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Chapter 1

Introduction

1.1 Motivation

Accurate forecasting of such future events as the next World Cup triumph of Italy or

a stock market crash in the USA constitute a fascinating challenge for theoretical and

applied econometric research. For a long time it was thought that the best approach

to forecast some future event is to estimate a parametric model on particular data and

then use the estimated model for forecasting. Different parametric models give different

forecasts and when wide set of forecasts is available, the “art” of the economic consultant

is usually to accept the best one and discard the other ones. But, discarded forecasts may

have some independent valuable information and including them in the forecasting process

may provide more accurate results. Bates and Granger (1969) introduced in economics

the idea of combinations of forecasts of different models as a simple and effective way

to obtain improvements in forecast accuracy compared to those of individual models.

The success of forecast combinations is related to the evidence that a decision maker in

almost all cases cannot identify ex ante the exact true process, but different models play

a complementary role in approximating it. Moreover, data may be subject to structural

instability, in the sense that the relevance of predictors varies over time, and a simple

strategy to cope with future unknown instability is to average models that forecast in

a different way. In simple terms, believing in a single model may be dangerous, and

addressing model uncertainty by averaging different models in making forecasts may be

very beneficial.

The literature on forecast combinations is extensive, see for example Clemen (1989)

and Timmermann (2006). Despite this, research has often focused on macroeconomic

applications and little attention is given to combine forecasts of financial time series.

In macroeconomic applications equal weight schemes or other simple averaging schemes

that do not require estimates of model weights provide accurate results. But financial

11



12 Motivation

Figure 1.1: S&P500 Excess returns
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Note: The figure presents the excess returns on the S&P500 over the sample 1966:1-2005:12.

time series have particular and different stylized facts. For example, stock index returns

are characterized by such features as low predictability and structural instability, see

e.g. Figure 1.1, making averaging methods that do not model these features inadequate.

Therefore, averaging schemes that model the time variation in the underlying data gen-

erating process and assign almost zero probability to a subset of the individual models

that perform poorly, may improve the forecasting performance.

Model averaging approaches can be classified in two broad categories: frequentist

and Bayesian model averaging. The two classes of schemes are conceptually different.

Frequentist combinations combine individual forecasts by minimizing some loss function,

Bayesian model averaging average individual models by assigning posterior probabilities

to each specification and then compute combined forecasts. It is difficult to compare and

choose between Bayesian and frequentist averaging techniques. And there is not a given

rule indicating that one method should be preferred to the other one. Bayesian model

averaging incorporates two sources of uncertainty, parameter uncertainty as well as model

uncertainty, coping more extensively with the uncertainty of future events. Frequentist

methods are often very easy to be implemented and they do require only to estimate

weights and not to derive a complete density of interest.

In this thesis we focus on forecasting financial time series using model averaging

schemes as a way to produce optimal forecasts. We derive and discuss in simulation

exercises and empirical applications model averaging techniques that can reproduce styl-

ized facts of financial time series, such as low predictability and time-varying patterns. In

particular, we start by revaluating the use of time varying weight schemes. We show that

when individual forecasts contain different information these schemes provide very accu-

rate results as they add individual forecasts. Moreover, they scheme capture in-sample

structural instability, in the sense that the relevance of predictors varies over time, pro-

viding superior forecasts. In the following chapter, we proposes a new Bayesian model

averaging method that not only models in-sample structural instability, but also forecast
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Figure 1.2: US 3-month zero-coupon yield
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Note: The figure presents the end-of-month unsmoothed 3-month coupond yields constructed using the
Fama and Bliss (1987) bootstrap method. Sample period is Janaury 1970 - December 2003.

out-of sample instability. Our Bayesian model averaging method has not a limitation

on the number of competitive models, meaning that it can combine a huge set of indi-

vidual models. We show that the averaging strategies outperform individual models in

forecasting S&P 500 excess returns. Then, we move to the analysis of model averaging

when individual forecasts are strongly homogenous, and competitive forecasting models

are possible non-nested. As typical example we choose the term structure of US interest

rates. Figure 1.2 plots the end-of-month unsmoothed 3-month coupond yields. Again we

show that individual models play a complementary role in approximating the data gener-

ating process and mitigating model uncertainty by model averaging leads to substantial

gains in forecasting performance.

We emphasize that model averaging is not a “magic” methodology which solves a

priori problems of poorly forecasting. Averaging techniques have an essential requirement:

individual models have to fit data. Therefore, we advice decision makers that the first

step to compute optimal forecasts is to implement sound individual models. As empirical

application, we show the role of weather forecasts in predicting electricity prices and

we discuss whether those variables can be used to improve standard electricity price

forecasting models.

1.2 Outline

In this section we provide a general outline of the thesis and its contributions to previ-

ous research. A detailed outline with references to related literature can be found in the

introduction of each chapter. The thesis is partitioned in six chapters. In Chapter 2 we

focus on the use of time varying model weight combinations. This chapter is based on

Ravazzolo et al. (2007b). We extend the research on forecast combinations by investigat-

ing the relative merits of different combining procedures in a fairly simple context. More
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specifically, we evaluate the performance of eight different forecast combination methods

in simulation examples where the data generating process is subject to low predictability,

high noise and possible non-stationary. We suppose that a set of different models play

complementary roles in generating data and the true process cannot be identified a pri-

ori. We compare two simple methodologies, which do not require parameter estimates, to

two OLS weight regressions, and to a more advanced time varying weight scheme. And

we also consider three Bayesian model averaging schemes in the analysis. Precisely, we

include two Bayesian schemes based on marginal and predictive likelihoods respectively,

and third one, which is a novel Bayesian scheme that allows for weight instability. We

use an adequate long out-of-sample period to evaluate strategies and in particular their

reactions to shifts in the data generating process. We show that when the heterogeneity

among forecasts of individual models is strong due to the fact that individual models con-

tain different information, simple and “standard” Bayesian averaging strategies perform

poorly. On contrary, unconstrained OLS and (Bayesian) time varying weights provide

more accurate results as they add individual forecasts. Furthermore, when the structural

instability is high, the time varying weight schemes estimate the instability giving the

most accurate forecasts. As an illustration, we consider forecasting the returns on the

S&P 500 index. We apply two different approaches in forecasting: a model based on a set

of financial and macroeconomic variables that should have explanatory power, and the

“Halloween indicator” based on the popular market saying “Sell in May and go away”.

Then, we compare individual forecasts to forecast combinations. We find that the time

varying weight schemes give the best forecasts in term of symmetric loss functions. As an

investor is more interested to the economic value of stock return forecasting models than

their precisions, we test our findings in an active short-term investment exercise, with

an investment horizon of one month. The time varying weight schemes also provide the

highest economic gains.

In Chapter 3, we extend the analysis in the previous chapter to a new Bayesian

averaging scheme that models structural instability carefully. This chapter is based on

Ravazzolo et al. (2007a). We develop a return forecasting methodology that allows for

instability in the relationship between stock returns and predictor variables, for model

uncertainty, and for parameter estimation uncertainty simultaneously. On the one hand,

the predictive regression specification that we put forward allows for occasional structural

breaks of random magnitude in the regression parameters. On the other hand, we allow

for uncertainty about the inclusion of the forecasting variables in the model and about

the parameter values by employing Bayesian model averaging. We consider an empirical

application to predicting monthly US excess stock returns using a set of 11 financial

and macro-economic predictor variables. We find that over the period 1966-2005, several
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structural breaks occurred in the relations between the excess stock returns and predictor

variables such as the dividend yield and interest rates. These changes appear to be

caused by important events such as the oil crisis, changes in monetary policy, the October

1987 stock market crash, and the internet bubble at the end of the 1990s. Although

incorporating the different sources of uncertainty does not lead to large improvements in

the statistical accuracy of excess return forecasts, their economic value in asset allocation

decisions is considerable. We find that a typical investor would be willing to pay up to

several hundreds of basis points annually to switch from a passive buy-and-hold strategy

to an active strategy based on a return forecasting model that allows for model and

parameter uncertainty as well as structural breaks in the regression parameters. The

active strategy that incorporates all three sources of uncertainty performs considerably

better than strategies based on more restricted return forecasting models.

In Chapter 4 we focus on forecasting the term structure of U.S. interest rates. This

chapter is based on de Pooter et al. (2007). In spite of the powerful advances in term

structure modelling and forecasting we feel that a number of issues regarding estimation

and forecasting have so far been left nearly unaddressed in the interest rate literature. We

try to fill in some of these gaps by investigating parameter uncertainty and, in particular,

model uncertainty. Especially for VAR and affine models, which are highly parameterized

if one attempts to model the whole term structure, parameter uncertainty is likely to be

substantial and needs to be accounted for. We estimate each model and generate forecasts

by applying frequentist maximum likelihood techniques as well as Bayesian sampling

techniques to gauge the effects of explicitly taking into account parameter uncertainty.

Regarding model uncertainty, when looking at the historical time series of (U.S.) interest

rates we can easily identify subperiods across which yield dynamics are quite different.

Likely reasons are, for example, the reigns of different FED Chairmen, most notably that

of Paul Volcker, or the strong decline in interest rate levels accompanied by a pronounced

widening of spreads in the early 90’s and after the burst of the Internet bubble. It will be

unlikely that any individual model is capable of consistently producing accurate forecasts

in each of these subperiods. The forecasting performance of the models we consider in this

study does indeed vary substantially across subperiods. In these situations, combining

forecasts yields diversification gains and can therefore be attractive relative to relying

on forecasts from a single model. Moreover, even if it would be possible to identify

the best individual model, creating forecast combinations can be useful to scale down the

magnitude of forecast errors. In addition to these two focal points, we also further examine

the use of macroeconomic diffusion indices in term structure models. We analyze each

model both with and without macrofactors to assess the benefits of adding macroeconomic

information for shorter as well as longer forecast horizons. Using an out-sample period
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of 1994-2003 we show that the predictive ability of individual models varies over time

considerably, which a prime example being the Nelson and Siegel (1987) model. We

show by analyzing two five-year subperiods that models which incorporate macroeconomic

variables seem more appropriate in subperiods during which the uncertainty about the

future path of interest rates is substantial. This is especially the case for the early 2000s

with the pronounced drop in interest rates and the widening of spreads. Models without

macro information do particularly well in subperiods where the term structure has a

more stable pattern such as in the early 90s with models outperforming the random walk

RMSPE by sometimes well over 30%. That different models forecast well in different

subperiods confirms ex-post that alternative model specifications play a complementary

role in approximating the data generating process, which provides a strong claim for

using forecast combination techniques as opposed to believing in a single model. Our

forecast combination results confirm this conjecture. We show that combining forecasts, in

particular when using a weighting method that is based on relative historical performance

results and Bayesian inference on individual models, results in highly accurate forecasts.

The gains in terms of forecast performance are substantial, especially for longer maturities,

and are consistent over time.

In Chapter 5 we attempt to shed more light on forecasting performance of stochastic

day-ahead price models. This chapter is based on Huurman et al. (2007). We examine

six stochastic price models to forecast day-ahead prices of the two most active power

exchanges in the world: the Nordic Power Exchange and the Amsterdam Power Exchange.

Three of these forecasting models include weather forecasts. Firstly, considering that

operators make decisions today on tomorrow’s electricity, the real weather of tomorrow

is unknown at that moment, and the only available information of weather comes from

the weather forecasts. Therefore, we use weather forecasts as predictors, which are more

appropriate than real weather. The empirical study agrees with this intuition. Secondly,

we consider a set of weather variables which capture significant and interpretable supply

and demand effects. Thirdly, since we find that the influence of the weather forecasts

on the electricity prices is non-linear, we use non-linear transformations of the weather

forecasts in our new models. Finally, we implement specific models for different power

markets due to their heterogeneity in weather conditions and production plants. We

find that an extended ARMA model, which includes nonlinear combinations of next-day

weather forecasts, yields the best forecasting results for predicting one day-ahead power

prices. This model has some predictability power to anticipate prices jumps. Intuitively,

adverse climate conditions often lead to sharp increases in demand resulting in supply

shortages in electricity. We investigate carefully the relation between prices and weather.

We find that the weather forecasts influence the electricity prices via the demand as well
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as the supply side, and when production is less related to weather, which is the case for

Amsterdam Power Exchange, the weather forecasts play only a minor role. We also show

that a GARCH specification extended with weather forecast variables provides accurate

forecasts. This result contradicts earlier findings that ‘standard’ GARCH models would

predict electricity prices poorly.

To sum up, the research finds an increase of forecasting power of financial time se-

ries when parameter uncertainty, model uncertainty and optimal decision making are

included. Although the implementation of these techniques is not often straightforward

and it depends on the exercise that it is studied, the predictive gains are statistically

and economically significant over different applications. In particular, in two studies we

show that incorporating model averaging and modelling instability improves stock in-

dex forecast performances. In the third study we find that assessing model uncertainty

and adding macroeconomic factors leads to substantial gains in predicting the US term

structure. In the fourth study we document the explanatory power of weather to predict

day-ahead power spot prices and the improvements in forecast accuracy when weather

forecast variables are included in popular forecasting electricity price models. Several

extensions are worth to be considered, and they such as possible limitations are detailed

discussed in each chapter. Among them, the new algorithm developed in Chapter 3 may

be implement in a multivariate framework, by for example forecasting international stock

markets and allocating portfolios on them. Moreover, the forecasting techniques may be

applied to the analysis of density forecasts. Market operators, such as financial investors

or central bank decision makers, are becoming always more interested to the complete

distributions of the assets of interests to implement their decisions.





Chapter 2

Predictive gains from forecast
combinations using time varying
model weights

2.1 Introduction

When a wide set of forecasts of some future economic event is available, decision makers

usually attempt to discover which is the best forecast, then accept this and discard the

other ones. However, the discarded forecasts may have some independent valuable infor-

mation and including them in the forecasting process may provide more accurate results.

An important explanation is related to the fundamental assumption that in most cases

one cannot identify a priori the exact true economic process or the forecasting model

that generates smaller forecast errors than its competitors. An alternative reasonable

assumption appears to be one where different models may play a - possibly temporary -

complementary role in approximating the data generating process. Furthermore, perhaps

due to the presence of private information such as forecasters’ subjective judgements or

differences in modelling approaches, it may not be possible to pool the underlying infor-

mation sets and construct a ‘super’ model that nests each of the underlying forecasting

models. In these situations, forecast combinations are viewed as a simple and effective

way to obtain improvements in forecast accuracy.

Since the seminal article of Bates and Granger (1969) several papers have shown that

combinations of forecasts can outperform individual forecasts in terms of symmetric loss

functions. For example, Stock and Watson (2004) find that forecast combinations to

predict output growth in seven countries generally perform better than forecasts based

on single models. Marcellino (2004) has extended this analysis to a large European

data set with broadly the same conclusion. However, several alternative combination

schemes are available and it is not clear which is the best scheme, either in a classical or a

19
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Bayesian framework. For example, Hendry and Clements (2004) and Timmermann (2006)

show that simple combinations1 often give better performance than more sophisticated

approaches. Further, using a frequentist approach, Granger and Ramanathan (1984)

propose the use of coefficient regression methods, Hansen (2007) introduces a Mallows’

criterion, which can be minimized to select the empirical model weights, and Terui and

van Dijk (2002) generalize the least squares model weights by reformulating the linear

regression model as a state space specification where the weights are assumed to follow a

random walk process. Guidolin and Timmermann (2007) propose a different time varying

weight combination scheme where weights have regime switching dynamics. Stock and

Watson (2004) and Timmermann (2006) use the inverse mean square prediction error

(MSPE) over a set of the most recent observations to compute model weights. In a

Bayesian framework, Madigan and Raftery (1994) revitalize the concept of Bayesian model

averaging (BMA) and apply it in an empirical application dealing with Occam’s Window.

Recent applications suggest its relevance for macroeconomics (Fernández et al., 2001 and

Sala-i-Martin et al., 2004). Strachan and van Dijk (2007) compute impulse response

paths and effects of policy measures using BMA in the context of a large set of vector

autoregressive models. Geweke and Whiteman (2006) apply BMA using predictive and

not marginal likelihoods.

This Chapter contributes to the research on forecast combinations by investigating

the relative merits of eight combination schemes in simulation exercises where the data

generating process is subject to low predictability, structural instability, in the sense that

the relevance of forecasting factors varies over time, and fat tails. Sensitivity of results

with respect to misspecification of the number of included predictors and the number of

included models is explored.

The different combination schemes are summarized as two simple schemes, which do

not require parameter estimates; two schemes that involve OLS weight regressions, and

a more advanced time varying weight scheme due to Terui and van Dijk (2002). Next,

we include two Bayesian model averaging schemes: the original one first proposed in an

empirical application by Madigan and Raftery (1994), and a more recent one in terms of

predictive densities given by Geweke and Whiteman (2006)2. Finally, we propose a new

Bayesian scheme which allows for parameter uncertainty, model uncertainty and time

varying model weights simultaneously.

1In this Chapter simple combinations are defined as combinations that do not require estimating
parameters; arithmetic averages constitute a simple example. Complex combinations are defined as
combinations that rely on estimating weights that depend on the full variance-covariance matrix and,
possibly, allow for time varying weights.

2Alternative BMA’s exist such as MC3, or frequentist approaches that share similar features as BACE
or thick modelling; but we omit them to simplify the analysis.
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As in Aiolfi and Timmermann (2006) we use an adequate long out-of-sample period

to evaluate the forecasting performance of the different combination schemes.

Our results indicate that when correlation among forecasts of individual models is low,

simple and Bayesian averaging strategies using marginal likelihoods perform poorly, while

unconstrained OLS and time varying model weight schemes provide more accurate results.

Moreover, when structural instability is high, we explain asymptotically and in a simu-

lation experiment that the time varying combination schemes give the most accurate

forecasts.

A second contribution of this Chapter is to provide an empirical illustration, where

we consider forecasting the returns on the S&P 500 index by combining individual fore-

casts from two competing models. The first one assumes that a set of financial and

macroeconomic variables have explanatory power, the second one is based on the popu-

lar market saying “Sell in May and go away”, also known as the “Halloween indicator”,

see for example Bouman and Jacobsen (2002). Low predictability of stock market re-

turn data is well documented, see for example Marquering and Verbeek (2004) and so is

structural instability in this context, see for example Pesaran and Timmermann (2002)

and Ravazzolo et al. (2007a). We confirm these results, and show that the two models,

taken individually, perform poorly and in a differential way over time. We continue by

applying model averaging and find that the two time varying weight schemes that we

apply give the best forecasts in term of symmetric loss functions, confirming the results

of the simulation exercises. Moreover, as an investor is more interested in the economic

value of a forecasting model than in its forecast accuracy, we test our findings in an active

short-term investment exercise, with an investment horizon of one month. Again, the

time varying weight schemes provide the highest economic gains.

This Chapter proceeds as follows. In Section 2.2 we describe the eight different fore-

cast combination schemes. In Section 2.3 we report results from simulation exercises in

predicting future unknown point values. In Section 2.4 we give results from an empirical

application to US stock returns and show that forecast combinations give economic gains.

Section 2.5 concludes. In the Appendices some technical details are presented.

2.2 Forecast combinations

Two schemes are based on simple constant weights; three are frequentist approaches based

on estimated (time varying) model weights; two are “known” Bayesian averaging schemes,

the final one is a new Bayesian averaging scheme that allows for time varying weights. We

note that the vast majority of studies on forecast combination deals with point forecasts,

and we also focus on this.
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We start with a brief description of the basic set up of the simulation experiments.

Suppose two time series y1 = {ys,1}S
s=1 and y2 = {ys,2}S

s=1 are generated from the following

models:

ys,1 = α1 + x
′
s,1β1 + εs,1 (2.1)

ys,2 = α2 + x
′
s,2β2 + εs,2 (2.2)

where xs,1 and xs,2 are (k1 × 1) and (k2 × 1) vectors of predictor variables respectively,

where α1, α2 are two scalar parameters and β1, β2 are (k1 × 1) and (k2 × 1) vectors of

parameters, and where εs,1 and εs,2, s = 1, ..., S, are two zero mean i.i.d. disturbances

with variances σ2
1 and σ2

2, respectively. The simulated data generating process (DGP) is

a linear combination of the previous two models:

ys = ys,1cs,1 + ys,2cs,2, (2.3)

where cs,1 and cs,2 are two possibly time varying scalars. We refer to cs,1 and cs,2 as DGP

weights.

Equations (2.1) and (2.2) are estimated over the sample period [1, ..., T ] with T < S

to compute two independent one-step ahead forecasts ŷT+1,1 and ŷT+1,2, combined to

compute a forecast of yT+1. We let ŷT+1 = g(ŷT+1,1, ŷT+1,2, wT+1) be the combined point

forecast as a function of the underlying single forecasts ŷT+1,1 and ŷT+1,2, the forecast

combination scheme g, and the vector of the parameters of the combination wT+1
3. The

values of the optimal combination ŵT+1 solve the problem:

min
wT+1

E[L(eT+1(wT+1))|ŷT+1,1, ŷT+1,2], (2.4)

where eT+1 = yT+1 − g(ŷT+1,1, ŷT+1,2, ŵT+1) is the forecast error from the combination,

and where L is the loss function, which for simplicity we assume to depend only on the

forecast error. We emphasize that the vector ŵT+1 is not necessarily an estimate of the

vector [cT+1,1, cT+1,2]
′, but refers to estimated weights that minimize the loss function. The

general class of combination schemes in (2.4) comprises non-linear as well as time-varying

methods.

In most cases there is no closed form solution of equation (2.4), but analytical results

may be computed imposing restrictions on the loss function and making distributional

restrictions on the forecast errors. Often it is simply assumed that the objective function

is the mean squared error (MSE) loss function:

L(eT+1(wT+1)) = θ(ŷT+1 − yT+1)
2 θ > 0. (2.5)

3Note that wT+1 may also be a vector of constants.
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For this case the combined forecasts choose a combination of the individual forecasts

that best approximates the conditional expectation, E(yT+1|ŷT+1). In the five frequentist

approaches that we apply we assume the MSE loss function and we fix θ = 1. Dif-

ferent distributional restrictions, for example assuming a time varying θ imply different

estimation techniques in equation (2.4).

As a next step we expand the sample period with the observation yT+1 and we compute

new individual and combination forecasts for the value yT+2. We repeat the procedure to

compute H forecasts where T + H = S.

2.2.1 Simple combination schemes

Following Timmermann (2006) we define simple combination schemes as cases that do

no require estimating (many) parameters, in particular do not require estimating the full

variance-covariance matrix. Moreover, these schemes are distinguished by the restriction

that the weight coefficients add up to unity.

The forecasts on yT+1 given by simple combination schemes can be written as:

ŷ
(j)
T+1 = ŷT+1,1ŵ

(j)
T+1,1 + ŷT+1,2ŵ

(j)
T+1,2, (2.6)

where (ŵ
(j)
T+1,1, ŵ

(j)
T+1,2), j = 1, 2, are computed following schemes 1 and 2 below.

Scheme 1: Equal weights

ŵ
(1)
i = 1/n (2.7)

where i = 1, 2. Extension to more general case with n individual models is straightfor-

ward. Equal weights are optimal in situations when the individual forecast errors have

the same variance and identical pair-wise correlations, see Timmermann (2006).

Scheme 2: Inverse Mean Square Prediction Error (MSPE) weights

Scheme 2 derives weights from the models’ relative inverse MSPE performances computed

over a window of the previous υ periods, see Timmermann (2006). Estimation errors

in combination weights tend to be particularly large due to the difficulties in precisely

estimating the covariance matrix of the forecast error. One answer to this problem is

to ignore correlation across forecast errors and making combination weights that reflect

performance of each individual model relative to the performance of the average model.

The MSPE at time T over the previous υ forecasts for model i = 1, 2 is defined as:

MSPEυ
T,i =

∑υ−1
j=0 (ŷT−j,i − yT−j)

2

υ
(2.8)
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The weights are computed as:

ŵ
(2)
T+1,i =

(1/MSPEυ
T,i)∑2

j=1(1/MSPEυ
T,j)

(2.9)

2.2.2 Estimated weight combination schemes

The next three combination schemes estimate the weights in regression form, add a con-

stant term, and do not impose that the weights add to 1.

Scheme 3: Constant OLS weights

The weights are equal to the OLS estimators of the weights (w0, w1, w2) in equation:

yt = w0 + ŷt,1w1 + ŷt,2w2 + ut; ut ∼ N(0, s2) (2.10)

where t = 1, .., T , and w0 is a constant term4. The estimation of the weights, while

attractive in the sense of minimizing forecast errors, introduces parameter estimation

errors. Therefore, one may estimate weights for the first forecast and then fix these as

constant over the remaining out-of-sample period.

The forecast on yT+1 given by the estimated combination scheme is given as:

ŷ
(3)
T+1 = ŵ

(3)
0 + ŷT+1,1ŵ

(3)
1 + ŷT+1,2ŵ

(3)
2 (2.11)

where (ŵ
(3)
0 , ŵ

(3)
1 , ŵ

(3)
2 ) are the OLS estimates of the parameters (w0, w1, w2) in (2.10). To

compute the following H − 1 forecasts, the same estimated weights (ŵ
(3)
0 , ŵ

(3)
1 , ŵ

(3)
2 ) are

applied.

Scheme 4: Recursive OLS weights

The estimated weights are equal to the recursive OLS estimators of the weights in (2.10).

The estimated weights are updated every time when a new observation becomes available.

Scheme 5: Time varying weights

When the conditional distribution of (yT+1, ŷT+1) varies over time, it may be effective

to let the combination weights also change over time. Terui and van Dijk (2002) have

proposed a method that extends the OLS weight combination. The weights satisfy the

following recursions:

yt = wt,0 + ŷt,1wt,1 + ŷt,2wt,2 + ut; ut ∼ N(0, s2) (2.12)

4Granger and Ramanathan (1984) explain that the constant term must be added to avoid biased
forecasts. They also conclude that this strategy is often more accurate than restricted OLS weights.
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wt = wt−1 + ξt; ξt ∼ N(0, Σ) (2.13)

where wt = [wt,0, wt,1, wt,2]
′; t = 1, .., T ; and Σ is a diagonal matrix. The weights are time

varying and follow a random walk process. The time varying weight combination may

be interpreted as a state space model, where (2.12) is the measurement equation which

defines the distribution of yt, and where (2.13) is the state equation which defines the

distribution of the weights for every t. The Kalman filter algorithm can be applied to

compute the estimators ŵ
(5)
t|t−1. Appendix A gives details of the computation and explains

the difference with the recursive OLS estimator.

The forecasts on yT+1 given by schemes 4 and 5 are:

ŷ
(j)
T+1 = ŵ

(j)
T+1,0 + ŷT+1,1ŵ

(j)
T+1,1 + ŷT+1,2ŵ

(j)
T+1,2 (2.14)

where j = 4, 5.

2.2.3 Bayesian model averaging

Bayesian approaches have been widely used to construct forecast combinations, see for

example Leamer (1978), Hodges (1987), Draper (1995), Min and Zellner (1993), and

Strachan and van Dijk (2007). In this approach one does not estimate regression weights

and uses those to compute forecasts, but one derives the posterior probability for any

individual model and combines these. The predictive density accounts then for model

uncertainty by averaging over the probabilities of individual models. Since the output is

a complete density, point prediction (for example by taking the mean), distribution and

quantile forecasts can be easily derived.

We choose three BMA schemes: the original one proposed in an empirical application

by Madigan and Raftery (1994), a more recent one discussed in Geweke and Whiteman

(2006), and a new one to be introduced below.

Scheme 6: BMA using marginal likelihood

The predictive density of yT+1 given the data up to time T , FT , is computed by averaging

over the conditional predictive densities given the individual models with the posterior

probabilities of these models as weights:

p(yT+1|FT ) =
n∑

i=1

P (mi|FT )p(yT+1|FT ,mi) (2.15)

where n is the number of individual models; p(yT+1|FT ,mi) is the conditional predictive

density given FT and model mi; P (mi|FT ) is the posterior probability for model mi. The

conditional predictive density given FT and model mi is defined as:

p(yT+1|FT ,mi) =

∫
p(yT+1|θi, FT ,mi)p(θi|FT ,mi)dθi (2.16)
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where p(yT+1|θi, FT , mi) is the conditional predictive density of yT+1 given FT , the model

parameters θi = (αi, βi, σ
2
i )
′, and model mi in (2.1) or (2.2); p(θi|FT , mi) is the posterior

density for parameter θi. The posterior probability for model mi is:

P (mi|FT ) =
p(y|mi)p(mi)∑n

j=1 p(y|mi)p(mj)
(2.17)

where y = {yt}T
t=1; p(mi) is the prior density for model mi; and p(y|mi) is the marginal

likelihood for model (mi) given by:

p(y|mi) =

∫
p(θi|FT ,mi)p(θi)dθi, (2.18)

p(θi) is the prior density for the parameter θi. The integral in equation (2.18) can be

evaluated analytically in the case of linear models, but not for more complex forms. Chib

(1995), for example, has derived a method to compute the expression also for nonlinear

examples. Proper priors for θi are usually applied, otherwise the Bartlett paradox may

hold and models with less parameters preferred. The point forecast is computed by taking

the mean of the predictive density in (2.15).

We note that an alternative Bayesian procedure to compute model weights is presented

below under scheme 8.

Scheme 7: BMA using predictive likelihood

Geweke and Whiteman (2006) propose a BMA based on the idea that a model is good

as its predictions. The predictive density of yT+1 conditional on FT has the same form as

equation (2.15), but the posterior density of model mi conditional on FT is now computed

as:

P (mi|FT ) =
p(yT |FT−1,mi)p(mi)∑n

j=1 p(yT |FT−1,mj)p(mj)
(2.19)

where p(yT |FT−1,mi) is the predictive likelihood for model mi, e.g. the density derived

by substituting the realized yT in the predictive density of yT conditional on FT−1 given

model mi. We compute the predictive density for month T using information until month

T − 1 and we evaluate the realized value for time T using the same density. The resulting

probability is then applied to compute the weight for model mi in constructing the fore-

cast for T + 1 made at time T 5. Similar to scheme 6, the point forecast is computed by

5Eklund and Karlsson (2007) evaluate the fit of the predictive density over some more observations, by
means of the predictive likelihood, and then update the probability density for the forecasts. The latter
approach results in weights which are based more on the fit of the model, even when using out-of-sample
data, than on the probability of out-of-sample realized values. Our approach incorporates the uncertainty
that future out-of-sample values may differ from historical out-of-sample realizations. It would be more
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taking the mean of the predictive density in (2.15).

Scheme 8: BMA using time varying model weights

We present a new combination scheme that extends the time varying weight scheme 5 by

adding parameter uncertainty and model uncertainty. We reformulate equations (2.12)

and (2.13) by substituting the means of the conditional predictive densities p(yT |FT−1,mi)

given models mi, i = 1, 2 for the point forecasts ŷT,i. Then we apply Bayesian inference

using Gibbs sampling to estimate wt; for details we refer to Appendix C. The result is a

set of posterior densities for the model weights given the data FT , p(wT+1,i|FT ). These

posterior densities are used to average over the conditional predictive densities given FT

and model mi

p(yT+1|FT ) = p(wT+1,0|FT ) +
n∑

i=1

p(wT+1,i|FT )p(yT |FT−1,mi) (2.20)

in order to derive the predictive density of yT+1 given FT . The point forecast is computed

by taking the mean of the predictive density in (2.20).

Scheme 8 allows for parameter uncertainty by applying Bayesian analysis to individual

models mi, for model uncertainty by combining the conditional predictive densities given

FT and model mi, and for time varying patterns by assuming a pattern for model weights

as in (2.13). It also extends scheme 5 by providing a density forecast and not only a

point forecast. Thus, for instance, forecasting and policy measures with respect to risk

management can be performed in a more flexible way.

We emphasize that special cases of this proposed scheme may be constructed as

Bayesian versions of schemes 3 and 4. More details are presented in Appendix C.

2.3 Simulation exercises

In this section we describe ten simulation exercises to evaluate the eight forecast combina-

tion schemes presented in Section 2.2. In exercises I-III the correlation between predictors

varies from low to high; in exercises IV-VII misspecification with respect to the number

of included predictors and number of included models is explored; exercises VIII-IX deal

with structural change; finally exercise X considers the case of fat tailed generated data

patterns.

natural to compute the predictive likelihoods as product of the predictive likelihood made for last υ
successive forecasts. Some computational problems may arise because any predictive likelihood is in the
interval [0,1]. Then, it might be difficult to work with possible small numbers, or if only one predictive
value of the υ averaged is close to zero the weight on the respective model will be zero independently by
performances in the other periods.
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Table 2.1: Simulation design of exercises I-X

EXERCISES
PARAMETERS I,VIII,IX II III IV,V VI VII X

µx1 1.00 1.00 1.00 1.00 1.00 1.00 1.00
µx2 1.00 1.00 1.00 1.00 1.00 1.00 1.00
µx3 - - - - 1.00 1.00 -
µx4 - - - - - 1.00 -
µx5 - - - - - 1.00
µx6 - - - 1.00 - - -
σ2

x1
2.00 2.00 2.00 2.00 2.00 2.00 2.00

σ2
x2

2.00 2.00 2.00 2.00 2.00 2.00 2.00
σ2

x3
- - - - 2.00 2.00 2.00

σ2
x4

- - - - - 2.00 -
σ2

x5
- - - - - 2.00 -

σ2
x6

- - - 2.00 - - -
%x1,x2 0.00 1.00 1.80 0.00 0.00 0.00 0.00

ν - - - - - - 4
α1, β1 1.00 1.00 1.00 1.00 1.00 1.00 1.00
α2, β2 1.00 1.00 1.00 1.00 1.00 1.00 1.00
α3, β3 - - - - 1.00 1.00 -
α4, β4 - - - - - 1.00 -
α5, β5 - - - - - 1.00 -

β6 - - - 1.00 - - -

Following previous notation, we simulate DGPs in a range of settings from equations

(2.1)-(2.3). We fix T = 240 and H = 120, that is the genuine out-of-sample period

has 120 one-step ahead forecasts. The last 60 observations of the in-sample period (t =

181, .., 240) are used as initial training period for the combination schemes. We repeat

each exercise 1000 times. In all examples we assume that the predictor variables (x) are

normally distributed with values for the means (µ), variances (σ2) and covariances (%)

that are specified in Table 2.1. The disturbances are assumed to be i.i.d normal (0,1).

We restrict the DGP weights cs,1 and cs,2 to add to 1 for any s in order to exclude shifts

in the unconditional mean of the DGP. In exercises I-VII {cs,1}360
s=1 and {cs,2}360

s=1 are time

invariant and the DGP is stationary. In exercises VIII-X time-variation is added. In

Bayesian analysis we generally use diffuse proper priors for the model parameters.

For any simulation we compute the MSPE’s of the individual forecasts and forecast

combinations over the 120 “genuine” one-step ahead forecasts, and its decomposition in

bias and variance of the forecast errors. In Table 2.2 we report the average of 1000

MSPE’s, bias and variance of the forecasts. For completeness, we also give the same

statistics for the correctly specified models (labelled as “correct” model), and the forecast

combination where the vector ŵT+1 is identical to [c1, c2] (labelled as “given” weights).
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2.3.1 Varying correlations between predictors

In exercises I-III a stationary DGP is simulated; c1 and c2 are plotted at the top-right

corner in Figure 2.1: c1 is set almost two times c2. The difference in exercises relates to

the degree of correlation between the individual forecasts.

Exercise I: zero correlation between predictor variables We first give some an-

alytical results that may help the analysis. With the parameter values from Table 2.1, it

is easy to derive that

ys,i = 2 + ε∗s,i with ε∗s,i ∼ iidN(0, 3)

with i = 1, 2. Then,

ys = 0.7ys,1 + 0.3ys,2 = 2 + 0.7ε∗s,1 + 0.3ε∗s,1 (2.21)

Accordingly, the expected value of ys is E(ys) = 2 and its variance is V (ys) = 1.74.

We also notice that the coefficients of the variables (xs,1, xs,2) in the simulated DGP are

(β1cs,1) = 0.7 and (β2cs,2) = 0.3 for any s.

By computing the probability limit of the OLS estimator β̂1 in model (2.1) we find

that β̂1 is a consistent estimator of (β1cs,1), its estimate is close to 0.7 for any s =

181, .., 360, and β̂2 is a consistent estimator of (β2cs,2), its estimate is close to 0.3 for any

s = 181, .., 360. Moreover, both (α̂1+β̂1) and (α̂2+β̂2) add to 2 implying that the forecasts

of the single models are unbiased, since E(ys) = 2. In term of accuracy (MSPE), equation

(2.1) does much better than equation (2.2), but the difference with the correct model,

in which both (x1, x2) are included, is substantial. As the forecasts of both models are

unbiased, the difference in accuracy is only due to the variance of the prediction errors.

The variance of the prediction error of model (2.2) is more than double than that of the

prediction error of model (2.1), reflecting the choice of (c1, c2)
6.

We find that the forecasts from the individual models and frequentist combination

schemes can be approximated respectively as:

6We compute forecasts also by applying Bayesian inference (with diffuse priors). We do not report
results because they are very similar to the previous ones.
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Model 1 ŷT+h,1 = 1.3 + 0.7xT+h,1

Model 2 ŷT+h,1 = 1.7 + 0.3xT+h,2

True model ŷT+h = 1 + 0.7xT+h,1 + 0.3xT+h,2

Given weights ŷ
(g)
T+h = 1.42 + 0.49xT+h,1 + 0.09xT+h,2

Case 1 ŷ
(1)
T+h = 1.5 + 0.35xT+h,1 + 0.15xT+h,2

Case 2 ŷ
(2)
T+h = 1.42 + 0.49xT+h,1 + 0.09xT+h,2

Case 3 ŷ
(3)
T+h = 1 + 0.7xT+h,1 + 0.3xT+h,2

Case 4 ŷ
(4)
T+h = 1 + 0.7xT+h,1 + 0.3xT+h,2

Case 5 ŷ
(5)
T+h = 1 + 0.7xT+h,1 + 0.3xT+h,2

where h = 1, .., 120.

The estimators of β1, β2 are consistent for the products (β1cs,1), (β2cs,2). Therefore, es-

timating (cs,1, cs,2) both equal to 1 is the optimal solution to reduce the variance of the

prediction errors. Combination schemes 3, 4 and 5 are the only methods to provide

estimates of (c1, c2) equal to vectors of 1, providing the best statistics. Recursive and

time-varying weight schemes, which allow for time varying estimates of (c1, c2), do not

improve results compared to constant OLS weight scheme as (c1, c2) are time-invariant

in the simulation. Other combination approaches (given weights, case 1 and 2) provide

different estimates of (c1, c2), implying that the products (β̂1ŵ
j
1) and (β̂2ŵ

j
2) are not consis-

tent estimator of (β1c1) and (β2c2). The forecasts given by those combination schemes are

still unbiased but the variance of the prediction errors is higher. For example, assigning

weights to single models based on the inverse of the MSPE well approximates the variance

of the noises of the single models, ε∗s,1 and εs, 2
∗ respectively. Indeed, weight estimates of

this scheme are very similar to the original values c1 = 0.7ι where ι is a (120× 1) vector

of ones and c2 = 0.3ι such as in the given weight combination. But this is not optimal in

this exercise.

To sum up, model (2.1) predicts the part of the DGP related to xs,1, model (2.2) predicts

the part of the DGP related to xs,2. Therefore, the optimal averaging strategy is adding

with weight 1 the forecasts of the individual models and inserting a constant term to avoid

biases. As Table 2.2 confirms, both the OLS weights and Terui and van Dijk (2002)’s

time varying extension model this providing very accurate forecasts.

The Bayesian averaging scheme using marginal likelihood requires a different expla-
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Figure 2.1: Exercise I (1)
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Note: The figure presents the patterns of parameters c1 (in solid line) and c2 (in dotted line) in
equation (2.3) in exercises I.

nation. What is important in Bayesian averaging is assigning the right probability to

individual models. BMA based on marginal likelihood does not do this job well: it

gives almost all the probability to model (2.1) and zero probability to model (2.2). The

problem apparently relates to the use of un-normalized marginal likelihoods. To derive the

marginal likelihood given by the individual models we compute the log marginal likelihood.

Figure 2.2 plots the average of the log marginal likelihood for the two individual models

for s = 181, .., 360 over the 1000 simulations. When we take the exponential to compute

posterior weights the two numbers are not anymore comparable. And since (2.1) has

higher log marginal likelihood all the probability is given to it. We note that more

sophisticated ways of computing marginal likelihoods may exist, but we do not pursue

this further. Instead we present a group of “simple to compute” Bayesian schemes under

scheme eight.

BMA based on predictive likelihood gives on average probabilities similar to the original

values 0.7 and 0.3. But its performance is not up to the level of estimated weight schemes.

Bayesian results depend on the priors that we apply. We assume diffuse proper priors for

model parameters, which imply parameter posterior means around OLS estimates (for

derivation see, e.g., Koop, 2003, p. 37). The priors for (α1, α2, β1, β2), however, could be

chosen very informative around the true values 1. Then, averaging models (2.1) and (2.2)

with predictive likelihoods would provide forecasts very similar to the correct model7. We

think that it is in practice not easy to find such accurate priors and not all agents may

agree on these precise priors, therefore we have applied diffuse priors that allow direct

comparison to frequentist inference, but these diffuse priors apparently reduce forecast

accuracy.

7Results for this exercise are available upon request.
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Figure 2.2: Exercise I (2)
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Note: The figure presents the log marginal likelihood given model 1 (in solid line) and the log marginal
likelihood given model 2 (in dotted line) in exercise I.

The use of diffuse priors does not reduce the forecast accuracy of scheme 8 compared

to that of schemes 3-5. In scheme 8 a Gibbs sampling procedure is applied to combine

predictive densities of individual models. This Gibbs procedure is a Bayesian extension

of scheme five. Results may be even more accurate when informative priors are applied.

Exercise II: medium correlation In the second exercise the correlation of the indi-

vidual forecasts is increased and a medium positive (0.5) correlation between xs,1 and xs,2

is assumed for any s.

Model (2.1) performs better than model (2.2) due to the magnitude of the weights.

Estimated weight schemes and Bayesian time varying weight scheme provide again better

statistics than other averaging schemes, with results very similar to the correct model.

However, simple combination schemes and BMA based on the predictive likelihood also

give quite accurate forecasts. In this exercise model (2.1) and model (2.2) do not provide

consistent estimate of (β1cs,1) and (β2cs,2), therefore weight estimates achieve this result.

BMA based on marginal likelihood still selects only model (2.1).

Exercise III: high correlation In this exercise, the correlation of the individual fore-

casts is substantially increased (around 0.9). As in Timmermann (2006) in this framework

equal weights are an appropriate choice. All the schemes forecast accurately and very sim-

ilar to the correct model, since the individual models (2.1) and (2.2) give accurate and

highly correlated results. Note that the time varying weight combinations are robust in

this case.

2.3.2 Misspecification

In Exercises IV-VII the number of predictors and individual models varies. The DGP is

still assumed stationary.
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Figure 2.3: Exercise VI-VII
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Note: The figures present in the panel a) the patterns of parameters c1 (- line), c2 (-. line), c3 (.. line) in
equation (2.3) in exercises VI, and in the panel b) also the parameters c4 and c5 (- - line) in exercise VII.

Exercise IV: included irrelevant variable In exercise IV an irrelevant variable (x6)

is included as additional regressor in model (2.1); its coefficient β6 is given in Table 2.1.

Due to the long series and the number of repetitions of the simulations β6 is correctly

estimated to be zero and results are very similar to exercise I.

Exercise V: omitted relevant variable In exercise V, a new variable, xs,6, is added

in the simulation of the DGP in equation (2.3). This variable is excluded in both models

(2.1) and (2.2). All the forecasts are less accurate than in exercise I and the difference

with the forecasts of correct model is substantial. However, estimated weight and Bayesian

time varying weight schemes still give better statistics than individual models and other

combination schemes. Results given by simple schemes and BMA schemes 6 and 7 are

marginally worse than those of model (2.1).

Exercise VI-VII: 3 and 5 individual models The analysis is extended to include

three and five individual models in the simulation exercise. Individual series are combined

with weights given in Figure 2.3. In exercise VI c4 = {cs,4}360
s=1 and c5 = {cs,5}360

s=1 are vector

of zeros.

In both examples, the estimated weight and Bayesian time varying weight schemes give

the best forecasts. These schemes provide forecasts very similar to the correct model, and

are the only ones to outperform the best individual model. Simple combination schemes

do perform worse than the best individual model and Bayesian model averaging using

marginal likelihoods. In the exercises where the misspecification of individual models is

more substantial, allowing for parameter uncertainty is beneficial, even if parameter priors

are not precise.
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Figure 2.4: Exercise VIII
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Note: The figure presents the patterns of parameters c1 (in solid line) and c2 (in dotted line) in
equation (2.3) in exercises VIII.

2.3.3 Structural change

In the following two exercises, VIII and IX, the vectors c1 and c2 in equation (2.3) are

subject to instability. For exercise VIII, Figure 2.4 shows that a shift happens at the

beginning of the out-of-sample period. The weights assigned to models (2.1) and (2.2) are

exactly reversed. In exercise IX, two shifts are plotted in Figure 2.5, at different times,

with one of them in the in-sample period, and of opposite direction.

Exercise VIII: one shift The recursive OLS weight and (Bayesian) time-varying

weight schemes dramatically outperform individual models, other combination schemes,

and the correct model. The weight estimates of these three schemes capture the signal

of instability, and react faster to it, partially reducing the inefficiency of parameter esti-

mates of the individual models, which do not allow for instability in estimation. Rejecting

instability may cause serious mistakes and, indeed, the correct model8 gives marginally

worse statistics than model (2.2). However, the instability, and therefore its signal, is

quite moderate due to the fact that we have a unique break over the full sample. As

Appendix A shows, this explains why recursive OLS and the Kalman Filter produce very

similar weight estimates. Bayesian time varying weigh scheme 8 produces results very

similar or marginally superior to scheme 5 again due to the use of diffuse priors.

BMA with predictive likelihood now provides quite accurate forecasts, even though it

gives too high probability to model (2.2). BMA with marginal likelihood does not seem

adequate even in this exercise. It assigns all the weight to model (2.1).

Exercise IX: two shifts The correct model gives the most accurate forecasts. The

second shift partially correct the first one and moves the weight patterns close to their

8We remember that the “correct” model does not account for instability.
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Figure 2.5: Exercise IX
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Note: The figure presents the patterns of parameters c1 (in solid line) and c2 (in dotted line) in
equation (2.3) in exercises IX.

in-sample average value. The time varying weight schemes provides the lowest statistics

comparing to individual models and other averaging schemes. The instability is higher

than in exercise VIII therefore the difference between the recursive OLS and the Kalman

filter is evident, following the derivations in Appendix A. Simple combination schemes

provide less accurate results. BMA based on predictive likelihoods copes with instability

quite efficiently, but the diffuse type of priors chosen for individual model parameters re-

duce the forecast accuracy. Interestingly, the other BMA method initially assigns positive

probability to both models, but when the number of observation increases, it converges

to assign all the weight to model (2.1).

2.3.4 Fat tails

The DGP from exercise IX is changed by assuming fat tailed errors. In particular, εs,1

and εs,2 in (2.1)-(2.2) are assumed to be Student t distributed with mean, variance and ν

degree of freedom in Table 2.1. The DGP weights are still as in Figure 2.5. All forecasts

are less accurate than in exercise IX, but the results are qualitatively similar to the

previous example. Again, the time varying weight schemes provide the lowest statistics

among the averaging schemes and provides results very close to the correct model. Adding

parameter uncertainty seems beneficial as scheme 8 gives marginally superior results that

scheme 5. As in the previous case, several averaging schemes give more accurate forecasts

than individual models, confirming that averaging is in our set up of experiments a simple

and attractive way to cope with instability.

2.3.5 Summary of findings

The results in Table 2.2 indicate that it is not easy to find a general rule how to average

individual models in an optimal way, and elements as the degree of correlation of the in-
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dividual forecasts, data predictability, structural instability and model (mis)specification,

play a strategic role in the process of combining forecasts of individual models. In par-

ticular, we find that in situations of low predictability and high noise, and almost no

correlation of a limited set of individual forecasts, combination schemes that estimate

model weights and their extension in a Bayesian framework give the most accurate fore-

casts. Intuitively, when individual forecasts contain complementary information, the best

averaging strategy is to add this independent information. Simple combination schemes

are not adequate schemes as they average individual models instead of adding with weight

1 the independent information of different models. Bayesian model averaging based on

marginal likelihood has some computational problems due to the fact of deriving un-

normalized marginal likelihoods for a relative small set of individual models. Bayesian

model averaging based on predictive likelihood assigns precise weights to individual mod-

els, but using diffuse priors in model parameters as we do reduce the forecast accuracy.

If the DGP is also subject to structural instability, in the sense that the relevance of the

predictors varies over time, time varying weight schemes give the highest predictive gains.

Simple combination schemes and recursive OLS weight schemes do not learn (efficiently)

from the signals of instability, and therefore do not react fast to it. Bayesian model

averaging based on predictive likelihood copes better with instability, but inadequate

priors can reduce forecast accuracy. Results are qualitative similar when the distribution

has fatter tails than the standard normal case, and adding more sources of uncertainty as

the Bayesian time varying weight scheme does seems to be beneficial.

2.4 Empirical illustration

We extend our study by investigating the forecasting performance and economic gains

obtained by applying the eight forecast combination schemes to the case of US stock

index returns, defined as the discretely compounded monthly return on the S&P 500

index in excess of the 1-month T-Bill rate, from January 1976 to December 2005, for a

total of 360 observations; see Figure 2.6. We use two linear non-nested forecasting models.

The first one is based on the idea that a set of financial and macroeconomic variables are

potentially relevant factors for forecasting stock returns. Among others, Pesaran and

Timmermann (1995), Cremers (2002), Marquering and Verbeek (2004) have shown that

such variables have predictive power. We label this forecasting model “Leading factor”

(LF). The second forecasting model is a simple linear regression model with a constant

and a dummy for November-April. It is based on the popular market saying “Sell in

May and go away”, also known as the “Halloween indicator” (HI), and it based on the

assumption that stock returns can be predicted simply by deterministic time patterns.
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This suggests to buy stock in November and sell it in May. Bouman and Jacobsen (2002)

show that this strategy has predictive power.

2.4.1 Data and evaluation

The source of the S&P 500 index is the CRSP database and the 1-month T-Bill rate is

from Ibbotson and Associates. We include as predictors the S&P 500 index price-earnings

ratio (PE), the S&P 500 index dividend yield (DY ) defined as the ratio of dividends over

the previous twelve months and the current stock price, the 3-month T-Bill rate (I3),

the monthly change in the 3-month T-bill rate (DI3), the term spread (TS) defined as

the difference between the 10-year T-bond rate and the 3-month T-bill rate, the credit

spread (CS) defined as the difference between Moody’s Baa and Aaa yields, the yield

spread (Y S) defined as the difference between the Federal funds rate and the 3-month

T-bill rate, the annual inflation rate based on the producer price index (PPI) for finished

goods (INF ), the annual growth rate of industrial production (IP ), the annual growth

rate of the monetary base (MB), and the log monthly realized volatility of the S&P 500

index (LV ol). The monthly realized volatility is computed using daily returns, where we

follow French et al. (1987) and Marquering and Verbeek (2004) by assuming that daily

returns are appropriately described by a first-order autoregressive process. In particular,

we use the following estimate for realized volatility

σ̂2
t =

Ns∑
t=1

(yi,t − ȳt)
2

[
1 +

2

Nt

Nt−1∑
j=1

(Nt − j)φ̂j
t ,

]

where yi,t is the return on day i in month t which has Nt trading days, ȳt is the average

daily return in month t, and φ̂t denotes the first-order autocorrelation estimated using

daily returns within month t. We take into account the typical publication lag of macro-

economic variables in order to avoid look-ahead bias. We therefore include inflation and

the growth rates of industrial production and the monetary base with a two-month lag.

As the financial variables are promptly available, these are included with a one-month lag.

Finally, the “Halloween indicator” (HI) model is specified as a simple linear regression

with a constant and a dummy for November-April.

We evaluate the statistical accuracy of the individual models and the eight forecast

combinations schemes in terms of MSPE, and its decomposition in square bias and vari-

ance of the forecast errors. Again means of Bayesian predictive densities are computed

for the BMA schemes. Moreover, as an investor is more interested in the economic value

of a forecasting model than its precision, we test our conclusions in an active short-term

investment exercise, with an investment horizon of one month. The investor’s portfolio
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Figure 2.6: S&P500 Excess returns
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Note: The figure presents the excess returns on the S&P500 over the sample 1976:1-2005:12.

consists of a stock index and riskfree bonds only. At the start of month T + 1, the

investor decides upon the fraction of her portfolio to be invested in stocks wp,T+1, based

upon a forecast of the excess stock return yT+1. The investor is assumed to maximize a

mean-variance utility function

max
wT+1

u(ET (yp,T+1), V arT (yp,T+1)) (2.22)

where yp,T+1 is the return of the investor’s portfolio return at time T + 1, which is equal

to

yp,T+1 = WT ((1− wp,T+1)(yf,T+1) + wp,T+1(yf,T+1 + yT+1)) (2.23)

where WT denotes the wealth at time T , where yT+1 is the excess returns on S&P500,

and where yf,T+1 is the riskfree rate.

Without loss of generality we set initial wealth equal to one, WT = 1. Further, we

assume the following utility function:

ET (yp,T+1)− 1

2
γV arT (yp,T+1) (2.24)

where γ is the coefficient of relative risk aversion. Solving the maximization problem

shows that the optimal portfolio weight for the investor is given by:

w∗
p,T+1 =

ET (yT+1)− ry,T+1

γV arT (yT+1)
. (2.25)

If the expected excess return on the risky asset increases, it is optimal for the investor

to increase her weight on the risky asset. The conditional variance V arT (yT+1), which

represents a measure of the risk involved, is negatively related to this weight. We forecast

ET (yT+1) with nine different approaches: two individual models, the ‘leading factor’ one

(LF), and the ‘Halloween indicator’ one (HI), and the eight averaging schemes discussed in

this Chapter. Each individual forecasting approach corresponds to an investment strategy
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which is defined in the same way. We approximate the conditional variance with the 60-

month moving window average of the realized variances computed as above9. We also

assume that short selling and borrowing at the riskfree rate are not allowed, therefore

we restrict the portfolio weights to be between 0 and 1. For purposes of comparison we

consider a passive investment strategy where the total wealth is invested in the risky

market (RW).

We evaluate the different investment strategies by computing the average return, the

standard deviation of the portfolio return, and the Sharpe ratio, defined as the ratio of the

mean excess return on the (managed) portfolio and the standard deviation of the portfolio

return. Since the Sharpe ratio overestimates risk in case of time varying volatility, we also

compute the ex post utility levels - in order to estimate the economic value of the strategy

- by substituting the realized return of the portfolios at time T + 1 in (3.18)

U∗
p,T+1 = yp,T+1 − 1

2
γw2

p,T+1V olT+1 (2.26)

where V olT+1 denotes the ex post realized volatility of the risky return on month T + 1.

Total utility is then obtained as the sum of U∗
p across all H investment periods. The

above approach enables us to compare alternative investment strategies by calculating

the associated average utility levels.

Finally, as the portfolio weights in the active investment strategies change every month,

the portfolio must be rebalanced accordingly. Hence, transaction costs play a non-trivial

role and should be taken into account when evaluating the relative performance of different

strategies. Rebalancing the portfolio at the start of month T + 1 means that the weight

invested in the risky asset is changed from wT to wT+1. We assume that transaction costs

amount to a fixed percentage c on each traded dollar. Setting the initial wealth WT equal

to 1 for simplicity, transaction costs at time T + 1 are defined as equal to

cT+1 = 2c|wT+1 − wT | (2.27)

where the multiplication by 2 follows from the fact that the investor rebalances her invest-

ments in both stocks and bonds. The net portfolio return is then given by rT+1 − cT+1.

We apply three scenarios with transaction costs of 0.1%, 0.5% and 1%10. Note that for

the passive investment strategy where the total wealth is invested in the risky market the

inclusion of transaction costs matters only in setting up the portfolio at time T0.

9We also forecast the conditional variance V arT (yT+1) using an AR(1), an AR(12), an Heterogeneous
Autoregressive (HAR) model similar to Corsi (2004), and an EGARCH model as in Marquering and
Verbeek (2004). Results are qualitative similar. We prefer the 60-month moving window average because
most investors use similar simple schemes, in particular at beginning of our sample period.

10We think that 10 basis points is an average transaction cost to buy a 1-month future on S&P500 or
a 1-month future on 1-month Treasury Bill.
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Figure 2.7: Individual forecasts

1991 1996 2001 2006
2

1.5

1

0.5

0

0.5

1

1.5

2

%

Note: The figure presents the forecasts on excess returns on the S&P500 given by the individual models
‘Leading Indicator’ (in solid line) and ‘Halloween indicator’ (in dotted line) over the sample
1996:1-2005:12.

2.4.2 Empirical Results

The analysis for the active investment strategies is implemented for the period from Jan-

uary 1996 until December 2005, involving 120 one month ahead excess stock return fore-

casts. The models are estimated recursively using an expanding window of observations.

The period January 1991 to December 1995 is used to start up the forecast combination

schemes. The investment strategies are implemented for three levels of relative risk aver-

sion, γ = 2, 5 and 10. Before we analyze the performance of the different portfolios, we

summarize the statistical accuracy of the excess return forecasts.

Statistical accuracy

The statistical accuracy of the individual models and forecast combination is evaluated

by MSPE, and its decomposition in square bias and variance as in Section 2.3. Results

are reported in Table 2.3. In the market column, labelled RW, we report the statistics of

the Random Walk model.

We notice that both the individual models provide much lower evaluation criteria than

the RW. In particular, the Halloween Indicator model has the lowest MSPE error and both

the mean and the variance of the forecast errors are lower than for the other individual

models. However, both series of forecasts have a quite different pattern than the very

noise excess return series in Figure 2.7. The HI model has a seasonal pattern given by

the particular strategy with a positive unconditional mean, and few negative forecasts

only in 2002. The LF generates forecasts which are more volatile, and in particular too

low at the end of 1990’s and at beginning of 2000, and too high in 2001. In term of sign

prediction the HI strategy performs very well in 90’s. The 60 month moving average sign

hit ratios, which are the proportions of correctly predicted signs of the excess return over

the previous 60 months, shown in Figure 2.8, are higher than 0.7 and close to 0.8. But
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Figure 2.8: 60 month moving average sign hit ratios
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Note: The figure presents the 60 month moving average sign hit ratios given by the individual models
‘Leading Indicator’(in solid line) and ‘Halloween indicator’ (in dotted line).

after 1998, the ratios start to deteriorate and stabilize at hit ratios around 0.5 for the

final years of the sample period. The higher percentage of positive returns in 90’s, and

the almost always positive forecasts given by model HI may explain the result. The hit

ratios given by the LF model are more stable and on average just above 0.5. In term of

MSPE, Figure 2.9 show similar predictive patterns of the set of forecasts, but after middle

of 1996 the HI model always provides lower mean square errors than the LF model.

When averaging schemes are applied, the results are intriguing; see the top of Table

3 for details. The MSPEs of schemes 1, 2, 3, 4, 6 are all higher than that of model HI.

Moreover, constant OLS and recursive OLS schemes have a positive bias11. The time

varying weight schemes, however, provide the best statistics. If we investigate the weight

estimates, we find that there is an indication of a break in the weight for model HI in

the training period at year 1995, moving from a lower value to values very stable around

1. At the same time, the weight on model LF decreases and stabilizes around -0.5. This

confirms ex-post instability evidence in Figure 2.9 that model HI provides more accurate

forecasts than the alternative model after 1996. The dramatic boom of stock prices at

the end of 90’s and well documented lower predictability of macroeconomic and financial

indicators can explain this result. It may also indicate that strategy HI captures some

seasonal stylized facts of stock index returns and assigning weight 1 to it is beneficial in

term of forecasting performance.

The BMA with predictive likelihood also gives a marginal lower MSPE than the indi-

vidual model HI. These results are similar to the ones from exercise IX, which shows that

the BMA scheme 7 copes with possible instability better than simple combination schemes.

Summarizing, the forecast statistics of the combination schemes are rather similar; the

largest difference between schemes is less than 5%. However, because predictability of

11We emphasize that their bias is insignificant with respect to the MSPE, and it is less than 0.2% of
the unconditional mean return.



43

Figure 2.9: 60 month moving average MSPEs
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Note: The figure presents the 60 month moving average MSPE given by the individual models ‘Leading
Indicator’(in solid line) and ‘Halloween indicator’ (in dotted line).

stock market is very low, small improvements in MSPE may have substantial economic

value. To investigate this we implement a portfolio exercise, reported n the next section.

Summarizing, the forecast statistics of the combination schemes are rather similar; the

largest difference between schemes is less than 5%. Moreover, because predictability of

stock market is very low, small improvements in MSPE may have substantial economic

value. To investigate this we implement a portfolio exercise, reported n the next section.

Economic value

Panel B of Table 2.3 provides performance measures for the different investment strategies

based on the ten different forecasting methods presented in the previous sections. Over

the forecasting period, January 1996 to December 2005, the average return on the stock

portfolio is 10%, the standard deviation is 16%, and the Sharpe ratio is 0.12. The strate-

gies based on forecasting returns with one of the two individual models give lower mean

returns for a moderately risk averse (γ = 5) investor, but also lower standard deviation,

which results in a higher Sharpe ratio for the Halloween strategy. Accounting for possible

time varying volatility, and evaluating strategies with the ex-post realized utility shows

that the Halloween indicator performs better than the leading indicator and the market.

The leading factor strategy gives very low mean portfolio returns, which implies a low

Sharpe ratio and utility level.

Next, consider the strategies based on forecasting excess returns with the eight aver-

aging schemes. Strategy 5 and 8, based on time varying model weights, give the highest

mean returns among all the active strategies, among the lowest standard deviations, and

the highest Sharpe ratios and utility levels. In particular, the Bayesian time varying

weight scheme has marginally higher mean return but also standard deviation. Strategy

7, based on BMA with predictive likelihood, provides also marginally superior results in

terms of portfolio measures than the strategy HI, but substantially lower than the pre-
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vious strategy. Again, more precise priors may be chosen, but we omit this “subjective”

exercise. All other strategies have lower economic values, in particular, give lower mean

portfolio returns. Results are qualitative similar for a risk seeking investor (γ = 2) and

a risk averse investor (γ = 10). Moreover, adding transaction costs does not change the

quality of the results, and even with substantial transaction costs of 100 basis points,

strategies 5 and 8 give higher levels of utility compared to a random walk strategy of

investment. We notice that their Sharpe ratios are lower, confirming that the Sharpe

ratio may overestimates risk in case of time varying volatility.

To conclude, the results indicate than the individual models HI and LF provide dif-

ferent forecasts. Moreover, instability in the relation between realized excess returns and

individual forecasts seems to be relevant. As in the simulation exercises, in the empir-

ical example the time varying weight schemes give the highest predictive gains both in

statistical measures and economic gains.

2.5 Conclusion

Investors often have a set of forecasts on asset returns available from different models.

Such investors may attempt to discover which is the best forecasting model and use it

to allocate their portfolios, or they may consider all forecasts and take decisions by aver-

aging forecast information from the individual models. In this Chapter we explained in

a simulation experiment that when data is subject to low predictability, low correlation

among individual forecasts, and structural instability, the Terui and van Dijk (2002) time

varying model weight scheme and its extension in a Bayesian framework to incorporate

parameter uncertainty provides the most accurate forecasts compared to other frequentist

and Bayesian model averaging (with diffuse priors on model parameters) schemes. We ap-

plied the different model averaging schemes also to forecast the index of US stock returns.

As in the simulation exercise, stylized facts of stock index data are low predictability

and possible structural instability. We considered two forecasting models that represent

different views on predicting the US stock index. We have shown, firstly, that averaging

strategies can give higher predictive gains than selecting the best model; secondly, that

time varying model weights have higher statistical and economic values than other av-

eraging schemes considered. An interesting topic for further research is to compare our

results to other time varying weight combination schemes, such as regime switching, see

e.g. Guidolin and Timmermann (2007), or schemes that carefully model breaks, see e.g.

Ravazzolo et al. (2007a). Moreover, combination schemes can be applied to the analysis

of density forecasts. Market operators, such as financial investors or central bank decision

makers, are becoming increasingly interested in knowing the complete distribution of the
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assets of interests for purposes of risk management. The Bayesian time varying weight

scheme that we put forward seems particular adequate in this context.
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Appendix: Estimation details

2A Comparison of Recursive Least Squares and time

varying model weight combinations

Recursive Least Squares model weights The model weights of the OLS averaging

scheme 4 can be computed by Recursive Least Squares. Consider (2.10) and rewrite it as

yt = z
′
tw

(4) + ut; ut ∼ N(0, s2) (2A.1)

where z
′
t is a (1 × q) row vector and where w(4) is a (q × 1) vector of unknown constant

parameters. The first step in the derivation of the recursive least square estimator b
(4)
t

of the weight w(4) is to specify the OLS estimators of w(4) using information up to t and

t− 1

b
(4)
t = (Z

′
tZt)

−1Z
′
tYt

b
(4)
t−1 = (Z

′
t−1Zt−1)

−1Z
′
t−1Yt−1

where Zt = (Z
′
t−1, zt)

′
with Zt−1 a ((t − 1) × q) matrix and z

′
t a (1 × q) row vector, and

where Yt = (Y
′
t−1, yt)

′
with Yt−1 a ((t− 1)× 1) vector and yt a scalar. To compute b

(4)
t and

b
(4)
t−1 we require that t ≥ q, and (Z

′
t−1Zt−1) and (Z

′
tZt) are non singular matrices. As next

step to derive b
(4)
t as function of b

(4)
t−1 and data information available at time (t − 1), we

express (Z
′
tZt) in terms of (Z

′
t−1Zt−1), and (Z

′
tYt) in terms of (Z

′
t−1Yt−1). Consider first

Z
′
tYt = Z

′
t−1Yt−1 + ztyt

= (Z
′
t−1Zt−1)b

(4)
t−1 + ztyt + ztz

′
tb

(4)
t−1 − ztz

′
tb

(4)
t−1

= (Z
′
t−1Zt−1 + ztz

′
t)b

(4)
t−1 + zt(yt − z

′
tb

(4)
t−1)

= Z
′
tZtw

(4)
t−1 + zt(yt − z

′
tb

(4)
t−1)

Then,

b
(4)
t = (Z

′
tZt)

−1(Z
′
tZtb

(4)
t−1 + zt(yt − z

′
tb

(4)
t−1))

= b
(4)
t−1 + (Z

′
tZt)

−1zt(yt − z
′
tb

(4)
t−1)

To express (Z
′
tZt) in terms of (Z

′
t−1Zt−1), make use of the matrix inverse lemma (A +

BC−1D)−1 = A−1 − A−1B(C−1 + DA−1B)−1DA−1, where A,B, C,D are matrices, and
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A and C are non-singular, see e.g. Harvey (1993, section 4). Then one can obtain

(Z
′
tZt)

−1 = (Z
′
t−1Zt−1 + ztz

′
t)
−1

= (Z
′
t−1Zt−1)

−1 − (Z
′
t−1Zt−1)

−1zt(1 + z
′
t(Z

′
t−1Zt−1)

−1zt)
−1z

′
t(Z

′
t−1Zt−1)

−1

= (Z
′
t−1Zt−1)

−1(1 + z
′
t(Z

′
t−1Zt−1)

−1zt)
−1

The recursive least squares estimator of the weight w(4) is

b
(4)
t = b

(4)
t−1 + (Z

′
t−1Zt−1)

−1zt(z
′
t(Z

′
t−1Zt−1)

−1zt + 1)−1(yt − z
′
tb

(4)
t−1) (2A.2)

b
(4)
t is defined recursively as equal to its previous value plus a weighted value of the

prediction error (yt− z
′
tb

(4)
t−1) times the observed value of zt. A minimum of k observations

are needed to compute a starting value for the estimator.

Time varying model weights The model weights of the time varying averaging

scheme 5 are defined as

yt = z
′
tw

(5)
t + ut; ut ∼ N(0, s2) (2A.3)

w
(5)
t = w

(5)
t−1 + ξt; ξt ∼ N(0, Σ) (2A.4)

where w
(5)
t is a (q × 1) vector of random variables, and ut and ξt are independently and

identical distributed for t = 1, ..., T , and uncorrelated for all lags, E(ξt, uτ ) = 0 for all t

and τ , t 6= τ , and where Σ is a diagonal matrix.

We make use of the Kalman Filter technique to compute estimators for the model

weights w
(5)
t . Rewrite (2A.3) as

yt = z
′
tb

(5)
t|t−1 + z

′
t(w

(5)
t − b

(5)
t|t−1) + ut (2A.5)

and use that

w
(5)
t = b

(5)
t|t−1 + w

(5)
t − b

(5)
t|t−1 (2A.6)

where b
(5)
t|t−1 is defined as an unbiased predictor of the vector of latent factors w

(5)
t .

Conditional on information at time t− 1 and using (2A.5) and (2A.6), one has

E(yt) = z
′
tb

(5)
t|t−1

V (yt) = z
′
tPt|t−1zt + s2

E(w
(5)
t ) = b

(5)
t|t−1

V (w
(5)
t ) = Pt|t−1
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and

E(w
(5)
t , yt) = Pt|t−1zt

where E() is the expected value operator and V () is the variance operator, where (fol-

lowing Harvey, 1993) b
(5)
t|t−1 = b

(5)
t−1 is the best predictor in MSPE sense for w

(5)
t and b

(5)
t−1

is the unbiased estimator for w
(5)
t−1 known at time t, and where Pt|t−1 = (Pt−1 + Σ) is the

best predictor for the variance of w
(5)
t and Pt−1 is the variance of the estimator of w

(5)
t−1

known at time t.

Therefore, given the assumptions on the distribution of ut and on b
(5)
t|t−1 the vector

[w
(5)′
t , yt]

′
is conditional normally distributed given information up to time (t − 1) with

mean and covariance matrix given by




b
(5)
t|t−1

z
′
tb

(5)
t|t−1







Pt|t−1 Pt|t−1zt

z
′
tPt|t−1 z

′
tPt|t−1zt + s2


 (2A.7)

It now follows from properties of the multivariate distribution, see Appendix 2.C, that

the distribution of w
(5)
t conditional on yt is multivariate normal with mean

b
(5)
t = b

(5)
t|t−1 + Pt|t−1zt(z

′
tPt|t−1zt + s2)−1(yt − z

′
tb

(5)
t|t−1) (2A.8)

and covariance matrix

Pt = Pt|t−1 − Pt|t−1zt(z
′
tPt|t−1zt + s2)−1z

′
tPt|t−1 (2A.9)

Thus b
(5)
t is the vector of estimated model weights in (2A.3) defined equal to the predictor

of the latent factor w
(5)
t plus a term that is the weighted product of the prediction error

(yt − z
′
tb

(5)
t|t−1), the observed value of zt, and the prediction for the variance of the latent

factor estimator Pt|t−1.

Comparison The estimated weights of the recursive OLS averaging scheme 4 is a special

case of the estimated weights of the time varying averaging scheme 5 computed using the

Kalman Filter technique. This can be seen directly: if Σ is a matrix of zeros, s2 = 1, and

the updating equation of the Kalman Filter in (2A.9) is initialized as Pk = (Z
′
kZk)

−1, the

weight estimates in (2A.8) and (2A.2) are identical.

Let fix Pk = (Z
′
kZk)

−1. Following (2A.8), the weight estimates at time (k + 1) given by

the Kalman Filter have mean

b
(5)
k+1 = b

(5)
k +((Z

′
kZk)

−1+Σ)zk+1(z
′
k+1((Z

′
kZk)

−1+Σ)zk+1+s2)−1(yk+1−z
′
k+1b

(5)
k ) (2A.10)
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where b
(5)
k+1|k = b

(5)
k , and where (Pk+1|k = (Z

′
kZk)

−1 + Σ). s2 is a scaling parameter. From

(2A.3) V (yk+1) = (z
′
k+1((Z

′
kZk)

−1 + Σ)zk+1 + s2), and by scaling it with s2, one has

V (y∗) =

(
z
′
k+1

(
(Z
′
kZk)−1

s2 + Σ
s2

)
zk+1 + 1

)

E(w
(5)
k+1, y

∗) =
((Z

′
kZk)−1+Σ)zk

s

where y∗ = yk+1/s. Therefore, b
(5)
k+1 can be written as:

b
(5)
k+1 = b

(5)
k +

(
(Z

′
kZk)

−1

s2
+

Σ

s2

)
zk+1

(
z
′
k+1

(
(Z

′
kZk)

−1

s2
+

Σ

s2

)
zk+1 + 1

)−1

(yk+1−z
′
k+1b

(5)
k )

(2A.11)

The recursive least square estimator of w(4) at time k + 1 is given in (2A.2) and repeated

for convenience as

b
(4)
k+1 = b

(4)
k + (Z

′
kZk)

−1zk+1(z
′
k+1(Z

′
kZk)

−1zk+1 + 1)−1(yk+1 − z
′
k+1b

(4)
k ) (2A.12)

Note that s2 is bounded from (2A.3) as 0 < s2 < V ar(y). Since we assume Pk = (Z
′
kZk)

−1,

and if k is sufficient large, the elements of the matrix (Z
′
kZk)

−1 are relative small. Then by

dividing for the scalar s2 they change marginally. What really matters in such situation

for comparing the two estimators in (2A.11) and (2A.12) is the signal to noise ratio (SNR),

that is Σ/s2.

• If the SNR is large, meaning that one or more diagonal elements of Σ are very large

comparing to s2, the weight estimates of the two schemes will differ substantially.

• If the SNR is on contrary small, meaning that s2 is large compared to the diagonal

elements of Σ, the weight estimates in the two schemes will be almost identical.

In our simulation exercise, a large SRN corresponds to large instability in the DGP

weights. Thus, our conclusion is that in cases where the data are subject to structural

instability, the time varying weight scheme is preferable to the Recursive OLS scheme.

2B Graphical examples

We develop few simulation exercises to explain graphically results in Appendix 2A. Let

assume that a series is generated from the following DGP:

yt = 1 + ztwt,1 + ut; ut ∼ N(0, s2) (2B.1)

wt = wt−1 + ξt; ξt ∼ N(0, σ2) (2B.2)
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Table 2.5: Simulation design in exer-
cises 2BI-2BIII

EXERCISES I II III
µz 0.00 0.00 0.00
µu 0.00 0.00 0.00
µξ 0.00 0.00 0.00
s2 1.00 1.00 1.00
σ2

z 1.00 1.00 1.00
σ2

ξ 0.00 0.04 1.00

where t = 1, .., T , where z = {zt}T
t=1 is a (T × 1) normally distributed vector with mean

µz and variance σz in Table 2.4.

We apply the Recursive Least Squares and the Kalman Filter algorithms to estimate

w = {wt}T
t=k+1, defined as b(4) and b(5) respectively, where k are the initial observations

to initialize the estimation algorithms. Precisely, we use the OLS estimate of w on the

initial k observation and Pk = (Z
′
kZk)

−1 to initialize the algorithms.

Exercise 2B.I: Zero SNR We fix T = 240, k = 120, s2 = 1, σ2 = 0, and β0 = 1.

Results are in Figure 2.10. The vector w is constant and the two estimators provide the

same results.

Exercise 2B.II: Medium SNR In this exercise we fix s2 = 1, σ2 = 0.04, and β0 = 1.

Results are in Figure 2.11. The vector w has a time varying pattern. b(4) and b(5) initialize

with the same value, then b(4) is very persistent around the value 1, b(5) on contrary

approximates very precisely the pattern of w.

Exercise 2B.III: High SNR In this exercise we fix s2 = 1, σ2 = 1, and β0 = 1. Results

are in Figure 2.12. The vector w follows a very high volatile pattern, b(5) accurately

estimates it, b(4) is on contrary a poor estimator.

2C Properties of Multivariate Normal Distribution

Let the pair of vectors x and y be jointly multivariate normal such that (x
′
, y

′
)
′
has mean

and covariance matrix given by




µx

µy


 Σ =




Σxx Σxy

Σyx Σyy


 (2C.1)
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Figure 2.10: Exercise 2B.I
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Note: The figure presents the patterns of parameter β (in - line), and estimates β̂(4) (in -. line) and β̂(5)

(in .. line) in exercises 2B.I.

Figure 2.11: Exercise 2B.II
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Note: The figure presents the patterns of parameter β (in - line), and estimates β̂(4) (in -. line) and β̂(5)

(in .. line) in exercises 2B.II.

Figure 2.12: Exercise 2B.III
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Note: The figure presents the patterns of parameter β (in - line), and estimates β̂(4) (in -. line) and β̂(5)

(in .. line) in exercises 2B.III.
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respectively. Then the distribution of x conditional on y is also multivariate normal with

mean

µx|y = µx + ΣxyΣ
−1
yy (y − µy) (2C.2)

and covariance matrix

Σxx|y = Σxx − ΣxyΣ
−1
yy Σyx (2C.3)

Note that Σ and Σyy are assumed to be non-singular, although in fact Σ−1
yy can be replaced

by a pseudo inverse.

2D Predictive densities and marginal likelihood for

linear models

For Bayesian inference of models (2.1) and (2.2), we use a Normal-Inverted Gamma-2

prior densities for the vector of parameters (αi, βi, σ
2
i )

αi, βi, σ
2
i ∼ NIG2(αi, βi

, V i, s
2
i , νi)

The posteriors take the form, see for example Koop (2003, p. 37),

αi, βi, σ
2
i |FT ∼ NIG2(αi, βi, V i, s

2
i , νi),

where FT are data up to time T, where

V i = (V −1
i + X ′

iXi)
−1,

[
αi, βi

]′
= V i(V

−1
i [αi, βi

]′ + X ′
iXi[α̂i, β̂i]

′),

νi = νi + T,

νis
2
i = νis

2
i + ŝ2

i + ([α̂i, β̂i]− [α̂i, β̂i])(V i + (X ′
iXi)

−1)−1([α̂i, β̂i]
′ − [α̂i, β̂i]

′),

where Xi = [ιs, {xt,i}T
t=1], where [α̂i, β̂i]

′ are the OLS estimates of [αi, βi]
′ in the model

mi, and where ŝ2
i = ((y − ιsα̂i + xiβ̂i)

′(y − ιsα̂i + xiβ̂i)).

The predictive density of yT+1 conditional on FT and xT+1,i is

yT+1|FT , xT+1,i = t(αi + xT+1,iβi, s
2
i (IT + XiV iXi), νi) (2D.1)

where t(·) indicates the Student t distribution.

The marginal likelihood becomes:

p(y|mi) = γi

( |V i|
|V i|

)1/2

(νis
2
i )
−νi/2 (2D.2)
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where

γi =
Γ(νi/2)(νis

2
i )

νi/2

Γ(νi/2)πs/2
,

and where Γ(·) is the Gamma function.

We note that normalizing the marginal likelihood in (2D.2) may be very difficult. The

term γi has often numerator and denominator very huge. However, if the same priors

are chosen for the parameters σ2
i , γi has the same value for both the models and then it

drops out when calculating model probabilities in equation (2.17). But when T is high,

νi is high too, making complicate the computation of (2D.2) or too sensitive to νi. It

is often convenient to compute the log marginal likelihoods of the models mi, to re-scale

them, and finally to take the exponentials. Results of (2D.2) do not change, but numbers

can be managed. However, there is not a given rule for this procedure, and the problem

cannot be solved if, for example, the logarithms are high negative numbers.

2E Estimation of the Bayesian time varying model

weight combinations

The model weights of the time varying weights in scheme 8 are defined as in (2A.3)

and (2A.4) (zt may assume different values). The parameters in (2A.3) and (2A.4) are

the variances of the residuals in the observation equation, s2, and the variances of the

residuals in the latent equation q2
0, . . . , q

2
i , where q2

0, . . . , q
2
i are the diagonal elements of

Σ. The model parameters are collected in the ((1 + i)× 1) vector θ = (s2, q2
0, . . . , q

2
i )
′. To

facilitate the posterior simulation we make use of independent conjugate priors. For the

variance parameters we take the inverted Gamma-2 prior

q2
j ∼ IG-2(νj, δj) for j = 0, . . . , i (2E.1)

and

s2 ∼ IG-2(νs, δs), (2E.2)

where νj, δj, j = 0, . . . , i, νs, and δs are parameters which can be chosen to reflect the

prior beliefs about the variances.

Posterior results are obtained using the Gibbs sampler of Geman and Geman (1984)

combined with the technique of data augmentation of Tanner and Wong (1987). The latent

variables w = {wt}T
t=1 are simulated alongside the model parameters θ. The complete data

likelihood function is given by

p(y, w|z, θ) =
T∏

t=1

p(yt|zt, wt, s
2)p(wt|wt−1, q

2
0, . . . , q

2
i ) (2E.3)
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where y = (y1, . . . , yT )′ and z = (z′1, . . . , z
′
T )′. The terms p(yt|zt, wt, s

2) and p(wt|wt−1, q
2
0, . . . , q

2
i )

are normal density functions, which follows directly from (2A.3) and (2A.4) respectively. If

we combine (2E.3) together with the prior density p(θ), which follows from (2E.1)-(2E.2),

we obtain the posterior density

p(θ, w|y, z) ∝ p(θ)p(y, w|z, θ) (2E.4)

The sampling scheme can be summarized as follows:

1. Draw w conditional on θ.

2. Draw θ conditional on w.

The full conditional posterior density for the latent regression parameters w in step 1 is

computed using the simulation smoother as in Carter and Kohn (1994). The Kalman

smoother is applied to derive the conditional mean and variance of the latent factors;

for the initial value w0 a multivariate normal prior with mean 0 is chosen as for scheme

5. To sample the parameters θ in step 2 we can use standard results in Bayesian in-

ference. Hence, the variance parameters s2 and q2
j are sampled from inverted Gamma-2

distributions.

The one-step ahead predictive density of yT+1 at time T conditional on y, z and zT+1 is

given by

p(yT+1|y, z, zT+1) =

∫∫
p(yT+1|zT+1, wT+1, s

2)p(wT+1|wT , q2
0, . . . , q

2
i )

p(θ, w|y, z)p(zT+1|zT )dwdθ (2E.5)

Simulating yT+1 from the one-step ahead distribution (2E.5) is in fact rather straight-

forward. In each step of the Gibbs sampler, we use the simulated values of wT and

(q0, . . . , q
2
i ), and equation (2A.4) to simulate wT+1. Equation (2A.3) in combination with

the simulated value of wT+1, the current Gibbs draws of s2, and the simulated value of

zT+1 then provide a simulated value for yT+1.







Chapter 3

Bayesian Model Averaging in the
Presence of Structural Breaks

3.1 Introduction

A growing body of empirical evidence suggests the presence of a certain (albeit modest)

level of predictability in aggregate stock returns, see Cochrane (2006) and Campbell and

Thompson (in press) for recent accounts. Several financial and macro-economic variables

have been reported as being useful predictors, including interest rates and different interest

rate spreads such as the yield spread, term spread, and credit spread, as well as valuation

ratios such as the dividend yield and the price-earnings ratio. There is, however, little

consensus about which variables really are the relevant predictor variables that should

enter a successful return forecasting model. Put differently, an investor who intends to

use a predictive regression to forecast future stock returns faces model uncertainty, see

Avramov (2002) and Cremers (2002).

At the same time, recent studies demonstrate that the relationship between stock

returns and predictor variables is not stable over time, see Pesaran and Timmermann

(2002) and Paye and Timmermann (2005), among others. Important political and eco-

nomic events, such as changes in monetary policy, oil crises and recessions fundamentally

change the economic environment including financial markets. In terms of predictive

regressions for stock returns, an investor should take into account the possibility that

parameters exhibit occasional structural breaks.1

A third related issue that investors have to cope with is the fact that parameters

in return forecasting model are estimated using historical data, implying the presence

1An alternative approach to incorporate instability in the relationship between excess returns and
predictor variables is to allow for the presence of recurrent regimes, possibly related to bull and bear
states of the market. We refer the interested reader to Ang and Bekeart (2002) and Guidolin and
Timmermann (2005a,b) for an analysis of the consequences of such regime-switching behavior for asset
allocation decisions.
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of parameter (estimation) uncertainty, see Kandel and Stambaugh (1996) and Barberis

(2000), among others.

To date, the effects of model uncertainty and structural breaks on return predictability

and asset allocation decisions have only been considered in isolation.2 We are not aware

of any attempts to incorporate both features in predictive regression models for asset

returns jointly. The only exception is Pettenuzzo and Timmermann (2005), but in their

framework the investor is quite limited in terms of both the number and complexity of

the models that can be combined.

In this Chapter we develop a return forecasting methodology that allows for instability

in the relationship between stock returns and predictor variables, for model uncertainty,

and for parameter estimation uncertainty simultaneously. On the one hand, the predic-

tive regression specification that we put forward allows for occasional structural breaks

of random magnitude in the regression parameters. On the other hand, we allow for

uncertainty about the inclusion of the forecasting variables in the model and about the

parameter values by employing Bayesian model averaging.

We consider an empirical application to predicting monthly US excess stock returns

using a set of 11 financial and macro-economic predictor variables. Our main results can

be summarized as follows. We find that over the period 1966-2005, several structural

breaks occurred in the relationship between the excess stock return and predictor vari-

ables such as the dividend yield and interest rates. These changes appear to be caused by

important events such as the oil crisis, changes in monetary policy, the October 1987 stock

market crash, and the internet bubble at the end of the 1990s. Although incorporating

the different sources of uncertainty does not lead to large improvements in the statistical

accuracy of excess return forecasts, their economic value in asset allocation decisions is

considerable. We find that a typical investor would be willing to pay up to several hun-

dreds of basis points annually to switch from a passive buy-and-hold strategy to an active

strategy based on a return forecasting model that allows for model and parameter uncer-

tainty as well as structural breaks in the regression parameters. The active strategy that

incorporates all three sources of uncertainty performs considerably better than strategies

based on more restricted return forecasting models.

The Chapter proceeds as follows. In Section 3.2 we develop the return forecasting

methodology that allows for instability in the relationship between stock returns and

predictor variables, for model uncertainty, and for parameter estimation uncertainty si-

multaneously. Given that the Bayesian analysis of our model is non-standard, we provide

a detailed description of the prior specification and the simulation of the posterior distri-

2As both model uncertainty and the presence of structural breaks are typically handled by adopting
a Bayesian framework, these features are relatively easy to combine with parameter uncertainty.
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butions. In Sections 3.3 and 3.4 we report results from an empirical application of the

approach developed in Section 3.2 to predicting US stock returns using a set of 11 finan-

cial and macro-economic predictor variables over the period 1966-2005. In Section 3.3 we

describe the data set and discuss the choices made for prior specification. In addition, we

present full-sample estimation results, which can be considered as an ex-post analysis of

the occurrence of structural breaks and the relevance of the different forecasting variables.

In Section 3.4 we assess the economic value of incorporating the different sources of un-

certainty in investment decisions in real-time by means of an ex-ante recursive forecasting

experiment. We conclude in Section 3.5.

3.2 Methodology

3.2.1 The Model

Let rt denote the stock return in excess of the risk-free rate during period t, and let

xt = (x1t, x2t, . . . , xkt)
′ denote a vector of k predictor variables (which are observed at

the beginning of period t) for t = 1, . . . , T . The benchmark model in the literature for

predicting stock returns is the standard linear regression model

rt = β0 +
k∑

j=1

βjxjt + εt, (3.1)

where εt ∼ N(0, σ2). Two crucial assumptions underlying the linear regression model are,

first, that the set of relevant predictor variables xt is given and fixed, and second that the

regression parameters β = (β0, β1, . . . , βk)
′ are constant over time. Both assumptions are

questionable in empirical practice, and extensions of the model that drop either of the

two assumptions have been developed in recent years. These are briefly discussed first,

before we introduce our general model that allows for both uncertainty about the relevant

predictor variables and for possible structural breaks in the regression parameters.

First, the fact that the set of predictor variables xt in (3.1) is given and fixed a priori

is unrealistic, in the sense that the investor rarely knows with certainty which particular

forecasting variables are the relevant ones to include. Avramov (2002) and Cremers

(2002) have analyzed this issue of model uncertainty, advocating the use of Bayesian

model averaging where all possible models are considered and averaged according to their

posterior model probabilities.

A possible way to represent model uncertainty in the linear regression is by means of

a latent binary random variable sj = 0, 1 determining the inclusion of xjt in the model for

j = 1, . . . , k. The return forecasting model with uncertainty about the relevant predictor
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variables (but with constant parameters) then is given by

rt = β0 +
k∑

j=1

sjβjxjt + εt. (3.2)

The k sj variables can be summarized in a k-dimensional vector S = (s1, . . . , sk)
′. The

vector S can take 2k different values, each resulting in a different regression model. Model

selection is therefore defined in terms of variable selection, see George and McCulloch

(1993) and Kuo and Mallick (1998). We denote each model by the index i = (s1, . . . , sk)2.

Note that the intercept parameter β0 is always included in the model, as typically assumed.

Second, as discussed in the introduction, there is abundant empirical evidence showing

that the relationship between stock returns and typical predictor variables such as the

dividend yield is not stable over time, implying that the assumption of constant regression

parameters βj as in (3.1) is invalid.

There are several ways to extend the linear regression model in order to capture param-

eter instability. An attractive flexible specification that allows for occasional structural

breaks in the regression parameters is as follows:

rt = β0t +
k∑

j=1

βjtxjt + εt, (3.3)

where βt = (β0t, β1t, . . . , βkt) is a vector of time-dependent regression parameters, which

evolve over time according to

βjt = βj,t−1 + κjtηjt, j = 0, . . . , k, (3.4)

where ηjt ∼ N(0, q2
j ) for j = 0, . . . , k, and κjt is an unobserved uncorrelated 0/1 process

with Pr[κjt = 1] = πj for j = 0, . . . , k. Hence, the jth regression parameter βjt remains

the same as its previous value βj,t−1 unless κjt = 1 in which case it changes with ηjt, see,

for example, Koop and Pooter (2004) and Giordani et al. (2007) for a similar approach.

We note that the predictor variables xt should be demeaned to exclude that any break

in one of the βjt entails a break in the intercept coefficient β0t. Then, β0t represents the

unconditional equity premium.

The specification in (3.4) implies that the regression parameters βjt, j = 0, . . . , k, are

allowed to change every time period, but they need not change at any point in time.

The presence of a change is described by the latent binary random variable κjt, while the

magnitude of the change is determined by ηjt, which is assumed to be normally distributed

with mean zero. Note that the changes in the separate regression parameters are not

restricted to coincide as in Pesaran and Timmermann (2002) but rather are allowed to

occur at different points in time, see also Giordani et al. (2007).



63

While model uncertainty and structural breaks in the context of return prediction

models have been studied in isolation, attempts to consider both features simultaneously

are very rare, but see Pettenuzzo and Timmermann (2005). Using the representation of

model uncertainty as given in (3.2), it actually turns out to be fairly straightforward to

incorporate structural breaks as well, for example by adding the time-varying parameter

specification as given in (3.4). Hence, we propose the following linear regression model

for the excess stock return rt:

rt = β0t +
k∑

j=1

sjβjtxjt + εt, (3.5)

where εt ∼ N(0, σ2) and βt = (β0t, β1t, . . . , βkt)
′ evolves over time according to (3.4) as

before.

For inference in our model (3.5) with (3.4) we opt for a Bayesian approach. This

will provide the posterior distribution of the latent κjt processes for j = 0, . . . , k and t =

1, . . . , T . Bayesian inference on S leads to posterior probabilities of the 2k possible models

that can in turn be used for Bayesian model selection and Bayesian model averaging.

Notice that κjt does not depend on S. At the same time the estimate of κjt can be

different across different values of S and hence breaks can occur in different parameters

and at different time periods across models. Below we first discuss prior specification,

followed by a description of the posterior simulation algorithm.

3.2.2 Prior Specification and Posterior Simulation

The parameters in the model (3.5) with (3.4) are the inclusion variable S = (s1, . . . , sk)
′,

the structural break probabilities π0, . . . , πk and the magnitude of the breaks in the re-

gression parameters, q2
0, . . . , q

2
k, in addition to the variances of the residual returns, σ2. The

model parameters are collected in the (3(1+k)×1) vector θ = (s1, . . . , sk, π0, . . . , πk, q
2
0, . . . , q

2
k, σ

2)′.

To facilitate the posterior simulation we make use of independent conjugate priors. For

the variable inclusion parameters we take the following prior distribution

Pr[sj = 1] = λj for j = 1, . . . , k. (3.6)

Hence, the parameter λj reflect our prior belief about the inclusion of the jth explanatory

variable, see George and McCulloch (1993) and Kuo and Mallick (1998). For the structural

break probability parameters we take Beta distributions

πj ∼ Beta(aj, bj) for j = 0, . . . , k. (3.7)

The parameters aj and bj can be set according to our prior belief about the occurrence

of structural breaks. Finally, for the variance parameters we take the inverted Gamma-2
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prior

q2
j ∼ IG-2(νj, δj) for j = 0, . . . , k (3.8)

and

σ2 ∼ IG-2(νs, δs), (3.9)

where νj, δj, j = 0, . . . , k, νs, and δs are parameters which can be chosen to reflect the

prior beliefs about the variances. Realistic values of the parameters in the different prior

distributions depend on the problem at hand. In Section 3.3 we discuss the prior settings

for our empirical application to US stock returns.

Posterior results are obtained using the Gibbs sampler of Geman and Geman (1984)

combined with the technique of data augmentation of Tanner and Wong (1987). The

latent variables B = {βt}T
t=1 and K = {κt}T

t=1 with κt = (κ0t, κ1t, . . . , κkt)
′ are simulated

alongside the model parameters θ.

The complete data likelihood function is given by

p(r,B,K|x, θ) =
T∏

t=1

p(rt|S, xt, βt, σ
2)p(βt|βt−1, κt, q

2
0, . . . , q

2
k)

k∏
j=0

π
κjt

j (1−πj)
1−κjt , (3.10)

where r = (r1, . . . , rT ) and x = (x′1, . . . , x
′
T )′. The terms p(rt|S, xt, βt, σ

2) and p(βt|βt−1, κt, q
2
0, . . . , q

2
k)

are normal density functions, which follow directly from (3.5) and (3.4), respectively. If

we combine (3.10) together with the prior density p(θ), which follows from (3.9)–(3.7),

we obtain the posterior density

p(θ,B, K|r, x) ∝ p(θ)p(r, B,K|x, θ). (3.11)

To derive the Gibbs sampler we combine the Kuo and Mallick (1998) algorithm for vari-

able selection and the efficient sampling algorithm of Gerlach et al. (2000) to handle the

(occasional) structural breaks. If we define θ = (S, θ̄) with θ̄ = (π0, . . . , πk, q
2
0, . . . , q

2
k, σ

2)′,

the sampling scheme can be summarized as follows:

1. Draw S conditional on B, K, θ̄, r and x.

2. Draw K conditional on S, θ̄, r and x.

3. Draw B conditional on S, K, θ̄, r and x.

4. Draw θ̄ conditional S, B, K, r and x.
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Step 1 is done similarly to and Kuo and Mallick (1998), which is a simplified version

of the George and McCulloch (1993) algorithm. Starting from the previous iteration, the

variable S is drawn from its full conditional posterior distribution. The complete data

likelihood function (3.10) is computed for sj = 0 and sj = 1 resulting in pj,0 and pj,1. The

full conditional posterior is then given by

Pr[sj = 1|r, x, θ̄, B, K, S−j] =
pj,1

pj,0 + pj,1

, (3.12)

for j = 1, . . . , k, where S−j = (s1, . . . , sj−1, sj+1, . . . , sk)
′.

The (occasional) structural breaks, measured by the latent variable κjt, are drawn

in step 2 using the algorithm of Gerlach et al. (2000), which derives its efficiency from

generating κjt without conditioning on the states βjt. The conditional posterior density

for κt, t = 1, . . . , T unconditional on B is

p(κt|K−t, S, θ̄, r, x) ∝ p(r|K, S, θ̄, x)p(κt|K−t, S, θ̄, x)

∝ p(rt+1, . . . , rT |r1, . . . , rt, K, S, θ̄, x)

p(rt|r1, . . . , rt−1, κ1, . . . , κt, S, θ̄, x)p(κt|K−t, S, θ̄, x),

(3.13)

where K−t = {κs}T
s=1,s 6=t. Note that the term p(κt|K−t, S, θ̄, x) is simply given by

∏k
j=0 π

κjt

j (1−
πj)

1−κjt given that κjt does not depend on sj. The two remaining densities

p(rt+1, . . . , rT |r1, . . . , rt, K, S, θ̄, x) and p(rt|r1, . . . , rt−1, κ1, . . . , κt, S, θ̄, x) can easily be eval-

uated as shown in Gerlach et al. (2000). Because κt can take a finite number of values,

the integrating constant can easily be computed by normalization.

The full conditional posterior density for the latent regression parameters B in step 3

is computed using the simulation smoother as in Carter and Kohn (1994). The Kalman

smoother is applied to derive the conditional mean and variance of the latent factors; for

the initial value β0 a multivariate normal prior with mean 0 is chosen.

Note that in case the variable xj is not selected, the full conditional distributions of

κjt and βjt for t = 1, . . . , T do not depend on the data r and x. Hence, in this case we

sample unconditionally from the process in (3.4) and the binary random process for κjt.

To sample the parameters θ̄ in step 4 we can use standard results in Bayesian infer-

ence. Hence, the probabilities πj are sampled from Beta distributions and the variance

parameters σ2 and q2
j are sampled from inverted Gamma-2 distributions.

3.2.3 Using the Posterior Results

The output of the Gibbs sampler can be used to compute several quantities of inter-

est. First, the marginal posterior distribution of the individual sj parameters p(sj|r, x)

represents the posterior probability that variable xj is included in the model. This can



66 Methodology

used to assess the (relative) importance of the different predictor variables for forecasting

stock returns. The interaction of different predictor variables can also be examined. For

example, following Doppelhofer and Weeks (2005) the degree of dependence or jointness

among two explanatory variables xj and xl can be formally computed by the following

measure of jointness:

Jj,l = log

(
p(sj = 1 ∩ sl = 1|r, x)

p(sj = 1|r, x)p(sl = 1|r, x)

)
, (3.14)

where the numerator is the posterior joint probability of inclusion of the couple of variables

xj and xl, and the denominator is the product of the marginal posterior probabilities of

the inclusion of the jth and lth variables. We consider two variables to be significant

substitutes if Jj,l < −1, and significant complements if Jj,l > 1. In addition, posterior

model probabilities are easily obtained from the joint posterior distribution p(S|r, x) of

the inclusion variable S.

Second, we can use the simulated draws of K to do inference on the occurrence of

structural breaks in the regression parameters during the sample period. Obviously, we

might consider the marginal posterior distribution of a single κjt, p(κjt|r, x), but the pres-

ence of contemporaneous breaks in different parameters can also be evaluated. Similarly,

we can examine whether posterior evidence for breaks differs across models by condition-

ing on the inclusion/exclusion of certain variables in the model, for example, the posterior

probability of a break in the regression parameter of variable xj given that variables xl

and xm are included in the model is given by p(κjt|sl = sm = 1, r, x).

Third, the model in (3.5) with (3.4) can be used to predict future returns rT+h for h ≥
1. As our inference is Bayesian, we can explicitly take into account parameter uncertainty,

uncertainty in variable selection, and uncertainty in the occurrence of structural breaks.

In the empirical application in the next section, we focus on one-step ahead forecasting.

For that reason the discussion below is limited to the case h = 1, but it can be generalized

to h > 1 straightforwardly.

The one-step ahead predictive density of rT+1 at time T conditional on r, x and xT+1

is given by

p(rT+1|r, x, xT+1) =

∫∫ ∑
S

∑
K

∑
κT+1

p(rT+1|S, xT+1, βT+1, σ
2)

p(βT+1|βT , κT+1, q
2
0, . . . , q

2
k)

k∏
j=0

π
κj,T+1

j (1− πj)
1−κj,T+1p(B, K, S, θ̄|r, x)dBdθ̄, (3.15)

where p(rT+1|S, xT+1, βT+1, σ
2) and p(βT+1|βT , κT+1, q

2
0, . . . , q

2
k) follow directly from (3.5)

and (3.4) and where p(B, K, S, θ̄|r, x) is the posterior density.
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As we average over the posterior distribution of S we implicitly take a weighted av-

erage over all possible model specifications, where the weights are the posterior model

probabilities. The posterior distribution also reflects our posterior beliefs about the in-

sample structural breaks K. Finally, note that we also average with respect the unknown

κT+1 variable to account for the possibility that a break may occur in the out-of-sample

period T + 1, where the weights are given by
∏k

j=0 π
κj,T+1

j (1− πj)
1−κj,T+1 .

Simulating rT+1 from the one-step ahead distribution (3.15) is in fact rather straight-

forward. In each step of the Gibbs sampler, we use the simulated values of πj to draw the

out-of-sample values of κj,T+1 for j = 0, . . . , k. Given the simulated values of κj,T+1 and

given the Gibbs draws of q2
j and βT we can simulate βT+1 using (3.4). Equation (3.5) in

combination with the simulated value of βT+1 and the current Gibbs draws of S and σ2

then provide a simulated value for rT+1.

Of course, often forecasting returns in itself is not the ultimate goal, but rather a

means for determining the optimal asset allocation, for example. We postpone a detailed

discussion of this issue in the context of our empirical application to Section 3.4.

3.3 Model uncertainty and structural breaks in re-

turn forecasting models for the S&P 500

3.3.1 Data

The dependent variable is the continuously compounded monthly return on the S&P

500 index in excess of the 1-month T-Bill rate, from January 1966 to December 2005,

for a total of 480 observations. The set of predictors consists of k = 11 financial and

macro-economic variables that have often been considered as potentially relevant factors

for forecasting stock returns. Specifically, we include the S&P 500 index price-earnings

ratio (PE), the S&P 500 index dividend yield (DY ) defined as the ratio of dividends over

the previous twelve months and the current stock price, the 3-month T-Bill rate (I3),

the monthly change in the 3-month T-bill rate (DI3), the term spread (TS) defined as

the difference between the 10-year T-bond rate and the 3-month T-bill rate, the credit

spread (CS) defined as the difference between Moody’s Baa and Aaa yields, the yield

spread (Y S) defined as the difference between the Federal funds rate and the 3-month

T-bill rate, the annual inflation rate based on the producer price index (PPI) for finished

goods (INF ), the annual growth rate of industrial production (IP ), the annual growth

rate of the monetary base (MB), and the log monthly realized volatility of the S&P 500

index (LV ol). The monthly realized volatility is computed using daily returns, where we

follow French et al. (1987) and Marquering and Verbeek (2004) by assuming that daily
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returns are appropriately described by a first-order autoregressive process. In particular,

we use the following realized volatility estimator,

σ̂2
t =

Nt∑
t=1

(ri,t − r̄t)
2

[
1 +

2

Nt

Nt−1∑
j=1

(Nt − j)φ̂j
t

]
,

where ri,t is the return on day i in month t which has Nt trading days, r̄t is the average

daily return in month t, and φ̂t denotes the first-order autocorrelation estimated using

daily returns within month t.

A final remark about the data concerns the fact that we take into account the typical

publication lag of macroeconomic variables in order to avoid look-ahead bias. We therefore

include inflation and the growth rates of industrial production and the monetary base with

a two-month lag. As the financial variables are promptly available, these are included with

a one-month lag.

3.3.2 Prior specification

We set the prior probability of inclusion of the variable xjt equal to λj = 0.5 for all

j = 1, . . . , k. As in our framework the λj’s are independent across j, a ‘diffuse’ prior

for λj implies that all individual models have equal prior probability, as discussed in

Fernández et al. (2001). For the hyperparameters aj and bj in the Beta distribution for

the prior probability of breaks in the regression parameters πj, we impose aj = 0.7 and

bj = 35 for all j. This implies that the prior mean duration between breaks in a particular

regression parameter is equal to 51 months. For the q2
j parameters, j = 0, . . . , k, we take

a very peaked prior with mode near zero to limit the number of potential breaks. Finally,

the Gamma-2 prior parameters for σ2 are 0.002 with 35 degrees of freedom.

Unreported results show that the posterior results are not very sensitive to moderate

changes of the prior parameters of λj and σ2. However, the posterior results are sensitive

to the prior settings of the πj and the q2
j parameters. For example, an increase in the

prior mean of the duration between breaks leads to less breaks, see Giordani et al. (2007)

for similar results.

3.3.3 Full-sample estimation results

We estimate the linear regression model with variable selection and occasional structural

breaks in the parameters (3.5) with (3.4) using the complete sample period from January

1966 until December 2005. This enables us to provide an ex-post analysis of the relevance

of the different predictor variables and possible breaks in their regression parameters3.

3As noted before, the predictor variables are demeaned to exclude that possible breaks in the relation
between the excess returns and some predictors automatically entail a break in the intercept β0t. This
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Table 3.1 provides the posterior mean for the probability of inclusion parameter λj.

The lagged 3-month T-Bill rate is included in the return forecasting model most often,

with the posterior inclusion probability being equal to 0.9. This perhaps is not surpris-

ing given that the dependent variable is the stock return in excess of the closely related

1-month T-bill rate. Other variables for which the posterior probability of inclusion is

higher than the prior probability of 0.5 are the dividend yield (0.728), the yield spread

(0.628), the change in the 3-month T-bill rate (0.606), and the annual growth rate of the

monetary base (0.601). The dividend yield is the classical example of a financial ratio that

has been scrutinized time and again for its predictive ability for stock returns, with vary-

ing degrees of success, starting with Keim and Stambaugh (1986), Campbell and Shiller

(1988) and Fama and French (1988). It also has often been used in studies that consider

the implications of return predictability for asset allocation, see Kandel and Stambaugh

(1996), Barberis (2000), and Pettenuzzo and Timmermann (2005), among many others.

The effects of monetary policy on the stock market have been examined extensively, see

the survey by Sellin (2001). Patelis (1997) documents that various monetary policy in-

dicators have predictive ability for future stock returns, primarily by affecting expected

excess returns.4 Here we find a relatively high posterior inclusion for the monetary base

growth rate. Ample empirical evidence has been found for pronounced effects of monetary

policy announcements on the stock market. In particular, stock prices have been shown

to respond to (unexpected) changes in the Federal funds target rate, see Bernanke and

Kuttner (2005) for a recent assessment. This explains the high posterior inclusion prob-

ability for the yield spread of 0.621. The posterior inclusion probability of the change in

the 3-month T-bill rate of 0.606 suggests that changes in the level of interest rates bear

some additional information to the interest rate level itself. The low posterior inclusion

probability of the term spread of 0.220 is surprising, as the slope of the yield curve has fre-

quently been found to be an important predictive variable for stock returns, see Fama and

French (1989) and Aı̈t-Sahalia and Brandt (2001), for example. This may be attributed

to the short forecast horizon of one month considered here, for which variables related to

short-term interest rates such as the level and change of the 3-month T-bill rate and the

yield spread may have more predictive power. Finally, inflation and stock return volatility

have particular low posterior inclusion probabilities, indicating that these variables have

not been useful as predictors of stock returns over the sample period considered.

also implies that any breaks in the mean of the forecasting variables are captured by changes in β0t.
See Lettau and van Nieuwerburgh (in press) for an analysis of the implications of breaks in mean of
forecasting variables for return predictability.

4It is also interesting to note that Jensen et al. (1996) report that the predictive ability of variables
such as the dividend yield and the default spread depends on the monetary policy regime. In particular,
predictable variation in expected stock returns is higher during periods of expansive monetary policy
than during more restrictive periods. We do not explicitly consider such nonlinear effects here.
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Table 3.1: Posterior probability of pre-
dictor variable selection

Marginal posterior
Variable inclusion probability

PEt−1 0.336
DYt−1 0.728
I3t−1 0.900
DI3t−1 0.606
TSt−1 0.220
Y St−1 0.621
CSt−1 0.283
INFt−2 0.122
IPt−2 0.388
MBt−2 0.601
LV OLt−1 0.140

Note: The table presents the marginal
posterior probabilities of variables to
be selected in the predictive regression
model (3.5) for monthly S&P 500 excess
returns, estimated over the period Jan-
uary 1966-December 2005. PE = price-
earnings ratio; DY = dividend yield; I3
= 3-month T-bill rate; DI3 = monthly
change in the 3-month T-bill rate; TS
= term spread, defined as the differ-
ence between 10-year T-bond rate and
the 3-month T-bill rate; CS = credit
spread, defined as the difference between
Moody’s Baa and Aaa yields; Y S =
yield spread, defined as the difference be-
tween the Federal funds rate and the 3-
month T-bill rate; INF = annual infla-
tion rate based on the PPI; IP = annual
growth rate of industrial production; MB
= annual growth rate of the monetary
base; LV OL = log monthly stock return
volatility.
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Additional insight into the variable selection results can be obtained from the joint

selection of different variables. For that purpose, the posterior joint probabilities of inclu-

sion for all possible pairs of variables are presented in the above diagonal part of Table 3.2.

The entries below the diagonal represent the difference between the empirical posterior

joint inclusion probability and the joint inclusion probability under the assumption of

independence, which equals the product of the marginal probabilities of the two variables

involved as given in Table 3.1. Also note that the prior probability of joint inclusion for

any two variables is equal to 0.25, given that all individual prior probabilities are equal

to 0.5 and independent across variables. Table 3.3 shows the values of the measure of

jointness, as defined in (3.14). Obviously, part of the results in Table 3.2 follow directly

from the variable-specific selection probabilities in Table 3.1. For example, given that

the 3-month T-bill rate and the dividend yield have such high individual probabilities of

inclusion, their combination has high posterior probability to be selected as well. Hence,

the measure of jointness for (DY , I3) does not have a particularly large value. The couple

(PE,DY ) has a posterior probability of being selected together of 0.157, which is con-

siderably lower than the joint inclusion probability under independence of 0.245 and also

fairly close to the lower bound (0.064) that is possible given their individual inclusion

probabilities. Their coefficient of jointness therefore is substantially negative, indicating

that these variables are close substitutes. This is not surprising given that both the price-

earnings ratio and the dividend yield are well-accepted valuation measures having similar

predictive content for the development of the stock market. The posterior probability

of joint inclusion of the monetary base growth rate with both the dividend-yield and

the 3-month T-bill rate is higher than its prior value, while the corresponding jointness

measures in Table 3.3 confirm that money growth is complementary to these financial

variables. Many of the other combinations of variables have a posterior inclusion prob-

ability lower than the prior value of 0.25, while it is lower than the probability under

independence for an even larger number of pairs.

Finally, Table 3.4 lists the ten models which have the highest posterior model prob-

abilities. The conclusions from this table agree with the findings from Tables 3.1-3.3 as

discussed above. First, the dividend yield and both the level and change of the 3-month

T-bill rate are almost always included in the most likely models, in line with their rela-

tively high individual inclusion probabilities. The same applies to the yield spread and

the monetary base growth rate, although they appear somewhat less frequently. Second,

the finding that industrial production is included in five of the top ten models may seem

surprising at first given its modest individual posterior inclusion probability of 0.388, but

this can be explained by the positive value of its jointness measure with the dividend

yield, the change in the 3-month T-bill rate, and the yield spread. Hence, it seems that
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Table 3.4: Posterior model probabilities

Model Posterior probability

C, DY, I3, DI3, IP, MB 0.0627
C, DY, I3, Y S, MB 0.0457
C, DY, I3, DI3, MB 0.0400
C, DY, I3, DI3, Y S, IP, MB 0.0313
C, DY, I3, DI3, IP 0.0307
C, DY, I3, DI3, CS, IP, MB 0.0257
C, PE, DY, I3, TS 0.0223
C, DI3, Y S, IP 0.0213
C, DY, I3, DI3 0.0197
C, DY, I3, DI3, TS, Y S, MB 0.0197

Note: The table lists the ten models for monthly S&P 500 excess
returns, estimated over the period January 1966-December 2005,
with highest posterior probabilities and their respective probabili-
ties. See Table 3.1 for a description of the predictor variables.

macro-economic information as represented by industrial production growth is a useful

complement to the information obtained from financial variables. Finally, it is worth

nothing that the sum of the posterior probabilities for these ten models is 0.30, sug-

gesting that the data is reasonably informative as to which variables are most useful for

predicting stock returns. At the same time, this should not be mistaken for saying that

the data is telling so much as to which forecasting models actually provide a good fit in

an absolute sense. The posterior probabilities in Table 3.4 only measure the fit of these

predictive regressions relative to the other possible models.

We next turn to the regression parameters and possible structural breaks therein.

Figure 3.1 shows the posterior mean for the latent binary variable κjt governing the oc-

currence of changes in the regression parameters, together with the associated posterior

mean for βjt, conditional on inclusion of the variable j, that is sj = 1. For the coefficients,

the 25th and 75th percentiles of the posterior distributions are also shown. Several con-

clusions emerge from these graphs. First, the posterior means of κjt show quite erratic,

‘spiky’ behavior, suggesting that the probabilities of structural breaks in the parameters

vary considerably from one period to the next.5 This occurs for two reasons. On the

one hand, κjt can be different across different values of S, such that breaks can occur at

different times across models. On the other hand, in case a break is estimated to have

occurred in a certain month, the probability of a break in the next month will be much

lower.

5Recall that the posterior mean of κjt is identical to the posterior probability of a break occurring in
the regression parameter for the jth variable xjt at time t.
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Second, despite the volatile behavior of the break probabilities, three periods with

considerable probability mass for structural change can be identified: during the years

1974-1975, the years 1979-1982, and around 2001. Political reasons and the oil price

shocks provide possible explanations for the first break period. The second break period

coincides with “monetarist experiment” of the Federal Reserve under Chairman Volcker.

Note that this often is identified as the start of a marked structural change in the Fed’s

monetary policy, see Clarida et al. (2000), among others. The third break period may

obviously be related to the burst of the internet bubble. Also note that the stock market

crash in October 1987 gives rise to an isolated jump in the break probability for most

variables, with notable exceptions being the level of the 3-month T-bill rate, the yield

spread, and inflation.

Third, the posterior means of the regression parameters also reveal several interesting

findings. The pattern of the intercept β0t suggests a gradual increase in the uncondi-

tional equity premium during the 1980s and 1990s from around zero to 10 percent per

year, followed by a decline just before the turn of the millennium. As expected, for the

price-earnings ratio and the dividend yield we find a negative and positive coefficient,

respectively. The most substantial changes in these parameters occur during the period

1999-2002 (in addition to the decline in the PE coefficient during the second half of the

1970s and an increase in the DY coefficient during the same period), reflecting the large

decline in the dividend yield and the corresponding large increase in the price-earnings

ratio due to the dramatic boom of stock prices during that period. The coefficients for

both the level and change in the 3-month T-bill rate are negative, so that higher interest

rates lead to lower stock return forecasts. The most substantial breaks in these coefficients

appear to have occurred around 1982, at the time the Federal Reserve switched from tar-

geting M1 to targeting the Federal funds rate and abandoned its nonborrowed reserves

operating procedure, see Thornton (2006). Temporary instabilities in the yield spread and

credit spread coefficients are observed at approximately the same time. The coefficients

related to inflation and industrial production growth display the largest changes around

1975, due to the oil price shocks and the higher level of inflation and slowdown in eco-

nomic growth that followed. Finally, the coefficients of the monetary base and volatility

experienced very large breaks around October 1987. Especially the pattern in the coeffi-

cient of volatility is interesting, showing a gradual decline up to the moment of the crash,

and a gradual increase thereafter. Also note that the volatility coefficient changes sign,

being negative between the end of the 1970s and early 1990s and positive before and after

this period. We refer to Ghysels et al. (2005) and Guo and Whitelaw (2006) for recent

discussions on the risk-return trade-off and empirical evidence therefor.
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Figure 3.1: Posterior densities of the breaks and β parameters conditional on inclusion
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Note: The graphs in this figure show the posterior means (solid line) of κjt on the left side and βjt on
the right side, conditional upon inclusion of the jth variable (sj = 1), in the predictive regression model
(3.5) for monthly S&P 500 excess returns, estimated over the period January 1966-December 2005. The
dashed lines in the graphs for the coefficients are the 25th and 75th percentiles of the posterior densities.
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3.4 Active investment strategies allowing for model

uncertainty and structural breaks

The full-sample results presented in the previous section provide a useful ex post charac-

terization of the (relative) importance of financial and macroeconomic variables as pre-

dictors in return forecasting models and of possible breaks in the regression parameters.

For an investor, however, both issues of variable selection and model instability are most

interesting from an ex ante perspective. That is, the relevant questions are whether we

can identify the appropriate predictor variables and detect structural breaks in regression

parameters in real time, and how these may affect investment decisions. Answering these

questions is the purpose of this section.

3.4.1 A utility-based performance measure

Several papers consider the effects of either parameter uncertainty, model uncertainty

or model instability on optimal asset allocation decisions, see Kandel and Stambaugh

(1996), Barberis (2000), Avramov (2002) and Pettenuzzo and Timmermann (2005). Most

of these analyses focus on horizon effects, that is the issue how uncertainty about the

relevant predictor variables or the possibility of structural breaks changes the decisions of

investors with different horizons, typically ranging from a single month up to ten years.

Here we only consider an active short-term investor, with an investment horizon of one

month.6 The investor’s portfolio consists of stocks and riskfree bonds only. At the start

of each month T +1, the investor decides upon the fraction of her portfolio to be invested

in stocks wT+1, based upon a forecast of the excess stock return rT+1. The investor is

assumed to maximize a power utility function with coefficient of relative risk aversion γ:

u(WT+1) =
W 1−γ

T+1

1− γ
, γ > 0, (3.16)

where WT+1 is the wealth at the end of period T + 1, which is equal to

WT+1 = WT ((1− wT+1) exp(rf,T+1) + wT+1 exp(rf,T+1 + rT+1)), (3.17)

where WT denotes initial wealth, and where rf,T+1 is the riskfree rate.

6It is relatively straightforward to extend our analysis to the case of a long-horizon buy-and-hold
investor, who solves the asset allocation problem only once at the start of the investment period. Things
become more involved in case of dynamic asset allocation, that is when the long-run investor is allowed
to rebalance her portfolio during the investment period, adjusting the portfolio weights to reflect new
information that arrives. Solving the resulting dynamic programming problem is complicated due to the
large number of state variables that enter the problem in a highly nonlinear way, see Barberis (2000) and
Guidolin and Timmermann (2005b).
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Without loss of generality we set initial wealth equal to one, WT = 1, such that the

investor’s optimization problem is given by

max
wT+1

ET (u(WT+1)) = max
wT+1

ET

(
((1− wT+1) exp(rf,T+1) + wT+1 exp(rf,T+1 + rT+1))

1−γ

1− γ

)
,

(3.18)

where ET is the conditional expectation given information at time T . How this expectation

is computed depends on the treatment of model uncertainty and model instability by the

investor. Consider the most general case, both allowing for uncertainty concerning which

predictor variables to include and allowing for the possibility of structural breaks in the

regressions parameters, as given by model (3.5) with (3.4). The marginal predictive

density for future excess stock returns p(rT+1|r, x, xT+1) in (3.15) should then be used to

derive the proportion of the portfolio allocated to stocks according to (3.18). That is, the

investor solves the following problem:

max
wT+1

∫
u(WT+1)p(rT+1|r, x, xT+1)drT+1. (3.19)

The integral in (3.19) is approximated by generating G independent draws {rg
T+1}G

g=1 from

the predictive density p(rT+1|r, x, xT+1), and then using a numerical optimization method

to maximize the quantity:

1

G

G∑
g=1

(
((1− wT+1) exp(rf,T+1) + wT+1 exp(rf,T+1 + rg

T+1))
1−γ

1− γ

)
(3.20)

Three further cases are included in the empirical analysis below. First, we consider

an investor who incorporates model uncertainty but ignores the possibility of structural

breaks in the regression parameters. This investor obtains a forecast of the excess stock

return rT+1 from model (3.2). Second, we consider the reverse case of an investor who al-

lows for the possibility of structural breaks in the regression parameters but ignores model

uncertainty, thus using excess return forecasts from model (3.3). Third, we consider an

investor who is ignorant about both model uncertainty and structural breaks, and sim-

ply includes all available predictor variables in the model assuming constant coefficients,

effectively using the benchmark model (3.1) for return forecasting.7

As explained by Barberis (2000), the weight wT+1 in (3.17) cannot be left uncon-

strained in the optimization problem (3.18) as expected utility would be equal to −∞
in that case. We consider the following two restrictions on wT+1. First, we restrict

7We also consider a return forecasting model with the dividend yield as the only predictor variable,
as in Barberis (2000). This renders a portfolio with worse performance than the model with all variables
included and therefore detailed results are not reported here.
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wT+1 ∈ [−1, 2], allowing short-sales and leveraging of the portfolio to some extent. Sec-

ond, we do not allow for short-sales or leveraging at all, by constraining wT+1 to be in

the [0,1] interval.

In sum, in total we consider eight active investment strategies. The strategies that

are based on excess return forecasts from models (3.1), (3.2), (3.3), and (3.5) are de-

noted as Linear, BMA (Bayesian Model Averaging), SB (Structural Break), and BMASB

(Bayesian Model Averaging with Structural Breaks), respectively. The strategies without

the possibility of short-selling and leveraging are indicated by means of the addition (0,1).

For comparison, we include three static benchmark strategies: I) holding stocks only, II)

holding a portfolio consisting of 50% stocks and 50% bonds, and III) holding bonds only.

We evaluate the different investment strategies by computing the ex post utility levels

substituting the realized return of the portfolios at time T+1 in (3.16). Total utility is then

obtained as the sum of u(WT+1) across all T ∗ investment periods T = T0 +1, . . . , T0 +T ∗,

where the first investment decision is made at the end of period T0. In order to compare

two alternative strategies we compute the return that equates their average utilities. For

example, suppose we compare the strategy based on excess return forecasts from the

benchmark model (3.1) with a fixed set of predictor variables and constant regression

parameters to the strategy based on the general model (3.5) with (3.4) that incorporates

model uncertainty and structural breaks. The wealth provided at time T + 1 by the two

resulting portfolios is denoted as WA,T+1 and WB,T+1, respectively. We then determine

the value of ∆ such that

T0+T ∗−1∑
T=T0

u(WA,T+1) =

T0+T ∗−1∑
T=T0

u(WB,T+1/ exp(∆)). (3.21)

Following Fleming et al. (2001), we interpret ∆ as the maximum performance fee the

investor would be willing to pay to switch from strategy A to strategy B. In that sense, ∆

represents the economic value of model uncertainty and model instability in the example

above. For comparison of multiple investment strategies, it is useful to note that the

performance fee an investor is willing to pay to switch from strategy A to strategy B can

also be computed as the difference between the performance fees of these strategies with

respect to a third strategy C.8 We use this property below to infer the added value of

the different components of our model, that is model uncertainty, break uncertainty, and

parameter uncertainty.

Finally, the portfolio weights in the active investment strategies change every month,

8This follows from the fact that combining (3.21) for the comparisons of strategies A and B with
C,

∑
T u(WC,T+1) =

∑
T u(WA,T+1/ exp(∆A)) and

∑
T u(WC,T+1) =

∑
T u(WB,T+1/ exp(∆B)), gives∑

T u(WA,T+1/ exp(∆A)) =
∑

T u(WB,T+1/ exp(∆B)). Using the power utility specification in (3.16),
this can be rewritten as

∑
T u(WA,T+1) =

∑
T u(WB,T+1/ exp(∆B −∆A)).
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and the portfolio must be rebalanced accordingly. Hence, transaction costs play a non-

trivial role and should be taken into account when evaluating the relative performance of

different strategies. Rebalancing the portfolio at the start of month T +1 means that the

weight invested in stocks is changed from wT to wT+1. We assume that transaction costs

amount to a fixed percentage c on each traded dollar. Setting the initial wealth WT equal

to 1 for simplicity, transaction costs at time T + 1 are equal to

cT+1 = 2c|wT+1 − wT | (3.22)

where the multiplication by 2 follows from the fact that the investor rebalances her invest-

ments in both stocks and bonds. The net portfolio return is then given by rT+1 − cT+1.

We apply two scenarios with transaction costs of 0.1% and 0.3%. Note that for a passive

strategy the inclusion of transaction costs matters only in setting up the portfolio at time

T0.

3.4.2 Empirical Results

The analysis for the active investment strategies is implemented for the period from

January 1976 until December 2005, involving T ∗ = 360 one month ahead excess stock

return forecasts. The models are estimated recursively using an expanding window of

observations, starting with the first T0 = 120 months to estimate the initial models that

are used to obtain the first return prediction. The investment strategies are implemented

for two levels of relative risk aversion, γ = 5 and 10. Before we analyze the performance

of the different portfolios, we summarize the statistical accuracy of the excess return

forecasts.

Statistical accuracy of excess return forecasts

The forecasts obtained from the model allowing for uncertainty concerning which predictor

variables to include and allowing for the possibility of structural breaks in the regressions

parameters (3.5) with (3.4) have mean error (ME) of 0.50% and a root mean square

prediction error (RMSPE) of 4.36%. This is slightly more accurate than the linear, BMA

and SB forecasting models, all of which have RMSPEs equal to 4.41%. We note that the

predictive regression models considerably improve upon a random walk forecast, which

leads to an RSMPE of 6.15%. Hence, there is some predictability in the excess stock

returns, but the improvements in statistical forecast accuracy due to more elaborate

model specifications is relatively minor.

Figure 3.2 shows five-year moving averages of the excess returns’ RMSPE and the hit

ratio, defined as the proportion of correctly predicted signs of the excess stock return.
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Figure 3.2: Statistical Accuracy of Excess Return Forecasts

2

3

4

5

6

1980 1985 1990 1995 2000 2005

(a) RMSPE

.40

.45

.50

.55

.60

.65

.70

.75

1980 1985 1990 1995 2000 2005

(b) Hit ratio

Note: The figure presents five-year moving averages of the RMSPE and of the hit ratio, for excess stock
return forecasts obtained from the predictive regression model (3.5) allowing for model uncertainty and
structural breaks in the regression parameters.

Both graphs show that the model performs quite well until October 1987, with RMSPE

varying between 4% and 5% and the hit ratio between 0.6 and 0.75. The stock market

crash causes a sizable upward jump in the RMSPE, and marks the beginning of a period

with less accurate forecasts and a sharp decline in the hit ratio to 0.43 for the period

1986-1990. Forecast accuracy improves again considerably during the period 1991-1996

with the RMSPE reaching a low of 2.5% and the hit ratio peaking at 0.63 for the period

January 1992 - December 1996. Predictability of the excess stock returns then deteriorates

again due to the crises in Asia and Russia, and the internet bubble and its burst, with

the hit ratio dropping below 0.5 again in 2003. During the final two years of the out-

of-sample period the forecast performance of the model appears to improve again. In

sum, the predictive accuracy varies considerably over time, even when a flexible forecast

approach allowing for structural breaks and model uncertainty is employed.

Asset allocation and portfolio performance

Table 3.5 provides performance measures for the 11 different investment strategies con-

sidered, ignoring transaction costs for the moment. We report the ex-post utility levels
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and performance fees ∆ relative to the three buy-and-hold portfolios, denoted as ∆s, ∆m

and ∆b for the stock, mixed, and bond portfolios, respectively. In addition, we consider

traditional performance measures including the annualized mean and standard deviation

of portfolio returns, and the Sharpe ratio (computed as the ratio of the mean monthly

excess return on the portfolio and the monthly standard deviation of the portfolio return).

For the benchmark passive strategies, we observe that over the complete investment

period from January 1976 until December 2005, the average annualized return on the

stock portfolio is 12% with an estimated unconditional standard deviation of 15%, while

the bond portfolio provides a mean return of 5.9% with a standard deviation of 0.9%.

The Sharpe ratio of the stock portfolio is 0.117, while for the bond portfolio it is zero

by construction. In terms of utility levels, the mixed buy-and-hold portfolio consisting of

50% stocks and 50% bonds renders the best results.

Next, consider the active investment strategy based on excess return forecasts that

account for model uncertainty and structural breaks, which allows for limited short-selling

and leveraging (Strategy IV: BMASB). Compared to the buy-and-hold stock portfolio,

the average return increases by 1.4% for the investor with low risk aversion (γ = 5) while

it decreases by 0.8% for the investor with high risk aversion (γ = 10). At the same time,

portfolio risk is reduced considerably as well for the high risk averse investor, while it

does not increase dramatically for the low risk averse investor. Consequently, both types

of investors achieve a higher Sharpe ratio of around 0.14. The benefits of the active

investment strategy also are shown convincingly by the estimates of the performance fee

∆. The investor with low risk aversion would be willing to pay 74 basis points to switch

from the passive stock portfolio to the active strategy, while not surprisingly she is even

more eager to switch from the passive bond portfolio, with a performance fee of 211 basis

points. Due to her high risk aversion, the investor with γ = 10 is close to being indifferent

between the buy-and-hold bond portfolio and the active strategy with ∆b equal to 22

basis points. If this investor is forced to hold stocks though, she would rather have her

portfolio managed actively, offering a performance fee of no less than 583 basis points.

Although the active strategies do render a higher Sharpe ratio than the mixed buy-and-

hold portfolio, both investors prefer this passive strategy in terms of utility levels, thus

leading to negative performance fees of −10 and −52 basis points.

Eliminating the possibility of short-sales and leverage by restricting the portfolio

weight wT+1 to lie between 0 and 1 (Strategy VIII: BMASB (0,1)) further improves the

performance. Not surprisingly, the average returns decline compared to the unrestricted

portfolios, by approximately 2% per year, but this is more than compensated for by the

reduction in volatility. The restricted portfolios render return standard deviations of 8.3%

and 6.6% for γ = 5 and 10, respectively, compared to 15.2% and 11% for their unrestricted
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Table 3.5: Active portfolio performance - No transaction costs

Strategy Mean St dev SR (×100) Utility ∆s ∆m ∆b

Panel A: γ = 5

I: 100% stocks 11.98 14.99 11.72 −87.85
II: 50% stocks 8.94 7.51 11.70 −87.61

III: 0% stocks 5.89 0.89 0.00 −88.25
IV: BMASB 13.38 15.18 14.24 −87.63 74.0 −9.9 211.1
V: BMA 6.50 1.69 10.36 −88.06 −70.7 −154.6 66.4

VI: SB 10.77 14.70 9.57 −88.33 −162.8 −246.7 −25.7
VII: Linear 7.29 5.37 7.51 −87.99 −48.5 −132.4 88.6

VIII: BMASB (0,1) 11.05 8.31 17.92 −87.12 249.5 165.7 386.7
IX: BMA (0,1) 6.50 1.69 10.36 −88.06 −70.7 −154.6 66.4
X: SB (0,1) 9.45 8.06 12.74 −87.57 97.7 13.9 234.9

XI: Linear (0,1) 7.35 4.57 9.16 −87.91 −19.5 −103.3 117.7

Panel A: γ = 10

I: 100% stocks 11.98 14.99 11.72 −39.92
II: 50% stocks 8.94 7.51 11.70 −38.07

III: 0% stocks 5.89 0.89 0.00 −38.28
IV: BMASB 11.18 11.00 13.89 −38.22 582.5 −51.7 22.0
V: BMA 6.81 8.89 2.96 −39.12 272.1 −362.2 −288.5

VI: SB 8.45 6.26 11.79 −38.01 653.8 19.5 93.2
VII: Linear 6.60 2.85 7.11 −38.16 603.9 −30.4 43.3

VIII: BMASB (0,1) 9.27 6.56 14.85 −37.82 723.3 89.0 162.8
IX: BMA (0,1) 6.20 1.13 7.69 −38.19 593.5 −40.7 33.0
X: SB (0,1) 9.43 10.28 9.92 −38.70 414.3 −219.9 −146.2

XI: Linear (0,1) 6.68 2.51 9.03 −38.10 623.2 −11.0 62.7

Note: The table presents performance measures for active investment strategies based on one-month
excess return forecasts of the S&P 500 index over the period January 1976 - December 2005 for investors
with power utility function with risk aversion γ. BMASB, BMA, SB, and Linear denote strategies based
on excess return forecasts from models (3.5), (3.2), (3.3), and (3.1), respectively. The addition (0,1)
indicates that the portfolio weights obtained from (3.20) are restricted between 0 and 1, such that short-
selling and leveraging are not allowed. Otherwise, the portfolio weights are restricted to lie between
−1 and 2. Strategies I-III are benchmark passive strategies: I) holding stocks only, II) holding a mixed
portfolio consisting of 50% stocks and 50% bonds, and III) holding bonds only. The table reports the
average portfolio return and standard deviation (both in annualized percentage points), the Sharpe
ratio (SR), and utility (computed using (3.16)). The three rightmost columns present the annualized
return in basis points that an investor is willing to give up to switch from the passive stock (s), mixed
(m), or bond (b) strategy to the active strategy.
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counterparts. The unrestricted strategies sometimes use extreme portfolio weights that

makes them relatively risky, see also Jagannathan and Ma (2003) and Marquering and

Verbeek (2004). Hence, despite the sacrifice in terms of average return, the Sharpe ratios

of the restricted portfolios are considerably higher at 0.179 and 0.149. The performance

fees relative to the buy-and-hold stock and bond portfolios increase accordingly. Fur-

thermore, the passive mixed portfolio is outperformed as well by the restricted active

strategies, with estimates of ∆m equal to 165 and 89 basis points for the investor with

low and high risk aversion, respectively.

The added value of incorporating the different sources of uncertainty in the return

forecasting model can be gauged by examining the performance of the other active in-

vestment strategies based on excess return forecasts from more restricted models. Here

we focus on Strategies VIII-XI with portfolio weights restricted to be in the [0,1] interval.

The comparison is facilitated by recalling that the performance fee an investor is willing

to pay to switch from a certain strategy A to another strategy B is equal to the difference

between the performance fees of these strategies with respect to a third strategy C. For

example, given that the investor with low risk aversion is willing to pay 74 and 211 basis

points to switch from the passive stock and bond portfolios to Strategy IV, it follows that

she would offer a performance fee of 137 (= 211 − 74) basis points to switch from the

bond portfolio to the stock portfolio.

From Table 3.5 we observe that allowing for parameter uncertainty only is not suf-

ficient to convince the low risk averse investor to switch from the static stock or mixed

portfolio to a dynamic portfolio, given the negative performance fees for the active strat-

egy based on return forecasts from the linear model (3.1) that includes all predictor

variables. Incorporating model uncertainty (Strategy IX) makes the active strategy even

less attractive, as the estimates of ∆s and ∆m are lower than for Strategy XI. Allowing

for structural breaks does help, leading to a higher Sharpe ratio and positive performance

fees of ∆s = 98 and ∆m = 14 basis points for Strategy X. However, these are still more

than 150 basis points lower than the corresponding performance fees for the strategy

based on return forecasts from the general model that allows for both structural breaks

and model uncertainty. Hence, once structural breaks in the predictive regression model

are accounted for, it is worthwhile to allow for model uncertainty as well. Comparing the

return and risk characteristics of Strategies VIII and X, we find that the main difference

occurs in the mean portfolio return, which is 1.6% higher for Strategy VIII, while their

standard deviations are similar at just over 8%.

The complementarity of structural breaks and model averaging is perhaps even more

apparent from the results for the high risk averse investor. This investor does prefer an

active strategy over passive stock or bond portfolios, even if only parameter uncertainty is
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incorporated in the excess return forecasts, as Strategy XI renders positive performance

fees of ∆s = 623 and ∆b = 63 basis points. At the same time, this investor does not value

model uncertainty or uncertainty about structural breaks in the regression coefficients

positively when these features are considered in isolation. In fact, she would be willing

to pay 30 basis points to switch from Strategy IX to Strategy XI in order to avoid model

averaging, while the performance fee for eliminating structural breaks from consideration

by switching from Strategy X to XI is no less than 210 basis points. The investor’s negative

opinion about these features of the return forecasting model is completely reversed though

when offered the possibility to incorporate both. The performance fees of Strategy VIII

based on excess return forecasts from the general model (3.5) with (3.4) are equal to

∆s = 723 and ∆b = 163, exactly 100 basis points higher than the corresponding estimates

for Strategy XI.

Sub-period analysis

Figure 3.2 suggests that the accuracy of the excess return forecasts varies considerably

over time. How this affects the performance of the active strategies can be seen from Table

3.6, which shows performance statistics for three sub-periods each covering a decade for

the investor with high relative risk aversion (γ = 10).9 We limit our discussion here to the

restricted active portfolios (Strategies VIII-XI), given their superior performance relative

to the unrestricted portfolios over the complete sample period, as discussed before. The

performance of the portfolio that results from forecasts of the general model allowing

for model uncertainty and structural breaks (Strategy VIII) is quite impressive during

the first decade of the investment period, from January 1976 until December 1985, with

a Sharpe ratio of 0.239, which is more than double the Sharpe ratios of the passive

portfolios held in Strategies I and II. This positive result is due to the fact that the mean

return of the active strategy during this period is actually higher than the mean return

of the buy-and-hold portfolio (15.5% compared to 13.4%), while volatility is reduced by

about 40%. The corresponding performance fees are positive and large. Also note that

accounting for structural breaks during this sub-period seems crucial, in the sense that

the portfolio based on returns forecast from the structural break model (3.3) (Strategy

IX) renders even higher values of all performance measures, including the performance fee

∆s. Model averaging (Strategy X) adds much less value, as the performance fee against

the passive stock portfolio is only half as large as that of the active portfolios that account

for structural breaks (415 basis points compared to 804 and 856 basis points for Strategies

VIII and IX, respectively).

9Sub-sample results for the investor with low relative risk aversion (γ = 5) are qualitatively similar
and therefore not shown to save space. Detailed results are available upon request.
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Table 3.6: Active portfolio performance - Subperiod results, γ = 10

Strategy Mean St dev SR (×100) Utility ∆s ∆m ∆b

Panel A: 1976:1 - 1985:12

I: 100% stocks 13.41 13.98 9.76 −12.86
II: 50% stocks 11.04 6.96 9.81 −12.45

III: 0% stocks 8.68 0.86 0.00 −12.50
IV: BMASB 22.48 15.06 26.47 −12.02 898.8 464.2 514.3
V: BMA 4.41 10.93 −11.27 −13.61 −751.1 −1185.7 −1135.6

VI: SB 13.91 7.34 20.57 −12.20 699.3 264.8 314.9
VII: Linear 11.22 3.53 20.75 −12.30 590.7 156.1 206.2

VIII: BMASB (0,1) 15.49 8.23 23.89 −12.11 803.7 369.1 419.2
IX: BMA (0,1) 8.95 1.00 7.94 −12.47 414.9 −19.7 30.5
X: SB (0,1) 20.20 12.91 25.77 −12.06 856.0 421.5 471.6

XI: Linear (0,1) 10.72 2.87 20.58 −12.33 564.7 130.2 180.3

Panel B: 1986:1 - 1995:12

I: 100% stocks 13.85 15.31 15.90 −13.38
II: 50% stocks 9.64 7.66 15.89 −12.64

III: 0% stocks 5.42 0.50 0.00 −12.80
IV: BMASB 7.61 8.26 7.63 −12.94 444.9 −313.9 −144.2
V: BMA 11.11 10.17 16.16 −12.62 786.2 27.3 197.0

VI: SB 6.98 4.99 9.02 −12.77 625.8 −133.1 36.6
VII: Linear 5.22 1.97 −2.98 −12.84 556.0 −202.9 −33.2

VIII: BMASB (0,1) 7.98 5.19 14.22 −12.68 718.8 −40.1 129.7
IX: BMA (0,1) 5.85 0.88 14.08 −12.76 634.9 −124.0 45.7
X: SB (0,1) 5.03 9.40 −1.21 −13.37 7.7 −751.2 −581.5

XI: Linear (0,1) 5.77 1.78 5.59 −12.78 618.0 −140.9 28.9

Panel C: 1996:1 - 2005:12

I: 100% stocks 8.68 15.72 9.37 −13.68
II: 50% stocks 6.13 7.88 9.35 −12.98

III: 0% stocks 3.58 0.51 0.00 −12.98
IV: BMASB 3.46 7.28 −0.48 −13.25 424.9 −277.3 −275.0
V: BMA 4.89 3.61 10.50 −12.90 788.5 86.2 88.6

VI: SB 4.47 5.96 4.29 −13.04 638.4 −63.8 −61.5
VII: Linear 3.36 2.32 −2.80 −13.02 663.2 −39.0 −36.7

VIII: BMASB (0,1) 4.35 5.47 4.04 −13.03 652.5 −49.7 −47.4
IX: BMA (0,1) 3.78 0.97 5.94 −12.96 722.8 20.5 22.9
X: SB (0,1) 3.05 6.99 −2.22 −13.27 409.8 −292.5 −290.2

XI: Linear (0,1) 3.55 2.30 −0.44 −13.00 683.6 −18.7 −16.4

Note: The table presents performance measures for active investment strategies based on one-month
excess return forecasts of the S&P 500 index over three 10-year sub-periods for investors with power
utility function with risk aversion γ = 10. See Table 3.5 for a description of the investment strategies and
evaluation criteria.
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The importance of structural breaks and model uncertainty seems to be completely

reversed during the second decade of the investment period, from January 1986 until

December 1995. For this sub-period we find an estimate of ∆s = 634 basis points for the

active BMA-based Strategy X, compared to only 8 basis points for the SB-based Strategy

IX. Accounting for both features still pays off though, in the sense that the BMASB

Strategy VIII renders a higher performance fee of 719 basis points against the passive

stock portfolio. While the passive portfolios consisting purely of stock or bonds are still

outperformed by the active strategies, this no longer holds for the mixed buy-and-hold

portfolio. The return of this passive strategy is considerably higher at 9.64%, which is

sufficient to render higher Sharpe ratios (despite higher volatility) and a higher level utility

resulting in negative performance fees ∆m.

The active strategies’ performance further declines during the third and final decade of

the investment period, from January 1996 until December 2005. Although the reduction

in portfolio returns’ volatility is of the same magnitude as before (or even larger), the

loss in terms of average return is considerably larger. This results in a Sharpe ratio of

0.041 for the BMASB-based Strategy VIII, compared to 0.094 for the passive stock and

mixed portfolios. It is quite remarkable then that the active strategy still achieves higher

utility than the buy-and-hold stock portfolio (−13.03 compared to −13.68). The mixed

passive portfolio in turn renders higher utility than the active strategy, resulting again

in a negative performance fee ∆m. Note that the same now holds for the passive bond

portfolio. In sum, it seems that the performance of the active strategies has gradually

worsened over time.

Transaction costs

Our analysis of the active investment strategies so far has ignored transaction costs.

Obviously, their effects on the strategies’ performance crucially depends on the average

absolute change in portfolio weights, see (3.22). Figure 3.3 shows the portfolio weight

for stocks in the restricted portfolios based on excess return forecasts from the general

model, allowing for model uncertainty and structural breaks in the regression parameters

(Strategy VIII). First of all, Figure 3.3 clearly demonstrates the effects of risk aversion

on the asset allocation, in the sense that the weight for stocks in the portfolio of the

investor with high risk aversion is systematically lower than for the investor with low

risk aversion. The average stock weight is equal to 0.44 and 0.30 for γ = 5 and γ = 10,

respectively. Second, although there are extended periods of time when the investment

in stocks is at high or low levels, month-to-month variation in the portfolio composition

is quite substantial. The standard deviation of the stock weight is equal to 0.43 and

0.35, while the average absolute change |wT+1 − wT | is equal to 0.27 and 0.20 for γ = 5
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Figure 3.3: Stock portfolio weights in restricted portfolios (Strategy VII)
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Note: The figure presents the portfolio weight for stocks in the restricted portfolios based on excess
stock return forecasts from the predictive regression model (3.5) allowing for model uncertainty and
structural breaks in the regression parameters (Strategy VIII).

and γ = 10, respectively. Hence, a proper analysis of the effects of transaction costs is

warranted.

Tables 3.7 and 3.8 present results for the complete 30-year investment period for

low (0.1%) and moderate (0.3%) levels of transaction costs, respectively. The presence

of transaction costs obviously hurts the active strategies’ performance. However, for

both levels of transaction costs, the restricted portfolio based on return forecasts from

the general model continues to outperform the buy-and-hold portfolios, although the

performance fees ∆ become somewhat lower. It should also be noted that for moderate

levels of transaction costs, the mixed buy-and-hold portfolio renders a higher Sharpe ratio

than the active portfolios, although utility is still lower.
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Table 3.7: Active portfolio performance - 0.1% transaction costs

Strategy Mean St dev SR (×100) Utility ∆s ∆m ∆b

Panel A: γ = 5

I: 100% stocks 11.98 14.99 11.71 −87.85
II: 50% stocks 8.93 7.51 11.69 −87.61

III: 0% stocks 5.89 0.89 0.00 −88.25
IV: BMASB 11.92 15.15 11.48 −87.85 2.3 −81.7 139.5
V: BMA 4.49 1.69 −24.04 −88.07 −72.8 −156.8 64.4

VI: SB 9.31 14.67 6.72 −88.54 −234.7 −318.7 −97.5
VII: Linear 5.38 5.37 −2.78 −88.05 −66.1 −150.0 71.2

VIII: BMASB (0,1) 10.42 8.30 15.72 −87.22 217.9 134.0 355.2
IX: BMA (0,1) 6.45 1.69 9.53 −88.07 −72.8 −156.8 64.4
X: SB (0,1) 8.82 8.06 10.49 −87.66 67.8 −16.1 205.1

XI: Linear (0,1) 7.12 4.56 7.75 −87.94 −30.5 −114.4 106.8

Panel A: γ = 10

I: 100% stocks 11.98 14.99 11.71 −39.92
II: 50% stocks 8.93 7.51 11.69 −38.07

III: 0% stocks 5.89 0.89 0.00 −38.28
IV: BMASB 10.22 10.96 11.38 −38.35 535.7 −98.6 −24.6
V: BMA 5.82 8.85 −0.23 −39.26 224.3 −410.0 −336.1

VI: SB 7.95 6.24 9.50 −38.08 629.0 −5.3 68.7
VII: Linear 6.42 2.84 5.30 −38.18 595.1 −39.2 34.8

VIII: BMASB (0,1) 8.78 6.54 12.74 −37.88 699.3 65.0 139.0
IX: BMA (0,1) 6.17 1.13 7.03 −38.11 592.5 −41.8 32.2
X: SB (0,1) 8.43 10.24 7.14 −38.84 365.7 −268.6 −194.6

XI: Linear (0,1) 6.56 2.49 7.70 −38.12 617.6 −16.7 57.2

Note: The table presents performance measures for active investment strategies based on one-month
excess return forecasts of the S&P 500 index over the period January 1976 - December 2005 for
investors with power utility function with risk aversion γ. Transaction costs are set equal to 0.1%.
See Table 3.5 for a description of the investment strategies. The table reports the average portfolio
return and standard deviation (both in annualized percentage points), the Sharpe ratio (SR), and
utility (computed using (3.16)). The three rightmost columns present the annualized return in basis
points that an investor is willing to give up to switch from the passive stock (s), mixed (m), or bond
(b) strategy to the active strategy.
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Table 3.8: Active portfolio performance - 0.3% transaction costs

Strategy Mean St dev SR (×100) Utility ∆s ∆m ∆b

Panel A: γ = 5

I: 100% stocks 11.97 14.99 11.70 −87.85
II: 50% stocks 8.93 7.50 11.67 −87.61

III: 0% stocks 5.88 0.89 0.00 −88.26
IV: BMASB 9.00 15.11 5.93 −88.27 −141.7 −225.7 −4.2
V: BMA 0.46 1.92 −81.73 −88.08 −77.0 −161.1 60.5

VI: SB 6.40 14.66 1.00 −88.97 −379.1 −463.1 −241.6
VII: Linear 1.55 5.44 −23.05 −88.15 −101.3 −185.4 36.2

VIII: BMASB (0,1) 9.14 8.29 11.30 −87.40 154.7 70.6 292.2
IX: BMA (0,1) 6.35 1.69 7.87 −88.08 −77.0 −161.1 60.5
X: SB (0,1) 7.56 8.07 5.97 −87.84 7.9 −76.2 145.4

XI: Linear (0,1) 6.67 4.54 4.91 −88.01 −52.6 −136.7 84.9

Panel A: γ = 10

I: 100% stocks 11.97 14.99 11.70 −39.93
II: 50% stocks 8.93 7.50 11.67 −38.07

III: 0% stocks 5.88 0.89 0.00 −38.28
IV: BMASB 8.28 10.90 6.32 −38.62 441.7 −192.6 −118.2
V: BMA 3.86 8.83 −6.66 −39.55 127.3 −507.0 −432.6

VI: SB 6.94 6.22 4.86 −38.23 579.2 −55.1 19.4
VII: Linear 6.05 2.80 1.61 −38.23 577.6 −56.7 17.7

VIII: BMASB (0,1) 7.80 6.51 8.44 −38.02 651.2 16.9 91.3
IX: BMA (0,1) 6.12 1.13 5.71 −38.13 590.5 −43.8 30.6
X: SB (0,1) 6.43 10.18 1.51 −39.13 267.9 −366.4 −292.0

XI: Linear (0,1) 6.32 2.47 4.99 −38.15 606.2 −28.1 46.3

Note: The table presents performance measures for active investment strategies based on one-month
excess return forecasts of the S&P 500 index over the period January 1976 - December 2005 for
investors with power utility function with risk aversion γ. Transaction costs are set equal to 0.3%.
See Table 3.5 for a description of the investment strategies. The table reports the average portfolio
return and standard deviation (both in annualized percentage points), the Sharpe ratio (SR), and
utility (computed using (3.16)). The three rightmost columns present the annualized return in basis
points that an investor is willing to give up to switch from the passive stock (s), mixed (m), or bond
(b) strategy to the active strategy.
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3.5 Conclusion

Optimal portfolio decisions force investors to make a number of important decisions con-

cerning the return forecasting model used. These decisions involve in particular the treat-

ment of different sources of uncertainty, about the relevant predictor variables (model

uncertainty), the values of the regression parameters (parameter uncertainty), and their

stability (structural breaks). In this Chapter we have developed a framework to incor-

porate all three sources of uncertainty simultaneously. This extends previous research

allowing for either parameter uncertainty and model uncertainty (Avramov (2002); Cre-

mers (2002)), or parameter uncertainty and parameter instability (Pesaran et al. (2006)).

Our empirical results suggest, first, that over the period 1966-2005 several structural

breaks occurred in the relationship between US stock returns and predictor variables

such as the dividend yield and interest rates. These changes appear to be caused by

important events such as the oil crisis, changes in monetary policy, and the October 1987

stock market crash. Second, we find that allowing for model uncertainty and structural

breaks jointly has considerable economic value. A typical investor would be willing to

pay up to several hundreds of basis points annually to switch from a passive buy-and-hold

strategy to an active strategy based on a return forecasting model that allows for model

and parameter uncertainty as well as structural breaks in the regression parameters. The

active strategy that incorporates all three sources of uncertainty performs considerably

better than strategies based on more restricted return forecasting models.







Chapter 4

Predicting the Term Structure of
Interest Rates
Incorporating parameter uncertainty, model
uncertainty and macroeconomic information

4.1 Introduction

Modelling and forecasting the term structure of interest rates is by no means an easy

endeavor. As long yields are risk-adjusted averages of expected future short rates, yields

of different maturities are intimately related and therefore tend to move together, in the

cross-section as well as over time. Long and short maturities are known to react quite

differently, however, to shocks hitting the economy. Furthermore, monetary policy author-

ities such as the Federal Reserve are actively targeting the short end of the term structure

to help achieve their macroeconomic goals. Many forces are at work at moving interest

rates. Identifying these forces and understanding their impact is of crucial importance.

During the last decades significant progress has been made in modelling the term

structure, which has come about mainly through the development of no-arbitrage factor

models. The literature on these so-called affine models was kick-started by seminal papers

of Vasicek (1977) and Cox et al. (1985), characterized by Duffie and Kan (1996) and

classified by Dai and Singleton (2000)1. Affine models explain yields by a small number

of latent factors that can be extracted from the panel of yields for different maturities and

impose cross-equation restrictions which rule out arbitrage opportunities. Affine models,

provided they are properly specified, have been shown to accurately fit the term structure,

see for example Dai and Singleton (2000). The models are silent, however, about the links

between the latent factors and macroeconomic forces.

The current term structure literature is actively progressing to resolve this missing

link. Recent studies have yielded interesting approaches for studying the joint behavior of

1An excellent survey of issues involving the specification and estimation of affine models set in con-
tinuous time is Piazzesi (2003), whereas discrete models are discussed in Backus et al. (1998).
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interest rates and macroeconomic variables. One approach that has been undertaken is to

extend existing term structure models by adding in observed macroeconomic variables and

to study their interactions with the latent factors. A key contribution to this strand of the

literature is Ang and Piazzesi (2003) who were the first to extend a standard three-factor

affine model with macroeconomic variables. Studies such as Bikbov and Chernov (2005),

Kim and Wright (2005), Ang et al. (2006a), Dai and Philippon (2006) and DeWachter and

Lyrio (2006) also include various macroeconomic variables and study their explanatory

power for yield movements. Studies that take a more structural approach are, amongst

others, Rudebusch and Wu (2003), Wu (2005) and Hordahl et al. (2006) who all combine

a model for the macro economy with an arbitrage-free specification for the term structure.

Moving away from the realm of no-arbitrage interest rate models to that of more ad-hoc

models, in particular the Nelson and Siegel (1987) model, studies such as Diebold et al.

(2006) and Mönch (2006b) also show that adding information that reflects the state of

the economy is beneficial2.

Whereas modelling interest rate movements over time is already a strenuous task, accu-

rately forecasting future rates is an equally difficult challenge. Yields of all maturities are

close to being non-stationary, which makes it hard for any model to outperform the sim-

ple random walk-based no-change forecast. Several studies have documented that beating

the random walk is indeed difficult, in particular for unrestricted yields-only based vector

autoregressive (VAR) and standard affine models, see Duffee (2002) and Ang and Piazzesi

(2003). However, all does not seem lost as recently more favorable evidence for predictabil-

ity of yields has been reported. Whereas Duffee (2002) shows that more flexible affine

specifications3 can beat the random walk, Krippner (2005) and Diebold and Li (2006)

show that a dynamic Nelson-Siegel factor model forecasts particularly well. Results are

even more promising with models that incorporate macroeconomic information. Ang and

Piazzesi (2003) and Mönch (2006a) report improved forecasts for U.S. zero-coupon yields

at various horizons using affine models augmented with principal component-extracted

macro factors. Hordahl et al. (2006) report similar results for German zero-coupon yields.

In spite of the powerful advances in term structure modelling and forecasting, a num-

ber of issues regarding estimation and forecasting have sofar been left nearly unaddressed.

This Chapter tries to fill in some of these gaps by investigating the relevance of parameter

2Macro variables mainly seem to help in capturing the dynamics of short rates. Modelling long-term
bonds remains difficult, however. Dai and Philippon (2006) show that fiscal policy can account for some
of the unexplained long rate dynamics whereas DeWachter and Lyrio (2006) show that long-run inflation
expectations are important for modelling long-term bond yields.

3Duffee (2002) denotes his preferred class of models “essentially affine” by allowing risk premia to
depend on the entire state vector instead of being a multiple of volatility which is the assumption in
standard affine models. Ang and Piazzesi (2003) remark that the essentially affine risk premia are not
linear in the state vector and that using linear risk premia results in better forecasts.
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uncertainty and, in particular, model uncertainty. Especially for VAR and affine models,

which are highly parameterized if we attempt to model the complete term structure, pa-

rameter uncertainty is likely to be substantial and should be accounted for. Regarding

model uncertainty, when looking at the historical time series of (U.S.) interest rates we can

easily identify subperiods across which yield dynamics are quite different. Likely reasons

are for example the reigns of different Fed Chairmen, most notably that of Paul Volcker,

or the strong decline in interest rate levels accompanied by a pronounced widening of

spreads in the early 1990’s and after the burst of the Internet bubble. It will be unlikely

that any individual model is capable of consistently producing accurate forecasts in each

of these subperiods. As we demonstrate below, the forecasting performance of various

popular term structure models does indeed vary substantially over time. In these situa-

tions, combining forecasts yields diversification gains and can therefore be an attractive

alternative to relying on forecasts from a single model.

In addition to these two focal points, we also further examine the use of macroeconomic

diffusion indices in term structure models. Mönch (2006a,b) documents that using factors,

extracted from a large panel of macro series instead of individual series works well, in both

affine models and the Nelson-Siegel model. We extend the picture by examining the use

of diffusion indices also in simpler AR and VAR models. To summarize, the aim of

this Chapter is threefold and consists of examining (i) parameter uncertainty, (ii) model

uncertainty and (iii) the use of macro diffusion indices.

We analyze these objectives in the following manner. Using a relatively long time-

series of U.S. zero-coupon bond yields, we examine the forecasting performance of a range

of models that have been used in the literature. We estimate each model and gener-

ate forecasts by applying frequentist maximum likelihood techniques as well as Bayesian

techniques to gauge the effects of explicitly taking into account parameter uncertainty.

Furthermore, we analyze each model both with and without macro factors to assess the

benefits of adding macroeconomic information. Finally, after showing the instability of the

forecasting performance of the different models through subsample analysis, we consider

several forecast combination approaches.

Our results can be summarized as follows. For the out-of-sample period covering 1994-

2003 we show that the predictive ability of individual models varies considerably over time,

irrespective of using frequentist or Bayesian estimation methods. A prime example is the

Nelson and Siegel (1987) model, which predicts interest rates accurately in the 1990s but

rather poorly in the early 2000s. We find that models that incorporate macroeconomic

variables seem more accurate in subperiods during which the future path of interest rates

is more uncertain. This is especially the case for the early 2000s with the pronounced

drop in interest rates and the widening of spreads. Models without macro information do
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particularly well in subperiods where interest rate dynamics are more stable. An example

is the early 1990s, where these models outperform the random walk RMSPE by sometimes

well over 30%.

That different models forecast well in different subperiods confirms ex-post that alter-

native model specifications play a complementary role in approximating the interest rate

data generating process. This provides a strong claim for the use of forecast combination

techniques as opposed to believing in a single model. Our forecast combination results

confirm this conjecture. We show that combined forecasts are consistently more accu-

rate than the random walk benchmark across maturities and subperiods. We find that

combining individual models that incorporate macro factors using Bayesian estimation

techniques works extremely well, especially when using a weighting scheme that takes

into account relative historical performance using a long window of forecasts. We obtain

the largest gains in forecast performance for long maturities where the forecast combina-

tions outperform the random walk by sometimes as much as 20% and the best individual

model by more than 10%.

The remainder of the Chapter is organized as follows. In Section 2 we discuss the

set of U.S. Treasury yields we analyze, and we provide details about the panel of macro

series that we employ to obtain our macro factors. We devote Section 3 to present

the different models we use to construct forecasts. In Section 4 we discuss results of the

individual models whereas in Section 5 we outline and discuss results of several forecasting

combination schemes. Finally, in Section 6 we conclude. The Appendix provides details

on the frequentist and Bayesian techniques that we use for estimating model parameters

and for constructing forecasts.

4.2 Data

4.2.1 Yield Data

The term structure data we use consists of end-of-month continuously compounded yields

on U.S. zero-coupon bonds. These yields have been constructed from average bid-ask

price quotes on U.S. Treasuries from the CRSP government bond files. CRSP filters

the available quotes by taking out illiquid bonds and bonds with option features. The

remaining quotes are used to construct forward rates using the Fama and Bliss (1987)

bootstrap method as outlined in Bliss (1997). The forward rates are averaged to construct

constant maturity spot rates4. Similar to Diebold and Li (2006) and Mönch (2006b), our

dataset consists of unsmoothed Fama-Bliss yields. These unsmoothed yields exactly price

4We kindly thank Robert Bliss for providing us with the unsmoothed Fama-Bliss forward rates and
the programs to construct the spot rates.
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Figure 4.1: U.S. zero-coupon yields
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Note: The figure shows time series plots for end-of-month U.S. zero coupon yields for a subset of ma-
turities. The yields have been constructed using the Fama and Bliss (1987) bootstrap method. The
sample period is January 1970 - December 2003 (408 observations). The vertical lines bound the three
forecasting subsamples (1989:1 - 1993:12, 1994:1 - 1998:12 and 1999:1 - 2003:12).

Table 4.1: Summary statistics

maturity mean stdev skew kurt min max JB ρ1 ρ12 ρ24

1-month 6.049 2.797 0.913 4.336 0.794 16.162 85.671 0.968 0.690 0.402
3-month 6.334 2.896 0.871 4.237 0.876 16.020 76.380 0.974 0.708 0.415
6-month 6.543 2.927 0.788 4.016 0.958 16.481 58.796 0.976 0.723 0.444

1-year 6.755 2.860 0.661 3.763 1.040 15.822 38.907 0.975 0.733 0.474
2-year 7.032 2.724 0.644 3.672 1.299 15.650 35.240 0.978 0.748 0.526
3-year 7.233 2.594 0.685 3.663 1.618 15.765 38.796 0.979 0.763 0.560
4-year 7.392 2.510 0.728 3.607 1.999 15.821 41.640 0.980 0.771 0.582
5-year 7.483 2.449 0.759 3.478 2.351 15.005 42.454 0.982 0.786 0.607
6-year 7.611 2.406 0.791 3.437 2.663 14.979 45.236 0.983 0.797 0.626
7-year 7.659 2.344 0.841 3.488 3.003 14.975 51.562 0.983 0.787 0.623
8-year 7.728 2.320 0.841 3.365 3.221 14.936 49.798 0.984 0.809 0.651
9-year 7.767 2.317 0.877 3.427 3.389 15.018 54.765 0.985 0.813 0.656

10-year 7.745 2.266 0.888 3.496 3.483 14.925 57.117 0.985 0.796 0.647
Note: The table shows summary statistics for our sample of end-of-month continuously compounded U.S.
zero-coupon yields. Reported are the mean, standard deviation, skewness, kurtosis, minimum, maximum,
the Jarque-Bera test statistic for normality and the 1st, 12th and 24th sample autocorrelation. The results
shown are for annualized yields (in %). The sample period is January 1970 - December 2003 (408 monthly
observations).
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the included U.S. Treasury securities. Smoothed yields on the other hand, which can be

obtained by fitting a Nelson-Siegel curve on the unsmoothed yields (see Bliss, 1997 for

details), do not have this property, and, moreover, using these may give the Nelson-Siegel

model an unfair advantage over the other models in terms of fitting and forecasting the

term structure.

Throughout our analysis we use yields with N = 13 different maturities of τ = 1, 3

and 6 months and 1, 2,..., 10 years. We denote yields by y(τi) for i = 1, . . . , N . To estimate

the Nelson-Siegel models we follow Diebold and Li (2006) and Diebold et al. (2006) by

including additional maturities of 9, 15, 18, 21 and 30 months in order to increase the

number of observations at the short end of the curve.

Our sample period covers January 1970 till December 2003 for a total of 408 monthly

observations. Similar to Duffee (2002) and Ang and Piazzesi (2003) we include data from

well before the Volcker period, despite the reservations expressed in Rudebusch and Wu

(2003) that it is likely that the pricing of interest rate risk and the relationship between

yields and macroeconomic variables have changed during such a long time span. We do so

for two main reasons: (i) to have enough observations to sufficiently accurately identify the

parameters of the models we consider, some of which are highly parameterized, and (ii) to

assess forecasting performance over (sub-)periods with strikingly different characteristics.

Figure 4.1 shows time-series plots for a subsample of the 13 maturities whereas Table

4.1 reports summary statistics. The stylized facts common to yield curve data are clearly

visible: the sample average curve is upward sloping and concave, volatility is decreasing

with maturity, autocorrelations are very high and increasing with maturity and the null of

normality is rejected due to positive skewness and excess kurtosis. Correlations between

yields of different maturities are high, especially for close-together maturities. Even the

maturities which are furthest apart (1 month and 10 years) still have a correlation of 86%.

4.2.2 Macroeconomic Data

Our macroeconomic dataset originates from Stock and Watson (2005) and consists of 116

series5. The macro variables are classified in 15 categories: (1) output and income, (2)

employment and hours, (3) retail, (4) manufacturing and trade sales, (5) consumption, (6)

housing starts and sales, (7) inventories, (8) orders, (9) stock prices, (10) exchange rates,

(11) federal funds rate, (12) money and credit quantity aggregates, (13) price indexes,

(14) average hourly earnings and (15) miscellaneous. Table 4.2 lists the series included in

5We exclude all interest and spread related series from the original 132 series in the panel dataset (we
discarded 16 series in total). We do include the federal funds rate because it closely follows the federal
funds target rate. The latter is the key monetary policy instrument of the Federal Reserve. The federal
funds rate will therefore be important for capturing the movements of (especially) the short end of the
term structure.
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Figure 4.2: R2 in regressions of individual macro series on PCA factors
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(c) PCA factor #3

Note: The figure shows R2s when regressing the individual series in the macro panel on each of the first
three macro factors. The macro dataset consists of 116 series (transformed to ensure stationarity) and
the sample period is January 1970 - December 2003 (408 monthly observations). Panels (a), (b) and (c)
show the results for the first, second and third macro factor respectively. In each panel the macro series
are grouped according to the 15 categories as indicated on the horizontal axis. The group categories
are (1) real output and income, (2) employment and hours, (3) real retail, (4) manufacturing and trade
sales, (5) consumption, (6) housing starts and sales, (7) real inventories, (8) orders, (9) stock prices, (10)
exchange rates, (11) federal funds rate, (12) money and credit quantity aggregates, (13) prices indexes,
(14) average hourly earnings and (15) miscellaneous.
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Figure 4.3: Macro factors compared to individual macro series
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Note: The figure shows timeseries plots of the first three macro factors and the main individual macro
series within the category to which the factor is most related. The first factor is plotted together with
Industrial Production Index: Total Index (R2 is 0.88), the second factor is plotted with the Consumer
Price Index: All Items (R2 is 0.77) and the third factor is plotted with Money Stock: M1 (R2 is 0.44).
The macro dataset consists of 116 (transformed to ensure stationarity) series and the sample period
used is January 1970 - December 2003 (408 monthly observations). The group categories are (1) real
output and income, (2) employment and hours, (3) real retail, (4) manufacturing and trade sales, (5)
consumption, (6) housing starts and sales, (7) real inventories, (8) orders, (9) stock prices, (10) exchange
rates, (11) federal funds rate, (12) money and credit quantity aggregates, (13) prices indexes, (14)
average hourly earnings and (15) miscellaneous.
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the macro dataset and their designated category.

We transform the monthly recorded macro series, whenever necessary, to ensure sta-

tionarity by using log levels, annual differences or annual log differences. Column 2 of

Table 4.2 lists the applied transformation. We follow Ang and Piazzesi (2003), Mönch

(2006b) and Diebold et al. (2006) in our use of annual growth rates. Monthly growth rates

series are very noisy and are therefore expected to add little information when included in

the various term structure models. Outliers in each individual series are replaced by the

median value of the previous five observations, see Stock and Watson (2005) for details.

We need to be careful about the timing of the macro series relative to the interest rate

series to prevent the use of information that has not been released yet at the time when a

forecast is made. The interest rates we use are recorded at the end of the month. Although

macro figures tend to be released at the beginning or in the middle of the month, they

are usually released with a lag of one to sometimes several months. We accommodate for

a potential look-ahead bias6 by lagging all macro series by one month, except for S&P

variables, exchange rates and the federal funds rate which are all monthly averages.

We extract a small number of common factors from our dataset, similar to Mönch

(2006a) who, based on the work of Bernanke et al. (2005), builds a no-arbitrage Factor-

Augmented VAR with four factors from a large panel of macroeconomic variables. To this

end we apply static principal component analysis, see Stock and Watson (2002a,b), to the

full panel of macro series which we standardize to have zero mean and unit variance. The

use of common factors instead of individual macro series allows us to incorporate informa-

tion beyond that contained in commonly used variables such as CPI, PPI, employment,

output gap or capacity utilization, while at the same time ensuring that the number of

model parameters remains manageable.

For the full sample period, the first common factor explains 35% of the variation in the

macro panel. The second and third factors explain an additional 19% and 8%, whereas

the first 10 factors together explain an impressive 85%. Figure 4.2 shows the R2 when

regressing each individual macro series on each of first three factors separately, which

allows us to attach economic labels to these factors. The first factor closely resembles

the series in the real output and employment categories (categories 1 and 2) and can

therefore be labelled business cycle or real activity factor. The second factor loads mostly

on inflation measures (category 13) which allows for the designation inflation factor. The

third factor, although the correlations are much lower than for factors one and two, is

mostly related to money stock and reserves (category 12) and could thus be labelled a

6Note that Ang and Piazzesi (2003) and Mönch (2006b) use contemporaneous macro information to
construct their term structure forecasts. With contemporaneous information there is the risk that it may
exaggerate the benefits from using macroeconomic series when forecasting yields.
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monetary aggregates or money stock factor. Figure 4.3 corroborates these interpretations

graphically through time-series plots of the three macro factors with Industrial Production

(total), Consumer Price Index (all items) and Money Stock (M1) respectively.

We have chosen to include the first three factors as additional explanatory variables in

the term structure model because, together, these factors explain over 60% of the variation

in the macro panel7. Given that we want to construct interest rate forecasts we also need

to forecast the macro factors. We explain in Section 3.1 in detail how we do so.

4.3 Models

We assess the individual and combined forecasting performance of a range of models that

are commonly used in the literature and in practice. Since previous studies have shown

that more parsimonious models often outperform sophisticated models we consider models

with different levels of complexity. Our models range from unrestricted linear specifica-

tions for yield levels (AR and VAR models), models that impose a parametric structure on

factor loadings (the Nelson-Siegel class of models) to models that impose cross-sectional

restrictions to rule out arbitrage opportunities (affine models). In this section we present

the different models. We defer to the appendix all specific details regarding the frequentist

and Bayesian techniques to draw inference and to generate (multi-step ahead) forecasts.

4.3.1 Adding macro factors

The approach we use to incorporate the three macro factors is the following. Denote Mt

as the (3 × 1) vector containing the time t values of the macro factors, which have been

extracted from the full panel of macro series. We add the factors to each of the term

structure models, contemporaneously8 as well as lagged by one month to capture any

delayed effects of macroeconomic news on the term structure. The exogenous explanatory

macro information that we add to the models is denoted by Xt, and is thus given by

Xt = (M ′
t M ′

t−1)
′.

Our approach implies that when we forecast yields, we also need to model and forecast

the macro factors. We tackle this issue by following Ang and Piazzesi (2003) in only

allowing for a unidirectional link from macro variables to yields. Although this can be

argued to be a restrictive assumption as it does not allow for a potentially rich bidirectional

7We also examined using more factors but the forecasting results were very similar. With only one or
two factors we obtained worse results.

8Contemporaneous in the sense of same-month values for stock prices, exchange rates and the federal
funds rate but one-month lagged values for the remaining macro series, see Section 2.2 for further details.
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feedback9, it enables us to model the time-series behavior of the macro factors separately,

which considerably facilitates estimation. In particular, information criteria suggest to

model and forecast Mt using a VAR(3) model:

Mt = c + Φ1Mt−1 + Φ2Mt−2 + Φ3Mt−3 + Hξt, εt ∼ N (0, I) (4.1)

where c is a (3 × 1) vector, Φi for i = 1, ..., 3 is a (3 × 3) matrix and H a (3 × 3) lower

triangular Cholesky matrix. We estimate the macro VAR using both frequentist and

Bayesian techniques as we also use both types of inference for the term structure models.

4.3.2 Models

Random walk

The first model that we consider is a random walk for each maturity τi, i = 1, . . . , N ,

y
(τi)
t = y

(τi)
t−1 + σ(τi)ε

(τi)
t , ε

(τi)
t ∼ N (0, 1) (4.2)

In this model any h-step ahead forecast ŷ
(τi)
T+h is equal to the most recent observed value

y
(τi)
T . It is natural to qualify this no-change model as the benchmark against which to

judge the predictive power of other models. Duffee (2002), Ang and Piazzesi (2003),

Mönch (2006b) and Diebold and Li (2006) all show, using different models and different

forecast periods, that beating the random walk is quite an arduous task. The reported first

order autocorrelation coefficients in Table 4.1 indeed confirm that yields are potentially

non-stationary as these are all very close to unity. We denote the Random Walk by RW.

AR model

Although unreported results indicate that the null of a unit root for yield levels cannot

be rejected statistically, the assumption of a random walk is difficult to interpret from an

economic point of view. The random walk assumption implies that interest rates can roam

around freely and do not revert back to a long-term mean, something which contradicts the

Federal Reserve’s monetary policy targets. The second model that we therefore consider

is a first-order univariate autoregressive model which allows for mean-reversion

y
(τi)
t = c(τi) + φ(τi)y

(τi)
t−1 + ψ(τi)

′
Xt + σ(τi)ε

(τi)
t , ε

(τi)
t ∼ N (0, 1) (4.3)

9In a forecasting exercise using German zero-coupon yields, Hordahl et al. (2006) show that term-
structure information helps little in forecasting macro-economic variables (more specifically (i) inflation
and (ii) the output gap) which is a justification for forecasting macro variables outside the term structure
models. The authors note, however, that this might be due to the fact that their proposed macroeconomic
model has an imperfect ability to describe the joint dynamics of German macroeconomic variables.
Diebold et al. (2006) and Ang et al. (2006a) allow for bi-directional effects between macro and latent
yield factors but both studies find that the causality from macro variables to yields is much higher than
vice versa.



107

where c(τi), φ(τi) and σ(τi) are scalar parameters and ψ(τi) is a (6×1) vector containing the

coefficients on the macro factors. We construct forecasts both with and without macro

factors by setting ψ(τi) = 0. We denote the yield-only model by AR and the model with

macro factors by AR-X. For this and all other models we construct iterated forecasts10.

VAR model

Vector autoregressive (VAR) models create the possibility to use the history of other

maturities on top of any maturity’s own history as additional information. We use the

following first-order VAR specification11,

Yt = c + ΦYt−1 + ΨXt + Hεt, εt ∼ N (0, I) (4.4)

where Yt contains the yields for all 13 maturities; Yt = [y
(1m)
t , ..., y

(10y)
t ]′, c is a (13 × 1)

vector, Φ a (13× 13) matrix, Ψ a (13× 6) matrix and H is the lower triangular Cholesky

decomposition of the (unrestricted) residual variance matrix S = HH ′ containing 1
2
N(N+

1) = 91 free parameters. As noted in the introduction, our approach is similar in spirit to

the VAR models used in Evans and Marshall (1998, 2001) and Ang and Piazzesi (2003)

in the sense that we impose exogeneity of macroeconomic variables with respect to yields.

A well-known drawback of using an unrestricted VAR model for yields is that forecasts

can only be constructed for those maturities used in the estimation of the model. As

we want to construct forecasts for 13 maturities, this results in a considerable number

of parameters that need to be estimated. As an attempt to mitigate estimation error,

and subsequently, to reduce the forecast error variance, we summarize the information

contained in the explanatory vector Yt−1 by replacing it with a small number of common

factors that drive yield curve dynamics. Similar to Litterman and Scheinkman (1991)

and many other studies, we find that the first 3 principal components explain almost all

the variation in yields (over 99%). We replace Yt−1 in (4.4) accordingly with the (13× 3)

factor matrix Ft−1
12:

Yt = c + ΦFt−1 + ΨXt + Hεt, εt ∼ N (0, I) (4.5)

10Another approach is to construct direct forecasts by regressing y
(τi)
t directly on its h-month lagged

value y
(τi)
t−h as in Diebold and Li (2006). For the state-space form of the Nelson-Siegel model and the affine

model, such an approach is, however, infeasible. Therefore, and for matters of consistency, we choose to
construct iterated forecasts for all the models. Whether iterated forecasts are more accurate than direct
forecasts is a matter of ongoing debate, see the discussion in e.g. Marcellino et al. (2006).

11For both the AR and VAR models we examined the benefits of including more lags by analyzing AR(p)
and VAR(p) models with p = 2, . . . , 12. We found that using multiple lags resulted in nearly identical
forecasts compared to the AR(1) and VAR(1) models and these results are therefore not reported nor
were they included in the forecasting combination procedures in Sections 4 and 5.

12The time subscript ’t − 1’ indicates that we extract the common factors using the history of yields
up until t− 1, thereby not using the vector of observations for time t.
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where Φ is now a (13 × 3) matrix. The VAR model without and with macroeconomic

variables is denoted by VAR and VAR-X respectively.

Nelson-Siegel model

Diebold and Li (2006) show that using the in essence static Nelson and Siegel (1987)

model as a dynamic factor model generates highly accurate interest rate forecasts. The

Nelson-Siegel model differs from the unrestricted VAR model in (4.5) by imposing a

parametric structure on the factor loadings. The factor loadings Φ are specified as expo-

nential functions of maturity and a single parameter λ. Following Diebold et al. (2006),

the state-space representation of the three-factor model, with a first-order autoregressive

representation for the dynamics of the state vector, is given by

y
(τi)
t = β1,t + β2,t

[
1−exp(−τi/λ)

τi/λ

]
+ β3,t

[
1−exp(−τi/λ)

τi/λ
−exp(−τi/λ)

]
+ ε

(τi)
t (4.6)

βt = a + Γβt−1 + ut (4.7)

The state vector βt = (β1,t, β2,t, β3,t)
′ contains the latent factors at time t which can be

interpreted as level, slope and curvature factors (see Diebold and Li, 2006 for details).

The parameter λ governs the exponential decay towards zero of the factor loadings on β2,t

and β3,t, a is a (3 × 1) vector of parameters and Γ a (3 × 3) matrix of parameters. We

assume that the measurement equation and state equation errors in (4.6) and (4.7) are

normally distributed and mutually uncorrelated,
[

εt

ut

]
∼ N

([
018×1

03×1

]
,

[
H 0
0 Q

])
(4.8)

where H is a diagonal (18 × 18) matrix and Q a full (3 × 3) matrix. We follow Diebold

and Li (2006) by adding five maturities (τ = 9, 15, 18, 21 and 30 months) to the short

end of the yield curve to estimate the Nelson-Siegel model in (4.6)-(4.8). We use two

different estimation procedures: a two-step approach and a one-step approach. With

the frequentist approach we apply both the two-step and one-step estimation procedure

whereas with Bayesian analysis we consider only the one-step procedure.

The two-step approach is discussed in Diebold and Li (2006) and involves fixing λ and

estimating the factors βt in a first step using the cross-section of yields for each month

t. Given the estimated time-series for the factors from the first step, the second step

consists of modelling the factors in (4.7) by fitting either separate AR(1) models, thereby

assuming that both Γ and Q are diagonal, or a single VAR(1) model. We denote these

approaches by NS2-AR and NS2-VAR respectively.

The one-step approach follows from Diebold et al. (2006) and involves jointly esti-

mating (4.6)-(4.8) as a state space model using the Kalman filter. In this approach we
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assume that Γ and Q are both full matrices and that λ is now estimated alongside the

other parameters. We denote the one-step model by NS1.

Diebold et al. (2006) show that the Nelson-Siegel can be extended to incorporate

macroeconomic variables by adding these as observable factors to the state vector and

writing the model in companion form:

y
(τi)
t = β1,t + β2,t

[
1−exp(−τi/λ)

τi/λ

]
+ β3,t

[
1−exp(−τi/λ)

τi/λ
−exp(−τi/λ)

]
+ ε

(τi)
t (4.9)

ft = a + Γft−1 + ηt (4.10)[
εt

ηt

]
∼ N

([
018×1

012×1

]
,

[
H 0
0 Q

])
(4.11)

The state vector now also contains observable factors, ft = (β1,t, β2,t, β3,t,Mt,Mt−1,Mt−2).

The dimensions of a, Γ and Q are increased appropriately and ηt is given by ηt =

(u′t, ξ
′
t, 0, ..., 0)′. The companion form enables us to incorporate the VAR(3) specifica-

tion for the macro factors. We impose structure on Γ and Q to accommodate for the

effects of macro factors while maintaining the unidirectional causality from macro factors

to yields13. In particular, the lower left (9 × 3) block of Γ consists of zeros whereas Q is

block diagonal with a non-zero (3×3) block Q1 for the yield factors and a non-zero (3×3)

block Q2 for the macro factors. All other blocks on the diagonal contain only zeros. The

Nelson-Siegel model with macro factors can again be estimated using either a two-step

approach with AR or VAR dynamics for the yield factors, denoted by NS2-AR-X and

NS2-VAR-X, or using the one-step approach, denoted by NS1-X.

Affine model

Models that impose no-arbitrage restrictions have been examined for their forecast ac-

curacy in for example Duffee (2002), Ang and Piazzesi (2003) and Mönch (2006a). The

attractive property of the class of no-arbitrage models is that sound theoretical cross-

sectional restrictions are imposed on factor loadings to rule out arbitrage opportunities.

In this study we consider a Gaussian-type discrete time affine no-arbitrage model using

the set-up from Ang and Piazzesi (2003).

In particular, we assume that the vector of K underlying latent factors, or state

variables, Zt, which are assumed to drive movements in the yield curve, follow a Gaussian

VAR(1) process

Zt = µ + ΨZt−1 + ut (4.12)

13Note that the macro factors are prevented from entering the measurement equations directly by only
allowing the factor loadings of βt to be non-zero in (4.9). Diebold et al. (2006) impose this restriction
to maintain the assumption that three factors are sufficient for describing the dynamics of interest rates.
Relaxing this restriction would result in a substantial number of additional parameters.
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where ut ∼ N (0, ΣΣ′) with Σ a lower triangular Choleski matrix, µ a (K × 1) vector and

Ψ a (K ×K) matrix. The short interest rate is assumed to be an affine function of the

factors

rt = δ0 + δ′1Zt (4.13)

where δ0 is a scalar and δ1 a (K × 1) vector. Furthermore, we adopt a standard form for

the pricing kernel, which is assumed to price all assets in the economy,

mt+1 = exp
(−rt − 1

2
λ′tλt − λ′tut+1

)

We specify market prices of risk to be time-varying and affine in the state variables

λt = λ0 + λ1Zt (4.14)

with λ0 a (K × 1) vector and λ1 a (K ×K) matrix14. Under the assumption that bond

prices are an exponentially-affine function of the state variables,

P
(τ)
t = exp[A(τ) + B(τ)′Zt] (4.15)

we can recursively estimate the price of a τ−period bond using

P
(τ)
t = Et[mt+1P

(τ−1)
t+1 ] (4.16)

where the expectation is taken under the risk-neutral measure. Ang and Piazzesi (2003)

show that this results in the following recursive formulas for the bond pricing coefficients

A(τ) and B(τ):

A(τ+1) = A(τ) + B(τ)′[µ− Σλ0] +
1

2
B(τ)′ΣΣ′B(τ) − δ0 (4.17)

B(τ+1)′ = B(τ)′[Ψ− Σλ1]− δ′1 (4.18)

when starting from A(0) = 0 and B(0) = 0. If bond prices are exponentially affine in

the state variables then yields are affine in the state variables since P
(τ)
t = exp[−y

(τ)
t τ ].

Consequently, it follows that y
(τ)
t = a(τ) + b(τ)′Zt with a(τ) = −A(τ)/τ and b(τ) = −B(τ)/τ .

To estimate the model we deviate from the popular Chen and Scott (1993) approach and

assume that every yield is contaminated with measurement error.

To summarize, we specify the following affine model

y
(τi)
t = a(τi) + b(τi)Zt + ε

(τi)
t (4.19)

Zt = µ + ΨZt−1 + ut (4.20)

14Risk premia are constant over time if λ1 equals zero. With λ0 also equal to zero, risk premia are
non-existent altogether.
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[
εt

ut

]
∼ N

([
013×1

03×1

]
,

[
H 0
0 Q

])
(4.21)

where Q = ΣΣ′ and a(τi) and b(τi) are recursive functions of the parameters that govern

the dynamics of the state variables and of the risk premia parameters. We denote this

model by ATSM.

We extend the model to include observable macroeconomic factors in a similar way as

for the Nelson-Siegel model

y
(τi)
t = a(τi) + b(τi)ft + ε

(τi)
t (4.22)

ft = µ + Ψft−1 + ηt (4.23)[
εt

ηt

]
∼ N

([
013×1

012×1

]
,

[
H 0
0 Q

])
(4.24)

with ft = (Zt,Mt,Mt−1,Mt−2). The dimensions of a(τi), b(τi), µ, Ψ and Q are again

increased as appropriate and the state equation (4.23) is written in companion form. As

in the Nelson-Siegel model, Q is block diagonal with only two non-zero blocks, Q1 and

Q2. We denote the affine model with macroeconomic factors by ATSM-X.

Adding macroeconomic variables to affine models can cause estimation problems as it

further increases the number of parameters in these already highly parameterized mod-

els15. To speed up and to facilitate the estimation procedure, we therefore use the two-step

approach of Ang et al. (2006b) by making the latent yield factors observable. Contrary

to Ang et al. (2006b) who directly use the observed short rate and the term-spread as

measures of the level and slope of the yield curve, we use principal component analysis

to extract the first three common factors from the full set of yields and use these as our

observable state variables.

4.4 Forecasting

4.4.1 Forecast procedure

We divide our dataset into an initial estimation sample which covers the period 1970:1 -

1988:12 (228 observations) and a forecasting sample which is comprised of the remaining

period 1989:1 - 2003:12 (180 observations). The forecasting period is further divided in

three 60-month subperiods; 1989:1 - 1993:12, 1994:1 - 1998:12 and 1999:1 - 2003:12. The

15Contrary to the reduced form affine model of Ang and Piazzesi (2003), Hordahl et al. (2006) use a
structural affine model with macroeconomic variables in which the number of parameters can be kept
down. They show that their model leads to better longer horizon forecasts compared to the Ang-Piazzesi
model, which indicates that instead of only imposing no-arbitrage restrictions, which is the case in affine
models, imposing also structural equations seems to mitigate overparameterization.
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initial subperiod is primarily used as a training sample to start up the forecast combi-

nations which we discuss in Section 5. Consequently, we report forecast results for the

sample 1994:1 - 2003:12 (120 observations) and the last two subsamples (60 observations

each). The vertical lines in Figure 4.1 serve to identify the subperiods.

We recursively estimate all models using an expanding window of all data from 1970:1

onwards. We construct point forecasts for four different horizons: h = 1, 3, 6 and 12

months ahead. As mentioned in the previous section, for horizons beyond h = 1 month

we compute iterated forecasts when using frequentist techniques whereas for Bayesian

inference we compute the mean of each model’s h-month ahead predictive density.

4.4.2 Forecast evaluation

To evaluate the out-of-sample forecasts we compute a number of different popular error

metrics per maturity and forecast horizon. We focus in particular on the Root Mean

Squared Prediction Error (RMSPE)16. Similar to Hordahl et al. (2006) we also summarize

the forecasting performance of each model over all maturities by computing the Trace

Root Mean Squared Prediction Error (TRMSPE), see Christoffersen and Diebold (1998)

for details.

To test the statistical accuracy of (combined) forecasts of all models relative to our

random walk benchmark model, we apply, like Hordahl et al. (2006) and Mönch (2006b),

the White (2000) “reality check” test with the stationary bootstrap approach of Politis

and Romano (1994). We carry out the test using 1000 block-bootstraps of the forecast

error series with an average block-length of 12 months.

4.4.3 Forecasting results: individual models

Tables 4.3-4.6 report out-of-sample results for the period 1994:1-2003:12 for the four

selected forecast horizons. Panels A and B of each table contain results for the models

with and without macro factors. The results with the frequentist approach are shown

in the left hand side panels whereas those with Bayesian inference are given in the right

hand side panels. Subsample results are reported in Tables 4.7-4.10 for the period 1994:1-

1999:12 and Tables 4.11-4.14 for the period 1999:1-2003:12.

16Other forecast performance statistics such as the Mean Prediction Error (MPE), Mean Absolute Pre-
diction Error (MAPE) and the R2 when regressing observed h-month ahead yields on the corresponding
forecasts are not reported but are available upon request. It would be interesting to evaluate the different
forecasting models from a truly economic point of view by gauging the performance of bond portfolios
but such an analysis is beyond the scope of this Chapter and is therefore left for further research. Results
that can give an indication of the likely economic profitability of interest forecasts are available upon
request. In particular, we have analyzed the Hit Rate which we compute as the percentage of correctly
predicted signs of changes in interest rates with values about 50% indicating sign predictability.
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The first row in each table shows the values of the different forecast evaluation metrics

for the random walk (reported in basis point errors) whereas all other rows show values

relative to the random walk. Relative values for any forecast that are below one are

highlighted in bold to indicate that these forecasts are on average more accurate than

those of the random walk. Stars indicate statistically significant outperformance according

to White’s reality check test.

Full sample results

Sample 1994:1 - 2003:12

The results for the 1-month horizon are not very encouraging. For nearly all maturities

the random walk shows better statistics than any of the models based on yields only, even

when parameter uncertainty is incorporated. The results are in line, however, with other

studies showing that it is very difficult to outperform the RW for short horizon forecasts.

Especially for short horizons the near unit root behavior of yields seems to dominate and

model-based yield forecasts add little.

Incorporating macroeconomic information as an additional source of information im-

proves forecasts for the AR and VAR models. The (T)RMSPE statistics are now very

close and often marginally better than those of the RW. The largest improvements are

shown for the shortest maturities, in particular the 3-month maturity where the relative

RMPSE is now 0.95. Detailed inspection of the forecasts reveals that macroeconomic in-

formation helps especially to reduce the forecast bias. However, the improvements do not

appear substantial enough for the AR-X model to produce significantly better forecasts,

as judged by the White reality check test. The evidence for more complex model speci-

fications is mixed but, in general, adding macroeconomic information worsens accuracy.

For example, for the 6-month maturity the relative RMSPE increases from 1.10 to 1.71

for the Nelson-Siegel model when including macro factors.

The results for the 3-month forecast horizon are very similar to those for the 1-month

horizon, although the RMSPE is now higher in absolute terms. The latter is expected since

the yield curve is subject to more new information when the forecast horizon lengthens.

It still proves very difficult for any of the models to provide forecasts that are more

accurate than the random walk. The AR-X model is again the only model that shows

promising results, which can again be attributed to the macro factors, as it gives a lower

TRMSPE statistic than that of the random walk. The improvement is, however, not

statistically significant. What is striking though is that whereas with the frequentist

approach without macro factors the RMSPE goes up for h = 3 compared to h = 1, with

the Bayesian approach the RMSPE actually goes down for some models, in particular the
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Nelson-Siegel model.

For a 6-month horizon more models start to outperform the random walk for more

maturities, as indicated by a larger number of relative RMSPEs below 1, although the

results are still by no means impressive, and the best model only improves the random

walk by a few percentage points. Taking into account macroeconomic information as well

as parameter uncertainty results in reasonably accurate forecasts although there is still

no significant outperformance. Incorporating parameter uncertainty is very beneficial for

the Nelson-Siegel model. The Bayesian estimation of the state-space form of the model

substantially reduces the relative RMSPE compared to the frequentist approach. Models

that keep struggling are the VAR and affine models. In both cases this is most likely

due to the large number of yields (compared to for example Duffee, 2002 and Ang and

Piazzesi, 2003) that we use in estimation, resulting in a large number of parameters17.

Note that the VAR model with Bayesian inference does worse than when estimated using

maximum likelihood. This can be explained by realizing that Bayesian analysis requires

drawing inference on the variance parameters of each of the 13 maturities in addition to

doing so for all the other parameters. With maximum likelihood this is not necessary as

we only generate point forecasts.

The longest horizon that we consider is h = 12. Two models produce forecasts that

consistently outperform the random walk across all maturities: the frequentist VAR-X

model and the Bayesian NS1-X model. For both models, the TRMSPEs are smaller

compared to the random walk. RMSPEs are on average 5% lower, although for the NS1-

X the differences are not significant. For all other models, the benefits of adding macro

factors are evident with all relative MSPE going down considerably. Compared to the

frequentist results, the Bayesian VAR model still struggles.

It is interesting to compare our results with those of Mönch (2006b) as he uses an

almost identical forecasting sample (1994:1 - 2003:9) but a much shorter estimation period

(1983:1 - 1993:12) for the VAR, NS2-AR and NS2-VAR model. Our results for the RW are

identical, as they should be, which is a convenient check on our results. The RMSPEs we

find for the VAR(1) on yields and a 1-month horizon are somewhat higher for maturities

below five years whereas for longer maturities they are very similar. For a 12-month

horizon the differences are larger as Mönch reports RMPSEs which are roughly 20%

lower than ours. The differences will partly be due to using a slightly different set of

maturities and our use of yield-factors when estimating the VAR instead of using lagged

yields directly. The main reason for the different sets of results will, however, be due to

17An obvious solution to this problem would be to estimate the affine models using a smaller set of
yields. The reason we do not follow this strategy here is because we want to use a similar number of
yields as in Mönch (2006a).
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our much longer estimation sample. It seems that including the 1970s and beginning of

1980s leads to poorer yield forecasts compared to those obtained when starting the sample

after the Volcker period. For the NS2-AR and NS2-VAR the 1-month ahead results are

again very similar. However, whereas Mönch finds that NS2-AR outperforms NS2-VAR

for a 6- and 12-month horizon we find that NS2-VAR is usually more accurate. Our affine

model without macro variables provides similar results as for the A0(3) model that Mönch

considers for h = 1 but less accurate results for h = 6 and h = 12. However, we forecast

the 1-month maturity much more accurately which is most likely due to the fact that we

estimate the short rate parameters δ0 and δ1 using only data on the 1-month yield instead

of estimating these simultaneously with the other model parameters. It is interesting to

note that none of the models we consider here have an out-of-sample performance which

is as good as that of the FAVAR model advocated by Mönch. It would therefore be

worthwhile to add this model to the model consideration set but we leave this for further

research.

As an overall summary for the 1994:1-2003:12 period we can remark that our results for

the individual models are not very encouraging as interest rate predictability appears to be

rather low. This may be attributed to a number of possible causes with one main reason

being the out-of-sample period we select. Except for Mönch (2006b) who reports very

promising out-of-sample results for his FAVAR model for nearly the same period, Duffee

(2002), Ang and Piazzesi (2003), Diebold and Li (2006) and Hordahl et al. (2006) all use an

out-of-sample period that ranges from roughly the mid 1990s till 2000. As we also include

the period from 2000 onwards, a possible explanation for our poor forecasting results seems

to be locked up in that period. Figure 4.1 surely indicates that the interest rate behavior

during that period with its pronounced widening of spreads is rather different from the

stable second half of the 1990s. The subsample results reported in Mönch (2006b) for

the period 2000:1-2003:9 indicate that the VAR, NS2-AR and NS2-VAR models perform

poorly compared to the RW which is evidence that forecastability is indeed low during

that period. Through analyzing the subsamples 1994:1-1998:12 and 1999:1-2003:12 we

hope get more insight on this issue.

Subsample results

Sample 1994:1 - 1998:12

This five year subsample is the period that has been most heavily investigated in other

forecasting studies, with positive results found for different models. For example, Duffee

(2002) reports forecast results for affine models that hold up favorably against the random

walk for the period 1995:1-1998:12. Similarly, Ang and Piazzesi (2003) show that a no-
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arbitrage Gaussian VAR model predicts well 1-month ahead for the period 1996:1-2000:12

while Diebold and Li (2006) report outperforming forecasts for the Nelson-Siegel model

for the period 1994:1-2000:1218. These studies suggest that there should be a high degree

of predictability for this subperiod. Tables 4.7-4.10 confirm this claim. Even for a 1-

month horizon it is already possible to outperform the random walk. The AR-X model

in particular performs well across all maturities with results for the frequentist approach

being slightly better than for the Bayesian approach. The latter is most likely due to

the fact that the prior information based solely on the initial sample does not fit well

with this period of smooth interest rates. The TRMSPEs are lower than for the random

walk but the White test does not indicate significant improvements. The NS2-AR and

VAR-X models also do well although the 2-year and 10-year maturities still seem difficult

to forecast. The affine models render poor forecasts in this subsample, except for the 5-

and 7-year maturities. This differs from Ang and Piazzesi (2003) who show that an affine

model augmented with an inflation and a real activity factor forecasts better than the

random walk for maturities up to and including five years. This difference in results could

be due to the substantially larger number of yields that we use in estimation. Furthermore,

Ang and Piazzesi (2003) do not forecast beyond a 1-month horizon.

For the 3-month horizon other models also start to predict well, but especially for 6-

and 12-months ahead predictability is evident. The VAR-X model and the NS2-AR model

in particular now produce forecasts that are significantly better than the no-change fore-

cast with relative RMSPE being lower by sometimes as much as 30-40%. Adding macro

factors seems to reduce forecast accuracy. Except for the VAR-X model, incorporating

parameter uncertainty does not seem to help either. The performance of the affine models

also improves. Interestingly, for shorter maturities simple affine models do better than

their counterparts with macro information, but the evidence is just the opposite for longer

forecast horizons. However, the affine models are never the best performing models for

any maturity, which is a result also found by Diebold and Li (2006).

Comparing our results to those of Diebold and Li (2006) makes sense, since that study

has the largest overlap in the set of models considered19. Results for h = 1 for the RW,

AR, VAR and NS2-AR models are nearly identical in terms of RMSPE although we find

slightly different MPEs (in our case the MPE is in general positive whereas Diebold and Li

report mainly negative values). For h = 6 we find lower RMSPEs for the maturities below

five years whereas for the AR and VAR models results are very similar, despite the different

18Hordahl et al. (2006) construct 1 through 12-months ahead forecasts for the period 1995:1-1998:12
but these authors apply their structural model to German zero-coupon data and their results might
therefore not be directly comparable to the results for U.S. data.

19Although the forecast period of Diebold and Li (2006) contains 24 months more, a comparison still
seems interesting to conduct.
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way in which we estimate the VAR model. We find MPEs (not reported) that are positive,

as opposed to negative values in Diebold and Li. A detailed analysis of the prediction

errors reveals that for the sample period 1999:1-2000:12, during the yield hike, all the

models are consistently producing forecasts that are too low resulting in substantially

negative forecasting errors, which explains why Diebold and Li find negative MPEs. For

the 12-month horizon we also find that the NS2-AR model substantially outperforms

the RW, AR and VAR model. Contrary to Diebold and Li we find that the forecast

performance of NS2-VAR is at least similar to that of the AR and VAR models. We do

confirm the superior performance of the NS2-AR model for this subsample.

Sample 1999:1 - 2003:12

During this subperiod, interest rates initially go up until the end of 2000 after which

they decline sharply by roughly 5% to a level of 1% for the short rate accompanied by a

substantial widening of spreads between long and short rates. Forecasts results are shown

in Table 4.11 - 4.14. Although adding macro factors again improves forecasts, the only

model that seems to be able to compete with the RW is the Bayesian NS1-X model and

only consistently so for the longest horizons. The frequentist AR-X model does well for

shorter maturities. The VAR model shows a strikingly poor performance with very large

positive MPEs indicating that the VAR model cannot cope with the downward trend

in interest rates. The Bayesian ATSM-X model does better than the Bayesian VAR and

predicts the short end of the curve reasonably well. This shows that imposing no-arbitrage

restrictions helps but not enough to beat simple univariate models.

Rolling TRMSPE

The subsample results clearly show that different models perform well during different

subsamples. An obvious example is the NS2-AR model which comfortably outperforms

all other models for the first subsample but produces disappointing forecasts for the second

subsample. Similar conclusions can be drawn for other models. To further illustrate how

the forecasting performance of different models varies over time we compute TRMSPEs

using a 60-month rolling window. Figures 4.4-4.7 show results for all forecast horizons

considered and for a subset of models20. Each graph shows the rolling TRMSPE of the

RW, AR, VAR, NS1 and ATSM models, either without (left panels) or with macro factors

(right panels)

The patterns for the two five year subsamples reappear. TRMSPEs are fairly stable

20Note that the graphs only depict model specifications that were estimated using both frequentist
and Bayesian inference. As a result, the NS2-AR and NS2-VAR are not included but these graphs are
available on request.
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Figure 4.4: 60-month moving TRMSPE: 1-month forecast horizon
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Figure 4.5: 60-month moving TRMSPE: 3-month forecast horizon
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(d) Bayesian inference

Note: The figure presents the 60-month rolling window TRMSPE for individual models in the left panels
and for individual models augmented with macro factors in the right panels. The TRMSPE is shown
for the out-of-sample period 1994:1-2003:12 for a 1-month horizon in Figure 4.4 and a 3-month horizon
in Figure 4.5. The models depicted are the Random Walk [RW], first order (Vector) Autoregressive
[(V)AR], State-Space Nelson-Siegel [NS1] and the affine [ATSM] model. The affix ’X’ indicates that
macro factors have been added as additional explanatory variables.



131

Figure 4.6: 60-month moving TRMSPE: 6-month forecast horizon
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(d) Bayesian inference

Figure 4.7: 60-month moving TRMSPE: 12-month forecast horizon
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(d) Bayesian inference

Note: The figure presents the 60-month rolling window TRMSPE for individual models in the left panels
and for individual models augmented with macro factors in the right panels. The TRMSPE is shown for
the out-of-sample period 1994:1-2003:12 for a 6-month horizon in Figure 4.6 and a 12-month horizon in
Figure 4.7. See Figures 4.4-4.5 for further details.
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until 1997 after which a decreasing trend sets in lasting until mid 2000. The high degree of

interest rate predictability during the 1994-1998 subperiod is the cause of the decreasingly

low TRMSPEs for the period 1998-2001. From 2001 onwards a sharp increase is visible

in TRMSPEs indicating large forecasting errors due to the sharp decline in interest rate

levels and the widening of spreads during this period. Zooming in on the performance

of individual models, we notice that the random walk is one of the best models at the

beginning and at the end of the forecasting period. During the 1998-2001 period the

random walk tends to be outperformed by the AR-X, VAR-X and NS1-X models. An

opposite pattern is visible for the ATSM model which performs well only in the middle

of the out-of-sample period.

The main point to take from these graphs is that the performance of individual models

varies substantially over time and establishing a clear-cut ordering of the models which

holds across the entire 1994-2003 period seems infeasible. Therefore, believing in a single

forecasting model may be dangerous. In the next section, we therefore discuss several

forecast combination techniques.

4.5 Forecast combination

Our subsample and rolling TRMPSE analysis reveals that it is seems impossible to identify

a single model that consistently outperforms the random walk across all subperiods. The

forecasting ability of individual models varies considerably over time. It seems that each

model may play a complementary role in approximating the data generating process, at

least during subperiods. Model uncertainty is troublesome if one has hopes of obtaining a

single model for forecasting or investment purposes. A worthwhile endeavor for cushioning

the effects of model uncertainty is to combine the forecasts of different models. In this

section we examine several forecast combination schemes. Two combination methods

are standard approaches and can be applied to combine frequentist as well as Bayesian

forecasts. We also investigate a third combination method which is a truly Bayesian

approach that can only be applied to Bayesian forecasts. We first discuss the different

methods and then move on to examine the forecast combination results in comparison to

the results of the individual models.

4.5.1 Forecast combination: schemes

Scheme 1: Equally weighted forecasts

The first forecast combination method assigns an equal weight to the forecasts from

all individual models. Assuming we are combining forecasts from M different models,
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each weight is the same and equal to w
(τi)
T+h,m = 1/M for m = 1, . . . ,M . The equally

weighted combined forecast for a h-month horizon for any maturity τi is therefore given by

ŷ
(τi)
T+h =

∑M
m=1 w

(τi)
T+h,mŷ

(τi)
T+h,m which we denote as Forecast Combination - Equally Weighted

(FC-EW). As explained in Timmermann (2006) this method is likely to work well if

forecast errors from different models have similar variances and are highly correlated,

which is certainly the case here.

Scheme 2: Inverted MSPE-weighted forecasts

The second forecast combination scheme we examine uses weights that take into account

historical relative performance. Model weights are based on each model’s (inverted)

MSPE relative to those of all other models, computed over a window of the previous

υ months and we denote these by Forecast Combination - MSPE (FC-MSPE)21. The

weight for model m is computed as w
(τi)
T+h,m =

1/MSPE
(τi)

T+h,m∑M
m=1(1/MSPE

(τi)

T+h,m)
where MSPE

(τi)
T+h,m =

1
υ

∑υ
r=1(ŷ

(τi)
T+h−r|T−r,m − y

(τi)
T+h−r)

2. A model with a lower MSPE is given a relatively larger

weight than a worse performing model, see Timmermann (2006) for discussion and Stock

and Watson (2004) for an application to forecasting GDP growth22. Which value should

be used for υ is difficult to determine a priori. Using a smaller window will make weights

more responsive to changes in models’ forecasting accuracy but it will also make them

more noisy. The optimal choice of υ will therefore need to be determined empirically.

Here we use four different windows to compute model weights. We use an expanding

window where υ is initially set equal to 60 months but which increases with every new

yield realization that becomes available and we denote the resulting combination forecast

as FC-MSPE-exp. We also apply moving windows of different length, in particular

υ = 12, 24 and 60 months. We denote these by FC-MSPE-12, FC-MSPE-24 and

FC-MSPE-60 respectively.

Scheme 3: Bayesian predictive likelihood

The third and final combination scheme we consider is a purely Bayesian model averaging

scheme, which we denote by BMA23, and is based on the predictive likelihood approach

21Note that whereas in the tables we report results for the Root MSPE, Timmermann (2006) argue
that it is better to use the MSPE to construct model weights.

22The weights applied in this and the previous forecast combination scheme are always bounded between
zero and one. Other approaches for which this does not necessarily need to be the case, in particular
OLS-based weights (see again Timmermann, 2006), proved to be problematic here due to multicollinearity
problems between the different forecasts. This resulted in often extreme (offsetting) weights we therefore
did not further pursue these approaches.

23In the remainder of the text, we often refer to this third scheme as forecast combination. With a
slight abuse of denotation we share BMA in the class of forecast combination methods which, strictly
speaking, is incorrect since BMA averages models instead of combining models.
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proposed by Geweke and Whiteman (2006). The probability of the realized value at time

T + h is evaluated under the Bayesian predictive density for T + h for a given model

conditional on the information at time T . The resulting probability is called predictive

likelihood. Geweke and Whiteman (2006) apply these probabilities to average individual

models. The realized value will fall near the center of the predictive density of a given

model if this density is accurate. The particular model then receives a large weight relative

to a model for which the realization ends up far out in the tail of its predictive density.

The approach of Geweke and Whiteman (2006) is an alternative to the most com-

monly used BMA method based on the marginal likelihood, see for example Madigan and

Raftery (1994). We choose the predictive likelihood BMA for three reasons. Firstly, the

predictive likelihood is an out-of-sample performance measure, on contrary the marginal

likelihood is an in-sample fitting measure. Secondly, the marginal likelihood of highly

nonlinear models, such as the Nelson-Siegel and affine models, cannot be derived analyt-

ically and may be very difficult to compute by Monte Carlo simulation. Thirdly, Eklund

and Karlsson (2007) show, in a simulation setting and in an empirical application to

Swedish inflation, that model weights based on the predictive likelihood have better small

sample properties and result in better out-of-sample performance than weights based on

the traditional marginal likelihood measure.

Whereas we refer to the appendix for specific details, we do want to briefly discuss

a major difference between our forecast combination approach and that of Eklund and

Karlsson (2007). Unlike in their study, we do not apply the system of updating and prob-

ability forecasting prequential, as defined by Dawid (1984). We compute the predictive

density for month T + h using information up until month T and we evaluate the realized

value for time T +h using the same density. The resulting probability is then used to com-

pute the weight for model m in constructing the forecast for T + 2h made at time T + h.

Eklund and Karlsson (2007) on the other hand evaluate the fit of the predictive density

over a small number of observations, by means of the predictive likelihood, and then

update the probability density for the forecasts. The latter approach results in weights

which are based more on the fit of the model, even when using out-of-sample data, than

on the probability of out-of-sample realized values. In an unreported simulation exercise

we find that our approach reacts faster to out-of-sample uncertainty and instability since

it is not constrained to give more probability to the model which provide the best fit of

predicted values.
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4.5.2 Forecast combination results

A important question to answer when combining forecasts is which models should be

included. Here we combine forecasts using three different sets of models. First we include

only those specifications that do not incorporate macro factors (M = 7 for the models

estimated with frequentist methods and M = 5 for the Bayesian counterpart); second, we

use only those model specifications that do incorporate macro factors (again M = 7 for the

models estimated with frequentist methods and M = 5 for the Bayesian counterpart) and

finally, we simply combine all specifications (M = 13 and M = 9 respectively)24. By again

making the distinction between models with and without macro factors we can assess the

added value of including macroeconomic information also for the combined forecasts, just

like we did for the individual models. The only model that is always included in the

forecast combinations is the random walk.

Full sample 1994:1 - 2003:12

The results of the forecast combination methods for the 1994-2003 period are reported

in Panels C-E of Tables 4.3-4.6. The following main overall conclusions can be drawn.

Firstly, it holds for all horizons that forecast combinations methods are a valuable alter-

native compared to selecting any individual model, especially when combining forecasts

from models estimated with Bayesian methods. The reported TRMSPE numbers show

that the best combination scheme always outperforms the best individual model as well as

the random walk, although the differences are not statistically significant. Secondly, Pan-

els C-E show that combining forecasts works increasingly well for longer forecast horizons.

Indeed, for the 6-month and 12-month horizons, the best combination scheme outperforms

the random walk and the best individual model by several percentage points in terms of

relative RMSPEs. Thirdly, results are particularly encouraging for long maturities. All

the individual models tend to forecast maturities beyond 5 years rather poorly, with some

exceptions such as the VAR-X and NS1-X models. This is not the case, however, for the

combination schemes which outperform the random walk by up to 7% for the 6-month

horizon (FC-MSPE-X) and 8-9% for the 12-month forecast horizon (again FC-MSPE-X).

This is an important result as other studies have documented the difficulty of accurately

forecasting long maturities with individual models. The claim that individual models pro-

24Many other subsets can of course be selected. Aiolfi and Timmermann (2006) suggest filtering out
the worst performing model(s) in an initial step. Preliminary analysis suggests that doing so does not
lead to much improvement in forecasting performance in our case. However, a more thorough selection
procedure than simply including all available models as applied here, will most likely lead to better results
for the forecast combination methods. Although this is a very interesting issue to examine in more detail,
our main point here is that want to show the benefits of combining forecasts as an alternative to putting
all one’s eggs in a single model basket.
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vide complementary information definitely seems to hold for longer maturities. Fourthly,

averaging models with macro factors is the superior combination approach. When we

compare the forecast combinations with different model sets, in particular models with

and without macro factors, there seems to be no doubt that combining forecasts from only

the models that include macro factors provides the most accurate results. When models

with macro factors are averaged (Panels D), the resulting statistics are almost always

below those of the Random Walk, irrespective of the considered horizon, and this is true

independently of the averaging scheme used. On contrary, forecasts from combining mod-

els without macro factors (Panels C) always have relative RMSPEs above one. Including

all models in the averaging strategy therefore also does not seem to be the most favorable

approach in particular not with a longer forecast horizon. Finally, comparing the different

forecast combination schemes in more detail, we observe that MSPE-based weights work

better than giving each model an equal weight. Differences are most pronounced for long

maturities and a long forecast horizon. For example, for a 12-month horizon with the 10-

year maturity using Bayesian inference, the relative MSPE of FC-EW-X is 0.98 whereas

that of FC-MSPE-X-exp is 6% lower at 0.92. With respect to the length of window that

should be used to compute the MSPE weights, we find that weights that are based on

the relative performance over a long history give the most accurate forecasts. Using an

expanding window or a 60-month rolling window works very well whereas using a shorter

history deteriorates the combination results.

The BMA scheme gives very similar results as the equal weight scheme. Bayesian

model averaging has the attractive feature of being able to assign near-zero weights to, and

thereby effectively eliminating, the worst performing models. Although BMA outperforms

the FC-MSPE with υ = 12 and 24, like these schemes it assigns probability to models

using only the very recent historical performance. Our results indicate that a long history

is important to accurately assign weights to models.

By analyzing the forecast combination results for the two five-year sub periods we can

judge the robustness of the above conclusions.

Subsample 1994:1 - 1998:12

For this period, which is characterized by a high level of predictability in general and

with some individual models performing particularly well, forecast combinations are still

attractive as reported in Tables 4.7-4.10. Improvements with respect to the random walk

are statistically significant, often even at the 99% confidence level. For short forecast hori-

zons, some individual models, mainly the NS2-AR, outperform the forecast combination

schemes. For the 6-month and 12-month horizons, forecast combinations with macro-

economic information, based on the MSPE-weights using a long historical window are the
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most accurate forecasting methods. It is interesting that whereas for the individual mod-

els (except for the VAR model) adding macro factors worsens forecasting performance,

for the forecast combination methods adding macro factors is very beneficial.

Panel E of Table 4.9 and 4.10 shows that for this subsample combining all models

seems to work somewhat better than just the macro models, as judged by the TRM-

SPE. However, this outperformance is achieved through the short and medium maturities

which, for the frequentist results, can be explained by the stellar performance of the NS2-

AR model. Nevertheless, the combination methods that average only over models with

macro factors are by far the most accurate for long maturities. We find that the MSPE

decreases by around 20% compared to the random walk and over 10% compared to the

best individual model for the 12-month forecast horizon.

Subample 1999:1 - 2003:12

Our analysis in section 5.2.1 shows that the Bayesian Nelson Siegel model with macro

factors forecasts very accurately in this subsample. Forecast combinations provide similar

results for short horizons, but results are worse for h = 6 and h = 12. The MSPE

combination scheme with only macro factors and a long history to base the weights on still

is the best forecast combination approach. It again outperforms nearly all the individual

models but is still less accurate than the random walk. The somewhat disappointing

results for this forecast combination scheme can, however, be explained by the way model

weights are determined. One of the best performing individual models in the 1994-1998

subsample is the VAR-X model. With either an expanding window or a 60-month moving

window, the VAR-X model will initially receive a large weight relative to other models

during the 1999-2003 period with the MSPE combination scheme. However, the VAR-X

model has low predictability in this subsample which negatively influences the results of

the combination methods. As the MSPE combination scheme is solely based on past

performance, it cannot account for structural changes in the forecasting performance of

individual models. Using a smaller moving window υ = 12, 24 does not help although the

results for BMA do suggest that a shorter history may be worthwhile25. More accurate

combination schemes would ideally be able to account for structural changes.

25The potential problem with the MSPE-based weight scheme is that the squared forecasts errors are
all given a weight of one when summing these to compute the MSPE. To assign more weight to the most
recent forecast errors we therefore experimented with a weighted MSPE as suggested by Diebold and Pauly
(1987) and we computed the weighted MSPE as follows: WMSPE = 1

υ

∑υ
r=1 λr−1(ŷ(τi)

T+h−r|T−r−y
(τi)
T+h−r)

2.
The factor λr−1 introduces exponentially decreasing weights as 1, λ, λ2, . . ., starting from the most recent
forecast error. We set λ = 0.9439 such that the 12 most recent forecasts receive 50% of the total weight
given. Although this method does indeed give smaller weights to the VAR-X model, the overall forecasting
performance of the MSPE-weighted scheme did not improve.
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Figure 4.8: 60-month moving TRMSPE: 1-month forecast horizon

1999 2001 2003
80

85

90

95

100

105

110

115

TR
MS

PE

RW
FC-EW
FC-MSPE-60

(a) classical inference

1999 2001 2003
80

85

90

95

100

105

110

115

TR
MS

PE

RW
FC-EW-X
FC-MSPE-X-60

(b) classical inference

1999 2001 2003
80

85

90

95

100

105

110

115

TR
MS

PE

RW
FC-EW
FC-MSPE-60
BMA

(c) Bayesian inference

1999 2001 2003
80

85

90

95

100

105

110

115

TR
MS

PE

RW
FC-EW-X
FCMSP-EX-60
BMA-X

(d) Bayesian inference
Figure 4.9: 60-month moving TRMSPE: 3-month forecast horizon
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(d) Bayesian inference

Note: The figure presents the 60-month moving average TRMSPE for forecast combination methods
using individual models without macro factors (left panel) and with macro factors (right panel). The
TRMSPE is shown for the out-of-sample period 1999:1-2003:12 for a 1-month horizon in Figure 4.8 and
a 3-month horizon in Figure 4.9. Results are depicted for the Random Walk [RW], combined forecasts
using equal weights [FC-EW], MSPE-based weights based on a moving window of the last 60 forecasts
[FC-MSPE-60] and combined forecasts using the Bayesian model averaging approach [BMA]. The affix
’X’ indicates that only individual models with macro factors are combined.
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Figure 4.10: 60-month moving TRMSPE: 6-month forecast horizon
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Figure 4.11: 60-month moving TRMSPE: 12-month forecast horizon
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(d) Bayesian inference

Note: The figure presents the 60-month moving average TRMSPE for forecast combination methods
using individual models without macro factors (left panel) and with macro factors (right panel). The
TRMSPE is shown for the out-of-sample period 1999:1-2003:12 for a 6-month horizon in Figure 4.10 and
a 12-month horizon in Figure 4.11. See Figures 4.8-4.9 for further details.
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Rolling TRSMPE

A valid question to ask is to what extent our results for the forecast combination schemes

are also sample specific. An answer to this question can be given by considering Figures

4.8-4.10. These graphs show the 60-month rolling TRMSPE for the equally-weighted and

MSPE-weighted combination schemes for the period 1999-200326, without macro factors

(left panels) and with macro factors (right panels) and for frequentist (Panels [a] and [b])

as well as Bayesian estimation methods (Panels [c] and [d]).

The graphs show that the forecast combination schemes which incorporate macro fac-

tors always outperform the schemes that do not incorporate macroeconomic information,

irrespective of the forecast horizon and the estimation method27. What is most striking

though is that the averaging schemes with macro factors outperform the random walk

for nearly every five-year subperiod, except for a few samples ending in either the second

half of 2000 or at the end of 2003. This is particularly true when model forecasts are

constructed with Bayesian techniques. The random walk TRMSPE lines in panel (d) of

Figures 4.9-4.11 are clearly above those of the FC-MSPE-X-60 scheme which is the best

performing combination method. Consequently, the performance of the forecast combina-

tions is very stable across time and indeed much more stable than for individual models.

In that respect, our choice of the second subsample is even somewhat unfortunate as the

reported results for this sample do not do justice to the combination schemes.

4.6 Conclusion

This Chapter addresses the task of forecasting the term structure of interest rates. Several

recent studies have shown that significant steps forward are being made in this area.

We contribute to the existing literature by assessing the importance of incorporating

macroeconomic information, parameter uncertainty, and, in particular, model uncertainty.

Our results show that these issues are worth addressing since they improve interest rate

forecasts.

We examine the forecast accuracy of a range of models with varying degrees of com-

plexity. We assess model forecasts over a ten-year out-of-sample period, using the entire

period as well as several subperiods to show that the predictive ability of individual mod-

els varies over time considerably. Models that incorporate macroeconomic variables seem

more accurate in subperiods during which the uncertainty about the future path of inter-

est rates is substantial. As an example we mention the period 2000-2003 when spreads

26We need the forecasts of the first subsample to initialized the rolling TRMSPE statistics.
27Note that the rolling TMSPEs seem to be more stable over time when the forecast horizon lengthens

which is counterintuitive. However, this is only due to the scaling of the vertical axes in the graphs.
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were high. Models without macro information do particularly well in subperiods where

the term structure has a more stable pattern such as in the early 1990s.

The fact that different models forecast well in different subperiods confirms ex-post

that alternative model specifications play a complementary role in approximating the

data generating process. Our subsample results provide a strong claim for using forecast

combination techniques as opposed to believing in a single model. Our model combination

results show that recognizing model uncertainty and mitigating the likely effects, leads

to substantial gains in interest rate forecastability. We show that combining forecasts of

models that incorporate macro factors are superior to forecasts of any individual model

as well as the random walk benchmark. Additionally, the outperformance of the optimal

combination scheme which assigns weights to models based on the relative historical

performance over a long sample is very stable over time. We obtain the largest gains in

forecastability for long maturities.

We feel that our results open up exciting avenues for further research. In this study

we have only considered very generic models, in particular in our use of a three-factor

Gaussian affine model. It would therefore be interesting to expand the model considera-

tion set with more sophisticated models such as the FAVAR models of Mönch (2006a) or

the structural model by Hordahl et al. (2006) both of which have been found to forecast

well. More sophisticated ways of combining forecasts are worth addressing as well, see

e.g. Guidolin and Timmermann (2007) who use a combination scheme with time-varying

weights where weights have regime switching dynamics. In terms of incorporating param-

eter uncertainty, much more work can be done on the use of sensible informative priors.

As an example we mention the use of adaptive priors that could take into account likely

changes in yield dynamics due to clear political or economic reasons. Other, technical,

issues that could be addressed are more specifically related to estimation and forecasting

procedures. For example, changes in yield dynamics could also be accounted for by using

rolling estimation windows instead of the expanding window which we have used here.
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Appendix: Estimation details

4A Individual models

In this appendix we provide details on how we perform inference on the parameters of the models in Section
3. We discuss each model separately and we distinguish between frequentist and Bayesian inference.

4A.1 AR model

Frequentist Inference

We estimate the parameters (c(τi), φ(τi), ψ(τi)) using standard OLS. Given the parameter estimates we
construct iterated forecasts as

ŷ
(τi)
T+h = ĉ(τi) + φ̂(τi)ŷ

(τi)
T+h−1 + ψ̂(τi)

′
X̂T+h (4A.1)

with ŷ
(τi)
T = y

(τi)
T . We construct forecast both with and without the macroeconomic factors. The forecasts

of the macro factors, X̂T+h, are iterated forecasts constructed from the VAR(3) macro model.

Bayesian Inference

For the Bayesian inference, we use a Normal-Gamma conjugate prior for the parameters
(c(τi), φ(τi), ψ(τi), σ2(τi)),

(c(τi), φ(τi), ψ(τi), σ2(τi))′ ∼ NG(b, v, s2, ν) (4A.2)

The marginal posterior densities of the parameters and the predictive density of y
(τi)
T+h, conditional on

y
(τi)
T and XT+h, can be derived using standard Bayesian results, see for example Koop (2003).

4A.2 VAR model

Frequentist Inference

We estimate the equation parameters (c, Φ, Ψ) in (4.5) using equation-by-equation OLS. Forecasts are
obtained as

ŶT+h = ĉ + Φ̂F̂T+h−1 + Ψ̂X̂T+h (4A.3)

We construct the yield factor forecasts, F̂T+h−1, by first calculating the principal component factor
loadings using data only up until month T and then multiplying these with the iterated yields forecasts.

Bayesian Inference

We apply direct simulation to draw inference on VAR model. Note that this is a novel approach as the
literature commonly uses MCMC simulation algorithms. Direct simulation is faster and more precise
since truly independent draws are used. Our derivation is based on Zellner (1971), who provides all the
necessary computations with diffuse priors, and we extend the analysis to include informative priors28.

28We present the main results. Details of the derivations are available upon request.
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Prior Specification We apply informative prior densities for the parameter matrices Π = [c Φ Ψ]
and S in (4.5). For computational tractability we select the following conjugate priors:

Π|S ∼ MN(B,S ⊗ V ) (4A.4)

and

S ∼ IW (S, µ) (4A.5)

where MN indicates the mactrivariate normal distribution with mean B and variance matrix S⊗V , and
where IW indicates the Inverted Wishart distribution.

Posterior Simulation The likelihood function of YT for the VAR is given by

p(YT |FT−1, XT , Π, S) = (2π)−TN/2|S|−T/2 exp[−1
2
tr(S−1(YT − ZT Π)′(YT − ZT Π))] (4A.6)

where ZT = (eN , F
′
T−1, X

′
T ) and eN is a (N × 1) vector of ones. If we combine (4A.6) with the prior

densities in (4A.4)–(4A.5) we obtain the joint posterior density for (Π, S) as

p(Π, S|YT , FT−1, XT ) = p(YT |FT−1, XT ,Π, S)p(Π|S)p(S)

∝ |S|−(T+N+ν+1)/2 exp(− 1
2 tr(S−1(S + (YT − ZT Π)′(YT − ZT Π) + (Π−B)′V −1(Π−B))))

(4A.7)

where ν = G + ν with G the number of columns of Π. If we define WT = (YT , V −1/2B)′, VT =
(ZT , V −1/2) and apply the decomposition rule and the Inverted Wishart integration step, the posterior
density for Π, conditional on (YT , FT−1, XT ), will be a generalized t-distribution with location parameter
Π̂ = (V ′V )−1V ′W , scale parameters S +(WT −VT Π̂)′(WT −VT Π̂) and (Z

′
T ZT +V −1) and T + ν degrees

of freedom. That is,

p(Π|YT , FT−1, XT ) ∝ |S +(WT −VT Π̂)′(WT −VT Π̂)+(Π− Π̂)′(Z
′
T ZT +V −1)(Π− Π̂)|−(T+ν)/2 (4A.8)

The posterior density of S conditional on (YT , FT−1, XT ) is:

S|YT , FT−1, XT ∼ IW (S + (WT − VT Π̂)′(WT − VT Π̂), T + ν) (4A.9)

Forecasting The predictive density conditional on (YT , XT ) and (FT+h−1, XT+h) is defined as:

p(YT+h|YT , XT , FT+h−1, XT+h) =
∫ ∫

p(YT+h, Π, S|YT , XT , FT+h−1, XT+h)dΠdS

=
∫ ∫

p(YT+h|FT+h−1, XT+h,Π, S)p(Π, S|YT , XT )dΠdS
(4A.10)

By applying the inverted Wishart step to (4A.10), and integrating with respect to Π, we have:

p(YT+h|YT , XT , FT+h−1, XT+h) ∝ [S + (WT − VT Π̂)′(WT − VT Π̂)+

(YT+h − ZT+hΠ̂)′(I − ZT+hL−1Z ′T+h)(YT+h − ZT+hΠ̂)]−(T+ν+h)/2

(4A.11)

where L = (Z
′
T+hZT+h + Z

′
T ZT + V −1), ZT+h = (Ih, FT+h−1, XT ) with Ih a (h× h) identity matrix.

The predictive density of YT+h conditional on (YT , XT , FT+h−1, XT+h) is thus a generalized t-
distribution with location parameter ZT+hΠ̂, scale parameters S + (WT − VT Π̂)′(WT − VT Π̂) and (IN −
ZT+hL−1Z ′T+h), and T + ν degrees of freedom. Following Zellner (1971) we rewrite (4A.11) as:

p(YT+h|YT , XT , FT+h−1, XT+h) = p(YT+1|FT , XT+1)× . . .× p(YT+h|FT , XT+1, ..., FT+H−1, XT+h)
(4A.12)
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FT+h−1 and XT+h are generated from their predictive densities conditional on past values, independently
from YT+h. Therefore, we substitute these densities in (4A.12) and we apply direct simulation to draw
the predictive density of YT+h, conditional on YT and XT ,

p(YT+h|YT , XT ) =
∫∫

p(YT+h|YT , XT , FT+h−1, XT+h)p(FT+h−1|FT+h−2)p(XT+h|XT+h−1)dFT+h−1dXT+h

(4A.13)

Note that we integrate with respect to the predictive density of the macroeconomic factors XT+h given
XT .

4A.3 Nelson-Siegel model

Frequentist Inference

With the frequentist approach we estimate the Nelson-Siegel model using the two-step approach of Diebold
and Li (2006) and the one-step approach of Diebold et al. (2006).

In the two-step approach we fix λ to 16.42, which, as shown in Diebold and Li (2006), maximizes
the curvature factor loading at a 30-month maturity. For every month we then estimate the vector of β’s
by applying OLS on the cross-section of 18 maturities. From this first step we obtain time-series for the
three factors, {βt}T

t=1. The second step consists of modelling the factors in (4.7) by fitting either separate
AR(1) models or a single VAR(1) model.

In the one-step approach we estimate the unknown parameters and latent factors by means of the
Kalman Filter using the prediction error decomposition for the State-Space model in (4.6)-(4.7). For
each sample in the recursive estimation procedure, we first run the two-step approach with a VAR(1)
specification for the state vector to obtain starting values. The unconditional mean and covariance matrix
of {βt}T

t=1 are used to start the Kalman Filter. We discard the first 12 observations when evaluating the
likelihood. All variance parameters of the diagonal matrix H and the full matrix Q are initialized to 1.
The covariance terms in Q are initialized to 0. In the optimization procedure, we maximize the likelihood
using the standard deviations as parameters to ensure positive estimates for the variance parameters.
Finally, λ is initialized to 16.42.

Iterated forecasts for the factors are obtained as

f̂T+h = â + Γ̂f̂T+h−1 (4A.14)

where f̂T+h = (β̂1,T+h, β̂2,T+h, β̂3,T+h, M̂T+h, M̂T+h−1, M̂T+h−2). These are then inserted in the mea-
surement equation to compute interest rate forecasts:

ŷ
(τi)
T+h = β̂1,T+h + β̂2,T+h

(
1−exp(−τi/λ̂)

τi/λ̂

)
+ β̂3,T+h

(
1−exp(−τi/λ̂)

τi/λ̂
−exp(−τi/λ̂)

)
(4A.15)

Bayesian Inference

The joint posterior densities for parameters of the Nelson-Siegel and affine models do not have a known
closed-form expression. Therefore, we cannot analytically compute marginal densities for model param-
eters nor marginal predictive densities. We use Monte Carlo methods instead.

Prior Specification The model parameters are summarized by θ = (λ, σ2, a,Γ, Q), where σ2 is a
(18× 1) vector containing the diagonal elements of the measurement equation covariance matrix H. To
facilitate the posterior simulation we use independent conjugate priors for the model parameters. For the
variance parameters σ(τi) we take the Inverted Gamma-2 prior

σ2(τi) ∼ IG-2(ν(τi), δ(τi)) (4A.16)

For the non-zero blocks in the state equation covariance matrix, Q1 and Q2, we assume Inverted Wishart
distributions,

Q1 ∼ IW(µ
1
, ∆1) (4A.17)
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Q2 ∼ IW(µ
2
, ∆2) (4A.18)

For the linear regression parameters we assume a matricvariate Normal distribution,

[a,Γ] ∼ MN(Γ, Q⊗ V Γ) (4A.19)

Finally for λ we assume a uniform distribution,

λ ∼ U(aλ, bλ) (4A.20)

We choose the parameters aλ and bλ to reflect the prior belief about the shape of the loading factors.

Posterior Simulation We obtain posterior results by using the Gibbs sampler of Geman and
Geman (1984) with the data augmentation technique of Tanner and Wong (1987). The latent variables
BT = {β1,t, β2,t, β3,t}T

t=1 are simulated alongside the model parameters θ.
The complete data likelihood function is given by

p(YT , FT |θ) =
T∏

t=1

18∏

i=1

p(y(τi)
t |ft, λ, σ2(τi))p(ft|ft−1, a, Γ, Q) (4A.21)

where YT = {y(τ1)
t , . . . , y

(τN )
t }T

t=1 and where FT = {β1,t, β2,t, β3,t,Mt,Mt−1,Mt−2}T
t=1. The terms

p(y(τi)
t |ft, λ, σ2(τi)), and p(ft|ft−1, a,Γ, Q) are Normal density functions which follow directly from (4.6)–

(4.7). When we combine (4A.21) with the prior densities p(θ) in (4A.16)–(4A.20) we obtain the posterior
density

p(θ, BT |YT ,MT ,MT−1, MT−2) ∝ p(YT , FT |θ)p(θ) (4A.22)

We compute the full conditional posterior density for the latent regression parameters BT using the
simulation smoother as in Carter and Kohn (1994, Section 3) and we use the Kalman smoother to derive
the conditional mean and variance of the latent factors. For the initial value β0 we choose a multivariate
normal prior with mean zero.

To sample the θ parameters (excluding λ), we use standard results. Hence, the variance parameters
σ(τi) are sampled from inverted Gamma-2 distributions, the matrix Q1 is sampled from an Inverted
Wishart distribution, and the parameters (a1, Γ1) are sampled from matricvariate Normal distributions,
where (a1,Γ1) are the non-zero blocks of a and Γ respectively. In our framework the macro variables have
a VAR(3) structure independent from the latent factors. Therefore, we simulate a2, Γ2, and Q2 from
their marginal densities, respectively generalized t-distributions and an Inverted Wishart distribution to
improve the speed of convergence.

Finally, the posterior density for λ, conditional on (YT , FT ,H) is:

p(λ|YT , FT ,H) ∝
T∏

t=1

N∏

i=1

p(y(τi)
t |ft, λ, σ2(τi))p(λ) (4A.23)

Equation (4A.23) is not proportional to any known density. Therefore, λ has to be drawn by applying
MCMC methods. We use the Griddy Gibbs algorithm. The Griddy Gibbs sampler was developed by
Ritter and Tanner (1992) and is based on the idea to construct a simple approximation of the inverse
cumulative distribution function of the target density on a grid of points29. More formally and referring
to equation (4A.23), we perform the following steps:

• We evaluate p(λ|YT , FT ,H) at points Vi = v1, ..., vn to obtain w1, ..., wn;

• We use w1, ..., wn to obtain an approximation to the inverse cdf of p(λ|YT , FT , H);

• We sample a uniform (0,1) deviate and we transform the observation via the approximate inverse
cumulative density function.

29Mönch (2006a) applies a random walk Metropolis Hastings algorithm to draw λ. We choose the
Griddy-Gibbs since the space of λ is well defined and only the cumulative density function needs to be
estimated in these grid points.
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Forecasting The h-step ahead predictive density of YT+h, conditional on YT and FT , is given by

p(YT+h|YT , FT ) =
∫∫

p(y(τi)
T+h|fT+h, λ, σ2(τi))p(fT+h|fT+h−1, a,Γ, Q)×

p(θ, BT |YT ,MT ,MT−1, MT−2)dfT+h dθ (4A.24)

where p(y(τi)
T+h|fT+h, λ, σ2(τi)) and p(fT+h|fT+h−1, a,Γ, Q) follow directly from the state space system and

where p(θ,BT |YT ,MT ,MT−1,MT−2) is the posterior density.
Simulating YT+h from the h-step ahead distribution (4A.24) is straightforward. In each step of the

Gibbs sampler, we use the simulated values of (a, Γ, Q) to draw the out-of-sample values of fT+h. Then,
fT+h, in combination with the current Gibbs draws of H and λ, provides a simulated value for y

(τi)
T+h.

4A.4 Affine model

Frequentist Inference

To estimate the affine model we assume that yields of every maturity are contaminated with measurement
error. We estimate the parameters in the resulting State-Space model by applying the two-step approach
used in Ang et al. (2006b). We make the latent factors Zt observable by extracting the first three principal
components from the panel of yields of different maturities. The first step of the estimation procedure
consists of estimating the equation and variance parameters of the state equations (4.23). In the second
step we estimate the remaining parameters (δ0, δ1, λ0, λ1). We first estimate (δ0, δ1) by applying OLS
to the short rate equation (4.13) where we use the 1-month yield as the observable short rate. We
then estimate the risk premia parameters (λ0, λ1) by minimizing the sum of squared yields errors in the
measurement equations (4.22), giving the parameter estimates from the first step, (µ̂, Ψ̂, Σ̂) and the short
rate parameters (δ̂0, δ̂1). In the second step we initialize all risk premia parameters to zero. Common
approaches for obtaining starting values for the risk premia parameters by first estimating either λ0 or
λ1 in a separate step yielded unsatisfactory results.

Yield forecasts are generated by forward iteration of the state equations

f̂T+h = µ̂ + Ψ̂f̂T+h−1 (4A.25)

where f̂T+h = (Ẑ1,T+h, M̂T+h−1, M̂T+h−2). With the estimated parameters substituted in a(τi) and b(τi)

we then construct interest rate forecasts as

ŷ
(τi)
T+h = â(τi) + b̂(τi)f̂T+h (4A.26)

Bayesian Inference

Bayesian inference on model (22)-(23) is very complex due to the high degree of nonlinearity and, above
all, the large set of yields we model. It is particularly difficult to define the space of the short rate
parameters. The likelihood is very sensitive to these parameters and small perturbations give very
different and unrealistic results. Therefore, an estimation approach similar to Ang et al. (2006a) may
not be the optimal solution. We opt for a normal approximation of the full posterior density around
frequentist parameter estimates. This choice implies that the predictive density of YT+h, conditional on
YT and Ft = {ft}T

t=1, can be derived without having to compute posterior densities.

Forecasting The h-step ahead predictive density of y
(τi)
T+h, conditional on YT and FT , is given by

p(y(τi)
T+h|YT , FT ) =

∫∫
p(y(τi)

T+h|fT+h, a(τi), b(τi), σ2(τi))p(fT+h|fT+h−1, µ, Ψ, Q)p(θ|YT , FT )dfT+h dθ

(4A.27)

where p(y(τi)
T+h|xT+h, a(τi), b(τi), σ2(τi)), and p(fT+h|fT+h−1, µ, Ψ, Q) are the conditional predictive densi-

ties and where p(θ|YT , XT ) is the posterior density for the parameter vector θ = (µ, Ψ, H, Q, a, b, λ0, λ1).
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As we discussed in the previous paragraph we approximate p(θ|YT , XT ) in (4A.27), with a normal distri-
bution around frequentist estimates: q(θ̂|YT , XT ). Since fT+h can be drawn independently of YT+h, we
use direct simulation to compute the predictive density of YT+h conditional on (YT , FT ):

p(y(τi)
T+h|YT , XT ) =

∫∫
p(y(τi)

T+h|fT+h, â(τi), b̂(τi), σ̂2
(τi)

)p(fT+h|fT+h−1, µ̂, Ψ̂, Q̂)dfT+hdθ (4A.28)

4B Bayesian Model Averaging

We denote the predictive density of y
(τi)
T+h, given M individual models and conditional on the time T

information set, by DT . This density is given by

p(y(τi)
T+h|YT , DT ) =

M∑

i=1

P (m(τi)
j |YT , DT )p(y(τi)

T+h|YT , DT ,m
(τi)
j ) (4B.1)

for j = 1, ..., M and where P (m(τi)
j |YT , DT ) is the posterior probability of model mj for maturity τi,

conditional on data at time T , and where p(y(τi)
T+h|YT , DT ,m

(τi)
j ) is the model mj predictive density of

y
(τi)
T+h, conditional on YT and DT . The posterior probability of model mj for maturity τi is computed as:

P (m(τi)
j |YT , DT ) =

p(y(τi)
T,o |YT , DT ,m

(τi)
j )P (m(τi)

j )
∑k

s=1 p(y(τi)
T,o |YT , DT ,m

(τi)
s )P (m(τi)

s )
(4B.2)

where P (m(τi)
j ) is the prior probability of model mj for maturity τi. The predictive likelihood value for

model mj , p(yτi

T,o|YT , DT ,m
(τi)
j ), is computed by substituting the realized value y

(τi)
T,o in the predictive

density p(y(τi)
T |YT , DT ,m

(τi)
j ). We average individual models independently for every maturity.

4C Prior specification

In the literature uninformative priors or diffuse informative priors are often chosen to derive posterior
densities that depend only on data information (the likelihood). We do not follow this approach as we
apply informative priors in our estimation and forecasting procedures. There are several motivations to
do so. Firstly, for nonlinear models such as the Nelson-Siegel and affine models, it is very difficult to
determine when a prior is non-informative. Secondly, the simulation algorithm might get stuck in some
(nonsensical) regions of the parameter space and it may require a substantial number of simulations to
converge, thereby enormously increasing estimation time. Thirdly, we believe that market agents will
to some degree always have prior information which can be partially incorporated in our models when
forecasting interest rates. Finally, we want to study and underline differences between frequentist and
Bayesian inference in forecasting yields, and the use of priors is one, if not the main difference between
the two approaches.

We briefly discuss the specification of the prior densities for the parameters of the models presented in
Appendix A. We start with the AR model and the Normal-Gamma conjugate prior in (4A.2) for param-
eters (c(τi), φ(τi), ψ(τi), σ(τi)). We choose v = 0.01 to have a prior density for the vector (c(τi), φ(τi), ψ(τi))
concentrated around the mean value. We choose the mean vector value b by calibrating it to the ini-
tial in-sample data (1970:1-1993:12) and to prevent unit root type behavior. The prior for σ(τi) is less
informative with ν fixed to 20 and s2 again calibrated to in-sample data.

The calibration of the prior for the VAR model is more complex due to the high dimensionality of Π
and S. Therefore, we relax our prior assumption and we choose a wider region for V and ν in (4A.4)–
(4A.5). B is again calibrated with initial in-sample data and the resulting values imply plausible factor
loadings of the yield factors.

The order of prior information in the Nelson-Siegel model is comparable to the VAR model. For the
parameter λ we choose the following prior density:

λ ∼ U(3.34, 33.45) (4C.1)
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By restricting λ in the interval [3.34, 33.45] we can make sure that the loading on the curvature factor
β3,t is at its maximum for a maturity between 6 months and 5 years.

For the ATSM model we do not apply prior densities. We use a normal approximation of the
conditional predictive density around maximum likelihood parameter estimates. Indeed, because we
consider a large number of maturities, which results in a substantial number of parameters that need to
be estimated, the speed of convergence of MCMC algorithms such as the Gibbs sampler is very slow.
Moreover, some parameters do not converge at all, and unrealistic values are simulated. However, we
believe the approximation is satisfactory. We therefore still account for parameter uncertainty in the
affine models.

Finally, in Bayesian model averaging we apply the same uninformative prior probability to each
model, P (m(τi)

j ) = 1/M .







Chapter 5

The power of weather
Some empirical evidence on predicting day-ahead
power prices through weather forecasts

5.1 Introduction

The heatwave in Europe during August 2003 (the warmest summer in Europe since 1500),

resulted in extremely high prices in several power markets, as France, Germany and the

Netherlands, see for example Figure 5.1. The fact that not the 15000 casualties due to

the heatwave but the technical problems of electricity supply experienced by Électricité

de France (EDF), the main power supplier in France, were on the top of the agenda of the

French Cabinet meeting held on August 11, 2003, illustrates the tremendous importance

of the functioning of the power system to our society.

A decade ago, the electricity industry was vertically integrated, prices were regulated

and reflected the short-term production costs. Hence, back then the electricity price did

not reflect the temporal effects such as seasonality, weather and business activity. But

this all changed when many governments worldwide, started reforming their electricity

industry as of the middle ninety-nineties. Currently, the economic law of demand and

supply determines the price on market places where electricity can be traded on spot or

forward (i.e. hour-ahead, day-ahead, or month-ahead).

Many studies have documented these stylized facts from examining the prices ob-

served at day-ahead markets1, which are by far the most liquid power wholesale markets,

see Escribano et al. (2002), Lucia and Schwartz (2002) and Koopman et al. (2007). Bunn

and Karakatsani (2003), provide a thorough review of the stochastic price models pre-

sented in these studies and classify these into three groups, being random walk models,

basic mean-reversion models, and extended mean-reversion models that incorporate time-

varying parameters (to control for seasonality and volatility patterns). They conclude that

1On these markets, hourly prices are quoted for delivery of electricity on certain hours on the next
day.
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the idiosyncratic price structure has not been accurately described. Furthermore, the re-

sults reported in these studies are often obtained from in-sample tests, hence they do not

resolve the issue of the out-of-sample predictive value of power models.

Only a few studies have recognized the need for modelling weather directly, however,

mainly addressed the weather effect on electricity sales (see for example the special issue

of Journal of Econometrics 1979). Moral-Carcedo and Vicns-Otero (2005) also study

temperature effects on the variability of daily electricity demand in Spain, and document

empirical evidence of a non-linear relationship between variations in temperature and the

demand response. Knittel and Roberts (2005) test stochastic price models on hourly-

ahead electricity prices obtain from the Californian market. They compare price models

that incorporate seasonal and temperature variables with models that do not include

these variables, and provide preliminary evidence that first-mentioned models significantly

outperform in terms of forecasting accuracy.

In this study we shed light on forecasting performance of stochastic price models in

day-ahead electricity markets, by studying the impact of weather variables to anticipate

future electricity price movements. We examine six stochastic price models to forecast

day-ahead prices of two of the most active power exchanges in the world: the Nordic Power

Exchange and the Amsterdam Power Exchange2. Three of these forecasting models extend

Knittel and Roberts (2005) by including weather variables (temperature, precipitation and

wind speed) as explanatory variables for variation in day-ahead electricity prices. To our

best knowledge, we are the first to use next-day weather forecasts in our analysis rather

than real weather data. This is consistent with the market microstructure of day-ahead

markets, which is such that agents submit their bids and offers for delivery of electricity in

all hours of the next day (for a certain market closure time). Furthermore, we implement

specific models for different power markets, due to the heterogeneity in weather conditions

and production plants.

From these six tested models, an extended ARMA model (that includes power trans-

formations) of next-day weather forecasts yields the best forecasting results for predicting

day-ahead prices. Also, this model has substantial explanatory power to anticipate on

ex-ante price jumps. As adverse climate conditions tend to lead to sharp increases in

demand, hereby causing supply shortages in electricity, we carefully explore the causal re-

lationship between weather and prices. The reported evidence indicates that the next-day

weather forecasts influence day-ahead prices, both via the demand and supply side. In

particular, when production is less related to weather as in the case of the Dutch market

(opposed to the Scandinavian hydro market), weather forecasts have a negligible influence

2See for example Geman (2005).
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Figure 5.1: APX 2003 Prices
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Note: The figure presents the daily electricity prices in the APX market over 2003.

on day-ahead prices. Finally, the empirical results show that a GARCH model specifica-

tion including weather variables provides accurate price forecasts, which contradicts with

earlier preliminary evidence that “standard” GARCH models would predict electricity

poorly (Knittel and Roberts, 2005).

The remainder of this Chapter is structured as follows. Section 5.2 introduces the day-

ahead power markets. Section 5.3 presents the data. Section 5.4 describes the forecasting

models. Section 5.5 discusses the empirical results. Section 5.6 concludes.

5.2 Day-ahead power markets

On 1 January 1991, the Norwegian government imposed a deregulation process on its

electricity industry that resulted in the establishment of the first national power market

for short-term delivery of power (real-time and day-ahead3) in the world, the Nordic

Power Exchange (NPX). Two years later, in 1993, the range of products was extended

with forward and futures contracts that have longer maturity horizons. Another few years

later, Sweden joined the NPX (1996), soon followed by Finland (1998), West-Denmark

(1999) and East-Denmark (2000). From 2003 all customers of Scandinavian electricity

markets may trade freely in the market. The NPX, now also named Nord Pool ASA, is

considered as the most liquid wholesale market worldwide. Nord Pool ASA constitutes of

a day-ahead market (Elspot), a financial market (Elbas), and a clearing service. In the

remainder, we mainly focus on the Elspot market. For more details on Nord Pool ASA

we refer to NordPool (2004).

Another country that liberalized its electricity markets from an early stage onwards is

The Netherlands. In 1999, the second electronic power exchange in Europe for day-ahead

electricity contracts was founded here, being the Amsterdam Power Exchange (APX). The

3We remember from section 5.1 that day-ahead means that prices are quoted at day t for delivery of
electricity on certain hours on the day t + 1.
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Figure 5.2: Producer plants
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Note: The figure presents capacity figure of EU countries with most active wholesale power markets.
Conventional thermal fuelled capacity: oil, gas, coal.
Hydro fuelled capacity: reservoir, river.
Other fuelled capacity: wind, solar.

APX is composed out of a day-ahead market and a financial market. For more details on

APX we refer to www.apxgroup.com.

In Figure 5.2 some descriptive statistics of these two markets are listed. The Nord

Pool market is largely dependent on electricity that is generated by renewable sources.

In particular, hydro-plants, which use water stored in reservoirs or lakes, are dominant

in Norway and partly Sweden; wind-plants, which use wind to produce electricity, are

dominant in Denmark. In the APX market oil, coal, gas or a combination of these fuels

is used to generate electricity.

Electricity prices are affected by regional and temporal influences due to the trans-

portation and transmission limits of electricity. This statement is particular important in

the Nord Pool market. For instance, when a power plant falls out in the eastern part of

Sweden this only affects the power supply in the surrounding region. Hence, this will not

affect power supply in the western part of Sweden and the rest of the market. Similarly,

rainfall in the southern part of Norway, will potentially affect the regional demand and/or
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supply curve, but not the bidding curves in other regions. Nord Pool faces the problem by

allowing to split the market in several bidding and prices areas. Therefore, we take into

account the Nord Pool bidding area prices separately, rather than examining the Elspot

system price (which is a weighted average of the bidding prices in all Nord Pool bidding

areas). We examine two out of the eleven bidding areas in the Nord Pool, being the Oslo

area and Eastern Denmark area. It is interesting to note that these areas are the most

densely populated areas in Scandinavia.

5.3 Data

5.3.1 Electricity prices

The data set used in this study consists of day-ahead prices in EUR/MWh for Oslo,

Eastern Denmark and the Netherlands from the period December 24, 2003 to March 14,

2006. Oslo and Eastern Denmark are two bidding areas of Nord Pool market; Dutch

electricity prices are obtained from APX market4. Nord Pool provides bidding area prices

both in the local currency and in EUR. We choose EUR to compare directly to APX

prices. Daily prices are computed as the arithmetic mean of the available 24 hourly prices

series on the physical market of each country.

As in Wilkinson and Winsen (2002) and Lucia and Schwartz (2002) we start from a

statistical analysis of the data we have5. Figure 5.3 plots the time series, the log trans-

formations and the histograms of the daily day-ahead electricity prices; Table 5.1 gives

some important descriptive statistics. A first casual look discloses an erratic behavior of

the prices. The series follow a small positive increasing trend with several spikes. Inter-

estingly, Oslo prices in Oslo have more negative spikes than positive spikes, which is not

surprising when one notices that this market is characterized by hydro produced (hence,

considered as ’storable’) electricity. Thermal-derived electricity (meaning electricity pro-

duced from gas, coal and or nuclear fuel plants) on the other hand is non-storable, and

you would expect a higher frequency of occurrence in these markets. Also, negative spikes

in thermal markets typically only occur in night hours when electricity is offered at dis-

count prices to avoid costs for ramping up and down later (Bunn and Karakatsani, 2003).

As this argument does not explain the negative price spikes in hydro markets, we may

conclude that supply tends to exceed demand throughout the day in Oslo, and demand

is not forecasted accurately by suppliers. The price levels observed for Eastern Denmark

4Electricity prices may be available for a longer sample, but weather forecasts are available to us only
for this sample.

5We briefly discuss some stylized facts; we refer for a more detailed analysis, for example, to Lucia
and Schwartz (2002) and Pilipovic (1997).
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Figure 5.3: Prices
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Note: The graphs in this figure present in Panel a) prices (in the left panel) and log prices (in the right
panel) of daily electricity prices in Oslo, Eastern Denmark and the Netherlands; in Panel b) histograms
of daily electricity prices in Oslo (in the left panel) and Eastern Denmark (in the right panel) markets;
and in Panel c) histograms of daily electricity prices in the Netherlands market.
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Table 5.1: Descriptive statistics

Oslo Eastern Denmark The Netherlands

Mean 30.431 32.852 44.741
St dev 4.9647 12.735 22.910
Min 17.162 8.3896 10.519
Max 52.450 235.71 250.69
Skewness 1.3188 6.2948 2.3118
Kurtosis 0.3058 79.129 7.8645
Working days 30.904 34.805 49.684
No working days 29.354 28.404 33.282
ρ1 0.913 0.766 0.754
ρ7 0.736 0.629 0.774
ρ14 0.544 0.490 0.700

Note: The table reports descriptive statistics on electricity prices in Oslo, East-
ern Denmark and the Netherlands. Lines working days and no working days
give the sample average prices on working days and no working days (weekends
and holidays) respectively. Lines ρ1, ρ7 and ρ14 give the 1st, 7th and 14th sample
autocorrelation.

and The Netherlands are substantially higher. The histograms provide similar evidence.

Eastern Denmark and the Netherlands prices are highly non-normally distributed; their

volatility is very high such as the kurtosis; their skewness is positive. Oslo has a more

regular distribution, but a Jarque-Bera test rejects the null hypothesis of normality for

each of the three series. The series are characterized by a weekly pattern. From table 1

we can observe that prices are lower during the weekend than on business days. Yearly

patterns, well documented in other studies, are more difficult to notice since the series are

not very long. Still, differences among seasons can be seen in Figure 5.4. Electricity prices

are very persistent and possible close to non-stationary. Table 5.1 shows that the sample

autocorrelations are high up to 14-day lags. From Figure 5.3, we can observe another

stylized fact, being volatility clustering. Dramatic spikes tend to occur in clusters, mainly

as result of consecutively exceeding the system capacity.

In our application we use log prices and not the level. The log transformation reduces

the spike behavior of the prices and makes moments of the distribution of electricity

prices more similar to standard distributions, in particular for Eastern Denmark and the

Netherlands log prices.

5.3.2 Weather forecasts

We continue the data analysis by focusing on weather forecasts. Forecasts on the daily

average temperature in degrees Celsius, total precipitation in mm, and wind power in
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Figure 5.4: Monthly average prices
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Note: The figure presents the monthly average electricity prices in Oslo, Eastern Denmark and the
Netherlands.

m/s are applied. Data is obtained from the EHAMFORE index, which is provided by

Meteorlogix (www.meteorlogix.com)6. We assume that market operators use the weather

forecasts provided by Meteorlogix in their decisions. We think that this assumption is

quite realistic considering the market share of Meteorlogix in providing real-time informa-

tion services in the agriculture, energy, and commodity trading markets, and Bloomberg

in providing data to operators. Weather forecasts refer to a square area around the mea-

surement station, , hence our analysis does not cover the entire country of the markets

under consideration. Also, the combination of different stations could be applied. How-

ever, as data from minor cities is scarce, the weather forecast errors may arise introducing

further noise in the forecasting process. Finally, the areas that we study are small and

homogenous in term of weather. Therefore, we only use weather forecasts for Oslo, Copen-

hagen and Amsterdam. The weather around Oslo may well approximate the weather in

the area on the south of Oslo along the sea cost where most of the electricity for south-

east Norway is produced. The weather in the area of Copenhagen may be a proxy for the

weather of Zealand, the main island in Eastern Denmark. Finally, Amsterdam is located

in the middle of the Netherlands.

Figures 5.5-5.7 plot the three variables for each country. Temperatures have highly

seasonal patterns, with lower values for Oslo and higher for the Netherlands. Precipitation

figures are low in Eastern Denmark compared to Oslo and The Netherlands. The level of

wind is particular high in Eastern Denmark and The Netherlands. The wind forecasts on

all the three countries have a quite stable pattern in the initial months of 2004, because

the meteorologic institute applies a different forecasting model on those months. We

decide to keep these forecasts to extend the sample period as much as we can. Meanwhile

market operators got these weather forecasts as information to make decisions at that

6Data from the EHAMFORE index are available in Bloomberg.
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Figure 5.5: Weather variables: Oslo
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Note: See note in figure 5.6.

Figure 5.6: Weather variables: Eastern Denmark
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Note: The graphs in figures 5.5 and 5.6 present in Panel a) the forecasts on the daily average
temperature (in the left panel), and total precipitation (in the right panel); in Panel b) the forecasts on
wind speed respectively in Oslo and Copenhagen.
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Figure 5.7: Weather variables: The Netherlands
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Note: The graphs in this figure present in Panel a) the forecasts on the daily average temperature (in
the left panel), and total precipitation (in the right panel); in Panel b) the forecasts on wind speed in
Amsterdam.

moment. Some graphical relations between the forecasted weather variables and electricity

prices may be identified. For example, high precipitation in Oslo at the end of May 2004

or in October 2004 corresponds to low prices; few days of very low temperature in Oslo

in February 2005 correspond to high prices; strong wind in Eastern Denmark at the end

of 2004 and beginning of 2006 is associated with low prices. However, even if the real

weather was the weather forecasts, a graphical analysis would not be satisfactory because

the relation between weather variables and electricity prices is possibly highly nonlinear

as we will discuss in Section 5.5.1. Therefore, we try to find specific models to interpret

the weather influences.

5.4 Forecasting models

Knittel and Roberts (2005) shows that traditional time series approaches such as ARMA

models provide more accurate results in forecasting electricity prices than their continuous

counterparts. Starting from these findings we built several models that may cope with

the stylized facts of electricity prices.
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5.4.1 Model 1: ARMA

The first model is a traditional time series approach to model electricity prices, the au-

toregressive moving average (ARMA) model (Hamilton (1994)). The ARMA(p, q) model

implies that the current value of the investigated process (say, the log price) Pt is ex-

pressed linearly in terms of its past p values (autoregressive part) and in terms of the q

previous values of the process εt (moving average part):

φ(L)Pt = θ(L)εt (5.1)

where φ(L) and θ(L) are the autoregressive and moving average polynomials in the lag

operator L respectively, defined as:

φ(L) = 1− φ1L− φ2L
2 − ...− φpL

p (5.2)

θ(L) = 1− θ1L− θ2L
2 − ...− θqL

q (5.3)

and where εt is an independent and identically distributed (iid) noise process with zero

mean and finite variance σ. The motivation of an ARMA process follows from the correl-

ogram. Table 5.1 shows high correlation between the current price and the previous days’

prices.

The ARMA modelling approaches assume that the time series under study is (weakly)

stationary. If it is not, a transformation of the series to stationarity is necessary, such

as first differentiating. The resulting model is known as the autoregressive integrated

moving-average model (ARIMA). We do not work with first difference prices for several

reasons. Firstly, the Dickey Fuller test on the series rejects the null hypothesis of non-

stationary. Secondly, as our primary objective of this study is to accurately model and

predict electricity prices we argue that a first-difference transformation of the price could

eliminate important stylized facts such as price trends. Thirdly, the empirical evidence

provided in literature is in favour of level of prices. For example, Lucia and Schwartz

(2002) find that models based on levels and log levels provide more accurate results

than models based on first differences and log first differences in forecasting Nord Pool

electricity prices. And Weron and Misiorek (2005) find that in terms of out-of-sample

statistics, ARMA models do better than ARIMA models in forecasting electricity prices.

5.4.2 Model 2: ARMAX

The second model is an extension of model 1. ARMA models apply information related

to the past of the process and do not use information contained in other pertinent time

series. However, as the data analysis shows, electricity prices are generally governed by
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various fundamental factors, such as seasonality and load profiles. The ARMAX(p, q) can

be written as:

φ(L)(Pt −Xt) = θ(L)εt (5.4)

where Xt =
∑k

i=1 ψixi,t, where xt = (x1, x2, ...xk)
′ is the (k × 1) vector of explanatory

variables at time t, and where ψ = (ψ1, ψ2, ..., ψk)
′ is a (k × 1) vector of coefficients.

Following Lucia and Schwartz (2002) we use three explanatory variables: a dummy with

values 0 on working days and 1 on holidays, a seasonal dummy given by the combination

of the two variables sin(2πt/365.25) and cos(2πt/365.25). These dummy variables may

be interpreted as proxies for load profiles (higher demand on working days), and proxies

for weather effect (higher demand on cold and warm seasons).

In the empirical application, the ARMAX model will be our benchmark.

5.4.3 Model 3: ARMAXW

Averse weather conditions may change the demand for electricity, and may also affect the

production. Low level of precipitation and/ or wind speed may cause reduction on the

supply of energy, in particular in electricity markets which depend on renewable producer

plants, such as Norway and Denmark. Furthermore, producer plants may study future

weather conditions to estimate demand and plan their supply optimally.

The third model is an extension of model (5.4) and is built following the previous

reasoning. Forecasts on the average daily temperature in degrees Celsius, precipitation in

mm and wind speed in m/s are applied as further explanatory variables. The model is:

φ(L)(Pt −Xt −Wt) = θ(L)εt (5.5)

where Wt =
∑l

j=1 ϕjwj,t, where wt = (w1,t, w2,t, ..., wl,t)
′ is the (l × 1) vector of weather

forecast variables at time t, and where ϕ = (ϕ1, ϕ2, ..., ϕl)
′ is a (l×1) vector of coefficients.

This model includes deterministic components that account for genuine regularities in the

behavior of electricity prices and stochastic components that come from weather shocks.

Knittel and Roberts (2005) apply a similar model for forecasting California electricity

prices, where the set of weather variables is composed by the level, the square and the

cubic of realized temperature. But the price of tomorrow depends on the weather of

tomorrow and not on the weather of today7. Therefore, we use weather forecasts and not

realized values. Moreover, we add a variable to measure wind speed since wind may play

a role both in the feeling of the people - people feel colder with stronger wind - and in the

7We find the same evidence in an unreported exercise on forecasting Oslo electricity prices. Results
are available upon request.
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supply of wind power plants. We also introduce an explanatory variable to model another

dimension of the weather, being precipitation, allowing us to approximate the supply in

hydro dominated plants. As in Knittel and Roberts (2005) we allow nonlinearity in the

relation between prices and weather variables by including the level, the square and the

cubic of the temperature forecasts, and the level and the square of the precipitation and

wind forecasts8.

For hydro markets it may be a different story: the water reservoir is often more

important to plan production than the amount of precipitation, see e.g. Koopman et al.

(2007) and Deng (2004). We emphasize that in this Chapter we work with local prices,

and local water reservoirs are in most cases not observable. This is particularly true

when the number of electricity producers is high, which applies for Oslo. Furthermore,

we think that hydroelectric plants incorporate forecasted future precipitations in their

strategic decisions of the amount of water to store.

5.4.4 Model 4: ARMAX-GARCH

ARMA models assume homoscedasticity, i.e. constant variance and covariance function,

but the preliminary data analysis has disclosed that electricity prices exhibit volatility

clustering. The fourth model extends model 2 by assuming a time varying conditional

variance of the noise term. The heteroskedasticity is modelled by a generalized autore-

gressive conditional heteroskedastic GARCH(r, s) model (Bollerslev (1986)). Relaxing

the assumption of homoscedasticity may change the parameter estimates of model 2, and

consequently the out-of-sample forecast of the investigated process.

The model is:

φ(L)(Pt −Xt) = θ(L)εt (5.6)

εt = νth
1/2
t with ht = α0 +

s∑
i=1

αiε
2
t−i +

r∑
j=1

βjht−j (5.7)

where εt is an independent and identically distributed (iid) noise process with zero mean

and conditional time varying variance ht, and the coefficients have to satisfy αi ≥ 0 for

1 ≤ i ≤ s, βj ≥ 0 for 1 ≤ j ≤ r, and α0 > 0 to ensure that the conditional variance is

strictly positive.

5.4.5 Model 5: ARMAXW-GARCH

Following the same reasoning for model (5.6)-(5.7), model 3 can be extended by assuming

a noise process with a time varying conditional variance.

8Precipitation and wind forecasts are always positive, therefore we do not consider useful to include
the cubic transformation.



164 Empirical Results

Model 5 is:

φ(L)(Pt −Xt −Wt) = θ(L)εt (5.8)

εt = νth
1/2
t with ht = α0 +

s∑
i=1

αiε
2
t−i +

r∑
j=1

βjht−j (5.9)

5.4.6 Model 6: ARMAXW-GARCHW

Koopman et al. (2007) find that seasonal factors and other fixed effects in the variance

equation are also important to estimate electricity prices. The fifth model extends model

4 by reformulating model 3 and 4 to incorporate Koopman et al. (2007) results. The

conditional variance of the noise term in model 3 is assumed to be time-varying and

modelled with a GARCH expression where some explanatory variables are added to the

ARMA form of equation (5.7). The model is specified as:

φ(L)(Pt −Xt −Wt) = θ(L)εt (5.10)

εt = νth
1/2
t with ht = α0 +

s∑
i=1

αiε
2
t−i +

r∑
j=1

βjht−j +
k+l∑

f=1

%fzf,t (5.11)

where zt = [x
′
t, w

′
t]
′, and where % = (%1, %2, ..., %k+l)

′ is a ((k + l)× 1) vector of coefficients.

Koopman et al. (2007) assume autoregressive fractionally integrated moving average noises

which we do not consider. And Koopman et al. (2007) include water reservoir, which as

we explained we think less adequate to forecast local prices, and consumption, which we

exclude to investigate the impact of weather on electricity prices both via the demand

and the supply.

5.5 Empirical Results

We apply the models described in Section 5.4 to our dataset, and assess which model

performs best in terms of forecasting accuracy. Before the out-of-sample forecast exercise,

we estimate the set of models using the complete sample to have an ex-post predictability

idea.

We describe some assumptions. We apply nonlinear ordinary least square (NLS)

estimator (Davidson and MacKinnon (1993)) for ARMA type models and the quasi max-

imum likelihood (QML) estimator (Davidson and MacKinnon (1993) and Greene (1993))

for GARCH family models.
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We restrict our ARMA type models to be ARMA(7,0), where only lags 1 and 7 are

considered 9. We do the same for the level equation of the GARCH models. Autocorrela-

tion analysis and in-sample criteria would suggest more complex ARMA forms. However,

the risk of over-parametrization and the evidence presented in previous studies, for exam-

ple Lucia and Schwartz (2002) show that an ARMA(7,0) specification provides optimal

forecasts on daily day-ahead electricity prices. Hence, this convinces us to restrict the

models to the aforementioned specification. Following the same reasoning we choose a

GARCH(1,1) specification for the variance equation of models 4, 5, and 6.

The inclusion of the weather variables follows from statistical evidence. We allow

different transformations of the weather forecast variables on the three markets to in-

corporate the fact that the weather may affect only the supply of electricity, which is

different in the three markets. Since the influence of the weather variables appears to

be non-linear, the generic initially unrestricted model in all the three exercises includes

the power transformation of the weather forecasts. We use selection criteria, as the the

adjust R-square and Akaike information criteria, and parameter statistical significance to

specify the model.

5.5.1 In-sample analysis: Oslo Case

The in-sample analysis is based on the overall sample, from December 24, 2003 to March

14, 2006. We start with the ARMAX model which is considered to be a very accurate

forecasting model. The ARMAX model in Lucia and Schwartz (2002) is specified as:

Pt = Xt + φ1(Pt−1 −Xt−1) + φ7(Pt−7 −Xt−7) + εt (5.12)

where

Xt = c + d1Dhol,t + d2sin(2πt/365.25) + d3cos(2πt/365.25),

where Pt is the log of the price at day t, and where Dhol,t is a dummy variable with value 0

if day t is a working day or 1 if day t is not a working day. Figure 5.8 shows that the errors

of the ARMAX model have non-linear relations with the daily average temperature and

the total precipitation, but it has a linear-like relation with the wind speed. Therefore,

for temperature forecasts we use the level, the square and the cubic; for precipitation

and wind forecasts we use the level and the square. The selection criteria result in the

following reduced specific ARMAXW model for Oslo data:

Pt = Xt + Wt + φ1(Pt−1 −Xt−1 −Wt−1) + φ7(Pt−7 −Xt−7 −Wt−7) + εt (5.13)

9We also try an ARMA(7,0) with all the seven lags such as an ARMA(7,0) specified using all the
data, therefore also information not available at time of forecasting, and results are almost identical to
the chosen model.
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where

Xt = c + d1Dhol,t + d2sin(2πt/365.25) + d3cos(2πt/365.25),

Wt = a1Tempt + a2Temp3
t + b1Prect + b2Prec2

t + γWindt,

where Tempt, Prect and Windt are the forecasts on daily average temperature, total

precipitation and wind speed, respectively, on day t. The estimation procedure indicates

that the square of the temperature and the square of the wind can be excluded. The

square of the temperature does not take into account the difference between very low

and very high temperature, which is a serious limitation. The wind seems to have a

direct linear relation with prices. The empirical findings are consistent with the graphical

analysis.

Table 5.2 gives the results of the estimation of model (5.13) with the chosen Wt over the

complete sample. We discuss the estimated coefficients for the temperature forecasts, a1

and a2. The temperature forecasts affect the day-ahead electricity price via the following

function:

f(Tempt) = a1Tempt + a2Temp3
t

Taking the first order derivative, we get

df(Tempt)

dTempt

= a1 + 3a2Temp2
t .

By substituting in the previous equation a1 and a2 with their empirical estimates, and

solving df(Tempt)
dTempt

= 0, we find the roots as ±15. From our data set, the minimum observed

temperature is −15. So the only switch point is Temp∗ = 15. When the temperature

is lower than the switch point, it is negatively influenced, i.e. the lower the forecasted

temperature, the higher the electricity price. Notice that when the temperature fore-

cast is above the switch point, it is positively influenced, i.e. the higher the forecasted

temperature, the higher the electricity price. Intuitively, it reflects the fact that when

temperature forecast is relatively higher or lower than the switch point, the consump-

tion of the electricity will arise. Meanwhile the difficulty of producing electricity is also

increased when it is extremely hot or cold. This suggest that the weather forecasts can

influence both the demand and supply side of the power. For further discussion on which

side the weather forecasts affect the demand-supply curves, we refer to the next section.

Comparing to the ARMAX, the improvement of introducing the weather forecast

variables is not impressive for the in-sample analysis as shown in Table 5.2. The inclusion

of weather variables seems also appropriate in the GARCH specification. The parameters

of the GARCHW equation are less persistent than the GARCH counterpart. Model 5 has

the lowest Akaike information criteria.
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Table 5.2: In-sample estimation: Oslo

Models ARMAX ARMAXW ARMAX - ARMAXW - ARMAXW -
GARCH GARCH GARCHW

φ1 0.811 0.782 0.886 0.874 0.887
[0.022] [0.0224] [0.018] [0.019] [0.019]

φ7 0.174 0.2040 0.118 0.121 0.112
[0.023] [0.023] [0.020] [0.021] [0.021]

c 3.4907 3.5410 2.871 2.927 6.055
[0.122] [0.127] [0.970] [0.973] [3.205]

d1 -0.0491 -0.0500 -0.030 -0.030 -0.031
[0.004] [0.004] [0.002] [0.002] [0.002]

d2 0.0412 0.011 -0.095 -0.129 -0.139
[0.060] [0.055] [0.056] [0.052] [0.063]

d3 -0.046 -0.098 -0.089 -0.105 -0.138
[0.064] [0.058] [0.062] [0.058] [0.066]

a1 - -0.008 - -0.004 -0.004
[0.0013] [0.001] [0.001]

a2 - 1.15E-05 - 3.06E-06 2.36E-06
[3.84E-06] [2.96E-06] [2.80E-05]

b1 - -0.014 - -0.007 -0.011
[0.009] [0.006] [0.007]

b2 - 0.006 - 0.002 0.004
[0.005] [0.003] [0.004]

γ - -0.003 - -0.001 -0.001
[0.002] [0.001] [0.001]

α0 - - 8.71E-05 8.27E-05 5.28E-05
[1.75E-05] [1.45E-05] [7.26E-05]

α1 - - 0.304 0.382 0.411
[0.036] [0.044] [0.050]

β1 - - 0.696 0.651 0.584
[0.026] [0.027] [0.033]

%1 - - - - 2.35E-04
[7.26E-05]

%2 - - - - 9.38E-06
[3.99E-05]

%3 - - - - 2.92E-05
[5.53E-05]

%4 - - - - 4.08E-06
[6.16E-06]

%5 - - - - 1.48E-08
[1.65E-08]

%6 - - - - -1.66E-04
[1.67E-04]

%7 - - - - 3.79E-04
[1.69E-04]

%8 - - - - -2.25E-06
[1.09E-05]

R-squared 0.909 0.917 0.907 0.909 0.909
Adj. R-squared 0.908 0.915 0.906 0.907 0.907
AIC -3.286 -3.344 -3.661 -3.731 -3.731

Note: The table reports the coefficient estimates (and their standard errors between
square brackets), and selection criteria tests of the models 2-6 with Oslo data.
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As discussed in Section 5.4, we stand with the hypothesis of stationary for out-of-

sample analysis.

5.5.2 Out-of-sample analysis: Oslo Case

The objective of the out-of-sample analysis is to forecast the electricity price from January

1, 2005 to March 14, 2006. We repeat the selection procedure in Section 5.5.1 over the

initial in-sample period, from December 24, 2003 to December 31, 2004. The reduced

specific model remains the same as in (5.13). In forecasting, the model is re-estimated to

make any new forecast, but it is not re-specified. An expanding window is used, which

means that, to forecast the price of one day, all the previous data is included.

Two criteria (typically used in the electricity forecasting literature, see e.g. Conejo

et al. (2005), Knittel and Roberts (2005), Shahidehpur et al. (2002), Weron (2006)) are

computed to compare the models. The first one is the Root Mean Square Prediction Error

(RMSPE), defined as

RMSPE =

√
1

n
Σn

s=1(PT+s − P̂T+s)2

where PT+s is the log price at time T + s, where P̂T+s is the forecasted log price at time

T + s, where n = 438 is the number of days being forecasted. The alternative criterion is

the Mean Absolute Percentage Prediction Error (MAPE), see for example Misiorek et al.

(2006). It is defined as

MAPE =
1

n
Σn

s=1

|pT+s − p̂T+s|
pT+s

We apply all five models in section 3 to forecast the daily price for Oslo data, and

calculate the RMSPE and MAPE statistics. We also report results for the Random Walk

(RW) model. The results are given in Table 5.3.

The statistic results for all models outperform the RW model, implying evidence of

predictability in the electricity prices. It is also clear that the model 4, ARMAXW, is the

best under both the criteria. When we compare the RMSPE statistics of model 3 (the

best among the non-weather models) and model 4 with each other, we observe that an

improvement of 3.8% in favour of model 4.

We test whether the difference between two forecasting methods is significant in order

to show precisely how large is the improvement of the new weather forecast model. Taking

the mean square prediction error (MSPE) as loss function we apply the Diebold-Mariano

test (Diebold and Mariano (1995)). The null hypothesis is

H0 : The square of the forecast errors are equal.
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Table 5.3: Out-of-sample forecasting results

Oslo Eastern Denmark The Netherlands

Model RMSPE MAPE RMSPE MAPE RMSPE MAPE

RW 0.0602 0.0117 0.2160 0.0372 0.3054 0.0528
ARMA 0.0561 0.0116 0.1915 0.0333 0.2313 0.0400
ARMAX 0.0509 0.0105 0.1774 0.0309 0.2149 0.0377
ARMAXW 0.0490 0.0100 0.1705 0.0306 0.2120 0.0370
ARMAX-GARCH 0.0524 0.0105 0.1839 0.0313 0.2114 0.0368
ARMAXW-GARCH 0.0510 0.0101 0.1784 0.0307 0.2076 0.0358
ARMAXW-GARCHW 0.0496 0.0100 0.1764 0.0306 0.2110 0.0365

Note: The table reports forecasting statistics of the alternative models in the three electricity
markets.

Statistics are in Table 5.4. The p-value of this test is p = 0.0024. We conclude that the

ARMAXW model is significantly improved in terms of out-of-sample forecasting perfor-

mance. Figure 5.9 shows the 60-day average RMSPE for the ARMAX model and the

ARMAXW model. From the graph, we find that, when the error of model 3 is in a rela-

tively lower level, the errors of two models are similar; but when there is a higher error from

model 3 due to possible jumps, our weather forecast model often predicts better. Price

jumps are mainly due to problems of inelasticity of the demand, and of non-storability of

electricity with consequent shortage in the supply. These problems often arise when the

weather conditions are adverse. Empirical results confirm the theoretical intuition that

the weather forecasts help in predicting high prices or jumps, possible related to extreme

adverse climate situations.

Adding weather forecast variables in a GARCH model is also very beneficial. Forecasts

from the model 6, ARMAXW-GARCHW, give accurate forecasts that are quite similar to

those of model 3. In contrast, model 4, ARMAX-GARCH, gives very poor forecasts, and

extending the mean equation with weather variable, as model 5, ARMAXW-GARCH, is

not enough. To sum up, a ’classical’ GARCH specification is not adequate to predict

electricity prices, but adding weather variables as shock indicators improve enormously

the performance.

Although the weather forecast models show improvement on predicting the day-ahead

prices, it is still mysterious whether this kind of influence is via the demand of the elec-

tricity or the supply. One way to verify this is to introduce the volume variable into a

forecasting model. In principle, the volume indicates the demand of the electricity. Then,

if the weather only influence the consumption of the power, introducing the volume at

time T + s to forecast the electricity price at time T + s into the ARMAX model will lead

to similar results as the ARMAXW model. We stress that the volume at time T +s is not
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Figure 5.8: Scatter plot: Oslo
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Note: The graphs in this figure present in Panel a) the scatter plot of the errors of ARMAX model
against the daily average temperature (in the left panel), and total precipitation (in the right panel); in
Panel b) the scatter plot of the errors of ARMAX model against the wind speed in Oslo. The trend line
is also provided in each figure.

known in advance, but previous literature form Engle et al. (1979) finds that it may be

forecasted accurately, then we assume to know it. The model with volume (ARMAXV)

is given as

Pt = Xt + Vt + φ1(Pt−1 −Xt−1 − Vt−1) + φ7(Pt−7 −Xt−7 − Vt−7) + εt

Xt = c + d1Dhol,t + d2sin(2πt/365.25) + d3cos(2πt/365.25)

where Vt is the volume at time t. The calculated RMSPE is 0.0509, the improvement with

respect to the ARMAX is 0.04%. We also apply the Diebold-Mariano test, the p-value

is 0.8161. The comparison shows that introducing the volume on forecasting the day-

ahead price is not comparable with the weather forecasts, even if the future (unknown in

practice) volume is applied. In Oslo electricity market, the weather influence is not only

via the demand of the electricity, but even more via the production of the electricity. This

reflects to the producing method in Oslo, hydropower.
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Table 5.4: Out-of-sample accuracy comparisons

Oslo Eastern Denmark The Netherlands

RW -4.001∗∗∗ -5.184∗∗∗ -6.522∗∗∗

ARMA -4.872∗∗∗ -5.182∗∗∗ -3.130∗∗∗

ARMAXW 2.816∗∗∗ 4.063∗∗∗ 1.554
ARMAX-GARCH -1.915∗ -2.197∗∗ 4.152∗∗∗

ARMAXW-GARCH -0.171 -0.402 3.986∗∗∗

ARMAXW-GARCHW 2.075∗∗ 0.499 1.928∗

Note: The table reports Diebold-Mariano forecast accuracy comparison tests of the given models
against those of the ARMAX model. The null hypothesis is that the two forecasts have the same
mean square error. Positive values indicate superiority of the given models, one asterisk denotes
significance relative to the asymptotic null hypothesis at 10%, two asterisks denote significance
relative to the asymptotic null hypothesis at 5%, and three asterisks denote significance relative
to the asymptotic null hypothesis at 1%.

5.5.3 Further Application: Eastern Denmark Case

From the in-sample estimation we find that the specified model for the Eastern Denmark

data only depends on the temperature and wind speed as follows

Pt = Xt + Wt + φ1(Pt−1 −Xt−1 −Wt−1) + φ7(Pt−7 −Xt−7 −Wt−7) + εt (5.14)

Xt = c + d1Dhol,t + d2sin(2πt/365.25) + d3cos(2πt/365.25)

Wt = a1Tempt + a2Temp3
t + γWindt

The comparison of the six models is given in Table 5.3. Model 3, ARMAXW, remains

the best model among the six models, along both criteria. In particular, for the RMSPE,

the weather forecast model improves 3.89% from the ARMAX model. The difference is

also statistically significant (the p-value of the Diebold-Mariano test is 0.00002).

The reported evidence for Eastern Denmark market can be explained by how electricity

is produced in that area. The wind power is a non-trivial part of the area’s supply capacity.

As in Oslo case, Figure 5.9 shows that the ARMAXW outperforms other models, when

errors of other models are relatively higher and price jumps are observed.

The ARMAXW-GARCHW still provides reasonable accurate statistics, but they are

always marginally higher than the statistics of the ARMAXW model and not statistically

different. However, results of the ARMAXW-GARCHW are more accurate than results

of the other two GARCH models, confirming again the role of weather forecasts in the

GARCH specification.
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Figure 5.9: 60 days average RMSPE
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Note: The graphs in this figure present in Panel a) the 60 days moving average RMSPE given the
ARMAX and ARMAXW models in forecasting Oslo log electricity prices; in Panel b) the 60 days
moving average RMSPE given the ARMAX and ARMAXW models in forecasting Eastern Denmark log
electricity prices.

5.5.4 A Different Story: The Netherlands Case

From our in-sample analysis we specify the weather variables Wt as for Eastern Denmark

in equation (5.14). Therefore, forecasts on temperature, cubic of the temperature and

wind speed are inserted in the regression model. This sounds realistic considering that

the Netherlands is the country of windmills.

In this market, the ARMAXW does not provide the most accurate forecasts along any

of the criteria. Compared to model 3, the improvement of the ARMAXW is only 1.32%,

which is small and not statistically significant at 10% level.

Model 5, ARMAXW-GARCH, provides the lowest RMSPE. The ARMAX-GARCH

and the ARMAXW-GARCHW also forecast accurately and their RMSPEs are similar to

model 5. In terms of the Diebold-Mariano test the ARMAX-GARCH is the best model.

The provided evidence suggests that the GARCH specification improves the forecast ac-

curacy and that the contribution of the weather variables is only marginal. This can

be explained by the nature of the power generation field in The Netherlands, which is

predominantly thermal-based and therefore not directly related to weather. On the one

hand, one could therefore argue that there is no ground for introducing weather forecasts

as a price factor in such electricity market. On the other hand, this is also an evidence

that when the production depends less on the weather, the weather forecasts play a minor

role.
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5.6 Conclusion

Electricity prices depend on several well-known temporal and regional price effects. Lucia

and Schwartz (2002) have shown that including deterministic components that account

for genuine regularities in the behavior of electricity prices give superior out-of-sample

forecasts. However, more recent studies (see Bunn and Karakatsani (2003) and Knittel

and Roberts (2005)) have found that the idiosyncratic price structure is not accurately

described by Lucia and Schwartz (2002) model. In this Chapter we develop a set of models

that add a new price factor in previous ARMA and ARMA-GARCH specifications: the

weather forecasts.

Our empirical results suggest that the weather forecast variables play a central role in

forecasting the day-ahead prices in different markets. In particular, the weather forecasts

give relevant information to predict shocks in the prices. Intuitively, weather forecasts

anticipate adverse weather conditions, which are often the cause of sharpen increase in

the demand of electricity such as possible shortages in the supply. By studying this

statement carefully, we find that the weather has high predictability power when the

production plants of the market are related to the weather. This indicates that price

jumps in those markets depend more on supply shortages or strategic supply decisions

rather than demand increases.

The idea of weather forecast as new price factor also revaluates the GARCH class of

models in forecasting electricity prices. Extending Koopman et al. (2007) we show that

a GARCH process with weather forecasts predicts day-ahead prices successfully.

There are several topics for further research. Firstly, the set of weather forecasts might

include other weather-related variables, such as water reservoir level, which to our knowl-

edge are not modelled and forecasted at this time. Secondly, model 6 might be generalized

by allowing seasonal variation in the parameters such as in periodic time series models

and in periodic GARCH models, see Franses and Paap (2000). Weather forecasts might

also be included in other nonlinear models, such as Markov regime-switching models,

see Misiorek et al. (2006), or jump models. Finally, models based on weather forecasts

might be used in derivative contracts. The reported evidence that weather has predictive

power on the underlying day-ahead price process, could imply that this price factor might

be reflected in the price of derivative instruments on day-ahead electricity contracts as

well. Results might be extremely important since in most of the power derivative markets

derivative contracts (e.g. callable options) are commonly traded.





Chapter 6

Summary

In this thesis we forecast financial time series. We focus on providing empirical rules to

create optimal forecast, especially by applying model averaging. The analysis has been

partitioned in four chapters. In the first two parts we concentrate on stock index data.

In the next section we work on the term structure of interest rates. In the fourth part we

focus on electricity prices.

In Chapter 2 we have reviewed time varying weight combination schemes. We have

shown that time varying weights have features of adding individual models if information

are heterogenous, and of coping with in-sample structural instability. In simulation exer-

cises we have found that when data is subject to low predictability, strong heterogeneity of

individual forecasts, and structural instability, they provide the best results comparing to

other frequentist forecast combinations schemes and Bayesian model averaging methods.

We have extended the analysis to forecast stock index returns, the S&P500 excess returns.

As in the simulation exercise, stylized facts of stock index data are low predictability and

possible structural instability. We have considered two forecasting models that represent

different views on predicting stock index. The first one based on the assumption that a set

of financial and macroeconomic variables have explanatory power, the second one based

on the popular market saying “Sell in May and go away”, also known as the “Halloween

indicator”. We show that firstly averaging strategies can give higher predictive gains than

selecting the best models and believing on it. Secondly, the time varying weight schemes

have higher statistical and economic values than other averaging methods, such as equal

weights.

In Chapter 3 we have extended the previous averaging schemes to a new framework

which models structural instability carefully. In particular the predictive specification

that we have put forward allows for the treatment of three different sources of uncertainty,

about the relevant predictor variables (model uncertainty), the values of the regression
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parameters (parameter uncertainty), and their stability (structural breaks).

Again, the implication of the three sources of uncertainty, and their relative impor-

tance, are investigated on predicting the S&P500 excess returns. Our empirical results

suggest, first, that over the period 1966-2005 several structural breaks occurred in the

relationship between US stock returns and predictor variables such as the dividend yield

and interest rates. These changes appear to be caused by important events such as the

oil crisis, changes in monetary policy, and the October 1987 stock market crash. Second,

we find that allowing for model uncertainty and structural breaks jointly has considerable

economic value. A typical investor would be willing to pay up to several hundreds of basis

points annually to switch from a passive buy-and-hold strategy to an active strategy based

on a return forecasting model that allows for model and parameter uncertainty as well as

structural breaks in the regression parameters. The active strategy that incorporates all

three sources of uncertainty performs considerably better than strategies based on more

restricted return forecasting models.

In Chapter 4 we have moved to the analysis of forecasting the US term structure of

interest rates. We have examined the forecast accuracy of a range of models with varying

degrees levels of complexity. We have assessed the relevance of parameter uncertainty

by examining the added value of using Bayesian inference compared to frequentist es-

timation techniques, and model uncertainty by averaging individual models. Following

current literature we have also investigated the benefits of incorporating macroeconomic

information in yield curve models. We have evaluated model forecasts over a ten-year

out-of-sample period, using the entire period as well as several subperiod to show that

the predictive ability of individual models varies over time considerably.

Our results show that adding macroeconomic factors is very beneficial for improving

the out-of-sample forecasting performance of individual models. Models that incorporate

macroeconomic variables seem more accurate in subperiods during which the uncertainty

about the future path of interest rates is substantial. As an example we mention the

period 2000-2003 when spreads were high. Models without macro information do particu-

larly well in subperiods where the term structure has a more stable pattern such as in the

early 1990s. Despite this, the predictive accuracy of models varies over time considerably,

irrespective of using the Bayesian or frequentist approach. We show that mitigating model

uncertainty by combining forecasts leads to substantial gains in forecasting performance,

especially when applying a weighting method that is based on relative historical perfor-

mance results and Bayesian inference on individual models, comparing to using individual

models and the random walk benchmark.
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In Chapter 5 we have studied how to improve forecasts of electricity prices. We have

introduced the weather factor into well-known forecasting models to study its impact. In

the literature the effects of weather on electricity sales are well-documented. However,

studies that have investigated the impact of weather on electricity prices are still scarce,

partly because the wholesale power markets have only recently been deregulated.

We find that weather has explanatory power for the day-ahead power spot price. Us-

ing weather forecasts improves the forecast accuracy, and in particular new models with

power transformations of weather forecast variables are significantly better in term of

out-of-sample statistics than popular mean reverting models. For different power mar-

kets, such as Norway, Eastern Denmark and the Netherlands, we build specific models.

The dissimilarity among these models indicates that weather forecasts influence not only

the demand of electricity but also the supply side according to different electricity pro-

ducing methods.

To conclude, the research shows an increase of forecasting power of financial time

series when parameter uncertainty, model uncertainty and optimal decision making are

included. We highlight that, although the implementation of these techniques is not

often straightforward and it depends on the exercise studied, the predictive gains are

statistically and economically significant over different applications.





Nederlandse samenvatting
(Summary in Dutch)

Deze dissertatie bundelt studies die nieuwe inzichten bieden in het voorspellen van financiële

tijdreeksen. Verschillende optimale voorspellingstechnieken komen aan bod in vier stud-

ies die zich richten op het voorspellen van respectievelijk aandelenindices, de rente ter-

mijnstructuur, en elektriciteitsprijzen. Met name transformatie van verschillende voor-

spellingsmodellen naar een optimale gewogen voorspelling, ookwel bekend als “model

averaging”, passeert de revue.

Hoofdstuk 2 evalueert de voorspellende waarde van tijdsvariërende wegingen. We

laten zien dat het gebruik van tijdsvariërende wegingen betere voorspellingen oplevert

dan zowel traditionele “frequentist” voorspellingsmethoden als Bayesiaanse wegingstech-

nieken, met name wanneer de onderliggende data moeilijk voorspelbaar is en individuele

voorspellingsmodellen heterogene en instabiele voorspellingen opleveren. Naast simu-

laties gebruiken we tevens voorspellingen van de rendementen op de S&P 500 index om

de meerwaarde van tijdsvariërende wegingen aan te tonen. Het blijkt dat (i) gewogen

voorspellingen succesvoller zijn dan het kiezen van n uniek model op basis van model se-

lectie criteria, en (ii) tijdsvariërende wegingen leiden tot betere voorspellingen dan andere

(statische) wegingsmethoden.

In Hoofdstuk 3 integreren we eerder besproken voorspellingsmethoden in een nieuw

raamwerk dat drie vormen van voorspellingsonzekerheid aanpakt: onzekerheid over de op-

timale combinatie van voorspellende variabelen (“model uncertainty”), onzekerheid over

de regressiecoefficienten behorende bij deze variabelen (“parameter uncertainty”), en pa-

rameter instabiliteit (“structural breaks”). Wederom worden de rendementen van de S&P

500 index gebruikt om de implicaties van deze onzekerheidsfactoren te benadrukken. Uit

de empirische toetsen blijkt dat relaties tussen veelbesproken voorspellende factoren (zoals

dividend yields en rentevoeten) en het S&P 500 rendement meerdere malen instabiel zijn

geweest gedurende de periode 1966-2005. De innovaties in voorspellingen van modellen die

omgaan met “model uncertainty” en parameter instabiliteit zijn economisch significant:

een strategie gericht op het timen van de S&P 500 aan de hand van deze voorspellin-

gen zal een belegger aanzienlijk hogere rendementen opleveren dan een simpele passieve
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(buy-and-hold) belegging in deze index.

In Hoofdstuk 4 staan voorspellingen van de Amerikaanse rentetermijn structuur cen-

traal. Aan de hand van Bayesiaanse statistiek en gewogen voorspellingstechnieken wordt

onzekerheid ten aanzien van de optimale voorspellingsfactoren en hun relatie met de

rentetermijn structuur onderzocht. Het blijkt dat de voorspellende kracht van een gewogen

gemiddelde van voorspellingen van individuele modellen aanzienlijk beter is dan de af-

zonderlijke (ongewogen) voorspellingen van deze modellen, waaronder die van het simpele

random-walk model.

Tot slot concentreert Hoofdstuk 5 zich op het voorspellen van elektriciteitsprijzen.

De impact van weerkarakteristieken op de spotprijs van elektriciteit staat centraal in dit

onderzoek. We introduceren nieuwe modellen die weerkarakteristieken integreren in out-

of-sample voorspellingen en tonen aan dat deze modellen beter presteren dan standaard

mean-reverting modellen. Het blijkt dat de toegevoegde voorspellingswaarde van weerfac-

toren sterker is in landen waar het aanbod van elektriciteit relatief meer weersafhankelijk

is.
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In almost all cases a decision maker cannot identify ex ante the true process. 
This observation has led researchers to introduce several sources of 
uncertainty in forecasting exercises. In this context, the research reported in 
these pages finds an increase of forecasting power of financial time series 
when parameter uncertainty, model uncertainty and optimal decision making 
are included. The research contained herein evidences that although the 
implementation of these techniques is not often straightforward and it depends 
on the exercise studied, the predictive gains are statistically and economically 
significant over different applications, such as stock, bond and electricity 
markets.  
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