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Chapter 1

Asthma

Immunological aspects

1.1. STRUCTURE OF THE AIRWAYS

The airways can be divided in the upper respiratory tract, including the nose, the pharynx,
and the larynx, and the lower respiratory tract, consisting of the trachea, bronchi, bronchi-
oles, and alveoli (Fig. 1). This structure provides an enormous surface area where the ex-
change of oxygen and carbondioxide, the function of the lungs, can take place. Respiratory
diseases may affect one or more of the different parts of the airways. For example, emphy-
sema is characterized by a decreased number of alveoli which also have a reduced elasticity
[1]. On the other hand, asthma, the main focus of this thesis, is considered to be a disease
affecting predominantly the bronchi and bronchioli [2].
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Figure L. Steucture of the human airways.
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The bronchus ean histologically be divided into a mucosa and a submucosa (Fig. 2) [3].
The bronchial mucosa consists of a lining layer of ciliated and non-ciliated epithelial cells,
the basement membrane, and the lamina propria. In the lamina propria, a dense network of
arterioles, capiliaries, and postcapiliary venules is embedded in collagenous, elastic, and
reticular fibers {4, 5]. The submucosa of the airways contains cartilage, glands, and smooth
muscle (Fig. 2). Nerves can be found both in the epithelium, lamina propria, and submeucosa
[6-8].

In asthmatic patients, several changes occur in the bronchi and this results in their clinical
syimptoms [9, 1G], But what is asthma and what exactly is going on in this disease?
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Figure 2, Light-microscopic photomicrograph of the human bronchus {magnification: 64x),

1.2, ASTHMA: AN INFLAMMATORY DISEASE OF THE AIRWAYS

The term: asthma was first used by Hippocrates (460-357 B.C.), who gave this name to
people suffering from “difficult breathing” (‘cio8j0’), Nowadays, asthma is one of the most
common chronic disorders in the Western World and affects almost 10% of the population
[L1]. Its prevalence, morbidity and mortality appear to be rising [2, 12-14]. From a simpli-
fied point of view, asthinatic patients may be categorized in fwo groups, The vast majority of
the asthmatic patients develops an allergic reaction after exposure to specific stimuli, so
called atlergens (e.g. house dust mite, pollen, animal dander). These patients are called aliergic
{extrinsic or atopic) asthmatics and have enhanced serum levels of allergen-specific immu-
noglobulin E (IgE). Allergic asthma often develops during childhood, and the symptoms
may show seasonal variation (due to the seasonal variation of allergens, like grass pollen, in
the environment) {11]. Allergic asthma shows a strong genetic predisposition and several
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studies have reported linkage of atopy genes to chromosome 5 (q23-31) or H {qi3) [15-17].
In a much smaller percentage of asthmatic patients (10-20%), serum IgE levels are not en-
hanced and therefore these patients are categorized as non-allergic (intrinsic or non-atopic)
asthmatics.

Because of the heterogeneity in asthmatic patients, it is difficuit to define asthia. Never-
theless, based on the common characteristics, the following corrent working definition of
asthma has been formed:

‘Asthma is a chronic inflammatory disorder of the airways in which many cells play a role,
inclading mast cells and eosinophils. In susceptible individuals this inflammation causes
symptoms which are usually associated with widespread but variable airflow obstruction
that is often reversible either spontaneously or with treatment, and causes an associated in-
creqse in airway responsiveness to a variety of stimuli’ [2].

The keywords in this definition, which are in italic, will be discussed in the next para-
graphs.

1.3. CLINICAL ASPECTS OF ASTHMA

Asthma is clinically defined by a reversible airway obstruction and a hyperreactivity of
the airways [18]. The airway obstruction is mainly the result of the contraction of smooth
muscle cells, the secretion of mucus, and enhanced vascular permeability with mucosal edema.
In contrast to some other airway disorders like chronic bronchitis and emphysema, the air-
way obstruction in asthma is usually completely reversible, and between exacerbations the
patient may have no airflow obstruction, The airway obstruction is considered to be revers-
ible if the patients forced expiratory volume in one second (FEV)) increases by at least 15%
after inhalation of smooth muscle refaxing drugs, the B;-agonists.

Hyperreactivity is defined as a decreased threshold of airway narrowing in response to a
variety of non-specific stimuli, which under healthy conditions do not evoke an airway ob-
struction [2]. These non-specific stimuli include fog, tobacco smoke, ozone, viral infections,
chemical irritants, inhaled pharmacological agents (such as histamine or methacholine), and
physical stimuli {such as exposure to cold air and exercise) [19].

Astlunatic reactions can clinically be divided in an early asthmatic reaction (EAR) and a
late phase asthmatic reaction (LAR) {20, 21]. The EAR develops immediately after the inha-
lation of allergens and is characterized by bronchoconstriction. This reaction, which is maxi-
mal at 15-30 min and resolves within {-2 h, is due to the release of broncho-active sub-
stances, such as histamine and feukotrienes (LT}, resulting in the contraction of smooth muscle,
the secretion of mucus and vascular leakage [20]. In approximately half of the asthmatic
patients, (his EAR is followed by a LAR which begins at 3-4 h, is maximal at 6-12 h and
generally resolves within 24 h. The LAR is accompanied by an infiltration of leukocytes in
the airways [20].
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1.4. IMMUNOLOGICAL ASPECTS OF ASTHMA

Nowadays it has widely been accepted that a chronic inflammation of the airways under-
lies the clinical features of asthma [17]. Indeed, bronchial tissue of asthmatic patients shows
intense infiltration of leukocytes, especially eosinophils and T Iymphocytes, damage and
detachment of the bronchial epithelium, thickening of the epithelial basement membrane,
edema of the submucosa, mucus gland hyperplasia, and smooth muscle hypertrophy [9, 10,
22-28].

The inflammatory response is the resnit of a complex interaction between the allergen(s),
celis of the immune system, and their mediators (Fig. 3).
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Figure 3. Schematic representation of the inflammatory process in airways of asthmatic patients, The initial
event in the allergic immune response is thought to be presentation of antigen by APC. Subsequent recognition of
the MHC class ilI-bound antigen by the CD4-positive T lymphocytes and simultaneous signaling via co-stimula-
tory molecules resulis in (he release of cytokines and the development of Th2 cells, which are characterized by
production of cytokines like IL-4, IL-3, and IL-13 {29-32], These cytokines play an important role in the matura-
tion of naive T lymphocyies towards the 'Th2 iymphocyte phenotype, in the recruitnient and survival of eosino-
phils {together with GM-CSF and IL-3), support mast celf growih, and are required for isolype switching of B
lymphocytes to TgE production [33-40]. The IgE present in the asthimatic airways can bind with high affinity to
specific receptors (FeeRI) expressed on the surface of mast cells, basophils, monocytes, APC, and eosinophils [41,
42]. Binding of an inhafed allergen to receptor-bound IgE and subsequent cross-linking of these receptors resulls
in the activation of the cell and thereby in the release of inflamkmatory mediaters, including histamine, feukotrienes,
and prostaglandins. These mediators can directly act on airway smooth muscle and vasculature, and are respon-
sible for the airway obsiruction seen during the EAR [43].
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Eosinophils

Airways of asthmatic patients show an increased number of eosinophils, both in bron-
chial biopsies, bronchoalveolar lavage (BAL) fluid, and sputum [44-47]. Furtherniore, the
cosinophils in the asthmatic airways are often degranulated and hypodense, suggesting that
they are in an activated state [48]. The number of eosinophils and their products have been
shown to correlate signiticantly with the severity of the disease [45, 49-53]. Besides the
elevated number of eosinophils under stable conditions, eosinophil numbers even further
increase in the LAR after allergen provocation [54].

Several observations indicate that eosinophils play an important role in the epithelial
damage seen in asthmatics. First, several in vitro studies have shown that activated eosino-
phils can alter the epithelial integrity by disruption of epithelial cells [55-57]. Second, it was
shown that the cationic granule proteins of eosinophils are highly toxic to the respiratory
epithelimmn [55-59], and increased levels of these proteins have been found in the BAL fluid
of asthmatics compared to healthy subjects [60, 61]. Finally, bronchial biopsies of asthmatics
show increased numbers of activated eosinophils and an association between eosinophils
present near the epithelial layer and epithelial disruption has been found [10, 23, 611.

In addition to the cytotoxic proteins derived from the eosinophil granule, membrane phos-
pholipid-derived mediators may also play arole in the pathogenesis of asthma. Upon activa-
tion, eosinophils produce considerable quantities of LTC, and platelet-activating factor {PAF},
factors that are able (o contract smooth muscle, increase vascular permeability, evoke va-
sadilatation, enhance mucus secretion and increase bronchial hyperresponsiveness [62, 63].
Eosinophils express FceR1 on their surface and inhaiation of an allergen may therefore result
in the activation of the eosinophils. The release of LTC, and PAF, together with other media-
tors, may subsequently be responsible for the airway obstruction seen during the EAR [43].

Eosinophils are also a newly recognized source of several cytokines, including interleukin
(IL}-1a, IL-3, IL-4, IL-3, IL-6, IL-8, granulocyte/macrophage colony-stimulating factor (GM-
CSF), tumor necrosis factor (TNF)-o, and macrophage inflammatory protein-to (MIP-10;)
[39, 64-73]. Since many of these cytokines are required for recruitment, activation and sur-
vival of eosinophils, an autocrine regulation may prolong the eosinophilic inflammation in
the asthmatic airways, thereby contributing to the chronicity of the inflammatory reaction.

The recruitment of eosinophils into the airways requires the presence of chemokines and
adhesion molecules. Several chemokines, including eotaxin, IL-5, monocyte chemoattractant
protein (MCP)-3, MCP-4, MIP-o. and RANTES (Reguiated upon Activation, Normal T
cell Expressed, and presumably Secreted) are involved in the recruitment of eosinophils into
the airways, predominantly via activation of the CCR-3 receptor [74-79]. Interaction be-
tween very late activation antigen (VL.A)-4 on eosinophils and its ligand vascular cellular
adhesion molecule (VCAM)-1 on endothelial cells seems to play a role in the selective re-
cruitment of eosinophils into the airways [80-83]. Expression of VCAM-1 is up-regulated by
IL-4, and immunohistochemical studies have shown an increased expression of VCAM-1 in
asthmatic airways [81, 83].

Lymphocytes

T lymphocytes probably play a role in all inflammatory responses that are antigen driven,
in the sense that they are the only cells that can recognize and respond directly to such
antigens. T lymphocytes can be divided into two major functional subgroups: CD4-positive
helper T cells and CD8-positive cytotoxic T cells (Fig. 4).
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Figure 4. I’ cell subsefs and their functions,

Helper T cells (CD4-positive) recognize antigen in the context of MHC class II mol-
ecules and this results in their activation, proliferation, and release of cytokines, Based on
their cytokine profile produced, at least three distinct subsets can be distinguished: ThO, Thi,
and Th2 [29, 84]. Thl cclls predominantly secrete IL-2 and interferon-y (IFN-v), whereas
Th2 cells produce IL-4, IL-5, IL-9, IL-10 and 1L.-13 (Fig. 4}. Other cylokines, like 11.-3 and
GM-CSF, can be secreted by both subtypes. ThO cells are able to produce all of these cytokines.
The development of Thl cells is strongly promoted by TFN-y and IL.-12, whereas I-4, IL-
10, and prostaglandin (PG) E, stimulate the development of Th2 cells [85, 86], IFN-yinhib-
its the development of Th2 cells, whereas Thi cell development is inhibited by IL-10 [86].
Thus, products of Thl cells have the capacity to inhibit the growth of Th2 cells, and vice
versa (Fig. 4). Recently, another CD4-positive T cell subset has been described [87]. This
subset, designated T regulatory cells (Trl), was shown to produce high levels of 1L-10, to
suppress antigen-specific inunune responses and to down-regulate pathological immune re-
sponses i vivo [87].

Th2 cells, through their release of I1L-3, 1L-4, IL-5, and IL-9, faver the isotype switch of
B lymphocytes to IgE [37], support mast cell growth, and promote the recruitment, activa-
tion and survival of eosinophils {39, 88, 89], and are therefore strongly implicated in the
pathogenesis of asthma. Moreover, high levels of IL-9 may contribute to bronchial
hyperresponsiveness [90]. The apparent predominance of Th2 cells in asthma is supported
by the observation that astlunatic airways show increased numbers of cells expressing Th2-
like cytokines [30, 91-93]. In addition, increased levels of Th2-like cytokines can be de-
tected in BAL fluid from asthmatics compared to healthy individuals [94]. However, Th2
cells comprise a minor population in the airways of asthmatic patients and other T tympho-
cytes present within the airways may release IFN-y upon activation [92, 95]. A preliminary
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stady showed that, after allergen challenge, not only IL-4 but also IFN-y was increased in
BAL fluid {96]. In a murine model of asthma, it was shown that the development of airway
hyperresponsiveness was dependent on IFN-y and independent of eosinophil infiltration [97].
Furthermore, IL-4 knockout mice sensitized and challenged with ovalbumin do not develop
airway hyperresponsiveness [98, 99]. Therefore, it has been suggested that [1.-4 is essential
in the development and initiat phase of the allergic reaction, but its function in the effector
phase remains uncertain [97-99].

The total numbers of both CD4-positive and CD8-positive T lymphocytes in the bron-
chial mucosa of asthmatics do not differ significantly from healthy subjects and in both groups
CD4-positive cells predominate over CD8-positive cells {100-102]. Only cells in the biop-
sies of asthmatics showed evidence of activation, as determined by the expression of the IL.-
2 receptor (CD25) and MHC class H and VLA-1 molecules [31, 101, [03-105]. Interest-
ingly, in a study using asthmatic patients known to develop a LAR, a selective increase in
CD4-positive T cells in BAL fluid 48 h after allergen challenge was reported [106]. This
finding complements those of decreased CD-positive T cells in peripheral blood after aller-
gen challenge in atopic asthmatics and suggest that selective recruitment of CD4-positive T
cells to the lungs may occur in association with the LAR to allergen challenge [107, 108].
The recent observation that the CCR-3 receptor is, in addition to basophils and eosinophiis,
sefectively expressed on Th2 cells, and not on Thi celis or CD8-positive T cells, ciearly
indicated that this receptor is of importance in allergic reactions [ 109].

CD8-positive T cells recognize antigens in the context of MHC class I molecules. These
cells are involved in the elimination of cells expressing new antigens as a result of bacterial
or viral infection or malignant ransformation (Fig. 4). The role of CD8-positive cells in
asthma is not completely clear yet. However, in a Th2-like environment virus-specific CD8-
positive cells may decrease their IFN-y production and increase their production of IL-5,
which may cause eosinophilia afier viral challenge [110, 111]. Such results may explain the
link between viral infections and bronchial asthma, as an TL-4-dependent switch to CD8-
positive cells secreting IL-5 may not only exacerbate asthma by recruiting eosinophiis in to
the airways, but impaired IFN-y production may also lead to delayed viral clearance [110-
112]. In addition, there is growing body of evidence suggesting that CD8-positive T ceils
play an important role in regulating IgE responses. The natural immune response lo inhaled
protein antigens includes a MHC class I-restricted CD8-positive T cell component, the ap-
pearance of which is associted with active suppression of IgE antibody production [113].
Furthermore, it has been shown that antigen-specific CD8-positive T cells inhibited IgE re-
sponses and IL-4 production by CD4-positive T cells in rats [114].

B lymphocytes and plasma cells are the producers of antibodies, Initially the B cell pro-
duces intracellular antigen-specific IgM, which then becomes bound to the surface of the cell
and act as the antigen receptor for that cell. On exposure to that antigen and factors reieased
by helper T celis, B celfs become activated, may switch their isotype production, start to
divide and differentiate in memory cells or plasma cells, Isofype-switching to IgE, as occurs
in the development of allergy, requires the presence of IL-4 produces by Th2 cells.

B lymphocytes are rare in the bronchial mucosa and BAL fluid, both in asthmaltics and in
healthy subjects [115]. In contrast, distinct B cell areas can be detected in BALT [i16]. In
peripheral blood of allergic asthmatics, increased numbers of B cells bearing the low-affinity
IgE receptor (CD23) can be found, indicating B cell activation [104].
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Mast cells

The human respiratory tract is richly endowed with mast cells, particularly beneath the
bronchial epithelium and in the alveolar walls. There are two types of mast cells that can be
distinguished by their granule content of neutral proteases. Mast cells located at mucosal
surfaces contain predominantly tryptase (MCy), while at connective tissue sites mast cells are
enriched with chymase and carboxypeptidase A in addition to tryptase (MCyc) {117]. In-
creased numbers of mast cells (predominantly from the MCy subset) have been found in
patients with asthma, and this is accompanied by an increase in both cell-associated and cell-
free histamine and tryptase in the BAL fluid [21, 118, 119]. Mast cells recovered from the
airways of asthmatics by BAL exhibit spontancous release of histamine and PGD; and also
exhibit increased responsiveness to allergen [120]. This suggests that mast cells in asthma
are primed for mediator release, possibly by cytokines like IL-4 and IL-10.

In human asthma, the EAR is largely caused by the Igki-dependent release of bronchoc-
onstrictor mediators from activated airway mast cells. Indeed, after allergen chalienge, in-
creased levels of histamine, tryptase, PGD,, and LTE; (the terminal metabolite of LTC,) have
been detected in BAL fluid [21, 119, 121].

Mast cells may also play a role in maintaining the chronicity of the inflammatory re-
sponse by producing a variety of cytokines, including IL-4, TL-5, IL-6, IL-8, GM-CSF, and
TNF-g, [122]. Since 1L-4 selectively stimulates the development of Th2 lymphocytes [29}
and IL-5 promotes recruitment and survival of eosinophils (39, 88], it has been suggested
that mast cells may alse be important in the initial stage of the disease [17].

Mast cells can often be found in close proximity with sensory nerves and therefore an
interaction between these two cells has been suggested [123, 124]. Indeed, tachykinins re-
leased from sensory nerves have been shown to activate human lung mast cells to release
histamine [125].

Dendritic cells

Dendritic cells (DC) are the most potent antigen-presenting cells (APC) of the body and
are unique in their capacity {o stimulate naive T cells [126, 127]. In the human lung, DC are
predominantly located in epithelial and subepithelial tissue of the bronch(iol)us and the bron-
chus-associated lymphoid fissue (BALT) [ 128]. Although DC are a heterogeneous popula-
tion of cells, typical immunocytological features are their long cytoplasmic extensions and a
strong expression of major histocompatibility complex (MHC) class Tand {I molecules and
co-stimuiatory molecules {(interceluiar adhesion molecule-1 (FCAM-1; CD54), B7-1 (CD80),
and B7-2 (CD86)) {116, 129, 130]. Ultrastructural features of DC are the presence of intra-
cytoplasinic structures, the so-called Birbeck granules. Other features often used to charac-
terize DC are the expression of CDia, L25 or S100, but these markers are not necessarily
present on each DC subtype [128§, 131].

Increased numbers of DC have been described in the epithelium and lamina propria of
asthmatic patients compared to healthy controls { 132-134]. However, although it is clear that
DC play an important role in the presentation of antigens to lymphocytes, less is known
about their precise role in asthma.

Macrophages and monocytes

The airway macrophage is the most numerous cell within the airway lumen, accounting
for 80-90% of the airway cells in BAL fluid in both healthy and asthmatic subjects [28].
Macrophages and monocytes can be activated in an IgE-dependent manner via FceRII (CD23)
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to release a variety of mediators, These mediators include lipid mediators like LTB,, LTC,,
PGD, and platelet-activating factor, cytokines like 1L-1B, TNF-o, and GM-CSF, reactive
oxygen species (such as Oy), and hydrolytic enzymes [ 135-138]. Bronchial biopsies of asth-
matic patients were found to have increased numbers of total macrophages [115], but a re-
duced number of immunosuppressive macrophages comnpared to healthy individuals [139].
The contribution of macrophages to the pathogenesis of asthma, however, still remains to be
determined.

Neutrophils

‘The evidence that neutrophils by themselves play an imporiant role in the pathogenesis of
asthma is controversial. Comparison of the number of neutrophils in the bronchial mucosa or
BAL fluid of stable asthinatics compared to healthy controls did not reveal significant ditter-
ences [54, 115, 140]. However, some recent siudies suggest that neutrophilia may be an early
event preceding eosinophilia. Montefort ef al. demonstrated an increased number of neutro-
phils in the submucosa of asthmatics 6 h after atlergen chatlenge, and at this time point the
magnitude of the neutrophil response was more pronounced than observed for eosinophils
[141]. Finsnes er al, showed, in a rat model for asthima, an early but transient increase in
neutrophils in BAL fluid, which preceded the influx of eosinophils [ [42]. Clearly, the role of
the neutrophil in asthma needs further study.

Other cells and mediatars

In addition to leukocytes, it is now generally accepted that also structurai cells of the
bronchus are involved in the initiation and perpetuation of inflammatory reactions within the
airways. In this regard, bronchial epithelial cells are of particular importance. These cells
form the interspace between the internal milieu of the lung and the inhaled air, and thus will
be exposed to an array of stimuii present within the air. It has been shown that bronchial
epithelial cells produce a variety of mediators that may contribute to the pathogenesis of
asthma (reviewed in [1437). The structure and function of the bronchial epithelium as well as
the pathophysiologic changes observed in asthma will be discussed in chapter 4.

Loss of epithelial integrity or epithelial damage may expose intra-epithelial, nonmyeli-
nated, sensory nerves, which contain neuropeptides such as substance P and neurokinin A
{144, 145). Excitation of sensory nerves by intlammatory mediators might produce a retro-
grade conduction with local release of neuropeptides, a mechanism called the ‘local axon
reflex’ {146]. Release of neuropeptides may subsequently result in contraction of smooth
muscle cells, microvascular leakage, vasodilation, secretion of mucus, and cough, a process
known as neurogenic inflammation [ 144, 145, 147]. The effects of neuropeptides are limited
by rapid degradation by peptidases like neutral endopeptidase (NEP) [148]. Iﬁhibition of
NEP, as has been shown to occur by viruses [149], cigarette smoke [150], and chemical
irritants [151], may therefore contribute to enhanced neurogenic inflammation, The innerva-
tion of the human airways and its possible role in asthma will be discussed in chapter 2.
Peptidases will be discussed in detail in chapter 3.

Glucocorticoid therapy: suppression of the immnune response

Asthmatic airways are chronically inflamed, even when patients are asymptomatic, and
therefore anti-inflammatory drugs such as glucocorticoids should be used early in the course
of the disease. Several studies have shown that glucocorticoids improve the clinical signs of
asthma, and decrease the level of bronchial responsiveness, the requirements for other drugs
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like B;-agonists and oral steroids, and the inflammatory process [152-156]. Glucocorticoids
and their beneficial effects in asthima will be discussed in more detail in chapter 5.
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Chapter 2

Autonomic innervation of human airways
Structure, function, and pathophysiology in asthma

The human airways are innervated via efferent and afferent autonomic nerves, which
regulate many aspects of airway function, including airway smooth muscle tone, airway
secretion, bronchial circulation, microvascular permeability, and the recruitiment and
subseguent activation of inflammatory cells [1, 2]. In addition to the classic cholinergic and
adrenergic innervation of the airways, neural mechanisms that arc not blocked by cholinergic
or adrenergic antagonists are present | 1-4]. Originaily, it was thought that this non-adrenergic
non-cholinergic (NANC) system was an anatomnically separate nervous system, but at present
it is clear that at least certain NANC neural effects are mediated by the release of
neurotransmilters from classic parasympathetic (cholinergic) or sympathetic (adrenergic)
nerves. The inhibitory NANC (i-NANC) system, which is the only neural bronchodilator
pathway in the human airways, is co-localized with acetylcholine in the parasympathetic
nerves [5, 6], NANC vasoconstrictor responses are mediated by the release of neuropeptide
Y from adrenergic nerves [7]. Finally, the excitatory NANC (e-NANC) system {which
activation results in bronchoconstriction) is located in a subpopulation of non-myelinated
sensory C-fibers [8].

inflammatory cells airway nerves

mediators

{cytokines, growth factors) '

~_

neurotransmitiers
(SF, NKA, VIF}

Figore 1. Interaction between airway nerves and inflammatory cells,

There is evidence that neural control of the airways may be abnormal in asthmatic patients,
and that ncurogenic mechanisms may contribute to the pathogenesis and pathophysiology of
asthma. A complex inferaction between cells and mediators of the immune system and the
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nervous system is present within the ahrways (Fig, 1), Inflammmatory mediators may maodulate
or facilitate the release of newrotcansmitters from airway nerves, whereas neural mechanisms
may contribute to the inflammatory process in the airways by cavsing neurogenic inflammation,

2.1. PARASYMPATHETIC NERVOUS SYSTEM

Parasympathetic nerves are the dominant neural pathway in the control of airway
smooth muscle tone and secretion in human airways. Their major neurotransmitier is acetyl-
choline (Ach). It acts via binding to the muscarinic receptors, of which at least 3 subtypes can
pharmacologically be recognized in the human tung {9]. Excitatory M, receptors are present
in airway parasympathetic ganglia and may facilitate neurotransmission, which is mediated
via nicotinic receptors (Fig. 2) [L0]. In contrast, M, receptors on postganglionic nerve termi-
nals in human ceniral airways and subsegmental and terminal bronchi inhibit the release of
Ach, thus reducing the stimulation of postjunctional M; receptors which constrict airway
smooth muscle (Fig. 2) [11-14].

preganglionic l
nerve

parasympathetic
ganglion

postganglionic =

airway smooth muscle

Figure 2. Muscarinic recepfor subtypes In the human airways. M, receptors in parasympathetic ganglia may
facilitate nevrotransmission. In contrast, M, receptars inhibit the release of Ach, thereby reducing the stimulation
of postjunctionat M receptors on airway smooth muscle.
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Several mechanisms may contribute o cholinergic bronchoconstriction in asthma. First,
asthmatic patients may have an increased cholinergic reflex bronchoconstriction due to
stimulation of sensory receptors in the airways by inflammatory mediators like histamine,
bradykinin, and prostaglandins (PG) [13, 15, 16]. Second, the release of Ach may be increased
in asthmatics. Several mediators kiown to be increased in asthinatics (such as tachykinins,
thromboxane, and PGD,} have been shown to facilitate Ach release from postganglionic
nerves in the airways [17, 18]. Third, evidence for a dysfunciion of M, receptors has been
found [19, 20]. Such a defect may then result in exaggerated reflexes in asthma, since the
normal feedback inhibition of Ach release may be lost (Fig. 2). Some recent studies suggest
that major basic protein, released by eosinophils, may contribute to the dysfunction of the M,
receptors §21-23]. Interestingly, in asthmatic patients many eosinophils and their granule
proteins are seen in association with airway nerves [23]. It has also been shown that viral
infection may result in a loss of M, receptor function, due to the action of viral neuraminidase
on the sialic acid residues of M; receptors, which are necessary for their function {24, 25].
Receutly, it has been shown that immunoglobulin E (IgE) may facilitate Ach release from
cholinergic nerves, an effect that also appears to be related to M, receptor dysfunction [206].
Finally, inflammatory mediators may directly increase the sensitivity of human airway smooth
muscle cells to cholinergic stimulation resulting in ant enhanced bronchoconstriction [27].

2.2, SYMPATHETIC NERVOUS SYSTEM

The sympathetic or adrenergic nervous system is less prominent than the parasympathetic
nervous system within the human airways. Its main neurotransmitters are noradrenaline and
neuropeptide Y [1, 28]. Noradrenalin is able fo activate - and B-adrenergic receptors on
target cells in the airways. There is a sparse adrenergic innervation of the human airways,
with adrenergic fibers especially present in close association with submucosal glands and
bronchial arteries. Airway smooth muscle does not seem to be innervated by the adrenergic
nerve system, but it is possible that adrenergic nerves may influence bronchomotor tone
indirectly via pre-junctional o- and B-adrenergic receptors [29-33].

The o,-adrenergic receptor, which mediates the contraction of smooth muscle, is relatively
sparse and may only be demonstrated under certain conditions {34-38]. Prejunctional o),-
adrenergic receptors (autoreceptors) may inhibit the release of both norepinephrine and of
neuvropeplide Y (NPY) from adrenergic nerves and the release of tachykinins from sensory
nerves [39-41]. Cholinergic neurotransmission may aiso be inhibited via prejunctional o,-
adrenergic receptors [39].

B-adrenergic receptors, which mediate bronchorelaxation, are widely distributed in the
human lung [36, 42-45]. At least three B-adrenergic receptors can be distinguished: -, B,
and Bs-adrenergic receptors [46-49]. In the human lung, B-adrenergic receptors on smooth
muscle cells are entirely of the §,-subtype and their number increases towards the peripheral
airways {36, 37, 50]. The epithelial and mast ceil §-adrenergic receptors are also of the [3,-
subtype, whereas in human submucosal glands and alveolar walls, receptors of the 3,-subtype
have afso been found [36]. Thus far, no fi-adrenergic receptors have been detected in the
human lung [47-49].

A reduced respiratory B-adrenergic receptor function in asthma has been postulated [34].
Such a defect wouid lead to impaired relaxation of airway smooth muscle and could increase
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cholinergic tone and mediator release from mast cells, Investigations inlo the function of 3-
adrenergic receptors in asthmatics, however, have shown contlicting resulis. Several
investigators reported decreased B-adrenergic receptor function in isolated airways of asthmatic
patients [31-53], whereas others found normal relaxations of airways smooth muscle from
asthmatics {54, 551. Studies on polymorphisms in the §,-adrenergic receptor gene have shown
that the frequency of most polymorphisims (Gly 16, resulting in enhanced agonist-promoted
down-reguiation; Glu27, resulting in resistance to down-reguiation; and Ilel 64, resulting in
altered coupling to adenyl cyclase) is not different between asthmatic patients and healthy
controls {56-58]. However, some recent studies indicate that polymorphic forms may promote
asthmatic phenotypes or influence the response {o B-agonist therapy [59-611. Expression of
mRNA encoding the B,-adrenergic receptor has been reported to be increased in patients
with asthma {62]. However, the density of the receptor expression in asthmatic patients is not
different from those observed in healthy subjects {63, 64]. Lack of B,-advenergic receptor
dysfunction may be demonstrated most convincingly by the fact that B-agonists have excellent
bronchodilatory effects in asthmatic patients.

In addition to norepinephring, adrenergic nerves contain NPY, a 36 amino acid peplide
which is a cotransmitter with norepinephrine and usually amplifies its effects [4]. NPY, which
is part of the e-NANC nervous system, has no direct effect on airway smooth muscle but may
cause bronchoconstriction via release of prostaglandins [65]. In addition, NPY is a potent
vasoconstrictor in some vascular beds [4, 66]. NPY may also moduiate immune cell functions,
such as T cell adhesion to fibronectin {67, 68].

In asthmatic patients, no difference in the number of NPY-immunoreactive nerves in the
airways has been found compared to healthy controls {69]. In contrast, serum levels of NPY
have been shown to be increased during exacerbations of asthma [701.

2.3, INHIBITORY-NANC NERVOUS SYSTEM

The i-NANC nervous system is the only neural bronchodilator pathway in the human
airways. Anatomicaily, it is co-localized with acetylcholine in the parasympathetic nerves [5,
6]. Neurotransmitters of the i-NANC system include neuropeptides such as vasoaciive
intestinal peptide (VIP), peptide histidine methionine (PHM), and pituitary adenylate cyclase
activating peptide (PACAP) {71, 72], and nitric oxide (NO) [73-76).

2.3.1. Vasoactive intestinal peptide and peptide histidine methionine

VIP is a 28 amino acid peptide, which acts through binding to the VIP recepters [3].
Receptors for VIP are localized in pulmonary vascular smooth muscle, airway smooth muscle
of large, but not small airways, airway epithelium, and submucosal glands [77-80). At present,
at least two VIP receptors can be distinguished [81-84]. Binding of VIP to its receptors
{which is dependent on its C-terminal part [85]) activates adenyl cyclase, resubting in elevated
cyctic AMP levels [86]. The effects of VIP are, therefore, often similar to the effects of §-
adrenergic receptor agonists. VIP is one of the most potent relaxants of airway smooth muscle,
It may be co-released from cholinergic nerves (together with NO) and uct as functional
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antagonist of cholinergic bronchoconstriction. In addition, VIP and NO may act prejunctionally
to inhibit Ach reiease (Fig. 3).
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Figure 3, Functional antagonism of cholinergic neurotransmission. VIP and NO, coreleased from cholinergic
nerves, may act as functional antagonists of cholinergic bronchoconstriction and may act prejunctionally to inhibit
Achrelease [87]. In asthmatic airways, VIP and NO may more rapidly be inactivated, thereby leading to exaggerated
bronchoconstriction.

Besides effects on smooth muscle, VIP potently stimulates mucus secretion [88] and is a
potent vasodilator [89, 90]. Interestingly, an increased number of VIP-positive nerves can be
found around glands of patients with chronic bronchitis or hypertrophic rhinitis, suggesting a
role for VIP in sputum production and hypersecretive changes [91, 92]. VIP also has several
immunomodulatory functions (reviewed in [93]). These effects include inhibition of mediator
release from mast celis [94], inhibition of T lymphocyte proliferation, IL-2, IL-4, and IL-10
production [95-97], regulation of isotype-switching in B lymphocytes [98]1, and stimulation
of IL-6 and IL-8 release from human bronchial epithelial cells [99].

PHM is produced by alternative splicing of the gene encoding VIP {3, 100]. PHM
stimulates adenyl cyclase and appears to activate the same receptor as VIP [78]. Therefore,
the effects are similar to the effects of VIP, although some differences in potencies have been
described [1, 101, 102].
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2.3.2. Nitric oxide

NO appears to be the major neurofransmiiter of i-NANC nerves in human airways [73-
76]. NO is formed during the conversion of L-arginine and oxygen to L-citrulline by the
enzyme nitric oxide synthase (NOS). After production, NO is released by simple diffusion.
NOS-containing nerves can be found in tracheal and bronchial smooth muscle, around
submucosal glands and around blood vessels [71, 103]. As mentioned above, NO may be
coreleased with Ach and VIP, and has potent smooth muscle relaxing properties. Furthermore,
increased NO production in the airways may. result in hyperemia, plasma exudation, and
mucus secretion [ 104, 105]. NO also has been implicated in skewing T lymphocytes towards
a Th2 phenotype, through inhibition of Th cells and their production of IFN-y[106].

Whether i-NANC responses are impaired in asthma is not clear. In patients with severe
asthma, immunohistochemistry showed a striking depletion of VIP-positive nerves, but this
may be due to rapid degradation of VIP during the processing of the biopsies [107, 108].
Indeed, no differences in VIP-immunoreactivity in fracheal or parenchymal tisstre was observed
between healthy subjects and asthmatic patients [109]. Also, no difference in VEP-receptor
expression was observed between healthy subjects and asthmatic patients [80]). NANC
bronchodilation has been demonstrated in human airways in vive but does not appear to be
defective in patients with mild asthma [51, {10]. Nevertheless, decreased plasma levels of
V1P have been described during exacerbations of asthma {70]. Studies using guinea pigs
have shown that antigen exposure results in impairment of neural NO-mediated retaxation
[L11, 112], This effect was not due to reduced expression of NO synthase, but probably
reflects rapid inactivation of NO by free radicals from inflammatory cells [113], Similar,
rapid degradation of VIP by mast cell tryptase [114-116] or other peptidases may result in
exaggerated cholinergic neural bronchoconstriction (Fig. 3).

2.4. EXCITATORY-NANC NERVOUS SYSTEM

Excitatory NANC bronchoconstrictor responses are believed (o be mediated via the release
of neuropeptides from a subpopulation of non-myelinated sensory C-fibers in the airways. C-
fibers of this nociceptive sensory nervous system transmit the sensations of itch and pain and
are associated with tissue injury.

C-fibers are stimulated both by exogenous substances, such as cigarette smoke, capsaicin
{the pungent principle of red pepper), or inhaled irritants, and by endogenous substances,
such as histamine, bradykinin, and prostaglandins [£17]. Upon stimulation, C-fibers transmit
information to the central nervous system, where reflex responses may be evoked. In addition,
neuropeptides are released from the peripheral ends of these afferents into the airway
microenvironment, where they can bind to specific receptors and exert their effects (the so
called ‘local axon reflex’) [118]. Among the best-studied newropeptides of sensory nerves
are the tachykinins (TK) substance P (SP) and neurokinin A (NKA), and calcitonin gene-
related peptide (CGRP). Recently, secretoneurin has also been found to be a neurotransmitter
of sensory nerves [119].
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2.4.1, Tachykinins
2.4.1.1. Structure, localization and receptors

TK are a family of peptides with the common C-terminal sequence Phe-X-Gly-Leu-Met-
NH,; £3] At present, five tachykinin peptides have been identified: SP, NKA, neurokinin B
(NKB), neuropeptide K (NPK}, and neuropeptide-y (NP-v). Two distinct preprotachykinin
(PPT) genes control the synthesis of TK peptides [3]. The PPT-A gene produces three mRNA
by alternative splicing: oPPT-A encoding only SP; BPPT-A encoding SP, NKA, and NPK;
and YPPT-A encoding SP, NKA, and NP-y. The PPT-B gene encodes NKB.

Nerve fibers containing TK have been detected in the human airways by immuno-
histochemistry [8, 120-126]. SP-immunoreactive nerves can be found beneath and within the
airway epithelivm, acound mucosal atterioles and submucosal glands, within bronchial smooth
muscle and around local parasympathetic ganglia. A similar pattern is found for NKA-
immunoreactivity, indicating co-localization of both TK. However, SP- or NKA-
immunoreactive nerves ave relatively sparse compared to VIP-immunoreactive nerves [69, 1231,

Three mammalian neurokinin (NK) receptors have been cloned and characterized thus
far [127, 128]. NK, receptors are activated preferentially by SP (>NKA>NKB), NK, receptors
by NKA (>SP>NKB), and NK; receptors by NKB (>NKA>SP), Ail NK receptors are members
of the snperfamily of guanine nuclectide binding protein-coupled receptors. They are
glycoproteins with seven putative alpha-helical transmembrane segments, an extracellular
amino-terminus and an intracellular carboxy tail. The amino acid sequence of each receptor
type is well conserved among species, but species-dependent pharmacological heterogeneity
is evident [127-129].

In human airways, only SP and NKA are known to be present and the expression of NK
and NK; receptors predominate in various target cells of the airways. In general, NK, receptors
are primarily responsible for mediating the inflammatory effects of TK, such as stimulation
of mucus secretion and microvascular leak [130, 131], whereas NK, receptors mediate
bronchoconstriction [132-134].

The localization of NK, receptors in the airways, as detenmined by autoradiography,
shows a distribution that paratlels the known actions of TK. NK, receptors are present on
smooth muscle, pulmonary vessels, airway epithelium and submucosal glands [135, 136].
NK, receptor expression in the human fung has not yet been carefully characterized. However,
in virro studies have indicated that the contractile effects of TK on smooth muscle are mediated
maiitly, bul not exclusively, by NK, receptors {132-134}.

2.4.1.2. Effects of tachykinins

Upon refease by sensory nerves and subsequent activation of specific NK receptors, TK
are able to exert a wide variety of effects. Among the possible target cells are smooth muscle
cells, submucosal glands, epitheliai cells, blood vessels, nerves, and cells of the immune
system.

Effects on airway smooth muscle
Studies using isolated human airways have shown that both SP and NKA, but not NKB,
are able to contract human bronchi and bronchioli [124, 137-140]. NKA is a more potent
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constrictor than SP and was reported to be, on a molar base, 2-3 orders of magnitude more
potent than histamine or Ach [137]. The contractile response to NKA is significantly greater
in smaller bronchi than in more proximal airways, indicating that TK may have a more
important constrictor effect on more peripheral airways [139]. Using selective NK-receptor
agonists and antagonists, it has been demonstrated that the constrictor effect is mediated
mainly via NK; receptors [132-134]. However, NK| receptors may also be involved in SP-
induced contraction of human small bronchi {1417,

Interestingly, the contractile effects of SP and NKA on human bronchi in vifro can be
modulated by passive sensitization. Human bronchi incubated overnight with serum from
asthmatic patients atopic to Dermatophagoides pteronyssinus showed an enhanced sensitivity
and an enhanced maximal contractile response to SP and NKA [142]. These enhanced effects
were independent of changes in peptidase activities [142].

Several studies have determined the bronchoconstrictor effect of SP and NKA in vivo,
both in healthy subjects and in asthmatics [143-151]. In accordance with the i vitro studies,
it was found that both NKA and SP are bronchoconstrictors, NKA being more potent than
SP. Furtherinore, asthmatic patients were found to be hypeiresponsive to SP and NKA. Some
reports have suggested a role for the mast cell in the bronchoconstrictor effect of TK, but
although SP has been shown to stimulate the release of histamine from human lung mast cells
i vitro [152], it is not clear whether such a mechanism occurs in vivo.

In addition to the contractile effects of TK on airway smooth muscle cetls, TK also increase
the proliferation of these cells, an effect that is miediated via NK, receptors [153].

Effects on submucosal glands

SPand NKA stimmiate mucus secretion from submucosal glands in human airways, both
in vi‘ro and in vivo [130, 154]. SP is more potent than NKA, indicating the involvement of
the NK, receptor. As mentioned above, NK, receplors indeed have been identified on
submucosal glands in human bronchi [£35], In addition, SP has been shown to be a potent
stimulator of goblet cell secretion [155]. Because goblet cells are the only source of mucus in
peripheral airways, SP may play a role in mucus secretion in peripheral airways,

Effects on blood vessels

In rodents, stimulation of sensory nerves or administration of TK causes microvascular
leakage through the opening of endothelial gaps at postcapillary venules [156-159]. Among
the TK, SP is the most potent and NK, receptors have been identified on postcapillary venules
{160, 161]). Whether TK cause microvascular leakage in humans is nof certain, since no
direct measurements have been made, Nevertheless, SP and NKA increased the nasal profein
output in patients with allergic rhinitis, suggesting the occurrence of microvascular leakage
[131]. More definitive evidence was recently provided by the demonstration that capsaicin
induced plasma extravasation in the human nosc via a neuronally mediated pathway [162]
and by the observation that SP is generated in vivo following nasal challenge of allergic
individuals with BK [163].

TK also have potent =ffects on airway blood flow [66, 164, 165], presumably via NK,
receptors [ 166, 167]. Both SP and NKA cause vasodilation which, together with the SP- or
NKA-mediated increase in mricrovascular permeability, may contribute to the formation of
oedema.

SP has been shown to promote endothelial-leukocyte interaction via increased expression
of adhesion molecules {168}, However, this effect may be indivect via activation of mast cells
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and subsequent release of TNF-0.[169]. A recent study indicates that SP stimulates endothelial
cell differentiation into capillary-like structures [ ['70]. This may indicate that increased levels
of SP, found in chronic inflammatory conditions, may play a role in tisstte repair by promoting
the development of new vessels.

Effects on nerves

In human airways the interaction between TK and airway nerves is not certain. However,
studies using rodents suggest that TK may amplify or facilitate cholinergic neurotransmission
[17, 171-174] and may modulate i-NANC mediated bronchodilation [175, 176}, thereby
contributing to exaggerated bronchoconstriction.

Effects on epithelial cells and fibroblasis

TK stimulate ciliary beat frequency through activation of NK, receptors on bronchial
epithelial cells, and thereby contribute to the clearance of mucus, bacteria and inbaled particles
[177, 178} TK also stimulate ion transport in airway epithelivm, and exert a protective effect
on bronchial epithelial barrier function under conditions of chailenge [179].

Stimulation of bronchial epithelial cells with TK results in the release of PGE, and possibly
the epithelium-derived relaxing factor (EpDRF) [180, 181]. In addition, TK are involved in
the migration and proliferation of bronchial epithelial cells [{82].

SP has been shown to increase the expression of adhesion molecules on bronchial epithelial
cells and to stimulate the release of neutrophil chemoattractant mediators by bronchial
epithelial cells [183, 184]. Therefore, SP may be involved in the recruitment of neutrophils
into the airways.

TK may also stimulate chemotaxis and proliferation of human lung fibroblasts, an effect
that is mediated via release of PGE, and prostacyclin { 185-187]. Activation of fibroblasts by
TK may therefore contribute to the structural abnormalities observed in the asthmatic airways.

Effects on inflammatory cells

TK have effects on a number of inflammatory cells, including neutrophils, eosinophils, T
lymphocytes, mast cells, monocytes and macrophages, lymphocytes, and dendritic cells (Table
1) [188]. Several of these effects may be explained hy the ability of TK to activate transcription
factors like nuclear factor (NF)-xB [189], activating protein (AP)-1, and cAMP-responsive
element-binding protein (CREB) [190].

Tablel, Main effects of TK on inflammatory cells.

Cell Effect of TK'

Neutrophits Chemotaxis T, adherence ?, O, production T
Eosinophils Migration T, degranulation

Mast cells Histamine release

T lymphocytes Proliferation T, cytokine production T, chemotaxis T
B lymphocytes Differentiation, immunoglobulin isotype switch
Monocytes/macrophages Release of inflammatory cytokines

Dendritic cells Chemotaxis T, antigen presentation

* see fext for details.
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“TK stimulate a number of nentrophil functions, including chemotaxis, aggregation,
superoxide production, and adherence to epithelium and endothelium [191-199]. The
expression of an endothelial leukocyte adhesion molecule (ICAM-1) by the microvascular
endothelinm following application of SP could be of relevance for the latter effect [192].
However, relatively high concentrations of SP may be required for activation of nentrophils.
This may be explained by the high levels of the SP-degrading enzyme neutral endopeptidase
(NEP) on the surface of these cells [199]. At low concentrations, SP may have a priming
effect on neutrophils, i.e., SP can enhance the nentrophil response lo other stimuli at
concentrations that may otherwise be ineffective {200, 201].

SP has a degranulating effect on eosinophils and induces human eosinophil migration in
vitra [202, 203]. Priming of human eosinophils with SP (via the NK, receptor) has been
shown to enhance platelet-activating factor (PAF)- or IL-5-stimutated migration [204]. In an
in vivo study with allergic rhinitis patients, it was shown that SP given after repeated alfergen
challenge enhanced the recruitment of eosinophils [205]. Eosinophils also may produce SP
themselves [206, 207} and may activate ganglion neurons to release SP [208)],

Mast cells can be found in close proximity with sensory nerves {209, 210]. it has been
demonstrated that S can cause histamine release from human lung mast ceils {152, 211],
and that SP-induced histamine release from BAL mast cells from asthmatic patients is
significantly higher than in healthy subjects {212]. Although NK, receptors have been located
on mast cells, some data suggest that the effect of SP on mast cells is mediated via a non-
receptor mediated pathway, since the effect is dependent on the N-terminal sequence of SP
[129, 213, 214]. SP in low concentrations can act as a mast cell primer to other agents (like
allergens) when released from sensory nerves [215].

SP activates monocytes to release inflammatory cytokines, including IL-f, TNF-q, IL-
10, and 1L.-6 [216-218]. Again, this effect does not seem to be mediated via classic NK
receptors [219, 220]. The effect of TK on human macropiages is less clear. Although SP
may increase the production of oxygen radicals by guinea pig macrophages (via both NK|
and NK, receptors), no effect was observed on human alveolar macrophages [221-223]. A
recent preliminary report did demonstrate the presence of NK; receptors on human alveolar
macrophages and showed that SP may be involved in cytokine production by these cells
[224]. Rat alveolar macrophages have been shown to express PPT-A mRNA and to display
SP-like immunoreactivity, indicaling that macrophages may also be a source for SP in the
airways [225].

NK receptors are present on certain subsets of T and B fymphocytes, and TK-containing
nerves have been demonstrated in lymphoid tissue [226, 227]. These findings suggest a role
for TK in regulating lymphocyte functions. ITndeed, several effects of TK on T and B cells
have been described yet. SP may be a late-acting B lymphocyte differentiation cofactor
regulating immunoglobulin production and secretion [228-231]. TK can also activate
proliferation of T lymphocytes and stimuiate their cytokine production {232-234], Furthermore,
SP has recently been shown to be a lymphocyte chemoattractant [235]. In addition to NK
receptors, other receptors or non-receptor-medtated pathways may be involved in the effects
of TK on lymphocyles [236-238].

Little data is available on the effects of TK on dendritic cells (DC). In rats, pulmonary
DC were shown to bind SP and to display increased motility in response to graded
concentrations of SP, suggesting a role for SP in the recruitment of DC into the airways
[239]. 8P receptors have recently been identified on Langerhans cells and it was shown that
high concentrations of SP inhibit antigen presentation by these cells [240],
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2.4.2, Calcitonin gene-related peptide

CGRP is a 37 amino acid peptide formed by the alternative splicing of the precursor
mRNA coded by the calcitonin gene [241]. It occurs in two forms, A and B, which ditfer by
three amino acids. Both forms are expressed in sensory nerves, often colocalized with TK,
and act via binding to the CGRP type [ receptor [ 125, 242, 243]. CGRP is a potent vasodilator,
especially of arterial and arteriolar vessels [244]. Its effect, which is long-lasting, is mediated
via direct action on receptors on vascular smooth muscle. Indeed, receptors for CGRP are
most dense on arterial vessels, with little expression on smooth muscle or epithelial cells in
the human airways [[17, 245]. CGRP itself has no direct effect on airway microvascuiar
leak, but amplifies the plasma protein extravasation induced by SP [244]. This is likely due
to a synergistic combination of the potent arteriolar vasodilator effect of CGRP, which increases
mucosal blood flow, and the SP-induced venular vasodilation and increased vascular
permeability, which increases the extravasation of plasma fluid, CGRP has also been reported
to cause constriction of human bronchi in vitro [246], However, since airway smooth muscle
celis in humans possess few receptors for CGRP [117], this bronchoconstrictor effect may be
mediated indirectly.

CGRP may also affect immune functions. I{ has been shown that nebutized CGRP causes
eosinophilia in the rat lung [247]. CGRP inhibits SP-induced superoxide production in human
neutrophils [248] and stimulates the chemotaxis and adhesion of lymphocytes [68, 235]. In
addition, CGRP may be involved in epithelial repair by stimulating bronchial epithelial cell
migration [249] and modulates B lymphocyte differentiation [250, 251].

2.5, NEUROGENIC INFLAMMATION

The set of responses produced through the release of TK from the peripheral endings of
sensory nerves via an axon reflex is now widely known as ‘neorogenic inflamnation’, The
basis for this term: is twofold: the biclogical effects produced by TK in the airways in general
are pro-inflammatory and provide a neurogenic contribution to the overall inflammatory
process; and the stimuldi that elicit TK release in the airways include mediators of inflammation,
such as bradykinin (BK), histamine, and prostanoids. Since neurogenic inflammation mimics
many of the pathophysiological features of asthima, a role for neuropeptides in the pathogenesis
of asthma has been suggested. Several mechanisms may underlie the apparent upregulation
of the sensory neuropeptide effects (Fig. 4).

First, sensory nerves in asthmatic airways may be hyperreactive. On one hand, this may
be due to epithelial shedding, thereby exposing sensory nerve endings, On the other hand,
sensory nerves in the asthmatic airways may be hyperalgesic, making them more responsive
to activation by several mediators, including bradykinin. Certain inflammatory mediators
such as PG (particularly PGE, ) and cytokines, like IL- 1B and TNF-¢, may sensitize sensory
nerve endings, causing a hyperalgesic state [252, 253]. BK is a potent activator of sensory
nerves and causes asthia-like symptoms in asthinatics, but its effects in healthy subjects are
much less prominent [254-256].

Second, the sensory innervation of the asthmatic airways may be different from that in
healthy controls. In airways of patients with fatal asthma, both the length and the number
of SP-immunoreactive nerves has been shows lo be increased when compared (o airways of
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Figure 4. Possible mechanisms underlying the apparent upregulation of sensory neuropeptide effects in the
asthmatic ajvways.

healthy subjects [126]. However, this finding couid not be reproduced in another study using
bronchial biopsies of mild asthmatics, which may suggest that increased innervation is a
feature of either prolonged or severe asthma [ 109]. SP-immunoreactivity has also been detected
in induced sputum of asthmatics, but not in sputum of healthy subjects [257]. In addition,
increased amounts of SP were observed in BAL fluid of allergic asthmatics compared to
healthy controls {258], and after segmental allergen challenge of allergic asthmatics an
addifional increase in SP levels in BAL fMuid was observed, Furthermore, increased levels of
SP have been detected in serum during exacerbations of asthma [701. These findings suggest
an increased e-NANC response in asthmatic patients. Interestingly, recent findings suggest
that inflammatory mediators may have neuropoictic effects, For instance, IL- {1l may induce
the production of SP by sympathetic nevrons [259].

Third, the effects of the sensory neuropeptides may be increased in asthmatics. Asthmatic
airways show an increased expression of NK, and NK, receptors [266)] and the reactivity to
TK is greater in allergic subjects both regarding NKA-mediated bronchoconstriction and
SP-mediated nasal congestion [145, 261, 262]. The effects of sensory neuropeptides may
also be exaggerated due to impaired degradation. NEP seems to be the major enzyme involved
in the metabolism of neuropeptides in the airways [263, 2641, Many of the agents that lead to
exacerbations of asthina, including viruses, cigarette smoke and chemical irritants, appear to
reduce the activity of NEP in the airways [265-272]. The role of NEP in the modulation of
neurogenic inflammation will be discussed in more detail in chapter 3.

Although several studies suggest a contribution of neurogenic inflanvmatory processes in
the pathophysiology of asthma, the exact contribution of TK remains to be determined. The
availability of highly potent nonpeptide NK receptor antagonists definitively will contribute
to a better understanding of the role of sensory neuropeptides in the pathogenesis of asthma,
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Chapter 3

Peptidases
Structure, function, and modulation of peptide-mediated effects in the
human lung

Peptidases are enzymes capable of cleaving, and thereby often inactivating, small pep-
tides. They are widely distributed on the surface of many different cell types, with the cata-
lytic site exposed at the external surface. Peptidases are involved in a variety of processes,
including peptide-mediated inflammatory responses, stromal cell-dependent B lymphopoie-
sis, and T’ cell activation. In addition, some peptidases may have functions that are not based
on their enzymatical activity.

Peptidases are classified according to the location of the cleavage site in the putative
substraie {Table 1) [1]. Endopeptidases recognize specific amino acids in the middle of the
peptide, whereas exopeptidases recognize one or two terminal amino acids. Exopeptidases
that attack peptides from the N-terminus {removing either single amino acids or a dipeptide)
are termed (dipeptidyl) aminopeptidases, whereas peptidases attacking the C-terminus are
termed carboxypeptidases,

Table 1. Peptidases and their substrates.

Peptidase Specificity* Possible substrates

Aminopeptidases

APN Ala/leu + X - IL-8, fMLP, opiocid
peptides, enkephalins

APA Glu/Asp + X - angiotensins

APP Pro+X- BK, SP

DPP IV X-Pro/Ala+ X - SP, BK

Carboxypeptidases

CPN - X+ Argflys anaphylatoxins

Eundopeptidases

NEP - X - Phe/Leu/Tle/Val/Tyr/Trp/Ala+ X - BK, SP, NKA, NPY, VIP,
enkephalins, BLP, ET-1,
ANEF, angiotensins

ACE relatively non-specific angiotensins, enkephalins,
sp

ECE -lle-Iie-Trp + X - big-ET-1

* X = random amine acid. The cleaved bond is represented by a +,
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3.1, NEUTRAL ENDOPEPTIDASE 24.11

3.1.1, Characteristics

Biochemical and molecular characterization

Neutral endopeptidase (NEP, neprilysin, EC 3.4.24.11} was first characterized from rab-
bit kidney brush border [2, 3]. It soon became apparent that NEP was similar to enkephalinase,
originally discovered in the brain [4-7]. Furthermore, cloning of the NEP gene and subse-
quent cloning of the common acute lymphoblastic leukemia antigen (CALLA, CD10) showed
that both sequences were similar [8-11],

NEP is a glycoprotein of 750 amino acids, with a single 24 amino acid hydrophobic
segment that functions as both a transmembrane region and a signal peptide (Fig. 1). The C-
terminal 700 amino acids compose the extraceilular domain, whereas the 25 N-terminal amino
acids form the cytoplasmic tait {8, 10, 11]. The extracellular domain contains six potential N-
glycosylation sites. Tissue-specific glycosylation may result in different molecular masses,
ranging from approximately 90 to [10 Kd [12-15]. The extracellular domain contains the
pentapeptide consensus sequence (His-Glu-[lle, Leu, Met}-X-His) of zinc binding
metalloproteases, in which the two histidines coordinating zince and the glutamic acid resi-
due, together with an aspartic acid residue, are critically involved in the catalytic process [ 16,
in.

Gene structure

Characterization of the human NEP gene, which is located at chromosome 3 (q21-q27)
[19], showed that it spans more than 80 kilobases (kb) and is composed of 25 exons [20].
Exons I, 1bis, and 2 encode 5' untranslated sequences; exon 3 encodes the initiation codon
and the fransmembrane and cytoplasmic domain; 20 short exons {exons 4-23) encode most
of the extracellular region; and exon 24 encodes the C-terminal 32 amino acids of the protein
and contains the entire 3' untranslated region (UTR), Within exon 24 are five poly(A) addition
signals. Alternative splicing of exon 1, exon 1bis, exon 2 {2a), or part of exon 2 (2b) to the
common exon 3, resulting in four different transcripts, may be the origin of the tissue- or
stage of development-specific expression of NEP [21, 227, Indeed, two separate regulatory
elements have been found in the NEP promoter region and these elements may be regutated
by the transcription factor CBF/NF-Y in a tissue-specific manner {22, 23]. A cDNA clone
lacking the complete exon 16 has been isolated from human Tung tissue [24], Deletion of this
27 amino acid segment was shown to reduce enzyme activity to barely detectable levels.
However, the physiologic relevance of this truncated form remains to be determined. In the
rat, an exon 5-18 deletion has been described, but no evidence was found to support the
expression of this variant in the human lung [25].

Distribution

NEP is expressed by a vartety of hematopoietic and non-hematopoietic cells [18, 26].
NEP is abundantly present in renal proximal tubular epitheliai cells, small intestinal epithe-
lium, and biliary canalicutae. In addition, NEP can be found in synaptic membranes of the
central nervous system, bone marrow stromal cetls, fibroblasts, placenta, lymphoid progeni-
tors, and neutrophils [12-14, 27-29]. Given the expression of NEP on lymphoid progenitors,
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expression of NEP is used as a diagnostic marker for several lymphoid malignancies, including
Burkitt’s lymphomas and certain myelomas [30-33}.

In the human lung, NEP is expressed by bronchial epithelial cells, submucosal glands,
bronchial smooth muscle, and endothelium [34). In addition, NEP can be found on alveolar
epithelial cells {35].
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Figure 1, Molecular struciure of NEP, APN and DPP IV. The size, monomeric or dimeric structure, and orien-
tationt of each protein with respect to the cytoplasm, transmembrane (TNf) region, and extracellular domain are
shown. Proven or potential active sites {zinc-binding (ZB) or substrate-binding (SuB)} are indicated. Glycosylation
sites are indicated by a black dot (adapted from reference [18]).

3.1.2. Enzymatic activity and biological functions

NEP is able to hydrolyze peptide bonds on the N-terminal site of hydrophobic amino
acids, like Phe, Leu, Ite, Val, Tyr, Ala, and Trp (Table 1) [2]. However, sub-site interactions
and conformational factors greatly influence the efficiency of hydrolysis [36]. Among the
possible substrates of NEP are substance P (SP), neurokinin A (NKA), formyl-metheonyl-
leucyl-phenylalanine (fMLP), atrial natriuretic factor (ANF), endothelin-1 (ET-1}, bombesin-
like peptides (BLP), angiotensins, vasonctive intestinal peptide (VIP), neuropeptide Y (NPY),
bradykinin (BK), enkephalins, cholecystokinin, and neurotensin {37]. Although NEP pre-
dominantly cleaves simple peptides, it has been reported that NEP may also be able to hydro-
lyze certain larger substrates, including cytokines such as TL-1p and 1L-6 {36].

The general biologic function of NEP is to reduce celtular responses to peptide hor-
mones. Target cells express both NEP and the peptide-receptor; by degrading the peptide
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substrate, NEP reduces the local concentration of the peptide available for binding to the
receptor. For example, NEP reduces ANF-mediated hypotension [38], MLP-mediated chemo-
taxis of neutrophils [39], and enkephalin-mediated analgesia [4]. Targeted disruption of the
NEP locus in mice results in enhanced lethality to endotoxin, indicating an important protec-
tive role for NEP in septic shock [40]. A role for NEP in lymphoid development has been
suggested by studies showing that inhibition of NEP resulted in increased proliferation and
maturation of B celis, both in vitre and in vivo [41, 42]. Therefore, it has been suggested that
NEP functions to regulate B cell development by inactivating a peptide that stimulates B cell
proliferation and differentiation. Alternatively, NEP may activate a pro-peptide that inhibits
proliferation and differentiation of B cells. The role of NEP in the regulation of celfular
protiferation and differentiation will be discussed below in some more detail. The role of
NEP in the modulation of neurogenic inflammation will be discussed in paragraph 3.6,

Role of NEP in cellular differentiation and proliferation in the lung

NEP plays an important role in the cellutar differentiation and proliferation of bronchial
epithelial cells by inactivating BLP [43]. BLP are potent growth factors for bronchial epithe-
lial cells and are involved in lung development. The temporal and cellular patterns of NEP
expression implicate the enzyme in the regulation of BLP-mediated fetal lung development
[44]. Indeed, both fa vitre and in vive it was shown that inhibition of NEP resulted in in-
creased maturation of the developing fetal lung [44, 45]. Reduced NEP activity may also
promote BLP-mediated proliferation of bronchial epithelial cells, Indeed, the growth and
proliferation of BLP-dependent carcinomas is inhibited by NEP and potentiated by NEP
inhibition [43]. NEP expression by epithelial cells is inversely correlated with cellular prolif-
eration [46]. Therefore, reduced NEP activity may promote BLP-mediated proliferation and
facilitate the development of small-cell carcinomas of the lung {43, 47]. A role for NEP in
the regulation ot tumor cell proliferation is aiso supported by studies using a human T cell
line (Jurkat). In these cells, NEP is required for phorbol ester-induced growth arrest [48].

3.2, AMINOPEPTIDASE N

3.2, 1, Characteristics

Biachiemical and molecular characterization

Aminopeptidase N (APN; EC 3.4.11.2) is a widely studied peptidase, which is known
under a variety of names, including aminopeptidase M, alanine aminopeptidase, arylamidase,
and microsomal ¢-aminoacyl-peptide hydrolase [49]. APN is a glycoprotein of 967 amino
acids with }1 potential sites of asparagine-linked oligosaccharide addition (Fig. 1) [50, 51].
The unglycosylated protein has a molecular size of 110 Kd; posttranslational modification
results in the 130 Kd precursor (gp130) and the 50 Kd mature protein (gp150) {52-55]. The
23 amino acid retained signal also functions as the membrane-spanning segment, orientating
the APN N-terminus inside and the C-terminus outside the cell (thereby defining APN as a
type H integral membrane protein) {50, 51]. The intracellular domain of APN is only nine
amino acids tong, whereas the extracellular domain contains 935 amino acids. Similar to
NEP, the extracellnlar domain contains a pentapeptide consensus sequence characteristic of
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members of the zinc-binding metalloprotease family, On the surface of cells, APN is ex-
pressed as a non-covalently bound homodimer {56-59]. Cloning of the APN ¢cDNA revealed
that its sequence was identical to the myeloid marker CD13 [50-52].

Gene structure

The APN gene is located on the long arm of cheomosome 15 (g25-26) and exists of 20
exons [60-62]. Northern blot analysis of RNA extracted from several tissues revealed two
distinct APN transcripis: a 3.7 kb transcript expressed by monocytes, myeloid leukemia cells,
and fibroblasts, and a 3.4 kb transcript expressed by intestinal epithelium and kidney cells
[63]. In epithelial cells, transcripts originate 47 base pairs upstream from the initiation codon
and 22 base pairs downstream from a FATA box. In contrast, the longer transcripts found in
myeloid cells and fibroblasts originated from several sites clustered in an upstream exon
located 8 kb from the exon containing the initiation codon. Nevertheless, both transcripts
encode the same protein, indicating that separate promoters control the tissue-specific ex-
pression of the APN gene [63]. In addition, a 300 base pair region with enhancer activity,
located 2.7 kb upstream of the transcriptional start site which is used in epithelial cells, may
also be important for the tissue-specific expression [64].

Distribution

The non-hematopoietic distribution of APN shows a pattern comparable to NEP. Thus,
APN is expressed on renal proximal tubular epithelial cells, small intestinal epithelium, bil-
iary canaliculae, synaptic membranes of the central nervous system, bone marrow stromal
cells, fibroblasts, osteoclasts, placenta, and grannlocytes [6, 56, 65, 66]. In contrast to NEP,
APN is also expressed on monocytes and all myeloid progenitors [67-69]. Expression of
APN may be used as a marker for myeloid feukemias [67, 68, 70-72]. Mast cells may also
express APN [73], whereas peripheral blood lymphocytes do not express this enzyme. How-
ever, expression of APN on lymphocytes can be induced after mitogenic stimutation or after
adhesion to fibroblast-like synoviocytes, endothelial cells, epithelial cells and monocytes/
macrophages [74-76].

3.2.2. Enzymatic activity and bielogical function

APN is a peptidase which hydrolyses preferentially natural or synthetic substrates with
an N-terminal alanine residue (Table 1) [1]. Other amino acids, especially ncutral ones, may
also be removed hydrolitically, with the exception of proline. Natural APN substrates appear
to be small peptides rather than larger proteins, although the enzyme is more effective in
removing residues from oligopeptides than dipeptides. Among the possible substrates for
APN are enkephalins, tachykinins, bradykinin, FIMLP, and possibly cytokines such as IL-1[3,
1L-6, and IL-8 [77-79]. However, in certain cases initial cleavage by endopeptidases (like
NEP} may be required.

Several functions of APN have been described. First, APN expressed on the brush border
of the intestine may be involved in the finat stages of digestion of small peptides [36]. Sec-
ond, comparable with NEP and often in collaboration with NEP, APN may function {o re-
cduce celluiar responses Lo peptide hormones {65, 69, 80, 81]. Third, a recent report impli-
cates APN in the processing of peptides bound to major histocompatibility (MHC) class IT
molecules [82]. Fourth, APN may be involved in tumor invasion and metastasis by degrada-
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tion of collagen type IV [83, 84]. Finally, APN serves as a receptor for coronaviruses, which
are RNA viruses that cause respiratory disease in humans [85].

3.3. DIPEPTIDYL PEPTIDASE IV

3,3.1, Characteristics

Biochemical and molecular characterization

Dipeptidyl (amino)peptidase IV (DPP 1V, EC 3.4.14.5) is an atypical serine protease of
766 amino acids with type Il membrane topology (Fig. 1) [86, §7]. It contains a short, highly
conserved intracellular domain of six amino acids, a 22 amino acid hydrophobic transmem-
brane region (which also functions as signal peptide), and a 738 amino acid extracellnlar
domain, The extracellular domain, which contains nine potential glycosylation sites, can be
divided into three regions: an N-terminal glycosylated region containing seven glycosylation
sites and starting with a 20 amino acid flexible ‘*stalk region’; a cysteine-rich region; and a
260 amino acid C-terminal domain containing the putative catalytic sequence. On the surface
of cells, DPP 1V probably is present as a homodimer comprising two identical subunits of
approximately 110 Kd molecular mass {88-91]. Recent studies indicate that several isoforms
of DPP IV can be found [92-94],

In contrast to NEP and APN, DPP 1V does not contain zinc in its catalytic center. Based
upon its structural homology with other nonclassic serine proteases, DPP IV is assigned to
the prolyl oligopeptidase family. Members of this family share a catalytic site in which the
essential residues are arranged in the unigue sequence Ser-Asp-His [95]. Cloning of the DPP
IV cDNA revealed that its sequence was identical to the T cell activation antigen CD26 [86,

87].

Gene struclitre

The human DPP IV gene, located on chromosome 2 (q24.3), spans approximately 70 kb
and contains 26 exons [96]. The serine recognition site is split across two exons, the first half
Gly-Trp 1s in exon 21 and the second half Ser-Tyr-Gly is in exon 22. The three residues
comprising the catalytic site are each present in a distinct exon: Ser in exon 22, Asp in exon
24, and His in exon 26, This latter exon also contains the stop codon and the 3" untranslated
region of the gene. The 5' flanking domain of the DPP IV gene contains neither a TATA box
nor a CAAT boex, but a 300 base pair region extremely rich in C and G contains potential
binding sites for severat transcription factors, including Sp-1 and activating protein (AP)-1
[97]. The human DPP IV gene encodes two RNA transcripts of approximately 4.2 and 2.8
kb, which differ in sequence only at the 3' untranslated region [96]. Probably, the two mRNA
arise from the use of different polyadenylation sites in the last exon of the DPP IV gene.

Distribution

In maity respects, the non-hematopoietic tissue distribution of DPP IV resembles that of
NEP and APN. DPP IV is constitutively expressed on renal proximai tubular epithelial cells,
epithelial cells in the small intestine, and biliary canaliculae, but can also be found on alveo-
lar pneuimocyles and endothelia [88, 98]. The expression of DPP IV on hematopoietic cells



Peptidases 63

is regulated stringently. DPP 1V is absent from the majority of human resting peripheral
blood T lymphocytes, but some subsets of resting peripheral blood T cells weakly express
the molecule [89, 90, 99]. DPP IV expression on T lymphocytes is increased after T celi
activation [90, 100-102]. Thus, DPP IV is a snitable marker for T cells activated in vivo.
Recent data indicate that DPP IV expression on T cells may correlate with T helper (Th)
subsets [103-105]. High DPP TV expression was found on Thl and ThO cells, whereas Th2
cells displayed lower expression of DPP 1V, The amount of IL-4 secretion was responsible
for this correlation [104]. Memory T cells have been reported to reside in the DPP IV-
positive T cell fraction [106], although this was not found in another study [[07]. DPP LV is
also expressed by medullary thymocytes in humans [108] and can be induced on activated
natural killer celis by cytokines [109].

3.3.2. Enzymatic activity and biological functions

DPP 1V is a serine peptidase with a unique specificity: it cleaves dipeptides from the N-
terminus of polypeptides if proline is at the penultimate position [88, 110, 111]. Peptides
with alanine in the penultimate position may also be cleaved, although with a much lower
efficiency. Since N-fermini containing X-Pro are not easily cleaved by other peptidases, the
action of DPP IV is a rate-limiting step in the degradation of such peptides. Several biologi-
cally active peptides have the X-Pro sequence at their N-terminus and therefore DPP IV may
play an important role in modulating their action. These peptides include SP and bradykinin
[112, 113]. Hydrolysis of SP by DPP IV yields two products (SP;,, and SP; ;) which both
are more potent bronchoconstrictors than intact SP.;; {114]. Both products can rapidly be
inactivated by APN {115]. A proline residue is also present af the penultimate position of
several cytokines and chemokines, like IL- 1, IL-2, tumor necrosis factor (TNF)-3, RANTES,
and granulocyte-colony-stimulating factor (G-CSF) [78].

DPP IV may have several functions, dependent upon the tissue in which it is expressed.
DPP IV plays an obligatory role in the renal transpoert and intestinal digestion of proline-
containing polypeptides [116, 117}. However, most attention has been given to the function
of DPP IV on T lymphocytes,

Role of DPP IV on T Iymphocytes

Although the role of DPP IV on activated T cells is not completely understood yet, recent
studies indicate that it may act as a costimulatory molecule that can up-regulate the signal
transducing properties of the T cell receptor (TCR}). Stirnstlation of DPP IV (using mono-
clonal antibodies) leads to the activation of alt functional programs of the T cells, including
cytotoxicity and production of IL-2. This activation requires the expression of the TCR and
DPP IV enzymatic activity [118, 119]. Furthermore, antibody-induced cross-linking of DPP
1V induced tyrosine phosphorylation of several intracelluiar proteins with a similar pattern to
that seen after TCR/CD3 stimulation [120]. Co-cross-linking of DPP 1V and CD3 antigens
induced prolonged and increased tyrosine phosphorylation in comparison with CD3 alone,
indicating that DPP IV is a true co-stimulatory entity [120]. In addition to T cell activation,
anti-DPP 1V stimulated T cells show enhanced proliferative responses, increased CD3{ phos-
phorylation and increased p56™* activity [121}]. One possible mechanism for the enhanced
response of T cells to perturbation of DPP TV was suggested by the demonstration that CD45,
a tyrosine phosphatase that positively regulates TCR signaling, co-precipitates with DPP 1V
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[122]. Thus, DPP 1V antibodies may stimulate T cell proliferation in part by decreasing
CD45-mediated dephosphorylation of key substrates.

Inhibition of DPP IV activity results int reduced DNA synthesis as well as reduced pro-
duction of IL-2, II.-10, IL-12, IL.-13, and interferon {IEN}-y of pokeweed mitogen (PWM)-
stimulated purified T cells [123, {124]. Most importantly, DPP IV inhibiticn increased mRNA
synthesis and secretion of transforming growth factor (TGF)-B, and a neutralizing antibody
directed against TGF-} abolished the DPP IV-inhibitor-induced suppeession in eytokine pro-
duction [124]. Irs a rat study, repeated subcutaneous injection of DPP IV inhibitors reduced
serum DPP IV activities to levels less than 30% of the normal level [125), When primary,
secondary or tertiary immune responses to bovine serum albumin (BSA) were evoked in
these animals, they showed reduced anti-BSA antibody production. In normal rats, immuni-
zation with BSA was followed by a temporary decrease in serum DPP IV activity and then by
enhanced serum enzyme activity after several days [125]. These results suggest that DPP IV
plays an important role in immune responses in vivo.

Memory T cells have been shown to increase their anfigen sensitivity gradually with time
after re-stimulation, an effect that is accompanied by increased cell-smface expression of
DPP IV [126]. Using antibodies directed against DPP 1V, it has been shown that DPP 1V
directly contributed to this increased antigen sensilivity of late-memory T cells. As men-
tioned above, this effect may be explained by the co-stimulatory capacity of DPP IV [120].
Increasing the antigen-sensitivity via antigen-nonspecific molecules may be a physiologic
mechanism for maintaining T cell memory in face of decreasing antigen concentrations, and
may ensure preferential activation of memory T cells upon repeated antigen challenge.

DPP 1V is also found to be associated with adenosine deaminase (ADA), and this com-
plex is thought to serve as an important immunoreguiatory mechanism [127-129]. Released
ADA may bind to cell surface DPP 1V, and the DPP TV/ADA complex subsequently binds
adenosine, thereby reducing its local concentration [130, 131].

DPP IV may also tunction as an auxiliary adhesion factor. DPP IV was found to bind to
components of the extracellular matrix, such as fibronectin and collagen [132-134]. Binding
of human CD4-positive T cells to collagen produced a co-stimulatory signal in anti-CD3-
mediated T cell activation, resulting in increased proliferation [121]. An anti-DPP IV anti-
body inhibited this effect [121].

Finally, D¥P IV may be involved in the pathogenesis of the acquired immuno-deficiency
syndrome (AIDS} {135}, DPP IV may act as one of the co-receptors for human immuno-
deficiency virus (HIV) [135, 136]. Furthermore, the HEV Tat antigen has been shown to
inhibit the enzymatic activity of DPP IV, resulting in the inhibition of T cell responses to
antigen and anti-CD3 antibodies [137-139), Thus, the immunosuppressive effects of the HIV-
1 Tat protein may be mediated by DPP IV inhibition.

3.4. OTHER PEPTIDASES

In addition to the three peptidases described above, other peptidases are involved in the
degradation of (neuro)peptides. These inchude angiotensin-converting enzyme (ACE),
endothelin-converting enzyme (ECE), aminopeptidases, and carboxypeptidases.
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Angiotensin-converting enzyme

ACE, also known as peptidyl peptidase A or kinase I, is a type I integral membrane
endopeptidase belonging to the superfamily of metallopeptidases (reviewed in [140]). Two
isoforms of ACE are present within the human body: & somatic form with a molecular weight
around 150 Kd, which is found in endothelial, epithelial aud neural cells, and a smatier
isoform (90-110 Kd} found in germinal cells. Both forms are transcribed from a single gene
by the use of two separate functional promoters, 2 somatic and a testicular form [141]. The
somatic form is composed of two highly homologous domains, probably arisen by gene
duplication ia the course of evolution [142]. The germinal isoform only contains one of the
two homologous domains. Somatic ACE comprises 1306 amino acids with 17 potential N-
linked giycosylation sites [142]. Each domain has a catalytic site, containing zinc, which
functions independently {1431,

ACE is widely distributed in human tissues: it is present on vascular endothelial celis, in
the brush border of absorptive epithelia of the small intestine and the renal proximal tubuli,
and in monocyles, macrophages, and T lymphocytes {144-147]. Nevertheless, its major lo-
cation is considered to be the vascuolar endothelial surface of the lung [146, 147). The en-
zyme preferentially cleaves peptides containing an aromatic residue in the P, position (Table
13, but the enzyme is far less selective than NEP, It is capable of inactivating bradykinin
[148, 149] and enkephalins, and hydrolyzes angiotensin I to yield the vasoconstrictor pep-
tide angiotensin I [150]. ACE appears to play a major role in controlling blood pressure and
water and salt metabolism. In addition, ACE hydrolyzes intravascular substance P, but neu-
rokinin A is not a good substrate [151].

Endothelin-converting enzyme

ECE is a type II integral membrane protein homologous with NEP {152, 153]. Unlike
NEP, however, ECE exists as a highly glycosylated disulfide-linked dimer of subunit mo-
lecular weight 120-130 Kd [154-156]. ECE converses big-endothelin to its biologically ac-
tive product ET-1 (Table 1), which is a potent broncho- and vasoconstrictor that may regu-
late vascular tone and blood pressure {157, 158]. Three isoforms of ECE can be distin-
guished: ECE- ¢, ECE-1p (resulting from alternative splicing of a single gene [159, 160]),
and ECE-2 [152, 153, 161].

In the human lung, ECE has been found in airway epithelium, pulmonary endothelium,
airway and vascular smooth muscle, and serosal bronchial glands [ 162]. Although ECE may
play a role in modulating biologically active peptides, it remains to be determined whether it
is involved in the pathogenesis of asthma [163-163]. Nevertheless, in asthmatic patients
increased levels of ET-{ have been found in bronchoalveolar lavage fluid [ 166-168], plasma
[169), and bronchial epithelial cells [ 170] compared to healthy controls.

Aminopeptidases

Human tissues contain an array of cytosolic and membrane-bound aminopeptidases, The
best-characterized, aminopeptidase N, is described above, Other aminopeptidases are ami-
nopeptidase A, which is specific for N-terminal Gle and Asp residues, and aminopeptidase F,
which will release an N-terminal residue adjacent to a proline (Table 1) {1, 77). The role of
these peptidases in the metabolism of susceptible peptides has been little investigated, but it
may be hypothesized that these enzymes are involved in the final hydrolysis of a variety of
substrates, with or without initial cleavage by an endopeptidase. A role for aminopeptidase A
in modulating the potency of peptides binding to the neurokinin (NK), receptor has been
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suggested [171, 1'72]. Aminopeptidases may also be involved in the regulation of CC chemokine
activities, as deletion of the NH,-terminal residue converts monocyte chemotactic protein-1
from an activator of basophil mediator release to an eosinophit chemoattractant [173).

Carboxypeptidases

Carboxypeptidase N (CPN, kininase I) cleaves the C-terminal arginine and lysine of pep-
tides such as bradykinin [174]. One of the functions of CPN is to protect the body from
potent vasoactive and inflammatory peptides containing COOH-terminal Arg or Lys which
are released into the circulation. In the human lung, CPN has been detected in alveolar type
1 cells, in the glycocalyx of the epithelium, in some vessels, and in gland ducts near the
epithelial basement membrane {175, 176]. CPN activity in nasal lavage fluid has been shown
to be enhanced after histamine challenge [176]. This CPN originated in plasmma, suggesting
that plasma extravasation and interstitial fluid exudation across the epithelium are the pri-
mary processes regulating its appearance in nasal secretions. CPN has also been found in
BAL fluid [177]. Since increased CPN activily was found in patients with lung discase (pnen-
monia or lung cancer), it was hypothesized that CPN activity in BAL fluid may be an indica-
tor of type I cell injury [177].

3.5, SOLUBLE COUNTERPARTS OF MEMBRANE-BOUND PEPTIDASES

Although the above mentioned peptidases are integral membrane glycoproteins, soluble
peptidases with comparable enzymatic activity can be detected in body fluids. These soluble
counterparts may either be derived from shedding of membrane-bound peptidases, or may be
formed by post-transiational cleavage of the membrane-bound form.

Serum rentral endopepiidase activity probably arises from shedding of the membrane-
bound peptidase [178]. Increased serum activity of NEP has been observed in underground
miners exposed to coal dust particles [178] and in patients with adult respiratory distress
syndrome {ARDS) [179], vheumatoid arthritis [ 180] or sarceidosis [181]. Although the source
of the increased NEP levels remains to be determined, it has been suggested that increased
NEF levels may reflect local tissue damage with subsequent shedding of membrane-bound
NEP. Farthermore, seram activity of NEP is increased in acute renal graft rejection [182], in
patients with end-stage renal fatlure [[83], and in cholestatic liver disease {184].

Human seruim contains an array of aminopeptidase activities, including alanine aminopep-
tidase and leucine aminopeptidase [185]. Serum alanine aminopeptidase activity predomi-
nantly comprises a circulating isoform of CD1{3 [186, 187]. Increased activity of leucine
aminopeptidase has been observed in BAL fluid of patients with pulmonary tuberculosis and
it was shown that this increase could be attributed to lung tissue damage [188].

Dipeptidyl peptidase IV is present in several forms in human serum and may enhance
anfigen-induced T cell proliferation [ 118, 189]. Recent studies indicate that serum DPP 1V is
a monomer of 175 kDa and that this molecule, which is a potent T cell co-stimulator, is not a
breakdown product of membrane-bound CD26 [190]. Furthermore, the 175 kDa form of
DPP 1V found in normat serum is identical with a similarly-sized molecule, DPPT-L, found
to be rapidly expressed on the surface of activated T cells [94]. CD45RO- CD4-positive T
cells appeared to be the major source of serum DPP IV activity {94]. DPP 1V activity in
serum is decreased in patients with major depression, and a correlation was observed be-



Peptidases 67

tween DPP 1V activity and CD4-positive T cells in blood of depressed subjects, but not of
normai controls {191}, There were no significant relationships between serum DPP 1V acti-
vity and plasma cortisol or immune-inflammatory markers, such as serum IL-6 or soluble IL-
2 receptor (CD25) [192]. Reduced serum DPP IV activity has also been described in patients
with systemic lupus erythematosus [ 193] and in oral cancer patients [194, 195]. In the latter
study a significant correlation between serum DPP 1V activity and peripheral blood tympho-
cytes or CD26-positive T cells was found [ 195].

3.6. MODULATION OF (NEUROGENIC) INFLAMMATION

I addition to the two well-known autonomic nervous systems {parasympathetic and sym-
pathetic) that innervate the airways, a non-adrenergic non-cholinergic (NANC) neural path-
way is present (see chapter 2). While inhibitory NANC (i-NANC) effects are bronchodilatory
through the activity of vasoactive intestinal peptide (VIP) and nitric oxide (NO) released
from cholinergic nerves, excitatory NANC (e-NANC) effects are bronchoconstrictor and
mediated through the release of neuropeptides (especially tachykinins and calcitonin-gene
related peptide (CGRP)) from sensory nerves [196-198]. Stimulation of sensory nerves, ei-
ther by chemical or physical triggers, results in an axon reflex and subsequent release of
newropeptides from the peripheral endings of the sensory nerves [199]. Following release,
these neuropeptides exert a variety of effects through activation of specific neurokinin recep-
tors, including vasodilation, increased microvascular permeability, feukocyte recruitment and
adhesion, submucosal gland secretion, smooth muscle contraction, cough, and facilitation of
cholinergic nevrotransmission. This sequence of events is now known as *neurogenic inflam-
mation’ [200]. Since the neurogenic inflammatory response mimics many of the pathophysi-
ological features of asthma, a role for neuropeptides in the pathogenesis of asthma has been
implicated. In the asthmaltic airways, the effects of bronchoconstrictor peptides (including
tachykinins and bradykinin} may be cnhanced, whereas the effects of bronchodilator pep-
tides (including VIP) may be reduced [201, 202],

After it became apparent that neuropeptides were responsible for the neurogenic inflam-
matory responses, it was hypothesized that degradative mechanisms existed which may limit
the effects of neuropeptides, comparable o the role of cholinesterase in limiting the effects
of acetylcholine [200]. Several studies now have demonstraied that peptidases play a major
role in the modutation of peptide-mediated effects in the airways (reviewed in [203]). Much
research has focussed on the degradation of the tachykinins, like SP and NKA, and the en-
zyme NEP.

The physiologic relevance of tachykinin inactivation by enzymatic hydrolysis has been
deduced from studies of the effects of enzyme inhibition on the physiologic action of exo-
genously administered or endogenously released peptides. In the first study, it was shown
that selective inhibition of NEP potentiated the sccretagogue effect of SP on submucosal
gland secretion in the ferret trachea i vive [204]. Several other reports subsequently demon-
strated that inhibition of NEP potentiated the effects of SP on cough, vascular permeability,
cholinergic neurotransmission, and smooth muscle contraction [203]. In goinea pigs, it was
shown that both NEP and ACE participate in the metabolism of SP when administered intra-
vascularly, whilst SP administered by aerosol was degraded by NEP only [205-208]. In addi-
tion, the ACE inhibitor captoprii did not affect TK-induced bronchial smooth muscle contraction



68 Chapter 3

in man. Therefore, ACE is thought to play an important role in modulating the biological
activity of intravascular peplides, whereas NEP is also involved in the hydrolysis of peptides
present within lung tissve or within the bronchial lumen. The importance of NEP in modulat-
ing lachykinin-mediated effects is further supported by the observation that administration of
other peptidase inhibitors (including inhibitors of aminopeptidases, serine proteases, and
carboxypeptidases), did not potentiate tachykinin-induced effects in the airways {209-214].
The involvement of NEP in the breakdown of tachykinins has also been shown in in vivo
studies in humans. These studies showed that both NKA- and SP-induced bronchoconstriction
could be potentiated by NEP inhibition [215-217]. Furthermore, these studies indicated that
SP, but not NKA, increased the airway responsiveness to methacholine, suggesting that in-
flammatory processes are contribufing to SP-induced airway narrowing [218].

In contrast to the studies above, in which the effects of neuropeptides were increased due
to the inhibition of peptidases, some studies have shown that administration of recombinant
NEP may prevent neurogenic inflammation. Thus, administration of aerosolized NEP in-
hibited the SP-induced cough and ozone-induced hyperreactivity to SP i guinea-pigs [200,
219,

Biochemical and immunohistochemical studies have showa that NEP is present on air-
way epithelial cells [34, 35, 200]. Removal of the epithetiumn was further shown to result in
increased responses to exogenously applied or endogenously released tachykinins [209, 213,
220-225}, However, NEP is also present at other sites within the airways, and also after
removal of the epithelium NEP inhibitors potentiate tachykinin-inediated effects {34, 209,
220}, Nevertheless, NEP expressed by epithelial cells may more easily be modulated by
inhaled agents than NEP located at other sites.

Several environmental agents may modulate peptidase activity, thereby exaggerating
responses fo fachykinins {and other peptides) and increasing airway inflammation. These
agents include viruses, ozone, cigarette smoke, chemical irritants, and possibly antigen
challenge. In contrast, inhaled steroids may exert their anti-inflammatory actions in part by
upregulating NEP activity.

Viruses

Viral infections may potentiate neurogenic inflammatory responses through inhibition of
NEP activity, In laboratory animals, infection with Influenza virus or Sendai virus was shown
to result in enhanced bronchocounstrictor responses to tachykinins, an effect that was medi-
ated by decreased epithelial NEP activity [211, 214, 226, 227].

Ozone

In humans, guinea pigs as well as many other species, exposure to ozone results in the
recruitment of neutrophils to the airways and increased responsiveness to inhaled bronchoe-
constrictor agen(s [228, 229]. Ozone-induced airway hyperreactivity can be blocked by cap-
saicin-pretreatment, which depletes TK from sensory nerves [230]. Exposure to ozone also
results in increased responsiveness for SP, and this effect could not be enhanced by inhibition
of NEP [231]. This suggests that ozone cxposure inactivated NEP, which is supported by the
observation that the tracheal NEP activity in ozone-exposed animals was significantly lower
than the NEP activity in air-exposed animals [231].
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Toluene diisocyanate

Toluene diisocyanate (TDI) is a widely used plasticizer that may cause occupational asthma
{232). In guinea pigs it was shown that TDI, albeit at rather unrealistic doses, increased
airway responsiveness to SP and decreased airway neutral endopeptidase [233].

Cigaretie smoke

Inhalation of cigarette smoke enhances the bronchoconstrictor response to inhaled SP in
guinea pigs {234]. Inhibition of NEP by phosphoramidon increased the bronchoconstriction
induced by SP in control animals, but not in animats exposed to cigarette smoke. NEP activity
in homogenates of guinea pig trachea was inhibited by cigarette smoke. However, in another
study no effect of cigarette smoke on airway NEP activity in vivo could be observed [235]. A
possible exptanation for this discrepancy may be that the NEP inhibited by cigarette smoke
only represents a small fraction of the total amount of NEP in the airways.

Cigarette smoke is an important factor contributing to the development of small-cell lung
carcinomas of the lung. As already mentioned (see paragraph 3.1.2.), NEP aciivity is de-
creased in lung cancers [43, 47]. Therefore, one may speculate that cigarette smoke contributes
to the development of lung cancers in part by inhibiting NEF, thereby enhancing the mitogenic
effects of peptides (like SP and BLP) on bronchial epithelial cells [43-46, 236].

Allergen

Airway inflammation may be linked to the clinical features of asthma by an effect on
peptidase activity. In guinea pigs, chronic antigen exposure resulls in airway inflammation
and hyperreactivity to SP [237]. It was shown that lungs with chronic allergic inflammation
were more sensitive to the bronchoconstrictor effects of SP and less sensitive the bronchodi-
lator effects of VIP than lungs from healthy animals, In addition, the effects of enzyme in-
hibitors on physiological responses and peptide cleavage profiles were consistent with de-
creased NEP and enhanced tryptic activity [237].

In a recent human in vive study, no effect of inhaled thiorphan (s NEP inhibitor} on
allergen-induced airway responses in asthmatic subjects was observed [238]. This suggesis
that either neuropeptides do not play a predominant role in allergen-induced airway responses,
or that allergen challenge induces NEP-dysfunction in humans in vive. However, in guinea
pigs it has been shown that tachykinins contribute to allergen-induced bronchoconstriction,
an effect that probably is mediated via the release of bradykinin and histamine [239-241].

Glucocorticoids

Gluacocorticoids have potent anti-inflamunatory effects and therefore are widely used in
the treatment of asthma [242]. The anti-inflammatory effect may be caused, in patt, by an
upregulation of NEP activity, thereby reducing neurogenic inflammatory responses. Indeed,
NEP activity by a transformed human tracheal epitheiial cell line was shown {o be increased
after stimulation with glucocorticoids {243]. However, no effect of glucocorticoids was ob-
served in another study using a bronchial epithelial cell line [244]. In guinea pigs, glucocor-
ticoids were shown to reduce capsaicin-induced microvascular permeability, which might be
due to elevated NEP expression [245]. This was supported by the observation that treatment
of rats with combined NEP and ACE inhibitors prevented the effect of glucocorticoids [245].
The effect of glucocorticoid treatment in vive on NEP expression in the human airways has
recently been reported [246]. In that study it was shown that NEP expression in the bronchial
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epithelium of steroid-lreated asthmatics was significantly greater than the expression in non-
steroid-treated asthmatic patients [246].

As shown above, many of the agents that lead to exacerbations of asthma appear to re-
duce the activity of NEP at the airway surface, thus leading to exaggerated responses to
tachykinins and neurogenic inflammation (Fig. 2). However, most of these studies have been
performed in laboratory animals, especially the guinea pig, and have not been confirmed in
humans yet. Furthermore, in many studies the NEP inhibitor phosphoramidon was used. This
inhibitor, however, not only inhibits NEP but was later also shown to inhibit ECE [247-250].
If it appears that ECE can cleave tachykinins the surety of the conclusions drawn about NEP
from experiments using phosphoramidon is somewhat tempered.

normal asthma

allergen TDP s
ozone smoke

loss or inhibition of NEP

bronchocenstriction

Figure 2, Neurogenic inflammation in asthmatie airways, Neuropeptides (¥¢) reteased from sensory nerves are
normally rapidly degraded by peptidases. Therefore the effects of these neuropeptides are limited. In the asthmatic
airways, several factors may resuit in a decreased peptidase activity, thereby exaggerating the ncuropeptide ef-
fects.

3.7. NEUROPEFTIDES AND PEPTIDASES: IMPORTANT IN ASTHMA?

Although neuropeptides and peptidases have been shown to be present in the human
airways, their role in astuma still remains to be elucidated. However, several observations
may support the hypothesis that neuropeptides and peptidases are involved in the pathogenesis
of asthma,

SP and NKA have been shown in several in vive studies to cause bronchoconstriction,
and these effects couid be potentiated by inhibition of NEP (reviewed in [251]). Further-
more, these studies demonstrated that TK-mediated bronchoconstriction is greater in allergic
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asthmatics compared to healthy subjects. However, the thiorphan-induced leftward shift of
the NKA dose response curve was similar in asthmatic patients and healthy subjects, sug-
gesting that the activity of NEP does not differ between both groups. Nevertheless, patients
used in the latter study were stable asthmatics and it can be argued that reduced NEP activity
may occur during exacerbations of asthma.

Increased amounts of SP can be detected in bronchoalveolar lavage fluid of allergic asth-
matics [252] and in sputum [253] after allergen challenge. The possibility that tachykinins
are endogenousty released in vivo has also been supported by the observation that bradyki-
nin-induced bronchoconstriction in asthmatics can be blocked by a tachykinin receptor an-
tagonist [254] and be potentiated by NEP inhibition [255]. Bradykinin, which is present in
the asthmatic airways [256] and is released after relevant aeroallergen challenge in allergic
individuals [257], can stimulate sensory nerves to induce retrograde release of tachykining
[258].

Inhibition of NED, either in healthy subjects or asthmatics, has been shown to potentiate
the bronchoconstrictor effects of mediators known to be released after allergen challenge
(such as LTD, and bradykinin) [255, 259}. However, inhibition of NEP at doses shown {o
enhance the bronchoconstrictor effect of NKA did not aftect the carly and late-phase response
in mild asthmatics following alfergen challenge [238]. This may suggest that endogenously
refeased neuropeptides do not play a role in antigen-induced airway responses. Alternatively,
antigen challenge may result in & dysfunction of NEP activity. Future studies, using selective
tachykinin antagonists in combination with specific peptidase inhibitors, will be required to
determine whether tachykinins play any role in asthma.
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Chapter 4

Bronchial epithelium
Morphology, function, and pathophysiology in asthma

Bronchial epithelial cells have long been regarded as a passive barrier between the envi-
ronment and the internal milieu of the lung, However, in addition to this barrier function,
bronchial epithelial cells may also play a role in the initiation, perpetuation and modulation
of inflammatory and immunological reactions within the airways [1-3]. In this chapter, the
morphology of the bronchial epithelium, its function with regard to host defense, and its
immunological potential will be reviewed. Alterations associated with asthma will be em-
phasized,

4.1. MORPHOLOGY OF THE BRONCHIAL EPITHELFUM

The bronchial epithelium forms the interface between the respiratory system and the
inspired air. The epithelial layer rests upon a connective tissue substratum consisting of &
basement membrane, lamina propria and subinucosa, containing smooth muscle, glands and
cartilage (Fig.1) [4]. The bronchial epithelium is composed of three main celi types, which
together form a pseudostratified ciliated layer (Fig. 1).

Figure 1. Light-micioscopic photomicrograph of the human bronchial epithelium (magnification: 63x). EP =
epithelium, rBM = reticular basement membrane, LP = lamina propria (from reference [5]).
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Ciliated cells are terminally differentiated colummnar cells which are thought to originate
from basal or secretory cells [6, 7]. Their main function is to remove particulate matter by
means of the mucociliary stairway.

Secretory cells, which comprise 15-25% of the bronchial epithelieny, are present in several
forms, Mucous or goblet cells are the main producers of airway mucus, in which inhaled
particles, including viruses and bacteria, can be trapped [§, 9]. Clara cells produce the sui-
factant apoproteins A and B and secretory leukoprotease inhibitor. In addition, these cells
may participate in the clearance of noxious agents via the detoxification of inhaled agents
[10-12]. Serous cells also produce antiproteases [13], whereas nevroendocrine cells contain
amines and peptide hormones [14-16]. The mucous cell is the predominant secretory cell in
the larger airways, whereas the Clara cell is predominant in the bronchioles [6, 7, 18].

Basal cells are considered as the stem cell of the bronchial epithelium and are pyramidal-
shaped cells with a small cytoplasmic/nuclear ratio {2, 6, 19].

4.2, BARRIER FUNCTIONS

Bronchial epithelial cells are part of the non-specific immune system and defend the
afrways against the entry of noxious substances [20]. This defense is mediated via the integ-
rity of the epithelium that contributes to the physical barrier, the secretion and ciliary func-
tion leading to effective mucociliary clearance, and the secretion of mediators which provide
protection against & wide range of potentially injurious agents.

Putegrity of the epithelivm

The bronchial epithelium forms a continuous layer, thereby preventing the underlying
tissue from the entry of noxious agents. The integrity of the epithelium is maintained by
several adhesion mechanisms (Fig. 2) [21].

‘..n.. ) o i clia
) ¢ 201

tight junctions
{zonula occludens}
columnar
intermediate junctions ciliated cell
{zonula adherens)
desmosome goblet cell
(macula adherens}
nucleus
basal cefl
hemidesmosome
basement
membrane

Figure 2, Schematic representation of the adhesion mechanisms which maintain the integrity of the bren-
chial epithefium (from reference [227).
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The desmosome (macula adherence) and the intermediate junction (zonula adherence)
are involved in maintaining a sttong cell-to-cell adhesion. The tight junction {zonula occludens)
is a narrow belt-like structure surrounding each cell at the apical pole. It provides a physical
barrier, thereby preventing ‘leakage’. The epithelial cells are all anchored to the basement
membrane by hemidesmosomes.

Mucociliary clearance

Inhaled particles, including bacteria and viruses, are cicared from the airways by trapping
of the particle in nwcus, and subsequent clearance of the mucus by the coordinated beating
of cilia. The clearance of particles is facilitated by the secretion of surfactant (by alveolar
epithelial type H cells and Clara cells), which changes the surface charge properties, making
the particies less sticky. The mucociliary tunction is regulated by a compiex interaction with
the cells and mediators of the immune system (Table 1) [23-27].

Tablel. Factors that modulate mucociliary function,

Factors Sources Motility Velocity
{3,-agonists nerves, drugs T T
Bradykinin plasma (N T
Histamnine mast cells + T
Nitric oxide epithelinm, macrophages T ?
Substance P nerves T T
Interleukin-1 epithelium, macrophages T ?
Major Basic Protein eosinophils ! ?
Oxidants granulocytes, macrophages N T

Secretion of protective mediators

To provide protection against potentially injurious agents, the bronchial epithelium se-
crelcs a number of mediators, including astibacterial substances (lactoferrin and lysozyme),
antiproteases (0 -protease inhibitor, secretory leukoprotease inhibitor, o,-antichymotrypsin,
oy-macroglobulin, tissue inhibitors of metalloproteases), and anti-oxidant systems {glutathione
redox cycle, superoxide dismutase, and catalase) [28-32]. The bronchial epithelium produces
components of the complement system, which act as opsonins allowing cfficient phagocyto-
sis by macrophages [33]. In addition, bronchial epithelial cells transport secretory immuno-
globulin A (sIgA) into the bronchial lumen [34]. In long cells of patients with asthma, a
reduced expression of superoxide dismutase has been found compared to healthy controls
I35, 36]. In contrast, sIgA and lactoferrin are increased in bronchoalveolar lavage (BAL)
fluid of asthmatics [37]. The release of broncho-active and immunomedulatory mediators,
such as cytokines, arachidonic acid metabolites, and chemokines, will be discussed further
on.

Loss of barrier function in asthima
The barrier function of the bronchial epithelium seems to be disturbed in asthmatics,
since epithelial shedding and ltoss of integrity are recognized featwres both in fatal asthma
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and in biopsy specimens of even mild asthmatics [38-42]. Epithelial shedding or damage
probably is due to the release of cationic granule proteins by activated eosinophils, which are
highly toxic to the respiratory epithelium [43-47]. Indeed, asthmatic airways are character-
ized by increased numbers of activated eosinophils and elevated levels of eosinophil-derived
mediators [38, 48, 49]. Several studies have identified an association between epithelial
damage and the degree of bronchial hyperresponsiveness [40-42, 49]. This association may
be caused by several mechanisms. First, epithelial damage will result in loss of a permeability
barrier and enables noxious agents or allergens to directly penetrate the airway wall and
reach the submucosa. Second, loss of ciliated cells will result in impaired transport of mucus.
Third, epithelial damage may expose nonmyelinated afferent nerve endings. As a conse-
quence, these nerves may more easily be stimulated by inflammatory mediators or inhaled
particles, leading (o an axon reflex and subsequeni release of sensory neuropeptides that in
turn evoke neurogenic inflammation ([50]; discussed in more detail in chapter 2), Fourth, the
epithelium secretes factors that suppress atrway contraction, like prostaglandin (PG) B,
prostacyclin, nitric oxide (NO), and a putative epithelial-derived relaxing factor (EpDRF)
[1]. Loss of these factors may contribute to bronchial hyperresponsiveness. Fifthly, bronchial
epithelial cells contain neutral endopeptidase (NEP), which is involved in the metabolism of
a variety of peptides with contractile effects on smooth muscle ([51, 527; discussed in chap-
ter 3). Epithelial damage and loss of NEP aclivity may diminish peptide breakdown and
thereby enhance bronchoconstriction. Finally, epithelial damage may trigger the production
and release of mediators, such as PGF,,, 13-hydroxy-linoleic acid (HODE) and endothelin-
1, which can affect airway responsiveness [53-56}.

4.3, MMUNOLOGICAL PROPERTIES OF THE BRONCHIAL EPITHELIUM

Bronchial epithelial cells not only form a passive basrier but aiso play an active role in the
immune response [1, 2]. They are able to produce a variety of mediators that imay act either
pro- or anti-inflammatory. In addition, bronchial epithelial cells may express adhesion
molecules for many different celi types, thereby contributing to their recruitment [57].

4.3.1. Pro-inflammatory potential

Bronchial epithelial cells may initiate and perpefuate inflammatory reactions by recruit-
ment of inflammatory cells, cell-cell adhesion and interaction of epithelial cells with inflam-
matory cells, and modulation of the activity of inflammatory or parenchymat cells.

Recruitment of inflammatory cells

The recruitment of inflammatory cells into the airways is dependent upon the presence of
chemoattractants. It has been demonstrated that bronchial epithelial cells can synthesize and
release a wide range of such chemoattractants, including arachidonic acid metabolites and
chemokines, both spontaneously and after stimulation (Table 2).
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Table 2, Mediators produced by human bronchial epithelial cells and their changes in asthma

(see text for details).

Mediator Main effect Changes in asthma
Lipid mediators
LTB, Recruitment of newtrophils T
LTC, Microvascular leak, mucus secretion,
bronchoconstriction, vasoconstriction ?
PGD, Bronchoconstriction ?
PGE, Bronchodilation/bronchoconstriction,
vasodilation T
PGF,, Bronchoconstriction ?
12/{5-HETE  Recruitment of neutrophils, mucus secretion T
9/13-HODE  Recruitment of neutrophils ?
Chemokines
IL-8 Recruitment of neutrophils T
Gro-o Recruitment of neutrophils ?
Gro-y Recruitment of nientrophiis ?
MCP-1 Recruitment/activation of monacyles,
lymphocytes, basophils T
Eotaxin Recroitment of eosinophils T
RANTES Recruitment of T cells, monocytes,
eosinophils, basophils =
MIP-2 Recruitment of neutrophils ?
Cytokines
L-1o/B Pro-inflammatory T
-3 Growth/survival of eosinophils =
1L-6 Profanti-inflammatory, B cell activation T
IL-10 anti-inflammatory 7
IL-11 Neuropoietic ?
I-16 Recruitment of CD4+ T cells T
TRF-o Pro-inflammatory ?
GM-CSF Survival/activation of eosinophils and neutrophils T
G-CSF Survival/activation of grannlocytes ?
TGF-p Pro-fibrotic, anti-inflammatory T
Other
PAF Recruitment of eosinophils ?
NO Bronchodilation, Thl skewing, plasma exudation T
Endothelin Bronchoconstriction, smooth muscle celi
proliferation T
EpDRF Bronchorelaxation ?
Fibronectin Epithelial cell migration and repair T
PDGEF Pro-fibrotic =
IGF Pro-fibrotic ?
EGF Epithelial growth and differentiation T
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Bronchial epithelial cells may secrete the arachidonic acid metabolites 15-
hydroxyeicosatetranoic acid (15-HETE) and possibly leukotriene B, (L.TB,), which are po-
tent attractants for eosinophils, neutrophils and monocytes, and also increase mucus secre-
tion [58-66]. The production and release of these mediators is up-regulated in asthma, and
there is a clear correlation between the release of 15-HETE and the clinical status of the
patient [62].

Human bronchial epithelial cells are able to produce several chemokines, inchiding
RANTES (Regufated upon Activation, Normal T cell Expressed, and presumably Secreted)
[67], growth regulated oncogen (Gro)-o. [68], monocyte chemotactic protein (MCP)-1 [68,
69], MCP-4 [70], interlenkin (IL)-8 (71-73], and eotaxin [74]. Chemokines are a group of
chemotactic and pro-inflammatory cytokines and can be divided into at least foor groups
depending on the number and position of cysteine residues [75, 76]. C-X-C chemokines
predominantly are chemotactic for neutrophils, and include [L-8, neutrophil-activating pep-
tide (NAP)-2, Gro-0, B, and v, and macrophage inflammatory protein (MIP)-2, C-C
chemokines, on the other hand, preferentially attract monocytes, eosinophils and T lympho-
cytes. Members of this subgroup include MCP-{, MCP-2, MCP-3, MCP-4, eotaxin and
RANTES. Two small subgroups of chemokines are the C chemokines (with at present only
one member: Iymphotactin, also known as SCM-1 or ATAC [77-80]) and the CX3C
chemokines (also with just one member [81}). Chemokines act through binding to the
chemokine receptors, which are GTP-coupled seven-transmembrane domain receplors {82].
At present, four CXC chemokine receptors (CXC R1 through 4), at least eight CC chenokine
receptors (CC R-1 through 8), and one CX3C chemokine receptor (CX3C R) have been
cloned and characterized [76, 83].

Bronchial epithelial cells from asthimatics have been shown to release more IL-8 in vitro
than epithelial cells obtained from healthy controls {73]. In addition, increased levels of IL-
8 were demonstrated in BAL fluid of asthmatics [84]. Using immunchistochemical tech-
niques, an increased expression of MCP-1 {69] and eotoaxin [85, 86} has been found in the
bronchial epithelium of asthmatics. In contrast, no differences in RANTES protein or mRNA
expression could be observed between healthy subjects and asthmatics [87]. Clearly, bron-
chial epithelial cells of asthmatic patients release increased amounts of CC and CXC
chemokines and therefore contribute to the recruitment of inflammatory cells.

IL-16 is arecently discovered cytokine, which has been shown to have selective chemo-
tactic activity for CD4-positive cells, monocytes, and eosinophils in vitro [88, 89). 1L-16,
which shows no similarity to other cytokines or members of the chemokine family, uses CD4
as its receptor [88, 891, In the lung, it is produced by epithelial cells, and CD4-positive and
CD8-positive T lymphocytes [90]. Increased expression of TL-16 by bronchial epithelial
cells has been described in asthmatics compared to healthy subjects, and the epithelial [L-16
expression was shown to correlate with the number of CD4-positive cells within the lamina
propria [91}. In addition, IL-16 has been detected in BAL fluid by six hours following
subsegmental allergen or histamine challenge in asthmatics, but not in atopic non-asthmatics
or healthy subjects [92].

Bronchial epithelial cells have also been shown to release platelet-activating factor (PAF),
a potent eosinophil chemoattractant [93].
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Cell-cell adhesion and interaction

Bronchial epithelial cells may interact with other cells by direct contact mediated via
surface membrane-bound molecules, such as adhesion mofecules and major histocompa-
tibility complex (MHC) molecules.

Adhesion molecules are glycoproteins expressed on the surface of cells, which mediate
the contact between two cells or between the cell and the components of the extracellular
matrix. These molecules therefore play an important role in the transmigration of leukocytes
through the endothelial wall, localization of leukocytes at sites of inflammation in the epithe-
linm, and adherence of the epithelial cells to the basement membrane. Four main families of
adhesion molecules can be distingnished: the immunoglobulin-gene superfamily, the integrins,
the selectins, and the cadherins [94].

The immunoglobulin (Ig)-gene superfaniily consists of cell surface proteins characte-
rized by a variable number of extracellular Tg-like domains [95, 96]. These molecules are
involved in antigen recognition, compiement binding or cellular adhesion [95]. Hwman bron-
chial epithelial cells express lwoe members of this family: intercellular adhesion molecule-1
{ICAM-1) and lymphocyte function-associated antigen-3 (LFA-3) [57]. It has been reported
that the epithelial expression of ICAM-1 is increased in asthmatics compared with healthy
subjects, and that the level of expression correlated with the severity of the disease [97, 98].
However, no difference in ICAM-1 expression was found in another study {99]. In the BAL
fluid of asthmatics, increased leveis of soluble ICAM-1 have been found after allergen chal-
lenge [100, 101}. Circulating ICAM-1 levels in the blood were elevated in patients with
acute astimna compared to stable asthmatics or healthy subjects {101-103]. It has been shown
that pro-inflammatory cytokines like IL- 13, TNF-c and IFN-y, are able to increase the ex-
pression of ICAM-1 on epithelial cells in vitre [57, 104, 105]. Since the ligand for ICAM-1,
LFA-i (CD11a/CD18), is expressed on the surface of neutrophils, monocytes, lymphocytes
and eosinophils [106], increased expression of ICAM-1 during inflammatory responses may
countribute to the adhesion and subsequent maturation and activation of leukocytes in the
epithelial compartment. The observation that, in primates, intravenous administration of anti-
ICAM-1 antibodies attenuated both airway eosinophilia and bronchial hyperresponsiveness
further supports the important role of ICAM-1 in the recruitment and adhesion of leukocytes
[97, 107]. In contrast to ICAM-1, LFA-3 expression on bronchial epithelial cells could not
be modulated by pro-inflammatory cytokines {57] and its role in the pathogenesis of asthma
remains to be established.

Integrins are molecules composed of two non-covalentiy associated heterodimers, desig-
nated the o and B subunit [94, 106, 108]. §; integrins may associate with nine distinct o
subunits and play an important role in tissue organization, Human bronchial epithelial cells
have been shown to express the 0, integrins, both in vive and in virro 1107, 109-112].
Recent studies have shown the expression of i, [} on hurman bronchial epithelial cells [113,
114]. The expression of this adhesion molecule is increased after epithelial injury, inflamma-
tion or exposure to EGF or TGF-f}. Studies wvsing transgenic mice indicate that i, [}, may be
involved in the down-regulation of airway inflammation [115, 116]. B, integrins (LFA-1
{a,B,), Mac-1 (0,8,), and p130,95 (0.f3,)) are exclusively expressed on leukocytes.

The selectin family (consisting of E- (endothelial), P- {platelet), and L- (leukocyte) selectin)
is only expressed on activated endothelial cells or leukocytes {95, 117, 118]. No expression
can be found on human bronchial epithelial cells [57].

Cadherins are involved in the cellular architecture and in celi-cell adhesion, Cadherins
may inferact with the cytoskeleton and bind to a group of cytosolic proteins termed catenins
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[119]. It has been suggested that alterations in the binding of epithelial cadherin to catenins
may be involved in the desquamation and shedding of the epithelium associated with the
airways of asthmatic subjects.

Human bronchial epithelial celis are also capable to express the MHC class II antigens
(including human lenkocyte antigens (HLA)-DR) [66, 98). Bronchial epithelial HLA-DR
expression has been showi to be increased in asthmatic patients compared to healthy sub-
Jjects, and the level of expression is correlated with the severity of the disease [98]. In vitro,
the expression of MHC class IT on human bronchial epithelial cels is relatively low, but after
stimulation with IFN-v or histamine its expression is strongly increased [660, 120, 121]. Al-
though it has been demonstrated that bronchial epithelial celis are capable of inducing T cell
proliferation [ 122-124], it is not clear at present whether presentation of antigens to lympho-
cytes by bronchial epithelial cells is involved in the pathogenesis of asthma,

Expression of the low-affinity IgE receptor (CD23) has been described in bronchial epi-
thelial cells of asthmatic patients, but not of healthy controls {125]. Stimulation of bronchial
epithelial cells of asthmatics with IgE/anti-IgE resulted in increased release of endothelin-1
(ET-1). This suggests that bronchial epithelial cells of asthmatic patients may be directly
activated by an IgE-dependent mechanism.

Modulation of inflammatory or parencliymal cell activity

Human bronchial epithelial cells are capable of producing a wide range of mediators,
which are important in modulating cellular responses in the airways, both spontaneously and
after stimulation. These mediators include chemokines, lipid mediators, cytokines, endothelin,
growth factors, and NO {Table 2).

As mentioned before, chemokines are able to recruil leukocytes to the site of inflamma-
tion [82, 126]. These mediators often also activate the attracted leukocytes. For example, it
has been shown that MCP-| is able to activate monocytes and basophils, and can induce
ICAM-1 expression on endothelial and vascular smooth muscle cells [127-130]. 1L-8 and
LTB, not only attract neutrophils, but also cause neutrophil degranulation and superoxide
production, at Teast in vitro [131].

Lipid mediators produced by bronchial epitheliat cells inchude the arachidonic acid me-
tabolites L.TB,, |5-HETE, PGF,,, and PGE, [65, 132-134]. As mentioned before (chapter 1),
PGE, plays arole in skewing the Th lymphocytes toward a Th2 phenotype. in addition, PGE,
is a vasodilator, and its release may therefore result in the formation of cedema. 15-HETE
increases the secretion of mucus and enhances an early response to inhaled allergens [135],
whereas PGF,, functions as a bronchoconstrictor [136, 137]. Prostacyclin and PGF,, can
stimulate sensory nerve endings, thereby causing reflex bronchoconstriction [138].

Bronchial epithelial cells can also produce and release a wide range of ¢yfokines. These
include granulocyte/macrophage-colony stimulating factor (GM-CSF), TNF-¢, IL-1¢, IL-
1B, IL-3, TL-6, IL-10, -1 1, leukemia inhibitory factor (LIF), and IL-16 {71, 73, 139-146]..
GM-CSF production by the bronchial epitheliom has been shown to be increased in asthma-
tics [73, 139]. This may contribute to a prolonged survival of neutrophils and eosinophiis
with concomitant cell activation [147-149]. IL- 1 B and TNF-o; are pro-inflanunatory cytokines,
which may activate a large number of cells, IL-6 and 11-11 have many overlapping effects,
including B cell activation and production of acute phase proteins [150-152]. In addition, IL-
11 has neuropoietic properties: it is a survival factor for sensory and motor neurons, causes
noradrenergic sympathetic neurons to take on a cholinergic phenotype, and induces sub-
stance P (SP), somatostatin, and vasoactive intestinal peptide-related peptide in sympathetic
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newrons [153]. This raises the possibility that disregulated IL-11 production could lead to
pathologic conditions characterized by cholinergic or neuropeptide excess. IL-16 not only
attracts CD4-positive lymphocytes, eosinophils and monocyles but aiso activates these cells,
resulting in celi adhesion, induction of CD25 and HLA-DR expression, and for cytokine
synthesis [89).

Bronchial epithelial cells of asthmatic patients have been shown to produce increased
levels of TL-1[, TL-6, IL-8, GM-CSF, and IL- 16 compared {o healthy subjects {73, 91, 154].
This indicates that bronchial epithelial cells are in an activated state in the asthmatic airways.
Transcription factors like NF-xB probably piay an important role in the upregulation of these
cytokines [155, 156]. Interestingly, a recent report showed that the atiergen Der pl induced
NF-xB activation through interference with [kBo function in asthiatic bronchiat epithelial
cells, indicating that allergens may directly interact with transeription factors involved in the
transcriptionat regulation of inflammatory genes {157].

Endothelins are a family of highly homologous 21-amino acid peptides, characterized by
two intrachain disulfide chains, a hairpin loop consisting of polar amino acids, and a hydro-
phobic C-terminal chain [{58]. Human bronchial epithelial cells have been shown to pro-
duce ET-1 [54, 159, 160], which promoles the proliferation of smooth muscle cells, is a
potent constrictor of both vascular and non-vascular smooth muscle cells, increases the se-
cretion of mucus, and may activate inflamumatory cells [158, 160, 161]. ET-1 also stimulates
collagen gene expression and through its inhibitory actions on collagenase will promote
airway wall collagen deposition, thereby contributing to airway wall thickening which un-
derlies bronchial hyperresponsiveness [162-164]. Increased levels of ET-1-immunoreacti-
vity were detected in airway epithelium and vascular endothelium of bronchial biopsy speci-
mens from astlunatics compared to healthy subjects {159, 165, 166]. Furthermore, increased
ET-1 fevels have been detected in BAL fluid and blood plasma of asthmatics [167, 168].

Several growth factors can be produced by the bronchial epithelinm. These include epi-
dermal growth factor (EGF), transforming growth factor (TGF)-B, insulin-like growth factor
(IGF) and platelet-derived growth factor (PDGF) [20, 169, 170]. TGF-B is an important
profibrotic growth factor, which has been implicated in airway remodeling and pulmonary
fibrosis [171]. In asthma, there is an increased expression of TGF-P on epithelial cells which
is correlated with the number of fibroblasts beneath the basement membrane and with the
thickness of the basement membrane [3, 166, 172]. TGF-f} has been shown to increase the
release of fibronectin from human bronchial epithelial celis in vitro [173]. IGF also is a
major fibroblast and epithelial cell mitogen, but a role for this growth factor in asthma has
not been determined yet. However, it has been shown that airway epithelial cells express
increased mimbers of IGF-receptors after stimulation with eosinophil cationic protein [174].
Studies on PDGE, which has high mitogenic activity for smooth muscle cells and fibroblasts,
have not demonstrated any up-regulation in the expression of this growth factor in the bron-
chial epithelium of asthmatics [172, 175, 176]. In contrast, epithelial cells of asthmatics do
show increased immunoreactivity for EGE which is an important factor in the regulation of
epithelial growth and differentiation [175].

Nitric oxide (NO) may play an important role in regulating airway lunction and in the
pathophysiology of asthma [177-180]. NO is produced by nitric oxide synthase (NOS), which
exists in several isoforms; n (neuronal}-NOS, e (endothelial}-NOS, and i (inducible)-NOS
[181, 182]. Both the inducible and constitutive form have been identified in bronchial epi-
thelial ceils [183-185] and increased expression of iNOS has been observed in response (o
pro-inflammatory cytokines and oxidants [£79, 185, 186]. There is an increased expression
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of iNOS in the epithelium of asthmatic patients and increased NO levels have been found in
exhaled air of asthinatics [ 183, 187, 188]. Increased NO production in the airways may resuit
in hyperemia, plasma exudation, and mucus secretion. NO also has been implicated in skew-
ing T lymphocytes towards a Th2 phenotype, through inhibition of Thi cells and their pro-
duction of IFN-y [189].

4.3.2. Anfi-inflammatory potential

Besides the potential of human broncldal epithelial cells to recruit and activate leuko-
cytes or parenchymal cells, bronchial epithelial cells may also down-regulate inflammatory
responses. This may occur via the release of anti-inflammmatory mediators, by the release of
soluble receptors, or by the inactivation of pro-inflammatory mediators,

Release of anti-inflammatory mediators

Human bronchial epithelial cells are able to produce several components of the 1L-1
system, including agonists, antagonists and receptors. As discussed before, human bronchial
epithelial cells can retease IL-lo; and IL-1f3, which both exert many pro-inflammatory ef-
fects. These effects are mediated via binding to the IL- 1 receptor (TL- [R) type I, whereas the
IL-1R type IL has a short cytoplasmic domain and appears to function as a scavenger for IL-
1B [190-192). The extracellular portions of both receptors may be shed from the plasma
membrane and then act as 1L.-1 inhibitors [ 193]. Three splice variants of the IL-1 receptor
antagonists (IL-1RA) gene have been described thus far; secreted IL-1RA, intracellular IL-
IR type I and type II. It has been shown that human bronchial epithelial cells are able to
produce and release the intraceliular IL- | receptor antagonists type I, which may counteract
the pro-inflammatory actions of IL- s and IL- [154, 194, 195]. In addition, these cells may
release the IL-iR type . Recently, a new cytokine {(1L-18} with structural homology to IL-!
has been found [196, 197]. This cytokine requires cleavage by either IL- 1P converting en-
zyme or another caspase to generate a mature bioactive molecule, and signals through IL-1
receptor-associated kinase (IRAK) to induce activation of NF-xB {198]. Clearly, the balance
of the difierent components of the 1L-1 system determiines whether the overall effect will be
pro- or anfi-inflammatory.

TGF- has been identified in the epithelial lining fluid of the lung and in airway epithelial
cells [199, 200]. In addition to its pro-inflammatory effects (described above), TGE-f has
many anti-inflammatory properties, including inhibition of 1L.-2 dependent proliferation of T
lymphocytes, inhibition of cytokine production by macrophages, and inhibition of IL-4-in-
duced 1L-8 release by human bronchial epithelial cells {201-205]. TGF-$ may also be in-
volved in neural repair via stimulation of IL- [ 1 production by bronchial epithelial cells [145].

PGE, and IL-6 produced by bronchial epithelial cetls may have both pro- and anti-in-
flanumatory properties. PGE, can reduce the production of neutrophil chemoattractants by
macrophages, can act directly as a bronchodilator (as does prostacyclin), and inhibits fibro-
blast matrix production [206, 207]. IL-6 has been found to reduce inflammatory reactions in
several models, including an in vive model of pulmonary inflammation [205]. However, the
mechanism by which I1-6 exerts this effect is not completely understood.

IL-10 is a potent regulatory cytokine that decreases inflammatory responses and T cell
activation {208-21)]. It reduces the production of TNF-¢ and IL-1[ by macrophages [21]-
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213]. Down-reguiation of 1L.-10 production, as has been described in patients with cystic
fibrosis [ 144], may enhance local inflammation and tissue damage.

Interactions between epithelial cells may be of primary importance in directing repair of
injury. Fibronectin, together with growih factors, is thought to have a significant role in the
modulation of epithelial cell migration. Its production is increased after injury and after
exposure of epithelial cells to inflammatory mediators, such as cytokines and endothelin-1
{62, 142, 214-216].

NO produced by bronchial epithetial cells may also have beneficial effects. It increases
the ciliary beat frequency, thereby facilitating the clearance of mucus with trapped agents
[23]. NO is also a potent bronchodilator {179, 217]. In contrast to guinea pigs, human studies
have failed to demonstrate that EpDRF is identical fo NO [218-221},

Release of soluble receptors

The release of soluble receptors is another mechanism to control inflammatory processes
{222, 223]. Soluble receptors may bind their ligand, thereby reducing the amount of ligand
able to bind membrane-bound receptors. Bronchial epithelial cells have been shown to re-
lease the 1L-6 receptor and the p55 (type I) soluble TNF-¢ receptor (sTNF-R), which may
down-regulate the effects of IL-6 and TNF-q, respectively [224-226]. In a study with stable
astiumatic children, 1o difference in sTNF-R levels in serum could be observed compared to
healthy subjects {227]. However, during asthma exacerbations serum levels of sTNF-R were
significantly increased in both non-atopic and atopic asthmatics [228].

As abready mentioned above, epithelial cells possibly also release the IL-1R type 1. At
present, no data are available on the role of this soluble receptor in asthma.

Inhibition of pro-inflammatory mediators

Bronchial epithelial ceils express several enzymes which are able to degrade, and thereby
often inactivate, a variety of mediators, including neuropeptides, histamine, bradykinin, and
cytokines. Epithelial cells express histamine N-methyltransferase, and thus are capable of
modulating histamine-mediated effects {229, 230]. The best-studied peptidase expressed by
bronchial epithelial cells is NEP. A reduced activity of this enzyme has been implicated in
the pathogenesis of asthma [52, 231, 232]. The characteristics and biological functions of
peptidases are described in more detail in chapter 3,
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Chapter 5

Glucocorticoids
Mechanisms of action and anti-inflammatory potential in asthma

Glucocorticoids are hormones synthesized in the adrenal cortex and secreted into the
blood, where the levels of glucocorticoids fluctuate in a circadian mode. In humans, the
naturally occurring glucocorticoid is hydrocortisone (cortisol), which is synthesized from its
precursor cortisone.

The beneficial effects of glucocorticoids in asthmatic patients were first described in
1950 [1]. Since then on, many studies have focussed on the therapeutic potential of glucocor-
ticoids. Several synthetic glucocorticoids, much more potent than cortiso} and without the
unwanted mineralocorticoid side effects, have been developed. Nowadays, glucocorticoids
are powerful agents in the treatiment of inflammatory discases and are by far the most effec-
tive anti-inflanmnatory drugs used in the treatment of asthma.

5,1, MECHANISM OF ACTION

Although glucocorticoids have been known for a long period of time, their precise mecha-
nism of action is still not completely understood. However, recent studies have increased our
understanding of their complex mechanisims of action.

5.1.1. Glucocorticoid receptor

To exert their effects, glucocorticoids need to bind to a specific cytoplasmic glucocorti-
coid receptor (GR). Almost all cells of the body express the GR, but the number of receptors
may vary between different cell types [2]. Cloning of the GR has revealed that the GR con-
sists of approximately 800 amino acid residues, and that certain areas of the molecule show
homology with other steroid receptors, receptors for thyroid hormones, and receptors for
retinoic acid {3-7]. All members of the nuclear hormone receptor family shave a characteris-
lic three-domain structure, first described for the human GR (Fig. 1), The C-terminal domain
is equal in size in ali nuclear receptors studied (about 250 amino acids) and its main function
is to bind the steroid [8]. It also contains the binding sites for the heat shock proteins (hsp) 90
[9, 101. Removal of the steroid-binding domain results in a constitutively active GR
molecunle, indicating that this part of the molecule acts as a repressor of the transcription-
activation function. The most conserved central domain is involved in direct binding of the
receptor to DNA. Tt contains two distinct loops of protein, each bound af their base via four
cysteine residues to a single zinc ion, the so-called zine fingers [i1]. These zinc clusters are
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involved in binding of the GR to the major groove of the DNA double helix and play a role
in dimerization of two GR molecules [12, 13]. In addition, the central DNA-binding domain
has a transcription-activation function [4, 14]. The steroid-binding and DNA-binding do-
mains are separated by the “hinge-region’, which contains sequences that are important for
nuclear translocation and dimerization [9, 10]. The N-terminal domain is extremely variable
in size (24-600 amino acids). Its precise role is still uncertain, but it is required in transcrip-
tional activation [15].

hinge region

| |
DNA binding steroid binding
. domain . . domain 1
1 421 487 532 777
NHz —' CCOOH
transcription-activation

transcription-activation site 3

site 1 transcription-aclivation

site 2

zinc-finger b

zine-finger {

Figure 1, Linear alignnient of the human glucocm"ticoid receptor (adapted from reference [16]3.

Two different forms of the human GR have been described {3, 17]. These two highly
homologous isoforms, termed GRo and GRJ, are generated by alternative splicing of the
human GR pre-mRNA. The GRp isoform differs from the GRo isoform only in its C-termi-
nal domain, in which the last 50 amino acids of the latter are replaced by a unique 15 amino
acid sequence. However, this replacement has dramatic functional consequences, since the
GRp isoform is unable to bind glucocorticoids and to transduce ligand-dependent
transactivation. However, the physiological significance of the GR isoform remains ques-
tionable, since some recent studies indicate that this form is not conserved among species
and no dominant negative inhibition of GRo. activily couid be found {18, 19]. Nevertheless,
abundant expression of GR[} protein can be found in the epithelial cells lining the terminal
bronchioli of the lung [20].

The expression of the GR may be reguniated by numerous factors either at the transcrip-
tional, translational or post-translational level [21, 221. Glucocorticoids have been showa to
down-regulate the expression of the GR, both in vifro and in vivo {23, 24]. In contrast, in-
Hammatory mediators like interleukin (TL)-1[, IL-4, tumor necrosis factor (TNF)-o, li-
popolysaccharide (LPS) and interferon (IFN)-y have been shown to increase glucocorticoid
binding in vitro [25-29]. However, the increase in GR numbers may be accompanied by a
reduced affinity for glucocorticoids [25, 29]. Analysis of GR localization in normal and
asthmatic lung has not revealed differences in the level or sites of GR expression [30}.
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5.1.2. Regulation of gene transcription

In the absence of glucocorticoids, the GR is present in the cytoplasm of the cell as a
hetero-oligomer consisting of the GR itself, two molecules of hsp 90, one molecule hsp 70,
and one molecule of hsp 56 (which probably does not interact with the GR itself, but interacts
with hsp 90} [31-35]. Glucocorticoids enter the cytoplasm of the cell by passive diffusion
through the cell membrane. In the cytoplasm they bind to the GR complex, which subse-
quently undergoes conformational changes, resulting in the dissociation of the hsp 90 and
hsp 56 molecules. Upon this activation, the ghucocorticoid-GR complex passes the nuclear
membrase, enters the nucleus, and the hsp 70 molecule is dissociated. Furthermore, in the
nucleus liganded GR form homodimers (Fig. 2).

Within the nucleus, the GR homodimers may regulate gene transcription in several ways:
1. via binding of the giucocorticoid-GR complex to specific DNA sequences, thereby di-
rectly activating or repressing genes; 2. via interaction with other transcription factors; and 3.
via modulating the stability of specific mRNA molecules [36-40].

enzyme receptor
Go cylokine
regulatory protein

® AV

cytokine

¥ receplor

cell membrane

? protein

direct interaction mRNA

cyloptasm

target gene

AP-1 KB nGRE ? \ coding seguence
nucleus promoter seguence

Figure 2, Cellular events after administration of glucocorticoids (adapted from reference [40]).
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Binding to DNA sequences

Several steroid-responsive genes contain ghucocorticoid responsive elements (GRE) in
their promoter region [36, 41]. Binding of GR homodimers to GRE may either result in
transcriptional activation of the gene (via a posifive GRE) or repression of the gene (via a
negative GRE) (Fig. 2). The consensus sequence for (positive) GRE is the palindromic {5-
base-pair sequence GGTACAnnTGTTCT, whereas the negative GRE has a more variable
sequence [37]. The rate of transcriptional regulation of steroid-responsive gencs is depen-
dent on both the numbers of GRE, the affinity of the glucocorticoid-GR complex to the GRE,
and the position of the GRE relative to the transcriptionai start site. Binding of the complex
to GRE may result in conformational changes in the DNA and exposure of previously masked
areas, resulting in increased binding of other transcription factors [42-45].

Interaction with other franscription factors

Many steroid-responsive genes do not have GRE in their promoter region. However,
binding sites for other transcription factors, including activating protein (AP)-1, nuclear fac-
tor (NF)-xB, and cAMP-responsive element binding protein (CREB), often can be found
[46].

AP-1, which is a dimer of two proto-oncogenes (members of the c-jun and c-fos family)
{47, 48], is involved in the regulation of several genes, including adhesion molecules and
cytokines (reviewed in [48]). Direct protein-protein interaction between AP-1 and the gluco-
corticoid-GR complex results in reciprocal repression of one another’s transcriptional acti-
vation by preventing binding of the AP-1 and glucocorticoid-GR complex to AP-1 sites and
GRE, respectively (Fig. 2) [38, 49, 50].

Comparable to AP-1, NF-xB (a heterodimer of pS0 and p65 subunits; [51, 52]) regulates
the transcription of several genes involved in inflammatory reactions [51, 53, 54]. In
unstimulated cells, NF-xB is retained in the cytoplasm of the cells through the interaction
wilh the inhibitors EkBo and [kB {55-57]. Upon cell stimulation, for example by IL-1J or
TNF-o, IxB are rapidly phosphorylated, ubiquitinated, and consequently proteolyzed [54,
58]. The liberated NF-xB dimers translocate to the nucleus where they can activate target
genes, Glucocorticoids may inhibit NF-kB-stimulated genes by a direct interaction between
the glucocorticoid-GR complex and the p635 subunit of NF-xB, resulting in transrepression
{Fig. 2) {52, 56, 59, 60]. Furthermore, glucocorticoids may indirectly antagonize NF-xB
mediated transcription by up-regulating the synthesis of the inhibitory protein IkBo, which
traps NF-xB in inactive cytoplasmic compiexes [40, 55, 56]. A large number of
immunoregulatory genes, whose expression is induced by a variety of pro-inflammatory
mediators, contain NF-xB sites in their promoters/regulatory regions. Therefore, it is no
wonder that glucocorticoids have been found to prevent the expression of these genes, in-
cluding those coding for IL-1[3, IL-2, IL-6, [1.-8, monocyte chemotactic protein (MCP)-1,
RANTES (Regulated upon Activation, Normal T cell Expressed, and presumably Secreted),
granufocyte macrophage colony-stimulating factor (GM-CSF), the T1.-2 receptor, intercellu-
tar adhesion molecule (ICAM)-1, and E-selectin {revicwed in [46]). Probably, interactions
between glucocorticoids and NF-xB or AP-1 will explain most of the anti-inflammatory and
immunosuppressive activities of glucocorticoids.

An interaction between CRER and the glucocorticoid-GR complex has also been sug-
gested [61, 62]. B-agonists, which are used as bronchodilators in the treatment of asthma,
increase cAMP formation and subsequently activate CREB, Therefore, simultaneous treat-
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ment of asthmatic patients with glucocorticoids and B-agonists may result in reduced respon-
siveness of the airways for steroids [62-64].

Modulation of mRNA stability

A third mechanism by which ghicocorticoids may regulate the synthesis of proteins is via
enhanced franscription of specific ribonucleases which are able to degrade mRNA contain-
ing constitutive AU-rich sequences in the untranslated 3'-region [65]. Such glucocorticoid-
mediated modulation of post-translational events (resulting in decreased mRNA stability and
reduced half-life time) has been observed for 1L-1[3, IL-6 and GM-CSF [66, 67].

5.2, GLUCOCORTICOID REGULATED GENES

Glucocorticoids are able to modulate the ranscription of a variety of genes, including
cytokines and chemokines, receptors, enzymes, adhesion melecules, and inhibitory proteins
(Table 1). Since epithelial cells may be one of the most important targets for glucocorticoid
therapy in asthma, the effects of glucocorticoids on epithelial expressed inflammatory genes
will be emphasized in this review.

Table 1. Influence of glucocorticoids on the synthesis of proteins with (anti-)inflammatory effecis by bron-
chial epithelial cells.

Protein Glucocorticoid effect
Cytokines
IL-1B, IL-6, IL-11, TNF-0, GM-CSF l
1L-10, LIF ?
G-CSF =
Chemokines
MCP-1, eotaxin, IL-8, RANTES, MIP-1o L
Receptors
NK,, GR L
H.-IR 11, IL-6R, Py-adrenergic receptor T
Enzymes
iNOS, COX-2, ¢cPLA, i3
NEP T

Adhesion molecules
ICAM-1 4

Inhibitory proteins
Le-f =T
IL-1RA type I, SPLI T
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Cytokines and chemokines

Glucocorticoids inhibit the transcription of most cytokines and chemokines that are re-
levant in asthma, including IL-1B, TNF-¢, GM-CSF, 1L-3, TL-4, TL.-5, IL.-6, IL-8, [L- 11,
IL-12, IL-13, RANTES, eotaxin, and macrophage inhibitory protein (MIP)-1o. {46, 67]. In
general, reduced synthesis of these mediators may result in a decreased recruitment and
activation of leukocytes, also indirectly due to effects on adhesion molecules and cell sur-
vival. Since many cytokine gene promoters do not contain a negative GRE, the effects of
glucocorticoids on cytokine and chemokine production are probably mediated via an effect
on a crifical transcription factor (especially NF-kB and AP-1) [68].

Bronchial epithelial cclls are capable of producing a variety of cytokines and chemokines
that may conitribute to the initiation and perpetuation of airway inflammation, Several studies
have shown that eytokine-induced expression of eotaxin, 1L-6, IL-8, GM-CSF, and RANTES
can be diminished by glucocorticoids in vitre (69-77]. In contrast, glucocorticoids did not
modulate the secretion of G-CSF by human bronchial epithelial cells {77]. In vive studies
have shown that treatment with inhaled sleroids decreases both the expression of GM-CSF
{781, IL-8 [79], and RANTES [80] by the bronchial epithelium, together with the nomber of
activated eosinophils in the epithelium.

Receptors

Glucocorticoids may modulate the expression of several receptors. The expression of the
neurokinin (NKJ, receptor, which mediates many effects of substance P (SP) in the airways
and is believed to be up-regulated in asthma [81], is down-regulated by glucocorticoids [82].
Since the NK, receptor gene promoter region has no GRE but has an AP-1 response element,
this effect probably will be mediated via an interaction of the glucocorticoid-GR complex
with AP-1.

In contrast to NK, receptors, expression of the B-adrenergic receptor is increased by
ghucocorticoids [83]. Since the human B,-adrenergic receptor gene contains three potential
GRE, this effect of glucocorticoids probably is a direct one [83]. Upregulation of B,-adrener-
gic receptors by glucocorticoids may be relevant in asthma as it may prevent down-regula-
{ion in response to prolonged treatment with ,-agonists {84],

The TL-I receptor type II, which functions as a decoy receptor {85], may also be up-
regulated by glucocorticoids, thereby reducing the functional activity of IL-1 agonisis [86,
87]. Soluble TNF-receptor type I (p55) release by human bronchial epithelial cells, both
constitutive as well as IL- } B-induced, has been shown to be reduced by glucocorticoids [88].
In contrast, glucocorticoids up-regulate the expression of IL-6 receptors in rat hepatoma and
human epitheliat cells [89, 90]. Thus far little is known about this process in human bronchial
epithelial cells, which constitutively express these receptors [91].

Glucocorticeids also modulaie the expression of their own receptor. In a recent study it
was shown that expression of the a-form (but not the B-form) of the GR in human bronchial
epithelial cells was down-regulated in healthy subjects after 4 weeks of budesonide inhala-
tion [24].

Enzymes

Glucocorticoids inhibit the synthesis of several inflammatory mediators implicated in the
pathogenesis of asthma through an inhibitory effect on enzyme induction, The synthesis of
inducible nitric oxide synthase (iNOS) by human airway epithelial cells is inhibited by glu-
cocorticoids, both in vitro and in vive [92-94]. This effect seems to be mediated via inactiva-
tion of NF-«B {95, 96]. Since nitric oxide (NO) may contribute to skewing of Th lympho-
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cytes towards a Th2 phenotype, thereby promoting IgE production and eosinophil recruit-
meit, inhibition of iINOS may be of importance in anti-inflammatory therapy in asthma [97].

Glucocorticoids also inhibit the gene transcription of a cytosolic torm of phospholipase
A, induced by cytokines {98] and inhibit the gene expression of cyclooxygenase-2, resulting
in reduced formation of prostaglandins and thromboxanes [99],

In contrast to the enzymes mentioned above, glucocorticoids have been shown to in-
crease the expression of neutral endopeptidase (NEP) [ 100, 101], thereby potentially limit-
ing neurogenic inflammatory responses ([102]; see chapter 3). However, this glucocorticoid-
mediated increase in NEP expression could not be confirmed in another study [103].

Adhesion molecules

Adhesion molecules play an important role in the recruitment of inflammatory cells to the
inflammatory locus. Expression of aditesion molecules on endothelial, epithelial or inflam-
matory cells is often induced by cytokines, whereas glucocorticoids reduce surface expres-
sion of adhesion molecules. This effect may be due either to inhibition of cytokine synthesis
or to a direct effect of glucocorticoids on adhesion molecule gene transcription. It has been
shown that the expression of ICAM-1, endothelial leukocyte adhesion molecule (ELAM)-1,
and E-selectin is down-regulated by steroids [104]. Basal and cytokine-stimulated ICAM-1
expression on human bronchial epithelial cell lines is inhibited by glucocorticoids [103, 106].
However, inhaled glucocorticoids did not modulate FCAM-1 expression by bronchial epithe-
lial cells from asthinatics in vive [107].

Eosinophil adhesion to cylokine-stimulated bronchial epithelial cells was shown to be
inhibited by the synthetic glucocorticoid dexamethasone [ 108]. Although cytokine-gctivated
epithelial celis showed increased expression of ICAM-1, this molecule did not seem to be
involved in the decreased adhesion of eosinophils observed in the presence of dexametha-
sone [108}].

Inhibitory proteins _

The anti-inflammatory effects of glucocorticoids may be mediated by increasing the pro-
duction of inhibitory proteins, such as lipocortins. Lipocortins are members of a superfamily
of proteins characlerized by their ability to bind calcium and anionic phospholipids, now
known as the ‘annexins’ {109, 110}, In several cell rypes, but not ali, glucocorticoids are
inducers of lipocortins, which have an inhibitory effect on the activily of phospholipase A,
[L11, 1i2}. As a result, the synthesis of lipid mediators, including prostaglandins and
eicosanoids, will be reduced. However, in human bronchial epithelial cells glucocorticoids
do not seem to upregulate the expression of lipocortins [113]. Furlhermore, no significant
difference was found between lipocortin-1 concentration in BAL fluid from asthmatic pa-
tients receiving inhaled glucocorticoid therapy and those who were not treated with ghico-
corticoids [114].

Recently, glucocorticoids have also been shown to increase the expression of intracellu-
lar IL-I receptor antagonist type I by human bronchial epitheliai cells [115]. Increased pro-
duction of this mediator may inhibit the effects of 1L-1 agonists, thereby reducing inflamma-
tion.

To provide protection against potentially injurious agents, airway epithelial cells secrete
a number of mediators, including antiproteases. Secretory leukocyte protease inhibitor (SLPI)
is thre predominant antiprotease in the airways, Its expression has been shown to be increased
in airway epithelial cells after stimutation with glucocorticoids [116}.
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53. CELLULAR AND CLINICAL EFFECTS OF GLUCOCORTICOIDS IN ASTHMA

Several studies have determined the effects of inhaled glucocorticoids on bronchial inflam-
mation, either by measurements in bronchoalveolar lavage (BAL) fluid, sputim, or exhaled air,
or by performing bronchial biopsies. Although differences can be observed between different
trials, these studies have confirmed that glucocorticoid treatment of asthmatic patients reduces
the number and activation of inflammatory cells in the airways, together with an improvement
of lung function. Nowadays, the potent anti-inflammatory actions of glucocorticoids are thought
to underlie the clinical efficacy of oral glucocorticoids [117].

Effects of glucocorticolds on immunopathology

Inhated glucocorticoids decrease the number and activation status of most inflammatory
cells in the bronchus, including mast cells, dendritic cells, cosinophils, and T lymphocytes.
Changes in cellular infiltration are accompanied by modulated expression of several cytokines,
Inhated glucocorticoids have been shown to decrease mRNA expression of GM-CSFE, IL-13,
IL-4, and IL-5, whereas mRNA levels of IL-12 and TRN-yincreased, suggesting a shift from
a Th2- towards a more Thi-like environment {78, 118, 119].

Glucocorticoid treatment is associated with a reduction in mast cefl numbers in the bron-
chus {79, £17, 120-123] and with reduced mast cell associated mediators in BAL tluid [123,
124]. This may be due to a reduction in IL-3 and stem cell factor production, which are
necessary for the survival of mast cells in tissue, The (IgE-dependent) release of mediators
from mast cells does not seem to be affected by glucocorticoid treatment [125, 126].

Dendritic cells play an important role in presenting antigens to (naive) T celis [127, 128].
Inhaled glucocorticoids have been shown to reduce the number of dendritic cells in the hu-
man bronchial epithelium [129].

Increased numbers of eosinophils ave a prominent feature of asthmatic airways [130-
136}, In vitro studies have shown that many eosinophil functions, including adherence and
chemotaxis, are diminished following glucocorticoid treatment [126]. However, most data
" suggest that eosinophil responses to steroids are likely to be indirect, since eosinophil func-
tion is markedly affected by cylokines elaborated from T lymphocytes (IL-3, IL-4, IL-5,
GM-CSF), endothelial cells (GM-CSF) and epithelial cells (GM-CSE) {137-1411. In vivo
studies indicate that treatment with inhaled steroids reduces the number of cosinophils and
eosinophil-retated mediators in BAL fluid [79, 136, 142} and the number of (activated) eosi-
nophils in bronchial biopsies [79, 117, 120, 121, 143]. Recently, induced sputuin has been
suggesied as a useful tool for evaluating the effects of therapy on airway mucosal inflannna-
tion. Thus far, most studies have focussed on the presence of cosinophils and eosinophit-
related mediators. In accordance with the findings in BAL fluid and bronchial biopsies, ghu-
cocorticoid treatment was associated with a reduction in sputun eosinophil humbers, eosino-
phil cationic protein {ECP), and eosinophil peroxidase (EPO} [144].

Glucocorticoids also reduce the number of activated T Iymphocytes in bronchial biopsies
and BAL fluid [117, 121, 122, 143, 145]. In addition, inhaled corticosteroids reduced the
number of cells expressing mRNA for IL-4 or [L-5, and increased the number of cells ex-
pressing mRNA for [FN-y [119, 120], thereby favoring the development of Thl cells [146].

In addition to the effects of glucocorticoids on epithelial cells described above, inhaled
glucocorticoid therapy has been shown to reduce the shedding of epithelial cells [143, 147,
148]. No consistent effect of corticosteroids on the thickness of the basemient membrane has
been observed [79, 148, 149].
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Besides the suppressive effects on inflammatory cells, inhaled glucocorticoids have also
shown to inhibit mucus seeretion and microvascular leakage {as determined by the down-
regulation of plasma proteins in BAL fluid) [148, 150-154]. At present it is not clear whether
this is mediated via a direct eifect of glucocorticoids on endothelial or mucous cells, or via a
reduction of inflammatory mediators that increase mucus secretion and vascular leakage.

Effects of glucocorticoids on lung function

Treatment with glucocerticoids has been consistently shown not only to reduce the symp-
toms of asthima, but also bronchial hyperresponsiveness [122, 155]. In contrast to the rapid
inhibitory effects of [i,-agonists, glucocorticoids given in a single dose are not effective in
preventing early allergen-invoked bronchoconstriction, but inhibition of the late response
has been clearly demonstrated [156, 157]. In contrast, chronic treatment with either oral or
inhaled steroids attenuates even the eatly bronchocoustriction to allergen [157-159], an ef-
fect that probably is mediated via the anti-inflammatory actions of glucocorticoids already
described. Although inhaled glucocorticoids consistently reduce airway hyperreactivity in
asthmatics [155], even after several months of treatment responsiveness fails to return to the
normal range. This may reflect persistence of structural changes that cannot be reversed by
steroids (such as the thickening of the basement membrane), despite of suppression of the
inflammatory and immunological processes.
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Chapter 6

Aims of the studies

The studies described in this thesis have focussed on three main topics: peptidases, the
bronchial epithelium, and glucocorticoids, Our aim was to further define the contribution of
peptidases and the bronchial epithelium to the inflammatory process characteristic for the
asthmatic airways and o determine the anti-inflammatory effects of glucocorticoids on these
processes. As pointed out in the first part of this thesis, several studies have demonstrated or
suggested a role for peptidases and bronchial epithelial cells in the pathogenesis of asthma,
However, several questions remain to be answered.

6.1. PEPTIDASES

Neurogenic inflammation mimics many of the pathophysiological features of asthma,
and a role for neuropeptides in the pathogenesis of asthina has been implicated. Although the
apparent upregulation of the sensory nenropeptide effects may be due to several mechanisms
(see chapter 2.4), studies using laboratory animais have indicated that peptidases, especially
neutral endopeptidase (NEP), play a major role in limiting nearogenic inflammatory responses,
Therefore, we hypothesized that the expression and/or activity of peptidases is reduced in the
airways of asthmatic patients, thereby contributing to neurogenic inflammation. Furthermore,
we hypothesized that treatment with (inhaled) glucocorticoids increases the activity of pepti-
dases in the human airways, thereby reducing newrogenic inflammation. Testing the first
hypothesis can be subdivided into two phases: 1) the analysis of the expression/activity of
peptidases in the human airways (both in bronchial tissue and in the bronchoatveolar lumen);
and 2) the comparison of the expression/activity of peptidases between healthy subjects and
asthmafic patients,

In chapter 7 we investigate the distribution of two peptidases, aminopeptidase N (APN)
and dipeptidyl peptidase IV (DPP IV), in human bronchial tissue and compared their distri-
bution with the known distribution of NEP. Similar to NEF, APN and DPP IV are able to
degrade a variety of inflammatory peptides and may therefore modulate inflammatory pro-
cesses (see chapter 3}, To investigate whether the expression of APN and DPP TV was al-
tered in asthma, we determined the expression of APN and DPP IV in bronchial biopsies of
asthmatic patients and compared this with the expression detected in bronchial biopsies of
kealthy controls.

Soluble peptidases have been found in blood, although their origin, fate, and function are
still largely unknown, Increased levels of soluble peptidases have been found in blood samples
of patients with pulmonary inflammation and it has been suggested that this may reffect local
tissue damage (see chapter 3). In chapter 8 we describe studies on the analysis of peptidase



128 Chapter 6

activities (NEP, APN, and DPP IV} in serum and bronchoalveolar lavage (BAL} fluid, which
may more properly reflect local changes. To determine whether asthma was associated with
altered peptidase activities, we compared peptidase activities in serum and BAL fluid from
healthy subjects and allergic asthmatics. Finally, to analyze whether glucocorticoids exert
part of their anti-inflammatory actions via modulation of peptidase activities, we studied the
cffects of treatment with inhaled glucocorticoids on the activity of peptidases of asthmatic
patients, again both in BAL fluid and in seruem,

6.2, PEPTIDASES AND THE BRONCHIAL EPITHELIUM

Studies using laboratory animals have shown that NEP present on the bronchial epithe-
lium plays a major rofe in the hydrolysis of neuropeptides and thereby in modulating neuro-
genic inflammation. It has been shown that NEP activity may be reduced by a variety of
cxogenous stimuli, like viral infections, ozone, and cigaretic smoke (see chapter 3.6). In
contrast, little is known about the modulation of NEP activity on bronchial epithelial cells by
endogenously released mediators. Asthmatic airways are chronically inflamed and inflam-
matory mediators, such as cytokines, may affect peptidase expression and thereby modulate
(neurogenic) inflammation. In chaprer 9 we aim to answer two questions: 1} what is the
effect of cytokines on the activity and expression of peptidases on human bronchial epithelial
cells; and 2) what is the effect of glucocorticoids on the activity and expression of these
peptidases? Since it is hard to obtain {arge numbers of bronchial epitheliat cells in primary
culture, we used for this study the bronchial epithelial cell line BEAS 2B, which expresses
NEP and APN. We first studied the effects of the cytokines interfeukin (1L)- 13, TL-4, tumor
necrosis factor (TNF)-o, interferon (IFN)-y, and epidermal growth factor (EGF) on the pep-
tidase activity and expression. These cytokines are abundantly present in the inflamed bron-
chus. Second, we studiced the effects of glucocorticoids, which are widely used in the treat-
ment of asthina, on the expression and activity of both peptidases. These studies were per-
formed both in the absence and in the presence of cytokines, since the latter condition may
more properly reflect the in vive situation during glucocorticoid therapy.

6.3. THE BRONCHIAL EPITHELIUM

Until recently the bronchial epithelinum was considered {o be a passive batrier between
the environment and the internal milieu of the lung. In addition to this barrier function, bron-
chial epithelial cells are now considered to play an essential role in initiating and perpetuat-
ing inflammatory reactions (chapter 4).

1L-4 is thought to be an important mediator in the development and perpetuation of aller-
gic diseases like asthina (see chapter 1.4). Asthmatic airways show an increased number of
cells expressing IL-4, predominantly Th2 lymphocytes and eosinophils, and increased levels
of IL-4 can be found in BAL fluid from asthmatics compared to healthy controls, Therefore,
we analyzed whether human bronchial epithelial cells express functional IL-4 receptors, both
in vivo and in vitro, and whether this expression is altered in asthmatic patients. We first
determined the expression of 1L-4 receptor mRNA and protein in bronchial epithelial cells in
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vivo (using in siti hybridization and immunohistochemistry) and #1 vifro (using RT-PCR and
flowcytometry). Second, we studied the expression of iIL-4 receptors in bronchial biopsies of
allergic asthmatics and compared this with the expression in healthy subjects. To determine
whether the TL.-4R on human bronchial epithelial ceils is also functionally active, we investi-
gated whether stimulation of cultured human bronchial epithelial cells with IL-4 can modu-
late the release of the pro-inflammatory mediators 11.-8 and monocyte chemotactic protein-1
{MCP-1) and the anti-inflammatory mediator IL-1 receptor antagonist. Finally, we studied
whether -4 receptor expression on human bronchial epithelial cells in vitro can be modu-
lated by cytokines (IL- 13, TL-6, IL-4} or pharmacological agents (dibutyryl-cAMP and phorbol
myristate acetate). These studies are presented in chapter 10.

Accumulation of leukocytes in the long is dependent upon the presence of chemokines
and the expression of appropriate adhesion molecules. Bronchial epithelial cells are able to
produce a variety of chemokines, and therefore may contribute to the increased numbers of
leukocytes observed in the asthmatic airways (sec chapter 4.3.1.). In addition, bronchial
epithelial cells may express surface membrane molecules involved in the adhesion or activa-
tion of the recruited lenkocytes, such as intercellular adhesion molecule (ICAM)-1 and the
human teukocyte antigen (HLA) class 1f molecule. Modulation of chemokine release and
surface membrane molecules may serve as an important mechanism to control the recruit-
ment and activation of leukocytes. In chapter 11 we describe studies regarding the release of
MCP-1, the prototype C-C chemokine, and IL-8, the prototype C-X-C chemokine, by human
bronchial epithelial cells. We investigated whether inflammatory agents, like cytokines (IL-
I3, TNF-o, IEN-v) and the bacterial cell wand product Hpopolysaccharide (LPS), can modu-
late the release of these chemokines. In addition, we investigated whether stimulation of
bronchial epithelial cells by these cytokines can also affect the expression of molecules in-
volved in the adhesion and activation of the recruited feukocytes, Therefore, we analyzed the
epithelial expression of ICAM-1, HLA class II, and the costimulatory molecule CD40, both
in the absence and in the presence of cytokines. Finally, the effects of glucocorticoids on the
cytokine-induced responses were analyzed to determine whether these drugs can exert part
of their anti-inflammatory actions through inhibition of chemokine release or marker expres-
ston by human bronchial epithelial cells.

in Chapter 12, the experimental findings of chapters 7 through 11 are discussed in the
condext of the present literature. In this chapter also future research directions will be given.
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ABSTRACT

Backorounp: Asthma is characterized by reversible airway obstruction, airway
hyperresponsiveness, and chronic inflammation of the airways. Since peptides are able to
produce many of the pathophysiological featores characteristic of asthma, peptide-mediated
inflammation is thouglht {o play a role in this disease. The effects of peptides are modulated
by peptidases, which are able to degrade peptides, mosily resulting in their inactivation.

Opsective: In this study, we investigated the distribution of two peptidases, aminopeptidase
N and dipeptidyl peptidase IV, in the human bronchus and determined whether their expression
was altered in allergic asthmatics.

MeTHoDps: We first determined the distribution of aminopeptidase N and dipeptidyl peptidase
1V in the human bronchus using immune- and enzymehistochemistry and compared this with
the distribution of neutral endopeptidase, Second, the expression of aminopeptidase N and
dipeptidyl peptidase IV was determined in bronchial biopsies of healthy subjects {(n=8) and
allergic asthmatics (n=12).

Resuers: Aminopeptidase N was localized in connective tissue, blood vessels, gland ducts,
perichondriuin, nerves and leukocytes (mainly mononuclear phagocytes, dendritic cells, and
eosinophils). Dipeptidyl peptidase IV was localized in serosal glands, blood vessels, and T
cells. Immunchisiochemistry and enzymehistochemistry gave similar results. Comparisen of
the expression of aminopeptidase N and dipeptidyl peptidase TV in bronchial biopsies of
healthy controls and atopic astlunatics revealed no significant differences in the lamina prop-
ria. In contrast, in the bronchiai epithelium of atopic asthmatics an increased number of
aminopeptidase N-positive cells could be found. Double-staining identified these cells as
L25*dendritic cells and eosinophils.

Concrusion: We conclude that expression of aminopeptidase N and dipeptidyl peptidase
IV is restricted to specific sites within the human bronchus, Furthermore, in the bronchial
cpithelium of allergic asthmatics an increased number of aminopeptidase N-expressing
dendritic cells and eostnophils can be found,

INTRODUCTION

Asthma is clinically characterized by reversible airway obstruction and airway
hyperresponsiveness [1]. Nowadays, it is thought that these symptoms result from a chronic
inflammation of the airways, characterized by an infiux of leukocytes and increased levels of
inflammatory mediators [2]. This inflammation is caused, at ieast partially, by peptides like
cytokines and neuropeptides, Degradation of peptides by peptidases is an important mechanism
to modulate peptide-mediated inflammation. It has been demonstrated that inhibition of
peptidases, either by drugs or by environmeatal factors such as ozone, results in potentiation
of neuwropeptide-induced effects in the airways [3-7]. In contrast, administration of an
aerosolized recombinant peptidase prevented neuropeptide-mediated cough [8]. Based on
these results, it is thought that peptidases also play an important role in the modulation of
peptide-mediated inflammation in asthma (reviewed in [9]). Until now, most atiention has
been given to neutral endopeptidase (NEP, identical to CD10 {10]). In the human bronchus,
this peptidase has been identified in the epithelium, smooth muscle, submucosal glands, and
endothelium {11]. However, other membrane-bound peptidases, such as aminopeptidase N
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(APN) and dipeptidy! peptidase IV (DPP IV) may also be involved in the modulation of
peptide-mediated inflanunation.

APN, which is identical to CD13 [12], preferentially cleaves neutral amino acids from the
N-terminus of peptides, including enkephalins, fMLP, tachykinins, and cytokines like IL- 1,
I1.-2, IL.-6 and TL-8 [13-15]. lis general function is to reduce cellular responses to peptides,
but APN may also be involved in processing MHC-bound peptides [ 6] and in the degradation
of type IV collagen [17]. APN is expressed on myeloid cells (granulocytes, monocytes and
macrophages), in the intestinal and renal epithelium, endothelivm, placenta, brain, kidney,
breast, and liver (reviewed in [18]), On many cells, APN is co-expressed with NEP and it is
thought that initial cleavage by NEP may precede APN activity.

DPP 1V (which is identical to CD26 [19]), is a serine protease which preferentially cleaves
Xaa-Pro and less frequently Xaa-Ala dipeptides froin the NH,-terminus of polypeptides {201,
Among the possible substrates for DPP IV are substance P (SP) and bradykinin [21, 22].
DPP 1V may also be able to degrade cytokines, like IL- 1B, TL-2 and IL-6, although preceding
cleavage by an endopeptidase may be required [14], In addition, DPP IV may also function
as an adhesion molecute to fibronectin {231, as a co-receptor for HIV [24], and is involved in
T-cell activation [25]. DPP IV is expressed by a variety of cell types, most abundantly in
epitheiia of the small intestine, liver and kidney [26, 27], but also by activated T-lympho-
cytes [28].

Given the known characteristics of APN and DPP 1V, these two peptidases may be involved
in the modulation of peptide-mediated inflanmtmation in the airways. Therefore, our aims
were fo determine the expression and activity of APN and DPP IV in the human bronchus
and to compare this distribution with the recently established distribution of NEP. In addition,
the expression of APN and DPP IV in bronchial biopsies of healthy controls and atopic
asthmatic patients was studied (o determine whether APN and DPP IV are involved in bronchial
inflammation.

MATERIALS AND METHODS

Patients and control subjects

Bronchial mucosal biopsy specimens were obtained froin twelve non-smoking allergic
asthmatic patients {9 men, 3 women, median age 32 years, range 20 - 56 years). Asthma was
defined as a history of episodic wheezing and reversible airway obstruction characterized by
an increase in forced expiratory volume in one second (FEV)) of = 9% afier inhalation of
1000 pg terbutaline. The asthmatic subjects had a mean FEV, of 87% of the predicted value
(range 59 - 108%); the median of the *logs of the provocative concentrations of inhaled
methacholine required to reduce their FEV| by 20% (PCy,) was 0.29 mg/ml {range -3.89 -
3.43 mg/ml). Allergy was defined by one or more positive skin-prick tests to extracts of 16
common aecroallergens. All patients were receiving inhaled 3-agonists, and none had taken
oral or inhaled corticosteroids in the month prior to the study.

A control group was composed of 8 non-allergic non-asthmatic subjects (5 men and 3
women, median age 24 years, range 23 - 52 years). All controls had a PGy, histamine of more
than 8 mg/mi and a median FEV | of 100 (88 - 109)% of the predicted value. Characteristics
of patients and controis are shown in Table 1. The study was approved by the local Ethics
Committee and all participants gave their written informed consent.
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Tablel. Characteristics of patienis and heakthy subjects.

Patient number  Sex Age FEV, Zlog PC,
(years) (% predicted) (mg/mf)
Allergic asthmatics | M 51 59 .47
2 M 41 83 -1.83
3 M 55 60 -1.80
4 M 23 104 2.85
5 M 56 79 1.93
6 F 21 f05 -3.42
7 M 32 91 0.64
8 F 20 91 -0.06
9 M 43 67 3.43
Io F 26 92 2.86
1t M 47 81 -1.05
12 M 23 108 ~-3.89
Healthy subjects 1 M 23 109
2 F 24 163
3 F 23 96
4 M 23 88
3 M 52 83
6 F 33 97
7 M 24 104
8 M 26 109
Bronchial biopsy

Bronchial biopsy specimens were taken from the carinae of the lingula or the right upper,
middle or lower lobes via an Olympus BFIT 10 fiberoptic bronchoscope (Tokyo, Japan) using
alligator forceps, Olympus FB 15C, Each biopsy specimen was imimediately placed in isotonic
saline and frozen within 20 min in Tissue-Tek IT OCT embedding medium (Miles, Naperville,
IL, USA). Samples were stored at -80° C until use.

Tissue

Samples of human bronchus were obtained from patients undergoing pneumonectomy or
lobectomy. Tissue distinct from the tumor and having a normal appearance was embedded into
Tissue-Tek, frozen in liquid nitrogen, and stored at -80°C.

As control tissues for the enzymehistochemical studies, murine kidney and placenta, and
guinea-pig trachea were used. These lissues were treated in the same way as the human samples.

Antibodies

The following mouse monoclonal antibodies were used: CLB-CD13 (Ceniral Laboratory of
the Blood Transfusion Service, Amsterdam, The Netherlands) and WM-47 (gift of dr. E.
Favaloro, Westmead, Australia), both specific for APN; Ta-{ (Coulter Clone, Hialeah, FL,
USA), specific for DPP IV [28); L25 (kindly provided by Dr. T, Takami, Gifu, Japan), directed
against B celis and dendritic cells (DC) [29]; OKT6 (American Type Culture Collection,
Rockville, MA, USA), directed against the CDla antigen of DC [30]; S100 (DAKOpatts,
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Gilostrup, Denmark) directed against DC; anti-CD3 (Leu-4), anti-CD4 (Leu-3) and anti-CD8
(Leu-2), all from Becton Dickinson (San Jose, CA, USA); anti-CD 4 (My-4; Coulter Cione);
anti-CD19 (B4; Coulter Clone); EGI, recognizing eosinophil cationic protein (ECP) in resting
and activated eosinophils (Pharmacia, Uppsala, Sweden); BMKI13, recognizing Major Basic
Protein (MBP) in resting and activated eosinophils {Genzyme, Cambridge, MA, USA); and
EG2, (Pharmacia} recognizing the cleaved form of ECP in activated eosinophils,

Inmmunohistochemistry

Sections (6 jim) were cut using a cryostat and collected on poly-L-lysine (Sigma, St. Louis,
MO, USA) coated siides. The sections were air-dried for at least one hour, and stored at -20°C
until use. Before inununohistological staining, frozen tissue sections were brought to room
temperature and fixed in acetone for 10 minutes.

Immunchistochemical staining of bronchial biopsies was performed with the immuno-alkaline
phosphatase anti-alkaline phosphatase (APAAP) method {313, using new fuchsin (Chroma-
Gesellschaft, Stutigart, Germany) as the chromogen. For fissue obtained after lung surgery, the
avidin-biotincomplex (ABC) method (DAKOpaits) was performed with diaminobenzidine
(DAB; Sigma) as substrate [32]. Staining of bronchial tissue with the APAAP or ABC method
did not reveal significant differences in staining pattern and relative intensity.

Double-stainings were performed essentially as described earlier [33], However, sections
were fixed in acetone for 10 min and saponin was not added to the washing-buffer.

Enzymehistochemistry

Enzyme activities for APN, DPP IV and NEP were determined according to Lojda {34] with
some small modifications. Briefly, frozen fissue sections were brought to room temperature
and either tixed in Cafoma (1 g CaCl,, 10 ml formalin, 90 ml macrodex (dextran 60 g/l + NaCl
9 g/1y) for one minute or used immediately. Similar results were obtained with both methods.
Substrates used are ala-4-methoxynaphtylamide (ala-MNA; Sigma) for APN, gly-pro-MNA
(Bachem, Bubendorf, Switzerland) for DPP 1V, and glut-ala-ala-phe-MNA (Sigma) for NEP,
Enzymehistochemistry using prolyl-MNA (pro-MNA; Sigma) was used as a control for the
specificity of APN activily, since this substrate is resistant lo cleavage by APN. Three milligrams
of substrate were dissolved in 0.5 mi N,N-dimethylformamide (Merck, Darmstadt, Gennany),
For APN and DPP IV, this solution was mixed with 9.5 ml PBS containing 10 mg Fast Blue B
salt {(Sigma), and filtered. Sections were incubated in a moist chamber at room temperatuze for
two hours, followed by a short wash in PBS, and embedded in Aquamountant (BDH Laboratory
Supplies, Poole, UK).

For detection of NEP activity, a two-step reaction was used. Three milligrams of the substrate
were dissolved in (.5 mt N,N-dimethylformamide, mixed with 9.5 ml 50 mM TRIS-HCI pH
7.4 containing 10 mg Fast Blue B, and filtered. Subsequently, alanine-aminopeptidase (3 units;
Sigma) was added. Alanine-aminopepticase cleaves the phe-MNA bond after the initial cleavage
of the ala-phe bond by NEP. To determine specific NEP activity, parallel sections were incubated
with the same substrate, with the addition of phosphoramidon {Sigma), a specific NEP inhibitor
(final concentration: 1 pM). Sections were incubated in a moist chamber at 37°C for 24 hours,
washed shortly in 50 mM TRIS-HCI pH 7.4, and embedded in Aquamountant,

Sections were analysed immediately using a light microscope. Negative controls included:
1. omission of Fast Blue B in the incubation medium, 2, heating the sections at 90° C for 5 min
in buffer prior o incubation, and 3. omission of the substrate in the incubation medium,
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Since no counter-staining was used in the enzymehistological stainings, serial sections were
stained using the periodic acid Schiff (PAS) method.

Quantification

Biopsies were coded and two sections were counted in a blinded fashion for each antibody
and each biopsy at a magnification of 10x40. With an eye piece graticule the number of positively
stained cells were counted in the epithelium and in a zone 100 wm deep in the tamina propria
along the length of the epithelial basement membrane (BM}), which had to be covered with
epithelium over at least 500 {im.

Cells were counted if they stained red and contained a nucleus. The cell counts were expressed
as the number of cells per mm of basement membrane. Since the majority of APN in the lamina
propria was expressed on permanent structures within the bronchus (7.e, not confined {o infilirating
cells), APN expression in the lamina propria was scored semi-quantitatively on a 0 - 3 scale (0=
negative; I=weak; 2= moderate; 3= strong).

Statistical analysis

Median cell counts of biopsies of allergic asthmatics were compared with median celt counts
of the control subjects using the Mann-Whitney U-test. Correlation coefficients were obtained
by Pearson’s rank method. A value of p < (.05 was considered statistically significant,

RESULTS

Distribution of aminopeptidase N

The distribution of APN in the huwman bronchus was investigated using WM-47 and CLB-
CP13 antibodies. The two antibodies displayed identical reactivities in all tissues, As shown in
Figure 1A/B and Table 2, APN was observed in connective tissue {especially just beneath the
basement membrane of the bronchial epithelium and submucosal glands), secretory epithelium
of bronchial glands, perichondrinm, nerves, and endothelial cells. Some positively staining
leukocytes, mainty in the lamina propria, could be observed. Using double-stainings with CDD 14,
the majority of these cells was identified as mononuclear phagocytes. In addition, APN was
expressed by eosinophils (double-staining with BMK13) and certain dendritic cells (double-
staining with L25 but not with CD1a),

Using the enzymehistochemical staining for APN activity, a pattern similar to the
immunohistochemical staining was obtained (Eig. 1C/D and Tabie 2). No activity could be
observed using pro-MNA as a substrate {for incubation periods up to 48 hours; data not shown).

Distribution of dipeptidyl peptidase 1V

DPP IV expression could be detected in submucosal glands and leukocytes (Fig. 2A/B and
Table 2). In submucosal glands, DPP IV seemed to be located intracellularly. Blood vessels, in
particular venules but also capillaries, expressed DPP 1V weakiy. To determine whether serosal
or mucosal glands displayed DPP IV expression, serial sections were stained using the PAS-
method. This revealed that DPP IV was only present in serosal glands. No staining of fibroblasts,
bronchial epithelium and smooth muscle cells could be observed. Double-stainings with CD3
revealed that the majority of DPP IV-positive leukocytes were T cells.
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Figure 1. Distribution of APN in human bronchial tissue. Expression of APN was determined by
immunohistochemistey (A and B) and enzymehistochemistry (C and D). A ard C: negative control (omission of
primary antibedy or substrate, respectively); B; CLB-CD13, an antibody speciftc for APN; D: ala-MNA. Original
magnification: 160 x,

Enzymehistochemistry revealed strong DPP [V activity in submucosal serosal glands, blood
vessels, and leukocytes (Fig, 2C/D and Table 2).

Distribution of neutral endopeptidase

To compare the distribution of APN and DPP IV with NEP, the activity of NEP was determined
using enzymehistochemisiry, In the human bronchus, a very weak NEP activity was observed,
but attribution of this activity to a certain cell type was difficult. Faint staining of the bronchial
epithelium, submucosal glands, smooth muscle and blood vessels could be observed (Table 2).
In all cases, no activity could be observed in the presence of phosphoramidon (1 pM), indicating
that indeed NEP activity was measured. In contrast to the human bronchus, in the guinea-pig
trachea NEP activity could easily be detected, especially within the epithelium (data not shown),

APN and DPP 1V in bronchial biopsies of healthy controls and allergic asthinatics

Analysis of the type of cell infiltrate revealed no statistically significant difference in the
numbers of T cells, B cells, monocytes, or dendritic cells between healthy subjects and allergic
asthmatics. In contrast, the number of (activated) eosinophils in the lamina propria of allergic
asthmatics (as determined by staining with EG [, EG2 and BMK 13) was significantly increased
compared to healthy subjects (Table 3).

No difference was observed in APN expression of the lamina propria of healthy subjects and
allergic asthmatics (Fig 3B). In contrast, in the bronchial epithelinm of allergic asthmatics an
increased number of APN-positive cells could be observed compared to heaithy controis (Fig.
3A). These APN-positive cells morphologically appeared to be infiltrating leukocytes rather
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L

Figure 2. Localization of DPP IV in human hrouchial tissue, Expression of DPP IV was determined by
immunohistochemistry (A and B) and enzymehistochemistry (C and D). A and C: negative control {(omission of
primary antibody or substrate, respectively); B: Ta-1, an antibody specific for DPP IV; Dt gly-pro-MNA. Orginnl
magnification: 63 x.

Table 2.  Distribution of aminopeptidase N (APN), dipeptidyl peptidase IV (DPP I'V), and neutral
endopeptidase (NEP) in the human bronchus’,

APN DPP1V NEP
Bronchial epithelium - - +
Smooth muscle - . +
Connective tissue ++ - -
Blood vessels ++ +/42 *
Serosal/mucosal glands -/- +4/- +/+
Gland ducts +4 - -
Nerves o+ - -
Eeukocytes? + + +

! Staining intensity (as determined by immunchistochemistry and enzymehistochemistry)} was arbitrarily graded as
negative (-), weak (+), moderate (+), and intense (++),

?  Staining intensity of venules > capillaries =~ arteries.

*  See text for details.

than bronchiaf epithelial cells themseives. In addition, weak but significant correlations were

found between the APN score in the bronchial epithelivm and the number of BMK | 3* eosinophils
(r, = 0.582; p <0.05), EG2* cosinophils (1, = 0.569; pp < 0.05) or L25* dendritic cells {1, = 0.473;
p <0.05) in the bronchial epitheliom. Double-stainings using CLB-CD13 and L25 or BMK 13
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confirmed the presence of APN on L25* dendritic cells and eosinophils. Although 1.25 may
also be present on B cells, the expression ot APN seems to be restricted to L25* dendritic cells,
since B cells (CD19%) were hardly observed in the bronchial biopsies, In addition, double-
staining with CD19 and CLB-CD13 (APN) revealed no double-positive cells.

The number of DPP IV-positive cells in the bronchial epithelium or lamina propria did not
differ between healthy controls and allergic asthmatics (Fig. 4A and 4B).

Table3, Median cell counts (ranges) in bronchial epithelium and lamina propria in allergic asthmatics
and in non-allergic non-asthmatic controls per mm of basement memmbrane,

Marker Epitheliom Lamina propria

Controls Asthmatics Controls Asthratics
CD3 11.0 (3.4-34.1) 138 (04-59.4) 338 (8.8-52.9) 16.2 (6.3-127.2)
CD4 32 (0.0-5.0) 00" (0.0-LD) [3.6 (4.2-38.5) 16.5 (1.3-37.6}
CDg 04 (0.0-9.5) 53 (0.0-182)y 40 (0.0-18.1} 0.7 (0.0-18.2)
CD19 0.0 {0.0-0.0) 0.0 (6.0-0.7) 0.0 (0.0-2.7) 0.0 (0.0-4.5)
CD14 0.0 0.0-1.7) 0.0 {0.0-0.0) 1.2 (0.6-3.8) 6.0 (0.0-1.6)
ECP 0.0 (0.0-0.0) 6.0 (0.0-1.0) 0.0 {0.0-0.0) 3.8 (1.0-14.4)
MBP 0.0 {0.0-0.0 0.0 (0.0-12.2y 1.7 (0.0-3.8) 4.5 (1.7-16.0)
ECPiued 0.0 (0.0-0.0y 0.0 (0.0-1.0) 0.0 (0.0-1.7) LY (0.0-29.3)
CDla 0.0 €0.0-3.6) 09 (0.0-4.0) 0.0 (0.0-1.7) 0.9 (0.0-5.4)
L.25 0.7 (0.0-3.2) 0.6 (0.0-5.8) L7 (0.0-9.0) 4.0 (0.0-13.8)
5100 0.0 (0.0-0.0) 0.0 (0.0-2.0 04 (0.0-2.1) 1.2 (0.4-5.2)

* p < 0.05 compared to controls,

DISCUSSION

In this study, we show that APN and DPP IV are expressed at specific and distinet sites
within the human bronchus. APN was localized in connective tissue, blood vessels, gland ducts,
perichondrium, nerves and leukocytes (mainty mononuclear phagocytes, dendritic cells, and
eosinophils). DPP IV was localized in serosal glands, blood vessels, and T cells. Comparison
of the expression of both peptidases in bronchial biopsies of healthy controls and atopic asthmatics
revealed a significantly increased number of APN-positive cells in the bronchial epithelium of
atopic asthmatics. These cells were identified as L25* dendritic ceils and eosinophils.

Asthma is characterized by reversible airway obstruction, airway hyperresponsiveness and
chronic inflanunation of the airways, characterized by an influx of leukocytes and increased
levels of inflammatory mediators {1, 2], In vitro and animal studies have shown that peptides,
especiaily nenropeptides, are able to produce many of the pathophysiological features charac-
teristic of asthma [35]. Therefore, it is thought that {neuro)peptides play an important role in the
pathogenesis of asthma. The effects of bio-active peptides are modulated by peptidases. Most
attention has been given to NEP and several studies have indicated that NEP plays an important
role in the modulation of peptide-mediated effects, like neurogenic inflammation [3-71. In addi-
tion to NEP, other peptidases, such as APN and DPP 1V, may be involved in the modula-
tion of peptide-mediated inflammation. However, at present little is known about their
function and distribution within the human bronchus. Therefore, we determiited the distribution
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Figure 3. APN expression in bronchial biopics obtained from healthy controls and alergic asthmatics, Indi-
vidual cell counts for cells expressing APN in the bronchial epithelium (A} and individual score of APN expression
in the lamina propria (B} of bronchial biopsies obtained from healthy controls (HC) and allergic asthmatics (AA).
NS: not significant.

of APN and DPP IV within the healthy human bronchus and investigated whether their expression
was modified in asthmatic airways.

APN expression and activity was observed in connective tissue just beneath the basement
membrane of the bronchial epithelium and submucosal glands, At these sites, APN is int a
peifect location to degrade neuropeptides released by sensory nerves, since many of these
nerves end beneath the bronchiat epithelium [36]. APN, but also DPP IV, was present on blood
vessels indicating that it may be involved in the processing of intravascular peptides, such as
SP. APN expression could be observed in arteries, capiltaries and venules, whereas
aminopeptidase A activify (as determined by the cleavage of glut-MNA) was confined to
capillaries (data not shown) and DPP IV was mainly present in venules. The latter location is of
interest, since SP-induced plasma leakage occurs in these postcapitlacy venules [37]. We specuiate
that DPP IV expressed on these post-capitlary venules is involved in the regulation of SP-
induced plasma leakage and that the site-restricted presence of different peptidases in blood
vessels may represent a mechanisim to control bloed flow and plasma leakage at specific locations,
However, the exact physiological function of these peptidases is still unknown and needs further
study.

Comparison of the expression of APN in bronchial biopsies of healthy controls and allergic
asthmatics revealed a significantly increased number of APN-positive cells in the bronchial
epithelium of allergic asthmatics, In accordance to the known distribution of APN among
cells of myeloid origin [38], these cells were shown to be dendritic cells and eosinophils.
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Figure 4. DPP IV expiessien in bronchial biopsies obfained from healthy controls and allergic asthmatics,
Individual cell counts for cells expressing DPP IV in the bronchial epithelium (A} and lamina propria (B} of brenchial
biopsies obtained from heaithy controls (HC) and allergic asthmatics {AA). NS: not significant.

Other studies have shown an increased number of dendritic cells in bronchial biopsies of patients
with asthma [33] and during inflamymatory responses in the rat lung {39]. Furthermore, recent
studies have indicated arole for APN in processing MHC-bound peptides {40]. Recruitiment of
APN-positive dendritic cells may therefore serve as a mechanism to effectively take up and
process foreign antigens. However, since in our study the number of dendritic cells and eosinophils
in the bronchial epithelinm did not differ significantly between healthy subjects and allergic
asthimatics, it can not be excluded that the increase in the number of APN-positive cells within
the bronichial epithelium of allergic asthmatics is due to an upregulation or induction of APN on
the surface of these cells. In previous studies, we have shown that IL-4 is able to upregulate
APN expression on mononuciear phagocytes [413, Although we did not observe a difference in
the number of IL-4-positive cells in bronchial biopsies of allergic asthmatics compared to healthy
controls (data not shown), other reports have indicated that IL-4 may be increased in asthma
[42, 43]. Therefore, it may be possible that the increase in the number of APN-positive cells is
a result of increased APN expression due to elevated IL-4 production it astlimatic airways.

Recruitment of APN-positive cells in the bronchus of asthmatics may also result in a more
rapid degradation of bronchodilating peptides, like vasoactive infesinal peptide and peptide
histidine methionine, released by nonadrenergic nerves [44]. This may result in exaggerated
bronchial responsiveness, thereby contributing to the pathology of asthma {45].

The APN-score in the Janiina propria of allergic asthmatics did not differ significantly from
healthy subjects. However, since the majority of APN was expressed on permanent structures
{e.g. connective tissue, glandular ducts, endothelium) in the bronchus, it was not possible to
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determine the expression of APN quantitatively. Therefore, changes in the number of APN-
positive leukocytes within the lamina propria will be hard to detect.

DPP LV activity and expression were strongly present in serosal glands and seemed to be
located intracellularly. This may indicate that glandular DPP IV is not involved in the modutation
of peptide-mediated effects on glandular cells, but rather is a product of these cells. This suggests
that DPP IV may be secreted into the epithelial lining fluid, thereby being able to degrade
intraluminal peptides, such as substance P and bradykinin [21, 22]. Indeed, DPP IV activity can
be detected in bronchoalveolar favage fluid (data not shown).

In patients with chronic obstructive puhmonary diseases (COPD), a submucosal gland
hypertrophy has been observed [46]. This may result in an increased DPP IV activity, and thus
in an increased (neuro)peptide-degradation in the lumen of the bronchus, To our knowledge, no
data concerning a role for DPP IV in degrading peptides in the human lung in vivo or arole for
DPP IV in COPD are available yet,

In the lamina propria of the bronchus, T cells appeared to be a major site for DPP IV activity.
Comparison of healthy subjects and allergic asthmatics did not reveal significant differences in
DPP IV expression, indicating that the number of activated T cells was not changed. A limitation
of our study is that the bronchial biopsies hardly contained submucosal glands, one of the most
prontinent locations for DPP IV.

The expression of NEP protein and mRNA in the human bronchus has been described recently
{11]. In that study, NEP could be found in the bronchial epitheliunt, smooth muscle, subnurcosal
glands, and endothelium, In our study, we used enzymehistochemistry to detect NEP activity in
the humasn bronchus. Although NEP activity in the guinea-pig trachea could easily be detected,
NEP activity in the human bronchus was low and attribution of NEP activity to a certain cell
type was ditficult. Nevertheless, weak activity could be observed within the bronchial epithelium
and submucosal glands. Comparison of the distribution of NEP, APN and DPP 1V indicates
that these peptidases are localized at specific and often distinct sites within the human bronchus
which are also known to possess receptors for many peptide mediators. This colocalization
suggests that the cellular response to a peptide can be modulated by peptidases on the sarface
of the same cell.

In conclusion, peptidases are widely distributed in the human bronchus, The peptidases
studied have a distinet distribution, with APN expressed by blood vessels, nerves, gland ducts,
perichondrium, connective tissue and leukocytes (mononuclear phagocytes, eosinophils, dendritic
cells), and DPP IV predominantly expressed by submucosal glands, blood vessels and T cells,
In bronchial biopsies of allergic asthmatics an increased number of APN-positive cells (mainly
dendritic cells and eosinophils) can be found in the bronchial epithelium, whereas no differences
are apparant for DPP IV. The distribution and characteristics of APN and DPP IV suggest that
these peptidases are iinvolved in the modulation of peptide-mediated inflammatory reactions in
the human bronchus.
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ABSTRACT

Neuropeptides may be involved in the pathogenesis of asthma by evoking neurogenic
inflammation, The effects of neuropeptides are limited by peptidases. We investigated pepti-
dase activities in bronchoalveolar lavage (BAL) fluid and serum of healthy non-smokers,
smokers, and allergic asthiatics, and studied the effect of inhaled glucocorticoids on pepti-
dase activities in the asthmatic patients.

Serum and BAL fluid was obtained from non-smoking and smoking volunteers and from
allergic asthimatics both before and after treatment with placebo or inhaled fluticasone propi-
onate. Activities of neutral endopeptidase (NEP), aminopeptidase N (APN) and dipeptidyl
peptidase IV (DPP IV) were determined using colorometric assays,

Reduced DPP 1V activity in serum and reduced NEP and APN activities in BAL fluid
were found in healthy smokers compared to non-smokers. In allergic asthmatics, reduced
APN activity was observed in BAL fluid compared to healthy non-smokers. Fluticasone
propionate did not aftect peptidase activities in the asthmatic patients.

We conclude that reduced peptidase activities in serum or BAL fluid can be found in
heatthy smokers and allergic asthmatics and that inhaled glucocorticoids do not affect pepti-
dase activities in BAL fluid or serum of asthmatics. Reduced peptidase activities may result
in impaired degradation of neuropeptides and thereby contribute to the inflammatory pro-
cess.

INTRODUCTION

Neuropeptides like substance P (SP) and neurokinin A (NKA) have been demonstrated
in sensory airway nerves of animals and man and are thought to be neurotransmitters of locat
axon reflexes [[-3]. Activation of sensory nerves may occur after exposure (o a varicty of
stimuli, such as bradykinin, viral infections, and cigarette-smoke. This activation results in
the release of neuropeptides, which subsequently exert a variely of effects, including the
contraction of smooth muscle cells, secretion of mucus, vasodilation, increased microvascu-
far leak, and the recruitment and activation of leukocytes. This sequence of events is now
known as ‘neurogenic inflamunation’ [4]. Since neurogenic inflammation mimics many of
the pathophysiological features of asthma, neuropeptides have been implicated in the patho-
genesis of this disease. Several studies have shown that asthmatic airways are more respon-
sive to neuropeptides [5] and increased amounts of SP can be detected in BAL fluid of
allergic asthmatics [6] and in serum during asthmatic exacerbations [7).

The effects of neuropeptides are normally limited by rapid degradation by peptidases [4,
8]. Thus far, most peptidase studies have focussed on the role of NEP, which, in the huinan
lung, is expressed on the bronchial epithelium, submucosal glands, smooth muscle cells,
endothelial cells, and alveolar epithelial cells [9-11]. It has been demonstrated that inhibition
of NEF, either by drugs or by environimental factors such as ozone, results in increased re-
sponses o exogenously applied or endogenously released peptides [8]. In contrast, nearopep-
tide-mediated cough can be prevented by administration of an aerosolized recombinant pepti-
dase {12]. Based on these results, it has been hypothesized that peptidases play an important
role in the modulation of peptide-mediated inflammation in asthma.
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In addition to NEP, other peptidases may be involved in modulating peptide-mediated
effects in the human airways, APN preferentially cleaves neutral amino acids from the
N-terminus of peptides, including enkephalins, fMLP, tachykinins, and cytokines like
interleukin (IL)-8. APN is widely distributed in the human lung, being present on endothetial
cells, glandular ducts, fibroblasts, and alveolar epithelial cells [11, [3]. DPP IV is a serine
protease cleaving peptides like SP and bradykinin. In the human lung, DPP 1V is mainly
present on serosal submucosal glands and endothelial cells, but can also be found on acti-
vated T Iymphocytes [i1, 14].

Although peptidases are normally membrane-bound enzymes, soluble forms can be de-
tected in body fluids. These soluble counterparis may either be derived from shedding of
membrane-bound peptidases or may be formed by post-franslational cleavage of the mem-
brane-bound form [15]. NEP activity in seium probably arises from shedding of the entire
membrane-bound peptidase [[6]. Increased serum activity of NEP has been observed in
underground miners exposed to coal dust particles f16] and in patients with adult respiratory
distress syndrome (ARDS} {17] or sarcoidosis [18]. Although the source of the increased
NEP levels remains to be deterimined, it has been suggested that increased NEP ievels may
reflect Tocal tissue damage with subsequent shedding of membrane-bound NEP [i6, 17].
Alternatively, NEP might be released from activated granulocytes sequestered in the lung
and feak into the bloodstream [17, 19]. DPP TV activity in serum has recently been shown to
originate, at least in part, from the DPPL-T antigen expressed on the surface of activated T
cells [20], whereas serum APN activity predominantly comprises a circulating isoform of the
CD13 antigen [21]. There is evidence that seruin DPP IV activity is decreased in patients
with malignancies and in avto-immune and inflammatory disorders [22-26]. Thus Tar, little is
known about the presence of NEP, APN, and DPP [V in BAL fluid and the activities of these
peptidases in serum and BAL fluid of subjects with airway inflammation. In asthma, pepti-
dases may act as central modulators of nearogenic inflammation and may therefore serve as
an intportant therapeutical target to control asthmatic symptoms. Additionally, one of the
working mechanisms of glucocorticoids, which are widely used in the treatment of asthma,
may be upregulation of peptidase activity [27-30]. However, to our knowledge no data are
currently available on the effects of inhaled glucocorticoids on peptidase activities in serum
and BAL fluid.

In this study, we aimed (o investigate the activity of NEP, APN, and DPP IV in serum and
BAL fluid from healthy non-smokers, smokers, and allergic asthmatics. We also studied
whether treatment with inhaled glucocorticoids could alter the activity of these peptidases.

MATERIALS AND METHODS

Fatient characleristics

Thirty-one allergic patients (8 women, 23 men; Table 1), alt non-smakers, participated in
this study, The diagnosis of asthma was based upon a history of attacks of breathlessness and
wheezing without chronic (i.e. for more than 3 months per year) cough or sputum produc-
tion, according to the criteria of the American Thoracic Society [31]. Reversible airway
obstruction was defined by an increase in forced expiratory volume in one second (FEV ) of
> 9% after inhalation of 1000 pg terbutaline. Allergy was defined by one or more positive
skin prick tests to extracts of 16 common aeroallergens. All patients were receiving inhaled
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[B;-agonists, and none had taken oral or inhaled glucocorticoids in the month prior to the
study. At entry of the study, all patients showed airway hyperresponsiveness defined as a
20% decrease in FEV | caused by inhalation of a histamine concentration (PCy) of less than
8 mg/ml. After a run-in period of two weeks, patients were treated double-blind with the
inhaled glucocorticoid fluticasone propionate {500 (g twice daily; n=15) or placebo (n=16)
for 12 weeks'[32]. Venous blood samples and BAL were taken betore and after this treatment
period and at both visits a methacholine dose-response curve was determined. Patient cha-
racteristics before and after treatment are shown in Table L. The study protocol was ap-
proved by the Medical Ethics Comumnittee of the Erasmus University/University Hospital
Dijkzigt, Rotterdam, and all participants gave their written informed consent.

Healthy subject characteristics

Nineteen healthy subjects (7 women, 12 men; 10 non-smokers, 9 smokers; Table 1), who
denied symptoms of pulmonary diseases and did not use any steroidal or nonsteroidal anti-
inflammatory drugs, participated in this study. All controls had a PC;, of more than 8 mg/ml.
Venous blood samples were collected and BAL was performed as described below. In addi-
tion, venous blood samples were collected from 11 other healthy non-smoking subjects (3
women, 8§ men; median age 29 years, range 22 — 53 years).

Bronchoalveolar lavage

BAL was perforined after premedication with inhaled terbutaline (2 puffs of 250 jig via
Nebuhaler) and atropine 0.5 mg intramuscularly. The nose, throat and vocal cords were an-
aesthetized with topical lidocaine spray (2% w/v). The bronchoscope {(Olympus Bi 1T 10,
Tokyo, Japan) was placed in wedge position in the middle lobe, and four aliquots of 50 ml
sterile phosphate-buftered satine (PBS) solution were infused and aspirated immediately ina
siliconized specimen trap placed on melting ice. Immediately after collection, the BAL fluid
was strained through a sterile nyfon gauze to trap large mucous particles. Subsequently, the
BAL cells were separated from the fluid by centrifugation at 4°C and 400 g for 5 min.
Cytocentrifuge preparations were prepared and stored at -80°C until use. Differential cell
counts (analyzing at least 500 cells) were done after May-Griinwald Giemsa staining. Su-
pernatants were stored at -80°C until biochemical analysis.

Blood samples

Venous blood samples were collected in heparinized tubes and clotting tubes. Blood was
either atlowed to clot at room temperature, after which the serum was separated by centrifu-
gation, or used for differential cell counts (after May-Griinwald Giemsa staining and by
counling at least 500 cells). Previous experiments indicated that clotting time (30 miin - 24 h)
did not affect peptidase activities in serum (data not shown). Serum was aliquoted and stored
at -80°C until use.

Neutral endopeptidase activity

NEP activity was determined in a two-step reaction using the substrate succinyl-alanyl-
alanyl-phenylalanyl-para-nitro-anilide (Suc-Ala-Ala-Phe-pNA; Sigina, St. Louis, MO). One
hundred and fifty ul BAL fluid or 100 pt 10-fold diluted serum (in saline) was incubated with
Suc-Ala-Ala-Phe-pNA (final concentration: 4 mM in TRIS-HCI pH 7.4) and | ug aminopepti-
dase (Sigma), in the presence or absence of phosphoramidon (final concentration: I {tM;
Sigma). The reaction (total volume: 250 ul for BAL, 200 ul for sera) was performed
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Table 1. Characteristics of healthy non-smokers, smokers and allergic asthmatics.

Patient  Sex Age Before treatment After treatment
Number FEV, log PCyy FEV, Ylog PC.,
(% predicted) {mg/ml) (% predictedy  (mg/ml)

M 19 102

Healthy non-smokers

|
2 M 24 100
3 M 21 99
4 M 23 109
5 M 23 109
6 F 24 108
7 F 23 96
8 M 23 88
9 M 52 88
19 F 35 110
Healthy smokers 11 M 20 104
12 M 18 124
13 F 33 97
4 M 26 109
15 F 45 I8
l6 M 24 104
17 F 21 91
I8 M 23 110
19 F 27 89
Allergic asthmatics
Placebo 20 F 44 S0 -0.67 81 .58
21 M 52 63 -0.33 59 1.47
22 M 41 87 -1.62 83 -1.83
23 M 55 60 -1.80 62 -2.34
24 F 17 89 -3.44 93 -1.87
25 M 35 72 357 72 1.06
26 M 26 95 0.74 38 145
27 M 22 92 -0.52 87 -1.53
28 M 56 84 34 79 1.93
29 M 25 86 2.57 76 3.21
30 F 21 105 -3.42 106 -1.80
31 F 26 97 -2.56 93 -0.58
32 M 24 47 0.04 21 1.19
33 M 32 91 0.64 162 1.41
34 F 26 95 7.98 92 2,86
35 M 23 108 -3.89 85 -1.10
Fluticasone propionale 36 F 25 90 0.77 115 5.50
37 M ]! 84 4.12 96 4.99
38 M 21 93 2.40 98 >8
39 M 24 o0 -0.91 a3 34
40 M 22 78 0.12 84 2.06
41 M 24 160 -0.99 86 4,02
42 M 23 63 -0.04 81 2.53
43 M 23 104 2.85 108 6.72
44 M 21 99 -5.18 103 0.15
45 M 42 6l 0.25 64 -0.18
46 M 20 61 -0.68 90 1.18
47 F 17 104 -0.41 107 [.23
48 F 20 91 -(L06 a1 2,08
49 M 43 67 3.43 63 >3

50 M 47 81 -1.05 87 6.85
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in duplo in a 96-well microtiter plate at 37°C. The increase in specific absorbance at 405 nm
(as a result of the accumulation of free p-nitroanilide} was determined using a Titertek
Multiskan MCC plate reader (I.C.N, Biomedicals B.V,, Amsterdam, The Netherlands), NEP
activity was determined as the activity that could be inhibited by phosphoramidon and is
expressed as nmoles/mg protein/min.

Aminopeptidase N{-like) activity

APN-like (APL) activity was determined by incubating 150 pl BAL fiuid or 50 pl 10-
fold diluted serum with alanyl-para-nitro-anilide (ala-pNA; 4 mM; Sigma) at 37°C and mea-
suring the increase in specific absorbance at 405 nm. To determine specific APN activity,
BAL fluid or diluted sernm was first incubated with the CD 13 monoctonal antibody WM-15
(Pharmingen, San Diego, CA), which specifically inhibits the enzymatic activity of APN
[33]). As a control, BAL fluid or serum was incubated with PBS, an isotype-matched control
antibody, or WM-47 (an antibody that binds to APN but does not inhibit the enzymatic
activity; generous gift of dr E. Favaloro, Westmead, Australia), After incubation at room
temperature for 15 min, ala-pNA (final concentration: 4 mM) was added (total volume: 300
ul for BAL, 200 pl for sera) and the increase in absorbance at 405 nm was measured. APL
and APN activity are expressed as nmoles/mg protein/min. :

Dipeptidyl peptidase IV activity

DPP IV activity was determined by incubating 150 gl BAL fluid or 100 yl 10-fold di-
luted serium with glyeyl-prolyl-para-nitro-anilide (gly-pro-pNA; 4 mM, Sigma) at 37°C and
measuring the increase in specific absorbance at 405 nm, The reaction (total volume: 250 pl
for BAL, 200 pl for sera} was performed in duplo in a 96-well microtiter plate. DPP IV
activity is expressed as nmoles/mg protein/min,

Protein analysis
Total protein tevels in serum and BAL fluid were determined according to Bradford [34].
Albumin tevels were determined by routine biochemical assessment.

Statistical anafysis

Data are presented as mean and SEM. For comparisons between groups, an Analysis of
Variance (ANOVA) was used where multiple conditions were compared. Variables for which
significant differences were found or significant trends observed were also analyzed by simple
comparisons between groups using unpaired Student’s r-test. Data which were statistically
significant with unpaired #-tests were also significant in a Mann-Whitney U-test. The effects
of treatment in the asthmatic patients were analyzed using the paired Student’s f-test. Rela-
tionships between parameters were examined by the Spearman Rank Correlation Coeffi-
cient. Statistical significance was taken as p <0.05.
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RESULTS

Study 1. Comparison between healthy non-smokers, smokers, and allergic asthma-
tics

Cellular composition of blood samples

Total protein levels in serun and total white blood cell numbers in blood samples did not
differ significantly between healthy non-smokers, smokers and allergic asthmatics (Table 23
The percentage of eosinophils in blood samples was significantly increased in allergic asth-
matics compared with healthy non-smokers, whereas relative numbers of other cell types did
not differ between the three groups (Table 2).

Table 2, Mean (£ SEM) tofal white blaod cell connt, relative cell numbers, and protein content of
serum samples of healthy non-smokers, simokers, and allergic asthmatics,

Non-smokers Smokers Allergic asthmatics
Total cell number (10°1) 5202 6.2+05 56102
Lymphocytes (%} 3542 34+3 331
Monocytes (%) Tx1 71 7+0
Neutrophils (%) 563 5542 54 +2
Eosinophils (%) 21 3+ 521°
Basophils (%) 1+0 10 +0
Total protein (mg/ml) 53.1£0.9 528+ 20 503038

¥ p<0.05 compared to heatthy non-smokers

Peptidase activities in serum

NEF, APL and APN activity did not differ significantly between healthy non-smokers,
smokers, and allergic asthmatics (Fig. 1). In contrast, DPP 1V activity was stgnificantly de-
creased in serum of smokers, compared to both healthy non-smokers and allergic asthmatics

(Fig. ).

Cellular composition of BAL ftuid

Percentage recovery of BAL fluid did not differ significantly between healthy non-smo-
kers, smokers and allergic asthmatics (Table 3). In BAL fluid of smokers, a significant in-
crease in total cell numbers was found, but the cellular composition did not differ compared
to healthy non-smokers (Fable 3}. In contrast, total cell numbers in BAL fluid of allergic
asthmatics tended o be reduced compared to healthy subjects (p=0.051), Furthermore, BAL
fluid of astlumatic patients showed increased relative nambers of eosinophils and lympho-
cytes, whereas the relative number of macrophages was reduced {Tabie 3). However, the
absolute numbers of lymphocytes, eosinophils and macrophages did not differ between healthy
non-smokers and atlergic asthmatics (data not shown). BAL fluid of smokers showed a re-
duced percentage of epithelial cells compared to allergic asthmatics, bul the absolute num-
bers did not differ, Total protein and albumin levels in BAL fluid did not diifer significantly
between the three groups studied (Table 3).
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Figure 1, NEP, APL, APN, and DPP 1V activity in serum. Peptidase aclivities were measured in serum from
healthy non-smokers {shaded bars), smokers (while bars), and allergic asthmatics (heavily shaded). " p < 0.05
compared to healthy non-smokers.

Table 3. Recovery, total white blood cell count and relative cell numbers in BAL fluid of healthy
non-smokers, smokers, and allergic asthmatics (irean = SEM).

Non-smokers Smokers Allergic asthmatics
Recovery (%) 6812 57«6 563
Total cell number (10%) 16.0£2.2 392+611 11211
Lymphocytes (%) 45+13 4.1 +10 HH6+£137
Macrophages (%) 90.1 £2.5 926+ 1.4 80.3+ 147
Neutrophils (%) 19+1.2 2.1 +0.6 22+06
Eosinophils (%) 0.0x00 0.0+0.0 08+027
Epithelial celis (%) 35214 122057 50+09
Total protein (pg/inl) 6338 103x16 97 = 10
Albumin (lg/mi) 23+5 306 365

i p<0.05 compared to healthy non-smaokers; ' p<0.03 compared to smokers; " p<0.05 compared to allergic
asthmatics

Peptidase activities in BAL fluid

All four peptidase activities were significantly higher in BAL fluid than in serum (Fig. 1
and 2). The BAL fluid;serum ratios of the peptidase activities in healthy non-smokers were
62.7 (NEP), 5.3 (APL), 5.1 (APN), and 2.3 (DPP V).

Comparison of DPP IV activity in BAL fluid of healthy non-smokers, smokers, and aller-
gic asthmatics did not reveal significant differences (Fig, 2). NEP activity (either expressed
per ml or per mg protein) was significantly reduced in BAL fluid of smokers (Fig. 2}. APL
activity {expressed in mmoles/mg protein/min) in BAL fluid of smokers and allergic asthma-
tics was reduced compared to healthy non-smokers, but these differences did not reach statis-
tical significance (p=0.070 for both comparisons). These reductions were completely due to
a decreased APN activity in BAL fluid of both smokers and allergic asthmatics (p<0.05;
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Fig.2}. However, APL and APN activity per ml BAL fluid were not significantly different
between the three groups (data not shown).
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Figure 2, NEP, APL, APN, and DPP IV activity in BAL fuid, Peptidase activities were measured in BAL fluid
from healthy non-smokers (shaded bars), smokers (while bars), and allergic asthimatics (heavily shaded). 1 p <

0.05 compared to healthy non-smokers.

Correlations benween peptidase activities and cell numbers

NEP activity in BAL fluid showed a strong correlation with APL and APN activity (Fig.
3A and C). These correlations were not due to lack of specificity of the assays since
phosphoramidon did not affect APN aclivity, and NEP activity could not be inhibited by the
CD13 monoclonal antibody WM- 15 (data not shown). NEP activity in serum also correlated
with serum APL activity (r, = 0.3466; p < 0.01) and APN activity (r, = 0.2798; p < 0.05},
although these correlations were less clear, APL activity correlated significantly with APN
activity, both in BAL fluid and in serum (Fig. 3B and D). There were no significant correla-
tions between peptidase activities in BAL fluid and serum. Furthermore, there were no sig-
nificant correlations between peptidase activities in BAL fluid or serem and relative or abso-
tute cell numbers (data not shown).

Study 2, Effect of inhaled fluticasone propionate on peptidase activities in BAL
fluid and serum of allergic asthmatics

Clinical parameters and cellular composition of blood samples and BAL fluid

Patients receiving inhaled fluticasone propionate for three months showed improved lung
function as determined by an increase in FEV | and PC,, values (Table 1), No improvement
was observed in the patients receiving placebo.

BAL fluid recovery, cell numbers, total protein levels, and albumin levels did not differ
before and after treatment with either fluticasone propionate or placebo (data not shown).
Relative numbers of lymiphocytes in BAL fluid were increased after treatment with fluticasone
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Figure 3. Relationship beiween peptidase activities in BAL Naid (A, B, C) and serum (D). Diamonds: healthy
non-smokers (HC); Squares: smokers (8); Triangles: allergic asthmatics (AA). Activities are expressed as nmoles/

mg protein/min,

propionate (before: 11.0 + 2.0%. after: 16.9 + 3.1%), whereas other cell numbers were un-
changed. Total leukocyte numbers in blood samples were sigaificantly increased after treat-
ment with fluticasone propionate (before: 5.4 + 0.3, after: 6,7 £ 0,5), This was accompanied
by a reduction in the relative number of eosinophils (before: 6.1 + 0.8%, after: 3.5 + 0.4%)
and an increase in the relative numbers of neutrophils (before: 53.8 + 1.8%, after: 58.9 +
1.9%). No differences in total and relative cell counts were observed in BAL fluid or blood
samples of allergic patients treated with placebo (data not shown).

Pepridase activities in serum and BAL fluid

Treatment with inhaled fluticasone propionate for three months did not significantly af-
fect peptidase activities in serum (Fig. 4). Peptidase activities in BAL fluid were also not
affected by fluticasone propionate treatment (Fig. 5). However, in contrast to the reduced
APN activity in BAL fluid observed before treatinent of asthmatics, APN activity after treat-
ment with either placebo or fluticasone propionate did not differ significantly compared to
healthy controls (data not shown). In the asthimatic patients treated with placebo, no signifi-
cant differences in peptidase activities in serum or BAL fluid were observed {data not shown).
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Figure 4. Effect of fluticasone propionate on peptidase activities in serom. Allergic asthanatics were treated
for 12 weeks with inhaled fluticasone propionate, Before and after this period peptidase activities were analyzed in
Serun.
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Figure 5. Effect of flulicasone proplonate on peplidase activities in BAL fluid, Allergic asthmatics were
treated for 12 weeks with inhaled fluticasone propionate. Before and after this peried peptidase activities were
analyzed in serum.

DISCUSSION

In this study, we present data on the activity of peptidases in BAL fluid and serum of
healthy non-smokers, smokers, and allergic asthmatics, and show for the first time that NEP
activity can be detected in human BAIL. fluid. Our results indicate that DPP IV activity is
significantly reduced in serum of smokers, whereas NEP and APN activity are reduced in
BAL fluid as compared with heatthy non-smokers. In allergic asthiatics, the activity of APN
was reduced in BAL fluid as compared with healthy non-smokers. Treatment of allergic
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asthmatics with inhaled glucocorticoids for three months improved their FEV, and PC,, values
but did not affect peptidase activities in serum or BAL flnid.

Comparison of serum and BAL fluid revealed that activities (expressed as mnoles/mg
protein/min) of alt peptidases studied were considerably higher in BAL fluid and that there
was no correlation belween peptidase activities in BAL fluid and serum. These findings
suggest that the presence of peptidases in these two compartinents is regulated independently
of each other and suggest local release of the enzymes in the airways. Although alveolar
macrophages [35] and granufocytes [36] express NEP, we could not detect any correlation
between NEP activity and neutrophil or macrophage numbers in BAL fluid. Therefore, NEP
activity in BAL flnid most likely results from shedding of NEP from epithelial cells [16, 37].
This is supported by the observation that NEP activity can be detected in culture superna-
tants of human bronchial epithelial cells (V.H.I. van der Velden, unpublished data), DPP IV
activity in BAL may, comparable to DPP IV activity in serum, be released from activated
CD4-positive T lyiphocytes [20, 38, 39], but numbers of these cells in normal BAL fluid are
low, Alternatively, DPP 1V may be secreted by serosal submucosal glands, as these are major
sites for DPP IV activity in the human bronchus [11], or may be released by alveolar ma-
crophages [40]. DPP IV activity on alveolar macrophages is, however, much lower than on
activated T cells (V.H.J. van der Velden, unpublished data). APN activity in serum predomi-
nantly comprised an isoform of CD13, since the inhibitory monoclonal antibody WM-15
inhibited the majority {(65%) of APL activity in serum. This is in accordance with the results
described by Favaloro and colleagues [21]. In BAL fluid, CD13 activity comptised more
than 60% of the APL activity and there was a strong correlation between APL and APN
activity. This suggests that in the human lung, the release of both activities is regulated in a
similar manner, In the human fung, APN may be shed from granulocytes, dendritic cells or
macrophages {11, 39]. However, we and others [39] did not observe a significant relation-
ship between cell numbers and APN(-like) activity in BAL fluid, suggesting that APN(-iike)
activity may rather be derived from non-hematopoietic cells in the airways. Since APN
{-like) activity also showed a strong relation with NEP activity in BAL fluid, both enzyines
may be derived from the same source, possibly alveolar epithelial cells which express both
NEP and APN [10, 13].

Cigarette smoke has been shown to inhibit NEP activity in laboratory animals. This effect
is thought to be due to oxydation of the enzyme by hydroxyl radicals [41-43]. Our study
shows that in humans, cigarette smoke reduces NEP activity in BAL fluid. Since NEP modu-
fates the growth and differentiation of bronchial epithelial cells by hydrolyzing bombesin-
like peptides (BLP), reduced NEP activity may promote BLP-mediated proliferation and
facilitate the development of small-cell carcinomas of the lung [44-46]. In accordance to our
observation, increased levels of BLP have been found in the lower respiratory tract of
asymptomatic sinokers [47). Furthermore, recent studies indicate that human lung cancers
stiow low or absent NEP activity [45]. We hypothesize that cigarette smoke facilitates the
development of smail-cell carcinomas of the lung at least int part by inhibiting NEP and APN
activity. Further studies need to be performed (o demonstrate that cell surface NEP activity in
humans is atso inhibited by cigarette smoke and to prove that the reduced NEP activity is due
to inactivation of the enzyme rather than decreased presence of the peptidase itself.

DPP IV activity in serum of smokers was significantly decreased compared to both healthy
non-smokers and allergic asthmatics. In BAL fluid, a comparable reduction in DPP IV acti-
vity was observed, buf this did not reach statistical significance. DPP TV aclivity in serum or
BAL fluid may have an important immunoregulatory function, as it is able to act as a costimu-
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Iating molecule for T lymphocytes [20, 38, 48]. Reduced DPP IV activity in serum of smokers
may therefore contribute to the down-regulated immune responsiveness observed in smokers
[49]. DPP IV may also interfere with the processing of cytokines, such as IL-1§, I1.-2, and
IL-6, which have an essential role in the proliferation or activation of helper T cells and B
cells [50].

In BAL fluid from stable allergic asthmatic patients, no significant difference in NEP
activity was observed compared to heaithy subjects. However, APN activity was signifi-
cantly reduced in BAL fluid of asthmatics. The lack of reduced NEP activity is in accordance
with the observation that thiorphan {an inhibitor of NEP) reduced NKA-induced
bronchoconstriction in asthmatics, suggesting the presence of endogenous NEP activity {51].
Down-regutation of NEP activity in asthma may be prevented by the apparent chronically
enhanced release of neuropeptides providing increased amounts of substrate for NEP
upregulation [6, 42]. In addition, our previous studies have showsn that IL- 1 and TNF-q,
which are abundantly present in the inflamed asthmatic airways, are able to increase the
activity of NEP on human bronchial epithelial cells [27]. In contrast to NEL, APN activity
per mg protein was significantly reduced in allergic asthimatics (and smokers) compared to
healthy subjects, but APN activity per ml BAL fluid was not changed. This reduction ap-
pears therefore to be due to the elevated total protein levels in the BAL fluid of allergic
asthmatics and not to a reduction in the amount of APN itself,

Several studies have shown an increased NEP activity in serum from patients with pul-
monary inflammatory diseases, such as sarcoidosis and ARDS {17, 18]}. Increased enzyme
activities in serum may reflect local tissue damage with subsequent shedding of membrane-
bound enzymes [16}. In this study, we did not observe significant increase in NEP or APN
activities in serum from patients with stable altergic asthma, indicating that there probably is
little acute tissue damage in the lungs. One could speculate that NEP and APN activities in
serum could be altered during or shortly afier acute asthmatic exacerbations, However, pre-
liminary results indicate that peptidase activities in serum during and up to five days after
exacerbations do not differ from those in healthy subjects (V.H.J. van der Velden, unpub-
lished data).

Treatment of allergic asthmatic patients with inhaled fluticasone propionate for three
months resulted in an improvement of lung function but did not significantly affect peptidase
activities in BAL fluid or serum. In contrast, several studies have shown that glucocorticoids
upregulate the surface expression of peptidases on human bronchiat epithelial cells, both in
vivo [28] and in vitro §27, 29, 30]. Thus, glucocorticoids may exert part of their anti-inflam-
matory actions by increasing the surface expression of peptidases. However, they do not alter
soluble peptidase activities in BAL fluid or serum of stable allergic asthmatics. Finally,
fluticasone propionate treatment resulted in an increase in total white blood cells in blood,
indicating systemic effects of inhaled glucocorticoids,
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ABSTRACT

Peptidases play an important role in the regulation of peptide-mediated effects, Modulation
of peptidase activity may therefore be a major mechanism to control peptide actions. Our aim
was to analyse the effects of cytokines and glucocorticoids on peptidases expressed by human
bronchial epitheliai cells, which have been shown to be an important site for peptidase activity.

The effects of cytokines (IL-1B, TNF-ar, 1L-4, IFN-y, and EGF) and/or dexamethasone
{DEX) on both expression and activity of neutral endopeptidase (NEP) and aminopeptidase N
{APN) by BEAS 2B cells were determined using flow cytometry and activity assays, respectively,

1L-1B and, to a lesser extent, TNF-o, and 114 increased NEP activity and expression, whereas
IFN-y decreased NEP. The effect of IL- 1P was mediated, at east in part, via a cAMP-depen-
dent pathway which did not involve prostaglandin E, synthesis. APN was increased after 24 h
stimulation with IFN-y, whereas other stimuli had no effect. DEX strongly increased NEP and
APN expression and activity, both in the absence and in the presence of cytokines.

We conclude that cytokines and glucocorticoids are able to modulate the activity of NEP
and APN on BEAS 2B cells. Our results suggest a role for the hwnan bronchial epithelium in
the controf of inflammation and indicate that one beneficial effect of glucocorticoids on asthma
may be upregulation of peptidases expressed by bronchial epithelial cells,

INTRODUCTION

The bronchial epithelium is considered to play an important role in the regulation of
inflammatory and immunological reactions in the airways. Bronchial epithelial cells are able to
praduce a variety of pro-inflammatory mediators, like cytokines, chemokines and arachidonic
acid metabolites [1]. Release of such mediators may result in the initiation and perpetuation of
inflammation. In contrast, bronchial epithelial cells may down-regutate inflammatory and
immunological responses by the release of anti-inflammatory mediators, like interleukin (I1.)-
[ receptor antagonist [2], soluble tumor necrosis factor (TNF)-receptor [3], and lipocortins 4],
and by inactivation of pro-inflammatory peptides by epithelial cell-bound peptidases [5].
Although peptidases are present on a number of cell types within the lung, several studies have
indicated that neutral endopeptidase (NEP, E.C.3.4.24.11) expressed by the bronchial epithelium
plays a major role in limiting peptide-mediated inflanumation [6, 71.

NEP (identical to common acute tymphoblastic leukemia antigen (CALLA) or CD10 [8])
is a membrane-bound metalloenzyme which cleaves peptide-bonds at the amino side of
hydrophobic amino acids, thereby being able to inactivate a variety of small peptides, including
substance P, neurokinins, bradykinin, endothelin, and bombesin-like peptides [9]. In the human
tang, NEP is expressed in the bronchial epithelium, but can also be found in smooth muscle,
endothefium, and submucosal glands [5]. Loss of NEP activity, for example as a resull of virat
infection, has been shown to prolong the actions of neuropeptides released by sensory nerves,
thereby resulting in neurogenic inflammation [ 10]. This neurogenic inflammation is characterized
by mucus secretion, cough, vasodilation, increased vascular permeability, infiltration of
leukocytes, and bronchoconstriction [10], findings that are comparable with the
pathophysiological features characteristic of asthma, Therefore, it has been implicated that
peptidases play a role in the pathogenesis of asthma,
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Recent studies indicate that even small changes in NEP activity affect peptide-mediated
evenis in the human tung. The activity of NEP may be modulated by external and internat
factors. With regard fo external factors, several studies have shows that NEP activity is reduced
after exposure to viruses [11], cigarette smoke [12], ozone [ 13] or chemicals, such as toluene-
2,4-diisocyanate [ 14]. In each case, this reduction resulted in increased responses to exogenousty
applied or endogenously released peptides. In contrast, little is known about the effect of
endogenously released mediators, such as cytokines, on the activity of NEP, Cytokines are
increasingly recognized to be important in chronic inflammation and play a critical role in
orchestrating inflammatory responses, Multiple cytokines, including IL-1J, TNF-o, IL-4,
interferon (IFN)-y, and epidermal growth factor (EGF), are present during inflammatory res-
ponses in the lung [ 15] and may control peptide actions by modulating the activity of peptidases.

Giucocorticoids are widely used in the treatment of asthma and are able to reduce
inflanumatory reactions in the airways. The bronchial epithelium is an actual target for inhaled
glucocorticoid therapy, since the greater part of inhaled glucocorticoids precipitate on the epithelia
of the larger airways [16], and bronchial epithelial cells possess functional glucocorticoid
receptors [17]. Glucocorticoids are potent inhibitors of cytokine production by a variety of
cells, thereby suppressing inflamunatory responses. In addition, the anti-inflammatory actions
of glucacorticoids may be mediated by modulation of peptidase activity by bronchial epithelial
cells. Data concerning the effects of glucocorticoids on NEP activity are contradictory, since
some studies indicate that NEP is upregulated by steroids [18, 191, whereas other investigators
did not observe any effect [20]. Furthermore, little is known about the modulation of peptidase
activity by glucocoriicoids in the presence of cytokines, which may more properly reflect the in
vivo situation during glucocorticoid therapy.

In this study we investigated the effects of cytokines, glucocorticoids, and their combination,
on the expression and activity of peptidases by the human bronchial epithelial ceil line BEAS
2B, In comparison with the data on primary cultures of human bronchial epithelial cells, the
BEAS 2B cell line has been shown to be an appropriate modet [21, 22]. In addition to NEP,
BEAS 2B cells also express aminopeptidase N (APN, identical to CDI3, E.C.3.4.11.2 [23]).
Comparable to the role of NEP, it is hypothesized that APN plays an important role in modulating
the activity of bioactive peplides {24]. Accordingly, APN may play a role in the regulation of
inflammatory and immunological responses. Although human bronchial epithelial cells i vivo
nonmally do net express this peptidase [25], they do have APN-like activity (unpublished
observations). Therefore, we also investigated the effects of cytokines and glucocorticoids on
APN activity and expression to clarify whether the expression and activity of this peptidase was
reguiated in a way similar to NEP.

MATERIALS AND METHODS

Cytokines, steroids and chemicals

Cytokines used in this study were IL-1J (10 U/ng, UBI, Lake Placid, NY), TNF-o (5 U/ng,
UBD), IL-4 (5 U/ng, UBL), and IFN-y (20 Ufng, Boehringer Ingetheim, Germany). A stock
solution (10 pg/ml) of EGF (Collaborative Research Inc., Lexington, MA) was prepaved in [0
mM phosphate-buffered saline, pI1 7.4 (PBS)/0.1% bovine serum albuntin (BSA) and stored at
-20°C,
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A 10 mM stock solution of the synthetic glucocorticoid dexamethasone micronisaium (DEX;
Duchefa b.v., Haarlem, The Netherlands) was prepared in ethanoi and stored at -20°C. The
glucocorticold antagonist RU 38486 was kindly provided by Roussel Uclaf (Romaiaville,
France). A stock solution of 102 M RU 38486 in ethanol was prepared and stored at 4°C, The
metabolically stable testosteron analogue R1881 {10~ M in ethanol) was kindly provided by dr.
H. Bruggenwirth (Rotterdam, The Netherlands) and stored at 4°C, The concentration of ethanol
during culture was less than 0.05% in each experiment.

Dibutyryl-cyclic adenosine monophosphate (db-cAMP) and 3-isobutyl-1-methylxanthine
(IBMX) were obtained from Sigma (S, Louis, MO), Solutions were freshly made in milli Q-
filtered water before each experiment.

Cell culture

The SV-40 transformed human bronchial epithelial cell line BEAS 2B was kindly provided
by dr. J. Lechner (Inhalation Toxicology Research Institute, Albuquerque, NM) {26]. The cells
were cultured ina I:] mixture of Dulbecco’s modified Eagles medium and Ham’s FI2 (DMEM/
F12)(Gibco Ltd., Paisley, Scotland), supplemented with insulin {0.01 mg/ml; Sigma}, hydrocor-
tisonc (0.1 yg/ml; Phanna Chemie, Hawlem, The Netherlands), transfeirin (0.01 mg/mi; Behring,
Marburg, Germany), EGF (10 ag/ml), fetal calf serum (FCS; Gibco} (1%), Na,Se(; (50 oM),
glutamine {1 mM; JT Baker, Deventer, The Netherlands), penicillin G sodium (100 U/m; Gist-
Brocades, Delft, The Netherlands) and streptomycin sulfate (0.1 mg/ml; Biochrom KG, Betlin,
Germany) (complete medium), Plastic cell culture plates (Becton Dickinson, Plymouth, UK
and Nunclon, Roskilde, Denmark) were precoated as described by Lechner et al. with a mixture
of human fibronectin (10 pgf/ml; Central Laboratory of the Blood Transtusion Service, Amster-
dam, The Netherlands), collagen (Vitrogen 100, 30 ptg/ml; Collagen Corp., Palo Alto, CA) and
BSA (10 pg/ml; Boehringer, Mannheim, Germany) in PBS [27]. Medium was replaced three
times weekly and cuitures were passaged when the monolayers were 80 to 90% confluent.
Passages 16 through 34 were used in this study.

The human promyelocytic leukemic cell line HL60 [28] and T-leukemia cell line DND41
f29] sexved as controls for the detection of peptidase expression and activity. Under the conditions

used, the HL60 cell line is NEP~ APNY, whereas DND41 cells are NEPT APN ™.

Stimulation of cells with cytokines, glucocorticoids and/or other agents

To ensure similar cell densities in the different assays, cells were seeded in fixed numbers
per em? (20 x 10° cellsfom?), Using these cell numbers, cells reached ~90% confluency during
the standard time of the experiments (5 days). After 24 hours, the complete medium was replaced
by a basal mediom consisting of DMEM/F12 (1:1) supplemented with 1% FCS and antibiotics,
After 24 hours, cytokines, glucocorticoids and/or other agents were added to the medivm in the
following doses (unless indicated otherwise): IL- 13, TNF-or, and TL-4: 20 ng/ml; TFN-y and
EGF: 5 ng/ml; DEX 0% M; db-cAMP: 1 mM; IBMX: 100 uM. These doses were widely
shown to be effective in vitro. If the effect of IBMX was to be studied, this inhibitor was added
30 minutes prior to cytokine administration, After the addition of the stimuli the culture was
continued for an additional 24 or 48 hours, unless indicated otherwise.

FProliferation assay

The number of viable cells in proliferation was determined using a colorimetric method
following the instructions of the manufacturer (CellTiter 96™ AQ,..,, Non-Radioactive Cell
Proliferation Assay, Promega). Briefly, cells (5 x 1)°) were seeded in a coated 96-well plate and
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stimuated as described above. Cell proliferation was determined by the addition of 3-(4,5-
dimethylthiazol-2-y1)-5-(3-carboxymethoxyphenyl}-2-{(4-sulfophenyl}-2H-tetrazolinm (MTS)
and phenazine methosulfate (PMS) and the increase in absorbance at 490 mn was measured
after 30 min.

Detection of surface peptidase expression

For immunotiuorescence staining of human bronchial epithelial cells, the following
monocional antibodies (inAbs) were used: J5 (Coulter Clone, Hialeah, FL), BMA-CALLA
(Behring), OKB-CALLA (Ortho Diagnostic Systems, Raritan, NJ), VIL-A1 (dr. W. Knapp,
Vienna, Austria), all directed against NEP; CLB-CDI13 (CLB, Amsterdam, The Netherlands)
and WM-15 {generous gift of dr, E. Favaloro, Westmead, Australia), both directed against
APN; and BBA-4 (anti-ICAM- 1, ITK Diagnostics, Uithoorn, The Netherlands). Epitheiial cells,
cultured in 80 em? culture flasks, were rinsed with PBS and detached using 0.02% EDTA. Cells
were harvested in PBS/0.5% BSA, washed and resuspended in PBS/BSA to a final concentration
of 2 x 10° cells/ml. Fifty jtl of this bronchiat epithelial cell suspension was incubated with 50 pl
of one of the optimally titrated mAb at 4°C for 30 min, Irrelevant mouse isolype-matched
primary antibodies were used as a control for nonspecific binding. After two washings with
PBS/BSA the cells were incubated with FITC-labelied rabbit-anti-mouse antibody for 30 min
at 4 °C, After another two washings the cell pellets were resuspended for analysis of the
fluorescence intensity by means of a FACScan (Becton Dickinson, San Jose, CA).

Fluorescence intensities were quantified using calibrated fluorescence standards (FCSC
Quantum 26, Research Triangle Park, NC) which were measured in each experiment. Using the
standard curve obtained by plotting the median fluorescence intensity of the standards against
the Molecules of Equivalent Soluble Fluorescence (MESF) for each peak, the MESF of the
membrane antigens was calculated. After subtraction of the MESFE of ceils incubated with
isotype-matched conirol antibody, the antigen-specific MESF was obtained.

Neutral endopeptidase activity

NEP activity was measured as previously described with some small modifications {30].
BEAS 2B cells, cuftured in 6-well calture dishes, were rinsed with 50 mM Tris-HCIpH 7.4, A
volume of 600 ul of N-dansyl-D-alanyl-glycyl-p-nitro-phenylalanyl-glycine (DAGNPG, a
synthetic NEP substrate; 25 M in Tris-HCI; Sigma} was added to each weil. The dishes were
incubated at 37°C for 2 hours. Subsequently, a 500 pil aliquot was transferred to a microcentrifuge
tube, 500 (1} DMSO were added, and the mixture was spun in an Eppendorf microcentrifuge at
15,000 rpm for 5 min. The fluorescence of the supernatant was measured in a Perkin-Elmer
spectrophotoflucrometer (type LSS0B) with excitation at 329 wm and emission at 531 nm.
These wave lengths appeared to be optimal under the conditions used. A standard curve was
measured in each experiment to determine the amouwnt of product formed. In some experiments,
the specificily of the reaction was confirmed by the addition of the NEP inhibitor phosphoramidon
{dissolved in Tris-HCH; final concentration: | 4M; Sigma). All assays were performed in duplo
at least. After measuring NEP activity, the cells were trypsinized and counted using a
hemacytometer (Coulter). NEP activily was calculated as pimoles/min/10° cells,

Aminopeptidase N-like activity

APN-like activity was determined on adherent cells in 6-well culture dishes. After rinsing
the BEAS 2B cells with PBS {pH 7.4), 600 ul L-alanine-p-nitroanilide (an APN substrate; 8
mM in PBS; Sigma) were added and the dishes were incubated at 37 °C for 30 min, Subsequently,
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the reaction mixture was transferred to a microcenfrifuge tube and spun in an Eppendorf
microcentrifuge at 15,000 rpm for 5 min, An aliquot of 200 111 of the supernatant was transfer-
red into a 96-well microtiter plate (in duplo) and the increase in specific absorbance at 405 nm
(as a result of accumulation of free p-nitroanilide) was determined immediately by using a
Titertek Multiskan MCC plate reader (1.C.N. Biomedicals B.V., Amsterdam, The Netherlands).
All assays were performed in duplo at least. After measuring APN-like activity, the cells were
trypsinized and counted using a hemacytometer. APN-like activity was expressed as the
production of p-nitroanilide in I min by 10% cells (nmoles/min/10° cells}, using a standard curve
which was determined in each experiment.

Specific aminopeptidase N activity

In some experiments the specific APN activity was determined using the monoclonal anti-
body WM-15, which specifically blocks the enzymatic activity of APN [31]. BEAS 2B cells,
cultured in 24-well cell culture dishes, were rinsed with PBS and pre-incubated with WM-15
{1:50) for 15 min. As control, cells were pre-incubated in PBS/0.5% BSA, with an isotype-
matched control antibody, or with WM-47 (an antibody that binds to APN but does not inhibit
the enzymatic activity; generous gift of dr. E. Favaloro). After this pre-incubation, cells were
rinsed with PBS and assayed for APN activity essentially as described using 2350 ptl L-alanine-
p-nitroanilide, transferring 100 pl for absorbance measurements, and incubating at room
temperature for 100 min, All measurements were performed in duplo at least. APN activity was
expressed as the production of p-nitroanilide in 1 min by 10° cells (nmoles/min/10° cells).

Statistical analysis

In experiments where the effects of cytokines and dexamethasone were studied, data are
expressed as the relative expression or activity compared to unstimuiated control cells, Data
are expressed as mean + SEM, and were subjected to nonparametric statistical analysis, using
the Mann-Whitney U test for between-group comparison. A p-value of <0.05 was considered
significant.

RESULTS

Activity and expression peptidases on unstimulated BEAS 2B cells

The bronchial epithelial cell line BEAS 2B expresses NEP and APN. NEP actividy, APN-
like activity, NEP expression and APN expression of unstimulated BEAS 2B cells, which are
shown in Table 1, did not change significantly during the time period used to perform the
experiments. When cells were grown in complete medium, NEP and APN activity increased
with growing cell densities from approximately 0.19 x 10° cells/cin® and up (data not shown),
Below this density, NEP and APN activity remained largely unaltered. During the standard
time period used to perform the experiments (5 days}), cell densities consistently did not exceed
0.17 x 10° cells/eny’.

Effect of cyiokines, growth factors and dexamethasone on cell munbers

Cell numbers of unstimulated cells increased in time (0.52 + 0,04 (O h), 1.07 £ 0.08 (24 h},
and 1.63 +0.15 (48 h) x 10° celis/well of a 6-well culture dish). After 24 hours of stimulation,
IFN-yand the combination of IFN-yand DEX resulted in significantly decreased cell numbers
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Table 1. NEP activity, APN-like activity, NEP expression, and APN expression of unstimulated
BEAS 2B cells?,

Oh 24 h 48 h
Neutral endopeptidase activity® 94+ 1.3 92+ L5 8.6x 1.7
Aminopeptidase N-like activity* 47+ 0.3 38+ 04 34+ 0.6

Neutral endopeptidase expression? 2,12+ (.84 2.03x 077 1.68:+ 0.66
Aminopeptidase N expression’ 34.0x 103 29.8x 107 238+ 8.6

2. BEAS 2B cells were passaged in complete medium at day -2. At day -1, the medium was replaced by the basal
medium. Atday 0, | (24 hours) and 2 (48 hours) NEP and APN-like activity and NEP and APN expression were
determined using aciivity assays and flow cylomelry, respectively. Values represent the arithmetic mean + SEM
mza6).

Neutral endopeptidase activity is expressed as pmoles/min/EQ° cells,

Aminopeptidase N-like activity is expressed as nmoles/min/{07 cells.

Expression was detetinined by flow cytometry and is expressed as 10 MESE

e oo

(85 + 3% and 88 + 5% of control, resp., p<0.05). This decrease was even larger after 48 hours
of stimulation (70 + 5% and 78 1+ 5% of control, resp., p<0.05). In contrast, cell numbers were
increased after 24 and 48 hours stimulation with EGFE (114 = 5% and 131 + 5% of conirol,
resp., p<0.05) or EGF and DEX (117 + 7% and 134 + 4% of control, resp., p<0.05). The effects
of IFN-yand EGF on cell number were dose-dependent (data not shown). Other stimuli used in
our experiments had no significant effect on cell number (data not shown).

‘When cell proliferation was determined after 48 hours of stimulation with the various media-
tors, comparable resulls were obtained (/.. decreased proliferation after stimulation with IFN-
yand increased proliferation after stimulation with EGF) {data not shown).

Effect of dexamethasone on peptidase activity

Incubation of BEAS 2B cells with 10 M DEX resulted in a time-dependent increase in
NEP and, to alesser extent, APN-like activity (Fig. LA). Changes in activity could be observed
as early as 6 howrs after the addition of DEX and lasted at least 5 days, The effect of DEX on
NEP and APN-like activity were dose-dependent (Fig. 1B} with ED50 values of ~10 nM for
both enzymes.

To further characterize the DEX-mediated effects, specific inhibitors of NEP or APN were
added during the activity assays. NEP activity of unstimulated cells could be inhibited completely
by the NEP-specific inhibitor phosphoramidon (1 [(Mj}, indicating that all activity could be
attributed to NEP. After stimulation with DEX, all the activity could still be inhibited by
phosphoramidon (data not shown), indicating that the DEX-mediated increase in activity is
completely due to an increased activity of NEP.

APN-like activity of unstimulated cells conid be inhibited by the CD!3 monoclonal anti-
body WM-15 to 67 + 4% compared to inhibition by an isotype-matched control antibody, i.e.
33% of the APN-like activity is due to APN (p<0.05). After stimulation with DEX, WM-15
was able to reduce the APN-like activity to a similar level of APN-like activity detected in
WM-15 treated control cells (Fig. 2). Therefore, the PEX-mediated increase in APN-like activity
was completely due to an increase in APN (to 221 + 30% of control; 24 h, p<0.05).

The DEX-nediated effects on NEP and APN-like activity could be inhibited completely by
the addition of a 16-fold excess of the glucocorticoid receptor antagonist RU38486 (data not
shown). Farthermore, the stable testosterone analogue R1881 (107 M) did not modify the NEP
or APN-like activity (data not shown).
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Figure 1. Effect of DEX on NEP and APN activity. (A) DEX (10° M) stimulated NEP (open circles) and APN-like
(closed circles) activity in a time-dependent manner (mean + SEM; n=2-10). (B} DEX stimulated NEP (open bars)
and APN (solid bars) in & dose-dependent manner (inean + SEM; n=4; 24 h incubation). Activity of unstimutated

cells = 100%. *p<0.05 compared to control.

Effect of cytokines on peptidase activity

The effects of IL-1B, TNF-o, IFN-y, [L-4, and EGF on NEP activity are shown in figure
3A. NEP activity was significantly increased after 48 hours by IL- 1B (155 + 7%), TNF-ot (122
+4%) and IL-4 (119 + 6%). EGF did not modulate NEP aclivity significantly. In contrast, TFN-
¥ decreased NEP activity after 24 hours (31 + 3%) and 48 hours (83 = 5%). All effects were
dose-dependent (data not shown), Changes in NEP activity induced by IL- I3, TNF-o;, IL-4 or
IFN-ywere not observed after 2 or 6 hours, peaked around day 2 and lasted at feast 5 days (data
not shown),

APN-ike activity was not significantly modified by stimulation (24 and 48 h) with IL-15,
TNF-0, IL-4, or EGF (Fig. 4A). Even after 5 days of stimulation with these mediators, no
changes in APN-like activity were observed (data not shown). Stimulation with IFN-yincreased
APN-like activity after 24 hours {121 1 4% of control}, whereas no effect was observed at 2, 6,
48, or 120 h after the addition of IFN-y.

Effect of DEX and cytokines on peptidase expression

To determine whether the changes in activity were paralleled by changes in membrane
expression, the effects of DEX and cytokines on membrane-expression of NEP and APN were
determined by flow cytometry. The expression of ICAM-1 served as a positive control for the
effects of the cytokines IL- 1[5, TNF-0. and IFN-v. In all experiments, ICAM-1 expression was
strongly increased after stimulation with these cytokines {data not shown).

NEP expression (determined using the mAb I5) was significantly increased by DEX (200
+22% 24 h) and 217 + 5% (48 1)), TL-1B €151 = 13% (48 h)), TNF-0r (145 £ 11% (48 h)}, and
IL-4 (111 £ 6% {48 h)). EGF had no significant effect on NEP expression (101 + [8% (48 h)),
whereas IFN-y significantly decreased NEP expression, both after 24 (84 + 2%) and after 48
hours {62 + 4%). Comparable resuits were obtained using other monoclonal antibodies directed
against NEP (data not shown).
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Figure 2, Characterization of APN-like activity and effect of DEX. APN-like activity (mean + SEM; a=3) of
BEAS 2B cells was determined afier pre-incubation with PBS/BSA, an IgG1 isotype control antibody, the CD13
mAb WM-15, or the CD13 mAb WM-47. It is assumed that after pre-ircubation with WM-15 the detectable
aminopeptidase activity is niot mediated by APN. WM-47 is a CD13 mAb that binds to APN but does not affect its
activity, After stimulation with DEX (10° M, 24 ), WM-15 reduced APN-like activity to a similar level of APN-like
activity detected in control cells pre-incubated with WM-15, indicating that the DEX-mediated increase in APN-like
activity is completely due to an increased APN activity. Activity of unstimulated cells pre-incubated with PBS/BSA
= 100%.
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Figure 3, Effects of cytokines on NEP activity in the absence {(A) or presence (B} of DEX, BEAS 2B cells were
stimudated for 24 (open bars) or 48 (solid bars) hours with IL-1p (20 ng/inl), TNF-¢ (20 ng/mi}, IFN-y (5 ng/ml}, IL-
4 (20 ng/ml) or EGF (5 ng/mt) in the presence (A) or absence (B) of DEX, after which NEP activity was determined
(mean £ SEM; n=5-11). Activity of unstimulated cells = 100%. "p<0.05 compared to control. *p<0.05 compared to
DEX.
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APN expression was significantly increased by DEX (259 £ 24% (24 h) and 332 + 0% (48
h) of unstimulated cells). Stimulation with IFN-y consistently resulted in a slightly increased
APN expression after 24 hours (116 + 6%), whereas no significant changes were observed after
48 hours. Other stimuli did not significantly modify APN expression (data not shown),
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control 1L-13 TNF-e IFN-¢ DEX IL-1f TNF-u IFN-y 1L-4 EGF
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Figure 4, Effects of cytokines on APN-like activity in the absence {A) or presence (B) of DEX. BEAS 2B cells
were stimulated for 24 (open bars) or 48 (solid bars} hours with IL-1{ (20 ng/ml), TNF-, (20 ngfmi), FFN-y(5 ng/ml),
1L-4 (20 ng/ml} or EGF (5 ng/mi) in the absence (A) or presence (B) of DEX, afier which APN activity was determined
(mean = SEM; n=5-11). Activity of unstimulated cells = 100%. "p<0.05 compared to control. *p<0.05 compared to
DEX.

Effect of glucocorticoids on peptidase activities in the presence of cytokines

Simaltaneous stimulation of BEAS 2B cells with DEX and [L-1, TNF-¢, or IL-4 resulted
in increased NEP activities that were comparable to the increases observed with DEX alone
(Fig. 3B). When cells were stimulated with DEX and IFN-y, also an increase in NEP activity
was observed, although this effect was less than the effect observed in the presence of DEX
alone. Costimutation of cells with DEX and EGF resulted in an increased activity of NEP that
was less than the increases observed after stimulation with DEX alone (Fig. 3B).

Simultaneous stimulation of BEAS 2B cells with DEX and 1L-1[, TNF-o, 1{.-4 or EGF
resulted in an increased APN-like activity that was similar to the increase observed after
stimulation with DEX alone (Fig, 4B). After 24 hours of stimulation with DEX and IFN-y an
approximately additive effect was observed.

Involvement of secondary messengers

To investigate the possible involvement of secondary messengers in the IL-1B-mediated
increase in NEP activity, we analyzed the effect of the cyclic-AMP analogue db-cAMP and the
phosphodiesterase inhibitor IBMX on NEP activity. Db-cAMP time-dependently increased
NEP activity: after 6, 24 and 48 hours NEP activity was increased to 121 + 5%, 140 £ 8% and
149 + 14%, respectively (Fig, SA), Db-cAMP did not modulate APN-like activity (data not
shown). IBMX did not affect NEP activity after a 48 h incubation time (Fig, 5B). However,
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stimulation with IL- I B in the presence of IBMX resulted in a small but significantly enhanced
effect of TL-1f} (Fig. SB).

260
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. ® L
150 . T -
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3 g
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Figure 5. Role of secondary messengers in TL-1-mediated effects on NEP activity. (A) Effect of the cyclic-AMP
analogne db-cAMP (1 mM) on NEP activity {mean = SEM; n=3-6). (B) Effect of phosphodiesterase inhibition by
IBMX (0.1 mM) on IL-1f-mediated effects on NEP activity (48 h stimulation) {mean = SEM; n=6). The activity of
unstimulated cells = 100%. “p<(L.035 compared 10 control. *p<0.05 compared to IL-13.

DISCUSSION

Peptidases play an important role in the regulation of peptide-mediated events in the human
lung, such as neurogenic inflammation [10}. Moduiation of peptidase activity or expression
may therefore be a major mechanism to control peplide actions, and thereby inflammatory
responses. Several stidies have shown that the activity of NEP can be reduced by a variety of
external factors, including viruses [11], cigarette smoke [32], ozone [13], and chemicais [ 14].
In contrast, little is known about the effects of cytokines on NEP activity and expression.
Therefore, we investigated the effects of the cytokines IL-13, TNF-o, IFN-y, IL-4 and EGE
which are known to be present during inflammatory reactions in the huinan airways [15], on the
activity and expression of peptidases by human bronchiai epithelial cells, since these cells have
been shown to be a major site for peptidase activity [6, 71.

NEP activity and expression were increased after 48 hours of stimulation with I~ 1§ and, to
a lesser extent, with TNF-o or IL-4. After 24 hours no significant increase could be observed,
raising the possibility that these cytokines had an indirect effect, involving the release of a
secondary mediator. It has been shown that lung fibroblasts increase NEP activity after stimulation
with H.- 1, IL.-6, and TNF-¢ and that this upregulation, which could already be detected after
6 h of stimulation, is dependent upon prostaglandin synthesis and elevation of cAMP [33]. We
therefore aimed to investigate whether TL-18, which in our study was the cytokine with the
most potent effect on NEP activity, acted via similar mechanisins in bronchial epithelial cells,
Stimulation of BEAS 2B cells with the cyclic-AMP analogue db-c AMP resulted in an increased
NEP activity which was of similar magnitude but had a more rapid onset (~ 24 h earlier)
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compared with the effect observed after stimulation with TL-1B. In addition, inhibition of
phosphodiesterases with IBMX significantly enhanced the effect of IL- 1B. These data strongly

suggest that the effect of IL-1] on NEP activity is mediated, at least partially, via a cAMP-
dependent pathway. In contrast (o fibroblasts, prostaglandin-dependent mechanisms did not
seeni to be involved in BEAS 2B cells, since these cells hardly produced prostagiandins under
the culture conditions used (data not shown), Thus, IL-1B-mediated upregulation of NEP activity
by BEAS 2B cells involves a cAMP-dependent pathway, which seems to be independent of
prostaglandin E, synthesis. Since the promotor region of NEP contains potential binding sites
for the NF-IL6 transcription factor [347 and IL-15 is known to stimulate (he release of IL-6 by
bronchial epithelial cells [35], it may be that the effect of TL~1P is mediated via release of 1L-6.
Further studies will be necessary 1o test this possibility.

The increase in NEP activity and expression observed after stimulation with 1L-1f3 and, to
a lesser extent, TNF-o or 1L-4 may resulf in an increased capacity to degrade peptides like
substance P, kinins, neutrophil chemoattractants, and possibly cytokines {9]. As a consequence,
the biological effects of these peptides (e.g. increased secretion of mucus, vasodilatation,
increased microvascular permeability, recruitment of neutrophils, refease of intlanmatory miedia-
tors) will be decreased, resulting in reduced inflammatory responses. Thus, upregulation of
NEP on bronchiat epithelial cells by eytokines, or in general during inflammatory reactions,
might Timit peptide-mediated inflammation in the human bronchus, either by paracrine or
autocrine mechanisnis.

In contrast to NEP, APN-like activity and APN expression were not markedly modulated
after stimulation of BEAS 2B cells with IL- 1§, TNF-¢, IL-4, or db-cAMP for up to 5 days.
Since no change in APN-expression and no change in APN-like aclivity was found, specific
APN-activity was not determined. Other reports, using human glomerular epithelial cells [36],
endothelial cells or monocytes [37], have shown an increased expression and activity of APN
after stimuiation with 1L.-4, IFN-y has been shown to decrease APN expression on monocytes
in cultare [37], whereas it increased APN activity in glomerular epithelial cells [36]. In our
study we also found an increased APN activity after stimulation with IFN-y. The difference in
response between monocytes and epithelial cells may be due to the presence of alternative
promoters in myeloid and epithelial cells [38]. The IEN-y-induced increase in APN activity and
expression is of great interest, since a recent report demonstrated a role for APN in frimming
MHC class Il-associated peptides [391. Since [FN-y also increases HLA-DR expression by
epithelial cells [40], this may represent a mechanism to process and present (viral) peptide
antigens,

Glucocorticoids are widely used in the treaiment of pulmonary diseases characterized by
inflammation. The anti-inflammatory action of glucocorticoids may be mediated, in part, by
moduiating the activity and expression of peptidases by bronchial epithelial cells. In our study,
we found a strong increase in NEP and APN activity and, as determined by flow cytometry,
expression, Using the inhibitory CD13 monoclonal antibody WM-135, we were able to show
that the DEX-mediated increase in APN-like activity was compietely due to an increased activity
and expression of APN. The DEX-mediated increase in NEP and APN activity was reversed
by the glucocorticoid receptor antagonist RU38486, indicating that these effects were mediated
by the glucocorticoid receptor. Furthermore, the effect seemed to be specific for glucocorticoids
and not for other steroid hormones, since the stable testosteron analogue R1881 had no effect
on NEP or APN activity. DEX-mediated changes in NEP and APN activity/expression were
tite- and dose-dependent and could be observed with concentrations likely to occur around the
epithelium in vivo after the inhalation of glucocorticoids [41]. Therefore, one beneficial effect
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of inhaled glucocorticoids may be an increased peptidase activity by bronchial epithelial cells,
thereby limiting the effects of pro-inflammatory peptides. In accordance with owr results, an
increased NEP expression was observed in the epithelium of glucocorticoid-treated asthmatics
compared to non-treated asthmatics [42].

We subsequently determined the effects of DEX on peptidase activities in the presence of
cytokines, since this may reflect the in vive conditions during glucocorticoid therapy more
properly. Although the effect of DEX on NEP activity was reduced in the presence of IFN-yor
EGEF, stimulation of BEAS 2B cells with DEX in the presence of cytokines allways resuited in
increased NEP and APN activities. It should be noted that the DEX-mediated increase in NEP
activity was much higher than the cytokine-mediated increases in NEP activity, and that the
TFN-y-mediated decrease in NEP activity was counteracted by DEX. The reduced effect of
DEX on NEP and APN activity in the presence of EGF suggests that stimulation of BEAS 2B
cells with EGF decreases the responsiveness of NEP and APN for DEX, an observation that
metits further study. Our data indicate that also in the presence of cytokines, DEX is able to
increase NEP and APN activity by human bronchial epithelial cells, This suggests that even
during inflanmatory reactions i vive, when several cytokines are simuitaneously present [15],
glucocarticoids are able to increase peptidase activities on huinan bronchial epithelial cells. In
addition, cytokines released during inflammatory reactions may increase the activity of the
hypothalamo-pituitary-adrenocortical axis, resulting in the release of the natural glucocorticoid
hydrocortisone {43]. Our results suggest that hydrocortisone may prevent the body’s defense
~ reactions against stress from overshooting and needless tissue damage, at least partially, by
upregulaling peplidases which age able to inactivate pro-inflammatory peptides.

In conclusion, IL-13, TNF-o and IL-4 are able to up-regulate NEP activity and expression
by human bronchial epithelial cells, whereas IFN-yresults in a decreased activity and expression.
In contrast, APN activity and expression were upregulated by IFN-y, whereas other cytokines
used in our experiments had no effect. DEX strongly increased NEP and APN activity and
expression, both in the presence as in the absence of cytokines. Our results support a role for the
haman bronchial epithelium in the control of inflammation and indicate that an important anti-
inflammatory effect of glucocorticoids in the treatment of asthma may be upregulation of
peptidases expressed by bronchial epithelial cells,
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ABSTRACT

Asthma is considered a Th2-like disease, characterized by locally increased levels of
interleukin (1L)-4. The bronchial epithelium plays an imporiant role in the initiation and
perpetuation of inflammatory reactions within the airways. However, little is known about the
presence of IL-4 receptors on human bronchial cpithelial cells, or the effects of IL-4 on these
cells.

In this report, we present definitive evidence of IL-4 receptor expression on human bronchial
epithelial cells using several methods. IL-4 receptor expression on human bronchial epithelial
cells in vivo was demonstrated using in site hybridization and immunohistochemistry. No
difference in IL-4 receptor protein expression was observed hetween bronchial biopsies of
healthy subjects compared to allergic asthmatics. Cultured human bronchial epithelial cells
also expressed IL-4 receptor mRNA and protein (as determined by RT-PCR analysis and
floweytometry, respectively). IL-4 receptor protein expression by bronchial epithelial cells could
be increased by stimulation with PMA + calcium ionophore, whereas 11 and TL-6 decreased
IL-4 receptor expression. A cyclic AMP analogue and IL-4 had no effect. Finally, we show that
the IL-4 receptor is functionally active as IL-4 stimulates the release of TL-8, monocyte
chemotactic protein-1, and particularly IL- ! receptor antagonist by human bronchial epithelial
cells.

‘We conclude that human bronchial epithelial cells express 1L-4 receptors both in vive and
invirro, Stimulation of human bronchial epithelial cells by IL-4 may result in the release of both
pro- and anti-inflammatory mediators known to be upregulated in asthmatic airways.

INTRODUCTION

Asthma is clinically defined by reversible airway obstruction and hyperresponsiveness of
the airways. Chronic inflammation of the airways is a prominent feature of asthina and is generally
believed to underly the clinical symptoms. This inflammation is characterized by an influx of
cosinophils, mast cells, mononuclear phagocyles and T cells, and by increased levels of
inflammatory mediators [1, 21. Recent studies indicate a predominance of Th2 cells and Th2
cetl-derived cytokines, such as interleukin-4 (IL-4) and IL.-5, in the pathogenesis of bronchial
asthma (reviewed in [3]). Bronchial biopsies of asthmatic patients show an increased number
of cells containing [L-4 mRNA and protein, compared ¢o healthy controls [4, 5]. In addition,
increased levels of 1L-4 have been found in bronchoalveolar lavage fluid of asthmatic patients
[6].

IE-4, which may also be released by basophils, mast cells, and eosinophils [7, 8], exerts a
wide range of cffects on several cell types. These effects include proliferation of T and B cells
[91, isotype switching to IgE in B cells [ 10}, adhesion molecule expression on endothelial cells
[11], and induction of major histocompatibility compiex class IT, CD13 and CD23 expression
on mononuclear phagocytes [12, 13]. In addition, anti-inflammatory properties of [L-4 have
been described. For example, IL-4 inhibits the release of prostaglandin E,, TL- B, tumor necrosis
factor-o, 1L-6, and 1L.-8, and upregulates the release of IL- 1 receptor antagonist by monocytes
[L4-16].

The activity of IL-4 is mediated through binding to the 1IL-4 receptor (IL-4R). On many
cells, the TL-4R is a heterodimeric complex comprising an o chain and a sccond chain, The
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o chain, which is shared with the IL-13 receptor [17], is a 130 kD transmembrane protein
consisting of a 220 amino acid extracellutar domain including two pairs of cystein residues and
the typical WSXWS motif of the hematopoietin or type I cytokine receptor superfamily. The
second subunit of the IL-4R is, at least in some cells, the common ychain, which is also used by
the IL-2R, IL-7R, IL-SR, and IL-15R [18, 19]. However, some recent repotis have indicated
that in certain cell types [L-4 may signal via the IL-4R in the absence of the common y chain
{20-23].

The bronchial epithelium has long been regarded as a passive barrier between the environ-
ment and the internal milieu of the lung. Currently, the bronchial epithelium is also considered
to play an important role in the regulation of nflammatory and imnwmological reactions in the
airways [24, 25]. Bronchial epithelial cells are able to produce a variety of inflammatory media-
tors, such as cytokines, chemokines and arachidonic acid metabolites [24]. Release of such
mediators may result in the initiation and perpetuation of inflammation. Bronchial epithelial
cells recovered from asthmatics show increased expression of inflammatory mediators, including
IL-8 26} and monocyte chemotactic protein-1 (MCP-1) {27], and increased levels of these
mediators have been found in bronchoalveolar lavage fluid of asthmatic patients [28, 29]. In
addition, human bronchial epithelial cells may produce anti-inflammatory mediators, including
IL.-1 receptor antagonist (IL-1RA). Increased leveis of IL-1RA immunorcactivily have been
found in the bronchial epithelinm of asthmatics [30].

No IL-4 receptors (IL-4R) have been demonstrated on human bronchial epithelial cells yet.
Therefore, we analyzed the mRNA and protein expression of IL-4R o chain by bronchial
epithelial cells both in vive and in vitro. We subsequently determined whether the expression of
the IL-4R by bronchial epitheliad cells differed between healthy subjects and allergic asthmatics
and anatyzed the modulation of {L-4R expression by human bronchial epithelial cells in vitro,
Finally, we studied the effect of 1L-4 on the release of the pro-inflammatory chemokines IL-8
and MCP-1 and the anti-inflammatory cytokine IL-1RA by human bronchial epithelial cells,

MATERIALS AND METHODS

Materials

Recombinant cytokines used in this study were IL-1B (10 Umg, UBL, Lake Placid, NY,
USA), TL-4 {5 U/ng, UBI), and IL-6 (1000 U/ng, kindly donated by prof. dr. L. Aarden, Am-
sterdam, The Netherlands). Stock solutions were prepared in 10 mM PBS, pH 7.4/0.1% BSA
and stored at -20°C.

Dibutyryl-cyclic adenosine monophosphate {dibutyryl-cAMP) was cobtained from Sigma
{St. Louis, MO, USA). Solutions were freshly made in milli Q-filtered water before cach expe-
riment. PMA (Sigma) and the calcium ionophore A23187 (Sigma) were disolved in
dimethylsulphoxide and stored af -20°C until use.

Auntibodies

Monoclonal antibodies (imAb) used are MR6, which is directed against gp200-MR6, a 200
kba molecule functionally associated with the haman IL-4R complex ({311, kindly donated by
dr. M. Larché, London, United Kingdom}; M-57, directed against the human IL-4R ¢ chain
{CD124; [32], kindly provided by Immunex, Seattle, WA, USA); MAB284, directed against
the common ychain (C2132; R&D Systems, Abingdon, United Kingdom); BBA-4 {anti-ICAM-
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1 (CD54), British Biotechnology Products Ltd., Oxon, United Kingdom); Ta-1 (anti-CD26;
Coulter Clone, Hialeah, FL, USA); CK-1, dirccted against a panmarker of epithelial cytokeratins
(DAKOpatts, Glostrup, Denmark); OKT6, directed against the CD 1a antigen of dendritic cells
(American Type Culture Coliection, Rockville, MA, USA); Leu-4 (anti-CD3), Leu-2 {anti-
CD8), and Leu-3 (anfi-CD4), all from Becton Dickinson (San Jose, CA, USA); My-4 (anti-
CD14) and B4 (anti-CD[9) {both from Coulter Clone}; EG1 recognizing cosinoplhil cationic
protein in resting and activated eosinophils (Pharmacia, Uppsala, Sweden); BMK 13, recognizing
major basic protein in resting and activated eosinophils {Genzyme, Cambridge, MA, USA};
and EG2, recognizing the cleaved form of eosinophil cationic protein in activated eosinophils
only (Pharmacia). For double-stainings (see below) FITC-labeled Leu-4 (CD3) and FITC-
labeled My-4 (CD14) were used.

Bronchial tissue

Samples of human bronchus were obtained from patients undergoing pneumonectomy or
lobectomy (University Hospital Dijkzigt, Rotterdam, the Netherlands). Tissue distinct from the
tumor and having a normal appearance was dissected and either used for bronchial epithelial
cell culture {see betow) or directly embedded into Tissue-Tek {Miles Inc., Elkhart, IN, USA),
frozen in liquid nitrogen, and stored at -80°C.

Bronchial mucosal biopsy specimens were obtained from eleven non-smoking allergic
asthmatic patients (8 men, 3 women, median age 32 years, range 20 - 36 years). Asthma was
defined as a history of episodic wheezing and reversible airway obstruction characterized by an
increase in forced expiratory volume in one second (FEV,} of = 9% of the initial value after
inhalation of 1000 pg terbutaline. The asthmatic subjects had a mean FEV, of 91% of the
predicted value (range 60 - 108%). The median of the *logs of the provocative concentrations
of inhaled methacholine required to reduce their FEV, by 20% (PCy,) was -0.06 mg/ml (range
-3.89 - 3.43 mg/ml). Allergy was defined by one or more positive skin-prick tests to extracts of
16 common aeroatlergens. All patients were receiving inhaled B-agonists only, and none had
taken oral or inhaled corticosteroids in the month prior to the study.

The control group consisted of 6 non-allergic non-asthmatic subjects (4 men and 2 women,
median age 24 years, range 23 - 52 years). All controls had a PCy histamine of more than 8 mg/
ml and a median FEV, of 104 (88 - 109)% of the predicted value. The study was approved by
the local Ethics Comunittee and all participants gave their written informed consent.

Immunohistochenistry

Immunohistochemical {(double) stainings were performed as described previously {33]. To
evaluate IL-4R expression between heaithy subjects and asthmalics, biopsies were coded and
two sections per staining were analyzed in a blinded fashion for each biopsy at a magnification
of 10x40. IL-4R expression by the bronchial epithelivmn or lamina propria was scored semi-
quantitatively on a{) - 4 scale (0= negative; 1= weak; 2= moderate; 3=strong; 4 = very strong).
In addition, the number of positively stained cells were counted in a zone covering 100 gmof
the the lamina propria along the length of the epithelial basement membrane (BM), covered
with epithelium over at least 500 pum. Cells were counted if they stained red and contained a
nucleus. Each section was evaluated by at least two independent investigators. The cell counts
are expressed as the number of celis per mm of BM. Composition of the cellular infiltrate was
determined using specific leukocyte markers (see Antibodies)y and counted as described above,
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In situ hybridization (ISH)

Anti-sense and sense oligonucleotides were synthesized with a DNA Synthesizer 380B
(Applied Biosystems, Foster City, CA, USA). The TL-4R oligos were designed using the Oligo
Primer Analysis Software (MedProbe, Oslo, Norway), and displayed no homology to known
complementary cDNA sequences (except human IL-4R ¢DNA), as verified by searching EMBL
database. Anti-sense oligonuckeotides used are (5to 3') GTG GAC GCA GAG GCT GAT
GTA CTC GTA GAG; TCT TTC TTA CCA CCC TAG TCT AAG GGT TGG; CGG ACA
AGG ACC TGG ACG AGC CTC TCC TCT; TGA CAC GGG GTT GGA CTC GGT CFT
TGG ACC. The sense oligonucleotides overspanned the same regions in the gene.
Oligonucleotides were 3'-tailed with digoxigenin (DIG) using the DIG Oligonucleotide Tailing
Kit (Boehringer Mannheim, Mannheim, Germany). Labeling efficiency was verified using
hybridization and comparison with a DIG-taited control oligonucleotide (supplied with the kit)
according to the instructions of the manufacturer, Prior to use for ISH, a mixture of the four
sense or the four anti-sense oligonucleotides was prepared.

DIG-labeled oligenucleotides for ¢f-actin (British Biotechnology Products Ltd.) and DIG-
labeled oligo-dT (R&D Systems} were used as control for the preservation of celtular RNA.

ISH and invmunological detection were performed essentially as described previously [34].
The negative controls included omission of oligonucleotides or antibody and hybridization
with the sense probe mixture, Human skin biopsies of psoriatic patients were used as positive
control tissue [35].

Culinre of lunnan bronchial epithelial cells and cell lines

Human bronchial epithetial cells were cultured from bronchial tissue {obtained from non-
allergic patients wndergoing long surgery) as described previously [36]. Cells were characterized
using a mouse monoclonal antibody directed against & number of human cytokeratins (CK-1).
At least 99% of the isolated cells stained positive for cytokeratin. When cells were 70-90%
confluent, they were used for experiments.

The human bronchial epithelial cell line BEAS 2B [37] was kindly provided by dr. J. Lechner
(Inhalation Toxicology Research Institute, Albuquerque, NM, USA) and cultured as described
previously [38]. Medium was replaced three times weekly and cultures were passaged when
the monolayers were 80 o 90% confluent, Passages 16 through 35 were used in this study.

The human histiocytic lymphoma cell line U937 {39] was cultured in RPMI 1640 medium
(Gibco) supplemented with [0% FCS and antibiotics, The THP-{ cell line [40} was obtained
from the American Type Cuiture Collection and maintained according to their instructions.

Stimuldation of bronchial epithelial cells

When cultures reached 70-90% confluency, the medium was replaced by a basal medium
consisting of DMEM/F12 {1:1) supplemented with antibiotics and IL-1p (20 ng/ml), IL-4 (20
ng/ml), -6 (0.1 ng/ml), dibutyryl-cAMP {1 mM), or PMA (10 ng/ml} and calcium ionophore
A23187 (1 pg/ml) were added to the medium. These doses were widely shown to be effective
in vitro. For studies on the effect of IL-4 on cytokine release by human bronchial epithelial
cells, the cultures were continued for an additional 24 h, after which culture supernatants were
collected and cells were trypsinized and counted using a haematocytometer (Coulter). For stu-
dies on the modulation of HL-4R expression by human bronchial epithelial cells, cells were
stimulated for 24 h, after which the cells were analyzed by flowcytometiy.
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Flowcytometry
For immumofluorescence staining of human bronchial epitheliad cells, the following mAb

were used: M57, MAB284, BBA-4, and Leu-4 {control for nonspecific binding). Bronchial
epithelial cells were rinsed with PBS and detached using .02% EDTA. Cells were harvested in
PBS/0.5% BSA, washed and resuspended in PBS/BSA to a final concentration of 2 x 10° cells/
nl. Flowcytometry was performed as described previously {38]. Fluorescence intensities were
quantified using calibrated fluorescence standards (FCSC Quantum 26, Research Triangte Park,
NC, USA) and expressed as Molecules of Equivalent Soluble Fluorescence (MESF) [38].

RNA isolation and cDNA synthesis

Total cellular RNA was isolated from human bronchial epithelial celis and BEAS 2B cells
according to Chomcezynski and Sacchi [41]. The integrity of the RNA was assessed by
electrophoresis of the RNA samples on a 1% ethidium bromide-stained agarose gel and
observation of intact 528 and SI8 ribosomal bands. The RNA was stored at -80°C until use.
RNA isolated from the HTLV-I infected human T cell line MT-1 [42] was kindly donated by
dr. M.C.M. Verschuren from the department of Inmmunology (Erasmus University Rotterdam,
The Netherlands).

Prior to amplification, a I pg aliquot of total cellular RNA was treated with RNase-free
DNase (Gibco) to remove contaminating genomic DNA. RNA was reversed (ranscribed to
¢DNA as described by previously (total volume: 20 pi) [34]. The cDNA were stored at -20°C
until use.

Polymerase chain reaction (PCR) analysis

For PCR analysis | pi ¢cDNA solution was used. The reaction mixture contained 10 mM
Tris-HCI {pH 8.3), 50 mM KCI, 1.5 mM MgCl,, 0.2 mM dNTPs, | pM sense and anti-sense
oligonucleotide primers, and 20 U/ml Tag polymerase (Amplitaq, Perkin-Elmer Cetus, Nor-
walk, CT, USA) in a total volume of 50 ul. Analysis of cDNA levels of hypoxanthine
phosphatidyl ribosyltransferase (HHPRT) was used as an internal control to standardize for total
celiular mRNA. The following primers (synthesized with a DNA Synthesizer 380B (Applied
Biosystems)) wereused (5't0 3'): IL-4R sense: CTG GAG CAC AAC ATG AAA AGG; IL-4R
anti-sense: AGT CAG GTT GTC TGG ACT CTG; common ¥ chain sense: GAT TAT AGA
CAT AAG TTC TCC; and commion Y chain anti-sense: GAT GAT TAT CAA CAG AAA CTT,;
HPRT sense: GTG ATG ATG AAC CAG GTT ATG ACC TT {43]; HPRT anti-sense: CTT
GCG ACCTTG ACC ATC TTT GGA [43]. The amplified cDNA products are 510, 831, and
454 base pair in size, respectively, Samples were amplified in a DNA Thermocycler 480 (Per-
kin-Elmer Cetus) for 35 cycles, each cycle consisting of denaturation at 94°C for 30 sec (IL-4R
and HPRT) or | min {common 7y chain), annealing at 55°C for 30 sec (IL-4R and HPRT) or |
min (common ¥ chain), and extension at 72°C for | min. These conditions appeared to be
optimal as determined in preliminary experiments, Aliquots of PCR products were ran on 1%
agarose gels and visvatized by ethidium bromide staining. HPRT was used as an internal control
for total cellular mRNA. Each experiment included positive controls (cDNA froma THP-1 cell
line (1L-4R) or MT-1 and U937 cell line {common v chain}) and two negative controls (water
and PNA treated with DNAse).

Radioactive lrybridization of PCR producis
Agarose gels containing the amplified cDNA were blotted to Nytran N nylon membranes
(Schleicher and Schuell, Dassel, Germany) and fixed to the membrane with a 254 nm UV
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crosslinker. Oligonucleotide probes used are (5" to 3") TGG CCA GAG AGC ATC AGC GT
(IL-4R ¢ chain) and GTG AGG TGA GTA TGA GAC GCA GGT G {common ¥ chain). The
oligonucleotides, being complementary to internal sequences of the PCR products, were end-
labeled with *P-y-ATP (ICN Pharmaceuticals Inc., Irvine, CA, USA) by T4 polynucleotide
kinase (Pharmacia LKB, Piscataway, NJ, USA). Blots were hybridized in 5x SSPE (50 mM
SodiumPyrophosphate, 0.9 M NaCl and 5 mM EDTA, pH 7.0}, 0.6% SDS and 5¢ pg/mil
salmon sperm DNA for 2 h at 55°C. Subsequently, blots were rinsed twice for 20 min with 5x
SSPE with 0.19% SDS at 55°C and exposed to phosphor sercens, affer which the intensities of
the signals were measured using a Phosphorlmager (fype Storm 820; Molecular Dynamics,
Sunnyvale, CA, USA) and analyzed using ImageQuaNT software (Molecular Dynamics).

ELISA for IL-8, MCP-1 and soluble IL-4R o chain

IL-8 was measured with a commercially available sandwich ELISA {Central Laboratory of
the Blood Transfusion Service, Amsterdam, The Netherlands) with a detection limnif of 1 pg/ml.
Levels of immunoreactive MCP-1 were quantified in a previously described sandwich ELISA
[44], using a novel, highly specific monoclonal antibody against MCP-1 (5D3-F7 mAb, 1gG,)
and a polyclonal rabbit anti-MCP-1 serum. The sensitivity of this assay was 30 pg/ml. Human
soluble IL-4R ¢ chain levels in the culture supernatants were measured using a2 commercially
available sandwich ELISA (R&D Systems; detection limit: 5 pg/ml). IL-IRA levels were
determined using a commercially available sandwich ELISA (Medgenix, Etten-Leur, The
Netherlands) with a detection limit of 10 pg/ml.

Statistical analysis

Data are expressed as mean + SEM (cytokine levels) or median with range (immuno-
histochemical analyses). The Mann-Whitney U test was used to assess significant differences
in cytokine-release and IL-4R expression between stimulated and unstimulated cultures of human
bronchial epithelial cells and L.-4R expression between bronchial biopsies of asthmatics and
healthy subjects. Correlation coefficients were obtained by Pearson’s rank method. A p-value
Iess than 0.05 was considered significant.

RESULTS

Expression of IL-4R mRNA and protein in vivo

Aithough some recent reports indicate an effect of I1.-4 on human bronchial epithelial ceil
function, no IL-4R have been demonstrated on these cells yet. Therefore, we determined the
expression of IL-4R mRNA and prolein in bronchial tissue. This tissue was obtained from non-
allergic patients undergoing lung surgery, fn siti hybridization (ISH) of bronchial tissue showed
that IL-4R mRNA was strongly present in the bronchial epithelium and in smooth muscle cetls
(Fig. 1). In addition, IL-4R mRNA was detected in blood vessels and infiltrating cells (Fig. 1).
ISH using the DIG-iabeled B-actin or oligo-dT oligonucleotides showed strong and roughly
equal hybridization signals in all cells.
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Figure 1. I sifur hybridization (JSH) of IL-4dR mRNA in bronchial tissue, ISH of IL-4R mRNA using the DIG-
labeled anti-sense oligonucleotide mixture (A). The IL-4R sense oligonucleotide mixture gave no hybridization signal

(B). Magnification: 160x.

The ISH data were substantiated by immunohistochemical stainings of bronchial tissue,
usinng the mAb MR6 and M57. Strong IL-4R protein expression was demonstrated in the entire
bronchial epithelium and in simooth muscle cells (Fig. 2). The expression of IL-4R protein was
particularly restricted to the membrane of these cells. Less intense staining was cbserved in
blood vessels and infiltrating cells within the lamina propria. Using double-stainings with anti-
CD3 and anti-CD 14 mAb, the majority of the 1L-4R-positive inflitrating cells could be identified
as T-lymphocytes and mononuclear phagocytes {data not shown), The MR6 and M57 mAb
{which recognize distinct parts of the IL-4R) showed similar staining patterns. These results
indicate that in the healthy human bronchus, IL-4R expression can be found in the bronchial
epithelium, smooth muscle, bicod vessels, and infiltrating cells (predominantly T lymphocytes
and mononuclear phagocytes).

Figure 2, IL-4R immunoreactivity in human bronchial tissie, Human bronchial tissue was stained using the M57
mAb (A). Mouse isotype-matched control antibody showed no reactivity (B). Magnification: 160x.

IL-4R expression in bronchial biopsies of asthmatics

To determine whether the expression of [L-4R was altered in bronchial tissue of asthmatic
patients, we evaluated the expression of IL-4R protein in bronchial biopsies of healthy non-
allergic subjects and allergic asthmatics, Bronchial biopsies of asthmatic patients showed an
increased number of total eosinophils (EG1/BMK 13 positive) and activated eosinophifs (EG2
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positive} in the Iamina propria compared {o healthy subjects, In addition, the number of CD la-
positive dendritic cells in the bronchial epithelinin was increased in the asthmatic patients. No
significant differences were observed for the number of T cells (CD3, CD4, or CD8 positive),
B cells, or mononuclear phagocytes {data not shown).

Comparison of the bronchial epithelinm between bronchial biopsies of heathy non-allergic
subjects and allergic asthmatics (using the MR6 mADb) did not reveal significant differences in
the IL-4R expression in vivo (Fig. 3, left part). In addition, IL-4R expression in the lamina
propria, as determined by semi-quantitative analysis, did not differ between both groups (Fig.
3, right part). Quantitative analysis of the number of IL-4R-positive cells in the lamina propria
also revealed no significant differences between healthy controfs {median: 8.4 cells/mm BM
(range: 4.5-47.5)) and allergic asthmatics (median: 7.5 cells/imm BM (range: 0.8-94)). Semi-
quantitative and quantitative analysis showed strong correlation with each other (Spearman’s
rank correlation coefficient .88 (p<0.01)).

epithelium lamina  propria
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Figure 3. Score for [L.-4R expression in bronchial biopsies of kealthy controls (HC) and allergic asthmatics
{AA) TE-4R immunoreactivity of the bronchial epithelivem and [amina propria was semi-quantitatively scored on
a 0-4 scale. See text for details.

IL-4R expression in the lamina propria (using either semi-quantitative or quantitative data
of both healthy controls and allergic asthmatics) showed a correlation with the number of activated
(EG2-positive) cosinophils in the lamina propria {1,=0.8995; p<0.001; Fig. 4}. IL-4R expression
in the lamina propria showed a tendency to correlate with the number of activated (CD26-
positive) T celis in the lamina propria (semi-quantitative analysis: r=0.5369; p<0.03; quantitative
analysis p=0.068).

These results suggest that the expression of IL-4R on the bronchial epithelium is rather
constitutive and is not significantly altered in the asthmatic airways. Furthermore, the expression
of IL-4R in the bronchus significantly correlates with the number of activated eosinophils, and
less clearly with activated T cells, within the lamina propria.
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Figure 4, Correlation between IL-4IRt expression and activated eosinophils in the lamina propria. IL-4R exprossion
(quantitative) and the number of activated (EG2-positive) eosinophils in the lamina propria was determined as described
in the Materials and methods section.

Expression of IL-4R mRNA and protein in cultured human bronchial epithelial cells

We subsequently determined whether cultured human bronchial epithelial cells expressed
the IL-4R mRNA and protein. Using RT-PCR analysis, IL.-4R mRNA could be observed both
in primary cultures of human bronchial epithelial cells and in the established BEAS 2B cell line
(Fig. 5A). In addition, IL-4R protein expression (as determined by flowcytometry using the
M57 mAb), could be observed in cultured human bronchial epithelial cells (Fig. 5B). Basal
expression of [L-4R and ICAM-{ was (.88 +0.22 x 10* MESFand 13.8 £35.1 x 10 MESF,
respectively (n=7). The expression of IL-4R mRNA and protein seemed to be rather independent
of the time of culture and the confluency of the cultures (data not shown), The IL-4R expression
by cultured human bronchial epitheliai ceils was further demonstrated by the observation that
soluble IL-4R ¢ chain immunoreactivity could be detected in the culture supernatants of these
cells mean + SEM: 419 +6.8 pg/ml; n=17; range 7.8 - 116.6 pg/ml),

Since the conunon ¥ chain (CD132} is, at least in certain celi types, a functional component
of the [L-4R, we aimed to analyze the expression of this molecule in cultured human bronchial
epithelial cells. RT-PCR analysis and subsequent hybridization of the common ychain cDNA
showed expression of common ychain mRNA in cultured human bronchial epithelial cells and
BEAS 2B cells (Fig. 5A). In addition, expression of the comumon ¥y chain protein on human
bronchial epithelial cells and BEAS 2B cells was demonstrated by floweytometry (data not
shown). The expression levels of the cormon ¥ chain (0.66 +0.15 x 10* MESF; n=8) were
almost similar to the expression levels of the IL-4R ¢ chain .

These results demonstrate that culfured human bronchial epithelial cells express both mRNA
and protein for the 1L-4R o chain and the common ychain.
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Figure 5. 1L-4R expression in cultured hiuman hronchial epithelial cells. A: IL-4R ¢ chain mRNA and common
¥ chain mRNA expression were determined using RT-PCR analysis and subsequent hybridization. HPRT mRNA
levels were comparable in all samples (data not shown). B: IL-4R ¢ chain protein expression on cultured human
bronchial epithelial cells was determined by floweytemetry using the M57 mAb (thick line). ICAM-{ (thin line) and
an isotype-matched antibody (dotted line} served as positive and negative controls, respectively, One representative
experiment out of seven is shown.

Modulation of bronchial epithelial IL-4R protein expression

To analyze whether the expression of the IL-4R could be modulated in vitro, we stimulated
human bronchial epithelial cells with IL- 13, IL-4, IL-6, dibutyryl-cAMP, or PMA + A23187
for 24 h. Stimulation with PMA + A23187 consistently increased IL-4R expression on human
bronchial epithelial cells (Fig. 6). In contrast, a small but consistent decrease in fL-4R expression
was observed after stimulation with IL-iB or IL.-6 {(p < 0.05 for both cytokines). IL-4 and
dibutyryl-cAMP did not significantly affect on IL-4R expression by human bronchial epithelial
cells. Comparable results were obtained after stimulation for 48 or 72 houss {data not shown).
ICAM-| expression was consislently increased afier stimulation with IL-1P (297 + 54% of
unstimulated cellsy or PMA + A23187 (672 +£560%), whereas IL-4 (115 +10%),IL-6(92 &
6%) and dibutyryl-cAMP (124 * 25%) had no significant effect.
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Figure 6. Modulation of IL-4R expression on human bronchiat epithelial cells. Human bronchial epithelial cells
were stimulated for 24 b with IL-1B, IL-4, IL-6, dibatyryl-cAMP (db-cAMP) or PMA + calcium ionophore A23187
(Ca). IL-4R expression was determined by flowcytometry (using the M57 mAb). Data represent the mean + SEM
{n=3-5).

Effects of IL-4 ont mediator release by human bronchial epithelial cells

To study whether the I1.-4 receptors expressed by human bronchial epithelial cells were
functionally active, human bronchial epithelial cells were stinnlated with TL-4. For comparison,
we also stimulated human bronchial epithelial cells with TL~1B. As shown in figure 7, IL-1p
increased the IL-8 and MCP- | release. IL-4 also consistently increased the retease of IL-8 and
MCP-1 release, although to a lesser degree (Fig. 7). IL-1RA production by human bronchial
epithelial cells was strongly increased by stimulation with IL-1J and IL-4, Thus, TL-4 stimulates
the release of both IL-8, MCP-[ and particularly IL- IRA from cultured human bronchial epithetial
cells.

DISCUSSION

This paper shows for the first time that IL-4R are expressed by human bronchiat epithetial
cells and that this IL-4R is functionally active. Since IL-4 is thought to be an important cytokine
in asthma, our findings are of importance for our understanding of the pathogenesis of this
disease. Increased numbers of cells containing IL-4 mRNA and protein have been found in
bronchial biopsies of asthinatics [4, 5] and increased levels of IL-4 have been found in
bronchoalveolar lavage fluid of asthmatic patients compared to healthy individuals [6]. T
lymphocytes and eosinophils have been shown to be an important source of IL-4 in the inflamed
bronchus, and both cell types can be found in close proximity to the bronchial epithelium,
Therefore, it is very likely that bronchial epithelial celis will be exposed to IL-4 during
inflammatory and immunological responses within the lung. Our findings indicate that human
bronchial epitheliat cells express the IL-4R. Furthermore, we show that this IL-4R is functionally
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Figure 7. Effect of IL-1B and IL-4 on IL-8, MCP-1, and IL-IRA preduction by human hronchial epithelial
cells. Human bronchiat epithelial cells were stimulated with IL-1 (20 ng/ml; closed bars) or IL-4 (20 ng/ml; open
bars) for 24 h, IL-8, MCP-1, and IL- IRA fevels in the supernatant were analyzed vsing ELISA. Data are expressed as
percentage production compared to unstimulated cells (mean + SEM; n 2 3).

aclive, since exposure of human bronchial epithelial cells to IL-4 stimulated the release of IL-
8, MCP-1, and particularly IL- {RA, which are mediators known to be upregulated in the asthmatic
bronchiat epithelium [26, 27, 30].

Using in sitre hybridization and immunohistochemistry, we show that the human bronchial
epithelitm expresses 1L-4R mRNA and protein in vive, IL-4R expression was also observed in
endothelial cells, smooth muscle cells and infiltrating cells (T cells and mononuclear phagocytes),
alt of which are known to possess IL-4R [45, 46]. Expression of the IL-4R has also been
described tor other epithelial tissues, like intestinal epithelium [47], epidermat cells [35], and
breast epithelium [48], suggesting that expression of IL-4R is a general feature of epithelial
cells,

IL-4R expression in the lamina propria of healthy controis and allergic asthmatics showed
a strong correlation with the number of activated eosinophils and a weak correlation with the
number of activated T cells. Eosinophils are known to express [L-4R [49], however, it is not
known at present whether these receptors are upregulated on activated eosinophils. Unstimulated
T cells express low levels of IL-4R, but the number of IL-4R is upregulated upon activation
{30]. Therefore, one may speculate that the correlation between IL-4R expression and number
of activated eosinophils or activated T cells is a reflection of the increased IL-4R expression on
these cells. On the other hand, activated T cells or activated eosinophils may secrete mediators
{(for example [1.-4) which subsequently increase the 11.-4R expression in a paracrine or aufocrine
manner.

Expression of IL-4R mRNA and protein was also demonstrated in cultured human bronchial
epithelial celis and in the BEAS 2B cell line. In addition, protein and mRNA expression of the
comuion Y chain was observed in these cells. The common ychain (CD132) is believed tobe a
fonctional component of the IL-4R [18, 193, but recent reports have shown that in certain cell
types IL-4 may signat via the IL-4R in the absence of the comimon y chain [20, 21]. Aithough
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we did not directly determine the subunit structure of the IL-4R, it can be assumed that in
hunian bronchial epithelial cells IL-4 signals, at least in part, via binding to an IL-4R composed
of the IL-4R ¢ chain and the common ¥ chain,

Modulation of IL-4R expression in vitro was studied using several cytokines, the cAMP
analogue dibutyryl-cAMP, and stimulators of protein kinase C (PMA + calcium icnophore}.
Stimulation with PMA + calcium ionophore consistently increased the IL-4R expression, whereas
IL-4 and dibutyryl-cAMP had no effect. IL-4R expression on T cells and B cells has been
shown to be upregulated by IL-4 and calcium ionophore [51-53}. In contrast, IL-4R expression
on monocytes has been shown to be upregulated by PMA or stimulation of intracellular cAMP
levels, whereas 1L-4 and calcium ionophore had no effect [51]. It was hypothesized that this
discrepancy might be caused by the presence (T cells) or absence (monocytes) of the common
vy chain [51]. Our results do not support this hypothesis since we did not observe an increased
IL-4R expression after IL-4 stimulation of human bronchial epithelial ceils, expressing the
conunon ¥ chain. After stimulation with IL- 1B or IL-6, a small but consistent decrease in [L-4R
expression was observed. The physiological role of this decrease, however, remains to be
established and it would be of interest to deternmine whether changes in receptor numbers are
accompanied by changes in receptor affinity.

Comparison of IL-4R expression by the bronchial epithelium of asthmatics and healthy
subjects did not reveal significant differences. In addition, no difference was found in IL-4R
expression in the lamina propria. Although IL-4 levels are increased in asthmatic patients [4-61,
our in vitro data show that this does not affect IL-4R expression on the bronchial epithelium. In
fact, from our in vitro data one might expect a decreased IL-4R expression due to elevated IL-
13 and IL-6 levels in asthmatics {54]. On the other hand, our i vivo data should be interpreted
with caution, since our method may not detect small changes in receptor numbers, and the
number of patients was relatively small. Nevertheless, the fack of difference in bronchial epithelial
1L-4R expression between asthmatics and healthy subjects and the only minor effects of stimuli
on bronchial TL-4R expression in vitro suggest that the expression of 1L-4R on human bronchial
epithelial cells is rather constitutive.

Recent reports have demonstrated an effect of 11.-4 on human bronchial epithelial cells, In
one study, it was shown that IL-4 upregulated the retease of granulocyte/macrophage colony-
stimulating factor, thereby stimulating eosinophil survival [55]. In contrast, other studies have
shown that [L-4 may exert anti-inflammatory properties on human bronchial epithelial cells by
inhibiting cytokine-induced RANTES expression [56] or inducible nitric oxide synthase
expression [57]. In the latter studies, I.-4 was added 30 min prior to stimulation of the cells by
amixture of 1L- 1§, tumor necrosis factor-o, and interferon-y. Anti-inflammatory effects of 1L
4 on human bronchiat epithelial cells have also been described by Levine and colleagues [58],
who demonstrated that IL-4 increased the release of [IL- IRA. Our results substantiate these data
and show that IL.-4 may act both pro-inflammatory {by increasing [L-8 and MCP-1 release) and
anti-infanymatory (by increasing IL-1RA release) on human bronchial epithelial cells. However,
the strongest effect of IL-4 was observed on the production of IL-{RA. it may be speculated
that in the healthy bronchus, 1L-4 is involved in controlling inflammatory reactions by stimulating
the release of IL-1RA by bronchial epithelial cells.

In conclusion, bronchial epithelial cells express H.-4 receptor mRINA and protein both in
vive and in vitro. The functionality of the receptor was demonstrated by the ability of IL-4 to
stimulate IL-8, MCP-1, and particularly IL- 1RA release by cultured human bronchial epithelial
celis, Enhanced levels of 1L-4 in the asthmatic airways may therefore, together with other
cytokines, result in increased responses of bronchial epithelial cells, thereby resulting in an
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increased recruitment and activation of leukocytes. Our resuits further support a role for the
human bronchial epithelium in the controt of inflammation and indicate that IL-4 may stimulate
bronchial epithelial cells to produce inflammatory mediators.
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ABSTRACT

Airway inflammation is characterized by an accumulation of activated leukocytes. Bronchial
epithelial cells may contribute to this process by releasing chemokintes and by expressing surface
membrane molecules involved in the adhesion and activation of the recruited leukocytes. In
this study, we analyzed the effects of cytokines and glicocorticoids on the release of monocyte
chemotactic protein-1 (MCP-1), a potent chemoattractant for predominantly monocytes and
luymphocytes, by human bronchial epithelial cells and compared this with the release of
interleukin-8 (1L-8), which potently attracts neutraphils, In addition, we analyzed the effects of
cytokines and glucocorticoids on the epithelial expression of intercellutar adhesion molecule
(ICAM)-1, CDA40, and human feukocyte antigen (HLA) class 1I molecules.

Primary cultures of human bronchial epithelial cells constitutively released MCP-1 and IL.-
8. IEN-y strongly increased MCP-1 release, which was accompanied by increased expression
of MCP-1 mRNA and an increased monocyte chemotactic potential. In contrast, IFN-y had no
effect on the release of IL-8, but it did increase the epithelial expression of ICAM-1, CD40, and
HLA class I molecules. IL-IP increased both MCP-1 and IL-8 release, and increased the
expression of ICAM-1 and CD40, but not HLA class IT molecules. Dexamethasone partially
inhibited the eytokine-induced release of MCP-1 and IL-8 and the expression of I[CAM-1,
CDA40, and HLA class I molecules by human bronchial epithelial cells,

Our results indicate that TEN-yand TL- 1 differentiatly regulate the MCP-1 and 1L-8 release
by human bronchial epithefial cells. In addition, IL-1J and particularly IFN-y increase the
expression of [CAM-I, HLA class Il and/or CD40 molecules, which are involved in the adhesion
and possibly activation of the recruited leukocytes. Finally, the beneficial effect of glucocorticoid
therapy in airway inflammatory diseases may be mediated in part by inhibition of chemokine
release and ICAM-1, CD40, and HLA class II expression by bronchial epithelial ceils.

INTRODUCTION

Asthma is a chronic inflammatory disease of the airways, The inflammatory process is
characterized by an accumulation of activated leukocytes, predominantly macrophages, T
lymphocytes and eosinophils, in the bronchial wall {1, 2]. The recruitment of peripheral blood
leukocytes into the airways is mediated through several signals, including adhesion molecuies
and chemotactic factors produced at the inflammatory focus. MCP-1, a member of the C-C
branch of the chemokine family, has chemotactic properties for monocytes, basophils, T .
lymphocytes and NK cells {3]. In addition, MCP-1 may activate monocytes and basophils, and
can induce leukocyte adhesion molecules on endothelial and vascular smooth muscle cells [4-6].
[L-8 is a member of the C-X-C branch of the chemokine family and is in vitro predominantly
chemotactic for neutrophils [7]. The composition of the cellular infiltrate will therefore be
determined, at least in part, by the chemokines present during inflammatory reactions in the
airways.

The bronchial epithelium is considered to play an important role in the regulation of
inflammatory and immunological reactions in the aivways [8]. Bronchial epithelial cells have
the capacity to recruit inflammatory cells via the release of chemokines, to direct inflammatory
cell adhesion via the expression of celi surface molecuies, and to regulate inflammatory cell
activity both via the release of cytokines and via expression of cell surface molecules. Bronchial
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epithelial cells are known to produce MCP-1 [9] and IL-8 [10]}. Increased expression of MCP-
1 and IL-8 protein has been found in the bronchial epithetium [11, 12} and in bronchoaiveolar
lavage fluid [13, 14] of asthmatic subjects compared to nornial subjects. IL-8 release by human
bronchial epithelial cells has been shown 1o be increased after stimulation with pro-inflammatory
cytokines [10], but at present little is know about the regulation of MCP-! release by these
cells. Human bronchial epithelial cells can also express surface molecules like adhesion
molecules, costimulatory molecules, and HLA class 1T molecules. The bronchial epithelium of
asthmatics shows increased expression of ICAM-1 and HLA class Il molecules [ 15, 16], which
may coniribule fo the retention and activation of recruited leukocytes in the asthmatic airways [8].

The release of chemokines and the expression of surface molecules is thought to be modulated
by cytokines, which are increasingly recognized to be important in chronic inflammation and
play a critical role in orchestrating inflaminatory responses, In bronchoalveolar lavage fluid of
asthmatics, increased levels of IL- 1B, TNF-o, and IFN-yhave been detected compared to healthy
controls {17, 18]. Bacterial cell wall products, such as Hpopolysaccharide (LPS), may also
contribute to the inflammatory process in the airways [19]. In contrast, glucocorticoids, which
are the most effective drugs in the treatment of asthma [20], reduce the number of mast celis,
eosinophils, lymphocytes and monocytes in the bronchial wall [21]. These anti-inflanumatory
effects of glucocorticeids may be mediated, at least in part, by inhibition of the MCP-1 and IL-
8 release by bronchial epithelial cells and by a reduced epitheliai expression of ICAM-1, HLA
class 11, and CD40 molecules.

The present study was designed to investigate the effect of cytokines (IL-1f3, IEN-y, TNF-
), LPS and glucocorticoids on the release of MCP-1 by human bronchial epithelial cells. The
effects of these stimuli were compared with the effects on 1L-8 release by human bronchial
epithelial cells to determine whether the release of these chemokines was regulated difterentially.
In addition, we investigated the effects of IL-1[} and IFN-y, which were the most potent stimu-
lators of MCP-1 release, on the expression of [CAM-1, HLA class II, and costimulatory CD40
molecules by human bronchial epithelial cells, to determine whether these mediators could also
be involved in the modulation of leukocyte adhesion and possibly feukocyte activation. Finally,
we investigated the effects of glucocorticoids on the cytokine-induced effects on chemokine
release and surface marker expression.

MATERIALS AND METHODS

Reagents

Cytokines used in this study were IL- 1§ (10 U/ng, UBI, Lake Placid, NY, USA), TNF-¢. (5
Ufng, UBI), and TRN-y (20 U/ng, Boehringer Ingetheim, Germany). A 10 mM stock solution of
the synthetic glucocorticoid dexamethasone micronisatum (DEX; Duchefa b.v., Haarlem, The
Netherlands) was prepared in ethanol and stored at ~-20°C, LPS (E. coli 0127:B8) was purchased
from Difco Laboratories {(Detroit, MI, USA).

Cell culture

Bronchial tissue was obtained from patients undergoing surgery for lung cancer and used
immediately for culture of the epithelial cells by a cell culture method described previously
[22], Cells were characterized as epithelial cells by immunofluorescence slaining using a mouse
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monoclonal antibody directed against a number of human cytokeratins (CK-1; DAKOpaits,
Glostrup, Denmark), At least 99% of the isolated cells stained positive for cytokeratin (data not
shown).

Stinulation experiments with cytokines andfor dexamethasone

To study the effects of cytokines and dexamethasone, hurman bronchial epithelial cells were
plated onto 6-well culture dishes (0.5 x 10° celis/well). After the cells reached 80 to 50%
contluence, the culture medium was replaced by a basal medium (DMEM/F12 (1:1) with penicil-
lin G sodium and streptomycin sulfate), and IFN-y , IL-1p, TNF-¢, LPS and/or DEX were
added. Supernatants were collected after 24 h (unless stated otherwise), centrifuged and stored
at —80°C for subsequent analysis. In some experiments, cells were used for RNA isolation or
flowcytometry as described below.

Analysis of MCP-1 and 1L-8 release

Levels of immunoreactive MCP-1 in the culture medium were quantified in a previously
described sandwich ELISA (sensitivity: 30 pg/ml) [23].

Levels of immunoreactive 1L-8 in the culture medium were quantified using a commer-
ciatly available ELISA (Central Laboratory of the Blood Transfusion Service, Amsterdam,
The Netherlands), according to the manufacturer’s instruction (sensitivity: 1 pg/ml).

RNA isolation and semi-quantitative polymerase chain reqction (PCR) analysis

Total cellnlar RNA was isolated from human bronchial epithelial cells according to
Chomezyaski and Sacchi [24] with some small modifications [22]. For cDNA synthesis a mixt-
ure containing 1 g of total cellular RNA and 10 pg/mi oligo(dThs (Pharmacia, Uppsala,
Sweden) was heated at 76°C for 5 min, cooled down to room temperature and the RNA was
subsequently reversed transcribed to ¢DNA as described previously [25].

Semi-quantitative PCR analysis, using serially diluted ¢cDNA samples, was performed
essentially as described by Horikoshi [26]. Hypoxanthine phosphatidyl ribosyltransferase (HPRT)
was used as an internal control for total cellular mRNA. The reaction mixture contained 10 mM
Tris-HCI (pH 8.3), 50 mM KCi, 1.5 mM MgCl,, 0.2 mM dNTPs, 1 pM sense and 1 pM anti-
sense oligonucleotide primers (synthesized with a DNA Synthesizer 380B (Applied Biosystems,
Forster City, CA)), and 20 U/ml Taq polymerase (Amplitag, Perkin-Elmer Cetus, Norwalk,
CT)in a total volume of 50 pl. Primers used are (5'to 3'): MCP-1 sense: CTG GAG CAC AAC
ATG AAA AGG; MCP-1 antisense: AGT CAG GTT GTC TGG ACT CTG [9]; HPRT sense:
GTG ATG ATG AAC CAG GTT ATG ACC TT; HPRT antisense: CTT GCG ACC TTG ACC
ATC TTT GGA [27]. The amplified cDNA products are 510 and 454 basepairs, respectively.
Samples were amplified in a DNA Thenmocycler (Perkin-Elmer Cetus) for 30 cycles, each
consisting of denaturation at 94°C for 30 sec, annealing at 55°C (HPRT) or 65°C (MCP-1} for
30 sec, and extension at 72°C for 1 min. These conditions were shown to be optimal in preliminary
experiments, Ten ul aliquots of PCR products were electrophoresed on 1% agarose, blotted to
Nytran N nylon membranes (Schleicher and Schuell, Dassel, Germany) and fixed to the
membrane with a 254 nm UV crosslinker. Oligonucleotides, being complementary {o internal
sequences of the PCR products, were end-iabeled with *P-yATP (ICN Pharmaceuticals Inc.,
Irvine, CA, USA) by T4 polynucleotide kinase (Pharmacia LKB, Piscataway, NI}
Oligonucleotide probes used are (3" to 3'): TGG CCA GAG AGC ATC AGC GT (MCP-1) and
GAA GAG CTA TTG TAA TGA CCA GTC A (HPRT). Blots were hybridized according to
standard procedures, and subsequently exposed to phosphor screens (Molecular Dynamics,
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Sunnyvale, CA, USA}. The intensity of the radio-active signals was measured using a
Phosphorlmager {(type Storm 820; Molecular Dynamics) and analyzed using ImageQuaNT
software (Molecular Dynamics). The resulting intensity values were plotted against the amount
of RNA originally present in the samples, and a line was fitted in the linear part of the graph.
The amount of RNA was calculated as the slope of the MCP-1-curve divided by the slope of
the HPRT-curve [26].

Chemotaxis

Monocyte chemotaxis was measured in a microchemotaxis assay as described by Falk {28].
A 48-well microchemotaxis chamber (Neuro Probe Inc., Cabin John, MD, USA) was used.
The bottom wells were filled with bronchial epithelial cell culture supernatants, culture me-
dium (negative control), or 10 M N-formyl-Methionyl-Leucyl-Phenylalanine (fMLP; positive
control). The upper chambers were filled with 50 L cell suspension containing 20,000 monocytes.
The test was always performed in triplo. The wells were separated by a polycarbonate filter
with 5 pm pores (Nuclepore, Pleasanton, CA, USA). After 30 min, migrated cells were swept
of using a windscreenwiper. Subsequently the filters were air dried and stained with Coomassie
blue. Migrated cells were counted in a blinded fashion either automatically using a VIDAS-RT
image-analyzing compuler (Kontron Elektronik GmbH, Neufarn, Germany) or under a
microscope at magnification of 10x40. Chemotaxis was calculated from the mean number of
migrated cells in the presence of culture supematant minus the mean number of migrated cells
with basal medium (to which corresponding cytokines were added).

To evaluate specific MCP-1-mediated chemotaxis, a neutralizing monoclonal antibody
directed against MCP-1 (MAB279, 5 pg/ml; R&D Systems, Abingdon, United Kingdom) was
added to the culture supernatants, after which monocyte chemotaxis was determined as described
above.

Floweytometry

For immunofluorescence staining of human bronchial epithelial cells, the following mAb
were used: anti-CD40 (Immunotech, Marseille, France), anti-HLA class 1 (HLA-DR; Becton
Dickinson, San Jose, CA, USA), BBA-4 {(anti-FCAM-1 (CD54), British Biotechnology Products
Ltd., Oxon, United Kingdom), and Leu-4 (CD3, control for nonspecific binding; Becton
Dickinson). Bronchial epithelial cells were rinsed with PBS and detached using 0.02% EDTA.
Cells were harvested in PBS/0.5% BSA, washed and resuspended in PBS/BSA to a fimal
concentration of 2 x 10° cells/ml. Flowcytometry was performed as described previously [29].
Fluorescence intensities were quantified using calibrated flucrescence standards (FCSC Quan-
tuin 26, Research Triangle Park, NC, USA) and expressed as Molecules of Equivalent Scluble
Fluorescence (MESF) [29].

Statistical analysis

Data are expressed as mean + SEM. The Mann-Whitney U lest was used to assess signifi-
cant differences in chemokine release, chemotactic potential, or marker expression between
stimulated and unstimulated cultures of human bronchial epithelial cells. A p-value of less than
0.05 was considered significant.
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RESULTS

Modulation of MCP-1 and 1L-8 protein release by cytokines and LPS

To investigate the modulation of MCP-1 release, primary cultures of human bronchial
epithelial cells (>99% pure} were stimulated with IL-13, TNF-o, IFN-y, or LPS. Unstimulated
hirman bronchial epithelial cells reteased smatl amounts of MCP-1 (0.58 + 0,12 ng/10° cells/24
h). As shown in figure ! (left part), MCP-1 release was significantly increased when human
bronchial epithelial cells were stimulated for 24 k with IL- 1B, TNF-g, or particukarly TEN-v. In
contrast, LPS did not significantly modulate the MCP-1 release. Simultaneous stimuiation with
IFN-y, IL-1 andfor TNF-o. resuited in approximately additive effects {data not shown).

The effect of inflammatory mediators on the release of MCP-1 was compared with the
effect on the release of IL-8, a neutrophil chemotactic eytokine, Unstimulated human bronchial
epithelial cells released 55.8 + 6.8 ng 1L-8/10° cells/24 h. In contrast to MCP-1, 1i.-8 release by
human bronchial epithelial cells was not modulated by IFN-y at concentrations up to 200 U/ml
{Fig. | and data not shown). TE.- 1§ dose- and (ime-dependently increased the release of TL-8 by
human bronchiat epithelial cells (Fig. 1 and data not shown). LPS also increased the [L-8
release, whereas TNF-¢x did not have a significant effect (Fig. 1).

Since IFN-y and IL- 1§} were the most potent stimulators of MCP-1 release, the effects of
both cytokines were analyzed in more detail. As shown in figure 2A, both IEN-y and IL-1
increased MCP-{ release in a concentration dependent manner, However, the IFN-y-induced
increase was stronger and could already be observed at lower doses. The IFN-y-induced increase
in MCP-1 production could be detected as early as 4 h after stimulation and increased with time
up to 24 h (Fig. 2B). IL- 1P also induced a time-dependent increase in MCP-1 levels, with the
earliest effect measurable 6 h afler stimulation (Fig. 2B). Thus, both TFN-yand IL- 1 strongly
increased MCP-1 release in a time- and dose-dependent manner, but only IL- 1§ increased the
release of IL-8 by human bronchial epitheliat cells.
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Figure 1. Modulation of MCP-1 and 11.-8 release by LPS and cytekines. Human bronchial epithelial cells were
stimuiated with LPS (I pg/ml), IL-1p (200 U/ml), TNF-o; (100 U/ml), or IFN-y (200 U/mi} for 24 b, afier which the
MCP-1 {left) and IL-8 {right) refease were determined by ELISA. Data are expressed as percentage release compared
to unstimulated cells {mean * SEM; 23}, ° : p < 0.05 compared {o unstitnulated cells.
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Modudation of MCP-I mRNA by IL-18 and IFN-y

To investigate whether the effects of IFN-y and IL-1 on MCP-1 protein release were
paralelled by increased MCP-1 mRNA levels, RNA was isolated 6 h and 24 h after stimulation
with IEN-yor [L- 13 and mRNA levels were determined using a semi-quantitative PCR analysis.
Stimufation with IFN-yresuited in increased MCP-1 mRNA levels. After 6 h, a 2 fold increase
was observed (data not shown); after 24 h MCP- | mRNA Ievels were increased 3-fold (Fig. 3).
IL-If3 slightly increased MCP-1 mRNA levels after 6 h (1.4 fold), but after 24 h levels had
returned to control vaiues {data not shown),

Effect of IL-18 and IFN-y on monocyie chemotaxis

"To determine whether the changes in MCP-1 release were reflected in the capacity to attract
monocyles, supernatants of stimulated bronchial epithelial cells were tested in chemotaxis assays.
As shown in figure 4, conditioned media derived from hwuman bronchial epithelial cells stimulated
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Figure 2. TL-1B and IFN-y increase MCP-1 release by human bronchiat epithelial cells in a concentration-and
time-dependent manner. A: Human bronchial epithelial cells were stimulated with 1.1 (0-200 U/ink; circles) or
IFN-y (0-200 U/ni; squares) for 24 b, after which MCP-1 levels were determined by ELISA (mean + SEM; n>3).
B: Human bronchial epithelial cells were stimulated with 1L-1P (200 U/ml; circles) or IFN-y (200 Ufml; squares)
for 0 to 24 h, after which MCP-1 levels were determined using ELISA. Data are expressed as mean + SEM
{(r=3) after subtracting basal release of MCP-1 at each individual time-point. ' : p < 0.05 compared to unstimutated
cells.
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with IFN-y for 24 h, consistently increased monocyte chemotaxis (p<0.05). The monocyte
chemotaxis induced by conditioned media derived from human bronchial epithelial cells
stimulated with IL- 1 was increased compared to conditioned media of unstimulated celis,
but the increase was more heterogeneously and did not reach statistical significance (Fig.4; p
=0.081). In three experiments the specific contribution of MCP-1 to the monocyte chemotaxis
was determined by using a neutralizing antibody directed against MCP-1. Addition of this
antibody to conditioned medium derived from unstimulated cells reduced chemotactic activity
by 19+19%. Chemotaxis induced by conditioned medium derived from IL-1pB- or IFN-y-
stimulated cells was inhibited by 31+£16% and 49+9%, respectively.
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Figure 3. IFN-yincreases mRNA levels for MCP-1 in human bronehial epithelial cells, Human bronchial epithelial
cells were incubated for 24 h in the absence (left) or presence (right) of IFN-y (200 Ufml), after which RNA was
isolated. RT-PCR analysis was performed as described in the Materlals and Methods section. Hybridization signals
(A) were quantified using ImageQuant software and plotted against the amount of RNA originally present (B). A
representative experiment out of four is shown,

Effect of IL-15 and IFN-y on ICAM-1, HLA class I, and CD40 expression

To determine whether the cytokines that induced an increase in chemokine release were
also able to increase the expression of cell surface molecules involved in leukocyte adhesion
and activation, we analyzed the expression of ICAM-1, HLA class 11, and CD40 on human
bronchial epithelial cells, Unstimulated human bronchial epithelial cells expressed ICAM-1
{12.2 £ 2.9 x 10* MESF) and CD40 (7.6 £ 0.8 x 10* MESF), but HLA class II expression was
low or absent (0.4 £0.3 x I MESF), IEN-yincreased CD40 expression, and strongly enhanced
ICAM-1 and HLA class 1 expression by human bronchial epithelial cells {Table 1), Stimulation
with IL- I B increased ICAM-| and CD40 expression, but did not affect HLA class 1l expression
(Table 1).
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Figuve 4, Effect of bronchial epithelial cell culture supernatants on monocyte chemotaxis, Data are expressed as
the mean number of nionocytes + SEM which have trinsmigrated a membrane filter towards conditioned media
derived from human bronchial epithelial cells stimulated by 1L-1 (200 U/mi) or IFN-y (200 U/ml) for 24 h (n>4).

Tahle 1, ICAM-1, HLA-DR, and CD40 expression by lmunan bronchial epithelial cells: effecis of
1L-1B (200 U/ml), IFN-y (200 U/ml}, and/or DEX (10° M) (24 h stimulation) %,

Cytakine - IE-1B IFN-y

DEX - + - + - +
ICAM-1 160 692" 208+3° [34+33° 980 +4° 2167
HLA-DR 100 259+108° [14+3° 321+797% 2455+£2178° 387x205"
CD40 106 939 168+£2" [32x2°1 138+ 10° 91+ 97

¥ Data are expressed as relative expression compared with unstimulated cells (mean + SEM; n = 2).
* p < (.05 compared to unstimulated cells,

T p < (.05 compared to stimulation in the absence of DEX.

Effect of Dexamethasone on cytokine-induced chemokine release and marker expression

To investigate the effect of glucocorticoids on chemokine release and adhesion molecule
expression by human bronchial epithelial cells, cells were stimulated with cytokines in the
absence and presence of DEX (10¢ M), DEX did not affect unstimulated MCP-| (Fig. 5) or IL-8
release (100 9% compared to unstimulated cells). Costimulation of human bronchial epithelial
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cells with cytokines and DEX resulted in decreased retease of MCP-1 compared to stimulation
with cytokines or LPS alone (Fig. 5). However, DEX never reduced MCP-1 release to basal
{nnstimolated) levels and thus only partially inhibited the cytokine-induced MCP-1 release.
DEX atso partially reduced the IL- I B-induced IL-8 release (331 + 98% without DEX; 255
80% with DEX) and completely inhibited the LPS-induced IL-8 release (134 + 15% withont
DEX; 103 + 15% with DEX).

Basal and cytokine-stimulated [CAM- 1 expression was significantly inhibited by DEX (Table
1), DEX also inhibited the cytokine-stimulated expression of CD40, and slightly enhanced the
low basal expression of HLA class TI. TFN-y-stimurdated HLA class Il expression was significantly
reduced by simultaneous stimulation with DEX (Table 1).

1800
i
5 1200
L¢3
E‘o‘
2
5]
°
[
;oo
Q
=
ol VT . -
control LPS IL-1B TNF-« 1FN-¢

Figure 5. Effect of dexamethasone on basal and cytokine-stimulated NCP-1 release by human bronchiai
epithetial cells. Human bronchial epithelial cells were stimulated with LPS (1 pg/ml), TL- 1B (200 U/ml), TNF-ot
{100 U/ml) or TFN-y (200 U/ml) or in the absence (hatched bars) or presence {open bars) of | uM dexamethasone for
24 h, after which MCP-1 rclease was determined by ELISA. Data are expressed as percentage release compared to
unstimulated cells (mean £ SEM; n23). ° : p < 0.05 compared to cells stimnulated in the absence of DEX.

DISCUSSION

In this study, we show that IEN-yis a strong stimulator of MCP-1, but not of IL-8 release by
human bronchial epithelial cells. The increased release of MCP-1 is parallelied by increased
MCP-1 mRNA levels and increased monocyte chemotactic potential. In addition, IFN-y
upregulates the expresion of ICAM-1, HLA class IT, and CD40 molecules, which may contribute
to the retention and activation of the recruited leukocytes. IL-1p increased both MCP-1 and IL-
8 release, and stimulated the expression of [CAM-1 and CD40, but not HLA class Il molecules.
DEX partially inhibited MCP-1 and 11.-8 release and reduced the expression of ICAM- 1, HLA
class II, and CD40 molecules by human bronchiai epithelial cells.

While basal MCP-1 release was low, pro-inflammatory cytokines, in particular IFN-y, strongly
increased MCP-1 release by human bronchial epitheiial cells. Although cytokine-induced MCP-
1 release has been observed in a variety of cell types, including mononuclear phagocyies,
mesothelial cells, and epithelial cells [9, 30, 31], bronchial epithelial cells are to our knowledge
unique in that IFN-yis the most potent inducer of MCP- 1. Int conlrast to MCP-1, IL-8 release by
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human bronchial epithelial cefls was not affected by IFN-v, a phenomenon which fas also been
observed in human microvascular endothelial cells, renal cortical epithelial cells, and airway
sutooth muscle cells [32-34]. Increased levels of IFN-y, produced by activated T lymphocytes,
have been found in bronchoatveolar favage of patients with intrinsic asthma compared to control
groups {17]. In addition, increased levels of IFN-y, together with TNF-o, were observed in
bronchoaiveolar lavage of allergic patients after antigeit challenge [35]. IFN-yis also produced
during viral infections, which are important triggers of asthmatic attacks [36]. Therefore, viral-
or antigen-induced production of IFN-y may result in the release of MCP-1 by human bronchial
epithelial cells, thereby contributing to the influx of monocytes and lymphocytes.

IEN-valso upregulated the expression of [ICAM-1 and HLA class T molecules on bronchial
epithelial cells, which is in accordance with previous reports [37, 38]. In addition, we show that
human bronchial epithelial cells express CP40 and that IFN-y (and also IL-1B) upregulated the
expression of this molecule. CDM40, which plays a critical role in the regulation of immune
responses [39], may interact with CD40 ligand expressed on T lymphocytes, thereby activating
these cells, Thus, IFN -y not only increases the release of MCP-1 by hurman bronchial epithelial
cells, but it also stimutates the epithelial expression of molecules involved in adherence and
activation of the recruited monocytes and lymphocytes. Although we did not detennine the
capacity of IFN-y-stimulated bronchial epithelial cells to activate lymphocytes, previous stu-
dies have shown that human bronchiat epithelial cells may function as antigen-presenting cells
[37,40]. Furthermore, preliminary data indicate that stimulation of human bronchial epithelial
cells with an antibody directed against the CD40 molecuie stimulates the release of 1L-6 and
the expression of ICAM-1, indicaling that adherence of lymphocytes may also modulate epithelial
ceil functions (V.H.J. van der Velden, unpubiished data).

IL-1[ is considered as an early response cytokine [4 1] and is likely to be present in the lung
of patients with airway inflammatory diseases such as asthma {17, 18]. The release of early
response cytokines is important for induction of adhesion molecule expression, the initiation of
cytokine cascades, the upregulation of specific chemokines and the recruitment of leukocyte
subsets [41]. In this study, we demonstrate that 1L-1 3, in contrast to IFN-y, increased the release
of both MCP-1 and I1.-8 by human bronchial epithetial cells. In addition, IL-1J stimulated the
expression of ICAM-1 and CD40, but not HLA class II molecules. The 5'-upstiream
transcriptional regulatory regions of the human MCP-1, 11.-8, and ICAM-1 gene all contain
consensus sequeices for the transcription factors NF-xB and AP-1 [42-45], which both can be
activated by IL- 1 B. Therefore, it is very likely that these transcription factors are involved in the
IL- I -mediated increase in MCP-1 and IL-8 release and ICAM- | expression by human bronchial
epithelial cells.

Our findings and previous studies suggest that IFN-y predominaatly increases the release of
C-C chemokines, and not of C-X-C chemokines by human bronchial epithelial cells [46, 47].
Although the effect of IFN-y was not studied on the release of other C-X-C chemokines, we
hypothesize that IFN-y may be a relatively specific stimulator for the influx of monocytes and
Iymphocytes compared to IL- 1 and TNF-o, which can stimulate the recruitment of alt types of
leukocytes. This effect may even be more pronounced since IL-I3, TNF-¢, and LPS have
recently been shown to induce a rapid down-regulation of CCR-2 expression, the main receptor
for MCP-1 [48, 49].

LPS increased the release of IL~8 by human bronchial epithelial cells, whereas it had no
effect on the release of MCP-1, suggesting that LPS may selectively attract neutrophils. Bacterial
infections are a common characteristic of patients with chronic obstructive pulmonary disease
(COPD) [50] and increased levels of 11.-8 have been detected in sputum of patients with COPD
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compared to healthy subjects [51]. Therefore, LPS-mediated IL-8 release may contribute to the
influx of neutrophils observed in patients with COPD {1, 51].

Dexamethasone decreased the cytokine-induced release of MCP-1 and IL-8 by human
bronchial epithelial cells, but in general no reduction to basal levels was observed. Thus far, no
studies have been performed on the molecular mechanism of dexamethasone-mediated inthibition
of MCP-1, However, the presence of AP-1 and NF-xB sites in the MCP-1 gene suggests that,
similar to JL-8, the inhibitory effect of dexamethasone may be mediated, at least in part, through
the repression of NF-xB activity by the glucocorticoid-glucocorticoid receptor complex and by
a glucocorticoid-induced induction of [kB protein [52]. In addition to the inhibitory effects of
DEX on chemaokine release, DEX also inhibited the expression of ICAM-1, HLA-DR and
CD40 molecules by human bronchial epithelial cells, To our knowledge, this is the first report
on the effects of glucocorticoids on [CAM-1, HLA-DR, and CD40 motecule expression by
primary cultures of humaa bronchial epithelial cells, Using bronchial epithelial cell lines,
glucocorticoid-mediated inhibition of basal and IFN-y-induced ICAM-} expression has been
described [53, 54]. Stimulation with glucocorticoids thus not only inhibits chemokine release
by human bronchial epithelial cells, but also reduces the epithelial expression of molecules
involved in the adhesion and activation of the recruited leukocytes. Thus, inhaled glucocorticoids
may Hmit the recruitment as well as the adherence and subsequent activation of leukocytes in
the asthmatic airways.

In conclusion, [FN-y is apotent stimulator of MCP-1 but not [L-8 releasc by human bronchial
epithelial cells, and simullaneously increases the expression of ICAM-1, HLA-DR, and CD40
on these cells, In contrast, [L- 1B increases both MCP-1 and IL-8 release, Therefore, IFN-ymay
be a relatively specific and potent stimulator of the influx, aditerence and possibly activation of
monocytes and lymphocyles into the human lung, Finally, part of the beneficial effect of
glucacorticoid therapy in airway inflammatory diseases may be mediated via the inhibition of
MCP-1 and IL-8 release and ICAM-1, HL.A-DR, and CD40 molecule expression by bronchial
epithelial ceils.
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Chapter 12

General discussion

Asthma is a chronic inflammatory disease of the airways, characterized by increased
mumbers of eosinophils, mast cells, and activated T lymphocytes, and by increased levels of
inflanunatory mediators (reviewed in chapter 1), The inflammatory process in the airways is
the result of complex interactions between inhaled allergens, cells of the iimmune system,
nerves, and structural cells, like epithelial cells, endothelial cells, and fibrobiasts. These
interactions are mediated via cell-cell contact and via the release of a variety of mediators,
including cytokines, chemokines, and neuropeptides.

Peptidases (reviewed in chapter 3) play an important role in the modulation of peptide
mediated effects, like neurogenic inflammation, and may affect several cell functions, in-
cluding cellular activation, antigen presentation, and cellular migration and adhesion. In the
lungs, reduced expression of peptidases may contribute to the pathogenesis of asthma by
enhancing (neurogenic) inflammatory reactions.

Bronchial epithelial cells (reviewed in chapter 4) coniribute fo the initiation and perpetu-
ation of the inflammatory response by releasing and expressing molecules which are in-
volved in the recruitment, adhesion, and activation of leukocytes. In addition, bronchial epi-
theliat cells are considered an important site for peptidase activity.

Glucocorticoids (reviewed in chapter 5) are widely used in the treatment of asthma as
they have potent anti-inflammatory effects. The beneficial effects of treatment of asthmatic
patients with glucocorticoids may be mediated in part by modulation of peptidases or by
modulation of bronchial epithelial cell functions.

This chapter briefly discusses the results of the studies described in this thesis in relation to
our present understanding of asthma. Future research directions will be proposed.

12.1. Peptidases: important in asthma?

Neurogenic inflammation mimics many of the pathophysiological features of asthma,
and a role for neuropeptides in the pathogenesis of asthma has been implicated [1]. Althongh
the apparent increased effects of the sensory neuropeptide may be due to several mechanisms
{see chapter 2.4), studies using laboratory animals have indicated that peptidases play a
major role in limiting newrogenic inflammatory responses, Initial studies have focussed on
the role of neutral endopeptidase 24.11 (NEP) in the modulation of tachykinin-induced
bronchoconstriction, mucus secretion, vasodilation, and microvascular leakage. In the past
few years, it became clear that neuropeptides also have many immunomodulatory functions
(see chapter 2). Thus, neuropeptides not only evoke bronchoconstriction by direct effects on
smooth muscle cells, submucosal glands, and blood vessels, but also may contribute to the
initial and chronic phase of the airway inflammation observed in asthmatics.



216 Chapter 12

In addition to NEP, several other peptidases are able to hydrolyze (neurojpeptides and
therefore may be involved in the modulation of peptidergic effects. Aminopeptidase N {(APN)
and dipeptidyl peptidase IV (DPP IV} are of particular interest, since both enzymes are
membrane-bound molecules (and thus able to cleave extraceliular peptides) and both en-
zymes have been characterized both on non-hematopoietic cells and hematopoietic celis
(where they are known as the CD13 and CD26 antigen, respectively).

Localization of APN and DPP IV in the Iniman bronchus

Using immunohistochemistry and enzymehistochemistry we analyzed the distribution of
APN and DPP IV in the human bronchus (chapter 7). APN was widely distributed, being
present on blood vessels, glandular ducts, connective tissue, perichondrium, and nerves. Many
of these sites also possess NEP activity [2], which is in accordance with the proposed se-
quential inactivation of peptides by NEP and APN [3]. Thus, NEP and APN may collaborate
on the surface of these cells to modulate the cell’s response towards peptide-mediated sig-
nals. In contrast to NEF, no expression of APN was found on smooth muscle cells and bron-
chial epithelial cells, This is in accordance with the lack of effect of APN-inhibitors on
tachykinin-induced smooth muscle contraction {4-7].

In addition to structural airway cells, mononuclear phagocytes, eosinophilic granulo-
cytes and certain dendritic cells expressed APN, APN expression on granulocytes has been
shown to be involved in the modulation of chenmotactic responses [3, 8], whereas APN ex-
pression on mononuclear phagocytes and dendritic cells may be involved in processing of
major histocompatibility class IT-bound peptides [9]. In addition, some preliminary data in-
dicate that APN may be involved in the maturation and/or differentiation of dendritic cells
(V.H.J. van der Velden, unpublished data).

Comparison of APN expression in bronchial biopsies of atlergic asthmatics and healthy
subjects revealed an increased number of APN-expressing cells in the bronchial epithelium
of asthmatics. The number of APN-expressing cells correlated with the number of L25-
positive dendritic ceils and with the number of eosinophils found in the bronchial epithelium.
Double-stainings showed that both cell types indeed are able to express APN, which is in
accordaiice to the known distribution of CD13 on these cells [10-12]. Therefore, it scems
likely that the increase in APN-positive cells in the bronchial epithelium reflects the increase
of dendritic cells and eosinophils observed in the bronchial epithelium of asthimatics. Bron-
chial epithelial cells of asthmatic patients can release increased amounts of chemokines and
express higher levels of adhesion molecules compared to healthy controls (chapter 11 and
[13-18]). As a consequence, eosinophils and dendritic cells can be recruited by, and be re-
tained in the bronchial epithelium.

Alternatively, the increased number of APN-expressing cells in the bronchial epithelium
of asthmatic patients coutd be due to an upregulation or induction of APN on certain leuko-
cytes. Previous studies have shown that APN can be upreguiated on the sarface of mono-
nuclear phagocytes by interleukin (IL)-4 f19]. Asthma is considered a Th2-like disease [20],
and increased levels of IL-4 have been detected in asthmatic airways [21-23]. To determine
whether increased expression of APN on mononuclear phagocyles is a feature of asthma, it
would be of interest to compare the expression of APN on alveolar macrophages of healthy
individuals and allergic asthmatics. A recent study has indicated that APN expression can
also be induced on T lymphocytes after adhesion to epithelial cells [24]. However, it is not
likely that this explains the increased number of APN-expressing cells in the asthmatic pa-
tients, since there was no increase in the number of T lymphocyles in the bronchial epithe-
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lium of asthumatics compared to healthy controls, The lack of difference in the number of
APN-positive cells in the lamina propria is probably due to the observation that the majority
of APN is expressed on non-hematopoietic cells. It was therefore not possible to accurately
quantify APN expression on infilirating leukocytes.

DPP IV expression was strongly present in serosal submucosal glands and moderately
expressed on blood vessels, predominantly post-capillary venules. DPP IV expression in
submucosal glands did not seen: to be restricted to the cell membrane, but appeared to be
located intraceilutarly as well. It is not clear whether the DPP IV of submucosal glands is
secreted in the bronchial lumen, However, DPP IV activity can be detected in bronchoalveolar
lavage (BAL) fluid {chapter 8). DPP IV has also been found in submandibular and parotid
glands [25, 26], and a role for DPP IV in the secretion or reabsorption process of secrelory
proteins and peptides has been suggested [25]. In glandular endometrial epithelial cells from
cows, a DPP 1V molecule missing the signal sequence has been detected. Further studies
(e.g. immuno-electron microscopy, sequencing of the protein and mRNA) are required to
determine the characteristics of the DPP IV molecule in serosal submucosal glands. Endo-
thelial cells were shown to express all peptidases examined (NEP, APN, DPP IV, APA), but
the distribution amongst arteries, capillaries and venules showed some marked differences.
The site-restricted presence of different peptidases may represent a mechanism to control
blood flow and plasma feakage at specific locations. Studies using selective inhibitors are
needed to determine the physiologic functions and relevance of the different peptidases ex-
pressed on endothelial cells.

DPP 1V expression could also be found on T cells (double labeling with CD3). DFP IV
has been shown to be a marker for activated T cells {27, 28] and plays an important role in T
cell responses (see chapter 3.3.2). Comparison of DPP IV expression befween bronchial
biopsies of healthy controls and allergic asthmatics did not reveal significant differences,
suggesting that the number of activated T cells did not differ. Several other studies have
shown that the airways of allergic asthmatics contain increased numbers of activated, but not
totad, T cells [29-33]. This appavent discrepancy niay be explained by recent studies indica-
ting that DPP IV is predominantly expressed on ThO and Thi cells [34, 35], whereas many T
cells in the airways of allergic asthimatics show a Th2-like phenotype {21, 22},

The expression of NEP in the human bronchus has been described by Baraniuk et al. [2].
NEP was found on epithelial cells, smooth muscle cells, submucosal glands, and endothelial
cells. In our study (chapter 7), we used enzymehistochemistry to determine the distribution
of NEP in the human bronchus. A very weak NEP activily was observed, but attribution of
this activity to a certain cell lype was difficult. Low levels of activity were observed in the
bronchial epithelinm and submucosal glands. In contrast, we observed strong NEP activity in
the guinea pig trachea, especially in the tracheal epithelium, as has also been found previ-
ously {36]. This may indicate that (epithelial) NEP is much more important in the modulation
of neurogenic inflammatory reactions in the gninea pig than in humans, Alternatively, this
may suggest that peptidergic mechanisms are less prominent in humans compared to guinea
pigs. Indeed, whereas a dense network of tachykinin-containing peptidergic nerves can be
found in the airways of rodents, peptidergic innervation of hunan airways seems sparse [37-39].

Since NEP activity in the human bronchus was hard to detect, we were not able to deter-
mine whether there was a difference in NEP activity between bronchial biopsies of healthy
controls and aliergic asthmatics, In another study it was found that asthmatics treated with
sleroids expressed significantly more NEP on their bronchial epithelium than did nonsteroid-
treated asthmatics [40]. However, in this study no comparison was made between non-asth-
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matic subjects and asthmatic patients. Therefore, it remains to be established whether this
difference was due to a reduced NEP expression in the nonsteroid-treated patients that could
be reversed by the use of steroids, or that inhaled steroids increased the normal expression of
NEP. The latter possibility is supported by the increased upregulation of NEP on human
bronchial epithelial cells by steroids (see chapter 9) and the fack of an obvious difference in
NEP activity between contro! subjects and mildly asthmatic subjects found in an in vive
study {41},

Modulation of peptidases expressed on bronchial epithelial cells

Studies using laboratory animals have shown that NEP present on the bronchial epithe-
lium plays a major role in the hydrolysis of neuropeptides, and thereby in modulating neuro-
genic inflammation [4, 7, 42-47]. NEP activity may be modulated by a variety of exogenous
stimuli, like viral infections, ozoune, and cigarette smoke (see chapter 3.6). In contrast, at the
time this study started little was known about the modulation of NEP activity on bronchial
epithelial cells by endogenously released mediators. In chapter 9 we therefore addressed two
questions: 1) what is the effect of cytokines (TL- I, tumor necrosis factor (TNF)-a., inter-
feron (IFN)-y, 1L-4, and epidermal growth factor (EGF)) on the activity and expression of
peptidases on human bronchial epitheiial celis; and 2) what is the effect of glucocorticoids on
the activity and expression of peptidases on human bronchial epithelial cells? Since large
numbers of bronchial epithetial ceils in primary culture are hard to obtain, we used in these
studies the bronchial epithelial cell tine BEAS 2B as a model. Our results indicate that both
cytokines and glucocorticoids modulate the expression and activity of NEP and APN on
human bronchial epithelial cells (chapter 9), NEP expression and activity was increased by
TL- 1B and, to a lesser extent, TNF-o. and IL-4, whereas IFN-y significantly reduced NEP. It
has been shown that lung fibroblasts increase NEP activity after stimulation with [L-{o, I1.-6,
and TNF-g and that this upregulation, which could already be detected after 6 h of stimulation,
is dependent upon prostaglandin synthesis and elevation of cAMP [48]. In human bronchial
epithelial cells, the effect of 1L-1P was mediated in part by a cAMP-dependent pathway,
since a phosphodiesterase inhibitor enhanced the IL-3-mediated increase in NEP activity.
In addition, a cAMP analogue mimicked the effect of 1L-1[3, although this effect had a more
rapid onset. Prostaglandins did not seem to be involved, and the exact mechanism by which
1t - 1B, and also TNF-t and IL-4, increase NEP expression in bronchial epithelial cells re-
mains to be determined. IL-{[ and TNF-¢ are considered to be potent pro-inflammatory
cytokines. It is therefore surprising that both cytokines upregulated the expression of NEP,
which can be considered as an anti-inflammatory molecule. As 1L-1 and TNF-¢ only in-
creased NEP expression and activity after 48 h of stimulation, one could speculate that
upregulation of NEP by these cytokines may down-regulate (neurogenic) inflammatory re-
Sponses.

Stimudation of human bronchial epithelial cells with TFN-y reduced NEP activity and
expression. IFN-y is produced duwring viral infections, which are associated with increased
bronchial responsiveness and with asthmatic exacerbations [49}]. In several animal models,
infection with Influenza virus or Sendai virus was shown to result in enhanced bronchocon-
strictor responses to tachykinins, an effect that was mediated by decreased epithelial NEP
activity [0, 50-52]. Our results suggest that the virus-induced reduction in NEP activity is
mediated, at least in part, via the release of IFN-y. [nhibition of NEP activity may result in
reduced degradation of neuropeptides and thereby contribute to the airway hyperrespon-
siveness observed during viral respiratory infections, Studies examining the inhibitory effect
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of NEP inhibition on tachykinin-induced bronchoconstriction in subjects with and without
respiratory infections should clarify whether such mechanisms occur in vive.

In contrast to NEP, APN expression and activity was hardly affected by cytokines. Only
TFN-y modulated APN expression and activity: a transient increase in APN expression and
acti-vify was detected 24 h after stimulation. Upregulation of APN by IFN-y has also been
observed in glomerular epitheliad cells [53], but not in monocytes [19], suggesting that this
effect may be specific for epithelial cells. Indeed, separate promoters for APN can be found
in epithelial and myeloid cells and this may account for the difference in their responsiveness
[54]. Since IFN-y also induces the expression of human leukocyte antigen {HLA} class I
molecules by human bronchial epithelial cells {chapter 1} and {55, 56]), increased expres-
sion of APN may be involved in the processing of HLA class 1I-bound peptides [57].

Stimulation of BEAS 2B cells with the synthetic glucocorticoid dexamethasone (DEX)
strongly increased NEP and APN expression and activity, both in the absence and in the
presence of cytokines (chapter 9). These effects were mediated via the glucocorticoid recep-
tor and appeared to be specific for glucocorticoids and not for other steroid hormones. Using
the CD13 moncclonal antibody WM-15, which specifically inhibits APN activity, we could
show thaf the DEX-mediated increase in APN-like activity was completely due to an in-
crease in APN activity. These results were confirmed by floweytometry, which showed a
similar increase in APN expression. Thus, DEX does not modulate the expression of other
aminopeptidases able to cleave alanyl-paranitroanilide on human bronchial epitheliai cells.
Furthermore, these data provide further evidence that WM- 15 completely and specificatly
inhibits APN activity, which supports some previous reports [38, 39]. In accordance to our
data, an in vive study has shown increased expression of NEP on the bronchial epithelium of
steroid-treated asthmatics compared to nonstercid-treated asthmatics {40]. Pact of the ben-
eficial effects of glucocorticoid treatment in asthma may thus be mediated via upreguiation
of NEP by human bronchial epithelial cells, thereby limiting neurogenic inflammation.

Our study has several limitations that should be kept in mind when examining the results,
First, during inflammatory processes {n vivo several cytokines are simultancously present,
whereas in our study we did not investigate the effects of cytokine combinations on peptidase
expression, Since IFN-y decreased NEP expression and IL-1B, TNF-g, and IL-4 increased
NEP expression, it would be interesting to determine the effect of IFN-y in combination with
one of the other eytokines., Second, we stimuiated the cells when the monolayers were ap-
proximately 80-90% confluent. NEP expression is dependent on the confluence and prolif-
eration of the cells (chapter 9 and [60). In our experiments, IFN-y decreased and EGF in-
creased cell numbers, However, NEP and APN activity were only affected by cell numbers
exceeding 0.19 x 10 cells/fcm? and during our experiments cell numbers consistently re-
mained below 0.17 x 108 cells/cny®. Tt is therefore not likely that the effects of cytokines are
due to effects on cell nmnbers or proliferation, Nevertheless, we can not exclude the possibil-
ity that confluent cells respond in a different way. Finally, in this study we used the bronchial
epithelial cell line BEAS 2B. Although in several studies this cell line has been shown to be
an appropriate model for human bronchial epithelial cells [55, 61], the results obtained in
this study should be confirmed using primary cultures of human bronchial epitheliai cells.

Soluble peptidases in serwm and bronchoalveolar lavage fluid

Although NEP, APN, and DPP IV are normally membrane-bound enzymes, soluble coun-
terparts can be detected in serum and BAL fluid (chapter 8}. Several studies have shown that
peptidase activities may be altered in serum of patients with a malignancy or inflammatory
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disorder. Increased serum activity of NEP has been observed in underground miners exposed
to coal dust particles {62] and in patients with adult respiratory distress syndrome (ARDS)
[63] or sarcoidosis [64]. NEP activity in serum probably arises from shedding of the entire
membrane-bound peptidase [62], which may reflect local tissue damage or activation of
granulocytes {62, 63, 651, DPP IV activity in serum has recently been shown to originate, at
least in part, from the DPPL-T antigen expressed on the surface of activated T cells {60],
whereas serum APN activily predominantly comprises a circulating isoform of the CDH3
antigen [674. There is evidence that serum DPP IV activity is decreased in paticots with a
malignancy and in auto-immune and inflammatory disorders [68-721. In contrast to serum,
until recently Hitle was known about the presence of peptidases in BAL fiuid. In chapter 8,
we demonstrate for the first time that NEP and APN activity can be detected in human BAL
fluid, and confirm the recent data on DPP IV and APN-like activity in BAL fluid [73].

Comparison of peptidase activities in serum and BAL fluid from healthy controls and
stable asthmatics did not reveal significant differences in NEP and DPP IV activity, whereas
APN activity (expressed per mg protein) was reduced in BAL fluid of asthimatics. However,
APN activity expressed per ml BAL fluid was not significantly different between healthy
controls and allergic asthmatics. In addition, after treatment of asthinatics with either pla-
cebo or fluticasone propionate (which both did not significantly atfect APN activity) no
difference in APN activity between asthmatics and healthy controls was observed anymore.
The significance of this observation is therefore not completely clear, The lack of difference
in NEP activity in serum and BAL fluid between healthy controls and allergic asthmatics
may indicate that NEP activity is not altered in the airways of asthunatics. It may also indicate
that there is little tissue damage in the airways of stable asthmatic patients. One could specu-
late that tissue damage accurs during asthmatic exacerbations and that this may cause in-
creased peptidase activities in seram [62, 63]. Remarkably, owr preliminary data suggest that
also during and up to 5 days after an asthiatic exacerbation no increase in peptidase activi-
ties can be observed in serum.

In addition to increased peptidase levels in serum due to tissue damage, increased serum
peptidase activities may reflect activation of granulocytes sequestered in the airways [63]. In
contrast to ARDS, which is characterized by strongly increased numbers of neutrophils in
the airways, the numbers of (cosinophilic) granulocytes in the asthmatic airways are rela-
tively low. Thus, if NEP and/or APN were released from granulocytes sequestered in the
airways of asthmatic airways, the absolute amounts probably will be low. Furthermore, we
and others did not observe a correlation between peptidase activities in serum or BAL fluid
and cell numbers of leukocytes (chapter 8 and {73]}, suggesting that there is no predominant
hematopoietic source of the soluble peptidases in healthy controls or asthmatic patients.
During other pathological conditions (such as neoplasms, infections or sarcoidosis) increased
numbers of granulocytes or lymphocytes in the airways may significantly contribute to the
activities of APN and DPP IV in BAL fluid [73].

‘We cannot rule out the possibility that similar NEP activity in BAL fluid (and serum)
from healthy controls and asthmatics is the result of a reduced membrane-bound NEP activ-
ity (either due to reduced expression or inactivation of the enzyme) together with increased
shedding of the enzyme. To determine whether inactivation of NEP occurs in asthmatics,
data on NEP activity in BAL fluid should be compared with ELISA data. Analysis of soluble
intercellular adhesion molecule (ICAM)-1 or cytokeratin-19 levels may indicate whether
increased shedding or epithelial injury occurs in the airways of asthmatics compared to healthy
conirols [74-76]. Finally, NEP expression and activity should be determined in bronchial
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biopsies from healthy controls and allergic asthmatics.

Although we did not find major differences in peptidase activities in BAL fluid from
allergic asthmatics and healthy controls, it will be of interest to determine the sources of
NEP, APN, and DPP IV in BAL fluid. Comparison of seruin and BAL fluid reveaied that
activities (expressed as nmoles/mg protein/min) of all peptidases studied were considerably
higher in BAL fluid and that there was no correlation between peptidase activities in BAL
fluid and serum. These findings suggest that the presence of peptidases in these two compart-
ments is regulated independently of each other and suggest local release of the enzymes in
the airways. Several cell types present in the airways express peptidases on their surface
(chapters 4 and 7, and [2, 731), but little is known about the shedding of these molecules from
the membranes. Qur preliminary results indicate that NEP activity can be detected in culture
supernatants of human bronchial epithelial cells and alveolar macrophages. It remains to be
established whether shedding of peptidases by these cells is a regulated process that can be
modulated by (anti-)inflammatory stimuli. Since NEP, APN, and DPP IV may exist in sev-
eral isoforms, which can be distinguished based on their moiecular weight [66, 77-801, re-
vealing the molecular weight of the peptidases present in the BAL tluid may give some
indications about the source of these enzymes. Furthermore, the striking correlation between
NEP and APN activity in BAL fluid strongly suggests that both enzymes are either released
by the same source or that both enzymes are regulated in a similar way,

Treatment of allergic asthmatics with the glucacorticoid fluticasone propionate for 12
weeks significantly improved their long function {chapter 9). In contrast, no effects were
observed on peptidase activities in BAL fluid or serum. To our knowledge, no other studies
thus far have determined the effects of glucocorticoids on peplidase activities in serum or
BAL fluid. In vifro studies have shown that glucocorticoids upregulate the expression of
NEP on human bronchial epithelial cells (chapter 9 and [81, 82]). In addition, treatment of
asthmatic patients with inhaled glucocorticoids increases NEP expression by the bronchial
epithelium [40]. Thus, (inhaled) glucocorticoids increase the surface membrane expression
of NEP on bronchial epithelial cells, but do not affect soluble NEP activity in BAL fluid.
This may indicate that NEP activity in BAL fluid is not derived from bronchial epithelial
cells. Otherwise, shedding of NEP from the surface of bronchial epithelial cells may not be a
random process but may be affected by glucocorticoids (which upregulate surface membrane
expression but possibly reduce the relative amount of NEP shedded from the membrane),
Analysis of NEP activity in culture supernatants of human bronchiat epithelial cells stimu-
lated with or without steroids will give a definile answer.

Current view on peptidases in asthma

Studies on the role of peptidases in the pathogenesis of asthma have not been able to
convincingly demonstrate a dysfunction of these enzymes in the airways of stable asthmatics.
Although asthmatic airways are more responsive to tachykinin-induced bronchoconstriction
and nasal congestion [83-85], no apparent reduction in NEP activity could be found in stable
mild asthmatic patients [41}, Qur studies indicate that peptidase activities in BAL fluid and
serum do not remarkably differ between healthy controfs and allergic asthinatics (chapter 9).
In addition, we did not observe major differences in the expression of APN and DPP IV
between bronchial biopsies of asthmatics and healthy controls {chapter 7). No data are cur-
rently available on the expression of NEP in the airways of asthinatics compared to healthy
subjects, although somne data may suggest a reduced NEP expression in the bronchial epithe-
lium, but not the lamina propria, from nonsteroid treated asthmatics [40]. 1t seems therefore



222 Chapter 12

unlikely that there is a generally reduced activity of peptidases in the airways of stable asth-
matic patients.

Peplidases may however be involved in exacerbations of asthma. Several stimuli that
may trigger asthmatic exacerbations (including ozone [86, 87], viruses [51, 52], cigarette
smoke {88], toluene diisocyanate [89], and possibly allergens [90]) have been shown to re-
duce NEP activity in animal models and to stimulate sensory nerves, either directly or indi-
recily. Increased levels of substance P and neuropeptide Y together with decreased levels of
vasoactive intestinal peptide have been found in the serum of patients with an asthmatic
exacerbation [91], and this may reflect reduced NEP activity and increased activity of tryptic
enzymes,

To further determine whether peptidases and neuropeptides contribute to asthma, in vive
studies using selective neurokinin receptor antagonists should be performed both in the pres-
ence :nd absence of NEP or other peptidase inhibitors, Neurokinin receptor antagonists should
first be tested against tachykinin-induced bronchoconstriction in order to determine the opti-
mal dose of the antagonists. Second, the effects of these antagonists should be analyzed in
allergen-induced bronchoconstriction, both in the absence and in the presence of peptidase
inhibitors. Furthermore, it would be interesting to freat allergic asthimatics with appropriate
neurokinin receptor antagonists {either intravascutar or by inhalation) for a longer period of
time, and to determine whether this affects allergen-induced bronchoconstriction and bron-
chial inflammation (as determined by analysis of bronchial biopsies and BAL fluid). This
will give insight in the contribution of tachykinins to the (chronic) inflammatory process in
the airways of asthmatic patients. Finally, the contribution of tachykinins and peptidases in
asthma may be demonstrated by (reating asthimatic patients with recombinant NEP, and ana-
lyzing the effects on bronchoconstriction induced by altergens or environmental agents such
as cigarette smoke.

12,2, Bronchial epithelial cells; actions and reactions

The bronchial epithelium forms the interface between the respiratory system and the
inspired air. Therefore, bronchial epithelial cells may be exposed to all molecules present
within the inspired air, including allergens, environmental factors, and drugs. To defend the
atrways against the entry of noxious substances, bronchial epithelial cells form a tight and
continuous layer that functions as a physical barrier. The bronchial epithelial cells also have
cilia, which contribute to the mucociliary clearance, and secrete mediators that provide pro-
tection against a wide range of potentially injurious agenis {chapter 2). In addition, bronchial
epithelial cells may participate in the initiation and perpetuation of inflammatory reactions
by releasing mediators and by expressing surface membrane molecules, which may interact
with other cells or mediators.

Hionan bronchial epithelial cells express interlenkin-4 receptors

The inflammatory process in the asthinatic airways is characterized by an increased num-
ber of leukocytes, especially eosinophils and activated T cells [92-94]. In addition, several
studies have shown an increased presence of Th2 cells and Th2 cell-derived cytokines, such as
IL-4, in bronchial biopsies and BAL fluid of asthmatic patients compared to heaithy controls
{21-231. In addition to T lymphocytes, eosinophils are an important source of 1L.-4 in the in-
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flamed bronchus {21, 22}, and both cell types can be found in close proximity to the bronchial
cpithelium. Therefore, it is likely that bronchiai epithelial celis will be exposed to [L.-4 during
inflanunatory and immunological responses within the lung. However, at the time this study
started little was known about the presence of receptors for IL-4 on human bronchiai epithelial
cells and the effects of IL-4 on epithelial cells. In the studies described in chapter 10 of this
thesis, we present evidence that human bronchial epithelial cells express receptors for 1L-4 (IL-
4R). Expression of IL-4R mRNA and protein i vive was determined nsing in sife hybridiza-
tion and immunohistochemistry, respectively. Both methods demonstrated expression of IL-4R
on the bronchial epithelium. Expression of the IE-4R has also been described for other epithe-
lial tissues, like intestinal epithelium [95], epidermal cells {96], and breast epithelium [97],
suggesting that expression of IL-4R is a general feature of epithelial cells. In addition to the
bronchial epithelium, L-4R expression was found on smooth muscle cells. This is in accor-
dance with a recent report indicating that stimulation of heman airway smooth muscle cells
with IL-4 inhibits cytokine-induced 1L-8 release [98]. In addition, IL-4R expression was ob-
served on certain leukocytes and we observed that IL-4R expression in the lamina propria
correlated with the number of activated (EG2-positive) eosinophils and the number of acti-
vaied (CD26-positive) T cells in the lamina. Eosinophils are indeed known to express IL-4R
991, however, it is not known at present whether these receptors are upregulated on activated
eosinophils. Unstimulated T cells express low levels of 1L-4R, but the number of [L-4R is
upregulated upon activation [ 100)]. Therefore, one may speculate that the correlation between
IL-4R expression and number of activated eosinophils or activated T cells is a reflection of the
increased IL-4R expression on these cells. Alternatively, activated T cells or activated eosiito-
phils may secrete mediators (for example IL-4) which subsequently increase the [L-4R expres-
sion in a pavacrine manner.

Comparison of IL-4R expression between bronchial biopsies from healthy controls and
allergic astiunatics did not reveal significant differences, neither in the epithelium nor in the
lamina propria (chapter 10). The lack of difference in bronchial epithelial TL-4R expression
between asthmatics and healthy subjects and the Limited effects of stimuli on bronchial IL-4R
expression i vitre suggest that the expression of 1L-4R on human bronchial epithelia cells is
rather constitutive, Increased expression of 1IL-4R has been found in some epitheliat proliferative
diseases, such as psoriasis [96], suggesting that IL-4 may be involved in the proliferation of
keratinocytes, We did not ohserve effects of TL-4 on human bronchial epitheliat cell munbers in
vifro (chapter 9 and unpublished data) and increased epithelial cell proliferation is not a
characteristic feature of asthma. Although IL-4R expression levels did not seem to differ be-
tween ltealthy controls and allergic asthmatics, we cannot exclude the possibility that the affinity
of the TL-4R for IL.-4 is changed or that there was a difference in 1L-4R signalling (see below?).

Anatysis of IL-4R expression (both mRNA and protein} in vitro showed that cultured human
bronchial epithelial cells also expressed IL-4R. In addition, mRNA and protein of the common
¥ chain was detected (chapter 10). On many celis, the IL-4R is a heterodimeric complex
comprising the IL-4R ¢ chain and a second chain, The IT.-4R ¢ chain is shared with some
forms of the 11.- 13 receptor [ 101-104). IL-4 can also bind to certain, but not all I1.-13R, whereas
IL-13 cannot bind to the IL-4R [101-103]. The second subunit of the IL-4R is, at least in some
cells, the common ¥ chain, which is also used by the IL-2R, IL-7TR, IL-9R, and IL-15R [105,
106]. Some recent reports have indicated that in certain cell types IL-4 may signal via the IL-4R
in the absence of the common 7y chain [107-110]. Although we did not directly determine the
subunit structuie of the IL-4R, we hypothesize that in human bronchial epithelial cells IL-4
signals, at least in part, via binding to an IL-4R composed of the IL-4R o chain and the common
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v chain. Further studies have to be performed to determine whether human bronchial epithelial
cells also express one or more forms of the IL-13R o chains [102-104, 108).

Stimulation of cultured human bronchial epithelial cells with IL-4 caused an increased
release of 1L-8, monocyte chemotactic protein (MCP)-1, and particularly IL-1 receptor
antagonist (IL-1RA) (chapter 10). Thus, IL-4 present in the asthmatic airways may contribute
{o the increased expression of these three molecules in the bronchial epithelium of asthmatics
[13, 14, [11]. Some other recent reports have also demonstraled an effect of IL-4 on human
bronchial epithelial cells. In one study, it was shown that TL-4 upreguniated the release of
granulocyte/macrophage colony-stimulating factor, thereby stimulating eosinophil survival [112],
In contrast, other studies have shown that IL-4 may have anti-inflammatory etfects on human
bronchial epithelial cells by inhibiting cytokine-induced RANTES expression {113] orinducible
nitric oxide synthase expression [114]. In the latter studies, [L-4 was added 30 min prior to
stimulation of the cells by a mixture of IL-1§, TNF-o, and IFN-y{(‘cytomix’). Preliminary data
indicate that pre-treatment with I1-4 also reduced the cytomix-induced release of MCP-1
{unpublished data}. Anti-inflanunatory effects of IL-4 on human bronchial epitheliai cells have
recently also been described by Levine and colleagues [115], who demonstrated that IL-4
increased the release of IL-IRA. Our results substantiate these data and show that IL-4 may act
both pro-inflammatory (by increasing 11.-8 and MCP-1 release) and anti-inflammatory (by
increasing H.- 1RA release), but the data obtained thus far suggest that the effects of IL-4 on
human bronchiai epithelial cells are predominantly anti-inflammatory.

The effects of IL-4 stimulation were only analyzed in cultures of human bronchial epithelial
cells derived from non-asthmatic patients., One could speculate that epithelial cells derived
from asthmatic patients respond differently. Interestingly, a recent report has shown the presence
of a novel [L-4R o chain allele, in which guanine was substituted for adenine at nucleotide
1902 f116]. The resulting receptor protein, with a glutamine to arginine replacement at position
576, showed enhanced signalling as determined by the IL-4-induced upregulation of CD23 on
peripheral blood mononuclear cells, Furthenmore, a strong association of this gain-of-function
mtation in the o subunit of the TL-4R with atopy was found. It remains to be established
whether stimulation of bronchial epithelial cells, obtained from atopic individuals bearing the
mutated allele, with IL-4 results in increased release of MCP-1, IL-8, and 1L- 1R A, and whether
this enhancing effect is similar for all three cytokines.

Recruitment of lewkocytes: chemotine release and expression of molecules involved in adhesion
and activation

Accumulation of leukocytes in the lung is dependent upon the presence of chemokines
and the expression of appropriate adhesion molecutes. Bronchial epithelial cells are able to
produce a variety of chemokines and to express surface membrane molecules involved in the
achesion or activation of the recruited leukocytes, such as ICAM-1 and HLA class H (chap-
ter 4). Bronchial epithelial cells from asthmatic patients show an increased epithelial expres-
sion of MCP-1, 1L-8, HLA-DR, and ICAM-1 compared to healthy subjects {13-16], which
may contribute to the increased numbers of leukocytes observed in the asthmatic airways
[92-94]. In chapter 11 we present data on the release of MCP-1, the prototype C-C chemokine,
and IL-8, the prototype C-X-C chemokine, by human bronchial epithelial cells, We show that
IFN-y strongly increased the release of MCP-1, whereas it did not atfect the IL-8 release.
IFN-y-stimulated MCP-1 release has also been demonstrated in mononuclear phagocytes,
mesothelial cells, and epithelial cells {1§7-119]. Furthermore, the lack of effect of IFN-yon IL-
8 release by bronchiai epithelial cells is in accordance with the lack of effect found in human
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microvascular endothelial cells, renal cortical epithelial cells, and airway smooth muscle cells
{98, 120, 121]. These findings and previous studies suggest that IFN-y predominantly increases
the release of C-C chemokines (e.g. MCP-1 and RANTES), and not of C-X-C chemokines (e.g.
1L.-8) by human bronchial epithelial cells [113, 122]. IFN-y is present in increased amounts in
the BAL fiuid of patients with intrinsic asthma compared fo control groups [29], especially
after antigen challenge [123]. IFN-yis also produced during viral infections, which are impor-
tan{ triggers of asthmatic attacks [49], Therefore, viral- or antigen-induced production of IFN-
v may result in the release of MCP-1 by human bronchial epithelial cells, thereby contributing
to the influx of monocytes and lymphocytes. Since IFN-y also increased the epithelial expres-
sion of ICAM-1, HLA class H, and CD40 molecuies, the recruited leukocytes may adhere to
the epitheiifwm (via [CAM-1) and possibly be activated (via HLA class H-associated antigen
peptides and CD40 molecules). Other studies have demonstrated that viral infections indeed
increase the expression of ICAM-1 on airway epithelial cells [124-127]. Moreover, virus-in-
fected epithelial cells showed increased adhesion of lymphoeytes, neutrophils, and eosinophils,
which could be inhibited by an ICAM-1 blocking antibody {126, 128]. Upregulation of ICAM-
1 expression by viral infections may also cause an increased susceptibility to infections {124],
since ICAM-1 is the receptor for the major group rhinovirses [129]. Further studies are re-
quired to determine whether IFN-y-activated bronchial epithelial celis show increased adhe-
sion of monocytes and lymphocytes and whether adhesion to the bronchial epithelium results in
their activation, Subsequently, the contribution of the distinct molecules in these processes
should be determined using neutralizing antibodies. Our results. indicate that stimuiation of
bronchial epithelial cells with IFN-y may contribute o the increased epithelial expression of
MCP-1, HLA-DR, and 1ICAM-| found in bronchial biopsies of asthmatic patients {13, 15,
16].

1L-18 is a potent pro-inflammatory cytokine and is considered as an early-response cytokine
[1307. It is able to upregulate the expression and/or release of a variety of molecules, includ-
ing adhesion molecules, chemokines, and cytokines, thereby quickly but aspecifically evo-
king inflammatory responses {131]. In the study described in chapter 11, we demonstrate that
IL-13, in contrast to IFN-y, increased the release of both MCP-1 and IL-8 by human bron-
chial epithelial celts. In addition, IL- 1P stimulated the expression of ICAM-1 and CDH40, but
not HLA class II molecules. The increased expression of ICAM-1 on bronchial epithelial
cells by TL-1f is in accordance with some previous reports [55, 56, 132}, The differences
between the effects of TL-1 and IFN~y can be explained, at least in part, by different intra-
celluiar signaling pathways. Whereas stimulation of NF-xB and/or AP-1 activity may be the
most prominent signaling pathway of IL-15 [133], IFN-y predominantly activates the JAK/
STAT pathway [134, 135]. Indeed, many effects of IL- 1P are mediated via activation of the
transcription factors NF-xB and AP-1 and recognition sites for these transcription factors
can be found in the promoter region of the MCP-1, IL-8, and ICAM-1 gene {136-139]. The
exact mechanisms by which IFN-y increases the expression of these molecules still remains
to be elucidated.

Glucocorticoids partially inhibited the cytokine-induced release of MCP-1 and 1L-8 and
the expression of [CAM-1, CD40, and HLA class IT molecules on human bronchial epitheliai
cells in vitro. These effects may be mediated, at least in part, through the repression of NF-
kB and/or AP-1 activity by the glucocorticoid-glucocorticoid receptor complex and by a
ghicocorticoid-induced induction of IkB protein [140]. In addition, a negative glucocorti-
coid-responsive element has been described on the 5°-flanking region of the IL-8 gene [141],
Glucocorticoid-mediated inhibition of basal and IFN-y-induced ICAM-1 and HLA class II
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expression has also been described for epithelial cell lines [142-144]. In vivo studies have
shown that treatment of allergic asthunatics with inhaled glucocorticoids reduces the nurber
of activated T lymphocytes in bronchial biopsies and BAL fluid [ 145-1491. Our results indi-
cate that this effect may be mediated, in part, by the inhibition of MCP-1 release by the
bronchial epithelial cells, and by a reduction in the expression of ICAM-1, CD40, and HLA
class I molecules. Inhaled glucocorticoids, however, did not modulate the ICAM-1 expres-
sion by bronchial epithelial cells from asthmatics fn vive [150], but in that particular study
atso no increased epithelial expression of ICAM-1 was found in asthmatics compared to
healthy controls. In contrast, topical nasal glucocorticoid therapy in patients with nasal poly-
posis was associated with a reduced expression of ICAM-1 and HLA-DR in the epithelium
f1513. To our knowledge, no data are currently available on ihe effects of inhaled glicocor-
ticoids on MCP-1, IL-8, or CD40 expression by bronchial epithelial cells in vivo.

12,3, Conclusions

Based on the resuits obtained from the work presented in this thesis, we draw the follow-
ing conchisions.

[. APN is widely distributed in the human bronchus, being expressed on endothelial cells,
glandular ducts, connective tissue, perichondrium, nerves, and certain feukocytes (in particu-
lar granulocytes, monenuclear phagocytes, and certain dendritic cells). Anincreased number
of APN-expressing cells can be found in the bronchial epithelium of allergic asthmatic pa-
ticnts, DPP IV is expressed on serosal submucosal glands and leukocytes (predominantly T
cells) in the human bronchus. Expression of DPP 1V is not altered in bronchial biopsies of
asthinatic patients compared to healthy subjects.

The activities of NEP, APN, and DPP IV in BAL fluid and serum of asthmatic patients
are not altered compared to healthy controls, In contfrast, non-asthmatic smokers display
reduced DPP IV activity in their serum and reduced NEP and APN activity in their BAL
fluid,

2. Cytokines can upregulate (JL-18, TNF-c, IL-4) or downregulate (IFN-y) the expression
and activity of NEP on BEAS 2B cells, but have little effects on APN expression and activity.

Human bronchial epithelial cells express receptors for IL-4 and stimulation of bronchial
epithelial cells with IL-4 results in an increased release of both pro- (IL-8 and MCP-1) and
anti-inflammatory mediators {IL-1RA). There is no difference in the expression of IL-4 re-
ceptors between healthy controls and alfergic asthmatics.

Upon stimulation with IFN-y, human bronchial epithelial cells increase their release of
MCP-1, but not 1L-8, and increase their surface expression of ICAM-1, HLA class II, and
CD40 molecules. IL- 1P stimulates human bronchial epithelial cells to release both MCP-1
and -8, and increases their surface expression of ICAM-1 and CD40, but not HLA class [
molecules,

3. Glucocorticoids upregulate the expression and activity of NEP and APN by BEAS 2B
celis. In contrast, glucocorticoids reduce the IL-1P or IFN-y-mediated release of MCP-1
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and/or IL-8 and inhibit the It.- 1B or IFN-y-mediated increase in ICAM-{, TTLA class 11, and
CD40 molecule expression by human bronchial epithelial cells.
The activity of NEP, APN, and DPP IV in BAL fluid and serum is not altered by treat-

ment with inhaled glucocorticoids.

Thus, comparison of the expression and activity of peptidases in the human airways of
healthy subjects and allergic asthmatics does not support the hypothesized dysfunction of
these enzymes in stable asthma. Regarding bronchial epithelial cells, our data further indi-
cate that these cells play an important role in the inflammatory process observed in the asth-
matic airways, Finally, glucocoriicoids may exert their anti-inflammatory effects in part by
modulation of bronchial epitheliat peptidases and cell functions.
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SUNMMARY

Asthma is clinically defined by a reversible airway obstruction and bronchial hyperreac-
tivity. Nowadays, a chronic inflammation of the airways is thought to underlie these clinical
features, Bronchial biopsies and bronchoalveolar lavage (BAL) fluid of asthmatic patients
show increased numbers of eosinophils, activated lymphocytes, and mast cells compared to
healthy controls. In addition, increased levels of inflammatory mediators, such as cytokines,
neuropeptides, and chemokines, can be found in asthmaiic airways. In chapter 1 a brief
overview is given on asthma, with emphasis on the immunological aspects.

Autonomic nerves (reviewed in chapter 2) play an important role in the regulation of
bronchial smooth muscle tone, secretion of mucus, and blood flow in the airways. In addition
to the well-known parasympathetic (cholinergic) and sympathetic (adrenergic) nervous sys-
tems, non-adrenergic non-cholinergic (NANC) innervation can be found in the airways. The
inhibitory-NANC system, which is the onrly neural bronchodilator pathway in the human
airways, is localized in parasympathetic nerves, whereas the excitatory-NANC system is
located predominantly in a subpopulation of sensory nerves. Stimulation of sensory nerves
can, via a local axon reflex, result in the release of neuropeptides. These neuropeptides have
a variety of effects, including the contraction of smooth muscle cells, the secretion of mucus,
vasodilation, microvascular leakage, and the recruitment and activation of leukocytes. This
sequence of events is now known as nearogenic inflammation. Since neurogenic inflamma-
tion mimics many of the pathophysiologic features of asthima, a role for nenropeptides in the
pathogenesis of asthma has been implicated.

The effects of neuropeptides are normally limited by rapid degradation by peptidases
{reviewed in chapter 3). A reduced activity of peptidases may therefore result in exaggerated
responses to neuropeptides and thus in neurogenic inflammation. In the human bronchus,
several peptidases can be found, including neutral endopeptidase (NEP), aminopeptidase N
(APN), and dipeptidy! peptidase [V (DPP 1V), These peptidases are not only involved in the
modulation of neurogenic inflammation, but may also affect several proliferative and immu-
nological responses. Studies using animal models have indicated that the bronchial epithe-
fium is an important site for peptidase activity. Bronchial epitheliai cells form the interface
between the inhaled air and the respiratory system. These cells may therefore be exposed to
an array of molecules present within the inhaied air, such as allergens, other environmental
factors (including viruses, ozone, cigarette smoke, chemical irritants), and drugs. Several of
these agents are known to reduce peptidase activity, thereby exaggerating the neurogenic
inflammation.

Bionchial epithetiai cells not only form a passive physical barrier but are also able to
participate in the initiation and perpetuation of inflammatory reactions. Besides expressing
peptidases, bronchial epithelial celts express several molecules on their surface that are in-
volved in the adhesion and activation of feukocytes, In addition, bronchial epithelial cells are
able (o release a variety of mediators, which may recruit and activate leukocytes, The bron-
chial epithelium and its functions are reviewed in chapter 4.

Giucocorticoids are widely used in the treatment of asthma. They possess potent anfi-
inflammatory effects, which may underlie their clinical efficacy. In chapter 5, the mecha-
nisms of action of glucocorticoids are briefly reviewed, with special attention to the effects
of glucocorticoids on epithelial cell functions.
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In the studics described in this thesis, we aimed to further define the contribution of
peptidases and the bronchial epithelium to the inflammatory process in the asthmatic air-
ways. In addition, we aimed to determine the effect of glucocorticoids on peptidases and the
bronchial epithelium. The aims of the studies are described in chapier 6. _

In the studies described in chapters 7, 8, and 9, we investigated the expression and
activity of peptidases in the airways of heaithy subjects and aflergic asthmatics, both in bron-
chial tissue and in the bronchoalveolar lumen. In addition, we determined whether glucocor-
ticoids could modulate the peptidase expression andfor activity. We hypothesized that the
expression and/or activity of peptidases is reduced in the airways of asthmatic patients, thereby
contributing to exaggerated (neurogenic) inflammatory reactions, and that ghicocorticoids
increase the expression and/or activity of peptidases in the airways.

In chapter 7 we present data on the distribution of APN and DPP IV in the human
bronchus. The distribution of both enzymes was determined using immunchistochemistry
and enzymehistochemistry, and compared with the distribution of NEP. APN expression and
activity was found on blood vessels, connective tissue, giandular ducts, perichondrivm, and
leukocytes, predominantly mononuclear phagocytes, dendritic cells, and eosinophiis, DPP
IV expression and activity was present in serosal submucosal glands, blood vessels, and T
lymphocytes, DPP 1V in serosal subimucosal glands appeared to be localized predominantly
intracellularly, suggesting that DPP IV may be secreted in the bronchial lumen, NEP activity
was weak in the human bronchus and appeared to be present in the bronchial epithelium,
submucosal glands, blood vessels, and smooth muscle cells. In contrast, NEP activity was
easily detected in the guinea pig trachea, especially in the epithelium. Thus, APN and DPP
IV are expressed at specific sites within the human bronchus, where they may be involved in
the modulation of the cell’s response towards peptidergic stimuli.

Comparison of the expression of APN and DPP IV in bronchial biopsies of heaithy
controls and allergic asthmatics revealed no significant differences in the lamina propria. In
contrast, in the bronchial epithelium of the allergic asthmatics, an increased number of APN-
positive cells was found. Weak but significant correlations were tound between the number
of APN-positive cells and the number of eosinophils and 1.25-positive dendritic cells. Using
double-stainings, we confirmed the presence of APN on these cells,

Although peptidases normally arc membrane-bound enzymes, soluble counterparts of
these molecules can be found in serum and BAL fluid. In chapter 8 we analyzed the activity
of NEP, APN, and DPF IV in serum and BAL fluid of healthy non-smokers, smokers, and
allergic asthmatics. It addition, we analyzed whether treatment of allergic asthmatics with
the inhaled glucocorticoid fluticasone propionate for twelve weeks couid alter the activity of
peptidase in serum and/or BAL fluid. NEP, APN, and DPP IV activity could be detected both
in serum and in BAL fluid. The activity of all three peptidases (expressed per mg protein)
was higher in BAL fluid than in serum, suggesting local release of the enzymes in the air-
ways. No correlations were found between peptidase activitics and cell numbers in serum or
BAL fhuid, indicating no predominant hematopoietic source of the peptidases. NEP activity
in BAL fluid correlated with APN activity in BAL fluid, suggesting that both enzymes are
regulated in a similar manner.

Comparison of NEP and APN activity in serum did not reveal significant differences
between the three groups. In contrast, DPP IV activity was significantly reduced in the serum
of smokers compared with healthy non-smokers. In BAL fluid, NEP and APN activity were
reduced in smokers. Reduced activity of NEP and APN in BAL fluid may enhance peptide-
mediated effects in the airways and thereby promote the inflammatory process or epithelial
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proliferation. APN activity (expressed per mg protein) in BAL fluid from allergic asthmatics
was reduced compared to healthy non-smokers, whereas NEP and DPP 1V activity did not
differ. The similar levels of NEP activity in BAL fluid from allergic asthmatics and healthy
subjects may indicate that there is no dysfunction of NEP in asthma, Alternatively, similar
levels may be due 1o reduced expression/activity of membrane-bound NEP going together
with increased shedding. Treatment of asthmatics with inhaled glucocorticoids improved
lung function parameters, but did not aifect the peptidase activities in serum and BAL fluid.

Studies using laboratory animals suggested an important role for peptidases expressed
on bronchial epithelial cells in the modulation of neurogenic inflammation. Therefore, we
analyzed the modulation of epithelial peptidases by cytokines present daring inflammatory
reactions and by glucocorticoid treatment, We used the human bronchial epithelial cell line
BEAS 2B, which expresses NEP and APN, as a1 model for these studies. In chapter 9 we
show that interleukin (IL)- 1 B, tumor-necrosis factor {TNF)-o, and IL-4 increased the expres-
sion and activity of NEP {(as determined by floweytometry and a specific fluorometric assay,
respectively). In contrast, interferon {IFN)-y reduced the expression and activity of NEP,
whereas epidermal growth factor (EGF) did not have an effect, The effect of IL- 13, which
was the most potent cytokine in increasing NEP expression and activity, was enhanced by
inhibition of phosphodiesterase and mimicked by a cyclic-AMP analogue, suggesting that
the effect was mediated in part by a cyclic-AMP dependent pathway. The APN expression
and activity, on the other hand, was not modulated by I1.- 1§, I.-4, TNF-g, or EGE Stimula-
tion of BEAS 2B cells with IFN-y transiently increased the APN expression and activity after
24 h. The synthetic glucocorticoid dexamethasone strongly increased the expression and
activity of NEP and APN, both in the presence and in the absence of cytokines. This effect of
dexamethasone was abolished by the glucocorticoid receptor antagonist RU38486, indicating
that the effect was mediaied via the glucocorticoid receptor. The synthetic testosterone ana-
logue R1881 had no effect on NEP and APN activity, suggesting that the effect is specific for
glucocorticoids and not for steroid hormones in general. The anti-inflammatory effects of
glucocorticoids may therefore be mediated in part through upreguiation of peptidases ex-
pressed on bronchial epithelial cells.

From these studies, we conclude that peptidases are widely distributed in the human
bronchus. However, no apparent dysfunction of these enzymes was found in the airways of
allergic asthmatic patients. Upregulation of epithelial peptidases by inhaled steroids may,
however, have clinical implications.

It chapters 10 and 11, we investigated the role of the bronchial epithelinm in the initia-
tion and perpetuation of inflammatory reactions in the airways. Asthmatic airways show an
increased number of eosinophils and activated T cells, predominantly of the Th2-like pheno-
type. Both cell types are able to refease 1L-4, and increased amounts of [L-4 can be found in
bronchial biopsies and BAL fluid of asthmatic patients compared to healthy controls. In
chapter 10, we present definite evidence of [L-4 receptor expression on human bronchial epi-
thelial cells. IL-4 receptor ¢ chain expression on human bronchial epithelial cells in vive was
demonstrated using ir sifu hybridization and inmmunchistochemistry. No difference in IL-4
receptor protein expression was observed between bronchiat biopsics of irealthy subjects com-
pared to allergic asthmatics. Cultured human bronchiat epithelial cells also expressed 1L-4
receptor ¢ chain mRNA and protein (as determined by RT-PCR analysis and flowcytometry,
respectively), In addition, culured bronchial epithelial celis expressed mRNA and protein of
the common y chain, which is a functional component of the IL-4 receptor in many cell types.
H-4 receptor protein expression by bronchial epithelial cells in vifro could be increased by
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stimulation with phorbol myristale acetate plus calcium ionophore, whereas IL-1 and T1.-6
decreased the [L-4 receptor expression. A cyclic-AMP analogue and TL-4 had no effect. Fi-
nally, we show that the TL-4 receptor is functionalty active as IL-4 stimulates the release of [L-
8, monocyte chemotactic protein-1 (MCP-1}, and particularly IL-1 receptor antagonist by hu-
man bronchial epithelial ceils.

From this study we conclude that human bronchial epithelial cells express IL-4 receptors
both in vive and ir vitro, Stimulation of human bronchial epithelial cells by IL-4 may result in
the release of both pro- and anti-inflarnmatory mediators known to be upregulated in asthmatic
airways.

Bronchial epithelial cells may participate in the recruitinent and activation of leukocytes
by releasing chemokines and by expressing molecules which can interact with leukocytes. In
chapter 11 we present data on the effects of cytokines and glucocorticoids on the release of
MCP-1{, the prototype C-C chemokine, and IL-8, the prototype C-X-C chemokine, by human
bronchial epitheliai cells. In addition, we analyzed the effects of cytokines and ghucocorticoids
on the epithelial expression of intercellular adhesion molecule (ICAM)-1, CD40, and human
lenkocyte antigen (HLA) class IT molecnles, These surface membrane molecules are involved
in the adhesion and activation of the recruited feukocytes.

Primary cultures of human bronchial epithelial cells constitutively produced MCP-1 and
IL-8. Stimulation of bronchial epithelial cells with IFN-y strongly increased the MCP-1 release,
which was accompanied by increased expression of MCP-1 mRNA and an increased monocyie
chemotactic potential. In contrast, IFN-y had no effect on the release of IL-8, suggesting that
IFN-y may selectively increase the release of chemokines that atiract monocytes and lymipho-
cytes, IFN-y increased the epithelial expression of ICAM-1, CD40, and HL.A class Il mo-
lecules. IL-1P increased both the MCP-1 and 1L-8 refease, and increased the expression of
ICAM-1 and CD40, but not of HLLA class IT molecules. These results indicate that IFN-y and
L~ 1B differentially regulate the MCP-{ and I1.-8 release by human bronchial epithelial cells. In
addition, [L- 1P and particularly IFN-yincrease the expression of ICAM- I, HLA class IT and/or
CD40 molecules.

Dexamethasone partially inhibited the cytokine-induced release of MCP-1 and IL-8 and
the expression of ICAM-, CD40, and HLA class If molecules by human bronchial epithelial
cells, The beneficial effect of glucocorticoid therapy in asthma may therefore be mediated in
part by inhibition of chemokine release and ICAM-1, CD40, and HLA class I expression by
bronchial epithelial cells. The results described in chapters 9, 10 and 11 support the role of
the human bronchial epithelium in the inflammatory process observed in the airways of asth-
malic palients.

Summarizing, the results described in this thesis do not support a general dysfunction of
peptidases in the asthmatic airways and substantiate the important roie of the bronchial epi-
thelium in inflammatory reactions in the airways. Finally, the beneficial effect of glucocorti-
coid therapy in asthma may be mediated in part by modulation of epithelial cell functions and
peptidases expressed by bronchial epithelial cells.
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SAMENVATTING

Astma wordt klinisch gekenmerkt door een reversibele vernauwing van de luchtwegen en
een bronchiale hyperreactiviteit. Tegenwoordig wordt gedacht dat een chronische ontsteking
van de luchtwegen ten grondslag ligt aan deze klinische verschijuselen, Bronchusbiopten en
bronchoalveolaire lavage (BAL) vloeistof van astmapatiénten vertonen een verhoogd aantal
eosinofielen, geactiveérde lymfocyten, en mestcellen vergeleken met gezonde controles.
Bovendien worden verhoogde niveaus van ontstekingsmediatoren, zoals cytekinen,
neuropeptiden, en chemokinen, gevonden in astmatische luchtwegen. In fioofdstuk I wordt
een kort overzicht gegeven over astma, waarbij de nadruk ligt op de immunologische aspec-
ten,

Autonome zenuwen (samengevat in hoafdstuk 2) spelen een befangrijke rol in het reguie-
ren van de bronchiale spierspanning, secretie van slijm, en de doorbloeding van de luchtwe-
gen. Naast de welbekende parasympatische (cholinerge) en sympatische (adrenerge) zenuw-
systemen, wordi non-adrenerge non-cholinerge (NANC) inmervatie gevonden in de huchtwe-
gen. Het inhiberende NANC systeem, dat de enige neurale bronchodilaterende route is in de
humane luchtwegen, is gelocalizeerd in parasympatische zenuwen, terwijl het exciterende
NANC systeems met name gelocalizeerd is in cen subpopulatie van sensorische zenuwen.
Stimulatie van sensorische zenuwen kan, via een locale axon refiex, resulteren in de afgifte
van neuropeptiden, Deze neuropeptiden hebben een verscheidenheid aan effecten, inclusief
de samentrekking van glad spierweefsel, de afgifte van slijin, vasodilalie, microvasculaire
lek, en de aantrekking en activatie van leukocyten, Deze volgorde van gebeurtenissen is
tegenwoordig bekend als neurogene ontsteking. Omdat neurogene ontsteking veel
pathofysiologische verschijnselen van astma nabootst, wordt een rol voor neuropeptiden in
de pathogenese van astima verondersteld.

De effecten van neuropeptiden worden normaliter beperkt door snelle afbraak door
peptidasen (samengevat in hoofdsiuk 3). Een verminderde peptidase activiteit zal daardoor
dus kunnen resulteren in versterkte responsen op neurapeptiden en dus in neurogene ontste-
King. Verschillende peptidasen kunnen worden gevonden in de humane bronchus, inclusief
nentraal endopeptidase (NEP), aminopeptidase N (APN), en dipeptidyl peptidase IV (DPP
IV). Deze peptidasen zijn niet aileen betrokken bij de modulatie van neurogene ontsteking,
maar kunnen ook verschillende proliferatieve en immunologische responsen beinvloeden.
Studies met proefdieren hebben aangetoond dat het bronchusepitheel een belangrijke plaats
is voor peptidase activiteit. Bronchusepitheelcellen vormen de interfase {ussen de ingea-
demde lucht en het ademhalingssysteem. Deze ceflen kunnen daardoor worden blootgesteld
aan een verscheidenheid aan moleculen aanwezig in de ingeademde lucht, zoals atlergenen,
andere omgevingsfactoren (inclusief virussen, ozon, sigarettenrook, chemische irritantia), en
medicijuen, Van verschillende van deze agentia is bekend dat zij de peptidase activiteit ver-
lagen, waardoor zij neurogene ontstekingen verergeren.

Bronchusepitheelcellen vormen niet alleen een passieve fysieke barridre maar kunnen
ook bijdragen aan de initiatie en instandhouding van ontstekingsreactics. Naast peptidasen
brengen bronchusepitheelcelien verschillenden andere moleculen, betrokken bij de adhesie
en activatie van leukocyten, op hun opperviak (ot expressie. Bovendien zijn bronchus-
epitheelcellen in staat tot de afgifte van een verscheidenheid aan mediatoren die feukocyten
aantrekken en activeren. Het bronchusepitheel en zijn functies worden besproken in froofd-
stuk 4.
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Glucocorticotden worden op grote schaad gebruikt in de behandeling van astma, Ze bezit-
ten potente anti-inflaminatoire effecten, hetgeen hun klinische werkzaamheid kan verklaren.
In hoofdstuk 5 zijn de werkingsmechanismen van glucocorticoiden kort samengevat, met
speciale aandacht voor de effecten van glucocorticotden op epitheliale celfuncties.

In de onderzoeken beschreven in dit proefschrift hebben wij getracht om de bijdrage van
peptidasen en het bronchusepitheel aan het ontstekingsproces in de astmatische luchfwegen
te ontrafelen. Daarnaast hebben wij het effect van glucocorticoiden op peptidasen en het
bronchusepitheel onderzocht. De doelstellingen van het onderzoek zijn beschreven in fioofd-
stuk 6.

In het onderzoek beschreven in hoofdstukken 7, 8, en 9 hebben wij de expressie en acti-
viteit van peptidasen onderzocht in de luchtwegen van gezonde controlepersonen en allergi-
sche astmapatiénten, zowel in bronchiaal weefsel als in het bronchoalveolaire lumen. Tevens
hebben wij bepaald of glucocorticoiden de peptidase expressie enfof activiteit kunnen module-
ren. Orize hypothese was dat de expressic en/of activiteit van peptidasen is verminderd in de
luchtwegen van astmapati€nien, daardoor bijdragend aan versterkte (neurogene) ontstekings-
reacties, en dat glicocorticoiden de expressie enfof activiteif van de peptidasen in de lucht-
wegen verhogen.

In hoofdstuk 7 presenteren wij gegevens over de distributie van APN en DPP IV in de
humane bronchus. De distributie van beide enzymen werd bepaald door middel van
immunohistochemie en enzymhistochemie, en vergeleken niet de distributic van NEP. APN
expressie en activiteit werd gevonden in bloedvaten, bindweefsel, afvoergangen van klieren,
perichondrium, en leukocyten, met name mononucleaire fagocyten, dendritische cellen, en
eosinofielen. DPP 1V expressie en activiteit was aanwezig in sercuze submucosale klieren,
bloedvaten, en T lymfocyten. DPP 1V in sereuze submucosale klieren leek voornamelijk
intracellutair voor te komen, suggererend dat DPP IV kan worden gesecerneerd in het
bronchiale lumen. NEP activiteit was zwak in de humane bronchus en leek aanwezig te zijn
in het bronchusepitheel, submucosale klieren, bloedvaten, en glad spierweefsel. NEP activi-
teit was-daarentegen gemakkelijk te detecteren in de trachea van de cavia, met name in het
epitheel. Dus, APN en DPP IV komen tot expressie op specifieke plaatsen it de humane
bronchus, waar ze mogelijk betrokken zijn bij de modulatie van de respons van de cel op
peptidetrge prikkels.

Vergelijking van de expressic van APN en DPP IV in bronchusbiopten van gezonde
controles en allergische astmatici bracht geen verschillen in de lamina propria aan het licht,
In het bronchusepitheel van astmapatiénten daarentegen werd een verhoogd aantal APN-
positieve cellen gevonden, Zwakke maar significante correlaties werden gevonden tussen
het aantal APN-positieve cellen en het aantal eosinofielen en 1.25-positieve dendritische
cellen, Door gebruik te maken van dubbelkleuringen konden wij de aanwezigheid van APN
op deze cellen bevestigen,

Athoewel peptidasen normaliter membraan-gebonden enzymen zijn, kunnen zij ook wor-
den gevonden in serum en BAL vloeistof. In /roofdstik 8 analyzeerden wij de activiteit van
NEP, APN, en DPP 1V in serum en BAL vloeistof van gezonde niet-rokers, rokers, en aller-
gische astmatici. Bovendien analyzeerden wij of behandeling met het inhalatieglucocorticoid
fluticasone propionate gedurende twaalf weken de activiteit van peptidasen in serum enfof
BAL vloeistof kon veranderen. NEP, APN, en DPP 1V activiteit konden zowel in het serum
als in de BAL vloeistof worden aangetoond. De activiteit van alle drie peptidasen (vitgedrukt
per mg eiwif) was hoger in BAL vloeistof dan in serum, suggererend dat de enzymen plaat-
selijk in de luchtwegen worden afgegeven. Er werden geen correlaties gevonden tussen de
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peplidase activiteit en de cel aantallen in het serum of de BAL vloeistof, aangevend dat er
geen overheersende hematopoietische bron is van de peptidasen. De NEP activiteit in de
BAL vloeistof correleerde niet de APN activiteit in de BAL vloeistof, suggererend dat beide
enzymen op een vergelijkbare wijze worden gereguleerd,

Vergelijking van de NEP en APN activiteit in het sermim bracht geen significante verschil-
len aan het licht tussen de drie onderzoeksgroepen. De DPP IV activiteil was daarentegen
significant verminderd in het serum van rokers vergeleken met gezonde niet-rokers. In de
BAL vlocistof waren de NEP en APN activiteit verminderd in rokers. Verminderde NEP en
APN activiteit kan peptide-gemedigerde effecten in de luchtwegen versterken en daardoor
het ontstekingsproces of de prolitferatie van het epitheel bevorderen. De APN activiteit (uit-
gedrukt per mg eiwit) in BAL vloeistof van allergische astmatici was verminderd ten op-
zichte van gezonde niet-rokers, terwijl de NEP en DPP IV activiteit niet verschilden. De
gelijke niveaus van NEP activiteit in BAL vloeistof van allergische astmatici en gezonde
controles kunnen erop duiden dat er geen dysfunctie van NEP is in astma. Anderzijds, gelijke
niveaus zouden ook het gevolg kunnen zijn van een verminderde expressie enfof activiteit
van membraan-gebonden NEP samengaand met een verhoogde shedding. Behandeling van
astmapatiénten met inhalatieglucocorticoiden verbeterde de longfunctie parameters, maar
had geen effect op de peplidase activiteiten in serum en BAL vloeistof,

Studies met proefdieren suggereerden dat het bronchusepitheel een belangrijke rol speelt
in de modulatie van neurogene ontsteking. Daarom bestudeerden wij de modulatie van
epitheliale peptidasen door cytokinen, die aanwezig zijn gedurende ontstekingsreacties, en
glucocorticoiden. Wij gebruikten de humane bronchiale epitheelcelllijn BEAS 2B, welke
NEP en APN tot expressie brengt, als een model in deze studies. In froofdstuk 9 tonen wij
aan dat interleukine (IL)- 1P, tumor-necrosis factor (TNF)-o, en H.-4 de expressie en activi-
teit van NEP (bepaald middels flowcytometrie, respectievelijk cen specifieke fluorometrische
testmethode) verhogen. Interferon (IFN)-y daarentegen verminderde de expressie en activi-
teit van NEP, terwijl epidermale groeifactor (EGF) geen effect had. Het effect van IL- 1§, wat
het meest potente cytokine was in het verhogen van de NEP expressie en activiteit, werd
versterkt door remming van fosfodiesterase en nagebootst door een cyclisch-AMP analoog,
suggererend dat het effect deels werd gemediéerd door een cyclisch-AMP athankelijke route.
De expressie en activiteit van APN werd echter niet gemoduicerd door IL-1f3, iL-4, TNF-c,
of EGE Stimulatic van BEAS 2B cellen met IFN-y verlaagde tijdelijk de expressie en activi-
teit van APN na 24 vur. Het synthetisch glucocorticotd dexamethason gaf een sterke verho-
ging van de expressie en activiteit van NEP en APN, zowel in de aan- als afwezigheid van
cytokinen. Het effect van dexamethasen werd opgeheven door de glucocorticoid
receptorantagonist RU38486, aangevend dat het effect was gemedi&erd via de glucocorticoid
receptor. Het synthetisch testosteron analoog RI881 had geen effect op de NEP en APN
activiteit, suggererend dat het effect specifiek is voor glucocorticoiden en niet voor steroid
hormonen in het algemeen, Dus, de anti-inflammatoire effecten van glucocorticoiden wor-
den mogelijk deels gemedigerd deor verhoging van peptidasen die op epitheel tot expressie
worden gebracht,

Uit deze studies concluderen wij dat peptidasen uitgebreid voorkomen in de humane
bronchus. Echter, er werd geen duidelijke dysfunctie van deze enzymen gevonden in de
luchtwegen van allergische astmapatiénten. Verhoging van epitheliale peptidasen door
inhalatie-steroiden zou echter klinische implicaties kunnen hebben.
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In hoofdstukken 10 en [{ hebben wij de rol van het bronchusepitheel in de initiatie en
instandhouding van ontstekingsrecaties in de luchtwegen onderzocht. Astmatische luchtwe-
gen vertonen een verhoogd aasutal eosinoficlen en geactiveerde T cellen, voornamelijk van
het Th2-achtig fenotype. Beide celtypen zijn in staat om IL-4 af te geven; verhoogde hoe-
veetheden IL-4 werden gevonden in bronchusbiopten en BAL vloeistof van astmatische pa-
tiénten in vergelijking met gezonde controles. In hoofdsik 10 presenteren wij definitief
bewijs voor de expressie van [L-4 receptoren op humane bronchusepitheelcellen, TL-4 receptor
oi-keten expressie op hinmane bronchusepitheelcellen in vivo werd aangetoond door middel
van in situ hybridizatie en immunohistochemie. Er werd geen verschil gevonden in IL-4
receptor eiwit expressie tussen bronchusbiopten van gezonde controles en allergische astma-
patiénten, Gekweekte humane bronchusepitheelcellen brachien ook IL.-4 receptor ¢-keten
mRNA en eiwit tot expressie (bepaald middels respectievelijk RT-PCR analyse en
floweytometrie), Bovendien brachten gekweekte humane bronchusepitheelcellen mRNA en
eiwit van de gemeenschappelijke y-keten, een functionele compenent van de IL-4 receptor in
veel celtypen, tot expressie. De IL-4 receptor eiwit expressie op bronchusepitheelcellen in
vitro kon worden verhoogd door stimulatie met phorbol myristaat acetaat plus calcium
ionofoor, terwijl IL- 1B en 1L-6 de expressie van de Il.-4 receptor verlaagden. Een cyclisch-
AMP analoog en 1L-4 hadden geen effect. Tenslotte tonen wij aan dat de 11.-4 receptor func-
tioneel aktief is, daar IL-4 de afgifte van IL-8, monocyt chemotactisch proteine (MCP-1), en
in het bijzonder IL-1 receptor antagonist door bronchusepitheelcellen verhoogde.

Uit deze studie concluderen wij dat humane bronchusepitheelcellen IL-4 receptoren tot
expressie brengen, zowel in vive als in vitro. Stimulatie van humane bronchusepitheelcellen
met 1L-4 kan resulteren in de afgifie van zowel pro- als anti-inflanunatoire mediatoren waar-
van het bekend is dat zij verhoogd voorkomen in astmatische luchtwegen,

Bronchusepitheelcellen kunnen bijdragen aan het rekruteren en activeren van leukocyten
door de afgifte van chemokinen en door moleculen tot expressie (e brengen die een interactie
kunnen aangaan met leukocyten. In hoofdstk 11 presenteren wij gegevens over het effect
van cytokinen en glucocortcoiden op de afgifte van MCP-1, het prototype C-C chemokine,
en IL-8, het prototype C-X-C chemokine, door humane bronchusepitheeicellen. Daarnaast
bestudeerden wij de effecten van cytokinen en ghucocorticoiden op de epitheliale expressie
van intercellulair adhesie molekuul (ICAM)-1, CD40, en HLA klasse IT moleculen. Deze
oppervlakte membraan moleculen zijn betrokken bij de adhesie en activatie van de aange-
trokken leukocyten.

Primaire kweken van humane bronchusepitheeleellen produceerden constitutief MCP-1
en IL-8, Stimulatie van bronchusepitheelcellen met IFN-y verhoogde de afgifte van MCP-1
sterk, en dit ging samen met een verhoogde expressie van MCP-1 mRNA en een verhoogd
monocyt chemotactisch vermogen. IFN-yhad daarentegen geen effect op de afgifte van IL-8,
suggererend dat IFN-y selectief de afgifte verhoogd van chemokinen dic monocyten en
lymfocyten aantrekken. IFN-y verhoogde de epitheliale expressie van ICAM-1, CD40 en
HLA kiasse Il moleculen. IL-1B verhoogde zowel de afgifte van MCP-1 als van IL-8, en
verhoogde de expressie van FCAM-1 en CD40, maar niet van HLA klasse I moleculen,
Derze resultaten geven aan dat IFN-y en IL-8 de afgitte van MCP-1 en IL-8 door humane
bronchusepitheelcetlen verschillend reguleren, IL-1} en in het bijzonder IFN-y verhogen
bovendien de expressie van ICAM-1, HLA klasse [I en/of CD40 moleculen.

De cytokine-geinduceerde afgifte van MCP-! en IL-8 en de expressie van [CAM-1, CD40,
en HEA klasse I moleculen door humane bronchusepitheelcellen werd gedeeltelijk geremd
door dexamethason. Het gunstige effect van glucocorticoid behandeling bij astma wordt
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mogelijk dus deels gemedicerd door remming van de chemokine afgifte en de ICAM-1,
CD40, en HLA klasse 1l expressie door de bronchusepitheelcellen. De resuitaten beschreven
inde hoofdstukken 9, 10 en 11 ondessteunen de rol van het bronchusepitheel in het ontstekings-
proces zoals dat wordt waargenomen in de fuchtwegen van astmapatiénten.

Kort samengevat, de resultaten beschreven in dit proefschrift wijzen niet op een alge-
mene dysfunctie van peptidasen in de luchtwegen bij astina en bevestigen de belangrijke rol
van het bronchusepitheel in ontstekingsreacties in de luchiwegen. Tenslotte, het gunstige
effect van glucocorticoidtherapie in astma kan deels worden gemedieerd door het beinvioe-
den van epitheliale celfuncties en peptidasen die door bronchusepitheel tot expressie worden
gebracht.
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15-HETE
13-HODE
AA

ABC
ACE

Ach

ADA
AIDS

ANF
AP-1
APAAP

ARDS
BAL
BALT

BK
BLP

bp
BSA
CALLA

cAMP
CGRP
cNOS

COPD

CPN
CREB

DAB
DAGNPG

Db-cAMP

DEX
DIG
DMEM

dNTP
EAR
ECE
ECP
EGF
ELAM-1

e-NANC

ABBREVIATIONS

15-hydroxyeicosatetranoic acid
[3-hydroxy-linoleic acid

Allergic asthmatics

Avidin-biotin complex
Agiclensin-converting enzyme
Acetylcholine

Adenosine deaninase

Aquired immuno-deficiency
syndrome

Atrial natriuretic factor
Activating protein- [

Alkaline phosphatase anti-alkaline
phosphatase

Adult respiratory distress syndrome
Bronchoalveolar lavage
Bronchus-associated lymphoid
tissue

Bradykinin

Bombesin-like peptides
Basec-pair

Bovine serum albumin

Common acute lymphaoblastic
leukemia antigen

Cyclic adenosine monophosphate
Calcitonin gene-related peptide
Constitutively expressed forim of
nitric oxide synthase

Chrenic obstructive pulmonary
discase

Carboxypeptidase N
cAMP-responsive element binding
protein

Diaminobenzidine
N-Dansyl-D-alanyl-glycyl-p-
nitrophenylalanyl-glycine
Dibutyryl-cyclic adenosine mono-
phosphate

Dexamethasone micronisatum
Digoxigenin :
Dulbecco's modified Eagles
medium

Deoxynucleotide triphosphate
Early asthmatic reaction
Endothelin-converting enzyme
Eosinophil cationic protein
Epidermal growth factor
Endothelial leukocyte adhesion
molecule-1

Excitatory NANC

EpDRF
EPO
ET-1
FeeRl

FEV,
fMLP
G-CSF
GM-CSF

GR
GRE
Gro-¢1
HC
HiV
HLA
HPRT

Hsp
IBMX
ICAM-1
IEN-y
IgE
IGF

IL
IL-1R
IL-4R
IL-1RA
i-NANC
iNOS
IRAK

ISH
LAR
LFA-3

LIF
LPS
LT
LTC,
LTB,
mAb
MBP
MCP
MC;

Epithelial-derived relaxing factor
Eosinophil peroxidase
Endothelin-1

High affinity receptor for immuno-
globulin E

Forced expiratory volume in onc
second

* Formyl-metheonyl-leucyl-phenyla-

lanine
Granulocyte-colony-stimulating
factor

Granulocyte macrophage colony-
stimulating factor

Glucocorticoid receptor
Glucecorticoid responsive elements
Growth regulated oncogen-o
Healthy controis

Human immunodeficiency virus
Human leukocyte antigens
Hypoxanthine phosphatidyl
ribosyltransferase

Heat shock proteins

3-isobutyi- I-methylxanthine
Interceliular adhesion molecule-I-
Interferon-y

Immunoglobulin E

Insufin-like growth factor
Interlenkin

Interleukin-1 receptor
Interleukin-4 receptor
Interleukin-1 receptor antagnonist
Inhibitory NANC

Inducible nitric oxide synthase
Interleukin-1 receptor-associated
kinase

In situ hybridization

Late phase asthmatic reaction
Lymphocyte function-associated
antigen-3

Leukemia inhibitory factor
Lipopolysaccharide

Leukotrienes

Leukotrienc C,

Leukotrienc By

Monoclonal antibody

Major basic protein

Monocyte chemotactic protein
Mast cells containing predominantly
tryptase
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Abbreviations

MESF

MHC
MIP-1a

MNA
MTS

Mast cells containing chymase and
tryptase

Mean equivalent soluble fluores-
cence

Major histocompatibility complex
Macrophage inflaimmatory protein-
lo

4-methoxynaphtylamide
3-(4,5-dimethylthiazol-2-y1)-5-(3-
carboxymethoxy-phenyl)-2-(4-
sulfophenyl)-2H-tetrazolium
Non-adrenergic non-cholinergic
Neutrophil-activating peptide-2
Neutral endopeptidase

Nuclear factor -kB

Neurokinin

Neurokinin A

Neurokinin B

Nitric oxide

Nitric oxide synthase
Neuropeptide-y

Neuropeptide K

Neuropeptide Y

Pituitary adenylate cyclase activat-
ing peptide

Platelet-activating factor

Periodic acid Schiff
Phosphate-buffered saline pH 7.4
Provocative concentration required
to reduce FEV, by 20%
Polymerase chain reaction
Platelet-derived growth factor

PG

PGE,
PHM
PMS
PNA
PPT
RANTES

RT-PCR

S

SDS
slgh
SLPI

SP
§SC
SuB
TCR
TDI
TGF
Thi
T2
TK
™
TNF
UTR
VCAM
VIP
VLA
ZB

Prostaglandin

Prostaglandin E,

Peptide histidine methionine
Phenazine methosulfate
Para-nitroanilide

Preprotachykin

Regulated upon Activation, Normal
T cell Expressed, and presumably
Secreted

Reverse transcriptase-polymerase
chain reaction

Smokers

Sodium dedecyl sulphate
Secretory immunoglobulin A
Secretory leukocyte profease
inhibitor

Substance P

Standard sodium citrate
Substrate-binding

T cell receptor

Toluene diisocyanate
Transforming growth factor

T helper ceH type !

T helper cell type 2

Tachykinin

Transmembrane

Tumor necrosis factor
Untranslated region

Vascalar cellular adhesion molecule
Vasoactive intestinal peptide
Very late activation antigen
Zinc-binding
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DANKWOORD

Het feit dat enkel mijn naam op dit boekje staat wil nog niet zeggen dat dit proefschrift
helemaal het werk van mij alleen is geweest. Het poppetje op de voorkant lijkt alieen te zijn,
maar wie even verder kijkt, ziet dat het hand in hand staat met andere poppetjes. Eén poppetje
staat nu op de voorkant en een paar andere staan op de achterkant; alles wat in dit proefschrift
tussen beide kaften staat is dan ook door hen samen gedaan. Ik wil daarom icdereen die op de
plaats had kunnen staan van &n van de poppeties heel erg hartelijk bedanken: voor hun
bijdrage.

Het poppetje op de voorgrond staat niet stil, maar springt van blijdschap een gat in de
lucht. Het heeft plezier, en dat heb ik de tijdens de afgelopen jaren (meestal) ook gehad. Niet
alleen omdat het leuk is om onderzoek te doen, maar ook omdat ik het erg naar mijn zin heb
gehad (en heb) op de afdeling. Tijdens het werk maar ook daarbuiten heb ik veel leuke
dingen kunnen doen met mijn collega’s. Voor alle (koffie)praatjes, FC-gctiviteiten,
squashpartijtjes, etentjes, en natuurlijk de vele en gezellige borrels wil ik dan ook iedereen
bedanken!

Op de achtergrond van deze pagina staan vele poppetjes. Ik wil dan ook alle vrienden en
familie, met name “‘s pa en ‘s ma”, bedanken voor hun belangstelling en hun aanhoudende
pogingen {vaak tevergeefs) om op de hoogt te blijven van alle ins en outs van mijn
werkzaamheden. Ten slotte wil ik Angela bedanken voor haar belangstelling, adviezen, geduld
als ik “nog even ging computeren”, en al die andere dingen die ik niet goed met woorden
weet te zeggen maar die jij wel begrijpt.

Bedankt!
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