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In this paper, we consider a make-to-stock production system with known exogenous replenishments and

multiple customer classes. The objective is to maximize profit over the planning horizon by deciding whether

to accept or reject a given order, in anticipation of more profitable future orders. What distinguishes this

setup from classical airline revenue management problems is the explicit consideration of past and future

replenishments and the integration of inventory holding and backlogging costs. If stock is on-hand, orders

can be fulfilled immediately, backlogged or rejected. In shortage situations, orders can be either rejected or

backlogged to be fulfilled from future arriving supply.

The described decision problem occurs in many practical settings, notably in make-to-stock production

systems, in which production planning is performed on a mid-term level, based on aggregated demand

forecasts. In the short term, acceptance decisions about incoming orders are then made according to stock

on-hand and scheduled production quantities.

We model this problem as a stochastic dynamic program and characterize its optimal policy. It turns out

that the optimal fulfillment policy has a relatively simple structure and is easy to implement. We evaluate

this policy numerically and find that it systematically outperforms common current fulfillment policies, such

as first-come-first-served and deterministic optimization.

1. Introduction

Successful revenue management (RM) applications abound in the service industries, including the

well-known examples of the airline, hotel, and car rental businesses. Recently, practitioners as well

as researchers have increasingly been exploring ways to transfer revenue management concepts to
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manufacturing environments (Harris and Pinder 1995, Swann 1999, Gupta and Wang 2007, Arslan

et al. 2007). The core idea is that customer differentiation is beneficial also in manufacturing

industries even though they differ markedly from service industries, with respect to, for example,

cost structures, the role of inventories, and their replenishment. Even a high service level of, say,

98% still implies that 2% of all customer orders are not fulfilled as requested and it does matter

which customers are affected by this. In a manufacturing environment, customers may not only

show different willingness to pay (e.g. contract vs. spot market) or different strategic importance

(e.g. internal vs. external customers), but also entail different costs (e.g. for production and storage

in or distribution to different regions). Therefore, in a manufacturing context, profit maximization

seems a more appropriate criterion for customer differentiation than pure revenue maximization

(Quante et al. 2009).

Despite the modern trend to establish “lean” processes, many companies cannot avoid signifi-

cant setup cycles or long replenishment lead times, for cost efficiency reasons. In order to remain

competitive and be able to offer short delivery times to their customers, they have to build up

finished goods inventory in the mid term. In a make-to-stock (MTS) environment like this, produc-

tion planning has to be based on forecast demand and cannot be adjusted to short-term demand

fluctuations. However, what is still relatively flexible is the allocation of the available inventory

to incoming customer orders. This resembles the situation in traditional perishable-asset revenue

management, where a fixed amount of capacity is sold to multiple customer classes within a given

time interval. However, the situations are not identical. The main difference is that the allocation

decision in MTS manufacturing concerns finished goods inventory rather than capacity. Unlike

capacity, inventory is storable, at least to some extent, and is replenished at certain times.

In addition, there is also a significant methodological divide between revenue management and

manufacturing. Revenue management is strongly rooted in the domain of stochastic optimization

and uses probability distributions for assessing opportunity costs. Many manufacturing companies,

on the other hand, use so-called advanced planning systems (APS) in their demand and supply
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management (Stadtler and Kilger 2008). These systems are essentially deterministic, relying on

linear programming (LP) technology.

Focusing on short-term demand management, a demand fulfillment module usually handles cus-

tomer orders in APS. In an MTS situation, this module receives input information from a mid-term

master planning and a short-term production planning module, which determine production quan-

tities. These anonymous and usually aggregate quantities are then allocated to the various customer

segments by simple allocation rules — for example according to priority rankings, with respect to

pre-defined fixed shares, or proportionally to the customers’ original forecasts (Kilger and Meyr

2008). Given the resulting “(allocated) available-to-promise”(ATP) quantities, short-term order

acceptance decisions then rely on — again simple — ATP consumption rules, such as first-come-

first-served, or on input from experienced human planners. For example, Kilger (2008) describes

a computer manufacturing setting, in which the company’s different sales regions constitute the

customer segments, the planned production quantities of the mid–term master plan are allocated

to these segments proportionally to the regions’ demand forecasts, and two different ATP consump-

tion rules are applied, depending on whether the customer asks for a standard or a customized

product.

Our goal in this paper is to develop an RM approach to short-term demand management in

MTS production, thereby complementing the current practice reflected in APS. We summarize our

problem setting as follows: We consider a make-to-stock production system with exogenously given

deterministic replenishments and heterogeneous customers. The objective is to maximize profit

over the planning horizon by deciding whether to accept or reject a given order, in anticipation of

more profitable future orders. What distinguishes this setup from classical revenue management

approaches is the explicit consideration of past and future replenishments and the integration of

inventory holding and backlogging costs. If stock is on-hand, orders can be fulfilled immediately,

backlogged or rejected. During stockout periods, orders can be either rejected or backlogged to be

fulfilled from future arriving supply.
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We present a stochastic dynamic programming formulation of this problem and identify struc-

tural properties that characterize its optimal policy. It turns out that the optimal policy has an

intuitive structure, which makes it easy to implement. In a series of simulation experiments, we

compare the performance of this optimal policy with a first-come-first-served rule, as well as with

a deterministic allocation policy.

To summarize, the paper makes the following contributions:

• We present a model that reflects important characteristics of order fulfillment in MTS pro-

duction environments, namely customer heterogeneity, limited short-term supply flexibility, and

short-term allocation flexibility. Previous literature has not addressed the interplay between these

factors.

• We prove structural properties of this model and derive an optimal demand fulfillment policy.

The results integrate the hitherto disconnected streams of revenue management and APS-based

order fulfillment in MTS production.

• We show the superiority of a stochastic RM-based fulfillment policy in MTS production over

both a first-come-first-served approach and a deterministic allocation approach in numerical exam-

ples and illustrate the impact of key parameters on the potential benefits.

The paper is structured as follows. We start with a literature review in §2 and motivate the neces-

sity of our research. In §3, we formulate a stochastic order fulfillment model for MTS production.

In §4 we analyze the mathematical structure of this model and derive an optimal fulfillment policy.

§5 presents a numerical study that compares the optimal fulfillment policy with two benchmark

policies and conducts a sensitivity analysis of key model parameters. §6 summarizes our results

and discusses potential extensions and directions for further research.

2. Literature review

The field of revenue management (RM), or demand management more generally, has produced a

rich body of literature, encompassing multiple distinct streams. What is common to all of them is

the issue of making optimal use of a given resource. Talluri and van Ryzin (2004) structure this
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field by distinguishing quantity-based RM and price-based RM. Quantity-based RM concerns the

allocation of scarce capacity to different customer (fare) classes. Price-based RM addresses optimal

price paths over time.

In our analysis, we assume prices to be exogenous. Therefore, our problem setting falls within

the domain of quantity-based RM. In a previous paper, we have refined the structuring of this field

through a second dimension, namely the type of replenishment considered (Quante et al. 2009).

Underlying models consider either no replenishments, exogenous replenishments, or endogenous

replenishments, leading to the three cases displayed in Figure 1. First, traditional revenue man-

agement (TRM) deals with the rationing of perishable capacity, and replenishments are irrelevant.

Second, allocated available-to-promise (aATP) models concern the allocation of inventories and

take into account exogenously scheduled replenishment orders. Third, inventory rationing (IR)

models consider allocation and replenishment decisions simultaneously. In what follows, we briefly

review literature in each of these three categories, focusing on manufacturing applications. Note

that our previously introduced problem setting falls into the second stream, since replenishments

are exogenous. We therefore discuss the literature in this stream in more detail and complement

it with a briefer discussion of the remaining streams.

Figure 1 Consideration of replenishment in quantity-based demand management models (Quante et al. 2009)

Traditional 

Revenue 

Management

aATP
Inventory

Rationing

no replenishment
exogenous 

replenishment

endogenous 

replenishment

2.1. Traditional revenue management

By far the largest body of literature falls into the category TRM. Overviews of applications in dif-

ferent industries, including manufacturing, are provided by Swann (1999), Kimms and Klein (2005)

and Chiang et al. (2007). Applications in manufacturing largely focus on make-to-order (MTO)

and assemble-to-order (ATO) production environments. This is intuitive due to the correspondence
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between production capacities and perishable assets, which are the building blocks of RM in the

service industries (Weatherford and Bodily 1992). Harris and Pinder (1995) show an RM appli-

cation in an ATO setting. For MTO manufacturing, Van Slyke and Young (2000), Kleywegt and

Papastavrou (2001) and Spengler et al. (2007) propose knapsack formulations in order to select or

reject incoming orders. All of these models assume fixed capacity and do not allow backlogging.

2.2. Allocated available-to-promise

Models of the aATP stream, are rooted in the area of advanced planning systems (APS). Available-

to-promise (ATP) calculations provide a time-phased view of available supply and serve as a basis

for order promising in response to incoming customer requests. Stadtler and Kilger (2008) and

Fleischmann and Meyr (2003) discuss ATP and its functions within APS. Kilger and Meyr (2008)

focus on demand fulfillment in APS. Other reviews of ATP include Chen et al. (2001) and Ball

et al. (2004).

Simple order promising does not differentiate between different customer segments and uses ATP

quantities on a first-come-first-served basis. Common approaches for selecting the most profitable

orders include batch promising or real-time aATP. Batch-promising models collect all customer

orders of a pre-defined time period (e.g. a day) and promise due dates simultaneously in a “batch”

(Chen et al. 2001, 2002). The main drawback of batch promising is the long response time to cus-

tomer requests. More refined “hybrid” models handle this issue through a two-step approach: First

answer the request by an approximate due date and then refine this date in a subsequent batch

process. Real-time aATP approaches use another two-step process to answer customer requests

immediately. A first step allocates on-hand inventory and future incoming supply to delivery peri-

ods and customer segments by means of rather simple allocation rules. In the second step, these

(allocated ATP) quotas are consumed by incoming customer orders, either first-come-first-served or

on the basis of user-defined consumption rules. Fischer (2001) and Pibernik (2006) compare these

consumption policies with heuristic and LP-based batch models for practical cases in the lighting

industry and the pharmaceutical industry, respectively. While Fischer finds general advantages of
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the batch approach if customer response times can be neglected, Pibernik recommends switching

to batch mode only if shortages are foreseeable. However, both approaches do not focus on the

allocation step and therefore only use very simple allocation rules.

APS customer segments typically rely on customer location, e.g. on ZIP codes or countries.

Associated revenues or costs are hardly taken into account when building the segments. Meyr

(2008) proposes a clustering method that builds customer classes on the basis of profits and addi-

tional strategic aspects. Meyr (2009) applies this method to identify better discriminating customer

classes, which allow replacing the simple allocation rules of aATP models by a profit-based LP

approach. The LP uses sales prices and backlogging and holding costs, as well as point estimates of

demand. A numerical simulation study shows this approach to significantly improve profitability

if future demand is known. The strength of this model lies in its ability to better differentiate

between customers while at the same time allowing for an immediate response to incoming cus-

tomer requests. Its major drawback is the disregard of demand uncertainty. In the present paper,

we extend the model of Meyr (2009) by modeling stochastic demand and applying RM concepts

in the allocation decision.

We are aware of only a single paper that considers stochastic demand and exogenous replen-

ishments (Pibernik and Yadav 2009). The authors propose a model that differentiates between

two customer classes under a service-level constraint. The model is closely linked to our setting,

but with several key distinctions: Their model uses a service-level target whereas ours maximizes

expected profit; their model is limited to two customer classes and does not allow backlogging,

both of which we do allow.

2.3. Inventory rationing

The third stream of related literature encompasses IR models, which include endogenous replen-

ishment decisions. General reviews of this literature can be found in Kleijn and Dekker (1998) and

in Teunter and Klein Haneveld (2008).
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Taking a manufacturing perspective, Defregger and Kuhn (2007) propose a Markov decision

model for an MTO setting, which also includes a finished-goods inventory, used to serve high-margin

orders with short lead times. Orders differ with respect to profit and maximum acceptable lead time.

Similarly, Gupta and Wang (2007) study a setting with two customer classes, namely transactional

and more valuable contractual orders. The manufacturer can choose which transactional orders to

fulfill but has to meet the demand of contractual orders within a short lead time. The authors

consider both MTS and MTO production of contractual orders.

Further MTS production models are proposed by Ha (1997) and Arslan et al. (2007). Ha (1997)

presents a production control and stock rationing problem for two customer classes, which allows

backlogging. Limited replenishment capacity is modeled as an M/M/1 queuing system. Decisions

are, (1) whether to produce or not, (2) whether to immediately fulfill or backlog a low-priority

order, and (3) whether to clear open backorders if stock is available. In this setting, a base stock

policy is optimal for production and the optimal rationing policy is decreasing in the number of

backorders. Arslan et al. (2007) aim to meet service targets for multiple customer classes with

minimal inventory, assuming that replenishment lead times are deterministic and replenishment

quantities are unlimited. They develop a heuristic critical level, continuous review policy, which

they show to be near optimal.

To conclude, we summarize the positioning of the present paper in the literature. Our problem

setting is rooted in the context of advanced planning systems and considers a make-to-stock system.

We take inventory replenishments into account and acknowledge that they cannot be changed in

the short run. Our analysis therefore falls into the aATP stream of the quantity-based revenue

management literature. Unlike previous models in this stream, we consider stochastic demand, a

general number of customer classes, and allow backlogging of demand in the case of shortages.

3. Model formulation

We consider a make-to-stock manufacturing system facing stochastic demand from multiple cus-

tomer classes, which differ in their unit revenues. Scheduled inventory replenishments are known.
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Given this information, the manufacturer decides for each order whether to satisfy it from stock,

backorder it at a penalty cost, or reject it. The objective is to maximize the expected profit over a

finite planning horizon, taking into account sales revenues, inventory holding costs, and backorder

penalties. What makes this problem complex is that unlike in traditional revenue management one

has to decide not only whether or not to satisfy a given order but also which supply to use, with

each supply alternative yielding a different profit. We make the following assumptions to model

this situation.

Assumption 1. Orders from a given customer class follow a compound Poisson process. The order

processes of different classes are mutually independent, and they are independent of the available

supply.

The Poisson assumption is common in many RM models, specifically in so-called dynamic demand

models (see Talluri and van Ryzin (2004)). As Lautenbacher and Stidham (1999), we allow non-

unit order sizes, which appears appropriate in a manufacturing environment. In our analysis, we

discretize the planning horizon in such a way that the probability of receiving multiple orders

within a single period is negligible. Let T denote the length of the planning horizon and t the

period index. Moreover, let c = 1, . . . C identify the different customer classes.

Assumption 2. Inventory replenishments are exogenous and known.

This assumption reflects the APS planning hierarchy. Inventory replenishments are determined

by mid-term and short-term production planning and then serve as input for order promising

decisions. Let xi be the available supply arriving at the beginning of period i, i = 1, . . . , T, and let

x̄ = (x1, . . . , xT ) be the vector of all of these replenishments. Note that at time t, xi corresponds

with inventory on-hand if i ≤ t and with a future scheduled replenishment otherwise. In APS

terminology, x̄ denotes the ATP quantities.

Assumption 3. Order due dates are equal to order arrival times, but orders can be backlogged at

a price discount.
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This assumption reflects the MTS context. Customers expect immediate delivery, in principle. Late

deliveries are only acceptable at a price discount. Let rc denote the unit revenue from satisfying

an order of class c from stock. Delaying an order gives rise to unit backorder costs b per period,

including the customer discount. Analogously, holding costs h are incurred for all units of inventory

on hand at the end of a period. Note that unit backorder and holding costs are independent of

time and customer class.

Assumption 4. Partial order fulfillment is allowed.

This assumption includes splitting an order for partial delivery in different periods. The assumption

holds true in many practical situations and is common in literature (e.g. Talluri and van Ryzin

(2004, Sect. 2.2) and Fleischmann and Meyr (2004, Sect. 4)). Here we also need this assumption

for tractability. Let ui denote the amount of supply arriving in period i used to satisfy a given

customer order, and let ū = (u1, . . . , uT ). Thus
∑T

i=1 ui is the total amount used to satisfy that

order. Note also that for an order arriving in period t, ui corresponds with delivery from stock if

i≤ t and with backlogging otherwise.

Table 1 summarizes the above notation. We can now formulate our problem as a stochastic

dynamic program with state variable x̄ and decision variable ū. In principle, one can condense

these vectors by removing all components i, for which xi = 0. I.e., the dimension of the state space

corresponds with the number of scheduled replenishments. However, for ease of notation we use x̄

and ū as defined above.

The profit P̂t(x̄, d, c, ū) earned in period t depends on the available supply, order size, customer

class, and fulfillment decision as follows

P̂t(x̄, d, c, ū) = rc

T∑
i=1

ui− b
T∑

i=1

ui(i− t)(1− δit)−h
T∑

i=1

(xi−ui)δit (1)

where δit is defined as 1 if i≤ t and 0 otherwise, and ū has to satisfy ui ≤ xi for all i and
∑

i ui ≤ d.

The first term in Equation (1) calculates the revenues received from satisfying the current order

of class c. The second term computes backlogging costs that occur when using supply that arrives
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Table 1 Notation

Indices:

t = 1, . . . , T Periods of the planning horizon

i = 1, . . . , T Periods of inventory replenishment

State variables:

x̄ = (x1, . . . , xT ) Vector of available supply quantities

Decision variables:

ū = (u1, . . . , xT ) Vector of supply quantities used to fulfill a given order

Random variables:

c Customer class

d Order quantity

F (c, d) Joint cdf of customer class c and order quantity d

Data:

rc Unit revenue from customer class c

b Unit backorder costs per period

h Unit holding cost per period

later than the customer order, i.e. when δit = 0. These costs are computed for the total length

of the delay (i − t). The third term represents holding costs that are charged for the on-hand

inventory at the end of period t. Note that unlike the backlogging costs, which are charged for the

total customer waiting time, holding costs only cover the current period t. To simplify subsequent

calculations, we define Pt(i, c) as the incremental profit per unit of supply i used to satisfy one unit

of an order of class c in period t. Collecting the terms in Equation (1) that depend on ui yields

Pt(i, c) = rc− b(i− t)(1− δit)+hδit (2)

and

P̂t(x̄, d, c, ū) =
T∑

i=1

Pt(i, c)ui−h
T∑

i=1

xiδit. (3)

In addition to the current period’s profit, we also have to consider the impact of a fulfillment

decision ū on future profits. The state transition is given by x̄→ x̄− ū = (x1 − u1, . . . , xT − uT ).
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Letting Vt(x̄) denote the maximum expected profit-to-go from period t to the end of the planning

horizon T for a given supply vector x̄ we then obtain the following Bellman recursion

Vt(x̄) = Ed,c

 max
ū

0≤ui≤xi,
PT

i=1
ui≤d

{
T∑

i=1

(uiPt(i, c)−hxiδit)+Vt+1(x̄− ū)

} (4)

with the boundary condition VT+1(x̄) = 0.

4. Structural properties and optimal policy

We now analyze structural properties of the value function of the dynamic program defined in the

previous section. This allows us to characterize the optimal fulfillment policy. We start by defining

marginal profits:

Definition 1. ∆iVt(x̄) := Vt(x̄)−Vt(x̄− ēi) for xi ≥ 1,

where ēi denotes the i-th unit vector. Definition 1 concerns the expected marginal value of a unit

of supply arriving in period i or, equivalently, the opportunity costs of selling this unit. Using this

definition, we can rewrite the Bellman recursion of Equation (4) as follows.

Vt(x̄) = Ed,c[ max
ū

0≤ui≤xi,
PT

i=1
ui≤d

{
T∑

i=1

(uiPt(i, c)−hxiδit)+Vt+1(x̄− ū)}]

= Ed,c

 max
ū

0≤ui≤xi,
PT

i=1
ui≤d

{
T∑

i=1

(uiPt(i, c)−hxiδit)

+Vt+1(x̄)−
T∑

i=1

ui∑
z=1

∆iVt+1

(
x̄− ēi(z− 1)−

i−1∑
j=1

(ējuj)

)}]

= Vt+1(x̄)−h
t∑

i=1

xi +Ed,c

 max
ū

0≤ui≤xi,
PT

i=1
ui≤d

{
T∑

i=1

(
ui∑

z=1

(Pt(i, c)

−∆iVt+1(x̄− ēi(z− 1)−
i−1∑
j=1

(ējuj))

)}]
(5)

Note that this formulation decomposes ū into single-unit steps. In this way, the maximization in

(5) reflects the trade-off between the profit of selling a unit of supply now and the corresponding

opportunity cost. Talluri and van Ryzin (2004, p. 59) give a similar decomposition for the classical
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single-leg airline yield management problem. What is different in (5) is the summation over i,

which introduces an additional dimension to the problem.

We now identify properties of the value function that help us evaluate the above maximization

expression. The first step is to compare the marginal values of supplies arriving in different periods.

Proposition 1. For all m < n and for all x̄ with xm, xn ≥ 1 the value function satisfies:

a) ∆mVt(x̄)−∆nVt(x̄)≤ b(max(n, t)−max(m,t)) = b(n−m+ δnt(t−n)+ δmt(m− t))

b) Vt(x̄+ ēm)−Vt(x̄+ ēn)≤ b(n−m+ δnt(t−n)+ δmt(m− t))

Proof We show part a) by induction. For t = T +1 the inequality holds since VT+1 ≡ 0 and since

the right-hand side is non-negative for n > m. Now assume that inequality a) holds for t + 1. We

show that it also holds for t. We can rewrite

∆mVt(x̄)−∆nVt(x̄) ≤ b(n−m+ δnt(t−n)+ δmt(m− t))

⇔ Vt(x̄− ēn)−Vt(x̄− ēm) ≤ b(n−m+ δnt(t−n)+ δmt(m− t)).

We show that this inequality holds for any given values of c and d, which implies that it also

holds in expectation. To this end, let W ū
t (x̄, c, d) denote the maximum expected profit-to-go when

starting in period t with a supply vector x̄, receiving demand d from customer class c and taking

the fulfillment decision ū. Furthermore, let ū∗t (x̄, d, c) be an optimal decision in period t under the

same conditions.

Using this notation, we have to show that

W
ū∗t (x̄−ēn,d,c)
t (x̄− ēn, c, d)−W

ū∗t (x̄−ēm,d,c)
t (x̄− ēm, c, d)≤ b(n−m+ δnt(t−n)+ δmt(m− t)).

We show that there is a feasible decision ūt(x̄− ēm, d, c) for which this inequality holds. This suffices

since W
ū∗t (x̄−ēm,d,c)
t ≥W

ūt(x̄−ēm,d,c)
t .

By definition, we have

W
ū∗t (x̄−ēn,d,c)
t (x̄− ēn, c, d) =

T∑
i=1

(u∗i Pt(i, c)−hxiδit)+hδnt +Vt+1((x̄− ēn)− ū∗)
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= · · ·+u∗mPt(m,c)−hxmδmt + · · ·+u∗nPt(n, c)

−h(xn− 1)δnt + · · ·+Vt+1(x̄− ēn− ū∗), (6)

where we have omitted the arguments of u∗i for notational convenience. We now construct an

appropriate feasible decision for state x̄− ēm. We distinguish two cases.

Case (i): u∗m > 0 In this case, the decision ū∗t (x̄− ēn, d, c)− ēm + ēn is feasible in state x̄− ēm

and we get

W
ū∗t (x̄−ēn,d,c)−ēm+ēn
t (x̄− ēm, c, d) =

T∑
i=1

(u∗i Pt(i, c)−hxiδit)+Pt(n, c)−Pt(m,c)+hδmt

+Vt+1((x̄− ēm)− (ū∗− ēm + ēn))

= · · ·+(u∗m− 1)Pt(m,c)−h(xm− 1)δmt + . . .

+(u∗n +1)Pt(n, c)−hxnδnt + · · ·+Vt+1(x̄− ēn− ū∗). (7)

Taking the difference between Equations (6) and (7), the profits-to-go after period t+1 vanish and

we are left with the difference in current profits, which equals

Pt(m,c)−Pt(n, c)+hδnt−hδmt = b(n−m+ δnt(t−n)+ δmt(m− t)),

by definition of Pt.

Case (ii): u∗m = 0 In this case, the decision ū∗t (x̄− ēn, d, c) is feasible in state x̄− ēm and we get

W
ū∗t (x̄−ēn,d,c)
t (x̄− ēm, c, d) =

T∑
i=1

(u∗i Pt(i, c)−hxiδit)+hδmt +Vt+1((x̄− ēm)− ū∗)

= · · ·+u∗mPt(m,c)−h(xm− 1)δmt + . . .

+u∗nPt(n, c)−hxnδnt + · · ·+Vt+1(x̄− ēm− ū∗). (8)

Calculating the difference in current profits between Equations (6) and (8) yields the two following

terms. First, for the holding costs, we have

− hxmδmt−h(xn− 1)δnt− (−h(xm− 1)δmt−hxnδnt)

= h(δnt− δmt)≤ 0,
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where the inequality follows from n > m. Second, for the difference in expected future profits we

obtain

Vt+1(x̄− ēn− ū∗)−Vt+1(x̄− ēm− ū∗)

≤ b(n−m+ δn,t+1(t+1−n)+ δm,t+1(m− t− 1))

≤ b(n−m+ δnt(t−n)+ δmt(m− t)) =


b(n−m) for t < m < n

b(n− t) for m≤ t < n

0 for m < n≤ t

, (9)

where the first inequality follows from the induction assumption and the second inequality follows

since (9) is decreasing in t for m < n. This completes the proof of Part a).

Part b) follows immediately from Part a) by replacing x̄ with x̄+ ēm + ēn and using the definition

of ∆iVt(x̄).

�

Proposition 1 states that the difference between the marginal value of one unit of a supply arriving

in period m and one unit arriving later in period n is bounded by the difference in backordering

costs of using each of these supplies in period t. This relationship implies the following important

monotonicity property, regarding the alternative fulfillment options.

Proposition 2. For all m < n and for all x̄ with xm, xn ≥ 1 it holds that

Pt(m,c)−∆mVt+1(x̄)≥ Pt(n, c)−∆nVt+1(x̄), ∀c.

Proof We have the following equivalences

Pt(m,c)−∆mVt+1(x̄)≥ Pt(n, c)−∆nVt+1(x̄)

⇔ Pt(m,c)−Pt(n, c)≥∆mVt+1(x̄)−∆nVt+1(x̄)

Equ.(2)
⇔ b(n−m+ δnt(t−n)+ δmt(m− t))+h(δmt− δnt)≥∆mVt+1(x̄)−∆nVt+1(x̄).

From Part a) of Proposition 1 we know that ∆mVt+1(x̄)−∆nVt+1(x̄)≤ b(n−m+ δn,t+1(t+1−n)+

δm,t+1(m− t−1)). As in Case (ii) of the proof of Proposition 1, this implies the desired result since

for n > m we have δn,t+1(t+1−n)+ δm,t+1(m− t− 1)≤ δnt(t−n)+ δmt(m− t) and δmt− δnt ≥ 0.

�
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The terms on the left-hand-side of the inequality can be interpreted as the net benefit of the

current revenues from selling a unit of supply arriving in period m minus the opportunity cost of

not having that unit available in the future. Proposition 2 states that this net benefit is decreasing

in the arrival time of the supply. Therefore, an order should always be either fulfilled using the

earliest available supply or not at all (if the left-hand-side becomes negative). This is a key property,

which allows us to drastically reduce the solution space. Instead of the T -dimensional optimization

in Equation (5), a simple line-search is sufficient to identify the optimal fulfillment decision for a

given order.

The next important property concerns the concavity of the value function along certain axes.

Proposition 3. Let x̄ be such that
∑

i xi ≥ 2. Furthermore, let m = min{i|xi > 0} and let n = m

if xm > 1 and n = min{i|i > m,xi > 0} otherwise. Then

Pt(m,c)−∆mVt+1(x̄)≥ Pt(n, c)−∆nVt+1(x̄− ēm) , ∀c.

We prove this property jointly with Theorem 1 below. Proposition 3 implies in particular that

the value function Vt is concave in the quantity of the earliest available supply. This allows us to

characterize the optimal fulfillment policy by a set of critical levels as follows.

Theorem 1. Define the following set of critical levels:

For i = 1, . . . , T let ȳi = x̄−
∑i

k=1 ēkxk,

and let Lt(c, i, ȳi) = max{k|Pt(i, c) < ∆iVt+1(ȳi + kēi)}.

Then the following fulfillment decision is optimal in period t, given an order quantity d from

customer class c:

Start with i = 1;

set ui = max
(
min

(
xi−Lt(c, i, ȳi), d−

∑i−1

k=1 uk

)
,0
)
;

if ui < xi set uk = 0 for all k > i and stop, otherwise repeat for i+1.

Proof of Proposition 3 and Theorem 1 We show both properties jointly by induction. For t =

T , Proposition 3 holds since VT+1(.)≡ 0 and PT (m,c) = PT (n, c) for m,n≤ T . Now assume that
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Proposition 3 holds for Period t. We first show that Theorem 1 then holds for Period t and

subsequently that Proposition 3 holds for Period t− 1.

Equation (5) shows that one can decompose the fulfillment decision into unit steps and that

selling a given unit is beneficial if immediate profits outweigh the opportunity cost of losing this

unit. Proposition 2 shows that there is an optimal policy ū∗ for which u∗i > 0 implies xj−u∗j = 0 for

all j < i. Any optimal policy that does not satisfy this property can be modified by swapping one

unit of supply j against one unit of supply i. Proposition 2 implies that this modification does not

decrease the objective function value. Therefore, one can obtain an optimal solution through a line

search, starting with the earliest available supply, i.e. the smallest i, for which xi > 0. The induction

assumption of Proposition 3 shows that the objective function is concave along this search line.

Therefore, one can stop the search as soon as immediate profits drop below the opportunity costs.

This proves that the procedure defined in Theorem 1 yields an optimal policy.

We now show Proposition 3 for Period t − 1. We use the same notation as in the proof of

Proposition 1. Let ū1 := ū∗t (x̄, c, d), ū2 := ū∗t (x̄− ēm, c, d), and ū3 := ū∗t (x̄− ēm − ēn, c, d) denote the

optimal decisions in states x̄, x̄− ēm, and x̄− ēm − ēn, respectively, for a given customer class c

and demand quantity d. Furthermore, let

A := W ū1

t (x̄, c, d)−W ū2

t (x̄− ēm, c, d) and

B := W ū2

t (x̄− ēm, c, d)−W ū3

t (x̄− ēm− ēn, c, d).

We rewrite Proposition 3 for Period t−1 as ∆mVt(x̄)−∆nVt(x̄− ēm)≤ Pt−1(m,c)−Pt−1(n, c) and

show that

A−B ≤ Pt(m,c)−Pt(n, c)−h(δmt− δnt)

≤ Pt−1(m,c)−Pt−1(n, c),

for any values of c and d, which implies that these inequalities also hold in expectation.

The second inequality follows directly from the definition of Pt(., .) for m < n. For the first

inequality, we distinguish three cases, based on the value of ū1.
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Case (i): ū1 ≡ 0 Theorem 1 implies ū2 = ū3 ≡ 0. From the definition of Wt we get

A−B = ∆mVt+1(x̄)−hδmt−∆nVt+1(x̄− ēm)+hδnt

≤ Pt(m,c)−Pt(n, c)−h(δmt− δnt),

where the inequality follows from the induction assumption.

Case (ii): 0 <
∑T

i=1 u1
i < d Theorem 1 implies ū2 = ū1− ēm. There are two possibilities for ū3. If

ū2 6= 0 then ū3 = ū2− ēn , otherwise ū3 ≡ 0. In the first case, we get

A−B = Pt(m,c)−Pt(n, c)−h(δmt− δnt).

In the second case, B = ∆nVt+1(x̄− ēm)− hδnt and Theorem 1 implies that this value is smaller

than Pt(n, c)− hδnt since it is optimal not to sell another unit of supply n. Thus, A−B satisfies

the desired inequality in either case.

Case (iii):
∑T

i=1 u1
i = d Theorem 1 implies that either ū2 = ū1 − ēm or ū2 = ū1 − ēm + ēk for

some k ≥ n. The first alternative leads to the same calculations as in Case (ii) above. The second

alternative leaves two options for ū3, namely either ū3 = ū2− ēn + ēl for some l≥ k or ū3 = ū2− ēn.

In the first case, we get

A−B = Pt(m,c)−Pt(k, c)+∆kVt+1(x̄− ū1)−Pt(n, c)−Pt(l, c)+∆lVt+1(x̄− ū1− ēk)−h(δmt− δnt)

≤ Pt(m,c)−Pt(n, c)−h(δmt− δnt),

where the inequality follows from the induction assumption. The other case regarding ū3 yields

B = Pt(n, c)−hδnt and therefore

A−B = Pt(m,c)−Pt(k, c)+∆kVt+1(x̄− ū1)−Pt(n, c)−h(δmt− δnt)

≤ Pt(m,c)−Pt(n, c)−h(δmt− δnt),

where the inequality follows from the fact that it is optimal in state x̄− ū1 to sell an additional

unit of supply k.

�
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Intuitively, the optimal fulfillment policy successively consumes units of supply, in the order of

their arrival, until the immediate marginal profit drops below the opportunity costs. This resembles

a booking-limits policy in traditional revenue management (Talluri and van Ryzin (2004)). The

values Lt(c, i, .) set nested protection levels that bar some amount of supply i from consumption by

classes c and higher. Note that we have separate protection levels for each class and supply arrival.

Also note that the protection levels of supply i depend on the available quantities of subsequent

arrivals ȳi. However, Lt(c, i, .) is independent of xi (and of all earlier arrivals xj for j < i) and

therefore indeed acts as a protection level. The amount of supply i exceeding Lt(c, i, .) is available

for consumption by customer class c at time t. It is worth pointing out that even the most valuable

customer class, i.e. c = 1, may face non-trivial booking limits for future supplies, i.e. for i > t: While

this class can always consume supply on hand it is not necessarily optimal to backlog demand

from this class, due to the incurred backorder penalties. We illustrate the various protection levels

Lt(c, i, .) graphically in an example in the next section.

The following proposition shows that protection levels are decreasing in time. This is intuitive

since a shorter remaining planning horizon implies less selling opportunities and therefore available

supply is of less value. It is worth mentioning however, that this result is only true for stationary

demand. Unlike in traditional revenue management models, the holding cost term in our model

may destroy the monotonicity of the protection levels if the demand distribution changes across

periods.

Proposition 4. The protection levels Lt(c, i, ȳi) defined in Theorem 1 are non-increasing in t.

Proof We show by induction that ∆iVt+1(x̄) > 0 implies ∆iVt(x̄)≥∆iVt+1(x̄). Since Pt(i, c) is

increasing in t this assures non-increasing protection levels for any i and c.

For t = T the condition is empty since ∆iVT+1(x̄) = 0 for all i, c, and x̄. In other words, all

protection levels vanish at the end of the planning horizon. Assume now that Proposition 4 holds

for Period t + 1. We show that it also holds for Period t. To this end, assume that ∆iVt+1(x̄) > 0.

Using the Bellman recursion of Vt we have

∆iVt(x̄) =−hδit +Ec,d [max{Pt(i, c)δd>0 ; ∆iVt+1(x̄)}] , (10)
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where δd>0 equals unity if d > 0 and zero otherwise. For t < i the holding-cost term vanishes and

we immediately get ∆iVt(x̄)≥∆iVt+1(x̄). For t≥ i we rewrite (10) for t+1

∆iVt+1(x̄) =−hδit+1 +Ec,d [max{Pt+1(i, c)δd>0 ; ∆iVt+2(x̄)}] , (11)

and compare the individual terms. We have −hδit =−hδit+1 and Pt(i, c) = Pt+1(i, c) since t≥ i . In

addition, the induction assumption implies that ∆iVt+1(x̄)≥∆iVt+2(x̄) if the maximum in (11) is

attained by the last term. Therefore, ∆iVt(x̄)≥∆iVt+1(x̄), which completes the proof.

�

5. Numerical illustration

5.1. Scenario definition

We conclude our analysis with a brief numerical study. Our objective is to illustrate our theoretical

results and the performance of our proposed approach relative to other fulfillment strategies. To

this end, we compare the fulfillment algorithm defined in Theorem 1, which we denote by RM, to

the following benchmarks:

• First come first served (FCFS): This strategy accepts any customer order and fulfills it from

stock, up to the amount on hand. Any excess demand is rejected. A comparison with this policy

provides an indication of the benefit of customer differentiation in demand fulfillment. We limit

the FCFS policy to fulfillment from stock to avoid excessive backordering, which would decrease

its performance unreasonably.

• Single order processing after allocation planning (SOPA): This approach was presented by

Meyr (2009). It uses an LP to allocate current and future supply to expected demand from different

customer classes over the planning horizon (for additional details see Section 2). SOPA differentiates

between customer classes but does so in a deterministic fashion. A comparison with RM therefore

gives an indication of the benefit of explicitly recognizing demand uncertainty in the fulfillment

decision.
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• Global optimum (GOP): This policy optimally allocates supply to demand ex-post, once all

customer orders are known. Note that this policy cannot be implemented. It serves as a benchmark,

indicating the impact of demand uncertainty on expected profits.

In principle, the expected profits of FCFS and SOPA can be evaluated by means of dynamic

programming. It suffices to replace the maximization over ū in (4) by the decisions ūFCFS and

ūSOPA according to these policies. However, this evaluation of SOPA requires the solution of an

LP for each state x̄ and each time step t, which is computationally expensive for large scenarios. In

addition, GOP cannot be determined through recursion (4). Therefore, we evaluated the different

policies by means of simulation.

In extensive tests we verified that for an increasing number of simulation runs the simulated

profit of SOPA converges to the expected profit determined by the dynamic program. In what

follows, we report the average simulated profits over 500 simulation runs. In all the cases that we

checked, the difference between this simulated profit and the expected profit was much smaller

than 1%.

We use the following demand model in our simulations. In line with our analytical model, we

assume at most one order arrival per period and denote the probability of no order arrival by p0.

We further assume equal order arrival probabilities for all customer classes, which implies that

this probability equals 1−p0
#classes

. Given an order arrival, we assume the order size to be strictly

positive and discrete, which we model through a negative binomial distribution (NBD). This choice

allows us to model large coefficients of variation (CV). In addition, NBDs have a long tradition in

the marketing and operations literature, based on strong empirical support (e.g. Ehrenberg 1959,

Agrawal and Smith 1998). In order to enforce a strictly positive order size, we shift the NBD to

the right by one unit. Thus, letting NB(µ,σ) denote a negative binomially distributed random

variable with mean µ and standard deviation σ, we model the order size as 1+NB(µ− 1, σ).

We use the following parameter settings as our base case scenario. The planning horizon is T = 28

periods with two receipts of supply of 100 units each, in periods t = 1 and t = 15, respectively. We

assume three customer classes with revenues r1 = $100, r2 = $90, and r3 = $80 and set h = $1 and
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b = $10. We further assume exactly one customer arrival per period, i.e. p0 = 0. The order size is

negative binomially distributed, as discussed above, with µ = 12 and σ = 8.

In the next subsection, we evaluate our RM procedure for this base case and compare it to the

FCFS, SOPA, and GOP benchmarks. To this end, SOPA takes the expected order size µ as a

deterministic and static demand forecast. In subsequent subsections, we then illustrate the impact

of several key model parameters on the relative performance of RM. Specifically, we vary demand

variability (Section 5.3), customer heterogeneity (Section 5.4), and supply shortage (Section 5.5).

5.2. Base case analysis

We start by applying the RM procedure defined in Theorem 1 to the base case specified in the

previous subsection. Figure 2 displays the resulting optimal policy. The left graph shows the

customer-class specific protection levels of the first supply x1 through time, for different levels of

the second supply x15. Note that the protection levels are decreasing in the customer class and

decreasing over time and that customer class c = 1 will always be accepted, as long as x1 is not

depleted. All of these outcomes are intuitive and in line with the results of Section 4.

Figure 2 Protection levels of supply x1 and x15 for different customer classes

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Period t

Pr
ot

ec
tio

n 
Le

ve
l o

f S
up

pl
y 

x1

c3, x15 = 0
c3, x15 = 50
c3, x15 = 100
c2, x15 = 0
c2, x15 = 50
c2, x15 = 100

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Period t

Pr
ot

ec
tio

n 
Le

ve
l o

f S
up

pl
y 

x1
5

c3
c2
c1

The right graph in Figure 2 shows the protection levels of the second supply x15. Note that until

Period 12, the protection levels for all customer classes equal 100 units, implying that the RM

policy never backorders any demand for more than two periods. In particular, even customer class
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c = 1 is facing non-trivial booking-limits in the case of backordering. Note further that from Period

15 onwards the protection levels of supply x1 (for x15 = 0) and of x15 coincide. This is intuitive

since from that period onwards both supplies are available on hand and thus are of the same value

to the decision maker.

The base case simulated average profit of the RM policy equals $ 17,636. Table 2 compares this

value to the average profits of the three benchmark policies. RM outperforms both FCFS and

SOPA by about 2% and trails GOP by roughly 1% in this example.

Table 2 Base case average profits for different policies

GOP FCFS SOPA RM

17,843 17,247 17,328 17,636

The results in Table 3 help explain the observed performance differences. The table specifies the

service levels achieved by each policy. Specifically, it lists for each policy the average fraction of

orders lost and backordered of each customer class. Figure 3 displays these values graphically.

Table 3 Customer service levels in the base case

Lost sales Backlogging

Customer class GOP FCFS SOPA RM GOP FCFS SOPA RM

1 1.8% 38.7% 7.8% 14.6% 2.62% 0.00% 2.84% 3.10%

2 32.7% 40.4% 29.5% 26.9% 1.51% 0.00% 2.62% 1.45%

3 86.4% 38.5% 83.6% 76.9% 0.03% 0.00% 1.04% 0.00%

Figure 3 Customer service levels in the base case
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Several differences between the policies stand out. First of all, FCFS does not differentiate

between customer classes, which is reflected in roughly uniform service levels across classes. All

other policies clearly prioritize high-value orders. While FCFS achieves the lowest total number of

lost sales, it loses relatively many high-value orders. Comparing RM and SOPA, we see that SOPA

rejects even more orders of Classes 2 and 3. However, the resulting decrease in lost sales of Class 1,

relative to RM, is insufficient to compensate the lost revenues in this example. Another difference

between RM and SOPA concerns the backordering behavior, where SOPA backorders many more

orders from lower customer classes.

5.3. Impact of demand variability

We now expand the analysis of our example by varying a number of key parameters. We start with

demand variability and vary the standard deviation of the order size σ from 4 to 16. In addition,

we also consider the case of a constant order size of µ = 12 units. This range corresponds with a

CV of the order size between 0 and 1.33. The scenario CV=0.67, σ = 8 corresponds with the base

case analyzed in detail in the previous subsection. Note that in addition to the order size, we also

have uncertainty in the order arrivals. Therefore, even the scenario with a constant order size is

not entirely deterministic.

Figure 4 Average profits for different levels of demand variability
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Figure 4 shows the average simulated profits of the four policies for different levels of variability

of the order size. Table 4 lists the underlying data. We observe the following: (1) All policies show

a decreasing trend in their average profits as demand variability increases. This is intuitive since
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Table 4 Average profits for different levels of demand variability

CV / σ GOP FCFS SOPA RM

0.00 / 0 17,890 17,265 17,682 17,769

0.33 / 4 17,852 17,230 17,554 17,694

0.67 / 8 17,843 17,247 17,328 17,636

1.00 /12 17,749 17,165 16,768 17,449

1.33 /16 17,441 16,804 15,880 17,031

higher variability corresponds with a larger forecasting error, which complicates the planning task.

(2) FCFS suffers the least from increasing demand variability. A potential explanation is that FCFS

does not use any forecasting information in the fulfillment decision and therefore is not affected by

the forecasting error. (3) For low demand variability, SOPA is competitive to RM. For large demand

variability, the performance of SOPA deteriorates drastically, even falling behind FCFS. Recall that

SOPA is based on expected demand, thus ignoring any forecasting error. Under low uncertainty, this

approach can be expected to work well. However, this example shows that if the demand forecast

is unreliable, using it for a detailed optimization as in SOPA may become counter-productive. (4)

RM yields the best ex-ante decision. Its advantage over FCFS decreases with increasing demand

variability. Since RM maximizes the expected profit it necessarily dominates FCFS and SOPA. The

main difference with FCFS lies in a more restrictive acceptance of low-value orders. The results

show that for higher demand variability, customer differentiation may lose some of its effectiveness

since it becomes more risky to reserve demand for potential future orders.

Note that some of the variations in the average profits can be explained by changes in the

maximum attainable ex-post profit GOP. To eliminate this effect, we consider the relative deviation

of FCFS, SOPA, and RM with respect to GOP in the subsequent analyses.

5.4. Impact of customer heterogeneity

The degree of heterogeneity between customer classes is another key parameter that one would

expect to impact the effectiveness of different fulfillment policies. Therefore, we complement the
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scenario of the previous subsection (‘low heterogeneity’: r1/2/3 = 100/90/80) with a ‘medium het-

erogeneity’ scenario (r1/2/3 = 100/80/60) and a ‘high heterogeneity’ scenario (r1/2/3 = 100/70/40).

The results are displayed in Figure 5. Table 5 lists the underlying data. Note that the results show

the average relative profit deviation from GOP. Thus, lower numbers mean higher performance.

Also note that the average relative profit deviation differs from the relative deviation of average

profits.

Figure 5 Average profit deviation relative to GOP, for different levels of customer heterogeneity: (a) Low: r1/2/3 =

100/90/80 ,(b) Medium: r1/2/3 = 100/80/60 , (c) High: r1/2/3 = 100/70/40
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Table 5 Average profit deviation relative to GOP, for different levels of customer heterogeneity

Low heterogeneity Medium heterogeneity High heterogeneity

CV / σ FCFS SOPA RM FCFS SOPA RM FCFS SOPA RM

0.00 / 0 3.5% 1.2% 0.7% 10.0% 1.7% 1.3% 17.1% 2.5% 1.7%

0.33 / 4 3.5% 1.7% 0.9% 9.8% 2.4% 1.6% 17.3% 3.3% 2.3%

0.67 / 8 3.3% 2.9% 1.2% 9.4% 4.5% 2.5% 17.0% 5.7% 3.3%

1.00 /12 3.3% 5.6% 1.7% 8.8% 8.0% 3.5% 15.1% 9.6% 4.9%

1.33 /16 3.7% 9.1% 2.4% 8.9% 12.2% 4.6% 14.8% 14.6% 6.3%

The results in Figure 5 show the same qualitative patterns as in Section 5.3. However, the degree

of customer heterogeneity dramatically affects the performance of FCFS relative to RM and SOPA.

For instance, the gap between RM and FCFS, at a CV of 0.67, increases from roughly 2% for low

heterogeneity to more than 13% for high heterogeneity, in this example. In contrast, the difference

between RM and SOPA is rather insensitive to the degree of customer heterogeneity here.
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5.5. Impact of supply shortage

Finally, we briefly consider the impact of the degree of supply scarcity. We define the shortage

rate (sr) as one minus the ratio between total supply and total expected demand throughout the

planning horizon. Formally,

sr = 1−
∑T

i=1 xi

(1− p0)×E[d]×T
.

Thus, positive values of sr indicate a supply shortage, whereas negative values indicate oversupply.

By varying p0 from 0 to 0.75, we vary sr between 41% and -138%.

Figure 6 Impact of shortage rate on average profit deviation from GOP, for different scenarios: (a) CV = 0.33

and low heterogeneity, (b) CV = 0.67 and low heterogeneity, (c) CV = 0.67 and medium heterogeneity
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Table 6 Impact of shortage rate on average profit deviation from GOP, for different scenarios

CV = 0.33, low het. CV = 0.67, low het. CV = 0.67, med. het.

p0 / sr FCFS SOPA RM FCFS SOPA RM FCFS SOPA RM

0% / 41% 3.5% 1.7% 0.9% 3.4% 3.3% 1.2% 9.2% 4.4% 2.4%

25% / 21% 2.3% 3.5% 1.3% 2.7% 5.7% 1.6% 5.6% 6.9% 3.3%

41% / 0% 2.0% 2.4% 0.8% 2.5% 3.2% 1.0% 3.5% 3.8% 1.7%

50% /-19% 1.4% 1.4% 0.3% 2.0% 2.7% 0.5% 1.8% 2.6% 0.7%

75% /-138% 0.0% 0.0% 0.0% 0.3% 0.1% 0.0% 0.2% 0.1% 0.0%

Figure 6 displays the impact of sr on the relative profit deviations of FCFS, SOPA, and RM from

GOP in three different scenarios. The graph in the middle shows the base case scenario of Section

5.2 (CV=0.67, low heterogeneity), the left graph shows a scenario with lower demand variability
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(CV=0.33), and the right graph a scenario with higher customer heterogeneity. Table 6 lists the

underlying data.

The three graphs show very similar patterns. Note that in each graph the left half of the x-

axis corresponds with shortages whereas the right half corresponds with an oversupply. In each

scenario, we observe that for significant oversupply the different fulfillment policies coincide — if

supply is not a limiting factor, the fulfillment decision is obvious: satisfy all orders. We further

observe that the relative performance of FCFS is decreasing for an increasing shortage rate. This is

intuitive since the benefit of prioritizing the most profitable orders increases as shortages become

more acute. Interestingly, the relative performance of SOPA and RM is not monotonic in sr. In all

three scenarios, both policies perform worst for an intermediate shortage rate of 21%. A potential

explanation is that for a moderate shortage rate the trade-off between selling a unit of supply for

low revenues versus reserving it for potentially higher future revenues is the most difficult. For a

high shortage rate, the benefit of reserving supply for high-margin orders becomes more prominent,

leaving less room for improving the fulfillment decision ex-post.

6. Conclusion and outlook

In this paper, we present a revenue-management approach to demand fulfillment in make-to-stock

manufacturing. Specifically, we consider the situation of a manufacturer who decides on the quan-

tities he is willing to sell to different customer classes. The order-acceptance decision takes into

account on-hand inventory as well as planned production quantities, scheduled to arrive in the

future. For each order, the manufacturer has to decide whether to accept it, to reject it, or to

backlog it against a price discount.

The problem is motivated by the demand-fulfillment task in advanced planning systems. A key

characteristic of the problem is that production orders cannot be changed in the short term. This

is in line with the hierarchical-planning approach of most advanced planning systems and reflects

the reality of many manufacturers. To our knowledge, our paper is the first to apply revenue

management in this context.
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We model the MTS demand-fulfillment problem as a stochastic dynamic program. What makes

this problem complex is that we have multiple fulfillment alternatives for each customer order.

However, we are able to show that the optimal policy has a simple, intuitive structure, which

can be interpreted as a multi-dimensional booking-limit policy. By explicitly capturing demand

uncertainty, our model differs from the rule–based or LP-based deterministic models commonly

underlying the demand-fulfillment modules of advanced planning systems.

We tested our model numerically and compared it against first-come-first-served order fulfillment

and against a deterministic optimization approach. Our results show that explicitly accounting

for demand uncertainty can significantly improve the performance of demand fulfillment, unless

forecasts are highly accurate. The results also show that customer differentiation can yield a sub-

stantial profit increase, in particular if differences in profitability are large across orders and if

supply is scarce. In conclusion, our results highlight substantial opportunities for improving the

current practice of order fulfillment in make-to-stock manufacturing.

Our model makes a first step in this direction. However, many challenges remain. Possibly the

biggest limitation of our model is its limited scalability. For large problem instances, the full

evaluation of the value function is computationally demanding. Developing efficient heuristics is

therefore an intuitive next step. Techniques such as randomized linear programming that have

been successfully applied in traditional revenue management may provide a good starting point.

It will be interesting to see how such approximations compare to a deterministic approach. In

order to gain further insight into the relative performance of different methods, they should also

be compared based on empirical data, in addition to theoretical demand distributions. Another

relevant extension to our model is to include different customer due-dates. It is not immediately

clear which effect this will have on the structure of the optimal fulfillment policy.
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