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Abstract

In recent years the Value at Risk (VaR) concept for measuring downside risk has been widely

studied. VaR basically is a summary statistic that quantifies the exposure of an asset or portfolio to

market risk, or the risk that a position declines in value with adverse market price changes. Three

parties have been particularly interested: financial institutions, regulators and corporates.

In this paper, we focus on VaR use for corporates. This field is relatively unexplored. We

show how VaR can be helpful to study market value risk -- proxied by share price risk. We develop a

methodology to decompose the overall VaR into components that are attributable to underlying

external risk factors and a residual idiosyncratic component.

Apart from developing theoretical results, we study the airline industry to show what

practical results our  ‘Component VaR framework’ can yield. Like any multinational company, an

airline faces significant exposures to external risk factors, e.g. commodity prices, interest rates and

exchange rates. In our opinion, Component VaR analysis can enrich discussions in the company on

financial risk management and shareholder value.
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Abstract (extended)

In recent years the Value at Risk (VaR) concept for measuring downside risk has been widely

studied. VaR basically is a summary statistic that quantifies the exposure of an asset or portfolio to

market risk, or the risk that a position declines in value with adverse market price changes. Three

parties have been particularly interested: financial institutions, regulators and corporates. The focus

of this paper is VaR use for corporates. This is a relatively unexplored field, which offers many

theoretical and empirical challenges.

Using insights from both the VaR and multifactor literature we develop the ‘Component Value

at Risk’ framework. We add two innovative features. First, the framework defines and explores a

company’s VaR that can be helpful to study market value risk as proxied by share price risk. The

Component VaR offers a multidimensional approach to such risk, i.e. we distinguish between

several external risk factors and an idiosyncratic risk factor. Second, we develop a methodology to

decompose the overall VaR into components attributable to these underlying risk factors. This

enables us to evaluate the contribution of each risk factor to the overall VaR.

Apart from developing theoretical results, we investigate the international airline industry to

illustrate the relevance of our Component VaR framework to corporate practice. We study exposures

to exchange rates, jet fuel prices, interest rates and local stock market indices. This provides us with

the shareholders’ perception of airline risks. The out of sample performance of Component VaR

estimates is compared to the well-known RiskMetrics™ approach. The latter approach is known to

suffer from significant underestimation of risk for high VaR confidence levels. We find further

evidence of this bias in the airline industry. Component VaR estimates, in contrast, do not seem to

suffer from such bias. In addition, our framework provides insight in the source of VaR differences

both across airlines and over time. Finally, the decomposition result does not rely on any

distributional assumptions and is computationally simple and straightforward.

We focus on KLM Royal Dutch Airlines to show how Component VaR results should be

interpreted. The objective of KLM’s risk management strategy is to shield shareholders from

financial risks and, hence, expose them solely to business risk. In recent years this strategy was

implemented and we find that the stock’s risk profile changed accordingly. In our opinion,

Component VaR analyses can enrich discussions on corporate risk management and shareholder

value.

Keywords: Value at Risk, non-financials, factor models, airline industry, risk management,

downside risk, out of sample, decomposition.

JEL Classification: G12, G14, G15, G30
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1 Introduction

Companies are in the business of managing risk. The ones most adept survive, others fail.

Company risk is defined as potential fluctuation in future cash flows or equity value. Jorion

(1997) provides a useful taxonomy of company risk, viz. business risk, strategic risk and financial

risk. A company willingly assumes business risk in order to create a competitive advantage and to

provide value to its shareholders. Strategic risk is caused by fundamental shifts in the economy or

the political environment. Financial risk is related to potential losses in financial markets.

This paper contributes to the growing literature on financial risk management. These studies

explore various kinds of financial risk: credit risk, liquidity risk, market risk etc. In this paper we

focus on market risk, which is caused by changes in exchange rates, commodity prices and

interest rates. Adverse movements in these risk factors can seriously damage a company. Orange

County, Metallgesellschaft and Barings have become buzzwords in papers that refer to recent

empirical evidence. This, combined with increased volatility in financial markets over the last

decade and a strong growth of derivative products as tools to manage financial risk, has triggered

academic and professional interest. One of the major achievements is the introduction of the

Value at Risk (VaR) framework, which provides companies with an easy-to-understand standard

of measuring and managing financial risk.

VaR first emerged in the trading community. The objective of VaR was to systematically measure

an trading firm’s risk exposure across its dealing portfolios. Regulators’ interest followed soon

after. Both the SEC and the Basle Committee consider VaR a sound approach to meet risk

reporting requirements. A relatively new field is VaR for non-financial companies. Most papers in

this area explore VaR use at corporate treasury desks, focusing at Cash Flow at Risk or Earnings

at Risk. Starting from the premise that shareholders’ perceptions are reflected in share price

dynamics, we use VaR to analyse their view on a company’s downside risk. The main purpose of

the paper is to investigate the share price VaR and to disentangle this overall VaR into

components attributable to external factors and a company specific component. These

‘Component VaRs’ offer a multifarious view on a company’s risk.  We want to stress that this

decomposition is a general result and hence does not depend on any distributional assumption.

In a perfect market setting a new hedging strategy should change the risk profile of the stock. In

practice, however, shareholders often lack information about risk exposures. When their estimate

does not mirror the true company risk, they might experience unpleasant earnings surprises. A

recent initiative by the American Stock Exchange illustrates shareholders’ concern:

“To respond to investors’ concern that firm hedging decisions may affect exposures, the American Stock

Exchange recently issued options on a new index of gold mining firms that refrain from hedging gold
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price exposure to provide equity derivative investors with a ‘purer’ play on gold than was available”, Hu

(1996)

Tufano (1998) studies shareholders’ perception of exposures in the gold mining industry and

shows how these are affected by hedging strategies.  We extend this line of research by studying

risk exposures in the airline industry using Component VaR. The reason for studying this

particular industry is the significant exposure of airlines to financial risk factors, i.e. fuel prices,

exchange rates and interest rates. We generate weekly VaR forecasts for six major international

airlines and perform out of sample tests. We focus on KLM Royal Dutch Airlines to show how the

results should be interpreted.

This paper is organised as follows. Section 2 briefly discusses the Value at Risk concept and its

origin. In section 3 we combine basic VaR techniques with factor models in order to develop the

Component VaR framework. This framework will prove useful in finding the contribution of

various sources of risk to the stock’s overall VaR. Section 4 discusses how this methodology can

be applied to the airline industry. Out of sample performance is studied in section 5. To show how

to interpret results, section 6 focuses on Component VaR results for KLM. Section 7 contains

concluding remarks and directions for future research.

2 Value at Risk

In recent years the Value at Risk concept for measuring downside risk has been widely discussed.

Basically, VaR is a summary statistic that quantifies the downside risk exposure of an asset or

portfolio to market factors. Jorion (1997) provides an extensive discussion on Value at Risk. His

definition is:

"The Value at Risk is the worst expected loss over a given time interval under normal market conditions

at a given confidence level".

VaR has been developed for financial firms to evaluate (trading) portfolio risk. The inherent

simplicity of the concept greatly facilitated dealers’ reporting of risks to senior managers and

directors. It allows them to make statements like: “We do not expect losses to exceed $ 1 million

on more that one out of the next 20 trading days.” The popularity of VaR nowadays owes much to

Dennis Weatherstone, former chairman of JP Morgan & Co, Inc., who demanded to know the total

market risk exposure of JP Morgan at 4:15pm every day. Weatherstone’s request was met with a

daily VaR report.

Various methodologies have been developed to estimate VaR. In October 1994, JP Morgan

released their RiskMetrics™ methodology, which consists of two steps. First a portfolio’s exposure

to prespecified risk sources is identified. These sources relate to bond, equity, foreign exchange

and money markets. Second, the portfolio VaR can be estimated using JP Morgan’s data sets
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containing variance and covariance forecasts for these risk sources. We refer to the RiskMetrics™

technical documents for an extensive discussion (JPMorgan Bank (1996)). 

Statistically, RiskMetrics™ is based on time-weighted moving averages, where the weights

decline in an exponential fashion. The covariance matrix forecast is equal to an exponentially

weighted sample variance. This is equivalent to an IGARCH(1,1) estimate. Extensive empirical

research suggests a decay factor of 0.94 for daily observations and a decay factor of 0.97 for

monthly observations.

3 Component Value at Risk for Stocks

The major virtue of the RiskMetrics™ framework is that it provides an integrated and easy-to-use

risk estimate. It is an integrated approach, because it keeps track of the correlation between the

various financial series. The intuitive appeal of exponential weighting is that it accommodates a

time-varying volatility by considering recent shocks more important than remote ones. In this

paper we try to keep this virtue when applying the framework to stocks. The major difference

between stocks and portfolios, however, is the visibility of exposures. Whereas a portfolio exposure

for risk factors is determined by the extent to which a particular security is in the portfolio, the

exposure of the stock to the underlying risk factors is hidden. As Stulz (1996) puts it:

“It is relatively simple to calculate VaR for a financial institution’s portfolio over a horizon of a day or a

week. It is much less clear how one would compute VaR associated with, say, an airline’s ongoing

operating exposure to oil prices.”

In the finance literature, factor models are used to estimate such exposures. Some well-known

examples are Sweeney and Warga (1986) and Flannery and James (1984) who estimate the

exposure of shares for the market index and the risk-free interest rate. Jorion (1990) uses a factor

model to study exchange rate exposures of US multinationals. In general, the exposures of total

stock returns for external risk sources can be estimated using the following model:

(1) t

k

i
tiit fbar ε~~~

1
, ++= ∑
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where  tr
~  = the total stock return in period t (including dividend payments),

tif ,

~
 = the return on underlying factor i in period t,

tε~  = the disturbance term.

Tildes indicate stochastic variables. The sensitivity coefficients b indicate the stock’s exposures to

the external factors. The major drawback of this simple representation is that exposures are

assumed to be constant. However, we know that these exposures are subject to change for a

number of reasons. The company’s activities might change and therefore its exposures. In
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addition, the company may initiate a hedging policy or change it. Finally, the perceptions of

investors may change over time.

Moving window estimation of the model allows for time-varying exposures. The major

drawback of this approach is that the changing exposure might be caused by the new observation

that is added to the window as well as by the one that drops out of the window. In the latter case

the changing exposure was not triggered by new information. We choose to apply exponential

weighting in line with the RiskMetrics™ approach to estimate exposures. We do this by modelling

the disturbance term as

(2) ))/1(,0(~ k
k N λσε −

where k represents the number of lagged time periods and λ is the decay factor. Intuitively the

model emphasises a fit with recent observations because recent residuals should have smallest

standard errors.

Suppose we have estimates of the stock’s risk exposures at time t. For period t+1 (i.e. from time t

to t+1) the stock return and the risk factors are stochastic. If period t+1 is short enough, the

factor exposures can be assumed to be constant. Clearly, both the underlying factors and the

disturbance term cause stock return risk in period t+1. For convenience, we consider the

disturbance term to be one of the factors and rewrite the model as:

(3) 1,1,1
1
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The disturbance term factor should be interpreted as a source of idiosyncratic -- i.e. company

specific -- risk. Without loss of generality this idiosyncratic factor tkf ,1

~
+  can be scaled to obtain

bk+1,t =1.

Next we consider the VaR concept with the factor model equation (3) in mind. Given an overall

VaR, two questions appeal to us:

1. What is the effect on the stock VaR if the exposures for one of the underlying factors were to

change?

2. How can we decompose the stock VaR into components attributable to each of the underlying

factors?

To answer both questions we have to formalise stock VaR and introduce definitions for the

Marginal VaR and Component VaR of factor i.
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The return VaR on a stock is defined as:

(4) [ ] %1~Pr *
11 crr tt −=−< ++

where *
1+tr  = the stock return VaR for period t+1,

1
~

+tr  = the stock return for period t+1,

c = the VaR confidence level.

The linearity of the factor model enables us to define and estimate the contribution of each factor

to the overall VaR. The marginal VaR of factor i, M-VaRi , is defined as the change in the return

VaR *r that is caused by a marginal change in factor exposure bi :

(5) 1,...,1          
*
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In addition, we consider the total contribution of each factor. Denoting a factor i Component VaR

by C-VaRi, we require:1

(6) ∑
+∈

−≡
1

*

ki
iVaRCr

With these definitions in mind, we have to find a model that enables us to calculate the overall

VaR, M-VaR and C-VaR. We follow the RiskMetrics™ approach in assuming that the conditional

distribution of returns over period t+1 equals a normal density in the left tail ranging from the 1%

critical value Z 0.01 to the 10% critical value Z 0.10. This distribution is conditional, because the

variance and mean estimate are based on all historical returns until and including the return in

period t. It is common practice to ignore the mean since its influence is negligible compared to

that of the standard deviation.2 In our empirical work we use detrended series to calculate VaR.

Taking either of these two approaches the resulting VaR estimate is:

(7) tctt ZcNr σσ ˆˆ)1(1*
1 ⋅=⋅−−= −

+

where tσ̂  = the standard deviation estimate based on returns until time t

N-1 = the inverse cumulative normal distribution function,

c    = the VaR confidence level.
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The factor model and its inherent linearity allows us to estimate 2
tσ from the variance of the

underlying factors:

(8) tttt bb Σ= ’2σ

where tb  = a vector representing the stock’s factor exposures,

tΣ  = the covariance matrix of the underlying factors.

Differentiating this expression to bi yields3:
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where cov(⋅,⋅) is the covariance operator. We use this expression to find M-VaRi as:

(10) 
( )

t

tti
c

i

tc

i
i

rfCov
Z

b

Z

b

r
VaRM

σ∂
σ∂

∂
∂ ~,

~
. ,

*

⋅==≡−

In addition, linearity allows us to find the Component VaR as:

(11) iii VaRMbVaRC −⋅=−

since:
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One of the virtues of this approach to M- and C-VaR is easy calculation. The expression on the

right hand side of equation (10) equals Zc times the slope coefficient of an OLS regression of

return on factor i on the stock return. In the appendix you find a more general derivation of the

M- and C-VaR result. We want to stress that this decomposition is a general result and hence

does not depend on any distributional assumption.

4 Component VaR in the Airline Industry

“An airline, for example, might find VaR helpful in assessing its exposure to jet fuel prices; but for the

airline to use VaR to analyse the risk that seats on its aircraft are not all sold makes little sense.”, Culp,

Miller and Neves (1998)
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This paper follows this suggestion. The airline industry in this decade serves as an appropriate

laboratory for a VaR perspective on risk exposures. There are several reasons for this. The most

important reason is that airlines are intrinsically heavily exposed to various sources of financial

risk. Airline revenues are denominated in many different currencies. Hence, exchange rate risk is

an important issue in the industry. Furthermore, jet fuel expenses constitute a significant part of

airline costs. This generates commodity price risk. In addition, the degree of leverage in the

industry is substantial. Considerable tax benefits can be achieved through debt financing of

aircraft. Widespread use of financial lease constructions illustrates airlines’ interest in debt

finance. The result of this is that airlines face a substantial exposure to interest rate levels.

Another reason for studying the airline industry is the creation of global airline alliances in this

decade. Such alliances will have changed the stock profile. Finally the relatively high liquidity and

volatility of airline stocks ensures sufficient share price dynamics to study. Our Component VaR

framework provides the proper tools to study this dynamics.

We use a factor model that relates share price returns to returns on exchange rates, jet fuel and

government bonds. The local market index is added to account for the fact that the stock is part of

the local market portfolio. This index should be purged of the other factors’ effects, since we want

to measure the pure effect of each of these factors on stock return. This can be achieved by a

regression of the index on all other factors. The residual is added to the factor model and is

referred to as the residual market index.4 The resulting factor model is:

 (13) tMtMBONDtBONDGBPtGBPDEMtDEMJetFueltJetFuelairlinet rbrbrbrbrbr εα ~~~~~~~
,,,$$,$$,, ++++++= −−−−

where rt, airline = the total return on the airline stock in dollars,

rt, jet fuel = the return on jet fuel in dollars,

rt, $-DEM and rt, $-GBP = the returns on the German Mark and British Pound

   denominated in dollars,

rt, BOND = the return on the local government bond index in local currency,

r*t, M = the residual local market index return, and

εt = the disturbance term.

The factor model is estimated using weekly data from Bloomberg in the period January 1st, 1990

until January 1st, 1999. We chose to study Wednesday on Wednesday returns to avoid results

being affected by the start- or end-of-the-week effects. Six major international airlines are studied:

KLM Royal Dutch Airlines, British Airways, Lufthansa, American Airlines, United Airlines and

Delta Airlines. The reason for this choice is twofold. On the one hand, these airline stocks are

listed throughout the entire research period and, on the other hand, these stocks provide

investors with a pure play on the airline business. Some airline stocks expose investors also to

associated business, such as the catering or travel industry.
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The following variables are taken from the Bloomberg system to find the desired returns. Airline

stock returns are calculated from trading prices at local exchanges, dividend returns included.

These returns are converted to dollar returns to facilitate comparability. Jet fuel return is derived

from a Bloomberg index representing jet kerosene spot prices in dollars. Government bond

returns are derived from the JP Morgan Government Bond index, which contains all traded

government bonds. For each airline we selected the local index. One drawback of taking this

portfolio is that the duration is likely to be different for different countries and is likely to change

over time. It turns out that duration is close to 5 years for all bond portfolios and does not change

significantly over time. Nonetheless, we adjust bond returns for duration differences by re-scaling

them to a five-year duration return as follows:

(14) 
t

original

adjusted

Duration

r
r tBOND

tBOND

,

,
5 ⋅=

As local market indices for the Netherlands, Germany, the UK and US we took the AEX, DAX,

FTSE100 and the NYSE Composite, respectively.

In this paper we focus on KLM Royal Dutch Airlines to illustrate what can be learned from the

Component VaR results. We regress stock returns on all underlying factors for the sub-periods

1990-1992, 1993-1995, 1996-1998 and the overall period. The results in Table 1 show that

exposures for the underlying factors are not constant over time. The other airline stocks are

analysed in the same way and this yields similar results. It confirms our intuition that exposures

are not stationary. To keep track of changing exposures we use the weighted least squares as

described in section 3 Component Value at Risk for Stocks. In this approach observations are

exponentially weighted with a decay factor λ . High values of λ  imply that the regression is based

on many observations, enhancing estimation efficiency. Low values of λ  put more emphasis on

recent observations, thus enhancing the accommodation to changing exposures. We believe λ =

0.99 ensures a good balance between these two effects. This value of λ  can be said to focus on a

2-year history, since approximately 90% of total variance of all historical disturbance terms added

up can be calculated to fall within the last two years.

Figure 1 presents estimation results for KLM. The exposures in the first year are not very

informative, since the rolling regression has too few data to estimate coefficients. To illustrate

what we can learn from these results, an elucidation is given below. Regression coefficients should

be interpreted as elasticities, since a coefficient of 0.5 implies that a +10% factor return results,

on average, in a +5% stock return.

(i) The elasticity of KLM stock for jet fuel is significant and is on average around −10%. In

recent years the exposure has somewhat diminished. This is not surprising, since the
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company increased the fuel hedge in recent years to around 70% in order to gain from

what it considered to be temporary low fuel prices.

(ii) As of January 1991, the elasticity of KLM stock for the dollar value of the German Mark

has decreased significantly from 100% to 50%. Three observations can help to understand

this result. First, KLM earnings were long in dollars at the start of the decade. Re-

financing of aircraft helped to neutralise the dollar effect. Second, KLM stock is listed on

both the Amsterdam and the New York Stock Exchange. The number of outstanding

shares in New York, and concurrently the number of US shareholders, has increased

significantly over the last decade. Today almost half of all common shares are listed as

ADR in New York. Third, this decade saw the first global airline alliance when KLM and

NorthWest Airlines joined forces. This could have contributed to the fact that KLM is

considered a more international stock and hence less exposed to the DEM-USD exchange

rate.

(iii) The results for KLM stock exposure to the dollar value of the British Pound are mixed.

Until the EMS crash in 1992, this exposure was negative. However, since then the

exposure has become slightly positive and again negative at the end of the research period.

We consider this effect non-existent, since it clearly lacks significance.

(iv) The elasticity of KLM stock to the local market has decreased substantially over the

decade. At the start of the decade it grew to almost 200%. Over the years it decreased to

100%. The decrease in this ’beta’ is arguably due to structural changes in the industry

during the decade. At the start the airline industry showed over-capacity and perfect

competition. Over the years, however, it has become increasingly oligopolistic. The creation

of worldwide alliances has contributed strongly to this development. In this case results

might be less sensitive to economic cycles.

5 Out of Sample Test Component VaR

Before we elaborate on the airline marginal VaR and the decomposition of VaR, we will study the

out of sample properties of this Component VaR. It should at least do as well as the RiskMetrics™

VaR estimate, since the latter is extensively tested and has through its wide use set a standard in

the financial industry5.

The performance of a VaR estimator is judged by out of sample unbiasedness. We can

think of an indicator variable l(t), which equals one if the VaR is exceeded and zero otherwise. The

estimator is unbiased if the sample mean of l(t) does not differ significantly from 1 minus the VaR

confidence level. In terms of formulas:

(15) ctlaverage −= 1))((
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Unbiasedness is tested for four frequently used confidence levels: 0.90, 0.95, 0.975 and 0.99.

Empirical research summarised in the RiskMetrics™ Technical Document has shown that for

daily and monthly data the optimal decay factor is 0.94 and 0.97, respectively (JPMorgan Bank

(1996)). We apply the 0.94 level to our weekly data. Table 2 presents results for this test on both

the RiskMetrics™ VaR and Component VaR. One well-known drawback of the RiskMetrics™ VaR

is that it underestimates risk for high confidence levels.

"It is our experience that while RiskMetrics VaR estimates provide reasonable results for the 90%

confidence interval, the methodology does not do as well at the 95% and 98% confidence intervals",

JPMorgan Bank (1996, p.235)

Our results show that the same applies to our sample. For the 99% confidence level the

RiskMetrics™ VaR significantly underestimates the VaR for three out of six airlines. The

Component VaR, in contrast, does not lead to significant VaR underestimation. For one airline at

a 90% confidence level it significantly overestimates VaR, which, in practice, is less hazardous

than underestimation.

Less underestimation for Component VaR can be understood from the different approach

it takes. Intuitively, keeping track of exposures and knowing that one of the external factors is

getting increasingly volatile allows Component VaR to increase in an early stage.

Since both RiskMetrics™ and Component VaR are based on estimation of the first two moments of

the return distribution, we decided to take a closer look at the distribution of standardised

returns. The 'out of sample' stock return from t to (t+1) is standardised by subtracting the mean

estimate and dividing this result by the standard deviation estimate. Since both mean and

standard deviation estimates are based on all historical observations until time t, this

standardised return should coincide with the normal distribution in the left tail. GARCH models

in general, and RiskMetrics™ in particular, assume this conditional distribution to be standard

normal. In figure 2 we illustrate the properties of this standardised return by showing the

empirical cumulative distribution and the sample mean, standard deviation, skewness and

kurtosis. We also show the results of a Jarque-Bera test for normality.

The solid lines in the graphs show the empirical cumulative distribution of the

standardised return. The dashed line shows what it should be for observations taken from a

standard normal distribution. If the solid line is above the dashed one, this means that at that

point the VaR underestimates risk. The graphs show that underestimation is more severe in the

case of the RiskMetrics™ VaR as compared to the Component VaR. The out of sample test results

as shown in table 2 indicates whether the solid line -- i.e. the empirical distribution -- significantly

differs from the dashed line -- i.e. the normal distribution. For example, we concluded that at a

99% confidence level RiskMetrics™ yielded significant underestimation for three out of six

airlines, viz. KLM, Lufthansa and United. This observation is illustrated at the horizontal axis of

the graphs at the value -2.65.



14

The sample mean of the standardised return does not differ more than 0.02% from zero.

This is not significantly different from zero for the number of observations we have at a 90%

significance level. Only the RiskMetrics™ approach for Delta Airlines finds a significant negative

sample mean. For the sample variance we find that on average the sample variance exceeds one.

For all six airlines we find that sample variance is larger for the RiskMetrics™ than for the

Component VaR approach. The results of the Jarque-Bera test for both RiskMetrics™ and the

Component VaR show that we have to reject normality for four out of six airlines at a 90%

confidence level. Both positive skewness and fat tails, as evidenced by kurtosis being larger than

3, contribute to this rejection. The assumption of conditional normality for the full distribution is

not tenable. However, this does not invalidate our results, since are only interested in the left tail

ranging from 1% to 10% critical levels.

6 Component VaR Results and Interpretation

The out of sample test showed that the Component VaR framework performed at least as well as

the RiskMetrics™ approach. The main advantage of the Component VaR as compared to

RiskMetrics™ is that it allows for decomposition. We will present M-VaR and C-VaR results for

KLM Royal Dutch Airlines to show how these should be interpreted. The case of KLM is very

useful and interesting to study, because the airline has put much effort in recent years to develop

a new risk management strategy and practice accordingly. In 1998, Ernst&Young rewarded KLM

in this field along with Ford, McDonalds, Microsoft and Nokia.6  A quote taken from the

Ernst&Young report summarises the company's view on risk management:

“We would ultimately like to show operational risk to our shareholders and none of the financial risks.”,

De Die, SVP Finance KLM in Ernst&Young (1998)

If markets were perfect shareholders would know this and, hence, the risk profile of the stock

should have changed accordingly. In the remainder of this section we will apply the M- and C-VaR

framework to test this assumption.

In section 4 Component VaR in the Airline Industry we found the exposures of KLM stock for the

underlying factors. To calculate VaR we need to multiply these with the covariance matrix

estimates for the external factors. Figure 3 illustrates how volatility of the underlying factors

developed throughout the decade. The figure shows that fuel is most volatile with weekly volatility

peaking at 12% early 1991. This is the result of the Gulf War. It decreased to around 4% at the

end of the period. The idiosyncratic risk is next in line with average volatility between 3 and 4%.

Both the German Mark and British Pound exchange rate volatility and the residual market

volatility are between 1% and 2%. The sharp increase in market volatility by the midst of 1997 is

caused by unrest in international financial markets due to the Asian monetary crisis. The German

Government Bond shows least volatility with levels slightly below 1%. This graph only tells part of
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the story, because it does not provide insight in the development of correlations, or covariances if

you will, between external factors over time.

Figure 4 shows the results of the M-VaR analysis for KLM. VaR confidence level was set at 95%.

We left out the M-VaR for the idiosyncratic factor, because the exposure to this factor is one by

construction. M-VaR can be calculated, but does not have an interpretation in this case. The

largest value for M-VaR occurs for jet fuel in March 1991. By that time the M-VaR for jet fuel

equaled 8.2%. This means that being 0.1 more exposed to jet fuel results in almost 1% increase in

the stock VaR. The M-VaR for fuel decreased over time to a value between 0 and 0.5%. The M-VaR

for the residual market index is substantial throughout the sample. It is on average 1% with a

sharp increase by the midst of 1998. It ended up above 2% in January 1999. Two developments

explain this result. First, the volatility of the residual market index increased substantially by the

midst of 1997. Second, initially the ’beta’ of KLM stock dropped to compensate for this effect, but

then, by the midst of 1998, this changed for an increase in ’beta’. The marginal VaR for both the

German Mark  and British Pound exchange rate is at most 1% by the start of 1993, but decreased

since then to approximately 0.25% by the middle of 1998. The sharp increase for both exchange

rates at the end of 1992 to 1% M-VaR is arguably caused by the European Monetary System

(EMS) crisis in 1992. This fixed exchange rate system did not allow large movements of the

German Mark to the British Pound. However, in September 1992 this ‘fixed’ rate restriction was

lifted, because the Pound left the system. Since then the currencies can be regarded separate risk

sources and this explains the jump to 1% M-VaR for both currencies. The M-VaR for the German

government bond is the smallest of all factors: on average 0.2%. This can be understood from the

low volatility in the German Government Bond.

Figures 5a and 5b illustrate the results of Component VaR calculations for all six carriers. VaR

confidence level was set at 95%. Although we study M- and C-VaR for KLM, it is interesting to

benchmark the stock profile development against similar airlines. First we evaluate the C-VaR

results for KLM and, second, we study the major differences compared to other carriers.

The total weekly Value at Risk in KLM stock ranges from slightly above 2% to almost 12%. In

other words, in bad times the share price lost more than 12% on KLM stock every 20 weeks.

These turbulent times occurred at the start of the decade and total VaR decreased over time to

about a 2% loss every 20 weeks at the start of 1998. The Value at Risk increased again to 5% in

the final year. To understand why this happened we study the development of C-VaR for each

factor separately. The largest contributor to total VaR is arguably idiosyncratic risk. In relative

terms it appears to be quite stable by contributing half of total VaR. This should be interpreted as

risk inherent to the company’s business. The second largest contributor to total stock VaR is the

residual market index. Its effect ranges from 1 to 3%. At the start of the decade it contributes a

relatively small amount of total risk. Further throughout the decade its relative influence grew to

almost 50% at the end of the decade. An increasingly volatile market index in the final year of the
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sample appears to be the main reason for the VaR of KLM increasing from 2 to 5%. The German

Mark exchange rate contributes 0.25 to 1% to total VaR. Its relative contribution throughout the

decade is about 10%.7 In 1998, its contribution to total VaR is truly marginal. Jet fuel

contribution to total risk is 0.5% at the start due to high volatility caused by the Gulf War. In the

rest of the decade its C-VaR is negligible. The Government Bond C-VaR is substantial at the start

of the decade amounting to 2%, which is roughly a quarter of total VaR. Its relative contribution

decreased to 10% in the rest of the sample period. In the final year of the sample its contribution

is marginal. The British Pound does not appear to contribute to overall VaR. At the start of the

decade its influence is substantial. However, this is largely due to it being related to the German

Mark in the EMS.

If we benchmark KLM Component VaR results to those of the other two European carriers, we

observe some remarkable differences. First, total VaR is largest for Lufthansa and smallest for

British Airways. However, differences have become smaller over the decade. Second, apart from

the first two years of the sample the Government Bond exposure is more substantial and more

stable throughout the sample for British Airways and Lufthansa compared to KLM. Third, apart

from the first two years the relative contribution of the residual market index to total risk is

largest for KLM amounting to almost half of total risk. Although its influence on VaR is also quite

substantial for Lufthansa, it is relatively small for British Airways amounting to just a quarter of

total VaR. British Airways might be regarded a more international stock, since local market risk

tends to be the smaller part of total risk. Generally, we find that throughout the decade

commodity price, exchange rate and interest rate risk have become almost non-existent for KLM.

This is true for British Airways and Lufthansa as well, albeit to a far lesser degree.

If we now benchmark the results for European carriers to their US rivals we find that over

the decade VaR developed in favour of the Europeans. Starting off with a stock VaR that was

almost double the VaR of their US rivals they ended up with equal or slightly lower VaR at the end

of the sample. Furthermore, we find that the C-VaR of commodity price, exchange rate and

interest rate risk is relatively larger for European airlines. However, differences have decreased in

the course of the decade.

To complete the picture we study events of an airline exceeding its VaR more closely. We want to

know to what extent these shocks occur simultaneously. And, does the event of one of the

external factors exceeding its VaR coincide with a shock to the airline stock. To test for

concurrence we count the events of two series exceeding VaR at the same time. The null

hypothesis is event independence. The test statistic is defined as the number of actual

simultaneous events minus the number expected given independence. The confidence level for the

test is 97.5%. The results are presented in table 3.

Studying the results for airlines we find that a shock to the British Airways stock coincides

with a shock to both the KLM and Lufthansa stock. The mere fact that a shock to KLM does not
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coincide significantly with a shock to Lufthansa suggests that British Airways is the leading

airline stock. In the US, on the other hand, shocks to airline stock occur simultaneously.

Studying the factor shocks to airlines, we find mixed results. The residual market index

exceeding its VaR shows the strongest influence. Four out of six airlines exceed their VaR

simultaneously.  Jet fuel and government bond index shocks coincide significantly with shocks to

airline stock for only two out of six airlines. Finally, a shock to the British Pound exchange rate

only concurs with a shock to British Airways stock.

7 Conclusion

In this paper we develop the Component Value at Risk framework. It is founded on insights from

both the VaR and multifactor literature. This framework has two innovative features. Firstly, it

defines and explores a company’s VaR in which company value is proxied by share price.

Secondly, it enables us to estimate the contribution of underlying risk factors to the overall VaR.

We apply the framework to analyse how shareholders perceive airline risks. We study

exposures to exchange rates, jet fuel prices, interest rates and local stock market indices. Out of

sample performance is compared to the standard RiskMetrics™ approach. One well-known

drawback of the latter approach is the significant underestimation of risk for high VaR confidence

levels. We here find similar evidence for airline stocks. The Component VaR estimates, in contrast,

do not seem to suffer from this bias. Moreover, our framework provides insight in the sources of

VaR differences across airlines and VaR changes over time. Finally, the decomposition does not

rely on any distributional assumptions and is computationally simple and straightforward.

We focus on KLM Royal Dutch Airlines to show how Component VaR results should be

interpreted. The objective of KLM’s risk management strategy is to shield shareholders from

financial risks and, hence, expose them solely to business risk. In recent years this strategy was

implemented and we find that the stock’s risk profile changed accordingly. Markets might be

efficient after all…



18

References

Culp, L.C., M.H. Miller and A.M.P. Neves, 1998, ‘Value at Risk: Uses and Abuses’, Journal of Applied

Corporate Finance 10(1), p. 26-38.

Ernst&Young, 1998, ‘The 1998 Ernst&Young Global Risk Manager of the Year Award’, Ernst&Young US.

Flannery and James, 1984, “The effect of Interest Rate Changes on the Common Stock Returns of Financial

Institutions”, Journal of Finance 39.

Fong, G. and O.A. Vasicek, 1997, ‘A Multidimensional Framework for Risk Analysis’, Financial Analyst

Journal, July/ August, p. 51-57.

Garman, M.B., 1996, “Improving on VAR”, RISK 9/5, May, pp.61-63.

Hu, H., 1996, “Behind the corporate hedge: Information limits of shareholder wealth maximization”, Journal

of Applied Corporate Finance 9, 39-51.

Jorion, P., 1990, 'The Exchange Rate Exposure of U.S. Multinationals', Journal of Business 61, p. 331-345.

Jorion, P., 1995, ‘Predicting Volatility in the Foreign Exchange Market’, Journal of Finance 50, p.507-528.

Jorion, P., 1997, Value at Risk: The New Benchmark for Controlling Derivative Risk, McGraw-Hill.

Pagan, A., 1984, ‘Econometric Issues in the Analysis of Reressions with Generated Regressors’, International

Economic Review 25/1, Febr, pp.221-247

JPMorgan Bank, 1996, Risk Metrics Technical Document, New York: JPMorgan Bank.

Stulz, R., 1996, ‘Rethinking Risk Management’, Journal of Applied Corporate Finance, 9(3).

Sweeney R. and R. Warga, 1986, “The possibility of Estimating Risk Premia in Asset Pricing Models”, The

Financial Review 21(2).

Tufano, P., 1998, 'The Determinants of Stock Price Exposure: Financial Engineering and the Gold Mining

Industry', Journal of Finance 53(3).



19

Appendix: General linear decomposition of overall VaR

In this Appendix, we derive a general decomposition of overall VaR into component-VaRs.

Together with the relationship between marginal and component-VaR, this decomposition result is

of a very general nature. Most important, it does not depend on any distributional assumptions

made to estimate the overall VaR. The results derived below prevail as long as the security return

can be expressed as a linear combination of the factor returns.

the linear factor model

Assume that the security return over period t follows a linear k-factor model:

(A-1) tkk

k

i
tiit fbfbar ,11

1
,

~~~
++

=

++= ∑

where without loss of generality the idiosyncratic factor tkf ,1

~
+  (the disturbance) is scaled to obtain

bk+1=1. When all expected returns are zero – this is justifiable given the short VaR horizon – we

have a=0. In the following we’ll surpress the time index t.

defining Marginal VaR and Component VaR

The marginal return-VaR of factor i, M-VaRi , is defined as the change in the return-VaR

*r resulting from a marginal change in factor sensitivity bi :
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In addition, we consider the total contribution of each separate factor to the total security’s

return-VaR. Denoting a factor’s i component return-VaR by C-VaRi , we require that:

(A-3) ∑
+∈

−≡
1

*

ki
iVaRCr

relating Marginal VaRs and Component VaRs

The linear factor model  eq.(A-1) implies that the security return ~r , and hence the return-VaR

r * , are linearly homogeneous functions of the factor sensitivities 1}{ +∈kiib  . According to Euler’s

theorem it then immediately follows that:
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So the relationship between marginal and component-VaR is of a very general nature. It does not

depend on any distributional assumptions and it prevails as long as the underlying factor model

is linear in the factor sensitivities.

deriving Marginal VaR and Component VaRs : step 1

Now assume that all relevant return distributions have finite first moments. From eq.(A-1) (with

a=0), we have by the very definition of conditional expectations:

(A-5) { } { }∑
+∈

==
1

~~~~~
ki

ii rfEbrrEr

Note that { }E f ri

~ ~  is to be interpreted as the expectation of 
~f i  conditional to the σ-field relative

to which ~r  is defined. Hence, this conditional expectation is a random variable. By taking iterated

expectations we get:
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+∈
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** ~~
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Since the security return now takes the particular value *r−  , this conditional expectation is now

deterministic. Combining eqs.(A-6) & (A-4) yields:

(A-7) { } 1,...,1             
~ * +=−−=− kirfEVaRM ii

and hence,

(A-8) { } 1,...,1           
~ * +=−⋅−=− kirfEbVaRC iii

deriving Marginal VaR and Component VaRs : step 2

Next, we have to link if
~

 to the security return r~  in order to obtain { }rfE i
~~

 , and hence

{ }*~~
rrfE i −= .

Suppose that we model the relationship between if
~

 and r~  by some function )(⋅iϕ :



21

(A-9) ( ) iii rf ξϕ ~~~ +=

where without loss of generality, we let the additive disturbance term satisfy { }E i

~ξ = 0 . Assuming

that the relevant first and second moments exist, the choice { }rfE ii
~~

)( =⋅ϕ  minimizes the mean-

squared error of the fit { }E i

~ξ 2 .8 Hence, the least-squares representation of eq.(A-9) is:

(A-10) { } iii rfEf ξ~~~~ +=

which in turn implies the semi-independence of the disturbance term:

(A-11) { } 0~~ =rE iξ

In order to obtain a general insight in { }rfE i
~~

, we consider the orthogonal projection of if
~

 into

the subspace spanned by the security return r~  :

(A-12) 1,...,1               ~~~ +=++= kirf iiii εβα

This construction is always possible. In statistical terms, eq.(A-12) represents an ordinary linear

least-squares approximation to the relationship between if
~

 and r~ , satisfying { } 0~ =iE ε  and the

orthogonality condition { } 0~~ =rE iε  of the disturbances. The slope coefficient is defined as :

(A-13)
( )
( )r

rfi
i ~var

~,
~

cov≡β

The assumption of zero expected returns again implies a zero intercept.

From eq.(A-12) we thus have:

(A-14) { } { }rErrfE iii
~~~~~ εβ +=
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When the actual relationship between if
~

 and r~  is linear, the conditional expectation eq.(A-14) is

linear in r~ . This in turn implies the semi-independence { } 0~~ =rE iε . Together with the restriction

that *~ rr −=  , eq.(A-14) then transforms into the deterministic expression:

(A-15) { } **~~
rrrfE ii β−=−=

Hence, from eqs.(A-7) & (A-8) we obtain:

(A-16) *rVaRM ii β=−

and

(A-17) *rbVaRC iii β=−

univariate case

For a single-factor model, we have k=1 in eq.(A-1). Note that 2Rb =β  , where R2 is the

determination coefficient of the OLS regressions (A-1) and (A-12). Hence the systematic factor

component-VaR is *2rR  , whereas the idiosyncratic factor component-VaR is given by ( ) *21 rR− .

multivariate case

Trivially, the same results apply to the case of a multi-factor model where one considers the total

contribution of the systematic factors to the VaR. When R2 is now the (unadjusted) determination

coefficient of the multivariate regression (A-1), then *2rR  is the aggregated component-VaR of all

k systematic factors together, whereas ( ) *21 rR−  is the idiosyncratic factor component-VaR. For

decomposing the aggregated systematic factor component-VaR, note that the (unadjusted) R2 of

regression eq.(A-1) is:
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Combining eqs.(A-4), (A-16) & (A-17) shows that the term between the square brackets in eq.(A-

18) equals the simple regression coefficient iβ  . Given the regression coefficients bi and the
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covariance matrix of the factors if
~

 in eq.(A-1), the marginal and component factor-VaRs can now

easily be estimated.

validity of the results

The conventional formulas for estimating marginal-VaR and component-VaR rest on the

multivariate normality assumption. We have derived general expressions for these risk metrics,

assuming only linearity of the underlying return generating process.
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Endnotes

                                             

1 Fong and Vasicek (1997) suggest an approach to decompose overall VaR into components.

However, their decomposition does not satisfy equation (6).

2 Since the mean is of a lower order than the standard deviation, the latter fully dominates the

influence of the former. From the results of Jorion (1995), for example, we know that the standard

deviation is more than 25 times larger than the mean for a daily series.

3 We know bb Σ= ’2σ  where b is a vector that contains the factor exposures and Σ is the

covariance matrix of the risk factors. Hence, b
b

Σ= 22σ
δ
δ

, and, σ
δ
δσσ

δ
δ

bb
22= . Combining

these two expressions gives b
b

Σ= 22 σ
δ
δσ . Taking the i’th element of this vector gives

σσσ

σ
σ

δ
δ ),

~
cov(

)
~

,
~

cov(
rf

fbfb

b
ij

jji
j

jij

i

===
∑∑

, see also Garman(1996) and Jorion(1997, p.154).

4 This two-step procedure where residuals generated from an auxiliary regression are used as

regressors in a main regression raises some econometric issues. However, Pagan (1984) shows

that the OLS estimators for the auxiliary generated residuals in the main regression are both

consistent and efficient.

5 Although actual RiskMetrics™ use will be difficult to estimate and as far as it is known with

JPMorgan will be kept confidential, the mere fact that most financial systems e.g. Bloomberg and

Reuters, provide RiskMetrics™ or closely related functionality proves that it has gained significant

interest.

6 In 1998 KLM received the Ernst&Young Global Risk Manager of the Year Award.

7 Before September 1992 the contribution of the German Mark and the British Pound should be

added, since both currencies being part of EMS basically means they can be regarded one source

of risk.

8 This follows from applying iterated expectations: [ ]{ } [ ]{ }{ }rfEEfE iiii
~)(

~
)(

~ 22 ⋅−=⋅− ϕϕ .



1990 - 1992 1993 - 1995 1996 - 1998 FY all

Constant -0.67** 0.36 0.07 -0.08

(-2.14) (1.26) (0.19) (-0.44)

Jet Fuel -0.11** -0.11 -0.06 -0.11**

(-2.75) (-1.13) (-0.75) (-3.23)

DEM in $ 0.62* 0.64** 0.00 0.48**

(1.88) (2.38) (0.00) (2.73)

GBP in $ -0.09 0.27 -0.23 0.01

(-0.27) (0.85) (-0.57) (0.06)

German Government Bond 2.49** 1.60** -0.07 1.47**

(4.11) (3.30) (-0.09) (4.17)

Residual AEX Index 1.60** 1.44** 0.94** 1.17**

(9.00) (7.70) (7.22) (13.63)

σ (weekly KLM return, $) 7.92% 2.78% 4.30% 5.40%

Number of Observations 155 156 157 468
R2

0.45 0.36 0.26 0.33R  due to factors

Table 1: Determinants of KLM Share Price
t-values in brackets

*: Significant at the 10% level
**: Significant at the 5% level

This table shows the results of a regression with the weekly KLM total share return in dollar as the 
dependent variable. Explanatory factors are: jet fuel return, the exchange rate of the dollar to the Dutch 
Guilder, the exchange rate of the dollar to the British Pound, the return on the German government bond 
index and the residual local market index. 



RiskMetrics Component

VaR

Number of 
times VaR is 

exceeded

t-value Number of 
times VaR is 

exceeded

t-value

P=0.90 KLM 0.1106 0.77 0.0830 -1.23

British Airways 0.1000 0.00 0.0894 -0.77

Lufthansa 0.1085 0.62 0.0957 -0.31

American Airlines 0.1213 1.54 0.1085 0.62

United Airways 0.0872 -0.92 0.0723 -2.00 +
Delta 0.1170 1.23 0.1128 0.92

Average 0.1074 0.0936

P=0.95 KLM 0.0553 0.53 0.0532 0.32

British Airways 0.0574 0.74 0.0404 -0.95

Lufthansa 0.0532 0.32 0.0340 -1.59

American Airlines 0.0617 1.16 0.0404 -0.95

United Airways 0.0447 -0.53 0.0340 -1.59

Delta 0.0574 0.74 0.0489 -0.11

Average 0.0550 0.0418

P=0.975 KLM 0.0340 1.26 0.0340 1.26

British Airways 0.0191 -0.81 0.0277 0.37

Lufthansa 0.0277 0.37 0.0170 -1.11

American Airlines 0.0255 0.07 0.0213 -0.52

United Airways 0.0277 0.37 0.0149 -1.40

Delta 0.0234 -0.22 0.0319 0.96

Average 0.0262 0.0245

P=0.99 KLM 0.0234 2.92 - 0.0128 0.60

British Airways 0.0149 1.07 0.0149 1.07

Lufthansa 0.0191 1.99 - 0.0064 -0.79

American Airlines 0.0085 -0.32 0.0128 0.60

United Airways 0.0234 2.92 - 0.0085 -0.32

Delta 0.0170 1.53 0.0128 0.60

Average 0.0177 0.0113

+  : Significant overestimation of risk at 90% confidence level
-  : Significant underestimation of risk at 90% confidence level

This table shows the results for an out of sample test on RiskMetrics and the Component VaR. The test 
statistic is the number of times VaR is exceeded divided by the total number of observations. Exceeding 
VaR is defined as the return in the interval (t, t+1) being smaller than µt - Z(0.05)*σt, whereby µt equals 

the conditional mean at time t calculated as the exponentially weighted moving average mean (λ = 0.94). 
σt is the conditional standard deviation at time t calculated as the square root of the exponentially 

weighted average variance (λ = 0.94) as in RiskMetrics.The null hypothesis is that the test statistic is 
equal to one minus the confidence level of the VaR measure.

Table 2: Out of Sample test VaR
λ(mean) = 0.94, λ(variance) = 0.94, λ(regression) = 0.99



K
L
M

B
ritish

 A
irw

ays

L
u

fth
a
n

sa

A
m

erica
n

 A
irlin

es

U
n

ited
 A

irlin
es

D
elta

 A
irlin

es

J
et F

u
el

D
eu

tsch
e M

a
rk

 ($
)

B
ritish

 P
ou

n
d
 ($

)

G
overn

m
en

t B
on

d

R
es. M

a
rk

et In
d
ex

KLM 3.50** 0.62 1.40 1.84 3.51** 2.45* 0.67 0.62 1.62 10.95**

(2.87) (0.53) (1.10) (1.71) (2.87) (1.97) (0.58) (0.53) (1.38) (7.67)

British Airways 5.56** 2.33 4.79** 4.45** 2.39 0.62 2.56** 2.45* 4.51**

(4.65) (1.81) (4.37) (3.58) (1.89) (0.53) (2.14) (1.97) (3.69)

Lufthansa 2.46** 1.88 -0.44 1.51 -1.28 0.67 2.56* 1.40

(1.98) (1.78) -(0.36) (1.24) (-1.13) (0.58) (2.14) (1.11)

American Airlines 2.70** 6.33** 3.27* -1.48 0.46 2.33 7.96**

(2.38) (4.92) (2.49) (-1.22) (0.37) (1.81) (5.59)

United Airlines 4.79** 0.75 -1.07 -1.12 1.79 2.53*

(4.37) (0.67) (-1.04) (-1.06) (1.64) (2.08)

Delta Airlines 0.39 -1.38 -1.44 1.45 0.39

(0.31) (-1.18) (-1.20) (1.17) (0.31)

Jet Fuel 1.57 0.51 -0.49 -0.20

(1.32) (0.42) (-0.40) (-0.14)

Deutsche Mark ($) 10.72* -1.28 -0.89

(9.50) (-1.13) (-0.65)

British Pound ($) -0.33 -1.97

(-0.29) (-1.41)

Government Bond 0.03

(0.02)

Res. Market Index

Table 3: Exceeding VaR: Concurrence of Events
VaR confidence level 95%, λ(mean) = 0.94,  λ(variance) = 0.94

t-values in brackets

* Significant at 97.5% level
** Significant at 99% level

This table shows to what extent VaR levels are exceeded at the same time for the weekly returns of the series studied in the 
paper. Exceeding VaR is defined as the return in the interval (t, t+1) being smaller than µt - Z(0.05)*σt, whereby µt equals the 

conditional mean at time t calculated as the exponentially weighted moving average mean (λ = 0.94). σt is the conditional 

standard deviation at time t calculated as the square root of the exponentially weighted average variance (λ = 0.94) as in 
RiskMetrics. The test statistic is defined as the number of actual concurrent events minus the number expected given event 
independence.  
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Figure 1: Exposures KLM share
λ(regression) = 0.99

This figures shows the exposure of KLM stock to external factors. Exposures are estimated in the period January 1, 1990 until 
January 1, 1999. A rolling weighted least squares method is used, whereby recent observations are considered more valuable 
than remote observations. An exponential scale is applied with  λ  equal to 0.99.
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Mean 0.00 Mean 0.00

St. Dev. 1.06 St. Dev. 1.01

Skewness 0.03 Skewness -0.01

Kurtosis 3.17 Kurtosis 3.46

Jarque-Bera 0.60 Jarque-Bera 3.91

p-value J-B 0.74 p-value 0.14

Mean -0.01 Mean -0.02

St. Dev. 1.07 St. Dev. 1.02

Skewness 0.08 Skewness 0.05

Kurtosis 3.80 Kurtosis 4.23

Jarque-Bera 12.33 Jarque-Bera 28.32

p-value 0.00 p-value 0.00

Mean 0.01 Mean 0.02

St. Dev. 1.06 St. Dev. 0.99

Skewness 0.22 Skewness 0.37

Kurtosis 3.76 Kurtosis 3.97

Jarque-Bera >1000 Jarque-Bera 27.64

p-value 0.00 p-value 0.00

Mean -0.01 Mean 0.01

St. Dev. 1.09 St. Dev. 1.07

Skewness 0.22 Skewness 0.19

Kurtosis 3.77 Kurtosis 4.45

Jarque-Bera >1000 Jarque-Bera 41.87

p-value 0.00 p-value 0.00

Mean 0.00 Mean 0.00

St. Dev. 1.06 St. Dev. 0.96

Skewness 0.31 Skewness 0.31

Kurtosis 3.76 Kurtosis 3.71

Jarque-Bera 17.73 Jarque-Bera 16.25

p-value 0.00 p-value 0.00

Mean -2.51 Mean 0.01

St. Dev. 1.09 St. Dev. 1.08

Skewness 0.17 Skewness 0.14

Kurtosis 3.21 Kurtosis 3.11

Jarque-Bera 2.83 Jarque-Bera 1.74

p-value 0.24 p-value 0.42

Figure 2: Out of Sample Test VaR
λ(mean) = 0.94, λ(variance) = 0.94, λ(regression) = 0.99

Empirical Cumulative Distribution 
Standarized Weekly Dollar Returns

JP Morgan Riskmetrics

This figure illustrates the out of sample distribution of the airline shares. Estimates for mean and volatility are based on the 
observations until and including time t. The airline stock total return from t to t+1 is standardised according to these estimates. The 
empirical distribution of this out-of-sample standardised return is shown in the graphs. The distribution’s mean, standard error, 
skewness and kurtosis can be found besides the graph. 
The left-hand side shows returns standardised according to an exponentially weighted average mean and a RiskMetrics volatility 
estimate (λ=0.94).The right-hand side shows returns standardized according to a conditional mean and volatility based on the factor 
model. 
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Figure 3: Volatility Underlying Factors
 λ(variance) = 0.94
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This figure shows return volatilities for the underlying factors. The covariance matrix is calculated using 
historical returns and applying exponential weights. The λ is equal to 0.94. 

Figure 4: Marginal Value at Risk 
KLM Royal Dutch Airlines

λ(regression) = 0.99, λ(variance) = 0.94
VaR Confidence Level = 95%
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This figure shows the marginal Value at Risk for the KLM share in the period January 1, 1990 until January 1, 
1999. The marginal VaR is calculated in a two step approach. First, the sensitivities of the KLM share for the 
explanatory factors are estimated. A rolling weighted least squares method is used, whereby recent observations 
are considered more valuable. An exponential scale is applied with λ equal to 0.99. Second, the marginal VaR 
technique is applied to find the marginal contribution of each factor to overall VaR. The VaR confidence level is 
set at 95%.



Figure 5a: Component Value at Risk European Airlines
λ(variance) = 0.94, λ(regression) = 0.99

VaR Confidence Level = 95%

This figure shows the component VaRs for European airlines in the period January 1, 1990 until January 1, 1999. The 
component VaR is calculated in a two step approach. First, the sensitivities of the stock for the explanatory factors are estimated. 
A rolling weighted least squares method is used, whereby recent observations are considered more valuable. An exponential scale 
is applied with λ equal to 0.99. Second, the component VaR technique is applied to find the individual contribution of each factor 
to overall VaR. The VaR confidence level is set at 95%.
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Figure 5b: Component Value at Risk US Airlines
λ(variance) = 0.94, λ(regression) = 0.99

VaR Confidence Level = 95%

This figure shows the component VaRs for US airlines in the period January 1, 1990 until January 1, 1999. The component VaR 
is calculated in a two step approach. First, the sensitivities of the stock for the explanatory factors are estimated. A rolling 
weighted least squares method is used, whereby recent observations are considered more valuable. An exponential scale is 
applied with λ equal to 0.99. Second, the component VaR technique is applied to find the individual contribution of each factor to 
overall VaR. The VaR confidence level is set at 95%.


