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Abstract

In this paper we compare market prices of credit default swaps with model

prices. We show that a simple reduced form model outperforms directly com-

paring bonds’ credit spreads to default swap premiums. We find that the

model yields unbiased premium estimates for default swaps on investment

grade issuers, but only if we use swap or repo rates as proxy for default-free

interest rates. This indicates that the government curve is no longer seen as

the reference default-free curve. We also show that the model is relatively

insensitive to the value of the assumed recovery rate.
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1 Introduction

During the last decade, credit derivatives have become important instruments to lay off

or take on credit risk. The credit derivatives market has grown exponentially. Until

today only very limited empirical research has been devoted to these new instruments,

although several reduced form models have been developed to price them. Most empirical

papers on credit risk modelling have focussed on defaultable bonds. In this paper, we

estimate reduced form models and compare model-implied credit default swap premiums

to market data. We show that a reduced form model gives more accurate estimates

of default swap premiums than bonds’ yield spreads. Moreover, we shed light on the

choice of the default-free term structure of interest rates. We find that swap and repo

curves significantly outperform the government curve as proxy for default-free interest

rates for investment grade issuers, but that their performance is similar for speculative

grade issuers. As such, this is one of the first studies to empirically confirm that financial

markets no longer see Treasury bonds as the default-free benchmark.

A default swap protects its buyer from losses caused by the occurrence of a default

event to a debt issuer. In exchange for this default protection, the buyer pays a periodic

premium to the protection seller. The no-arbitrage value of the default swap premium

can be derived by applying a reduced form credit risk model. In these models, prices of

default-sensitive instruments are determined by the risk-neutral default probability and

the recovered amount at default. Default is often represented by a random stopping time

with a stochastic or deterministic hazard rate, while the recovery rate is often assumed

to be constant. We have a large data set of market quotes on credit default swaps at

our disposal. This allows us to conduct empirical testing of reduced form models, which
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the literature has lacked so far. To the best of our knowledge, the only other study that

analyses credit default swap data is Aunon-Nerin et al. (2002). Their primary analyses

are regressions of default swap premiums on proxies for credit risk, whereas we estimate

and apply a reduced form credit risk model. Aunon-Nerin et al. (2002) also implement

the Das and Sundaram (2000) tree model, but on just 75 observations. Moreover, they

used spread curves per rating-sector combination, while we apply our models per issuer.

As a first indication, the default swap premium is often estimated by the yield spread

of a bond with a similar maturity issued by the same borrower. We show analytically that

this relationship only holds approximately. Moreover, we show empirically that the ap-

proximation results in fairly large deviations between calculated and market default swap

premiums. By deriving the risk-neutral pricing formula for a defaultable coupon-bearing

bond, we can explicitly express its dependence on risk-neutral processes for default-free

interest rates, hazard rates and and the recovery rate. Since we focus on the estima-

tion and application of credit risk models, we use a priori estimated default-free term

structures. The choice for default-free interest rates has received little attention in the

literature. Virtually all empirical papers on credit risk modelling used zero-coupon rates

extracted from government bonds. However, since 1998, financial markets have moved

away from estimating default-free interest rates from government securities, and started

using swap and repo contracts instead. We find that using the government curve results

in statistically significant overestimation of credit risk for investment grade issuers, that

using swap curves result in a small but significant bias, and that using repo curves yields

unbiased estimates. For speculative grade issuers, the choice for the default-free curve is

less important, as the performance differences between the three curves are smaller.

We also pay attention to the choice of the recovery rate. Since it is not possible
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to extract both the hazard rate and the recovery rate from prices of bonds of a single

seniority class, we fix the recovery rate to identify the model. We show that not only

bond spreads, but also default swap premiums are relatively insensitive to changes in the

recovery rate as long as the hazard function is scaled accordingly. Therefore, there is no

need to determine the recovery rate very accurately, as long as it takes a reasonable value.

We model the hazard function as a constant, linear or quadratic function of time to

maturity. The parameters of the hazard function are estimated using non-linear least

squares from market prices of bonds of a single issuer. The estimated credit model is

subsequently applied to the pricing of credit default swaps written on the same issuer.

We observe that both the in-sample fit to bonds and the ‘out-of-sample’ fit to default

swaps declines with an issuer’s credit quality. We also find that using the various hazard

rate functions yield more accurate estimates of default swap premiums than directly using

the yield spread of a similar bond. An analysis of the deviations between calculated and

market premiums reveals that the deviations for all models are related to the maturity of

the default swap and the rating of the underlying issuer.

The remainder of this paper is structured as follows. Section 2 discusses the charac-

teristics of credit default swaps. The literature on reduced form credit risk modelling is

reviewed in Section 3. In Section 4, we derive reduced form valuation models for bonds

and default swaps, and present our estimation framework. The construction of our data

set is outlined in Section 5. In Section 6 we present the results of applying the direct com-

parison methods and the reduced form models. Finally, Section 7 concludes the paper.
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2 Default Swaps

Default swaps are the most popular type of credit derivatives: according to the latest

Credit Derivatives Survey by the British Bankers’ Association (BBA, 2002) they account

for 45% of the global credit derivatives market and according to the most recent Credit

Derivatives Survey by Risk Magazine (Patel, 2003) for even 73%. A default swap is a

contract that protects the holder of an underlying obligation from the losses caused by

the occurrence of a credit event to the obligation’s issuer, referred to as the reference

entity. Credit events that trigger a default swap can include one or more of the follow-

ing: bankruptcy, failure to make a principal or interest payment, obligation acceleration,

obligation default, repudiation/moratorium (for sovereign borrowers) and restructuring;

these events are jointly referred to as default. A default swap only pays out if the ref-

erence entity defaults; reductions in value unaccompanied by default do not compensate

the buyer in any way. Also, the default event must be verifiable by publicly available

information or an independent auditor. The protection buyer either pays an up-front

amount or makes periodic payments to the protection seller, typically a percentage of the

notional amount. In the latter case, the percentage that gives the contract zero value at

initiation is called the spread, premium or fixed rate. If default occurs, the default swap

can be settled in one of two ways. With a cash settlement, the buyer keeps the underlying

asset(s), but is compensated by the seller for the loss incurred by the credit event. In a

physical settlement procedure, the buyer delivers the reference obligation(s) to the seller,

and in return, he receives the full notional amount. Either way, the value of the buyer’s

portfolio is restored to the initial notional amount.

Several features of default swaps are worth mentioning. If the contract specifies pe-
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riodic payments, and default occurs, the buyer is typically required to pay the part of

the premium payment that has accrued since the last payment date; this is called the

accrual payment. The credit event may apply to a single reference obligation, but more

commonly the event refers to any one of a much broader class of debt securities, includ-

ing bonds and loans. Similarly, the delivery of obligations in case of physical settlement

can be restricted to a specific instrument, though usually the buyer may choose from a

list of qualifying obligations, irrespective of currency and maturity as long as they rank

pari passu with (have the same seniority as) the reference obligation. This latter feature

is commonly referred to as the delivery option. Theoretically, all deliverable obligations

should have the same price at default and the delivery option would be worthless. How-

ever, in some credit events, e.g. a restructuring, not all obligations become immediately

due and payable, so that after such an event bonds with different characteristics will trade

at different prices. This is favorable to the buyer, since he can deliver the cheapest bonds

to the seller. Counterparties can limit the value of the delivery option by restricting the

range of deliverable obligations, e.g. to non-contingent, interest-paying bonds.

Counterparty risk is generally not taken into account in determining deal prices; if a

party is unwilling to take on credit risk to its counterparty, it either decides to cancel the

trade or to alleviate the exposure, e.g. by demanding that a collateral is provided or that

the premium is paid up-front instead of periodically (Culp and Neves (1998) and O’Kane

and McAdie (2001)).

An important application of default swaps is shorting credit risk. The lack of a market

for repurchase agreements (repos) for most corporates makes shorting bonds unfeasible.

So, credit derivatives are the only viable way to short corporate credit risk. Even if a

bond can be shorted on repo, investors can only do so for relative short periods of time
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(one day to one year), exposing them to changes in the repo rate. On the other hand,

default swaps allow investors to go short credit risk at a known cost for long time spans:

default swaps with maturities of up to 10 years can be easily contracted, but liquidity

rapidly decreases for even longer terms.

3 Literature

In the literature, there are two approaches to price bonds and credit derivatives. In

the class of structural models, due to Black and Scholes (1973) and Merton (1974), a

firm defaults when the value of the firm’s assets drops below a certain threshold. The

parameters of such models are hard to estimate, because the assets’ market value and

volatility are difficult to observe. In reduced form models, developed by Litterman and

Iben (1991), Jarrow and Turnbull (1995) and Jarrow et al. (1997), the direct reference

to the firm’s asset value process is abandoned. Instead, credit risk is determined by the

occurrence of default and the recovered amount at default. Default is often represented

by a random stopping time with a stochastic or deterministic arrival intensity (hazard

rate), while the recovery rate is usually assumed to be constant. In a somewhat different

approach, due to Longstaff and Schwartz (1995), Duffie and Singleton (1999) and Das

and Sundaram (2000), there is no need to separately model the hazard and recovery

components of credit risk, but it suffices to model the spread process. In this paper, we

use a reduced form model in the spirit of Jarrow and Turnbull (1995).

The empirical literature on reduced form models has focused on estimating the param-

eters of one of three processes: the hazard process, the spread process or the risky short

rate process. The first approach seems to be most popular. Cumby and Evans (1997)
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considered both cross-sectional estimation of a constant hazard rate model and time-series

estimation of several stochastic specifications. Madan and Unal (1998) estimated recovery

and hazard processes in a two-step procedure using Maximum Likelihood (ML) and Gen-

eralized Methods of Methods (GMM). Duffee (1998), Keswani (2000) and Driessen (2001)

applied ML with Kalman filtering to obtain parameter estimates of Cox-Ingersoll-Ross

(CIR) processes from time-series data. Bakshi, Madan and Zhang (2001), Frühwirth and

Sögner (2001) and Janosi et al. (2002) used non-linear least squares to estimate the model

parameters from cross-sectional data. Janosi et al. specified a stochastic hazard rate that

depends on the default-free short rate and an equity market index; Bakshi et al. estimated

a model with correlated interest rates, hazard rates and recovery rates; Frühwirth and

Sögner used a constant hazard rate.

The second approach applies the Duffie and Singleton (1999) framework by directly

estimating the spread process. Nielsen and Ronn (1998) estimated a log-normal spread

model using non-linear least squares from cross-sectional data. Taurén (1999) utilized

GMM to estimate the spread dynamics as a Chan et al. (1992) process. Dülmann and

Windfuhr (2000) and Geyer et al. (2001) implemented a ML procedure with Kalman

filtering to obtain parameter estimates of Vasicek and/or CIR models for the instantaneous

spread. Duffie et al. (2003) used an approximate Maximum Likelihood method to estimate

a multi-factor model with Vasicek and CIR processes.

The third approach is to consider the sum of the default-free rate and the spread

and estimate a model for the total risky rate. Duffie and Singleton (1997) utilized this

approach to estimate the swap rate as a 2-factor CIR process using Maximum Likelihood.

All discussed papers assessed the quality of the models on their ability to fit spreads

or bond prices. Since credit derivatives allow credit risk to be traded separately from
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other sources of risk, they provide a clean way of putting a price on credit risk. So, we

may obtain better insights in the performance of credit risk models by applying them to

the pricing of credit derivatives.

4 Methodology

In this section, we first discuss the valuation of bonds and credit default swaps in our

reduced form credit risk model. Then, we elaborate on the specification and estimation

of the model.

4.1 Valuing Bonds

Following Jarrow and Turnbull (1995), we assume a perfect and arbitrage-free capital

market, in which default-free and defaultable zero-coupon bonds, a default-free money-

market account and defaultable coupon bonds are traded. Uncertainty is represented by

a filtered probability space (Ω,F ,Q), where Ω denotes the state space, F is a σ-algebra

of measurable events in Ω and Q is the actual probability measure. The information

structure is represented by the filtration F(t). We take as given some non-negative,

bounded and predictable default-free short-rate process r(t), which drives the default-free

money-market account B(t). Let Q̃ denote the equivalent martingale measure that is

associated with the numeraire B(t); see Harrison and Pliska (1981). That is, Q̃ is the

risk-neutral measure. Let p(t, T ) and v(t, T ) denote the time-t values of a default-free and

a defaultable zero-coupon bond with maturity T and face value 1. Default occurs at a

random time τ , independent of r(t) under Q̃.1 Let P̃(t, T ) denote the risk-neutral survival

1In our empirical application, we use readily available default-free term structures instead of specifying
a risk-neutral process for r(t) and estimating its parameters. Therefore, we cannot estimate the correlation
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probability, i.e. P̃(t, T ) = Ẽt[1{τ>T}] with Ẽt [X] = EQ̃ [X|Ft] and 1{A} the indicator

function of event A. We assume the existence of a non-negative, bounded and predictable

process λ(t), which represents the default intensity or hazard rate for τ under Q̃. Then,

P̃(t, T ) = Ẽt
[
exp

(
−
∫ T

t

λ(s)ds

)]
= Ẽt [exp(−Λ(t, T ))] , (1)

where Λ(t, T ) denotes the integrated hazard function: Λ(t, T ) =
∫ T
t
λ(s)ds.

Now, consider a defaultable coupon bond with coupon payment dates t = (t1, . . . , tn),

coupon payment c, maturity tn and notional 1. We assume that a constant2 recovery

fraction δ of the notional (and not of the remaining coupons too, see Jarrow and Turnbull

(2000) and Schönbucher (2000)) is paid at the random default time τ . To calculate the

price v(t, t, c) of this bond, we apply the risk-neutral valuation principle to the coupon,

notional and recovery cash flows (cf. Duffie and Singleton, 1997, Equation (26))

v(t, t, c) =
n∑
i=1

p(t, ti)Ẽt
[
c1{τ>ti}

]
+ p(t, tn)Ẽt

[
1{τ>tn}

]
+ Ẽt

[
p(t, τ)δ1{τ≤tn}

]

=
n∑
i=1

p(t, ti)cP̃(t, ti) + p(t, tn)P̃(t, tn) +

∫ tn

t

p(t, s)δf(s)ds,

(2)

where f(t) denotes the probability density function associated with the intensity process

λ(t). In our empirical application, we replace the integral in Equation (2) by a numerical

approximation:3 we define a monthly grid of maturities s0, . . . , sm, where s0 = t and

between default-free rates and the default time, so there is no use in allowing for a correlation parameter
in our model.

2If we assume a stochastic recovery rate that is risk-neutrally independent from the default-free short-
rate process and the default time, all formulas remain valid, except that δ should be interpreted as the
expected recovery rate under the risk-neutral measure. Moreover, the results of Bakshi et al. (2001)
indicated that a model with a stochastic recovery rate performs equally well as a model with a constant
recovery rate.

3This approximation is necessary, because we do not have an analytical expression for p(t, ·), but use
the market’s default-free term structure instead.
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sm = tn and set

∫ tn

t

p(t, s)δf(s)ds ≈
m∑
i=1

p(t, si)δ
(
P̃(t, si−1)− P̃(t, si)

)
.

4.2 Valuing Default Swaps

A default swap contract consists of a fixed leg and a floating leg. The former contains the

payments by the buyer to the seller; it is called the fixed leg, because its payments are

known at initiation of the contract. The floating leg comprises the potential payment by

the seller to the buyer; at the start date, it is unknown how much the seller has to pay

(if he has to pay at all).

Consider a default swap contract with payment dates T = (T1, . . . , TN), maturity TN ,

premium percentage P and notional 1. Denoting the value of the fixed leg by V̄ (t,T, P )

and the value of the floating leg by Ṽ (t), the value of the default swap to the buyer equals

Ṽ (t) − V̄ (t,T, P ). At initiation, the premium P is chosen in such a way that the value

of the default swap is equal to zero. Since the value of the fixed leg is homogeneous of

degree one in P , the premium percentage should be chosen as P = Ṽ (t)/V̄ (t,T, 1).

We first determine the value of the fixed leg. At each payment date Ti, the buyer has

to pay α(Ti−1, Ti)P to the seller, where α(Ti−1, Ti) is the year fraction between Ti−1 and

Ti (T0 is equal to t). If the reference entity does not default during the life of the contract,

the buyer makes all payments. However, if default occurs at time s ≤ TN , the buyer has

made only I(s) payments, where I(s) = max(i = 0, . . . , N : Ti < s) and the remaining

payments I(s) + 1, . . . , N are no longer relevant; in addition, he has to make an accrual
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payment of α(TI(s), s)P at time s.4 The value of the fixed leg at time t is thus equal to

V̄ (t,T, P ) =
N∑
i=1

p(t, Ti)Ẽt
[
α(Ti−1, Ti)P1{τ>Ti}

]
+ Ẽt

[
p(t, τ)α(TI(τ), τ)P1{τ≤TN}

]

=
N∑
i=1

p(t, Ti)α(Ti−1, Ti)P P̃(t, Ti) +

∫ TN

t

p(t, s)α(TI(s), s)Pf(s)ds.

(3)

Next, we calculate the value of the floating leg. If the contract specifies cash settlement,

the buyer keeps the reference obligation at default and the seller pays the buyer the

difference between the reference price and the final price. The reference price typically

equals 100%. The final price is the market value of the reference obligation at the default

date;5 under our recovery assumption, the final price is equal to δ, so that the value of

the floating leg under cash settlement equals

Ṽ (t) = Ẽt
[
p(t, τ)(1− δ)1{τ≤TN}

]
=

∫ TN

t

p(t, s)(1− δ)f(s)ds. (4)

If the contract specifies physical settlement, the buyer delivers deliverable obligations with

a total notional of 1 to the seller and the seller pays 1 in return. Assuming one deliverable,

the value of the floating leg is equal to Equation (4). However, a default swap contract

generally has a delivery option (see Section 2), allowing the buyer to choose from a list

of qualifying obligations. We refrain from valuing the delivery option, and use the value

of the floating leg under cash settlement. To numerically approximate the integrals in

Equations (3) and (4), we use the same method as for the defaultable coupon bond price.

4We assume that if the default time exactly coincides with a payment date Ti, the buyer does not
make the regular payment, but makes an accrual payment, i.e. I(Ti) = i− 1. Since the regular payment
and the accrual payment are equal on a payment date, this assumption does not affect the value of the
default swap.

5Commonly, the calculation agent has to poll one or more dealers for quotes on the reference obliga-
tion, disregard the highest and lowest quotes and calculate the arithmetic mean of the remaining quotes.
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Again, a monthly grid is chosen.

Our default swap pricing formula is very similar to other models encountered in the

literature. The models by Aonuma and Nakagawa (1998), Brooks and Yan (1998), Scott

(1998), Jarrow and Turnbull (1998) and Duffie (1999) are equal to our model, except

that they only allow defaults on premium payment dates. Nakagawa (1999) and Hull

and White (2000), like us, also allowed defaults to occur on other dates than payment

dates. However, Nakagawa (1999) did not incorporate the accrual payment and Hull and

White (2000) assumed that the protection buyer makes a continuous stream of premium

payments, rather than a set of discrete payments.

4.3 Specification

Since we focus on credit risk models, we refrain from estimating a model for the default-free

short-rate. Instead, we use a priori estimated curves to calculate the prices of default-free

zero-coupon bonds. To completely specify the model, we have to (i) select the risk-neutral

hazard model, (ii) pick a recovery rate and (iii) choose a proxy for the default-free term

structure.

4.3.1 Hazard Process

In the literature discussed in Section 3, all studies that use time series estimation model

the hazard rate stochastically, typically as a Vasicek or CIR process. Papers that use

cross-sectional estimation consider either constant or stochastic hazard rates, where the

stochastic process is chosen in such a way that the survival probability curve in Equa-

tion (1) is known analytically. We follow an intermediate approach by using a deter-

ministic function of time to maturity. This specification facilitates parameter estimation,

12



while still allowing for time-dependency. We model the integrated hazard function as a

polynomial function of time to maturity

Λ(t, T ) =
d∑
i=1

λi(T − t)i,

where d is the degree of the polynomial and λ1, . . . , λd are unknown parameters.6 This

specification implies that the hazard rate itself is a polynomial of degree d−1. The survival

probabilities follow directly from Equation (1) as exp(−Λ(t, T )). To the extent that the

survival probability curve from a stochastic hazard specification can be approximated

by our exponential-polynomial function, deterministic and stochastic models will yield

similar results.

4.3.2 Recovery Rate

There are two approaches for the estimation of the recovery rate. The first is to consider it

as just another parameter, and estimate it from the data along with the other parameters.

The second method is to a priori fix a value. Although the first method seems preferable,

it turns out that it is hard to identify the recovery rate from the data. Figure 1a illustrates

this for a constant hazard rate model estimated from a data set of Deutsche Bank bonds

on May 4th, 1999 (the first day in our sample) using the swap curve as proxy for the

default-free curve. We vary the recovery rate from 10% to 90% in steps of 10% and

for each value we estimate the hazard rate. It is clear from the figure that the fitted

zero-coupon curves are virtually identical, except for the one estimated with a recovery

rate of 90%. To get some intuition for this outcome, consider the price of a defaultable

6Note that we have imposed the required restriction Λ(t, t) = 0 by omitting the constant term.
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zero-coupon bond (cf. Jarrow and Turnbull, 1995, Equation (49))

v(t, T ) = p(t, T )[1− (1− δ)(1− P̃(t, T ))].

So, given a default-free curve p(t, T ), the price only depends on the product of 1− δ and

1− P̃(t, T ). Using Equation (1) and a first order Taylor expansion, the bond price can be

approximated as

v(t, T ) ≈ p(t, T )[1− (1− δ)Λ(t, T )].

For the constant hazard rate model, Λ(t, T ) = λ1(T − t), so that the zero-coupon spread

s(t, T ) with respect to the default-free rate is approximately equal to s(t, T ) ≈ (1 −

δ)λ1; see also Duffie and Singleton (1999, below Equation (5)). Decreasing 1 − δ and

simultaneously increasing λ1 by the same ratio will result in approximately the same

spread. Figure 1b shows that this indeed happens when we estimate the hazard rate for

different values of recovery rate. As long as the recovery rate is chosen between roughly

10% and 80%, the product of 1− δ and λ1 is approximately constant.

It is clear that it is hard to identify both the hazard and recovery processes from

bond data; see also Duffee (1998, page 203), Duffie (1999, page 80), Duffie and Singleton

(1999, page 705) and Frühwirth and Sögner (2003). This may pose a problem for some

applications, but for our purpose of pricing default swaps it fortunately does not. It turns

out that the default swap premium is also relatively insensitive to the assumed recovery

rate. Figure 1c shows the premiums for a 5 year default swap written on Deutsche

Bank for varying recovery rates (and thus varying hazard rates). As long as the recovery
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rate is chosen between roughly 10% and 80%, the estimated default swap premium is

approximately between 13 and 15 basis points (bps). A smaller range of 14 to 15 bps is

obtained, if the recovery is chosen between 10% and 60%. In our implementation, we set

δ = 50%.

4.3.3 Default-Free Interest Rates

Our bond and default swap valuation models require a term structure of default-free inter-

est rates as input data. Since a few years, fixed-income investors have moved away from

using government securities to extract default-free interest rates and started using plain

vanilla interest rate swap rates instead. Golub and Tilman (2000) and Kocić, Quintos

and Yared (2000) mentioned the diminishing amounts of US and European government

debts, the credit and liquidity crises of 1998, and the introduction of the euro in 1999

as primary catalyzing factors for this development. Nowadays, government securities are

considered to be unsuitable for pricing and hedging other fixed-income securities, because

in addition to interest rate risk they have become sensitive to liquidity risk. Swaps, on the

other hand, being synthetic instruments, are available in unlimited quantities, allowing

investors to go long or short any desired amount. A disadvantage of swap rates is that

they contain a credit risk premium due to two sources. First, being a bilateral agreement

between two parties, an investor is exposed to the potential default of its counterparty.

Duffie and Huang (1996) showed that this premium is quite small however: only one or

two basis points for typical differences in counterparties’ credit qualities. Second, the

swap’s floating leg payments are indexed on a short-term LIBOR rate, which is a default-

risky rate. Therefore, the swap rate will be higher than the default-free rate even though

the swap contract is virtually default-free; see Collin-Dufresne and Solnik (2001).

15



An instrument that is less sensitive to the risk of counterparty default and is not linked

to a risky rate is a repurchase agreement (repo for short; see e.g. Duffie, 1996). A repo

is basically a collateralized loan, typically between two banks for a relatively short time

period (1 day to, at most, 1 year). Each instrument has its own repo rate, and the highest

repo rate is referred to as the general collateral (GC) rate.7 GC rates have historically

been close to swap rates, but they were typically several basis points lower. The usage

of repo rates as default-free interest rates was recommended by Duffie (1999, page 75).

Repo rates were also used by Longstaff (2000).

Even though the above seems to be well-known to practitioners, the academic literature

has paid little attention to the choice of the default-free curve. This is demonstrated by the

fact that almost all empirical papers that estimate reduced form credit risk models used

the government curve as the default-free curve; Duffie et al. (2003) are the only exception

by using the swap curve. We estimate our models for all three proxies – government, swap

and repo curves – and see which curve gives the best fit to bond prices and default swap

premiums.

4.4 Estimation

We use cross-sectional estimation to estimate the parameters of our model. Suppose we are

given a default-free zero-coupon curve at time t, and the market prices P1(t), . . . , Pb(t)(t)

of b(t) defaultable bonds issued by a single entity, where the ith bond has payment dates

ti and coupon percentage ci. Then we estimate the parameters of that entity’s integrated

hazard function using least squares optimization with the Gauss-Newton algorithm; see

7Instruments whose repo rates are at or near the GC rate, are called general collateral. Instruments
whose repo rates are significantly below the GC rate are referred to as special. Since data on repo
specialness is hard to obtain, we assume that all considered bonds are general collateral.
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e.g. Greene (2000, Chapter 10). We repeatedly estimate the model until all residuals

are smaller than 2.5 standard deviations, removing the bond with the largest residual (in

absolute sense) each time this condition is not met. This procedure prevents strongly

mispriced bonds from unreasonably affecting the estimated curves; see also Perraudin

and Taylor (1999, Section 2.2). To estimate a curve on a particular trading day, we also

consistently exclude all bonds with a remaining maturity of less than 3 months. In our

data set, such bonds showed constant prices or they were not quoted at all for several

consecutive days. Moreover, we require that on each day, quotes should be available

for at least 5 bonds. This ensures some degree of statistical reliability of the estimated

parameters.

5 Data

The bond data set consists of corporate and sovereign bonds and is obtained from two

sources. From Bloomberg, we obtain bond characteristics, like maturity dates, coupon

percentages and seniorities; a time series of credit ratings for each issuer is also downloaded

from Bloomberg. Clean bid and ask price quotes are retrieved daily at 4.00pm from

Reuters’ Treasury and Eurobond pages. The data covers the period from January 1,

1999 to January 10, 2001 and contains prices of almost 10800 bonds issued by over 1600

different entities. The total number of price quotes is close to 2.5 million. To estimate the

credit risk models, we construct a sample of fixed-coupon, bullet, senior unsecured bonds

that are denominated in euros or in one of the currencies of the participating countries.

This reduces the number of bonds to 3920, the number of unique issuers to 704 and the

number of quotes to approximately 1.1 million.

17



The default swap data set is constructed by combining quotes from two sources. Firstly,

it contains indicative bid and ask quotes from daily sheets posted by commercial and

investment banks, such as J.P. Morgan Chase, Salomon Brothers, Deutsche Bank and

Credit Suisse, and by brokers, such as Prebon, Tradition and ICAP. Secondly, it com-

prises bid and ask quotes from internet trading services creditex and CreditTrade, whose

participants, in addition to banks and brokers, also include other financial institutions

and corporates. The data period ranges from May 1, 1999 to January 10, 2001. In this

period, we observed 48098 quotes on default swaps on 837 distinct reference entities. Con-

tracts denominated in US dollars make up 82% of the quotes, euro-denominated contracts

account for 17% and the remaining 1% is comprised of British pounds, Japanese yens and

Australian dollars. Quotes on dollar contracts are observed in the entire data period,

whereas quotes on euro-denominated default swaps are only observed from March 2000 to

January 2001. All contracts specify quarterly payments by the protection buyer. Virtually

all quotes (99.7%) are for contracts with a notional amount of 10 million (denominated in

one of the above mentioned currencies). The maturity of the default swaps ranges from 1

month to 20 years, with multiples of 6 months up to 10 years being most common; 5-year

deals are most popular, making up 53% of the observations, followed by 3-year (10%),

10-year (7%) and 1-year (4%) contracts. For our subsequent analyses, we constrain our-

selves to default swaps that are euro- or dollar-denominated, have a maturity of at most

10 years and a notional amount of 10 million. Imposing these constraints reduces the

number of observations by 2.7%, but creates a more uniform data set by removing the

least liquid contracts. For our research, we need reference entities for which both bond

and default swap prices are available. Restricting the data sets to this subset of entities,

leaves us with 225 reference entities, 1131 bonds, about 258000 bond prices and about
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23000 default swap prices.

As proxy for default-free interest rates, we consider three alternatives: government

rates, swap rates, and general collateral (GC) repo rates. The zero-coupon ‘euro govern-

ment’ curve is estimated on a daily basis from a data set of liquid German government

bonds.8 We model the discount function as a linear combination of third degree B-splines

basis functions with knots at 2, 5 and 10 years. Euro swap rates are downloaded from

Bloomberg. We apply a standard bootstrapping procedure to extract zero-coupon rates

and interpolate linearly between the available maturities to get a curve for all required

maturities. Finally, we download euro repo benchmark rates from the website of the

British Bankers’ Association (BBA, 2001). Unfortunately, the longest maturity for which

GC rates are available is 1 year, which is too short for our purposes. Therefore, we use

the following method to calculate approximate GC rates for all required maturities: on

each day, we determine the 1-year swap-GC spread and assume that this spread may be

subtracted from the swap rates of all other maturities to get the GC rates. Analogously

to the swap curve, we use bootstrapping and linear interpolation to obtain a zero-coupon

curve.

6 Results

In this section we first discuss the properties of the default swap data set and implement

an approximate default swap pricing method. Then, we present the results of applying

our reduced form credit risk model to our data set. We conclude by analyzing the pricing

errors of the model.

8We assume that Germany is the most creditworthy sovereign issuer in the euro area. Therefore, we
use the German curve as proxy for the ‘euro government’ curve.
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6.1 Analyzing Default Swap Premiums

Since the empirical literature on credit default swaps is restricted to just one other study

(Aunon-Nerin et al., 2002), it is interesting to look at the properties of the data first; see

Table 1. Panel I subdivides the 46820 observations by the reference entity’s credit rating

at the quote date. As may be expected, the rating is a very important determinant of

default swap premiums as average premiums decrease monotonously with credit quality.

In panel II, the sample is further subdivided by deal type. The number of bid quotes is

roughly equal to the number of ask quotes. The average bid-ask spread is 8 bps, but

an increasing pattern with ratings may be observed.9 Note that the bid-ask spreads are

relatively large compared to the quote size. For instance, for AA the average bid-ask

spread of 6.8 bps amounts to 28% of the average quote of 43.4 bps. Contracts in our

database are denominated in one of two currencies : either US dollars or euros. Panel III

shows that dollar-denominated default swaps prevail, but recall that euro-denominated

default swaps are only observed during the second half of the data period. For all ratings,

dollar quotes are on average larger than euro quotes, except for rating B where the number

of euro observations is rather small. This finding still holds, if we also control for quote

date, though to a lesser extent (not shown here). The relation between premium level and

contract maturity is assessed in panel IV. Notice that more than 50% of the observations

resides in the 4- to 5- year maturity range. There does not seem to be a clear relation

between the average default swap premium and maturity. Our findings are in line with

those of Aunon-Nerin et al. (2002), who tested several specifications for the maturity

effect, but none of them appeared to be significant. Finally, panel V shows the behavior

9The bid-ask spread for CCC is negative, but this is most likely caused by the small number of
observations.
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of average premiums over time by grouping the default swaps by quote date into three-

month periods. Except for AA and BB, the quotes for all ratings roughly follow a U-shape

pattern over time: in the middle of the sample period, the average premium is lower than

at the start and at the end.

6.2 Comparing Bond Spreads and Default Swap Premiums

To directly compare bonds and default swaps, we make the following intuitive argument.

Suppose an investor in a coupon-bearing defaultable bond buys protection by entering

into a credit default swap. The package consisting of the bond and the default swap is

free of default risk, so we have “defaultable bond + default swap = default-free bond”.

Hence, the default swap premium should be equal to the spread between the defaultable

and the default-free bond.

To formalize our argument, consider a defaultable bond with coupon payment dates

t = (t1, . . . , tn), coupon c, maturity tn and notional 1. Further, consider a default swap

with the same maturity, premium percentage P and notional 1. For simplicity, assume

that the default swap’s and bond’s payment dates coincide. The value V (t) of the package

to the investor is given by v(t, t, c) −V̄ (t, t, P ) + Ṽ (t), whose formulas are given by Equa-

tions (2) to (4). We replace the integrals in the pricing formulas by the approximations

from Section 4; the grids for both the bond and default swap are chosen to be equal to

the payment dates t. Then

V (t) =
n∑
i=1

p(t, ti)(c− Pα(ti−1, ti))P̃(t, ti) +
n∑
i=1

p(t, ti)
(
P̃(t, ti−1)− P̃(t, ti)

)
+ p(t, tn)P̃(t, tn).

The first summation indicates that the bond’s coupon payments c are reduced by the
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‘insurance premium’ Pα(ti−1, ti) on the default swap. The remaining terms shows that

the notional of 1 will be paid eventually, but that the timing depends on the occurrence

of the credit event. The investor is thus protected against default risk, but is now exposed

to the risk of prematurely receiving the notional and thus missing some of the promised

coupons (prepayment risk).

If we further assume that the default-free and defaultable bond are priced at par, then

their yields are equal to their coupon rates (ignoring the prepayment risk). Let y and

Y denote the yield of the defaultable and the default-free bond, respectively, then y = c

and Y = c− P , so that y − Y = P . This confirms that the bond spread should be equal

to the default swap premium. However, we had to make several assumptions to get this

result, so it is only approximately valid. Nevertheless, bond spreads and default swap

premiums should be comparable. This relation was also presented by Aunon-Nerin et al.

(2002), though without proof. Duffie (1999) showed that this relation holds exactly for

par floating rate notes instead of fixed-income coupon bonds.

We will now determine to what extent this relation holds for our data set. For each

quoted default swap written on an entity, we have to find a quoted bond issued by that

same entity with the same maturity. Unfortunately, a bond with exactly the same ma-

turity as the default swap is rarely available. Therefore, we examine two alternative

methods:

1. Find a quoted bond whose maturity differs at most 10% from the default swap’s

maturity;

2. Find two quoted bonds, one whose maturity is smaller than, but at most twice as

small as, the default swap’s maturity, and one whose maturity is larger than, but

at most twice as large as, the default swap’s maturity, and linearly interpolate their
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spreads.

We call method 1 the matching method and method 2 the interpolation method. The

performance of each method is evaluated for all three proxies for the default-free term

structure.

Each time a pair can be formed of a default swap premium and a (matched or inter-

polated) bond spread, we calculate two pricing errors.10 One by subtracting bond bid

spreads from default swap ask quotes, and the other by subtracting bond ask spreads

from default swap bid quotes.11 The pricing errors are summarized in two ways. First, as

the average, denoted by the Mean Pricing Error (MPE), and second as the average of the

absolute values, called the Mean Absolute Pricing Error (MAPE). A negative (positive)

sign of the MPE statistic indicates that the bond market’s estimate of the issuer’s credit

risk is larger (smaller) than the default swap’s market estimate. To test if this under-

or overestimation is significant, we create a time series MPEi1, . . . ,MPEiS, where MPEit

denotes the mean pricing error for method i on date t. We then apply a one-sample

Z-test (see e.g. Arnold, 1990, Chapter 11): Zi =
√
S ·MPEi/si, where MPEi and si are

the sample mean and sample standard deviation of the MPEit series, respectively, and

S is the sample size. Asymptotically, Zi has a standard normal distribution. Similarly,

to determine if significant performance differences exist between our methods, we cre-

ate a time series MAPEi1, . . . ,MAPEiS of mean absolute pricing errors for each method

i. Then, we use a paired Z-test (Arnold, 1990, Chapter 11) to determine if method i’s

performance is significantly different from method j’s, while allowing for non-zero corre-

10The pricing error is often called the default swap basis by market participants; see O’Kane and
McAdie (2001) and Hjort et al. (2002).

11In this way, we are comparing similar sides of the market. For instance, an investor can create an
exposure to an issuer’s default by buying a bond – for which he pays the ask price – or by writing default
swap protection – for which he receives the bid premium.
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lation and unequal variances. The test statistic is defined as Zij =
√
S · d̄ij/sij, where

d̄ij and sij are the sample mean and sample standard deviation, respectively, of dijt =

MAPEit−MAPEjt, t = 1, . . . , S. Asymptotically, Zij has a standard normal distribution.

Figure 2 depicts scatter plots of pricing errors versus default swap premiums per rating

for the interpolation method that uses the swap curve as default-free curve; the plots for

the other methods are similar. If interpolated bond spreads over the swap curve are good

estimates of default swap premiums, all points should lie on the horizontal axis. For ratings

AAA, AA and A, this seems indeed to be the case, so that on average the method does a

good job. This is confirmed by the MPE values in Table 2, which are approximately zero,

though only for AAA insignificant. For rating BBB, the scatter plot and MPE statistic

indicate that bond spreads are on average smaller than default swap premiums; for ratings

BB and B this is almost always the case. Moreover, the Z-test indicates that the MPEs

are significantly different from zero, so that for BBB, BB and B bond spreads are biased

estimates of default swap premiums. For all ratings, the dispersion around the horizontal

axis is fairly large: the MAPE statistics in Table 2, together with the average default

swap premiums in Table 1, imply that the calculated premiums deviate on average 19%

(for BBB) to 68% (for AAA) in absolute value from the market values.

Tables 2 and 3 also shed light on the performance of the other methods. A striking

result is the abominable performance of the government-based methods for AAA to A.

Their MAPE values are up to four times higher than for methods that proxy the default-

free curve with the swap or repo curve. As the paired Z-tests in Table 3 point out, the

underperformance of the government curve for investment grade issuers (so including BBB

too) is highly significant. Moreover, since the MPEs are negative, almost identical in size

to the MAPEs and statistically significant, bond spreads relative to the government curve
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are virtually always larger than default swap premiums for high grade issuers. The MPE

values for the swap and repo curve methods are much closer to – but still significantly

different from – zero. Looking at the MAPE statistics as well, the swap curve methods

perform significantly better than the repo curve methods for investment grade, but signif-

icantly worse for speculative grade entities. For speculative grade issuers, the government

curve methods significantly outperform their swap- and repo-based counterparts. For all

methods the MPE statistics take large, significantly positive values though, indicating

that they all result in bond spreads being smaller than default swap premiums.

6.3 Estimating Hazard Functions

We now turn to the estimation of credit risk models as described in Section 4.4. We

consider three proxies for the default-free curve – government, swap and repo curves –

and three degrees for the integrated hazard function – linear, quadratic and cubic. For

each issuer, we estimate all nine models for each day that we have at least one default

swap quote and at least five bond quotes. Like in Section 6.2, this is done separately

for the bid and ask sides of the market. A model’s quality at day t may be assessed by

looking at the root mean squared error (RMSE) of the deviations between the market

prices and the model prices

RMSE(t) =

√√√√ 1

b(t)

b(t)∑
i=1

ei(t)2

where ei(t) = Pi(t) − v(t, ti, ci). A model’s RMSE is calculated as the average of its

RMSE(t) values over all days in the sample.

The number of observations and the estimation results are shown in Table 4. We
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observe that the goodness of fit deteriorates as the rating declines. We further find that

using more parameters (obviously) yields a better in-sample fit. This holds for all three

proxies for the default-free curve, but especially for the government curve if we move

from a linear to a quadratic model. Table 4 also indicates that using a cubic model has

little advantage over a quadratic model for high grade bonds, but does fit better for low

grade bonds. As to the choice of the default-free curve, we see that for the linear model,

the government curve clearly underperforms the swap and repo curves. For quadratic

and cubic models, on the other hand, choosing a proxy for the default-free curve is less

important. Overall it seems sufficient for AAA and AA to use a linear model with a swap

or repo curve, for A and BBB a quadratic model with a swap or repo curve, and for BB

and B a cubic model with any default-free curve.

Now we turn to the discussion of the estimated coefficients of the integrated hazard

function. For the constant hazard rate model, the average default intensity λ1 increases

with the issuers’ credit rating, except that B’s is somewhat below BB’s. Therefore, on

average, credit ratings do a good job in ranking firms by credit worthiness. However,

the level of the default intensity differs considerably between the models, especially for

investment grade bonds. For instance, if we use the swap curve, we would conclude that

AAA’s default rate is only 7 bps, but if we use the government curve that number would be

about ten times as large. In the quadratic integrated hazard model, the hazard function

is linear, so that λ1 and λ2 are the level and slope coefficient of the hazard function,

respectively. The estimates imply that if we compare the estimated spread curves of two

ratings, the worst rating’s spread curve both starts at a higher level and is steeper. Again,

noticeable differences exist between the three curves. Using the government curve, gives

higher and steeper spread curves than using the swap curve. Comparing swap and repo
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curves, we find that the levels differ by about 10 bps, just like in the linear model, but

that the slopes are exactly equal.12 Finally, we look at the results of the cubic model.

Unlike the nicely ordered level and slope coefficients, there does not seem to be relation

between λ3 and the credit rating. Interestingly, the λ3 parameters of the government

curve models are almost equal to those of the swap and repo curve models.

In conclusion, the choice of a proxy for the default-free curve has a significant impact on

the level and shape of the hazard function. Moreover, the fit of the model to investment

grade bonds is better for the swap or repo curve than for the government curve. For

speculative grade bonds, choosing a proxy is less important.

6.4 Comparing Model and Market Premiums

Having estimated a credit risk model for a specific issuer allows us to calculate model

premiums of credit default swaps written on that issuer.13 Like above, we define two

pricing errors: as default swap ask quotes minus model premiums calculated from hazard

functions estimated from bond bid quotes, and vice versa. Table 5 contains the MPEs

and MAPEs for all nine models subdivided by rating, as well as one-sample Z-tests for

the MPE statistics. Table 6 shows the outcomes of the paired Z-tests for the investment

grade and speculative grade subsamples. If we compare these figures to the ones in

Tables 2 and 3, we see very similar patterns. First, MAPEs increase with credit ratings

for all models, except for high grade entities in the models that use the government curve.

Second, government-based models perform very badly for investment grade issuers: their

12This simply reflects the construction of our repo curve as a parallel shift of the swap curve.
13All premiums are calculated using euro proxies for the default-free term structure. Ideally, we

should use dollar curves for dollar-denominated contracts, but we are unable to obtain dollar repo rates.
However, repeating the analysis in this section for government and swap curves with dollar curves, gives
very similar results (available on request from the authors): dollar-based and euro-based premiums have
a correlation of over 99%.
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MAPE statistics take significantly larger values than for swap- and repo-curve models,

and their significantly positive MPE statistics indicate a large overestimation of default

swap premiums. Third, the MPE values for the swap and repo curve models are close to

zero, and for first degree swap models and second and third degree repo models mostly

statistically insignificant. Fourth, for speculative grade bonds, the government curve

models outperform the swap- and repo-based models; for quadratic and cubic models this

outperformance is significant. Finally, for all models the MPE statistics take significantly

positive values, indicating that they all underestimate the credit risk of low grade entities.

Estimating a hazard rate model gives a clear improvement over the direct methods of

Section 6.2. Comparing the best direct method to the best model for each default-free

curve proxy, we find that MAPE statistics are reduced by 15% to 55% for investment grade

issuers. For speculative grade issuers, hazard rate models outperform the direct methods

by 15% to 20%. Even though using a model works better than directly comparing bond

spreads and default swap premiums, the model premiums of the best-performing model

still deviate on average 20% to 50% in absolute value from the market values. So the

models fit rather well to bonds, but their ‘out-of-sample’ performance on default swaps is

somewhat poor.

We now try to identify the best model. The results show that swap and repo models on

average do a reasonable job for investment grade issuers. The swap-based models some-

what underestimate the true default swap premiums, and except for the linear model,

this bias is significant; the repo-based model, on the other hand, slightly overestimates

the market premiums, but these differences are mostly insignificant (except for the linear

model). Looking at the MAPE statistics as well, the linear and quadratic swap curve

models significantly outperform their repo- and government-based counterparts for in-
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vestment grade entities; the differences between swap and repo models are small though.

For speculative grade issuers, the quadratic and cubic government curve models signifi-

cantly work better than swap and repo models with equal degrees. As to the choice of

the optimal degree of the integrated hazard function, the paired Z-tests indicate that the

quadratic model works significantly better than, or not significantly different from, the

linear and cubic models. This result holds for both investment grade and speculative

grade issuers. All in all, a quadratic model that uses the repo curve seems to be the

best choice for investment grade issuers: it gives unbiased estimates, and has the second

lowest MAPE values. For speculative grade entities, none of the considered models can

be recommended, since they all significantly underestimate credit risk.

The underestimation of default swap premiums for speculative grade issuers is sub-

stantial. If an investor would like to exploit this difference between bond and default

swap markets, he has to write default swap protection (receiving the high default swap

premium) and short a bond (paying the low bond spread). However, as noted earlier in

Section 2, shorting corporate bonds is typically unfeasible, so that positive pricing er-

rors can persist in the market. An explanation for these pricing errors may be found in

missing features in the bond and/or default swap pricing models. O’Kane and McAdie

(2001) and Hjort et al. (2002) discussed a large number of factors that may affect the

difference between default swap and bond markets. They mentioned that for speculative

grade issuers, the delivery option in physically settled default swaps (see Section 2) is

particularly important: for higher default probabilities, it is more likely that the default

swap will be triggered, and the protection buyer actually has to deliver obligations to the

seller. The delivery option will thus be more valuable for low grade issuers.14 Since the

14O’Kane and McAdie (2001) derived a back-of-the-envelope estimate of the value of the delivery
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delivery option is not taken into account in our default swap pricing model in Section 4.2,

the pricing error can be used as a rough estimate of the value of the delivery option.

Hence, if the delivery option is truly an important missing factor, pricing errors should

be positively correlated with hazard rates. If we calculate the correlation of pricing errors

from the linear integrated hazard model with λ̂1, we get values between 35% and 47%,

depending on the proxy for the default-free curve.

6.5 Analyzing Pricing Errors

In the previous section, we showed that the MAPE increases if the credit rating deterio-

rates. It is also interesting to see if differences between market and model premiums can

be related to other characteristics than the issuer’s credit rating. We try to accomplish

this by regressing absolute pricing errors on dummy variables for the following charac-

teristics: deal type (bid or ask), currency (euro or dollar), rating (AAA, AA, A, BBB,

BB), maturity (1-year intervals up to 5 years, and an interval from 5 to 10 years) and

quote date (6-month periods). For each set of dummies, the categories are mutually ex-

clusive, so that an identifying restriction is required. We set a linear combination of the

coefficients to 0, where the weight of a coefficient is equal to the sample mean of the cor-

responding dummy variable.15 The advantage of imposing these restrictions over setting

one coefficient to zero is that the constant of the regression equals the sample mean of

the dependent variable. Furthermore, each coefficient can be interpreted as the change in

the absolute pricing error for that dummy for an otherwise representative observation.

Table 7 shows the regression results for the quadratic specification of the integrated

option: for a default swap written on an issuer with an annual default probability of λ and a potential
gain of G of switching from an expensive to a cheaper deliverable, the value is approximately λG.

15For instance, if β and α denote the coefficients of the bid and ask dummies, we impose bβ+ aα = 0,
where b is the percentage of bid observations and a the percentage of ask observations.
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hazard function for all three proxies for the default-free curve; the results for the linear and

cubic model are similar. We observe that most parameters are statistically different from

zero, the signs of the parameters are largely consistent between the models and the R2

values are between 46% and 58%. Mispricings strongly differ between deal types as errors

on bid quotes are larger than on ask quotes. The maturity of the default swap contract is

also predictive of the pricing error, since the coefficients of the maturity dummies are sig-

nificant (except for the interval from 3 to 4 years) and monotonously increasing. Likewise,

the coefficients of the rating dummies are highly significant and monotonously increas-

ing. The currency dummies are only significant for the government model, indicating

that the swap- and repo-based models price dollar- and euro-denominated default swaps

similarly. Finally, the parameters for the quote date dummies show that for most models

pricing errors in 2000 were smaller than in 1999 or 2001, although not all coefficients are

statistically significant.

7 Summary

In this paper, we empirically investigated the market prices of credit default swaps. We

showed that a simple reduced form model priced credit default swaps better than directly

comparing bonds’ yield spreads to default swap premiums. The model worked reasonably

well for investment grade issuers, but quite poor in the high yield environment; so, there is

definitely room for more empirical research and further model development. Further, we

found evidence that government bonds are no longer considered by the markets to be the

reference default-free instrument. Swap and/or repo rates have taken over this position.

We also showed that bond spreads and default swap premiums are relatively insensitive
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to changes in the assumed constant recovery rate as long as the hazard function is scaled

accordingly.
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Figure captions

1 Sensitivity of spreads and default swap premiums to the recovery rate.

A reduced form model with a constant hazard rate is fitted to market

bid quotes of Deutsche Bank bonds on 4 May 1999 for various recovery

rates. The default-free term structure is approximated by the swap curve.

Graph (a) shows the fitted zero-coupon curves; (b) shows 1 minus the

recovery rate and the hazard rate on the left axis, and their product on the

right axis; (c) shows the calculated premiums for a 5 year default swap.

2 Scatter plots of pricing errors versus default swap premiums per rating.

The graphs depict scatter plots of pricing errors (on the vertical axis) versus

default swap premiums (horizontal axis). A pricing error is defined as a

default swap quote minus a bond spread calculated with the interpolation

method and using swap rates as proxy for default-free interest rates
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Table 1: Characteristics of the default swap data set.†

AAA AA A BBB BB B CCC NR All

I: Rating

12.0 24.5 43.4 87.9 269.5 483.4 1957.5 55.7 70.6
(1794) (8321) (18613) (13187) (1595) (1118) (10) (2182) (46820 )

II: Rating and deal type

bid 9.8 20.7 38.4 81.5 236.0 431.9 1985.0 55.7 66.4
(882) (3724) (8672) (6484) (868) (592) (5) (880) (22107 )

ask 14.2 27.6 47.8 94.1 309.5 541.3 1930.0 55.8 74.4
(912) (4597) (9941) (6703) (727) (526) (5) (1302) (24713 )

III: Rating and currency

dollar 13.7 25.0 47.1 89.8 269.7 482.1 1957.5 59.9 79.7
(1325) (5193) (14910) (12543) (1589) (1106) (10) (1775) (38451 )

euro 7.5 23.7 28.6 51.7 223.0 598.3 37.5 28.7
(469) (3128) (3703) (644) (6) (12) (407) (8369 )

IV: Rating and maturity

(0,1] 12.1 18.4 31.9 100.8 199.1 407.6 61.9 120.2
(55) (208) (790) (1191) (306) (359) (124) (3033 )

(1,2] 9.4 22.3 30.3 108.1 290.2 432.8 2900.0 52.0 133.5
(24) (80) (721) (788) (295) (183) (4) (71) (2166 )

(2,3] 9.6 26.4 37.2 74.5 242.4 501.0 45.7 75.6
(387) (562) (2142) (1750) (306) (222) (279) (5648 )

(3,4] 11.8 27.3 45.3 87.0 330.9 567.9 1016.7 50.6 65.8
(24) (453) (1242) (686) (32) (47) (3) (335) (2822 )

(4,5] 11.8 24.1 44.6 82.3 281.6 561.2 425.0 60.4 58.4
(675) (6072) (11743) (6710) (555) (230) (1) (1217) (27203 )

(5,-) 14.0 26.3 51.3 103.0 419.0 622.1 2250.0 45.2 75.5
(629) (946) (1975) (2062) (101) (77) (2) (156) (5948 )

V: Rating and date

Q2-1999 13.4 19.7 56.0 103.5 259.6 768.1 98.2 90.7
(265) (839) (2374) (2529) (345) (105) (110) (6567 )

Q3-1999 13.4 24.2 58.8 104.1 300.0 698.4 134.7 106.8
(211) (642) (2106) (2258) (253) (217) (110) (5797 )

Q4-1999 12.2 25.5 42.4 100.1 301.7 545.3 2585.7 46.6 89.4
(77) (622) (1835) (1052) (280) (104) (7) (90) (4067 )

Q1-2000 10.4 23.5 34.9 63.1 172.8 356.3 50.6 58.4
(32) (355) (1367) (953) (118) (99) (185) (3109 )

Q2-2000 11.9 27.8 37.8 73.1 271.5 481.8 47.1 53.7
(109) (837) (2990) (1636) (99) (56) (570) (6297 )

Q3-2000 9.5 25.2 35.9 67.9 299.5 353.8 491.7 46.5 60.0
(393) (2489) (4321) (2893) (304) (415) (3) (618) (11436 )

Q4-2000 11.9 23.6 41.4 93.7 211.9 342.1 53.3 52.8
(619) (2271) (3166) (1566) (186) (118) (464) (8390 )

Q1-2001 17.6 30.6 58.9 114.4 220.5 518.8 61.4 66.7
(88) (266) (454) (300) (10) (4) (35) (1157 )

† The table shows average default swap premiums by rating (Panel I), rating and deal type (II),
rating and currency (III), rating and maturity (IV) and rating and quote date (V). The number
of observations per cell is shown in parentheses.42



Table 2: Performance of the direct comparison methods.†

AAA AA A BBB IGa BB B SGa NR Alla

Matching

Obs.b 1058 2168 1951 1188 6365 441 297 738 40 7144

Swap 5.9 -1.4 -4.9 9.4 0.7 ] 129.7 174.9 148.0 0.2∗ 16.0
(9.1) (14.6) (11.4) (34.3) (16.4 ) (137.0) (187.2) (157.3 ) (27.0) (31.0 )

Repo 1.7 -5.8 -9.7 4.4 -3.8 124.9 170.3 143.3 -5.5∗ 11.4
(8.3) (15.9) (13.5) (34.3) (17.3 ) (133.6) (183.0) (153.5 ) (29.1) (31.5 )

Government -31.1 -32.6 -37.1 -15.8 -30.6 106.6 151.3 124.7 -29.1 -14.5
(31.4) (34.4) (37.8) (41.0) (36.1 ) (118.5) (165.6) (137.5 ) (41.8) (46.7 )

Interpolation

Obs.b 292 1839 2260 1067 5458 316 387 703 61 6222

Swap 0.8∗ -1.6 -3.7 16.6 1.2 154.1 200.5 179.6 -4.3∗ 21.3
(8.2) (11.1) (10.6) (29.5) (14.3 ) (156.0) (201.5) (181.1 ) (28.6) (33.3 )

Repo -3.4 -6.0 -8.7 11.6 -3.5 149.4 196.0 175.1 -9.9] 16.6
(8.2) (12.0) (12.8) (29.2) (15.5 ) (151.8) (197.2) (176.8 ) (32.0) (33.9 )

Government -33.9 -33.4 -31.7 -7.5 -27.6 177.2 133.6 157.6 -32.6 -6.8
(34.3) (34.2) (32.5) (34.8) (33.6 ) (178.7) (137.2) (160.0 ) (49.5) (48.1 )

† The table shows mean pricing errors (MPE) and mean absolute pricing errors (between parentheses) by rating,
pricing method and proxy for the default-free curve. All MPEs are significant at confidence levels above 99%,
except for those marked with ∗ and ], which are insignificant at confidence levels up to 95% and 99%, respectively.

a IG=investment grade subsample; SG=speculative grade subsample; All=entire sample.
b Number of (bond spread, default swap premium) pairs that could be formed.
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Table 3: Paired Z-tests of the direct comparison methods.†

Matching Interpolation
Swap Repo Government Swap Repo Government

Investment grade

Matching
Swap -12.60 -28.08 6.87 4.41 -14.38
Repo -27.41 9.56 7.32 -12.55
Government 29.27 29.28 7.63

Interpolation
Swap -9.54 -24.71
Repo -25.73
Government

Speculative grade

Matching
Swap 14.30 13.89 -4.13 -3.45 -1.46
Repo 12.21 -4.61 -3.93 -1.94
Government -6.36 -5.68 -3.73

Interpolation
Swap 31.28 22.72
Repo 17.26
Government

† The table shows t-values of paired Z-tests for all combinations of pricing methods
and proxies for the default-free curve.

44



Table 4: Estimates of the reduced form credit risk models.†

AAA AA A BBB BB B NR All

Observationsa 933 955 166 182 146 255 3 2639

Swap

1 RMSE 0.17 0.22 0.39 0.74 2.15 1.95 0.53 0.88
λ1 0.07 0.36 0.72 1.42 7.18 6.65 1.95 2.62

2 RMSE 0.15 0.17 0.26 0.54 1.26 1.21 0.30 0.55
λ1 0.10 0.27 0.46 1.05 4.83 4.52 0.43 1.66
λ2 -0.02 0.02 0.05 0.05 0.38 0.39 0.43 0.18

3 RMSE 0.15 0.15 0.23 0.46 1.13 0.97 0.15 0.46
λ1 0.10 0.27 0.42 1.16 5.46 2.98 -2.77 1.09
λ2 -0.02 0.02 0.07 0.00 0.18 1.02 2.47 0.53
λ3 0.00 0.02 -0.01 0.01 0.02 -0.06 -0.31 -0.05

Repo

1 RMSE 0.17 0.22 0.39 0.74 2.14 1.95 0.54 0.88
λ1 0.15 0.45 0.83 1.52 7.28 6.75 2.05 2.72

2 RMSE 0.15 0.17 0.27 0.54 1.26 1.20 0.30 0.55
λ1 0.18 0.36 0.55 1.14 4.93 4.61 0.53 1.76
λ2 -0.02 0.02 0.05 0.05 0.38 0.39 0.43 0.19

3 RMSE 0.15 0.15 0.23 0.46 1.13 0.96 0.16 0.46
λ1 0.18 0.36 0.52 1.23 5.55 3.08 -2.69 1.17
λ2 -0.02 0.01 0.07 0.01 0.18 1.02 2.48 0.53
λ3 0.00 0.02 -0.01 0.01 0.02 -0.06 -0.31 -0.05

Government

1 RMSE 0.37 0.38 0.51 0.87 2.29 2.10 0.61 1.02
λ1 0.75 1.04 1.36 1.98 7.66 7.23 2.59 3.23

2 RMSE 0.18 0.17 0.27 0.55 1.25 1.21 0.31 0.56
λ1 0.39 0.50 0.71 1.32 5.06 4.78 0.73 1.92
λ2 0.07 0.10 0.11 0.10 0.43 0.45 0.53 0.25

3 RMSE 0.16 0.15 0.24 0.46 1.12 0.95 0.17 0.46
λ1 0.26 0.45 0.61 1.29 5.61 3.15 -2.53 1.26
λ2 0.12 0.13 0.17 0.10 0.24 1.11 2.61 0.64
λ3 -0.01 0.02 -0.01 0.00 0.02 -0.06 -0.31 -0.05

† The table shows the average fit measured by the root mean squared error (RMSE)
of the bond residuals and (100 times) the average parameter estimates λi, i = 1, 2, 3
(λ0 is restricted to zero) per rating and model. Each model is characterized by the
proxy for the default-free curve and the degree of the integrated hazard function.

a Number of issuer-days on which we have at least one default swap quote and at least
five bond quotes.
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Table 5: Performance of the reduced form credit risk models.†

AAA AA A BBB IGa BB B SGa NR Alla

Swap

1 1.8 0.6] -0.4∗ -3.6] -0.4 ∗ 60.3 88.0 76.3 12.5 14.3
(4.5) (8.2) (11.7) (24.7) (12.0 ) (110.8) (152.4) (134.8 ) (12.5) (35.6 )

2 3.0 2.5 2.1 5.1 2.8 123.4 145.9 136.3 74.4 30.2
(4.1) (6.9) (10.0) (19.3) (10.1 ) (130.5) (159.5) (147.2 ) (74.4) (38.2 )

3 3.7 4.0 2.8 7.4 4.3 114.0 168.7 145.3 36.6
(4.9) (7.9) (9.3) (20.6) (10.8 ) (137.2) (170.7) (156.3 ) (44.2 )

Repo

1 -2.0 -3.1 -4.7 -8.5 -4.5 55.6 83.7 71.8 7.4 9.7
(4.7) (9.6) (11.8) (24.8) (12.6 ) (109.7) (151.1) (133.6 ) (8.2) (35.1 )

2 -0.3∗ -1.4 -2.3 0.3∗ -1.4 118.7 141.6 131.9 69.3 24.9
(3.7) (7.8) (10.4) (18.8) (10.4 ) (126.7) (156.4) (143.8 ) (69.3) (36.7 )

3 0.4∗ 0.0∗ -1.4 2.6] 0.0 ∗ 109.4 164.5 140.9 30.3
(3.9) (8.1) (9.4) (19.6) (10.4 ) (134.0) (166.8) (152.7 ) (41.1 )

Government

1 -33.4 -36.6 -35.7 -29.9 -34.8 34.6 56.8 47.4 -18.6 -19.5
(33.5) (36.7) (36.3) (36.0) (36.1 ) (103.6) (149.6) (130.2 ) (18.6) (53.7 )

2 -25.3 -28.7 -25.3 -17.5 -25.4 104.8 123.8 115.8 55.1 0.5 ∗

(25.3) (28.8) (27.0) (24.7) (27.2 ) (114.8) (144.5) (131.9 ) (55.1) (46.4 )
3 -25.9 -28.4 -22.9 -13.0 -23.5 96.6 148.1 126.1 6.4

(25.9) (28.5) (25.0) (22.3) (26.0 ) (123.0) (151.0) (139.0 ) (48.6 )

† The table shows mean pricing errors (MPE) and mean absolute pricing errors (between parentheses)
by rating and model. Each model is characterized by the proxy for the default-free curve and the
degree of the integrated hazard function. All MPEs are significant at confidence levels above 99%,
except for those marked with ∗ and ], which are insignificant at confidence levels up to 95% and 99%,
respectively.

a IG=investment grade; SG=speculative grade; All=entire sample.
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Table 6: Paired Z-tests of the reduced form credit risk models.†

Swap Repo Government
1 2 3 1 2 3 1 2 3

Investment grade

Swap
1 4.50 0.70 -7.87 1.85 0.19 -30.40 -22.44 -18.78
2 -2.79 -7.11 -4.71 -3.48 -27.47 -24.04 -21.57
3 -3.06 0.43 -1.30 -24.48 -18.50 -22.26

Repo
1 5.95 2.80 -29.94 -20.57 -16.82
2 -1.28 -27.42 -25.22 -21.63
3 -24.27 -19.14 -23.73

Government
1 16.39 14.06
2 1.07
3

Speculative grade

Swap
1 -1.43 -4.02 1.06 -0.29 -3.03 -0.87 3.03 -0.18
2 -5.04 1.44 19.22 -3.28 0.71 15.54 1.51
3 3.97 6.61 23.75 2.96 10.23 22.14

Repo
1 -0.37 -3.01 -1.27 2.71 -0.27
2 -4.88 -0.13 12.82 0.01
3 2.15 8.61 17.54

Government
1 2.49 0.14
2 -3.87
3

† The table shows t-values of paired Z-tests for all combinations of models and proxies
for the default-free curve.
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Table 7: Analysis of absolute pricing errors from a reduced form
model with a quadratic integrated hazard function.†

Swap Repo Government

R2 58% 57% 46%
constant 38.2 (52.6) 36.7 (52.9) 46.4 (72.3)

Deal type

bid 5.4 (8.4) 5.7 (8.9) 5.6 (9.2)
ask -7.0 (8.4) -6.9 (8.9) -6.4 (9.2)

Maturity

(0,1] -48.1 (26.6) -45.2 (24.5) -37.7 (18.2)
(1,2] -26.6 (8.3) -24.5 (7.8) -18.2 (6.1)
(2,3] -8.7 (4.1) -7.9 (3.9) -7.5 (4.0)
(3,4] -2.7 (0.8) -2.1 (0.7) -1.4 (0.5)
(4,5] 7.7 (9.6) 7.0 (9.2) 5.8 (8.7)
(5,-) 19.7 (6.7) 16.9 (6.1) 7.8 (3.3)

Rating

AAA -36.8 (10.5) -33.9 (11.0) -25.7 (10.7)
AA -36.5 (26.5) -33.0 (25.6) -23.3 (20.4)
A -30.6 (27.5) -28.5 (26.9) -21.1 (21.0)
BBB -22.2 (11.0) -21.4 (11.0) -19.8 (10.7)
BB 102.6 (38.9) 98.9 (38.4) 79.2 (31.9)
B 138.3 (60.3) 135.1 (60.3) 113.2 (52.3)

Currency

dollar -0.9 (1.3) -0.6 (0.9) -3.2 (4.7)
euro 2.1 (1.3) 1.3 (0.9) 6.0 (4.7)

Date

Q2 1999 6.0 (2.7) 6.1 (2.8) -1.0 (0.5)
Q3,Q4 1999 0.4 (0.2) 1.0 (0.4) 7.0 (2.7)
Q1,Q2 2000 -6.4 (2.4) -6.5 (2.6) -4.9 (2.0)
Q3,Q4 2000 -4.3 (1.7) -5.1 (2.1) -3.3 (1.4)
Q1,Q2 2001 11.1 (1.9) 8.2 (1.5) -0.9 (0.2)

† The table shows estimated coefficients and t-values (between parenthe-
ses) of regressions of absolute pricing errors on dummy variables for deal
type (bid or ask), currency (euro or dollar), rating (AAA, AA, A, BBB
or BB), maturity (1-year intervals up to 5 years, and an interval from 5
to 10 years) and quote date (6-month periods). For each set of dummies,
we set the weighted average of the coefficients to 0, where the weight
of a coefficient equals the sample mean of the corresponding dummy
variable.
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