 0, the sign of (4.189) depends on the sign of the function

f( μr
p̂D

). Thus,

(a) If AL = 0 then from Lemma 1, we have f( μr
p̂D

) ≥ 0 with a unique root at r = 0

since μ/p̂D > 0. Thus, (4.189) is always non-negative and (4.188) attains its

minimum as r→0. That is limr→0 r/(e
μr/p̂D −1) = p̂D/μ and (4.188) becomes

E[CC]|r∗=R∗=0 = f(s,Q) +
γe−μs/D p̂D

μ
(4.191)

Observe that (4.191) can be rewritten as a function of s and Q as follows,

f̃(s,Q) = AD +
cDD

μ
− hD

μ2
+

hQ2

2D
+ cDQ+ h

(
Q

D
+

1

μ

)
s

+
D

μ

(
h

μ
+ p̂ (Π + γ)− (1− p̂)cD

)
e−μs/D (4.192)

Thus, s∗ and Q∗ can be calculated from Lemma 4.3 by substituting U with

p̂ (Π + γ)− (1− p̂)cD.

(b) If AL > 0 then from Lemma 1, f( μr
p̂D

) is a concave decreasing function with a

unique positive root μr∗/p̂D such that −AL/γ < r∗ < −AL/γ + p̂D/μ. Thus,

it is evident from (4.189) that for any 0 ≤ Q < ∞ and 0 ≤ s < ∞, (4.188)

is first decreasing and then increasing in r and it reaches its minimum at r∗.

Therefore, r∗ satisfies f(μr
∗

p̂D
) = 0 and (4.188) becomes

E[CC]|R∗=0,r∗ = f(s,Q) +
p̂Dγe−μr∗/p̂D e−μs/D

μ
(4.193)

For a given r∗, (4.193) can be rewritten as a function of s and Q as follows,

f̃(s,Q) = AD +
cDD

μ
− hD

μ2
+

hQ2

2D
+ cDQ+ h

(
Q

D
+

1

μ

)
s

+
D

μ

(
h

μ
+ U

)
e−μs/D (4.194)
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with

U = p̂ (Π + γe−μr∗/p̂D )− (1− p̂)cD

and (s∗, Q∗) follow from Lemma 4.3.

4.6. Discussion

As can be seen from Theorems (4.1)–(4.3) when cL − cD ≥ π̂/μ the optimal solution

can be characterized relatively easily. That is, either r∗ = 0 and (R∗, s∗, Q∗) is found as

given by Moinzadeh (1997) or r∗→∞ and the optimal policy is characterized by the two

parameters (s∗, Q∗).

On the other hand, for cL− cD < π̂/μ it becomes more difficult to identify the optimal

policy parameters. For Case 1 and Case 3, we can optimize (r∗, R∗) independent from

(s∗, Q∗) thanks to the relatively simple form of the objective function. As a result, for

Case 1 and Case 3, we are able to reduce the optimization problem to a limited number

of candidate points which can be found by solving simple nonlinear equations in a similar

fashion as presented by Moinzadeh (1997). For example, we show that for Case 3, r∗ is

non-negative and finite and R∗ = 0. This indicates that the optimal solution for Case 3

lies on the boundary of Case 2.

Unfortunately, for Case 2, the form of the objective function is more complicated than

the other cases and decomposition of the optimization problem is not possible. Moreover,

the objective function remains feasible at most of the boundaries of the constraint set.

These factors increase the number of candidates that can only be found by solving systems

of nonlinear equations, and this makes the analytical optimization more difficult.

However, for Case 2, we are able to analyze the first order conditions of the system

and give a relatively simple set of nonlinear equations given by (4.86)–(4.89) to find the

critical points of the objective function. Moreover, we provide a parametric condition

analogous to Moinzadeh (1997) to identify whether the interior of the constraint sets Ω1

and Ω2 contain the optimal solution or not.

In order to see this result observe from Theorem 4.1 that when cL − cD < π̂/μ, a

critical point in the interior of the constraint set can only be found by solving (4.49),

(4.50), (4.52) and (4.51). Since U := cL−cD in this case, it is clear from the theorem that
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if
√

2ADh/D > cL − cD then the optimal solution for Case 1 cannot be in the interior of

the constraint set Ω1. Similarly, it is clear from (4.86) that if
√
2ADh/D < cL − cD then

the optimal solution of Case 2 cannot be in the interior of the constraint set Ω2.

Since the policy analyzed by Moinzadeh (1997) is a special case of our policy, for

that problem, the optimization of the objective function is relatively easy and the above

condition is enough to locate the optimal solution, i.e., the optimal solution is at the

critical point inΩ1 orΩ2. However, due to the difficulties discussed above, in our problem,

the parametric condition is only helpful to narrow down the number of candidates for the

optimal solution.

4.7. Numerical Example

In this section, we provide two numerical examples to illustrate the behavior of the optimal

policy parameters and optimal total cost rate due to the changes in backordering costs,

and the potential benefits of allowing partial backorders. Table 4.1 shows the effects of

the changes in backordering costs on optimal policy parameters and optimal cost rate.

Table 4.1: Behavior of (r∗, R∗, s∗, Q∗) and TC∗ in π̂ and π

π̂ π r∗ R∗ s∗ Q∗ TC∗

6 0.2 127.87 0.66 7.72 173.21 1980.92

0.4 126.93 8.95 16.01 173.21 1989.21

0.8 121.26 22.70 29.75 173.21 2002.96

8 0.2 89.68 16.85 23.91 173.21 1997.12

0.4 87.44 23.05 30.11 173.21 2003.31

0.8 81.49 33.62 40.68 173.21 2013.88

10 0.2 69.83 26.95 34.01 173.21 2007.21

0.4 67.52 31.91 38.97 173.21 2012.17

0.8 62.15 40.50 47.56 173.21 2020.77

Note. D = 200, AL = AD = 75, cL = 10, cD = 9, θ = 0.4, p̂ = 0.9, μ = 3

From Table 4.1, we observe that as π̂ increases −r∗ increases to decrease the number

of backorders whereas R∗ increases to balance the list purchase quantity. We observe

that the optimal list order quantity r∗ +R∗ decreases as π̂ increases. This is because the
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time weighted backordering cost has relatively more impact on the reorder level than the

order-up-to level. The increase in π̂ pushes s∗ to higher values in order to take advantage

of deals earlier and incur less backorders.

Similar behaviors are observed in −r∗, R∗ and s∗ as π increases. Also note that the

difference between R∗ and s∗ remains approximately constant as π increases since s∗ moves

upward to balance the number of deal orders. Q∗ is not effected by the changes in the

stockout costs since for all parameter combinations considered the optimal solutions are

found in the interior of the constraint sets. Thus, the optimal order quantity is found by

the EOQ formula as given in Theorems 4.1–4.3. Moreover, we observe that TC∗ increases

as the backordering costs increase.

In order to see the benefits of allowing backorders more clearly, we compared the

performance of the proposed four parameter policy with the three parameter (R, s,Q)

policy offered by Moinzadeh (1997). Figure 4.4 shows savings as the discount rate and

the average number of deal offerings (μ) increase. Here, Δ% denotes the percentage

savings in total cost rate obtained by using the four parameter policy.

Figure 4.4: Comparison with (R, s,Q) policy
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Note: D = 200, h = 5, cL = 25, AL = 100, AD = 50, π̂ = 8, π = 2, θ = 2, p̂ = 0.95

As can be seen from Figure 4.4, savings range from 4% up to 25% and increase with the

discount rate. This result indicates that allowing backorders may result in considerable

savings especially for high discount rates. As the discount rate increases purchasing from
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the list price becomes relatively expensive compared to backordering. Therefore, waiting

for a good deal by allowing backorders becomes more advantageous and using a policy

allowing backorders yields cost savings.

We also observe that as the average number of deal offerings (μ) increases, the savings

decreases. This is due to the fact that with more frequent deal offers, the number of list

replenishments and backorders both decrease and the two models converge to each other.

Also note that the decrease in savings is higher for high discount rates due to the bigger

tradeoff between backordering and purchasing from the list price.

4.8. Conclusion

In this chapter, we consider an inventory system where price discounts are offered by

the supplier at random points in time and a certain fraction of demand is lost during the

stockout period. Under the assumptions of deterministic demand, zero replenishment lead

time and Poisson deal arrivals, we propose a four parameter continuous review control

policy and derive exact expressions for the operating characteristics and the equations

to calculate the optimal policy parameters minimizing the expected total cost rate. We

provide qualitative results about the location of the optimal solution with respect to the

relation between certain system parameters. With an illustrative numerical example, we

demonstrate that allowing backorders in a random deal environment indeed leads to cost

savings for certain parameter settings. Our model might stand as a stepping stone for the

derivation of more complicated and general models with partial backorders which may

include random demand, random deal duration and nonzero lead times.
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4.9. Appendix

Proof of Proposition 4.1:

Proof of Expected Number of List Replenishments for All Cases:

For all cases, we can write the probability that there exist i list replenishments within

a cycle with the following equation:

P (NL = i) =

⎧⎨⎩
βj + (1− βj)αj if i = 0

(1− βj)αj(1− αj)
i if i > 0

(4.195)

Thus, taking the expectation of (4.195) yields:

E[NL] =
∞∑
i=0

iP (NL = i)

= (1− βj)αj

∞∑
i=1

i(1− αj)
i

=
(1− βj)(1− αj)

αj

Proof of Expected Cycle Time for Cases 1 & 2 :

According to possible scenarios given by Figures 4.1 and 4.2 we can write the cycle

length as follows:

T =

⎧⎪⎨⎪⎩
Q
D
+ τ1:x w.p. βx

Q
D
+ s−x

D
+ i

[
R
D
+ r

p̂D

]
+ τ2:x w.p. (1− βx)αx(1− αx)

i, i = 0, 1, 2, ...

(4.196)
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Clearly, from (4.196) the expected cycle time can be written as:

E[T ] = βx

[
Q

D
+ E[τ1:x]

]

+ (1− βx)αx

∞∑
i=0

[
Q

D
+

s− x

D
+ i

[
R

D
+

r

p̂D

]
+ E[τ2:x]

]
(1− αx)

i

= βx

[
Q

D
+

1

μ
− (s− x)(1− βx)

Dβx

]

+ (1− βx)αx

∞∑
i=0

[
Q

D
+

(s− x)

D
+ i

[
R

D
+

r

p̂D

]

+
1

μ
− (p̂x+ r)(1− αx)

p̂Dαx

]
(1− αx)

i

=
βxQ

D
+

βx

μ
− (s− x)(1− βx)

D

+ (1− βx)αx

[
Q

D
+

(s− x)

D
+

1

μ
− (p̂x+ r)(1− αx)

p̂Dαx

] ∞∑
i=0

(1− αx)
i

+ (1− βx)αx

[
R

D
+

r

p̂D

] ∞∑
i=0

i(1− αx)
i

=
βxQ

D
+

βx

μ
− (s− x)(1− βx)

D

+ (1− βx)

[
Q

D
+

(s− x)

D
+

1

μ
− (p̂x+ r)(1− αx)

p̂Dαx

]

+

[
R

D
+

r

p̂D

]
(1− βx)(1− αx)

αx

=
Q

D
+

1

μ
+

(R− x)

D
E(NL)
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Proof of Expected Replenishment Cost for Cases 1 & 2 :

Replenishment cost of Case 1 and Case 2 can be given with the following equation:

RC =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

AD + cD(Q+Dτ1:x) w.p. βx and 0 < τ1:x ≤ s−x
D

AD + cD(s+Q− x+Dτ2:x) w.p. (1− βx)αx(1− αx)
i , i = 0, 1, 2, ...

+i [AL + cL(R + r)] and 0 < τ2:x ≤ x
D

AD + cD(s+Q− p̂x+ p̂Dτ2:x) w.p. (1− βx)αx(1− αx)
i , i = 0, 1, 2, ...

+i [AL + cL(R + r)] and x
D
< τ2:x ≤ p̂x+r

p̂D

(4.197)

In (4.197) let,

RC1 = AD + cD(Q+Dτ1:x)

RC2 = AD + cD(s+Q− x+Dτ2:x) + i [AL + cL(R + r)]

RC3 = AD + cD(s+Q− p̂x+ p̂Dτ2:x) + i [AL + cL(R + r)]

Therefore, expected replenishment cost can be written as,

E[RC] = βxE[RC1] + (1− βx)αx

∞∑
i=0

[E[RC2] + E[RC3]] (1− αx)
i (4.198)

Then

E[RC1] = AD + cD (Q+DE[τ1:x])

= AD + cD

[
Q+

D

μ
− (s− x)(1− βx)

βx

]
(4.199)
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Due to limiting conditions on τ2:x, we must derive E[RC2] as follows

E[RC2] =

∫ x/D

0

E[RC2|τ2:x = t]gτ2:x(t)dt

= {AD + cD(s+Q− x) + i [AL + cL(R + r)]}
∫ x/D

0

gτ2:x(t)dt

+ cDD

∫ x/D

0

tgτ2:x(t)dt

= −{AD + cD(s+Q− x) + i [AL + cL(R + r)]} e−μt/D|x/D0

αx

+
cDD

αx

[
−te−μt/D|x/D0 +

∫ x/D

0

e−μt/D

]

= {AD + cD(s+Q− x) + i [AL + cL(R + r)]} (1− e−μx/D)

αx

− cDx

D
e−μx/D +

cDD

αxμ
(1− e−μx/D)

= {AD + cD(s+Q) + i [AL + cL(R + r)]} (1− e−μx/D)

αx

− cDx

αx

+
cDD

αxμ
(1− e−μx/D) (4.200)
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Similarly,

E[RC3] =

∫ (p̂x+r)/p̂D

x/D

E[RC3|τ2:x = t]gτ2:x(t)dt

= {AD + cD(s+Q− p̂x) + i [AL + cL(R + r)]}
∫ (p̂x+r)/p̂D

x/D

gτ2:x(t)dt

+ cDp̂D

∫ (p̂x+r)/p̂D

x/D

tgτ2:x(t)dt

= −{AD + cD(s+Q− p̂x) + i [AL + cL(R + r)]}
e−μt/D|(p̂x+r)/p̂D

x/D

αx

+
cDp̂D

αx

[
−te−μt/D|(p̂x+r)/p̂D

x/D +

∫ (p̂x+r)/p̂D

x/D

e−μt/D

]

= {AD + cD(s+Q− p̂x) + i [AL + cL(R + r)]} (e−μx/D − e−μ(p̂x+r)/p̂D)

αx

− cD(p̂x+ r)

αx

e−μ(p̂x+r)/p̂D +
cDp̂x

αx

e−μx/D +
cDp̂D

αxμ
(e−μx/D − e−μ(p̂x+r)/p̂D)

= {AD + cD(s+Q) + i [AL + cL(R + r)]} (e−μx/D − e−μ(p̂x+r)/p̂D)

αx

− cDr

αx

e−μ(p̂x+r)/p̂D +
cDp̂D

αxμ
(e−μx/D − e−μ(p̂x+r)/p̂D)

= {AD + cD(s+Q) + i [AL + cL(R + r)]} (e−μx/D − (1− αx))

αx

− cDr

αx

(1− αx) +
cDp̂D

αxμ
(e−μx/D − (1− αx)) (4.201)
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Hence, from (4.200) and (4.201) we can write,

E[RC2] + E[RC3] = AD + cD(s+Q) + i [AL + cL(R + r)]

− cDx

αx

+
cDD

αxμ
(1− e−μx/D)− cDr

αx

(1− αx)

+
cDp̂D

αxμ
(e−μx/D − (1− αx)) (4.202)

Let,

U = AD + cD(s+Q)− cDx

αx

+
cDD

αxμ
(1− e−μx/D)− cDr

αx

(1− αx)

+
cDp̂D

αxμ
(e−μx/D − (1− αx)) (4.203)

Then,

E[RC2] + E[RC3] = U + i [AL + cL(R + r)] (4.204)

If we substitute (4.199) and (4.204) in (4.198) we obtain,

E[RC] = βx

{
AD + cD

[
Q+

D

μ
− (s− x)(1− βx)

βx

]}

+ (1− βx)αx

{
U

∞∑
i=0

(1− αx)
i + [AL + cL(R + r)]

∞∑
i=0

i(1− αx)
i

}

= ADβx + cDQβx +
cDDβx

μ
− cD(s− x)(1− βx)

+ (1− βx)U + [AL + cL(R + r)]
(1− αx)(1− βx)

αx
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Substituting (4.203) yields,

E[RC] = ADβx + cDQβx +
cDDβx

μ
− cD(s− x)(1− βx)

+ (1− βx)

{
AD + cD(s+Q)− cDx

αx

+
cDD

αxμ
(1− e−μx/D)− cDr

αx

(1− αx)

+
cDp̂D

αxμ
(e−μx/D − (1− αx))

}
+ [AL + cL(R + r)]E[NL]

= AD + cDQ+
cDD

μ

[
βx +

(1− βx)

αx

]
− cDD(1− βx)

αxμ
e−μx/D − cDxE[NL]

− cDrE[NL] +
cDp̂D(1− βx)

αxμ
e−μx/D − cDp̂D

μ
E[NL]

+ [AL + cL(R + r)]E[NL]

Adding and subtracting the term cDD/μ to the third term yields,

E[RC] = AD + cDQ+
cDD

μ
+

cDD

μ
E[NL]− cDD(1− βx)(1− p̂)

αxμ
e−μx/D − cDxE[NL]

+ (cL − cD)rE[NL] +
cDp̂D(1− βx)

αxμ
e−μx/D − cDp̂D

μ
E[NL]

+ [AL + cLR]E[NL]

= AD + cDQ+
cDD

μ
− cDxE[NL] + [AL + cLR]E[NL]

+
cDD(1− p̂)

μ
E[NL] + (cL − cD)rE[NL]− cDD(1− βx)(1− p̂)

αxμ
e−μx/D
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Adding and subtracting the term cDDRE[NL] yields the result,

E[RC] = AD + cDD

[
Q

D
+

1

μ
+

(R− x)

D
E[NL]

]
+ [AL + (cL − cD)R]E[NL]

+

[
cDD(1− p̂)

μ
+ (cL − cD)r

]
E[NL]− cDD(1− βx)(1− p̂)e−μx/D

μαx

= AD + cDDE[T ] +

[
AL + (cL − cD)(r +R) +

cDD(1− p̂)

μ

]
E[NL]

− cDD(1− βx)(1− p̂)e−μx/D

μαx

Proof of Expected On-Hand Inventory for Cases 1 & 2 :

According to the scenarios given by Figures 4.1 and 4.2 the on-hand inventory held in

a cycle can be given as follows:

OH =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2s+Q−Dτ1:x)
2

[
Q
D
+ τ1:x

]
w.p. βx and 0 < τ1:x ≤ s−x

D

(s+Q)2−x2

2D
+ (2x−Dτ2:x)τ2:x

2
w.p. (1− βx)αx(1− αx)

i , i = 0, 1, 2, ...

+ iR2

2D
and 0 < τ2:x ≤ x

D

(s+Q)2

2D
+ iR2

2D
w.p. (1− βx)αx(1− αx)

i , i = 0, 1, 2, ...

and x
D
< τ2:x ≤ (p̂x+r)

p̂D

(4.205)

In (4.205) let,

OH1 =
(2s+Q−Dτ1:x)

2

[
Q

D
+ τ1:x

]

OH2 =
(s+Q)2 − x2

2D
+

(2x−Dτ2:x)τ2:x
2

+
iR2

2D

OH3 =
(s+Q)2

2D
+

iR2

2D
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Therefore, the expected inventory carried in a cycle can be written as follows:

E[OH] = βxE[OH1] + (1− βx)αx

∞∑
i=0

[E[OH2] + E[OH3]] (1− αx)
i (4.206)

Next, we will derive the components of (4.206). Thus,

E[OH1] =
Q(Q+ 2s)

2D
+ sE[τ1:x]− D

2
E[τ1:x

2] (4.207)

Substituting (4.5) and (4.7) in (4.207) yields:

E[OH1] =
Q(Q+ 2s)

2D
+

s

μ
+

(s− x)(1− βx)

βx

[
− s

D
+

(s− x)

2D
+

1

μ

]
− D

μ2
(4.208)

E[OH2] =

∫ x/D

0

E[OH2|τ2:x = t]gτ2:x(t)dt

=

[
(s+Q)2 − x2

2D
+

iR2

2D

] ∫ x/D

0

gτ2:x(t)dt

+ x

∫ x/D

0

tgτ2:x(t)dt−
D

2

∫ x/D

0

t2gτ2:x(t)dt

=
1

αx

[[
(s+Q)2 − x2

2D
+

iR2

2D

]
(1− e−μx/D ) + x

[
(1− e−μx/D )

μ
− xe−μx/D

D

]

− D

2

[
−x2e−μx/D

D2
+ 2

[
−xe−μx/D

μD
+

(1− e−μx/D )

μ2

]]]

=
1

αx

[[
(s+Q)2 − x2

2D
+

iR2

2D
− D

μ2

]
(1− e−μx/D )− x2

2D
+

x

μ

]
(4.209)

Similarly,

E[OH3] =

∫ (p̂x+r)/p̂D

x/D

E[OH3|τ2:x = t]gτ2:x(t)dt

=

[
(s+Q)2

2D
+

iR2

2D

] ∫ (p̂x+r)/p̂D

x/D

gτ2:x(t)dt

=

[
(s+Q)2

2D
+

iR2

2D

] (
e−μx/D − (1− αx)

)
αx

(4.210)
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Thence, from (4.209) and (4.210) we have:

E[OH2] + E[OH3] =
(s+Q)2

2D
+

iR2

2D

− 1

αx

[
x2

2D
− x

μ
+

D(1− e−μx/D )

μ2

]
(4.211)

Substituting (4.208) and (4.211) in (4.206) gives:

E[OH] = βx

[
Q(Q+ 2s)

2D
+

s

μ
+

(s− x)(1− βx)

βx

[
− s

D
+

(s− x)

2D
+

1

μ

]
− D

μ2

]

+ (1− βx)αx

{[
(s+Q)2

2D
− 1

αx

[
x2

2D
− x

μ
+

D(1− e−μx/D )

μ2

]] ∞∑
i=0

(1− αx)
i

+
R2

2D

∞∑
i=0

i(1− αx)
i

}

= βx

[
Q(Q+ 2s)

2D
+

s

μ
+

(s− x)(1− βx)

βx

[
− s

D
+

(s− x)

2D
+

1

μ

]
− D

μ2

]

+ (1− βx)

[
(s+Q)2

2D
− 1

αx

[
x2

2D
− x

μ
+

D(1− e−μx/D )

μ2

]]

+
R2(1− βx)(1− αx)

2Dαx

=
Q(Q+ 2s)

2D
+

s

μ
− D

μ2

[
βx +

(1− e−μx/D )(1− βx)

αx

]

+

[
R2 − x2 +

2Dx

μ

]
E[NL]

2D
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Proof of Expected Backorder per Time for Cases 1 & 2 :

Time weighted backorder within a cycle for Case 1 and Case 2 can be stated as follows

due to the realizations given by Figures 4.1 and 4.2:

BO1 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ir2

2p̂D
w.p. (1− βx)αx(1− αx)

i , i = 0, 1, 2, ...

and 0 < τ2:x ≤ x
D

(τ2:x− x
D )

2
p̂D

2
+ ir2

2p̂D
w.p. (1− βx)αx(1− αx)

i , i = 0, 1, 2, ...

and x
D
< τ2:x ≤ (p̂x+r)

p̂D

(4.212)

In (4.212) let,

BO11 =
ir2

2p̂D

BO12 =

(
τ2:x − x

D

)2
p̂D

2
+

ir2

2p̂D

Hence, the expected time weighted backorder in a cycle can be written as follows:

E[BO1] = (1− βx)αx

∞∑
i=0

[E[BO11] + E[BO12]] (1− αx)
i (4.213)

The expected BO11 and BO12can be found by conditioning on τ2:x. Therefore,

E[BO11] =

∫ x/D

0

E [BO11|τ2:x = t] gτ2:x(t)dt

=
ir2

2p̂D

∫ x/D

0

gτ2:x(t)dt

=
ir2(1− e−μx/D )

2p̂Dαx

(4.214)
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Similarly,

E[BO12] =

∫ (p̂x+r)/p̂D

x/D

E[BO12|τ2:x = t]gτ2:x(t)dt

=
p̂D

2

∫ (p̂x+r)/p̂D

x/D

t2gτ2:x(t)dt− p̂x

∫ (p̂x+r)/p̂D

x/D

tgτ2:x(t)dt

+

[
p̂x2

2D
+

ir2

2p̂D

] ∫ (p̂x+r)/p̂D

x/D

gτ2:x(t)dt

=
1

αx

{
p̂D

2

[
−
(
p̂x+ r

p̂D

)2

e−μ(p̂x+r)/p̂D +
( x

D

)2

e−μx/D

+ 2

{
−(p̂x+ r)e−μ(p̂x+r)/p̂D

p̂Dμ
+

xe−μx/D

Dμ

−
[
(1− αx)− e−μx/D

]
μ2

}]
− p̂x

[
−(p̂x+ r)(1− αx)

p̂D

+
xe−μx/D

D
−
[
(1− αx)− e−μx/D

]
μ

]

+

[
p̂x2

2D
+

ir2

2p̂D

] [
e−μx/D − (1− αx)

]}

= −r2(1− αx)

2p̂Dαx

− r(1− αx)

μαx

+
p̂D(1− βx)

μ2

[
1− (1− e−μx/D )

αx

]

+
ir2

2p̂D

[
1− (1− e−μx/D )

αx

]
(4.215)

Clearly, adding (4.214) and (4.215) yields:

E[BO11] + E[BO12] = −r2(1− αx)

2p̂Dαx

− r(1− αx)

μαx

+
p̂D

μ2

[
1− (1− e−μx/D )

αx

]
+

ir2

2p̂D
(4.216)
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Substituting (4.216) in (4.213) gives:

E[BO1] = (1− βx)αx

{[
−r2(1− αx)

2p̂Dαx

− r(1− αx)

μαx

+
p̂D

μ2

[
1− (1− e−μx/D )

αx

]] ∞∑
i=0

(1− αx)
i +

r2

2p̂D

∞∑
i=0

i(1− αx)
i

}

= (1− βx)

[
−r2(1− αx)

2p̂Dαx

− r(1− αx)

μαx

+
p̂D

μ2

[
1− (1− e−μx/D )

αx

]]

+
r2(1− βx)(1− αx)

2p̂Dαx

=
p̂D(1− βx)

μ2

[
1− (1− e−μx/D )

αx

]
− rE[NL]

μ

Proof of Expected Backorder per Unit for Cases 1 & 2 :

Similarly, the number of backordered units within a cycle can be given as:

BO2 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ir w.p. (1− βx)αx(1− αx)
i , i = 0, 1, 2, ...

and 0 < τ2:x ≤ x
D(

τ2:x − x
D

)
p̂D + ir w.p. (1− βx)αx(1− αx)

i , i = 0, 1, 2, ...

and x
D
< τ2:x ≤ (p̂x+r)

p̂D

(4.217)

In (4.217) let,

BO21 = ir

BO22 =
(
τ2:x − x

D

)
p̂D + ir

Hence, the expectation of (4.217) can be written as follows:

E[BO2] = (1− βx)αx

∞∑
i=0

[E[BO21] + E[BO22]] (1− αx)
i (4.218)
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where,

E[BO21] =

∫ x/D

0

E [BO21|τ2:x = t] gτ2:x(t)dt

=
ir(1− e−μx/D )

αx

(4.219)

and

E[BO22] =

∫ (p̂x+r)/p̂D

x/D

E[BO22|τ2:x = t]gτ2:x(t)dt

= p̂D

∫ (p̂x+r)/p̂D

x/D

tgτ2:x(t)dt+ (ir − p̂x)

∫ (p̂x+r)/p̂D

x/D

gτ2:x(t)dt

=
1

αx

{
p̂D

[
−(p̂x+ r)(1− αx)

p̂D
+

xe−μx/D

D
+

[
e−μx/D − (1− αx)

]
μ

]

+ (ir − p̂x)
[
e−μx/D − (1− αx)

]}

= −r(1− αx)

αx

+

[
p̂D

μ
+ ir

] [
e−μx/D − (1− αx)

]
αx

(4.220)

Thus,

E[BO21] + E[BO22] = −r(1− αx)

αx

+
p̂D

[
e−μx/D − (1− αx)

]
μαx

+ ir (4.221)

Substituting (4.221) in (4.218) gives the result as follows:

E[BO2] = (1− βx)αx

{[
−r(1− αx)

αx

+
p̂D

[
e−μx/D − (1− αx)

]
μαx

] ∞∑
i=0

(1− αx)
i

+ r
∞∑
i=0

i(1− αx)
i

}

= (1− βx)

[
−r(1− αx)

αx

+
p̂D

[
e−μx/D − (1− αx)

]
μαx

]
+

r(1− βx)(1− αx)

αx

=
p̂D(1− βx)

μ

[
1− (1− e−μx/D )

αx

]
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Proof of Expected Number of Lost Sales for Cases 1 & 2 :

From the scenarios depicted in Figures 4.1 and 4.2, the number of lost sales within a

cycle is as:

LS =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ir(1−p̂)
p̂

w.p. (1− βx)αx(1− αx)
i , i = 0, 1, 2, ...

and 0 < τ2:x ≤ x
D(

τ2:x − x
D

)
(1− p̂)D + ir(1−p̂)

p̂
w.p. (1− βx)αx(1− αx)

i , i = 0, 1, 2, ...

and x
D
< τ2:x ≤ (p̂x+r)

p̂D

(4.222)

In (4.222) let,

LS1 =
ir(1− p̂)

p̂

LS2 =
(
τ2:x − x

D

)
(1− p̂)D +

ir(1− p̂)

p̂

Similarly, we can write the expected number of lost sales as follows:

E[LS] = (1− βx)αx

∞∑
i=0

[E[LS1] + E[LS2]] (1− αx)
i (4.223)

where,

E[LS1] =

∫ x/D

0

E [LS1|τ2:x = t] gτ2:x(t)dt

=
ir(1− p̂)(1− e−μx/D )

p̂αx

(4.224)
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and

E[LS2] =

∫ (p̂x+r)/p̂D

x/D

E[LS2|τ2:x = t]gτ2:x(t)dt

= (1− p̂)D

∫ (p̂x+r)/p̂D

x/D

tgτ2:x(t)dt+ (1− p̂)

[
ir

p̂
− x

] ∫ (p̂x+r)/p̂D

x/D

gτ2:x(t)dt

=
1

αx

{
(1− p̂)D

[
−(p̂x+ r)(1− αx)

p̂D
+

xe−μx/D

D
+

[
e−μx/D − (1− αx)

]
μ

]

+ (1− p̂)

[
ir

p̂
− x

] [
e−μx/D − (1− αx)

]}

= −r(1− p̂)(1− αx)

p̂αx

+

[
D

μ
+

ir

p̂

]
(1− p̂)

[
e−μx/D − (1− αx)

]
p̂αx

(4.225)

Therefore,

E[LS1] + E[LS2] = −r(1− p̂)(1− αx)

p̂αx

+
(1− p̂)D

[
e−μx/D − (1− αx)

]
μαx

+
ir(1− p̂)

p̂
(4.226)

Substituting (4.226) in (4.223) yields:

E[LS] = (1− βx)αx

{[
−r(1− p̂)(1− αx)

p̂αx

+
(1− p̂)D

[
e−μx/D − (1− αx)

]
μαx

] ∞∑
i=0

(1− αx)
i

+
r(1− p̂)

p̂

∞∑
i=0

i(1− αx)
i

}

= (1− βx)

[
−r(1− p̂)(1− αx)

p̂αx

+
(1− p̂)D

[
e−μx/D − (1− αx)

]
μαx

]

+
r(1− p̂)(1− βx)(1− αx)

p̂αx

=
(1− p̂)D(1− βx)

μ

[
1− (1− e−μx/D )

αx

]
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Proof of Expected Cycle Time for Case 3:

Due to the realizations depicted in Figure 4.3 the cycle time for Case 3 can be given

as follows,

T =

⎧⎪⎨⎪⎩
Q
D
+ τ1:3 w.p. β3

Q+s
D

+ R
p̂D

+ i(r−R)
p̂D

+ τ2:3 w.p. (1− β3)α3(1− α3)
i, i = 0, 1, 2, ...

(4.227)

taking the expectation of (4.227) yields

E[T ] = β3

[
Q

D
+ E[τ1:3]

]
+ (1− β3)α3

∞∑
i=0

[
(Q+ s)

D
+

R

p̂D
+ i

(r −R)

p̂D
+ E[τ2:3]

]
(1− α3)

i

= β3

[
Q

D
+

1

μ
− (p̂s+R)(1− β3)

p̂Dβ3

]

+ (1− β3)α3

[
(Q+ s)

D
+

R

p̂D
+

1

μ
− (r −R)(1− α3)

p̂Dα3

] ∞∑
i=0

(1− α3)
i

+
(1− β3)α3(r −R)

p̂D

∞∑
i=0

i(1− α3)
i

=
β3Q

D
+

β3

μ
− (p̂s+R)(1− β3)

p̂D

+ (1− β3)

[
(Q+ s)

D
+

R

p̂D
+

1

μ
− (r −R)(1− α3)

p̂Dα3

]

+
(r −R)(1− β3)(1− α3)

p̂Dα3

=
Q

D
+

1

μ
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Proof of Expected Replenishment Cost for Case 3:

Expected replenishment cost of Case 3 can be derived using the following equation,

RC =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

AD + cD(Q+Dτ1:3) w.p. β3 and 0 < τ1:3 ≤ s
D

AD + cD [Q+ s(1− p̂) + p̂Dτ1:3] w.p. β3 and s
D
< τ1:3 ≤ (p̂s+R)

p̂D

AD + cD(Q+ s+R + p̂Dτ2:3) w.p. (1− β3)α3(1− α3)
i, i = 0, 1, 2, ...

+i [AL + cL(r −R)] and 0 < τ2:3 ≤ (r−R)
p̂D

(4.228)

In (4.228) let,

RC1 = AD + cD(Q+Dτ1:3)

RC2 = AD + cD [Q+ s(1− p̂) + p̂Dτ1:3]

RC3 = AD + cD(Q+ s+R + p̂Dτ2:3) + i [AL + cL(r −R)]

Thus, expected replenishment cost can be stated as:

E[RC] = β3 [E[RC1] + E[RC2]] + (1− β3)α3

∞∑
i=0

E[RC3](1− α3)
i (4.229)

Expected RC1 and RC2 can be found by conditioning on τ1:3 as follows:

E[RC1] =

∫ s/D

0

E[RC1|τ1:3 = t]gτ1:3(t)dt

= (AD + cDQ)

∫ s/D

0

gτ1:3(t)dt+ cDD

∫ s/D

0

tgτ1:3(t)dt

=
1

β3

{[
AD + cD

(
Q+

D

μ

)]
(1− e−μs/D )− cDse

−μs/D

}
(4.230)



4.9 Appendix 165

Similarly,

E[RC2] =

∫ (p̂s+R)/p̂D

s/D

E[RC2|τ1:3 = t]gτ1:3(t)dt

= [AD + cD [Q+ (1− p̂)s]]

∫ (p̂s+R)/p̂D

s/D

gτ1:3(t)dt+ cDp̂D

∫ (p̂s+R)/p̂D

s/D

tgτ1:3(t)dt

=
1

β3

{[
AD + cD

[
Q+ (1− p̂)s+

p̂D

μ

]] (
e−μs/D − e−μ(p̂s+R)/p̂D

)

+ cD
[−(p̂s+R)e−μ(p̂s+R)/p̂D + p̂se−μs/D

]}

=
1

β3

{[
AD + cD

[
Q+ s+

p̂D

μ

]] [
e−μs/D − (1− β3)

]− cDR(1− β3)

}
(4.231)

Thus,

E[RC1] + E[RC2] = AD + cD(Q+ s) +
cD
β3

[
D(1− e−μs/D )

μ
− s−R(1− β3)

+
p̂D

[
e−μs/D − (1− β3)

]
μ

]
(4.232)

Employing result (4.13), we can write the expected value of RC3 as follows:

E[RC3] = AD + cD [Q+ s+R + p̂DE[τ2:3]] + i [AL + cL(r −R)]

= AD + cD

[
Q+ s+R +

p̂D

μ
− (r −R)(1− α3)

α3

]

+ i [AL + cL(r −R)] (4.233)
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Therefore, substituting (4.232) and (4.233) in (4.229) and making necessary simplifications

yields the expected replenishment cost as follows:

E[RC] = β3

{
AD + cD(Q+ s) +

cD
β3

[
D(1− e−μs/D )

μ
− s−R(1− β3)

+
p̂D

[
e−μs/D − (1− β3)

]
μ

]}
+ (1− β3)

{
AD + cD

[
Q+ s+R +

p̂D

μ

+ −(r −R)(1− α3)

α3

+ [AL + cL(r −R)]E[NL]

}

= AD + cDDE[T ] + [AL + (cL − cD)(r −R)]E[NL]

− cDDe−μs/D (1− p̂)

μ

Proof of Expected On-Hand for Case 3:

For Case 3, the total inventory carried within a cycle is given with the following

equation,

OH =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q(Q+2s)
2D

+ sτ1:3 − Dτ1:32

2
w.p. β3 and 0 < τ1:3 ≤ s

D

(s+Q)2

2D
w.p. β3 and s

D
< τ1:3 ≤ (p̂s+R)

p̂D

(s+Q)2

2D
w.p. (1− β3)α3(1− α3)

i, i = 0, 1, 2, ...

and 0 < τ2:3 ≤ (r−R)
p̂D

(4.234)

In (4.234) let,

OH1 =
Q(Q+ 2s)

2D
+ sτ1:3 − Dτ1:3

2

2

OH2 =
(s+Q)2

2D

Hence, the expected on-hand inventory carried within a cycle can be stated as:

E[OH] = β3 [E[OH1] + E[OH2]] + (1− β3)α3OH2

∞∑
i=0

(1− α3)
i (4.235)



4.9 Appendix 167

where,

E[OH1] =

∫ s/D

0

E[RC1|τ1:3 = t]gτ1:3(t)dt

=
Q(Q+ 2s)

2D

∫ s/D

0

gτ1:3(t) + s

∫ s/D

0

tgτ1:3(t)−
D

2

∫ s/D

0

t2gτ1:3(t)

=
1

β3

{
Q(Q+ 2s)(1− e−μs/D )

2D
+ s

[
(1− e−μs/D )

μ
− s

D

]

− D

2

[
−
( s

D

)2

e−μs/D + 2

[
−se−μs/D

μD
+

(1− e−μs/D )

μ2

]]}

=
1

β3

{[
Q(Q+ 2s)

2D
− D

μ2

]
(1− e−μs/D )− s2e−μs/D

2D
+

s

μ

}
(4.236)

and

E[OH2] =

∫ (p̂s+R)/p̂D

s/D

E[RC2|τ1:3 = t]gτ1:3(t)dt

=
(s+Q)2

2D

∫ (p̂s+R)/p̂D

s/D

gτ1:3(t)

=
(s+Q)2

[
e−μs/D − e−μ(p̂s+R)/p̂D

]
2Dβ3

=
(s+Q)2

[
(1− e−μs/D )− β3

]
2Dβ3

(4.237)

Therefore, from (4.236) and (4.237) we have:

E[OH1] + E[OH2] =
1

β3

{
s

μ
− D(1− e−μs/D )

μ2
− s2

2D
+

β3(s+Q)2

2D

}
(4.238)

Employing (4.238) in (4.235) and making necessary simplifications yields the expected

on-hand inventory carried in a cycle as follows:

E[OH] =
s

μ
− D(1− e−μs/D )

μ2
− s2

2D
+

β3(s+Q)2

2D
+

(1− β3)(s+Q)2

2D

=
Q(Q+ 2s)

2D
+

s

μ
− D(1− e−μs/D )

μ2
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Proof of Expected Backorder per Time for Case 3:

According to the possible realizations depicted by Figure 4.3, the time weighted back-

orders within a cycle can be given as follows:

BO1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
τ1:3 − s

D

)2 p̂D
2

w.p. β3 and s
D
< τ1:3 ≤ (p̂s+R)

p̂D

R2

2p̂D
+ i(r2−R2)

2p̂D
+Rτ2:3 +

p̂Dτ2:32

2
w.p. (1− β3)α3(1− α3)

i, i = 0, 1, 2, ...

and 0 < τ2:3 ≤ (r−R)
p̂D

(4.239)

In (4.239) let,

BO11 =
(
τ1:3 − s

D

)2 p̂D

2

BO12 =
R2

2p̂D
+

i(r2 −R2)

2p̂D
+Rτ2:3 +

p̂Dτ2:3
2

2

Thus, we can state the expected backorder per time as follows:

E[BO1] = β3E[BO11] + (1− β3)α3

∞∑
i=0

E[BO12](1− α3)
i (4.240)

where,

E[BO11] =

∫ (p̂s+R)/p̂D

s/D

E[BO11|τ1:3 = t]gτ1:3(t)dt

=
p̂D

2

{∫ (p̂s+R)/p̂D

s/D

t2gτ1:3(t)dt−
2s

D

∫ (p̂s+R)/p̂D

s/D

tgτ1:3(t)dt

+
s2

D2

∫ (p̂s+R)/p̂D

s/D

gτ1:3(t)dt

}

=
p̂D

2β3

{[
s

D
+

1

μ

]2
e−μs/D −

[
(p̂s+R)

p̂D
+

1

μ

]2
(1− β3)

+

[
e−μs/D − (1− β3)

]
μ2

− 2s

D

{[
s

D
+

1

μ

]
e−μs/D

−
[
(p̂s+R)

p̂D
+

1

μ

]
(1− β3)

}
+

s2
[
e−μs/D − (1− β3)

]
D2

}

=
1

β3

{
p̂De−μs/D

μ2
−
[
p̂D

μ2
+

R2

2p̂D
+

R

μ

]
(1− β3)

}
(4.241)
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and the expected value of BO12 can be found by employing results (4.13) and (4.14) as

follows:

E[BO12] =
R2

2p̂D
+

i(r2 −R2)

2p̂D
+RE[τ2:3] +

p̂DE[τ2:3
2]

2

=
R2

2p̂D
+

i(r2 −R2)

2p̂D
+

R

μ
− R(r −R)(1− α3)

p̂Dα3

+
p̂D

μ2

− (r −R)(1− α3)

2α3

[
2

μ
+

(r −R)

p̂D

]

=
R2

2p̂D
+

i(r2 −R2)

2p̂D
+

R

μ
+

p̂D

μ2

− (1− α3)

α3

[
(r2 −R2)

2p̂D
+

(r −R)

μ

]
(4.242)

Substituting the results (4.241) and (4.242) in (4.240), we obtain the expected backorder

per time as follows:

E[BO1] =
p̂De−μs/D

μ2
−
[
p̂D

μ2
+

R2

2p̂D
+

R

μ

]
(1− β3)

+ (1− β3)α3

{[
R2

2p̂D
+

R

μ
+

p̂D

μ2

− (1− α3)

α3

[
(r2 −R2)

2p̂D
+

(r −R)

μ

]] ∞∑
i=0

(1− α3)
i

+
(r2 −R2)

2p̂D

∞∑
i=0

i(1− α3)
i

}

=
p̂De−μs/D

μ2
− (r −R)E[NL]

μ
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Proof of Expected Backorder per Unit for Case 3:

Similarly, the number of units backordered within a cycle can be found as:

BO2 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
τ1:3 − s

D

)
p̂D w.p. β3 and s

D
< τ1:3 ≤ (p̂s+R)

p̂D

R + i(r −R) + p̂Dτ2:3 w.p. (1− β3)α3(1− α3)
i, i = 0, 1, 2, ...

and 0 < τ2:3 ≤ (r−R)
p̂D

(4.243)

In (4.243) let,

BO21 =
(
τ1:3 − s

D

)
p̂D

BO22 = R + i(r −R) + p̂Dτ2:3

Similarly, we can write the expected backorder per unit as follows:

E[BO2] = β3E[BO21] + (1− β3)α3

∞∑
i=0

E[BO22](1− α3)
i (4.244)

where,

E[BO21] =

∫ (p̂s+R)/p̂D

s/D

E[BO21|τ1:3 = t]gτ1:3(t)dt

= p̂D

∫ (p̂s+R)/p̂D

s/D

tgτ1:3(t)dt− p̂s

∫ (p̂s+R)/p̂D

s/D

gτ1:3(t)dt

=
1

β3

{
p̂De−μs/D

μ
−
[
p̂D

μ
+R

]
(1− β3)

}
(4.245)

and

E[BO22] = R + i(r −R) + p̂DE[τ2:3]

= R + i(r −R) +
p̂D

μ
− (r −R)(1− α3)

α3

(4.246)
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Therefore, substituting (4.245) and (4.246) in (4.244) yields the expected backorder per

unit as follows:

E[BO2] =
p̂De−μs/D

μ
−
[
p̂D

μ
+R

]
(1− β3)

+ (1− β3)α3

{[
R +

p̂D

μ
− (r −R)(1− α3)

α3

] ∞∑
i=0

(1− α3)
i

+ (r −R)
∞∑
i=0

i(1− α3)
i

}

=
p̂De−μs/D

μ

Proof of Expected Number of Lost Sales for Case 3:

For Case 3 the number of lost sales within a cycle can be given by the following

equation:

LS =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
τ1:3 − s

D

)
(1− p̂)D w.p. β3 and s

D
< τ1:3 ≤ (p̂s+R)

p̂D

R(1−p̂)
p̂

+ i(r−R)(1−p̂)
p̂

+ (1− p̂)Dτ2:3 w.p. (1− β3)α3(1− α3)
i, i = 0, 1, 2, ...

and 0 < τ2:3 ≤ (r−R)
p̂D

(4.247)

In (4.247) let,

LS1 =
(
τ1:3 − s

D

)
(1− p̂)D

LS2 =
R(1− p̂)

p̂
+

i(r −R)(1− p̂)

p̂
+ (1− p̂)Dτ2:3 (4.248)

Thus, expected number of lost sales within a cycle can be given as

E[LS] = β3E[LS1] + (1− β3)α3

∞∑
i=0

E[LS2](1− α3)
i (4.249)
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where,

E[LS1] =

∫ (p̂s+R)/p̂D

s/D

E[LS1|τ1:3 = t]gτ1:3(t)dt

= (1− p̂)D

∫ (p̂s+R)/p̂D

s/D

tgτ1:3(t)dt− (1− p̂)s

∫ (p̂s+R)/p̂D

s/D

gτ1:3(t)dt

=
(1− p̂)

β3

{
De−μs/D

μ
−
[
D

μ
+

R

p̂

]
(1− β3)

}
(4.250)

and

E[LS2] =
R(1− p̂)

p̂
+

i(r −R)(1− p̂)

p̂
+ (1− p̂)DE[τ2:3]

=
(1− p̂)

p̂

{
R + i(r −R) +

p̂D

μ
− (r −R)(1− α3)

α3

}
(4.251)

Thus, plugging the results (4.250) and (4.251) in (4.249) gives the expected number of

lost sales within a cycle as follows:

E[LS] = (1− p̂)

{
De−μs/D

μ
−
[
D

μ
+

R

p̂

]
(1− β3)

}

+
(1− p̂)(1− β3)α3

p̂

{[
R +

p̂D

μ
− (r −R)(1− α3)

α3

] ∞∑
i=0

(1− α3)
i

+ (r −R)
∞∑
i=0

i(1− α3)
i

}

=
(1− p̂)De−μs/D

μ



Chapter 5

Summary & Conclusion

In this study, we focus on some of the dynamic aspects of single item, single location

inventory systems. In three different research projects, we develop models to investigate

the impacts of nonstationarity in demand rate and unfixed purchasing prices.

In Chapter 2, we consider a continuous review inventory system of a critical service part

in which the demand rate drops to a lower level at a known future time. We assume a one-

for-one replenishment policy with full backordering and a fixed lead time. Adaptation to

the lower demand rate is achieved by reducing the base stock level before the obsolescence

occurs and letting the demand process take away the difference. Under the assumption of

fixed base stock levels, we derive approximate expressions for the operating characteristics

and propose an approximate solution method for the optimal time to shift to the new

control policy by minimizing the expected total cost incurred during the transient period.

There are two main contributions of this chapter:

1. We analyze the obsolescence problem specifically for a slow moving, expensive item

in a continuous review setting with nonstationary stochastic demand. Our findings

are consistent with earlier works that the obsolescence has significant effects on

operating costs and should be taken into account explicitly. We extend these findings

by showing that for a continuous review inventory system advance policy change

results in significant cost savings. Our numerical experiments revealed that if the

control policy is not changed in advance then the transient period costs are on

average doubled. Furthermore, we found that the timing of the control policy change
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primarily determines the tradeoff between backordering penalties and obsolescence

costs.

2. We provide practical heuristic formulas to tradeoff the risk of obsolescence and

backordering specifically for expensive, slow moving items with high downtime costs.

For this class of items, it is well known that continuous review policies are preferred

over periodic review ones since they require lower safety stocks for the same level of

availability. Thus, our formulas can be used as a managerial guide in studying the

impacts of advance policy change on operational costs and obsolete inventories.

In Chapter 3, we conduct an exact analysis of the system considered in Chapter 2

under a more general policy. We propose a three parameter transition control policy with

advance policy change option. As such, the policy parameters consist of pre- and post-

obsolescence base stock levels and the time to reduce base stock level from high to low.

The objective is to find the optimal base stock levels and the optimal policy change time

minimizing the expected total discounted cost over an infinite horizon.

We show that when base stock levels are identical, the optimal base stock level can be

calculated from a critical ratio inequality. For different base stock levels, we compute the

total discounted cost function by partly relying on the Fast Fourier Transform method

and suggest a numerical optimization procedure to find the optimal values of the policy

parameters.

The main contributions of this chapter are the following:

1. We find that the policy change option leads to pronounced cost savings especially

when obsolescence requires a relatively large adjustment in base stock level. A large

adjustment in base stock level indicates a bigger tradeoff between obsolescence and

backordering costs. Thus, it becomes more difficult to balance these costs with a

fixed base stock level. When there is the option to change the base stock level, the

inventory system can operate under a higher base stock level to avoid backordering

when demand is healthy and then reduce it to a lower level to minimize obsolete

stocks.

2. We measure the cost of ignoring obsolescence and develop insights into the impact

of the time and the size of obsolescence on total costs. Our numerical experiments
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show that ignoring obsolescence in control policy increases the costs significantly.

This is because the inventory system carries more stock than necessary due to the

higher base stock level calculated by assuming stationary demand. The increase is

largest when obsolescence is expected at a near future and the drop in demand rate

is sharp since post-obsolescence holding costs increase steeply when the discounting

horizon is short and the post-obsolescence attrition rate is low.

3. We show that when obsolescence can be foreseen, an early adaptation of the base

stock level can lead to important savings. When obsolescence requires a reduction

in the base stock level, the proposed transition control policy can decrease the post-

obsolescence inventory build-up while balancing availability by early adjustment of

the base stock level. Savings are most pronounced when a large drop occurs and

the demand rate is relatively high since for those instances the potential inventory

build-up is highest.

4. Our results indicate that for slow movers, inventory costs can be cut drastically by

increasing the efforts to foresee the time and the size of obsolescence.

In Chapter 4, we investigate the impact of price discounts given by a supplier on

replenishment and stocking decisions of a firm. We consider a single item, single location,

continuous review inventory system where a supplier offers price discounts at random

points in time. We assume that deals arrive according to the Poisson process and the

deal price is known and fixed. Moreover, we assume that the demand is deterministic and

lead times are negligible. We propose a four parameter continuous review control policy

and derive exact expressions of the operating characteristics. We provide equations to

calculate the optimal policy parameters minimizing the total cost rate function.

The contributions of this chapter can be summarized as follows:

1. We model partial backorders in a system with random deal offerings and constant

demand. As such, we generalize the model proposed by Moinzadeh (1997) and

extend the available literature.

2. We show that allowing backorders may result in significant savings especially for

high discount rates. As supplier offers deeper price discounts, purchasing from the
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list price becomes relatively more expensive compared to stockout costs. Therefore,

allowing partial backorders while waiting for a good deal becomes more advanta-

geous than replenishing from the list price. Thus, a policy with the option of planned

backorders yields lower costs.

3. In case a supplier offers deals more frequently, savings by allowing partial backorders

diminishes. This is because with more frequent deal offers, the number of list re-

plenishments and stockouts both decrease. Thus, allowing backorders becomes less

beneficial and the (r, R, s,Q) policy converges to the (R, s,Q) policy. Moreover, the

decrease in savings is larger for deeper discounts due to the bigger tradeoff between

stockout costs and the cost of replenishing from the higher price.

Although the models discussed in Chapters 2 and 3 are concerned with a single loca-

tion inventory system, it is natural to ask their extension and applicability in a network

context. The immediate application of the proposed policies in a network context would

be to consider all stocking locations in a certain geographical area as a single, aggregated

inventory system supplied from a central warehouse. If the assumptions of the original

model about the ordering policy and the demand process remain valid for the aggregated

inventory system then one can estimate the average time and the average size of a drop

in the aggregated demand rate and use the proposed policies.

Indeed, the results found by aggregation will be approximate due to decoupling of the

stocking decisions in the central warehouse from the stocking locations. However, such

application might be useful to obtain insights about how the total stocking level of a

certain part in a particular geographical region should be adjusted if a drop in demand

rate is likely. Currently, we are collaborating with a mainframe computer manufacturer

for a similar implementation of the model.

The extension of the three parameter policy proposed in Chapter 3 to the multi-echelon

case without aggregation and decoupling would be an interesting and relevant research

direction. However, we expect that the exact computation of the optimal policies for this

problem would be involved. Yet, METRIC type approximations can be an option.

The models studied in Chapters 2 and 3 require the transient analysis of a stochastic

system which increases the complexity of the analysis drastically. Thus, we do not see
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direct and easy extensions towards a more general changes in demand rate or a general

policy including batch ordering. Nevertheless, these extensions might be possible with a

different approach such as discretizing the time domain and using dynamic programming.

On the other hand, a similar policy to the one proposed in Chapter 3 can be constructed

to build-up stocks to adapt to the increase in demand rate. Such policy might be useful,

in situations where the replenishment lead times are volatile or there is a limit to the

number of items ordered from the supplier at one order. We expect that the analysis

of the inventory build-up policy would be relatively easier compared to the inventory

run-down policy for the increase in the inventory position process is independent of the

demand arrival process. As such, the build-up policy might be extended to incorporate

multiple upward jumps in demand rate.

In Chapters 2 and 3, our focus was on managing inventories in face of the changes in

demand rate while in Chapter 4, our focus was on managing inventories when there is

price uncertainty on the supply side. It would be interesting to combine these two aspects

in a model. For example, in Chapters 2 and 3, we assumed that the purchasing price of

a part is fixed. Since most of the critical service parts are repairable, this is a reasonable

assumption as long as the repairing costs change relatively slowly by time. Moreover,

the equipment usually have long life cycles so that the parts are available via suppliers

or secondary markets for long time periods. However, when a producer stops producing

a certain part then this might create a scarcity in the market and lead to an increase in

the purchasing price of the part. Simultaneously, the demand for the part might go down

as a result of generation upgrades of the aging equipment. In such a scenario, the base

stock level would be affected not only by the drop in demand rate but also the increase

in price. Hence, it would be interesting to investigate the behavior of the optimal base

stock level and the underlying tradeoffs.





Nederlandse Samenvatting

(Summary in Dutch)

In deze studie ontwikkelen en analyzeren we modellen voor een aantal dynamische as-

pecten van voorraadsystemen. We concentreren ons op twee hoofdthema’s die apart

geanalyseerd worden: niet-stationariteit van de vraag en wisselende vraagprijzen.

In het eerste deel van de studie bekijken we een voorraadsysteem met een niet-

stationaire vraag. We focusseren op kritieke service onderdelen onderhevig aan weg-

vallende vraag. Voorraadbeheer van zulke onderdelen is moeilijk vanwege de lage om-

loopsnelheid en de mogelijke hoge kosten bij ontbreken ervan alsook wanneer ze overtollig

worden.

In de praktijk is er een behoefte aan strategien voor serviceonderdelen die deze aspecten

meenemen en toch makkelijk in te voeren zijn. We stellen een nieuwebesturingsstrategie

voor die vraaguitval beschouwt en bepalen de bijbehorende kosten. Het blijkt dat het

veronachtzamen van vraaguitval in de voorraadstrategie de kosten behoorlijk doet oplopen

en dat een vroege aanpassing van de voorraden de kosten aanzienlijk kan reduceren.

In het tweede deel van de studie bekijken we een voorraadsysteem waar de leverancier

prijskortingen aanbiedt op willekeurige tijdstippen. We breiden de wetenschappelijke

kennis uit door een meer algemene naleveringstructuur aan te nemen. Dit houdt in dat

wanneer er geen voorraad meer is, een klant met een bepaalde kans nageleverd wordt en

dat in het andere geval de vraag verloren gaat. We karakteriseren uitdrukkingen voor de

parameters van de optimale strategie door een analytische optimalisatie en laten zien dat

het toelaten van nalevering in een wisselende prijs omgeving kan leiden tot aanzienlijke

kostenbesparingen.
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l)ADVANCES IN INVENTORY MANAGEMENT
DYNAMIC MODELS

Due to rapid developments in technology and information systems, the speed and the
nature of the flow of goods in supply chains have changed drastically. Today, to meet the
increased customer expectations, companies need to offer larger assortments, shorter
delivery times and better quality for lower prices. As more and newer products are
developed and introduced to the markets, the average product life cycles got shorter.
Obsolescence risk as well as demand uncertainty has increased significantly. The higher
dynamism of markets made the costs more volatile and difficult to predict. As a result of
these changes in the surrounding environment, inventory systems became more dynamic.

In this study, we develop and analyze models incorporating two dynamic aspects
affecting the inventory systems: nonstationarity in demand and unfixed purchasing prices. 

In the first part, we consider an inventory system with a nonstationary demand rate. In
particular, we focus on critical service parts. Inventory management of such items is
notoriously difficult due to their slow moving character, high downtime costs and high
obsolescence risk. We propose an obsolescence based control policy and investigate its
impacts on costs. We find that ignoring obsolescence increases costs significantly and an
early adaptation of base stock levels can lead to important savings. 

In the second part, we consider an inventory system where the supplier offers price
discounts at random points in time. We extend the literature by assuming a more general
backordering structure and demonstrate that allowing backorders in face of random deal
offerings can result in considerable savings.
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