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Asthma 
Immunological aspects 

1.1. STRUCTURE OF THE AIRWAYS 

13 

The airways can be divided in the upper respiratory tract, including the nose, the pharynx, 
and the larynx. and the lower respiratory tract. consisting of the trachea, bronchi, bronchi­
oles, and alveoli (Fig. I), This structure provides an enormous surface area where the ex­
change of oxygen and carbon dioxide. the function of the lungs, can take place. Respiratory 
diseases may affect onc or more of the different parts of the airways. For example, emphy­
sema is characterized by a decreased number of alveoli which also have a reduced elasticity 
[1]. On the other hand, asthma, the main focus of this thesis, is considered to be a disease 
affecting predominantly the bronchi and bronchioli [2]. 

nasal cavity 

pharynx 

larynx 

trachea 

~~~;-----l----i- bronchus 

>;?I.,~ ,If--"-'-=/~-I'--!---'--!- alveoli 

Figure 1. Structure of tbe human airways. 
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The bronchus can histologically be divided into a mucosa and a submucosa (Fig. 2) [3]. 
The bronchial mucosa consists of a lining layer of ciliated and non-ciliated epithelial cells, 
the basement membrane, and the lamina propria. In the lamina propria, a dense network of 
arterioles, capiHaries, and postcapillary vcnules is embedded in collagenous, elastic, and 
reticular fibers [4, 5]. The submucosa of the airways contains cartilage. glands. and smooth 
muscle (Fig. 2), Nerves can be found both in the epithelium, lamina propria, and submucosa 
[6-8]. 

In asthmatic patients, several changes occur in the bronchi and this results in their clinical 
symptoms [9, 10]. But what is asthma and what exactly is going on in this disease? 

Figure 2. Light-microscopic Ilholomicrogl'aph of the human bronchus (magnification: 64x). 

1.2. ASTHMA: AN INFLAMMATORY DISEASE OF THE AIRWAYS 

The term aslhma was first used by Hippocrates (460-357 B.C.), who gave Ihis name to 
people suffering from "difficult breathing" ('o:ae~IO:'). Nowadays, asthma is one of the most 
common chronic disorders in the Western World and affects almost 10% of the population 
[II], Its prevalence, morbidity and morlality appear to be rising [2,12-14]. From a simpli­
fied point of view, asthmatic patients maybe categorized in two groups. The vast majority of 
the asthmatic patients develops an allergic reaction after exposure to specific stimuli, so 
called allergens (e.g. hOllse dust mite, pollen, animal dander). These patients arc called a1lergic 
(extrinsic or atopic) asthmatics and have enhanced serum levels of allergen-specific inullu­
noglobulin E (IgE). Allergic aslhma often develops during childhood, and the symptoms 
may show seasonal variation (due to the seasonal variation of allergens, like grass pollen, in 
the environment) [11]. Allergic asthma shows a strong genetic predisposition and several 
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studies have reported linkage of atopy genes to chromosome 5 ('123-31) or II (q 13) [15-17]. 
In a much smaller percentage of asthmatic patients (10-20%), sellUll IgE levels are not en­
hanced and therefore these patients are categorized as non-allergic (intrinsic or non-atopic) 
asthmatics. 

Because of the heterogeneity in asthmatic patients, it is difficult to define asthma. Never­
theless, based on the common characteristics, the following CUlTent working definition of 
asthma has been formed: 

'Asthma is a chronic injlammatOl)' disorder of the airways in which many cells playa role, 
including mast cells and eosillophils. In susceptible individuals this inflammation causes 
symptoms which are usually associated with widespread but variable ahflow obstruction 
that is often reversible either spontaneously or with treatment, and causes an associated in­
crease ill aiJway respollsh'elless to a vaIiety of stimuli' [2], 

The keywords in tlus definition, which are in italic, will be discussed in the next para­
graphs. 

1.3. CLINICAL ASPECTS OF ASTHMA 

Asthma is clinically defined by a reversible airway obstruction and a hyperreactivity of 
the airways [18]. The airway obstmction is mainly the result of the contraction of smooth 
muscle ceBs, the secretion of mucus, and enhanced vascular permeability with mucosal edema. 
In contrast to some other airway disorders like chronic bronchitis and emphysema, the air­
way obstmction in asthma is usually completely reversible, and between exacerbations the 
patient may have no airflow obstruction. The airway obstmction is considered to be revers­
ible if the patients forced expiratory volume in one second (FEV\) increases by at least 15% 
after inhalation of smooth muscle relaxing dmgs, the Pragonists. 

Hyperreactivity is defined as a decreased threshold of airway nalTowing in response to a 
variety of non-specific stimuli, which under healthy conditions do not evoke an airway ob­
stmction [2]. These non-specific stimuli include fog, tobacco smoke, ozone, viral infections, 
chemical irritants, inhaled pharmacological agents (such as lustanune or methacholine), and 
physical stimuli (such as exposure to cold air and exercise) [19]. 

Asthmatic reactions can clirucaUy be divided in an early asthmatic reaction (EAR) and a 
late phase asthmatic reaction (LAR) [20, 21]. The EAR develops immediately after the inha­
lation of allergens and is characterized by bronchoconstriction. This reaction, which is maxi­
mal at 15-30 min and resolves witlun 1-2 II, is due to the release of broncho-active sub­
stances, sllch as histamine and leukotrienes (LT), resulting in the contraction of smooth muscle, 
the secretion of mucus and vascular leakage [20]. In approximately half of the asthmatic 
patients, this EAR is followed by a LAR which begins at 3-4 h, is maximal at 6-12 hand 
generally resolves within 24 h. The LAR is accompanied by an infiltration of leukocytes in 
the airways [20]. 
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1.4. IM~fiJNOLOGICAL ASPECTS OF ASTHMA 

Nowadays it has widely been accepted that a chronic inflmnmation of the airways under­
lies the clinical features of asthma [17]. Indeed, bronchial tissue of asthmatic patients shows 
intense infiltration of leukocytes. especially eosinophils and T lymphocytes. damage and 
detachment of the bronchial epithelium, thickening of the epithelial basement membrane, 
edema of the submucosa, mucus gland hyperplasia, and smooth muscle hypertrophy [9, 10, 
22-28]. 

The inflammatory response is the result of a complex interaction between the allergen(s), 
cells of the imlllune system, and their mediators (Fig. 3). 

Ag 
o IL-1/IL-6IIL-12 

APC ~ / t plasma cell 

~~{o·e,~ 
IL-4,IL-13 

IL-3,IL-4 

Il-3 
IL-4 
IL-S 

GM-CSF 

\L,\f(JJ y 
\ ~'9E 

o 
tryptase 

~ I,ukatri,n" 

other cytokines -+ AHR 

Cig'~~ . '. ~ MBP • _ ECP 

eosinophil leukolneoes 

Figure 3. Schematic representation of the Inflammatory process in airways ofaslhmaUc patients. The initial 
evcnt in the allergic immune responsc is thought to be presentation of antigen by APC. Subsequent recognition of 
the tvfHC class II-bound antigen by the CD4-positivc T lymphocytes and simultaneous signaling via co-stimula­
tory molecules results in the release of cytokines and thc dcvelopment of Th2 cells, which are characterized by 
production of cytokines like IL-4, IL-5, and IL-13 [29-32]. These cytokines play an important role in the matura­
tion of naivc T lymphocytes towards the Th2 lymphocyte phenotype, in the recruitment and survival of eosino­
phUs (together with GM-CSF and IL-3), support mast cell growth, and arc required for isotype switching of B 
lymphocytes to IgE production [33-40J. The IgE present in the aSlhmatic airways can bind with high amnily 10 
specific receplors (Fc€RI) expressed on the surface of mast cells, basophils, monocytes, APC, and eosinophils [41, 
42]. Binding of an inhaled allergen to receptor-bound IgE and subsequent cross-linking of these receptors results 
inlhe activation of the cell and thereby in the release ofinflammalory mediators, including histamine, Icukotricncs. 
and prostaglandins. These mediators can directly act on airway smooth muscle and Yasculaturc, and are respon­
sible for the airway obstruction seen during the EAR [43}. 
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Eosinophils 
Airways of asthmatic patients show an increased number of eosinophils. both in bron­

chial biopsies, bronchoalveolar lavage (BAL) fluid, and sputum [44A7]. Furlhermore, the 
eosinophils in the asthmatic airways are often degranulated and hypodense. suggesting that 
they are in an activated state [48]. The number of eosinophils and their products have been 
shown to correlate significantly with the severity of the disease [45, 49-53]. Besides the 
elevated number of eosinophils under stable conditions, eosinophil numbers even further 
increase in the LAR after allergen provocation [54 J. 

Several observations indicate that eosinophils pJay an important role in the epithelial 
damage seen in asthmatics. First, several ill vitro studies have shown that activated eosino­
phils can alter the epithelial integrity by disruption of epithelial cells [55-57). Second, it was 
shown that the cationic granule proteins of eosinophils are highly toxic to the respiratOlY 
epithelium [55-59], and increased levels of these proteins have been found in the BAL fluid 
of asthmatics compared to healthy subjects [60, 61). Finally, bronchial biopsies of asthmatics 
show increased numbers of activated eosinophils and an association between eosinophils 
present near the epithelial layer and epithelial disruption has been found [10, 23, 61). 

In addition to the cytotoxic proteins derived from the eosinophil granule, membrane phos­
pholipid-derived mediators may also playa role in the pathogenesis of asthma. Upon activa­
tion, eosinophils produce considerable quantities ofLTC4 and platelet-activating factor (PAF), 
factors that are able to contract smooth muscle. increase vascular permeability, evoke va­
sodilatation, enhance mucus secretion and increase bronchial hyperresponsiveness [62, 63]. 
Eosinophils express FCeRl on their surface and inhalation of an allergen may therefore result 
in the activation of the eosinophils. The release ofLTCt and PAF, together with other media­
tors. may subsequently be responsible for the airway obstruction seen during the EAR [43]. 

Eosinophils are also a newly recognized source of several cytokines. including interleukin 
(IL)-Ia, IL-3, IL-4, IL-5, IL-6, IL-8, gmnulocyte/macrophagecolony-stimulating factor (GM­
CSF), tumor necrosis factor (TNF)-a, and macrophage inflammatory protein- la (MIP- I a) 
[39,64-73]. Since many of these cytokines are required for recruitment, activation and sur­
vival of eosinophils. an autocrine regulation may prolong the eosinophilic inflammation in 
the asthmatic airways. thereby contributing to the chronicity of the inflammatory reaction. 

The recruitment of eosinophils into the airways requires the presence of chemokines and 
adhesion molecules. Several chemokines, including eotaxin. IL-5, monocyte chemoattractant 
protein (MCP)-3, MCP-4, MIP-Ia and RANTES (Regulated upon Activation, Normal T 
cell Expressed, and presumably Secreted) are involved in the recruitment of eosinophils into 
the airways, predominantly via activation of the CCR-3 receptor [74-79]. Interaction be­
tween very late activation antigen (VLA)-4 on eosinophils and its ligand vascular cellular 
adhesion molecule (VCAM)-l on endothelial cells seems to playa role in the selective re­
cruitment of eo sino phi Is into the airways [80-83). Expression ofVCAM- I is up-regulated by 
IL-4, and immunohistochemical studies have shown an increased expression ofVCAM-1 in 
asthmatic airways [81, 83]. 

Lymphocytes 
T lymphocytes probably playa role in all inflammatory responses that are antigen driven, 

in the sense that they are the only cells that can recognize and respond directly to snch 
antigens. T lymphocytes can be divided into two major functional subgroups: CD4-positive 
helper T cells and CD8-positive cytotoxic T cells (Fig. 4). 
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Figure 4. T cell subsels and their functions. 
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Helper T cells (CD4-positive) recognize antigen in the context of l\1HC class II mol­
ecules and this results in their activation, proliferation, and release of cytokines. Based on 
their cytokine profile produced, at least three distinct subsets can be distinguished: ThO, Th I, 
and Th2 [29, 84]. Thl cells predominantly secrete IL-2 and intelferon-y (IFN-y), whereas 
Th2 cells produce [L-4, IL-5, IL-9, IL-IO and IL- [3 (Fig. 4). Other cytokines, like IL-3 and 
GM-CSF, can be secreted by both subtypes. ThO cells are able to produce all of these cytokines. 
The development ofThl cells is strongly promoted by IFN-yand IL-12, whereas IL-4, IL-
10, and prostaglandin (PG) E, stimulate the development ofTh2 cells [85, 86]. IFN-yinhib­
its the development ofTh2 cells, whereas Thl cell development is inhibited by [L-IO [86]. 
Thus, products of Thl cells have the capacity to inhibit the growth of Th2 cells, and vice 
versa (Fig. 4). Recently, another CD4-positive T cell subset has been described [87]. This 
subset, designated T regulatory cells (Trl), was shown to produce high levels of IL-I 0, to 
suppress antigen-specific immune responses and to down-regulate pathological immune re­
sponses ill vivo [87]. 

Th2 cells, through their release of IL-3, IL-4, IL-5, and [L-9, favor the isotype switch of 
B lymphocytes to IgE [37], support mast cell growth, and promote the recruitment, activa­
tion and survival of eosinophils [39, 88, 89], and are therefore strongly implicated ill the 
pathogenesis of asthma. Moreover, high levels of IL-9 may contribute to bronchial 
hypclTesponsiveness [90], The apparent predominance ofTh2 cells ill asthma is supported 
by the observation that asthmatic airways show increased numbers of cells expressing Th2-
like cytokines [30, 91-93]. [n addition, increased levels of Th2-like cytokines can be de­
tected in BAL fluid from asthmatics compared to healthy individuals [94]. However, Th2 
cells comprise a minor population in the airways of asthmatic patients and other T lympho­
cytes present within the airways may release IFN-y upon activation [92, 95]. A preliminary 
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study showed that, after allergen challenge, not only 1L-4 but also IFN-y was increased in 
BAL fluid [96]. In a murine model of asthma, it was shown that the development of airway 
hyperresponsiveness was dependent on IFN-yand independent of eosinophil infiltration [97]. 
Furthermore, IL-4 knockout mice sensitized and challenged with ovalbumin do not develop 
airway hypenesponsiveness [9S, 99]. Therefore, it has been suggested that IL-4 is essential 
in the development and initial phase of the allergic reaction, but its function in the effector 
phase remains uncertain [97-99]. 

The total numbers of both CD4-positive and CDS-positive T lymphocytes in the bron­
chial mucosa of asthmatics do not differ significantly from healthy subjects and in both groups 
CD4-positive cells predominate over CDS-positive cells [100-102]. Only cells in the biop­
sies of asthmatics showed evidence of activation, as determined by the expression of the IL-
2 receptor (CD25) and MHC class II and VLA-l molecules [31, 101, 103-105]. Interest­
ingly, in a study using asthmatic patients known to develop a LAR, a selective increase in 
CD4-positive T cells in BAL fluid 48 h after allergen challenge was reported [106]. This 
finding complements those of decreased CD4-positive T cells in peripheral blood after aller­
gen challenge in atopic asthmatics and suggest that selective recruitment ofCD4-positive T 
cells to the lungs may occur in association with the LAR to allergen challenge [107, 108]. 
The recent observation that the CCR-3 receptor is, in addition to basophils and eosinophils, 
selectively expressed on Th2 cells, and not on Till cells or CDS-positive T cells, clearly 
indicated that this receptor is of importance in allcrgic reactions [109]. 

CD8-positive T cells recognize antigens in the context of MHC class I molecules. These 
cells are involved in the elimination of cells expressing lle\V antigens as a result of bacterial 
or viral infection or malignant transformation (Fig. 4). The role of CD8-positive cells in 
asthma is not completely clear yet. However, in a Th2-like environment virus-specific CD8-
positive cells may decrease their IFN-y production and increase their production of IL-5, 
which may cause eosinophilia after viral challenge [110, III]. Such results lllay explain the 
link between viral infections and bronchial asthma, as an IL-4-depcndent switch to CD8-
positive cells secreting IL-5 may not only exacerbate asthma by recruiting eosinophils in to 
the airways, but impaired IFN-y production may also lead to delayed viral clearance [110-
112], In addition, there is growing body of evidence suggesting that CDS-positive T cells 
play an important role in regulating 19B responses. The natural immune response to inhaled 
protein antigens includes a MHC class I-restricted CD8-positive T cell component, the ap­
pearance of which is associted with active suppression of IgE antibody production [113]. 
Furthermore, it has been shown that antigen-specific CD8-positive T cells inhibited 19E re­
sponses and IL-4 production by CD4-posiIive T cells in rats [114]. 

B lymphocytes and plasma cells are the producers of antibodies. Initially the B cell pro­
duces intraccllular antigen-specific 19M, which then becomes bound to the surfacc of the cell 
and act as the antigen receptor for that cell. On exposure to that antigen and factors released 
by helper T cells, B cells become activated, may switch their isotype production, start to 
divide and differentiate in memory cells or plasma cells. 1sot)'pe-switching to IgE, as occurs 
in the development of allergy, requires the presence of IL-4 produces by Th2 cells. 

B lymphocytes are rare in the bronchial mucosa and BAL fluid, both in asthmatics and in 
healthy subjects [115]. In contrast, distinct B cell areas can be detected in BALT [I 16]. In 
peripheral blood of allergic asthmatics, increased numbers ofB cells bearing the low-affinity 
IgE receptor (CD23) can be found, indicating B cell activation [104]. 
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Mast cells 
The human respiratory tract is richly endowed with mast cells, particularly beneath the 

bronchial epitheliulll and in the alveolar walls. There are two types of mast cells that can be 
distinguished by their granule content of neutral prot eases. Mast cells located at mucosal 
smfaces contain predominantly tryptnse (MeT), while at connective tissue sites mast cells are 
enriched with chymase and carboxypeptidase A in addition to tryptase (MCTcl [117]. In­
creased numbers of mast cells (predominantly from the MeT subset) have been found in 
patients with asthma, and tIus is accompanied by an increase in both cell-associated and ceU­
free histamine and tryptase in the BAL fluid [21, 118, 119]. Mast cells recovered from the 
airways of asthmatics by BAL exhibit spontaneous release of histamine and PGD2 and also 
exhibit increased responsiveness to allergen [120). This suggests that lUast cells in asthma 
are primed for mediator release, possibly by cytokines like ILA and IL-IO. 

In human asthma, the EAR is largely caused by the IgE-dependent release of bronchoc­
onstrictor mediators from activated airway mast cells. Indeed, after allergen challenge, in­
creased levels of histamine, tryptase, PODb and LTE-t (the terminal metabolite ofLTC.t) have 
been detected in BAL fluid [21, 119, 121]. 

Mast cells may also playa role in maintaining the chronicity of the inflammatory re­
sponse by producing a variety of cytokines, ineluding ILA, IL-5, IL-6, IL-8, GM-CSF, and 
TNF-a [122]. Since ILA selectively stimulates the development ofTh21ymphocytes [29] 
and IL-5 promotes recruitment and stlrvival of eosinophils [39, 88], it has been suggested 
that mast cells may also be important in the initial stage of the disease [17]. 

Mast cells can often be found in close proximity with sensory nerves and therefore an 
interaction between these two cells has been suggested [123,124]. Indeed, taehykinins re­
leased from sensory nerves have been shown to activate human lung mast cells to release 
histamine [125]. 

Dendritic cells 
Dendritic cells (DC) are the most potent antigen-presenting cells (APC) of the body and 

are unique in their capacity to stimulate naive T cells [126, 127]. In the human lung, DC are 
predominantly located in epithelial and subepithelial tissue of the bronch(iol)us and the bron­
el1Us-associated lymphoid tissue (BALT) [128]. Although DC are a heterogeneous popula­
tion of cells, typical immunocytological features are their long cytoplasmic extensions and a 
strong expression of major histocompatibility complex (MHC) class I and II molecules and 
co-stimulatory molecules (intercellular adhesion molecule-l (ICAM-I; CD54), B7-1 (CD80), 
and B7-2 (CD86)) [116,129,130]. Ultrastructural features of DC are the presence of intra­
cytoplasmic stmctures, the so-called Birbeck granules. Other features often used to charac­
terize DC are the expression of CD 1 a, L25 or S 1 00, but these markers are not necessarily 
present on each DC SUbtype [128,131]. 

Increased numbers of DC have been described in the epithelium and lamina propria of 
asthmatic patients compared to healthy controls [132-134]. However, although it is clear that 
DC play an important role in the presentation of antigens to lymphocytes, less is known 
about tbeir precise role in asthma. 

Macrophages alld Illollocyles 
The airway macrophage is the most numerous cell within the airway lumen, accounting 

for 80-90% of the airway cells in BAL fluid in both healthy and asthmatic subjects [28]. 
Macrophages and ll1onocytes can be activated in an IgE-dependent manner via FCERil (CD23) 
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to release a variety of mediators. These mediators include lipid mediators like LTB4, LTC4, 

POD, and platelet-activating factor, cytokines like IL-I~, TNF-o:, and OM-CSF, reactive 
oxygen species (such as 0,-), and hydrolytic enzymes [135-138]. Bronchial biopsies of asth­
matic patients were found to have increased numbers of totalmacrophages [115], but a re­
duced number of immunosuppressive macrophages compared to healthy individuals [139]. 
The contribution of macrophages to the pathogenesis of asthma, however, still remains to be 
determined. 

Neutrophils 
The evidence that neutrophils by themselves play an important role in the pathogenesis of 

asthma is controversial. Comparison of the number of neutrophils in the bronchial mucosa or 
BAL fluid of stable asthmatics compared to healthy controls did not reveal significant differ­
ences [54, 115, 140]. However, some recent studies suggest that neutrophilia may be an early 
event preceding eosinophilia. Montefort et al. demonstrated an increased number of neutro­
phils in the submucosa of asthmatics 6 h after allergen challenge, and at this time point the 
magnitude of the neutrophil response was more pronounced than observed for eosinophils 
[141]. Finsnes et al. showed, in a rat model for asthma, an early but transient increase in 
neutrophils in BAL fluid, which preceded the influx of eosinophils [142]. Clearly, the role of 
the neutrophil in asthma needs further study. 

Other cells alld mediators 
In addition to leukocytes, it is now generally accepted that also structural cells of the 

bronchus are involved in the initiation and perpetuation of inflalllmatOlY reactions within the 
airways. In this regard, bronchial epithelial cells are of particular importance. These cells 
form the interspace between the internal milieu of the lung and the inhaled air, and thus will 
be exposed to an array of stimuli present within the air. It has been shown that bronchial 
epithe1ial cells produce a variety of mediators that may contribute to the pathogenesis of 
astlmla (reviewed in [143]). The stmcture and function of the bronchial epithelium as well as 
the pathophysiologic changes observed in asthma will be discllssed in chapter 4. 

Loss of epitheJial integrity or epithelial damage may expose intra-epithelial, nonmyeli­
nated, sensOlY nerves, which contain neuropeptides such as substance P and neurokinin A 
[144, 145]. Excitation of sensory nerves by inflanuuatOlY mediators might produce a retro­
grade conduction with local release of neuropeptides, a mechanism called the 'local axon 
reflex' [146], Release of neuropeptides may subsequently result in contraction of smooth 
muscle cells, tuicrovascular leakage, vasodilation, secretion of mucus, and cough, a process 
known as neurogenic inflammation [144, 145, 147]. The effects of neuropeptideis are limited 
by rapid degradation by peptidases like neutral endopeptidase (NEP) [148]. Inhibition of 
NEP, as has been shown to occur by viruses [149], cigarette smoke [150], .and chemical 
initants [151], may therefore contribute to enhanced neurogenic intlammatiOll. The innerva­
tion of the human airways and its possible role in asthma will be discussed in chapter 2. 
Peptidases will be discussed in detail in chapter 3. 

Glucocorticoid therapy: suppression of the immulle response 
Asthmatic airways are chronically inflamed, even when patients are asymptomatic, and 

therefore anti-inflanillmtory drugs such as glucocorticoids should be used early in the course 
of the disease. Several studies have shown that glucocorticoids improve the clinical signs of 
asthma, and decrease the level of bronchial responsiveness, the requirements for other drugs 
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like p,-agonists and oral steroids, and the inflammatory process [152-156]. Glucocorticoids 
and their beneficial effects in asthma will be discussed in more detail in chapter 5. 
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The human airways arc innervated via efferent and afferent autonomic nerves, which 
regulate many aspects of airway function, including airway smooth muscle tone, airway 
secretion, bronchial circulation, microvascular permeability, and the recruitment and 
subsequent activation of inflammatory cells [1,2]. In addition to the classic cholinergic and 
adrenergic innervation of the airways, neural mechanisms that arc not blocked by cholinergic 
or adrenergic antagonists arc present [1-4], Originally, it was thought that this non-adrenergic 
non-cholinergic (NANC) system was an anatomically separate nervous system, but at present 
it is clear that at least certain NANC neural effects are mediated by the release of 
neurotransmitters from classic parasympathetic (cholinergic) or sympathetic (adrenergic) 
nerves. The inhibitory NANC (i-NANC) system, which is the only neural bronchodilator 
pathway in the human airways, is co-localized with acetylcholine in the parasympathetic 
nerves [5, 6J. NANC vasoconstrictor responses are mediated by the release of neuropeptide 
Y from adrenergic nerves [7]. Finally, the excitatory NANC (e-NANC) system (which 
activation results in bronchoconstriction) is located in a subpopulation of non-myelinated 
sensory C-fibers [8]. 

inflammatory cells 

• • • • • . D· 
•••• 
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Figure 1. Inleraction between ainnlY nen'C's and illl1al1l111alory cells. 

aillNay nerves 

There is evidence that neural control ofthe airways may be abnormal in asthmatic patients. 
and that neurogenic mechanisms may contribute to the pathogenesis and pathophysiology of 
asthma. A complex interaction between cel1s and mediators of the immune system and the 
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nervous system is present within the airways (Fig. I), InflanunatOlY mediators may modulate 
or facilitate the release of neurotransmitters from airway nerves, whereas neuralmcchanisms 
may contribute to the infianunatOlY process in the airways by causing neurogenic inflammation. 

2.1. PARASYMPATHETIC NERVOUS SYSTEM 

Parasympathetic nerves are the dominant neural pathway in the control of airway 
Sl1100th muscle tone and secretion in human airways. Their major neurotransmitter is acetyl­
choline (Ach), It acts via binding to the muscarinic receptors, of which at least 3 subtypes call 
pharmacologically be recognized in the human lung [9]. Excitatory MI receptors are present 
in airway parasympathetic ganglia and may facilitate neurotransmission, which is mediated 
via nicotinic receptors (Fig. 2) [10]. In contrast, Ml receptors on postganglionic nerve tenni­
nals in human central airways and subsegmental and terminal bronchi inhibit the release of 
Ach, thus reducing the stimulation of post junctional M3 receptors which constrict airway 
smooth muscle (Fig. 2) [11-14]. 

preganglionic 
nerve 

parasympathetic 
ganglion 

postganglionic -;::: -
nerve 

A~~ 

~(B 
airway smooth muscle 

Figure 2. Muscarinic receptor subtypes in the human airways. MI receptors in parasympathetic ganglia may 
facilitate neurotransmission. In contrast, M2 receptors inhibit the release of Ach, thereby reducing the stimulation 
of post junctional :M) receptors on airway smooth muscle. 
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Several mechanisms may contribute to cholinergic bronchoconstriction in asthma. First, 
asthmatic patients lllay have an increased cholinergic reflex bronchoconstriction due to 
stimulation of sensory receptors in the airways by inflammatory mediators like histamine, 
bradykinin, and prostaglandins (PG) [13, IS, 16]. Second, the release of Ach may be increased 
in asthmatics. Several mediators knowll to be increased in asthmatics (such as tachykinins, 
thromboxane, and PGD2) have been shown to facilitate Ach release from postganglionic 
nerves ill the airways [17, 18]. Third, evidence for a dysfunction of M2 receptors has been 
found [19, 20]. Such a defect may then result in exaggerated reflexes in asthma, since the 
normal feedback inhibition of Ach release may be lost (Fig. 2). Some recent studies suggest 
that major basic protein, released by eosinophils, may contribute to the dysfunction of the M2 
receptors [21 -23]. Interestingly, in asthmatic patients many eosinophils and their granule 
proteins are seen in association with airway nerves [23]. It has also been shown that viral 
infection may result in a loss ofM2 receptor function, due to the actioll.ofviral neuraminidase 
all the sialic acid residues of M2 receptors, which are necessary for their function [24, 25]. 
Recently, it has been shown that immunoglobulin E (IgE) may facilitate Ach release from 
cholinergic nerves. an effect that also appears to be related to M2 receptor dysfunction [26]. 
Finally, inflammatory mediators may directly increase the sensitivity of human ain"ay smooth 
llluscle cells to cholinergic stimulation resulting in an enhanced bronchoconstriction [27]. 

2.2. SYMPATHETIC NERVOUS SYSTEM 

The sympathetic or adrenergic nervous system is less prominent than the parasympathetic 
nervous system within the human airways. Its main neurotransmitters are noradrenaline and 
neuropeptide Y [I, 28]. Noradrenalin is able to activate CI.- and ~-adrenergic receptors on 
target cells in the airways. There is a sparse adrenergic innervation of the human airways. 
with adrenergic fibers especially present in close association with submucosal glands and 
bronchial arteries. Airway smooth muscle does not seem to be innervated by the adrenergic 
nerve system, but it is possible that adrenergic nerves may influence broncholllotor tone 
indirectly via pre-junctional CI.- and ~-adrenergic receptors [29-33]. 

The (f.l-adrenergic receptor, which mediates the contraction of smooth muscle, is relatively 
sparse and may only be demonstrated under certain conditions [34-38]. Prejunctional (J.r 

adrenergic receptors (autoreceptors) may inhibit the release of both norepinephrine and of 
neuropeptide Y (NPY) from adrenergic nerves and the release of tachykinins from sensory 
nerves [39-41]. Cholinergic neurotransmission may also be inhibited via prejunctional ar 
adrenergic receptors [39]. 

p-adrenergic receptors, which mediate bronchorelaxation, are widely distributed in the 
human lung [36, 42-45]. At least three ~-adrenergic receptors can be distinguished: ~I-' ~2' 
and ~radrenergic receptors [46-49]. In the human lung, ~-adrenergic receptors on smooth 
muscle cells are entirely of the Prsubtype and their number increases towards the peripheral 
airways [36, 37, 50]. The epithelial and mast cell ~-adrenergic receptors are also of the ~r 
subtype, whereas in human submucosal glands and alveolar walls, receptors of the PI-subtype 
have also been found [36]. Thus far, no ~radrenergic receptors have been detected in the 
human lung [47-49]. 

A reduced respiratory p-adrenergic receptor function in asthma has been postulated [34]. 
Such a defect would lead to impaired relaxation of airway smooth muscle and could increase 
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cholinergic tone and mediator release from mast cells. Investigations into the function of p­
adrenergic receptors in asthmatics, however, have shown conflicting results. Several 
investigators rep0l1ed decreased p-adrenergic receptor function in isolated airways of asthmatic 
patients [51-53], whereas others found normal relaxations of airways smooth muscle from 
asthmatics [54, 55]. Studies on polymorph isms in the ~radrenergic receptor gene have shown 
that the frequency of most polymorphisms (0IyI6, resulting in enhanced agonist-promoted 
down-regulation; 01u27, resulting in resistance to down-regulation; and Ile164, resulting in 
altered coupling to adenyl cyclase) is not different between asthmatic patients and healthy 
controls [56-58]. However, some recent studies indicate that polymorphic forms may promote 
asthmatic phenotypes or intluence the response to ~-agonist therapy [59-61]. Expression of 
mRNA encoding the Prudrenergic receptor has been reported to be increased in patients 
with asthma [62]. However, the density of the receptor expression in asthmatic patients is not 
different from those observed in healthy subjects [63, 64]. Lack of ~,-adrenergic receptor 
dysfunction may be demonstrated most convincingly by the fact that B-agonists have excellent 
bronchodilatory effects in asthmatic patients. 

In addition to norepinephrine, adrenergic nerves contain NPY, a 36 amino acid peptide 
which is a cotransmitter with norepinephrine and usually amplifies its effects [4]. NPY, which 
is part of the e-NANC nervous system, has no direct effect on airway smooth muscle but may 
cause bronchoconstriction via release of prostaglandins [65]. In addition, NPY is a potent 
vasoconstrictor in some vascular beds [4,66]. NPY may also modulate immune cell functions, 
such as T cell adhesion to fibronectin [67, 68]. 

In asthmatic patients, no difference in the number of NPY -immunoreactive nerves in the 
airways has been found compared to healthy controls [69]. In contrast, serum levels ofNPY 
have been shown to be increased during exacerbations of asthma [70]. 

2.3. INHIBITORY-NANC NERVOUS SYSTEM 

The i-NANC nervous system is the only neural bronchodilator pathway in the human 
airways. Anatomically, it is co-localized with acetylcholine in the parasympathetic nerves [5, 
6]. Neurotransmitters of the i-NANC system include neuropeptides such as vasoactive 
intestinal peptide (VIP), peptide histidine methionine (PHM), Hnd pituitHry adenylate cyclase 
Hctivating peptide (PACAP) [71,72], and nitric oxide (NO) [73-76]. 

2.3.1. l",soactive illtestillal peptide alld peptide histidille 11Iethiollille 

VIP is a 28 amino acid peptide, which acts through binding to the VIP receptors [3]. 
Receptors for VIP are localized in pulmonary vascular smooth muscle, airway smooth muscle 
of large, but not small airways, airway epithelium, and submucosal glands [77-80]. At present, 
at least two VIP receptors can be distinguished [81-84]. Binding of VIP to its receptors 
(which is dependent on its C-tenllinal part [85]) activates adenyl cyclase, resulting in elevated 
cyclic AMP levels [86]. The cffects of VIP are, therefore, often similar to the effects of~­
adrenergic receptor agonists. VIP is one of the most potent relaxants of airway smooth muscle. 
It may be co-released from cholinergic nerves (together with NO) and act as functional 



Autonomic blllen'atioJl of humall ainm)'s 35 

antagonist of cholinergic bronchoconsttiction. In addition, VIP and NO may act prejunctionally 
to inhibit Ach release (Fig. 3). 
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Figure 3. Functional anlngoIDsm of cholinergic neul'otl'ansmission. VIP and NO, coreleased from cholinergic 
ncrvcs, may act as functional antagonists of cholinergic bronchoconstriction and may act prcjunctionaIIy to inhibit 
Ach release IS7]. In asthmatic airways. VIP and NO may ll10rerapidly be inactivated. thereby leading to exaggerated 
bronchoconstriction. 

Besides effects on smooth muscle, VIP potently stimulates mucus secretion [88] and is a 
potent vasodilator [89, 90]. Interestingly, an increased number of VIP-positive nerves can be 
found around glands of patients with clU'OlllC bronchitis or hypertrophic rhinitis, suggesting a 
role for VIP in sputum producti'ln and hypersecrctive changes [91, 92]. VIP also has several 
immunomodulatory functions (reviewed in [93]). These effects include inhibition of mediator 
release frolllmast cells [94], inhibition ofT lymphocyte proliferation, IL-2, IL-4, and IL-IO 
production [95-97], regulation of isotype-switehing in B lymphocytes [98], and stimulation 
of [L-6 and IL-8 release from human bronchial epithelial cells [99]. 

PHM is produced by alternative splicing of the gene encoding VIP [3, lOa], PHM 
stimulates adenyl cyclase and appears to activate the same receptor as VIP [78]. Therefore, 
the effects are similar to the effects of VIP, vlthough some differences in potencies have been 
described [I, 10[, 102]. 
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2.3.2. Nih'ic oxide 

NO appears to be the major neurotransmitter of i-NANC nerves in human airways [73-
76]. NO is formed during the conversion of L-arginine and oxygen to L-citmlline by the 
enzyme nitric oxide synthase (NOS), After production! NO is released by simple diffusion. 
NOS-containing nerves can be found in tracheal and bronchial smooth muscle, around 
submucosal glands and around blood vessels [71, 103]. As mentioned above, NO may be 
coreleased with Ach and VIP, and has potent smooth muscle relaxing propeliies. Furthellllore, 
increased NO production in the airways may result in hyperemia, plasma exudation, and 
mucus secretion [104, 1051. NO also has been implicated in skewing T lymphocytes towards 
a Th2 phenotype, through inhibition ofThl cells and their productiou of IFN-y [106]. 

\Vhether i-NANC responses arc impaired in asthma is not clear. In patients with severe 
asthma, illllllunohistochemistry showed a striking depletion of VIP-positive nerves, but this 
may be due to rapid degradation of VIP during the processing of the biopsies [107, 108]. 
Indeed, no differences in VIP-immunoreactivity in tracheal or parenchymal tissue was observed 
between healthy subjects and asthmatic patients [109]. Also, no difference in VIP-receptor 
expression was observed between healthy subjects and asthmatic patients [80]. NANC 
bronchodilation has been demonstrated in human airways bl vivo but does not appear to be 
defective in patients with mild asthma [51, 110]. Nevertheless, decreased plasma levels of 
VIP have been described during exacerbations of asthma [70]. Studies using guinea pigs 
have shown that antigen exposure results in impairment of neural NO-mediated relaxation 
[111,112]. This effect was not due to reduced expression of NO synthase, but probably 
reflects rapid inactivation of NO by free radicals from inflammatory cells [113]. Similar, 
rapid degradation of VIP by mast cell tryptase [114-116] or other peptidases may result in 
exaggerated cholinergic neural bronchoconstriction (Fig. 3). 

2.4. EXCITATORY·NANC NERVOUS SYSTEM 

ExcitatOlY NANC bronchoconstrictor responses are believed to be mediated via the release 
of neuropeptides from a subpopulation of non-myelinated sensory C-fibers in the airways. C­
fibers of this nociceptive sensory nervous system transmit the sensations of itch and pain and 
are associated with tissue injmy. 

C-fibers are stimulated both by exogenous substances, such as cigarette smoke, capsaicin 
(the pungent principle of red pepper), or inhaled irritants, and by endogenous substances, 
such as histamine, bradykinin, and prostaglandins [1 17]. Upon stimulation, C-fibers transmit 
information to the central nervous system, where reflex responses may be evoked. In addition, 
neuropeptides are released from the peripheral ends of these afferents into the airway 
microenvironment, where they can bind to specific receptors and exert their effects (the so 
called 'local axon reflex') [118]. Among the best-studied neuropeptides of scnsOlY nerves 
are the tachykinins (TK) substance P (SP) and neurokinin A (NKA), and calcitonin gene­
related peptide (CORP). Recently, secretoneurin has also been found to be a neurotransmitter 
of sensory nerves [119]. 
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2.4.1. Tachykillills 

2.4.1.1. Structure, localization alld receptors 

TK are a family of pcp tides with the comlllon C-tenninal sequence Phe-X-Gly-Leu-Met­
NH, [3] At present, five tachykinin peptides have been identified: SP, NKA, neurokinin B 
(NKB), neuropeptide K (NPK), and neuropeptide-y (NP-y). Two distinct preprotachykinin 
(PPT) genes control the synthesis ofTK peptides [3]. The PPT-A gene produces three mRNA 
by alternative splicing: aPPT-A encoding only SP; IWPT-A encoding SP, NKA, and NPK; 
and yPPT-A encoding SP, NKA, and NP-y. The PPT-B gene encodes NKB. 

Nerve fibers containing TK have been detected in the human airways by immuno­
histochemistry [8, 120-126]. SP-imll1unoreactive nerves can be found beneath and within the 
airway epithelium, around mucosal arterioles and submucosal glands, within bronchial smooth 
muscle and around local parasympathetic ganglia. A similar pattern is found for NKA­
immunoreactivity, indicating co-localization of both TK. However, SP- or NKA­
immunoreactive nerves are relatively sparsc compared to VIP-inullunoreactive nerves [69, 123]. 

Three mammalian neurokinin (NK) receptors have been cloned and characterized thus 
far [127, 128]. NKJ receptors are activated preferentially by SP (>NKA>NKB), NK, receptors 
by NKA (>SP>NKB), and NK, receptors by NKB (>NKA>SP). All NK receptors are members 
of the superfamily of guanine nucleotide binding protein-coupled receptors. They are 
glycoprotcins with seven putative alpha-hclical transmembrane segments, an extracellular 
amino-terminus and an intracellular carboxy tail. The amino acid sequencc of each receptor 
type is well conserved among species, but species-dependent pharmacological heterogeneity 
is evident [127-129]. 

In human airways, only SP and NKA are known to be present and the expression ofNK 1 

and NK2 receptors predominate in various target cells of the airways. In general, NKI receptors 
are primarily responsible for mediating the inflammatory effects of TK, such as stimulation 
of mucus secretion and microvascular leak [130, 131], whereas NK2 receptors mediate 
bronchoconstriction [132-134]. 

The localization of NJ(I receptors in the airways, as determined by autoradiography, 
shows a distribution that parallels the known actions of TK. NK J receptors are present on 
smooth mllscle, pulmonary vessels, airway epitheIiU1T1 and submucosal glands [135, 136]. 
NK2 reccptor expression in the human lung has not yet been carefully characterized. However, 
ill vitro studies have indicated that the contractile effects ofTK on smooth muscle are mediated 
mainly, but not exclusively, by NK, receptors [132-134]. 

2.4.1.2. Effects ojtachykillills 

Upon release by sensory nerves and subsequent activation of specific NK receptors, TK 
are able to exert a wide variety of effects. Among the possible target cells are smooth muscle 
cells, submucosal glands, epithelial cells, blood vessels, nerves, and cells of the immune 
system. 

Effects on airway smooth muscle 
Studies using isolated human airways have shown that both SP and NKA, but not NKB, 

are able to contract human bronchi and bronchioli [124, 137-140]. NKA is a more potent 
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constrictor than SP and was reported to be, on a molar base, 2-3 orders of magnitude more 
potent than histamine or Ach [137]. The contractile response to NKA is significantly greater 
in smaller bronchi than in more proximal airways, indicating that TK may have a more 
important constrictor effect on more peripheral airways [139]. Using selective NK-receptor 
agonists and antagonists, it has been demonstrated that the constrictor effect is mediated 
mainly via NK, receptors [132-134]. However, NKJ receptors may also be involved in SP­
induced contraction of human small bronchi [141]. 

Interestingly, the contractile effects of SP and NKA on human bronchi ill vitro can be 
modulated by passive sensitization. Human bronchi incubated overnight with serum from 
asthmatic patients atopic to Dermafophagoides pfermlyssil1lls showed an enhanced sensitivity 
and an enhanced maximal contractile response to SP and NKA [142]. These enhanced effects 
were independent of changes in peptidase activities [142]. 

Several studies have determined the bronchoconstrictor effect of SP and NKA ill vivo, 
both in healthy subjects and in asthmatics [143-151]. In accordance with the ill vitro studies, 
it was found that both NKA and SP are bronchoconstrictors, NKA being more potent than 
SP. Furthermore, asthmatic patients were found to be hyperresponsive to SP and NKA. Some 
reports have suggested a role for the mast cell in the bronchoconstrictor effect of TK, but 
although SP has been shown to stimulate the release of histamine from human lung mast cells 
ill vitro [152], it is not clear whether such a mechanism occurs ill vivo. 

In addition to the contractile effects ofTK on airway smooth muscle cells, TK also increase 
the proliferation of these cells, an effect thal is mediated via NKJ receptors [153]. 

Effects all submllcosal glallds 
SP and NKA stimulate mucus secretion from submucosal glands in human airways, both 

ill vi:-ro and ill vivo [130,154]. SP is more potent than NKA, indicating the involvement of 
the NK] receptor. As mentioned above, NK] receptors indeed have been identified on 
submucosal glands in human bronchi [135]. In addition, SP has been shown to be a potent 
stimulator of goblet cell secretion [155]. Because goblet cells are the only source of mucns in 
peripheral airways, SP may playa role in mucus secretion in peripheral airways. 

Effects all blood vessels 
In rodents, stimulation of sensOlY nerves or administration of TK causes microvascular 

leakage through the opening of endothelial gaps at postcapillary venules [156-159]. Among 
the TK, SP is the most potent and NKI receptors have been identified on postcapillary venules 
[160, 161]. Whether TK cause ll1i~rovascular leakage in humans is not certain, since no 
direct measurements have been made. Neverthelesfo, SP and NKA increased the nasal protein 
output in patients with allergic rhinitis, suggesting the occun"ence of microvascular leakage 
[131}. More detinitive evidence was recently provided by the demonstration that capsaicin 
induced plasma extravasation in the human nose via a ncuronal1y mediated pathway [162] 
and by the observation that SP is generated ill vivo following nasal challenge of allergic 
individuals with BK [163]. 

TK also have potent offects on airway blood now [66, 164, 165], presumably via NKJ 
receptors [166, 167]. Both SP and NKA cause vasodilation which, together with the SP- or 
NKA-mediated increase in microvascular permeability, may contribute to the formation of 
oedema. 

SP has been shown to promote endothelial-leukocyte interaction via increased expression 
of adhesion molecules [168]. However, this effect may be indirect via activation of mast cells 
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and subsequent release ofTNF-a. [169]. A recent study indicates that SP stimulates endothelial 
cell differentiation into capillmy-like stmctures [170]. This may indicate that increased levels 
of SP, found in chronic inflammatory conditions, may playa role in tissue repair by promoting 
the development of new vessels. 

Effects OIlIWI1'eS 

In human airways the interaction between TK and airway nerves is not certain. However, 
studies using rodents suggest that TK may amplify or facilitate cholinergic neurotransmission 
[17, 171-174] and may modulate i-NANC mediated bronchodilation [175, 176], thereby 
contributing to exaggerated bronchoconstriction. 

Effects all epithelial cells alldfibroblasts 
TK stimulate ciliary beat frequency through activation of NK[ receptors on bronchial 

epithelial cells, and thereby contribute to the clearance of mucus, bacteria and inhaled pmiicles 
[177, 178]. TK also stimulate ion transport in airway epithelium, and exert a protective effect 
on bronchial epithelial barrier function under conditions of challenge r 179]. 

Stimulation of bronchial epithelial cells with TK results in the release ofPG~ and possibly 
the epithelium-derived relaxing factor (EpDRF) [ISO, 181]. In addition, TK are involved in 
the migration and proliferation of bronchial epithelial cells [IS2]. 

SP has been shown to increase the expression of adhesion molecules on bronchial epithelial 
cells and to stimulate the release of neutrophil chemoattractant mediators by bronchial 
epithelial cells [183, IS4]. Therefore, SP may be involved in the recruitment of neutrophils 
into the airways. 

TK may also stimulate chemotaxis and proliferation of human lung fibroblasts. an effect 
that is mediated via release ofPGE, and prostacyclin [185-IS7]. Activation of fibroblasts by 
TK may therefore contribute to the strucnu"al abnormalities observed in the asthmatic airways. 

t.lfects 011 h{fla111111atory cells 
TK have effects on a number of inflammatory cells, including neutrophils. eosinophils. T 

lymphocytes, mast cells, monocytes and macrophagcs, lymphocytes, and dendIitic cells (Table 
I) [188]. Several of these effects may be explained by the abilit)' ofTK to activate transcription 
factors like nuciear factor (NF)-KIl [IS9], activating protein (AP)-I, and cAMP-responsive 
clement-binding protein (CREB) [190]. 

Table1. Main effects of TK on inflammatory cells. 

Cell Effect of TK' 
Neutrophils Chemotaxis t, adherence t, 0, production t 
Eosinophils Migration 1, degranulation 
Mast cells Histamine release 
T lymphocytes Proliferation t, cytokiue production t, chemotaxis t 
B lymphocytes Differentiation, immunoglobulin isotype switch 
Monocytes/macrophages Release of inflanunatOlY cytokines 
Dendritic cells Chemotaxis i, antigen presentation J, 
• see text for details" 
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TK stimulate a number of neutrophil functions, including chemotaxis, aggregation, 
superoxide production, and adherence to epithelium and endothelium [191-199]. The 
expression of an endothelial leukocyte adhesion molecule (ICAM-I) by the microvascular 
endothelium following application of SP could be of relevance for the latter effect [192]. 
However, relatively high concentrations of SP may be required for activation of nentrophils. 
This may be explained by the high levels of the SP-degrading enzyme neutral endopeptidase 
(NEP) on the surface of these cells [199]. At low concentrations, SP may have a printing 
effect on neutrophils. i.e., SP call enhance the neutrophil response to other stimuli at 
concentrations that may otherwise be ineffective [200, 201]. 

SP has a degranulating effect OIl eosillopilils and induces human eosinophil migration ill 
vitro [202, 203]. Priming of human eosinophils with SP (via the NK, receptor) has been 
shown to enhance platelet-activating factor (PAF)- or IL-5-stimulated migration [204]. In an 
ill vivo study with allergic rhinitis patients, it was shown that SP given after repeated allergen 
challenge enhanced the recruitment of eosinophils [205]. Eosinophils also may produce SP 
themselves [206, 207J and may activate ganglion neurons to release SP [208]. 

Mast cells can be found in close proximity with sensory nerves [209, 210]. It has been 
demonstrated that SP can cause histamine release from human lung mast cells [152, 211 J, 
and that SP-induced histamine release from BAL mast cells from asthmatic patients is 
significantly higher than in healthy subjects [212J. Although NK, receptors have been located 
on mast cells, some data suggest that the effect of SP on mast cells is mediated via a 110n­

receptor mediated pathway, since the effect is dependent on the N-terminal sequence of SP 
[129,213, 214J. SP in low concentrations can act as a mast cell primer to other agents (like 
allergens) when released from sensory nerves [215J. 

SP activates mOllocyfes to release inflammatory cytokines, including IL-I, TNF-a, IL­
ID, and IL-6 [216-2181. Again, t1tis effect does not seem to be mediated via classic NK 
receptors [219, 220J. The effect of TK on human lIIacmpltages is less clear. Although SP 
may increase the production of oxygen radicals by guinea pig macrophages (via both NKJ 
and NK2 receptors), no effect was observed on human alveolar macrophages [221-223]. A 
recent preliminary repOit did demonstrate the presence ofNK[ receptors on human alveolar 
macrophages and showed that SP may be involved in cytokine production by these cells 
[224J. Rat alveolar macrophages have been shown to express PPT-A mRNA and to display 
SP-like immunoreactivity, indicating that macrophages may also be a source for SP in the 
airways [225J. 

NK receptors are present on certain subsets of T and B lymphocytes, and TK -containing 
nerves have been demonstrated in lymphoid tissne [226, 227]. These findings suggest a role 
for TK in regulating lymphocyte functions. Indeed, several effects of TK on T and B cells 
have been described yet. SP may be a late-acting B lymphocyte differentiation cofactor 
regulating immunoglobulin production and secretion [228-231 J. TK can also activate 
proliferation ofT lymphocytes and stimulate their cytokine production [232-234J. Furthellnore, 
SP has recently been shown to be a lymphocyte chemoattractant [235J. In addition to NK 
receptors, other receptors or non-receptor-mediated pathways may be involved in the effects 
ofTK on lymphocytes [236-238J. 

Little data is available on the effects of TK on dendritic cells (DC). In rats, pulmonary 
DC were shown to bind SP and to display increased motility in response to graded 
concentrations of SP, suggesting a role for SP in the recruitment of DC into the airways 
[239]. SP rcceptors have recently been identified on Langerhans cells and it was shown that 
high concentrations of SP inhibit antigen presentation by these cells [240J. 
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2.4.2. Calcitollill gene-related peptide 

CORP is a 37 amino acid peptide formed by the alternative splicing of the precursor 
mRNA coded by the calcitonin gene [241 J. It occurs in two forms. A and B. which differ by 
three amino acids. Both forms are expressed in sensory nerves, often colocalized with TK, 
and act via binding to the CORP type I receptor [125, 242, 243]. CORP is a potent vasodilator, 
cspecially of arterial and arteriolar vessels [244]. Its effect, which is long-lasting, is mediated 
via direct action on receptors on vascular smooth muscle. Indeed, receptors for CORP are 
most dense on arterial vessels, with little expression on smooth muscle or epithelial cells in 
the human airways [117, 245]. CORP itself has no direct effect on airway microvascular 
leak, but amplifies the plasma protein extravasation induced by SP [244]. This is likely due 
to a synergistic combination of the potent mteriolar vasodilator effect of CORP, which increases 
mucosal blood flow, and the SP-induced venular vasodilation and increased vascular 
permeability, which increases the extravasation of plasma fluid. CORP has also been reported 
to cause constriction of human bronchi ill vitro [246]. However, since airway smooth muscle 
cells in humans possess few receptors for CORP [117J, this bronchoconstrictor effect may be 
mediated indirectly. 

CGRP may also affect immune functions. It has been shown that nebulized CORP causes 
eosinophilia in the rat lung [247]. CORP inhibits SP-induced superoxide productiou in human 
neutrophils [248] and stimulates the chemotmus and adhesion of lymphocytes [68, 235J. In 
addition, CORP may be involved in epithelial repair by stimulating broncltial epithelial cell 
migration [249] and modulates B lymphocyte differentiation [250, 251 J. 

2.5. NEUROGENIC INFLAMMATION 

The set of responses produced through the release ofTK from the peripheral endings of 
sensory nerves via an axon reflex is now widely known as 'neurogenic inflammation'. The 
basis for this term is twofold: the biological effects produced by TK in the airways in general 
are pro-inflammatory and provide a neurogenic contribution to the overall inflanunatOlY 
process; and the stimuli that elicit TK release in the airways include mediators of inflammation, 
such as bradykinin (BK), histamine, and prostanoids. Since neurogenic inflammation mimics 
many of the pathophysiological features of asthma, a role for neuropeptides in the pathogenesis 
of asthma has been suggested. Several mechanisms may underlie the apparent upreguJation 
of the sensory nellropeptide effects (Fig. 4). 

First, sensory nerves in asthmatic airways may be hyperreactive. On one hand, this may 
be due to epithelial shedding, thereby exposing sensory nerve endings. On the other hand, 
sensOlY nerves in the asthmatic airways may be hyperalgesic, making them more responsive 
to activation by several mediators, including bradykinin. Certain inflammatory mediators 
such as PO (particularly POE,) and cytokilles, like IL-I ~ and TNF-o:, may sensitize sensory 
nerve endings, causing a hyperalgesic state [252, 253]. BK is a potent activator of sensory 
nerves and causes asthma-like symptoms in asthmatics, but its effects in healthy subjects are 
much less prominent [254-256J. 

Second, the sensory innervation of the asthmatic airways may be different from that in 
healthy controls. In airways of patients with fatal asthma, both the length and the number 
of SP-immunoreactive nerves has been shown to be increased when compared to airways of 
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Figure 4. Possible mechanisms underlying the apparent upregulation of sensory ncuropeptide effects in the 
asthmatic airways. 

healthy subjects [126]. However, this lInding could not be reproduced in another study using 
bronchial biopsies of mild asthmatics, which may suggest that increased innervation is a 
feature of either prolonged or severe asthma [109]. SP-illllllUuoreactivity has also been detected 
in induced sputum of asthmatics, but not in sputum of healthy subjects [257]. In addition, 
increased amounts of SP were observed in BAL tluid of allergic asthmatics compared to 
healthy controls [258], and after segmental allergen challenge of allergic asthmatics an 
additional increase in SP levels in BAL fluid was observed. Furthermore, increased levels of 
SP have been detected in selUm during exacerbations of asthma [70]. These findings suggest 
an increased e-NANC response in asthmatic patients. Interestingly, recent findings suggest 
that inflammatory mediators may have neuropoietic effects. For instance, IL-II may induce 
the prodnction of SP by sympathetic neurons [259]. 

Third, the effects of the sensory neuropeptides may be increased in asthmatics. Asthmatic 
airways show an increased expression ofNK( and NK2 receptors [260] and the reactivity to 
TK is greater in allergic subjects both regarding NKA-mediated bronchoconstriction and 
SP-mediated nasal congestion [145, 261, 262]. The effects of sensory neuropeptides may 
also be exaggerated due to impaired degradation. NEP seems to be the major enzyme involved 
in the metabolism ofneuropeptides in the airways [263, 264]. Many of the agents that lead to 
exacerbations of asthma, including vimses, cigarette smoke and chemical irritants, appear to 
reduce the activity of NEP in the airways [265-272J. The role of NEP in the modulation of 
neurogenic inflammation wiB be discussed in more detail in chapter 3. 

Although several studies suggest a contribution of neurogenic inflammatory processes in 
the pathophysiology of asthma, the exact contribntion ofTK remains to be determined. The 
availability of highly potent nonpeptide NK receptor antagonists definitively will contribute 
to a better understanding of the role of sensory neuropeptides in the pathogenesis of asthma. 
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Chapter 3 

Peptidases 
Structure, function, and modulation of peptide-mediated effects in the 

human lung 

Peptidases are enzymes capable of cleaving. and thereby often inactivating, small pep­
tides. They arc widely distributed on the smiace of many different cell types, with the cata­
lytic site exposed at the external surface. Peptidases are involved in a variety of processes, 
including peptide-mediated inflammatory responses, stromal cell-dependent B lymphopoie­
sis, and T cell activation. In addition, some peptidases may have functions that arc not based 
on their enzymatical activity. 

Peptidases arc classified according to the location of the cleavage site in the putative 
snbstrate (Table I) [I], Elldopeptidases recognize specific amino acids in the middle of the 
peptide, whereas exopeptidases recognize one or two tcnninal amino acids. Exopeptidases 
that attack peptides from the N-tennillus (removing either single amino acids or a dipeptide) 
are termed (dipeptidyl) amillopeptidases, whereas peptidases attacking the C-tennillus are 
termed carho.\ypeptidases. 

Table 1. Pel1tidases and their substrates. 

Peptidase Specificity' Possible substrates 

Amillopeplidases 

APN 

APA 
APP 
DPPIV 

Carho.\}'peplidases 

CPN 

Elldopeptidases 

NEP 

ACE 

ECE 

Ala/Leu + X -

Glul Asp + X -
Pro + X-
X - Pro/Ala + X-

-X + ArglLys 

IL-8, fMLP, opioid 
pep tides, enkephalins 
angiotensins 
BK,SP 
SP,BK 

anaphylatoxins 

- X - PhelLeulIleNalrryrrrrpl Ala + X - BK, SP, NKA, NPY, VIP, 
enkephalins, BLP, ET-I, 
ANF, angiotensins 

relatively non-specific angiotensins, ellkephalins. 
SP 

-Ile-Ile-Trp + X - big-ET-I 
• X - random amino acid. TIle cleaved bond is represented by a +. 
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3.1. NEUTRAL ENDOPEPTIDASE 24.11 

3.1.1. Characteristics 

Biochemical and molecular characterization 
Neutral endopeptidase (NEP, neprilysin, EC 3.4.24.11) was first characterized from rab­

bit kidney brush border [2, 3]. It soon became apparent that NEP was similar to eukephalinase, 
originally discovered in the brain [4-7]. Furthermore, cloning of the NEP gene and subse­
quent cloning of the common acute lymphoblastic leukemia antigen (CALLA, CD I 0) showed 
that both sequences were similar [8-11]. 

NEP is a glycoprotein of 750 amino acids, with a single 24 amino acid hydrophobic 
segment that functions as both a transmembrane region and a signal peptide (Fig. 1). The C­
terminal 700 amino acids compose the extracellular domain, whereas the 25 N-terminal amino 
acids form the cytoplasmic tail [8, 10, II]. The extracellular domain contains six potential N­
glycosyJation sites. Tissue-specific glycosylation may result in different molecular masses, 
ranging from approximately 90 to 110 Kd [12-15]. The extracellular domain contains the 
pentapeptide consensus sequence (His-Glu-[Ile, Leu, MetJ-X-His) of zinc binding 
mctal1oproteases, in which the two histidillCS coordinating zinc and the glutamic acid resi­
due, together with an aspartic acid residue, are critically involved in the catalytic process [16, 
17]. 

Gene structure 
Characterization of the human NEP gene, which is located at chromosome 3 (q2I-q27) 

[19], showed that it spans more than 80 kilobases (kb) and is composed of 25 exollS [20]. 
Exons 1, Ibis, and 2 encode 5' untranslated sequences; exon 3 encodes the initiation codon 
and the transmembrane and cytoplasmic domain; 20 short exons (exons 4-23) encode most 
of the extracellular region; and exon 24 encodes the C-terminal 32 amino acids of the protein 
and contains the entire 3' untranslated region (UTR). Within exon 24 are live poly(A) addition 
signals. Alternative splicing of exon I, exon Ibis, exon2 (2a), or part of exon 2 (2b) to the 
common exon 3, resulting in four different transcripts, may be the origin of the tissue- or 
stage of development-specific expression of NEP [21, 22]. Indeed, two separate regulatory 
elements have been found in the NEP promoter region and these elements may be regulated 
by the transcription factor CBF/NF-Y in a tissue-specific manner [22, 23]. A eDNA clone 
lacking the complete exon 16 has been isolated from human lung tissue [24]. Deletion of this 
27 amino acid segment was shown to reduce enzyme activity to barely detectable levels. 
However, the physiologic relevance of this tnmcated form remains to be determined. In the 
rat, an exon 5-18 deletion has been described, but no evidence was found to support the 
expression of this variant in the human lung [25]. 

Distribution 
NEP is expressed by a variety of hematopoietic and non-hematopoietic cells [18, 26]. 

NEP is abundantly present in renal proximal tubular epithelial cells, small intestinal epithe­
liUln, and biliary canaliculae. In addition, NEP can be found in synaptic membranes of the 
central nervous system, bone marrow stromal cells, fibroblasts, placenta, lymphoid progeni­
tors, and neutrophils [12-14, 27-29]. Given the expression ofNEP on lymphoid progenitors, 
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expression ofNEP is used as a diagnostic marker for several lymphoid malignancies, including 
Burkitt's lymphomas and certain myelomas [30-33]. 

In the human lung, NEP is expressed by bronchial epithelial cells, submucosal glands, 
bronchial smooth muscle, and endothelium [34], In addition, NEP can be found on alveolar 
epithelial cells [35]. 
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Figure 1. Molecular structure of NEP, APN and DPP IV. The size, monomeric or dimeric structure, and orien~ 
lalion of eaeh protein with respect to Ihe cytoplasm, transmembrane (T1\'I) region, and extracellular domain arc 
shown. Provcn orpolcntial active sites (zinc-binding (ZB) or sllbslrate~binding (SuB» are indicated. Glycosylation 
sites are indicated by a black dot (adapted from reference 1I8J). 

3.1.2. Ellzymatic activity alld bioiogicaiJllllctiolls 

NEP is able to hydrolyze peptide bonds on the N-terminal site of hydrophobic amino 
acids, like Phe, Leu, lie, Val, Tyr, Ala, and Trp (Table I) [2]. However, sub-site interactions 
and conformational factors greatly influence the efficiency of hydrolysis [36]. Among the 
possible substrates of NEP are substance P (SP), neurokinin A (NKA), fOl'lnyl-metheonyl­
leucyl-phenylalanine (fMLP), atdal natriuretic factor (ANF), endothelin-l (ET-l), bombesin­
like peptides (BLP), angiotensins, vasoactive intestinal peptide (VIP), neuropeptide Y (NPY), 
bradykinin (BK), enkephalins, cholecystokinin, and neurotensin [37]. Although NEP pre­
dominantly cleaves simple peptides, it has been reported that NEP lllay also be able to hydro­
lyze certain larger substrates, including cytokines such as IL-l p and IL-6 [36]. 

The geueral biologic function of NEP is to reduce cellular responses to peptide hor­
mones. Target' cells express both NEP and the peptide-receptor; by degrading the peptide 
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substrate, NEP reduces the local concentration of the peptide available for binding to the 
reccptor. For example, NEP reduces ANF-mediated hypotension [38], fMLP-mediated chemo­
taxis of neutrophils [39], and enkephalin-mediated analgesia [4]. Targeted disl1lption of the 
NEP locus in mice results in enhanced lethality to endotoxin, indicating an important protec­
tive role for NEP in septic shock [40]. A role for NEP in lymphoid development has been 
suggested by studies showing that inhibition ofNEP rcsulted in increased proliferation and 
maturation ofB cells, both ill vitro and ill vivo [41, 42]. Therefore, it has been suggested that 
NEP fUllctions to regulate B cell development by inactivating a peptide that stimulates B cell 
proliferation and differentiation. Alternatively, NEP may activate a pro-peptide that inhibits 
proliferation and differentiation of B cells. The role of NEP in the regulation of cellular 
proliferation and differentiation will be discussed below in some more detail. The role of 
NEP in the modulation of neurogenic inflammation will be discussed in paragraph 3.6. 

Role of NE? ill eelllliar dijferelllialioll alld proliferatioll illlhe lllllg 
NEP plays an important role in the cellular differentiation and proliferation of bronchial 

epithelial cclls by inactivating BLP [43]. BLP are potent growth factors for bronchial epithe­
lial cells and are involved in lung development. Tlie temporal and cellular patterns of NEP 
expression implicate the enzyme in the regulation of BLP-mediated fetal1ung development 
[44]. Indeed, both ill vitro and ill vivo it was shown that inhibition of NEP resulted in in­
creased maturation of the developing fetal lung [44, 45]. Reduced NEP activity may also 
promote BLP-mediated proliferation of bronchial epithelial cells. Indeed, the growth and 
proliferation of BLP-dependent carcinomas is inhibited by NEP and potentiated by NEP 
inhibition [43]. NEP expression by epithelial cells is inversely correlated with cellular prolif­
eration [46]. Therefore, reduced NEP activity may promote BLP-mediated proliferation and 
facilitate the development of small-cell carcinomas of the lung [43, 47]. A role for NEP in 
the regulation of nunor cell proliferation is also supported by studies using a human T cell 
line (Jurkat). In these cells, NEP is required for phorbol ester-induced growth arrest [48]. 

3.2. AMINOPEPTIDASE N 

3.2.1. Characteristics 

Biochemical and molecular characterizatioll 
Aminopeptidase N (APN; EC 3.4.11.2) is a widely studied peptidase, which is known 

under a variety of names, including aminopeptidase M, alanine aminopeptidase, arylamidase, 
and microsomal u-aminoacyl-peptide hydrolase [49]. APN is a glycoprotein of 967 amino 
acids with 11 potential sites of asparagine-linked oligosaccharide addition (Fig. I) [50, 51]. 
The unglycosylated protein has a molecular size of 110 Kd; posttranslational modification 
results in the 130 Kd precursor (gpI30) and the 150 Kd mature protein (gpI50) [52-55]. The 
23 amino acid retained signal also fUllctions as the membrane-spanning segment, orientating 
the APN N-tenninus inside and the C-terminus outside the cell (thereby defining APN as a 
type II integral membrane protein) [50, 51]. The intracellular domain of APN is only nine 
amino acids long, whereas the extracellular domain contains 935 amino acids. Similar to 
NEP, the extracellular domain contains a pentapeptide consensus sequence characteristic of 
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members of the zinc-binding metalloprotease family. On the surface of cells, APN is ex­
pressed as a non-covalently bound homodimer [56-59]. Cloning of the APN cDNA revealed 
that its sequence was identical to the myeloid marker CD 13 [50-52]. 

Gene structure 
The APN gene is located on the long ann of chromosome 15 (q25-26) and exists of 20 

exons [60-62]. Northern blot analysis of RNA extracted from several tissues revealed two 
distinct APN transcripts: a 3.7 kb transcript expressed by monocytes, myeloid leukemia ceils, 
and fibroblasts, and a 3.4 kb transcript expressed by intestinal epithelium and kidney cells 
[63]. In epithelial cells, transcripts originate 47 base pairs upstream from the initiation codon 
and 22 base pairs downstream from a TATA box. In contrast, the longer transcripts found in 
myeloid cells and fibroblasts originated from several sites clustered in an upstream exon 
located 8 kb from the exon containing the initiation codon. Nevertheless, both transcripts 
encode the same protein, indicating that separate promoters control the tissue-specific ex­
pression of the APN gene [63]. In addition, a 300 base pair region with enhancer activity, 
located 2.7 kb upstream ofthe transcriptional start site which is used in epithelial cells, may 
also be important for the tissue-specific expression [64]. 

Distribution 
The non-hematopoietic distribution of APN shows a pattern comparable to NEP. Thus, 

APN is expressed Oll rellal proximal tubular epithelial cells, small intestinal epithelium, bil­
iary canaliculae, synaptic membranes of the central nervous system, bone marrow stromal 
cells, fibroblasts, osteoclasts, placenta, and granulocytes [6, 56, 65, 66]. In contrast to NEP, 
APN is also expressed on monocytes and all myeloid progenitors [67-69]. Expression of 
APN may be used as a marker for myeloid leukemias [67, 6S, 70-72]. Mast cells may also 
express APN [73], whereas peripheral blood lymphocytes do not express this enzyme. How­
ever, expression of APN on lymphocytes can be induced after mitogenic stimulation or after 
adhesion to fibroblast-like synoviocytes, endothe1ial cells, epithelial cells and monocytesl 
macrophages [74-76]. 

3.2.2. Ellzymatic activity alld biological flll/clioll 

APN is a peptidase which hydrolyses preferentially natural or synthetic substrates with 
an N-terminal alanine residue (Table I) [IJ. Other amino acids, especially neutral ones, may 
also be removed hydrolitically, with the exception of proline. Natural APN substrates appear 
to be small peptides rather than larger proteins, although the enzyme is more effective in 
removing residues from oligopeptides than dipeptides. Among the possible substrates for 
APN are enkephalins, tachykinins, bradykinin, fMLP, and possibly cytokines such as IL-l~, 
IL-6, and !L-S [77-79]. However, in certain cases initial cleavage by endopeptidases (like 
NEP) may be required. 

Several functions of APN have been described. First, APN expressed on the brush border 
of the intestine may be involved in the final stages of digestion of slllall peptides [56]. Sec­
ond. comparable with NEP and often in collaboration with NEP, APN may fUllction to re­
duce cellular responses to peptide hormones [65, 69, SO, Sl]. Third, a recent report impli­
cates APN in the processing of peptides bound to major histocompatibility (MI-IC) class II 
molecules [82]. Fourth, APN may be involved in tumor invasion and metastasis by degrada-
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tion of collagen type IV [83, 84]. Finally, APN serves as a receptor for coronayilllSeS, which 
are RNA viruses that cause respiratory disease in humans [85]. 

3,3, DJPEPTIDYL PEPTIDASE IV 

3.3.1. Clla/'{/ciel'istics 

Biochemical and molecular characterizatioll 
Dipeptidyl (amino)peptidase IV (DPP IV; EC 3.4.14.5) is an atypical serine protease of 

766 amino acids with type II membrane topology (Fig. I) [86, 87]. It contains a short, highly 
conserved intracellular domain of six amino acids, a 22 Hmino acid hydrophobic transmem­
brane region (which also functions as signal peptide), and a 738 amino acid extracellular 
domain. The extracellular domain, which contains nine potential glycosylation sites, can be 
divided into three regions: an N-termillal gJycosylated region containing seven glycosylation 
sites and starting with a 20 amino acid flexible 'stalk region'; a cysteine-deh region; and a 
260 amino acid C-tenninal domain containing the putative catalytic sequence. On the surface 
of cells, DPP IV probably is present as a hOl11odimer comprising two identical subunits of 
approximately 110 Kd molecular mass [88-91]. Recent studies indicate that seyeral isofonns 
of DPP IV can be found [92-94]. 

In contrast to NEP and APN, DPP IV does not contain zinc in its catalytic center. Based 
upon its structural homology with other nonclassic serine proteases, DPP IV is assigned to 
the prolyl oligopeptidase family. Members of this family share a catalytic site in which the 
essential residues are arranged in the unique sequence Ser-Asp-His [95]. Cloning of the DPP 
IV eDNA reyealed that its sequence was identical to the T cell activation antigen CD26 [86, 
87]. 

Gene structure 
The human DPP IV gene, located on chromosome 2 (q24.3), spans approximately 70 kb 

and contains 26 exons [96]. The serine recognition site is split across two exons, the first half 
Gly-Trp is in exon 21 and the second half Ser-Tyr-Gly is in exon 22. The three residues 
comprising the catalytic site are each present in a distinct exon: Ser in exon 22, Asp in exon 
24, and His in exmi 26. This latter exon also contains the stop codon and the 3' untranslated 
region of the gene. The 5' flanking domain oftbe DPP IV gene contains neither a TATA box 
nor a CAAT box, but a 300 base pair region extremely rich in C and G contains potential 
binding sites for several transcription factors, including Sp-l and activating protein (AP)-l 
[97]. The human DPP IV gene encodes two RNA transcripts of approximately 4.2 and 2.8 
kb, which differ in sequence only at the 3'untranslated region [96]. Probably, the two mRNA 
arise from the use of different polyadenylation sites in the last exon of the DPP IV gene. 

Distribution 
In many respects, the non-hematopoietic tissue distribution of DPP IV resembles that of 

NEP and APN. DPP IV is constitutiyely expressed on renal proximal tubular epithelial cells, 
epithelial cells in the small intestine, and biliary canaliculae, but can also be found on alveo­
lar pneulllocytes and endothelia [88, 98]. The expression of DPP IV on hematopoietic cells 
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is regulated stringently. DPP IV is absent from the majority of human resting peripheral 
blood T lymphocytes, but some subsets of resting peripheral blood T cells weakly express 
the molecule [89, 90, 99]. DPP IV expression on T lymphocytes is increased after T cell 
activation [90, 100-102]. Thus, DPP IV is a suitable marker for T cells activated ill vivo. 
Recent data indicate that DPP IV expression on T cells may correlate with T helper (Th) 
subsets [103-105]. High DPP IV expression was found on Thl and ThO cells, whereas Th2 
cells displayed lower expression of DPP IV. The amount of ILA secretion was responsible 
for this correlation [104]. Memory T cells have been reported to reside in the DPP IV­
positive T cell fraction [106], although tIils was not found in another study [107]. DPP IV is 
also expressed by medullary thymocytes in humans [108] and can be induced on activated 
natural killer cells by cytokines [109]. 

3.3.2. EmJ'lI/atic act;";ty alld biological fUllctions 

DPP IV is a serine peptidase \vith a unique specificity: it cleaves dipeptides from the N­
terminus of polypeptides if proline is at the penultimate position [88, 1I0, Ill]. Peptides 
with alanine in the penultimate position may also be cleaved, although with a much lower 
efficiency. Since N-tenllilli containing X-Pro are not easily cleaved by other peptidases, the 
action of opp IV is a rate-limiting step in the degradation of such peptides. Several biologi­
cally active peptides have the X-Pro sequence at their N-terminus and therefore DPP IV lllay 
play an important role in modulating their action. These peptides include SP and bradykinin 
[112, 113]. Hydrolysis of SP by DPP IV yields two products (SP,_11 and SP,_Il) wlilch both 
are more potent bronchoconstrictors than intact SP I _II [ll4]. Both products can rapidly be 
inactivated by APN [ll5]. A proline residue is also present at the penultimate position of 
several cytokines and chemokines, like IL-I p, IL-2, tumor necrosis factor (TNF)-P, RANTES, 
and granulocyte-colony-stimulating factor (G-CSF) [78]. 

DPP IV may have several functions, dependent upon the tissue in which it is expressed. 
opp IV plays an obligatory role in the renal transport and intestinal digestion of proline­
containing polypeptides [116, 117]. However, most attention has been given to the function 
of DPP IV on T lymphocytes. 

Role of DPP II' 011 T lymphocytes 
Although the role ofDPP IVan activated T cells is not completely understood yet, recent 

studies indicate that it may act as a costimulatory molecule that can up-regulate the signal 
transducing properties of the T cell receptor (TCR). Stimulation of DPP IV (using mono­
clonal antibodies) leads to the activation of all functional programs of the T cells, including 
cytotoxicity and production of IL-2. This activation requires the expression of the TCR and 
DPP IV enzymatic activity [118, 119]. Furthermore, antibody-induced cross-linking ofDPP 
IV induced tyrosine phosphorylation of several intracellular proteins with a similar pattern to 
that seen after TCR/CD3 stimulation [120]. Co-cross-Iinking of DPP IV and CD3 antigens 
induced prolonged and increased tyrosine phosphorylation in comparison with CD3 alone, 
indicating that DPP IV is a true co-stimulatory entity [120J. In addition to T cell activation, 
anti-DPP IV stimulated T cells show enhanced proliferative responses, increased CD3s phos­
phorylation and increased p56kk activity [121]. One possible mechanism for the enhanced 
response ofT cells to perturbation ofDPP IV was suggested by the demonstration that CD45, 
a tyrosine phosphatase thal positively regulates TCR signaling, co-precipitates with opp IV 
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[122]. Thus, DPP IV antibodies may stimulate T cell proliferation in part by decreasing 
CD45-mediated dephosphorylation of key substrates. 

Inhibition of DPP IV activity results in reduced DNA synthesis as well as reduced pro­
duction of IL-2, IL-IO, 1L-12, 1L-13, and intcrferon (IFN)-y of pokeweed mitogen (PWM)­
stimulated purified T cells [123, 124]. Most importantly, DPP IV inhibition increascd mRNA 
synthesis and secretion of transforming growth factor (TGF)·~, and a neutralizing antibody 
directed against TGF-~ abolished the DPP IV -inhibitor-induced suppression in cytokine pro· 
duction [124]. In a rat study, repeated subcutaneous injection ofDPP IV inhibitors reduced 
serum DPP IV activities to levels less than 30% of the normal level [125J. When primary, 
secolldmy or tertiary immune responses to bovine serum albumin (BSA) were evoked in 
these animals, they showed reduced anti-BSA antibody production. hl normal rats, inullum­
zation with BSA was foHowed by a temporary decrease in serum DPP IV activity and then by 
enhanced SenllTl enzyme activity after several days [125], These results suggest that DPP IV 
plays an important role in immune responses ill pivo. 

MemOlY T cells have been shown to increase their antigen sensitivity gradually with time 
after re-stimulation, an effect that is accompanied by increased cell-surface expression of 
DPP IV [126]. Using antibodies directed against DPP IV, it has been shown that DPP IV 
directly contributed to this increased antigen sensitivity of late-memOlY T cells. As men­
tioned above, this effect may be explained by the co·stimulatOlY capacity of DPP IV [120]. 
Increasing the antigen-sensitivity via antigen-nonspecific molecules may be a physiologic 
mechanism for maintaining T cell memory in face of decreasing antigen concentrations, and 
may ensure preferential activation of memory T cells upon repeated antigen challenge. 

DPP IV is also found to be associated with adenosine deaminase (ADA), and this com­
plex is thought to serve as an important immunoregulatory mechanism [127-129]. Released 
ADA may bind to cell surface DPP IV, and the DPP IV I ADA complex subsequently binds 
adenosine, thereby reducing its local concentration [130,131]. 

DPP IV may also function as an auxiliary adhesion factor. DPP IV was found to bind to 
components of the extracellular matrix, such as fibronectin and collagen [132-134]. Binding 
of human CD4-positive T cells to collagen produced a co-stimulatory signal in anti-CD3-
mediated T cell activation, resulting in increased proliferation [121]. An anti-DPP IV anti­
body inhibited this effect [121]. 

Finally, DPP IV may be involved in the pathogenesis of the acquired immuno-deficiency 
syndrome (AIDS) [135]. DPP IV Illay act as one of the co-receptors for human immuno­
deficiency virus (HIV) [135, 136]. Furthermore, the HIV Tat antigen has been shown to 
inhibit the enzymatic activity of DPP IV, resulting in the inhibition of T cell responses to 
antigen and anti-CD3 antibodies [137-139]. Thus, the immunosuppressive effects ofthe HIV­
I Tat protein may be mediated by DPP IV inhibition. 

3.4. OTHER PEPTIDASES 

In addition to the three peptidases described above, other peptidases arc involved in the 
degradation of (neuro)peptides. These include angiotensin-converting enzyme (ACE), 
endothelin-convcrting enzyme (ECE), aminopeptidases, and carboxypeptidases. 
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AllgioteJlsill-COllvertillg enzyme 
ACE, also known as peptidyl peptidase A or kinase II, is a type II integral membrane 

endopeptidase belonging to the superfamily of metallopeptidases (reviewed in [140]). Two 
isoforms of ACE are present within the human body: a somatic form with a molecular weight 
around 150 Kd, which is found in endothelial, epithelial and neural celis, and a smaller 
isoform (90-110 Kd) found in germinal cells. Both forms me transcribed from a single gene 
by the use of two separate functional promoters, a somatic and a testicular form [141]. The 
somatic form is composed of two highly homologous domains, probably arisen by gene 
duplication in the course of evolution [142]. The germinal isofOlm only contains one of the 
two homologous domains. Somatic ACE comprises 1306 amino acids with 17 potential N­
linked glycosylation sites [142]. Each domain has a catalytic site, containing zinc, which 
functions independently [143]. 

ACE is widely distributed in human tissues: it is present on vascular endothelial ceHs, in 
the brush border of absorptive epithelia of the small intestine and the renal proximal tubuli, 
and in monocytes, macrophages, and T lymphocytes [144-147]. Nevertheless, its major lo­
cation is considered to be the vascular endothelial surface of the lung [146, 147]. The en­
zyme preferentially cleaves peptides containing an aromatic residue in the PI position (Table 
I), but the enzyme is far less selective than NEP. It is capable of inactivating bradykinin 
[148, 149] and enkephalins, and hydrolyzes angiotensin I to yield the vasoconstrictor pep­
tide angiotensin II [150]. ACE appears to playa m'\ior role in controlling blood pressure and 
water and salt metabolism. In addition, ACE hydrolyzes intravascular substance P, but neu­
rokinin A is not a good substrate [151]. 

Endotlzelil1-collvertillg enzyme 
ECE is a type II integral membrane protein homologous with NEP [152, 153]. Unlike 

NEP, however, ECE exists as a highly glycosylated disulfide-linked dimer of subunit mo­
lecular weight 120-130 Kd [154-156]. ECE converses big-endothelin to its biologically ac­
tive product ET -1 (Table 1), which is a potent broncho- and vasoconstrictor that may regu­
late vascular tone and blood pressure [157, 158]. Three isoforms of ECE can be distin­
guished: ECE-I a, ECE-I P (resulting from alternative splicing of a single gene [159, 160]), 
and ECE-2 [152, 153, 161]. 

In the human lung, ECE has been found in airway epithelium, pulmonary endothelium, 
airway and vascular smooth muscle, and serosal bronchial glands [162]. Although ECE may 
playa role in modulating biologically active pcptides, it remains to be determined whether it 
is involved in the pathogenesis of asthma [163-165]. Nevertheless, in asthmatic patients 
increased levels ofET -I have been found in bronchoalveolar lavage fluid [166-168], plasma 
[169], and bronchial epithelial cells [170] compared to healthy controls. 

Aminopeptidases 
Human tissues contain an array of cytosolic and membrane-bound aminopeptidases. The 

best-characterized, aminopeptidase N, is described above. Other aminopeptidases are ami­
nopeptidase A, which is specific for N-terminal GIll and Asp residues, and aminopeptidase P, 
which will release an N-terminal residue adjacent to a proline (Table I) [I, 77]. The role of 
these peptidases in the metabolism of susceptible peptides has been little investigated, but it 
may be hypothesized that these enzymes are involved in the final hydrolysis of a variety of 
substrates, with or without initial cleavage by an endopeptidase. A role for aminopeptidase A 
in modulating the potency of peptides binding to the neurokinin (NK), receptor has been 
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snggested [171, 172]. Aminopeptidases may also be involved in the regulation ofCC chemokine 
activities, as deletion of the NHrtenninal residue converts monocyte chemotactic protein-l 
from an activator of basophil mediator release to an eosinophil chemoattractant l J 73 J. 

Carbo.\ypeptidases 
Carboxypeptidase N (CPN, kininase I) cleaves the C-tenninal arginine and lysine of pep­

tides snch as bradykinin [174]. One of the functions of CPN is to protect the body from 
potent vasoactive and inflammatory peptides containing COOH-terminal Arg or Lys which 
are released into the circulation. In the human lung, ePN has been detected in alveolar type 
I cells, in the glycocalyx of the epithelium, in some vessels, and in gland ducts ncar the 
epithelial basement membrane [175, 176]. CPN activity in nasal lavage fluid has been shown 
to be enhanced after histamine challenge [176], This ePN originated in plasma, suggesting 
that plasma extravasation and interstitial fluid exudation across the epithelium are the pri­
mary processes regulating its appearance in nasal secretions. ePN has also been found in 
BAL fluid [177], Since increased ePN activity was found in patients with lung disease (pneu­
monia or lung cancer), it was hypothesized that CPN activity in BAL t1uid may be an indica­
tor of type I cell injury [177]. 

3.5. SOLUllLE COUNTERPARTS OF MEMBRANE-BOUND PEPTIDASES 

Although the above mentioned peptidases are integral membrane glycoproteins, soluble 
peptidases with comparable enzymatic activity can be detected in body fluids. These soluble 
counterparts may either be derived from shedding of membrane-bound peptidases, or may be 
formed by post-translational cleavage of the membrane-bound form. 

Serum neutral endopeptidase activity probably arises from shedding of the membrane­
bound peptidase [178]. Increased serum activit)' of NEP has been observed in underground 
miners exposed to coal dust particles [178] and in patients with adult respiratory distress 
syndrome (ARDS) [179], rheumatoid arthritis [180] or sarcoidosis [181]. Although the source 
of the increased NEP levels remains to be determined, it has been suggested that increased 
NEP levels may reflect local tissue damage with subsequent shedding of membrane-bound 
NEP. Furthermore, serum activity of NEP is increased in acute renal graft rejection [182], in 
patients with end-stage renal failure [183], and in cholestatic liver disease [184]. 

Human sennn contains an alTay of aminopeptidase activities, including alanine aminopep­
tidase and leucine aminopeptidase [185]. Serum alanine aminopeptidase activity predomi­
nantly comprises a circulating isoform of CDl3 [186, 187]. Increased activity of leucine 
aminopeptidase has been observed in BAL fluid of patients with pulmonary tuberculosis and 
it was shown that this increase could be attributed to lung tissue damage [188]. 

Dipeptidyl peptidase I\1 is present in several forms in human sellllll and may enhance 
antigen-induced T cell proliferation [118, 189]. Recent studies indicate that serum DPP IV is 
a tnonomer of 175 kDa Hnd that this molecule, which is a potent T cell co-stimulator, is not H 
breakdown product of membrane-bound CD26 [1901. Furthermore, the 175 leDa form of 
DPP IV found in norrnal serum is identical with a similarly-sized molecule, DPPT-L, found 
to be rapidly expressed on the sUlface of activated T cells [94]. CD45RO- CD4-positive T 
cells appeared to be the major source of serum DPP IV activity [94]. DPP IV activity in 
serum is decreased in pHtients with major depression, and a correlation was observed be-
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tween DPP IV activity and CD4-positive T cells in blood of depressed subjects, but not of 
normal controls [191]. There were no significant rclationships between serum DPP IV acti­
vity and plasma cortisol or inul1une-inflammatory markers, such as serum IL-6 or soluble IL-
2 receptor (CD25) [192). Reduced serum DPP IV activity has also been described in patients 
with systemic lupus erythematosus [193) and in oral cancer patients [194, 195). In the latter 
study a significant cOlTelation between se11lm DPP IV activity and peripheral blood lympho­
cytes or CD26-positive T cells was found [195]. 

3.6. MODULATION OF (NEUROGENIC) INFLAMMATION 

In addition to the two well-known autonomic nervous systems (parasympathetic and sym­
pathetic) that innervate the airways. a non-adrenergic non-cholinergic (NANC) neural path­
way is present (sec chapter 2). Wllile inhibitory NANC (i-NANC) effects are bronchodilatOl), 
through the activity of vasoactive intestinal peptide (VIP) and nitric oxide (NO) released 
from cholinergic ncrves, excitatOl), NANC (e-NANC) effects are bronchoconstrictor and 
mediated through the release of ncuropeptides (especiaHy tachykinins and calcitonin-gene 
related peptide (CGRP» from sen SOl)' nerves [196-198). Stimulation of sensory nerves, ei­
ther by chemical or physical triggers, results in an axon reflex and subsequent release of 
neuropeptides from the peripheral endings of the sensory nerves [199]. Following release, 
these neuropeptides exert a variety of effects through activation of specific neurokinin recep­
tors, including vasodilation, increased microvascular permeability, leukocyte recruitment and 
adhesion, submucosal gland secretion, smooth muscle contraction, cough, and facilitation of 
cholinergic neurotransmission. This sequence of events is now known as 'neurogenic inflam­
mati on' [200J. Since the neurogenic inflammatory response mimics many of the pathophysi­
ological features of asthma, a role for neuropeptides in the pathogenesis of asthma has been 
implicated. In the asthmatic airways, the effects of bronchoconstrictor peptides (including 
tachykinins and bradykinin) may be enhanced, whereas the effects of bronchodilator pep­
tides (including VIP) may be reduced [201, 202). 

After it became apparent tI'at neuropeptides were responsible for the neurogenic inflam­
matory responses, it was hypothesized that degradative mechanisms existed which may limit 
the effects of neuropeptides, comparable to the role of cholinesterase in limiting the effects 
of acetylcholine [200]. Several studies now have demonstrated that peptidases playa major 
role in the modulation of peptide-mediated effects in the airways (reviewed in [203]). Much 
research has focussed on the degradation of the tachykinins, like SP and NKA, and the en­
zymeNEP. 

The physiologic relevance of tachykinin inactivation by enzymatic hydrolysis has been 
deduced from studies of the effects of enzyme inhibition on the physiologic action of exo­
genously administered or endogenously released peptides. In the first study, it was shown 
that selective inhibition of NEP potentiated the secretagogue effect of SP on submucosal 
gland secretion in the ferret trachea ill vivo [2041. Several other reports subsequently demon­
strated that inhibition of NEP potentiated the effects of SP on cough, vascular permeability, 
cholinergic neurotransmissioll, and smooth muscle contraction [203]. In guinea pigs, it was 
shown that both NEP and ACE participate in the metabolism ofSP when administered intra­
vascularly, whilst SPadministered by aerosol was degraded by NEP only [205-208]. In addi­
tion, the ACE inllibitorcaptopril did not affect TK-induced broncllial smooth muscle contraction 
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in man. Therefore, ACE is thought to play an important role in modulating the biological 
activity of intravascular peptides, whereas NEP is also involved in the hydrolysis of peptides 
present within lung tissue or within the bronchial lumen. The importance ofNEP in modulat­
ing tachykinin-mediated effects is further supported by the observation that administration of 
other peptidase inhibitors (including inhibitors of aminopeptidases, serine prot eases, and 
carboxypeptidases), did not potentiate tachykinin-induced effects in the airways [209-214]. 
The involvement of NEP in the breakdown of tachykinins has also been shown in ill vivo 
snldies in humans. These studies showed that both NKA- and SP-induced bronchoconstrlction 
could be potentiated by NEP inhibition [215-217]. Furthermore, these studies indicated that 
SP, but not NKA, increased the airway responsiveness to methacholine, suggesting that in­
flammatory processes are contributing to SP-induced airway narrowing [218]. 

In contrast to the studies above, in which the effects of neuropeptides were increased due 
to the inhibition of peptidases, some studies have shown that administration of recombinant 
NEP may prevent neurogenic inflammation. Thus, administration of aerosolized NEP in­
hibited the SP-induced cough and ozone-induced hyperrcactivity to SP in guinea-pigs [200, 
219]. 

Biochemical and immunohistochemical studies have shown that NEP is present on air­
way epithelial cells [34, 35, 200]. Removal of the epithelium was further shown to result in 
increased responses to exogenously applied or endogenously released tachykinins [209, 213, 
220-225]. However, NEP is also present at other sites within the airways, and also after 
removal of the epithelium NEP inhibitors potentiate tachykinin-mediated effects [34, 209, 
220]. Nevertheless, NEP expressed by epithelial cells may more easily be modulated by 
inhaled agents than NEP located at other sites. 

Several environmental agents may modulate peptidase activity, thereby exaggerating 
responses to tachykinins (and other peptides) and increasing airway inflammation. These 
agents include viruses, ozone, cigarette smoke, chemical irritants, and possibly antigen 
challenge. In contrast, inhaled steroids may exert their anti-inflammatory actions in part by 
upregulating NEP activity. 

Viruses 
Viral infections may potentiate neurogenic inflammatory responses through inhibition of 

NEP activity. In laboratory animals, infection with Influenza virus or Sendai virus was shown 
to result in enhanced bronchoconstrictor responses to tachykinins, an effect that was medi­
ated by decreased epithelial NEP activity [211, 214, 226, 227]. 

Ozone 
In humans, guinea pigs as well as many other species. exposure to ozone results ill the 

recruitment of neutrophils to the airways and increased responsiveness to inhaled broncho­
constrictor agents [228, 229]. Ozone-induced airway hyperreactivity can be blocked by cap­
saicin-pretreatment, which depletes TK from sensOl), nerves [230]. Exposure to ozone also 
results in increased responsiveness for SP, and this effect could not be enhanced by inhibition 
of NEP [231]. This suggests that ozone exposure inactivated NEP, which is supported by the 
observation that the tracheal NEP activity in ozone-exposed animals was significantly lower 
than the NEP activity in air-exposed animals [231]. 
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Toluene diisocyallate 
Toluene diisocyanate (TDI) is a widely used plasticizer that lllay cause occupational asthma 

[232]. In guinea pigs it was shown that TDI, albeit at rather unrealistic doses, increased 
airway responsiveness to SP and decreased airway neutral endopeptidase [233]. 

Cigarette smoke 
Inhalation of cigarette smoke enhances the bronchoconstrictor response to inhaled SP in 

guinea pigs [234]. Inhibition ofNEP by phosphoramidon increased the bronchoconstrictiou 
induced by SP in control animals, but not in animals exposed to cigarette smoke. NEP activity 
in homogenates of guinea pig trachea was inhibited by cigarette smoke. However, in another 
study no effect of cigarette smoke on airway NEP activity ill vivo could be observed [235]. A 
possible explanation for this discrepancy may be that the NEP inhibited by cigarette smoke 
only represents a small fraction of the total aIllount ofNEP in the airways. 

Cigarette smoke is an important factor contributing to the development of small-cell lung 
carcinomas of the lung. As already mentioned (see paragraph 3.1.2.), NEP activity is de­
creased in lung cancers [43,47]. Therefore, one may speculate that cigarette smoke contributes 
to the development oflung cancers in part by inhibiting NEP, thereby enhancing the mitogeuic 
effects of peptides (like SP and BLP) on bronchial epithelial cells [43-46,236]. 

Allergell 
Airway inflammation may be linked to the clinical features of asthma by an effect on 

peptidase activity. In guinea pigs, chronic antigen exposure results in airway inflammation 
and hyperreactivity to SP [237]. It was shown that lungs with chronic allergic intlammation 
were more sensitive to the bronchoconstrictor effects of SP and less sensitive the bronchodi­
lator effects of VIP than lungs from healthy animals. In addition, the effects of enzyme in­
hibitors on physiological responses and peptide cleavage profiles were consistent with de­
creased NEP and enhanced tryptic activity [237]. 

In a recent human ill vivo study, no effect of inhaled thiorphan (a NEP inhibitor) on 
allergen-induced airway responses in asthmatic subjects was observed [238]. This suggests 
that either neuropeptides do not playa predominant role in allergen-induced airway responses, 
or that allergen challenge induces NEP-dysfunction in humans bl vivo. However, in guinea 
pigs it has been shown that tachykinins contribute to allergen-induced bronchoconstriction, 
an effect that probably is mediated via the release of bradykinin and histamine [239-241]. 

Glucocorticoids 
Glucocorticoids have potent anti-inflammatory effects and therefore are widely used in 

the treatment of asthma [242]. The anti-inflammatory effect may be caused, in part, by an 
upregulation ofNEP activity, thereby reducing neurogenic inflanunatory responses. Indeed, 
NEP activity by a transformed human tracheal epithelial cell line was shown to be increased 
after stimulation with glucocorticoids [243]. However, no effect of glucocorticoids was ob­
served in another study using a bronchial epithelial cell line [244]. In guinea pigs, glucocor­
ticoids were shown to reduce capsaicin-induced microvascular permeability, which might be 
due to elevated NEP expression [245]. This was supported by the observation that treatment 
of rats with combined NEP and ACE inhibitors prevented the effect of glucocorticoids [245]. 
The effect of glucocorticoid treatment ill vivo on NEP expression in the human airways has 
recently been reported [246]. In that study it was shown that NEP expression in the bronchial 
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epitheliulll of steroid-treated asthmatics was significantly greater than the expression in non­
steroid-treated asthmatic patients [246]. 

As shown above, many of the ~gcnts that lead to exacerbations of asthma appear to re­
duce the activity of NEP at the airway sUlface, thus leading to exaggerated responses to 
tachykinins and neurogenic inflammation (Fig. 2), However, most of these studies have been 
performed in laboratory animals, especially the guinea pig. and have not been confirmed in 
humans yet. Furthermore, in many studies the NEP inhibitor phosphoramidon was used. This 
inhibitor, however, not only inhibits NEP but was later also shown to inhibit EeE [247-250]. 
If it appears that ECE can cleave tachykinins the surety of the conclusions drawn about NEP 
from experiments using phosphoramidon is somewhat tempered. 

normal asthma 

allergen TOI virus 
ozone'--. \ I / /' smoke 

loss or inhibition of NEP 

:([.·· ..•. 4 .•.. · . . ~.~ 

bronchoconstriction 

leak 

Figure 2. Ncurogcnic inflammation in asthmatic airways. Neuropeptides <*) released from sensory nerves are 
normally rapidly degraded by peptidases. Therefore the effects of these neuropeptides are limited. In the asthmatic 
airways, several factors may result in a decreased peptidase activity, thereby exaggerating the neuropeptide ef­
fects. 

3.7. NEUROPEPTIDES AND PEPTIDASES: IMPORTANT IN ASTHMA? 

Although neuropcptides and peptidases have been shown to be present in the human 
airways, their role in astnma still remains to be elucidated. However, several observations 
may support the hypothesis that neuropeptides and peptidases are involved in the pathogenesis 
of asthma. 

SP and NKA have been shown in several ill vivo studies to cause bronchoconstriction, 
and these effects could be potentiated by inhibition of NEP (reviewed in [251 D. Further­
more, these studies demonstrated thatTK-mediated bronchoconstriction is greater in allergic 
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asthmatics compared to healthy subjects. However, the thiorphan-induced leftward shift of 
the NKA dose response curve was similar in asthmatic patients and healthy subjects, sug­
gesting that the activity of NEP does not differ between both groups. Nevertheless, patients 
used in the latter study were stable asthmatics and it can be argued that reduced NEP activity 
may occur during exacerbations of asthma. 

Increased amounts of SP can be detected in bronchoalveolar lavage fluid of allergic asth­
matics [252] and in sputum [253] after allergen challenge. The possibility that tachykinins 
are endogenously released ill vivo has also been supported by the observation that bradyki­
nin-induced bronchoconstriction in asthmatics can be blocked by a tachykinin receptor an­
tagonist [254] and be potentiated by NEP inhibition [255]. Bradykinin, which is present in 
the asthmatic airways [256] and is released after relevant aeroallergen challenge in allergic 
individuals [257], can stimulate sensory nerves to induce retrograde release of tachykinins 
[258]. 

Inhibition of NEP, either in healthy subjects or asthmatics, has been shown to potentiate 
the bronchoconstrictor effects of mediators known to be released after allergen challenge 
(such as LTD, and bradykinin) [255, 259]. However, inhibition of NEP at doses shown to 
enhance the bronchoconstrictor effect of NKA did not affect the early and late-phase response 
in mild asthmatics following allergen challenge [238]. This may suggest that endogenously 
released neuropeptides do not playa role in antigen-induced airway responses. Alternatively, 
antigen challenge may result in a dysfunction ofNEP activity. Future studies, using selective 
tachykillin antagonists in combination with specific peptidase inhibitors, will be required to 
determine whether tachykinins play any role in asthma. 
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Chapter 4 

Bronchial epithelium 
Morphology, function, and pathophysiology in asthma 

Bronchial epithelial cells have long been regarded as a passive banier between the envi­
ronlllent and the internal milieu of the lung. However, in addition to this barrier function, 
bronchial epithelial cells may also playa role in the initiation, perpetuation and modulation 
ofinflummatory and immunological reactions within the airways [1-3], In this chapter, the 
morphology of the bronchial epithelium, its function with regard to host defense, and its 
immunological potential will be reviewed. Alterations associated with asthma will be em­
phasized. 

4.1. MORPHOLOGY OF THE BRONCHIAL EPITHELIUM 

The bronchial epithelium forms the interface between the respiratory system and the 
inspired air. The epithelial layer rests upon a connective tissue substratum consisting of a 
basement membrane, lamina propria and submucosa, containing smooth muscle, glands and 
cartilage (Fig.!) [4], The brollchial epithelium is composed of three main cell types, which 
together form a pseudostratitied ciliated layer (Fig. I). 

Figure 1. Light-microscopic photomicl'ograph of the human bronchial epitheliulll (magnification: 63x). EP = 
epithelium, rfir .... I = reticular basement membrane, LP = lamina propria (from reference [5]). 
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CWated cells are terminally differentiated colulllnar cells which are thought to originate 
from basal or secretory cells [6,7]. Their main function is to remove particulate matter by 
means of the mucociliary stairway. 

SecretOl), cells, which comprise 15-25% of the bronchial epithelium, are present in several 
forms. Mucous or goblet cells arc the main producers of airway mucus, in which inhaled 
particles. including vimses and bacteria, can be trapped [8, 9]. Clara cells produce the sur­
factant apoproteins A and B and secretory ieukoprotease inhibitor. In addition, these cens 
may participate in the clearance of noxious agents via (he detoxification of inhaled agents 
[10-12]. Serous cells also produce antiproteases [13], whereas neuroendocrine ceBs contain 
amines and peptide hormones [14-16]. The mucous cell is the predominant secretory cell in 
the hU'ger airways, whereas the Clara cell is predominant in the bronchioles [6, 17, 18]. 

Basal ce{{s are considered as the stem cell of the bronchial epitheJium and are pyramidal­
shaped cells with a small cytoplasmic/nuclear ratio [2, 6, 19]. 

4.2. BARRIER FUNCTIONS 

Bronchial epithelial cells are part of the non-specific immune system and defend the 
airways against the entry of noxiolls substances [20]. Tills defense is mediated via the integ­
rity of the epithelium that contributes to the physical barrier, the secretion and ciliary func­
tion leading to effective lllucociliary clearance, and the secretion of mediators which provide 
protection against a wide range of potentially injurious agents. 

JllIegrit), of the epitheliulIl 
The bronchial epithelium forms a continuous layer, thereby preventing the underlying 

tissue from the entry of noxious agents. The integrity of the epithelium is maintained by 
several adhesion mechanisms (Fig. 2) [2IJ. 

tight junctions -~----\< 
(zonula occludens) 

intermediate junctions -t-----Fi 
(zonula adherens) 

desmosome -j------tmB 
(macula adherens) 

hemidesmosome -liiiii 

cilia 

columnar 
ciliated cell 

~~I---+ goblet cell 

nucleus 

~~",=--f- basal cell 

~~~~~- basement 
membrane 

Figure 2. Schematic representation of the adhesion mccbanisms which maintain the integrity of the bron­
chial epHhcUum (from reference [22]). 
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The desmosome (macula adherence) and the intermediate junction (zonula adherence) 
are involved in maintaining a strong cell-to-cell adhesion. The tight junction (zonula occludens) 
is a narrow belt-like structure surrounding each cell at the apical pole. It provides a physical 
barrier, thereby preventing 'leakage'. The epithelial cells are all anchored to the basement 
membrane by hemidesll1osomes. 

Mucocilim), clearance 
Inhaled particles. including bacteria and viruses, are cleared from the airways by trapping 

of the particle in mucus, and subsequent clearance of the mucus by the coordinated beating 
of cilia. The clearance of particles is facilitated by the secretion of surfactant (by alveolar 
epithelial type II cells and Clara cells), which changes the sUlface charge properties, making 
the particles less stick"y. The mucociliary function is regulated by a complex interaction with 
the cells and mediators of the immune system (Table I) [23-27], 

Tablet. Fnctors that modulate mucociliary function. 

Factors Sources Motility Velocity 

p,-agonists nerves,dmgs t t 
Bradykinin plasma tt t 
Histamine mast cells ± t 
Nitric oxide epithelium, macrophages t ? 
Substance P nerves t t 
Interleukin-l epithelitlll1. macrophages t ? 
Major Basic Protein eosinophils J- ? 
Oxidants granulocytes. macrophages J- t 

Secretion of protective mediators 
To provide protection against potentially injurious agents, the bronchial epithelium se­

cretes a number of mediators, including antibacterial substances (lactoferrin and lysozyme), 
antiproteases (a)-protease inhibitor, secretory leukoprotease inhibitor, fJ.)-antichymotrypsin, 
o-2-macroglobulin, tissue inhibitors of metalloproteases), and anti-oxidant systems (glutathione 
redox cycle, superoxide dismutase, and catalase) [28-32]. The bronchial epithelium produces 
components of the complement system, which act as opsonins allowing efficient phagocyto­
sis by macrophages [33], In addition, bronchial epithelial cells transport secretory immuno­
globulin A (sIgA) into the bronchial lumen [34]. In lung cells of patients with asthma, a 
reduced expression of superoxide dis mutase has been found compared to healthy controls 
[35, 36], In contrast, sIgA and lactoferrin are increased in bronchoalveolar lavage (BAL) 
fluid of asthmatics [37]. The release of broncho-active and inlll1unomodulatory mediators, 
such as cytokincs, arachidonic acid metabolites, and chemokines. will be discussed further 
on. 

Loss of barrier/tmction in asthma 
The balTier fUllction of the bronchial epithelium seems to be disturbed in asthmatics, 

since epithclial shcdding and loss of integrity are recognized featurcs both in fatal asthma 
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and in biopsy specimens of even mild asthmatics [38-42). Epithelial shedding or damage 
probably is due to the release of cationic granule proteins by activated eosinophils, which arc 
highly toxic to the respiratory epithelium [43-471. Indeed, asthmatic airways are character­
ized by increased numbers of activated eosinophils and elevated levels of eosinophil-derived 
mediators [38, 48, 49]. Several studies have identified an association between epithelial 
damage and the degree of bronchial hyperresponsiveness [40-42, 49]. This association may 
be caused by severaimcchanisllls. First, epithelial damage will result ill loss of a permeability 
bUlTier and enables noxious agents or allergens to directly penetrate the airway wall and 
reach the submucosa. Second, loss of ciliated cells will result in impaired transport of mucus. 
Third, epithelial damage may expose nonmyelinated afferent nerve endings. As a conse­
quence, these nerves may more easily be stimulated by inflammatOl), mediators or inhaled 
particles, leading to an axon reflex and subsequent release of sensory neuropeptides that in 
tum evoke neurogenic intlammation ([50); discussed in more detail in chapter 2). Fourth, the 
epithelium secretes factors that suppress airway contraction, like prostaglandin (PG) E2 , 

prostacyclin, nitric oxide (NO), and a putative epithelial-derived relaxing factor (EpDRF) 
[I). Loss of these factors may contribute to bronchial hyperresponsiveness. Fifthly, bronchial 
epithelial cells contain neutral endopeptidase (NEP), which is involved in the metaboJism of 
a variety of peptides with contractile effects on smooth mllsele ([51,52); discussed ill chap­
ter 3). Epithelial damage alld loss of NEP activity may diminish peptide breakdown and 
thereby enhance bronchoconstriction. Finally, epithelial damage may trigger the production 
and release of mediators, such as POF,,,, 13-hydroxy-linoleic acid (HODE) and endothelin­
I, which can affect airway responsiveness [53-56]. 

4.3. IMMUNOLOGICAL PROPERTIES OF THE BRONCHIAL EPITHELIUM 

Bronchial epithelial cells not only fOfm a passive barrier but also play an active role in the 
immune response [1,2]. They are able to produce a variety of mediators that may act either 
pro- or anti-inflammatory. In addition, bronchial epithelial cells may express adhesion 
molecules for many different cell types, thereby contributing to their recruitment [57]. 

4.3.1. Pro-injlall/lI/atOly potential 

Bronchial epithelial cells may initiate and perpetuate inflammatol), reactions by recruit­
ment of inflammatory cells, cell-ceU adhesion and interaction of epithelial cells with intlam­
matory cells, and modulation of the activity of intlammatory or parenchymal cells. 

ReCfuitmellf of illjlammat01}' cells 
The recruitment of inflammatory cells into the airways is dependent upon the presence of 

chemoattractants. It has been demonstrated that bronchial epithelial cells can synthesize and 
release a wide range of such chemoattractants, including arachidonic acid metabolites and 
chemokines, both spontaneollsly and after stimulation (Table 2). 
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Table 2. I\'Iediators produced by human bronchial epithelial cells and their changes in asthma 
(see text for details). 

Mediator 

Lipid mediators 
LTB, 
LTC, 

PGD, 
PGE, 

PGF2«( 

l2/IS-HETE 
9/13-HODE 

Chemokilles 

Cylokilles 

Other 

ITA 
Gro-a 
Gro-y 
MCP-l 

Eotaxin 
RANTES 

MIP-2 

IL-lalp 
IL-3 
IL-6 
IL-IO 
IL-ll 
IL-16 
TNF-a 
GM-CSF 
G-CSF 
TGF-p 

PAF 
NO 
Endothelin 

EpDRF 
Fibronectin 
PDGF 
IGF 
EGF 

Main effect Changes in asthma 

Recruitment ofneutrophils 
Microvascular leak, mllCllS secretion, 
bronchoconstriction, vasoconstriction 
Bronchoconstriction 
Bronchodilationlbronchoconstriction, 
vasodilation 
Bronchoconstriction 
Recruitment of neutrophils. mucus secretion 
Recruitment of neutrophils 

Recruitment of neutrophils 
Recruitment of neutrophils 
Recruitment of rteutrophils 
Recruitment/activation of monocytes, 
lymphocytes, basophils 
Recruitment of eosinophils 
Recruitment ofT cells, monocytes, 
eosillophils, basophils 
Recruitment of neutrophils 

t 

? 
? 

t 
? 
t 
? 

t 
? 
? 

t 
t 

= 
? 

Pro-inflammatory t 
Growth/survival of eosinophils :::: 
Pro/anti-inflammatory, B cell activation t 
anti-inflammatory ? 
Neuropoietic ? 
Recmitment of CD4+ T cells t 
Pro-inflammatory ? 
Survival/activation of eosinophils and neutrophils t 
Survival/activation of granulocytes ? 
Pro-fibrotic, anti-inflammatory t 

Recmitment of eosinophils 
Bronchodilation, Thl skewing, plasma exudation 
Bronchoconstriction, smooth muscle cel1 
proliferation 
Bronchorelaxation 
Epithelial cell migration and repair 
Pro-fibrotic 
Pro-fibrotic 
Epithelial growth and differentiation 

? 
t 

t 
? 
t 

? 
t 
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Bronchial epithelial cells may secrete the arachidonic acid metabolites 15-
hydroxyeicosatetranoic acid (IS-RETE) and possibly leukotriene B, (LTB,), which are po­
tent attractants for eosinophils, neutrophils and monocytes, and also increase mucus secre­
tion [58-66]. The production and release of these mediators is up-regulated in asthma, and 
there is a clear correlation between the release of IS-I-JETE and the clinical status of the 
patient [62]. 

Human bronchial epithelial cells are able to produce several chemokilles, including 
RANTES (Regulated upon Activation, Normal T cell Expressed, and presumably Secreted) 
[67], growth regulated oncogen (Gro)-a. [68], monocyte chemotactic protein (MCP)-I [68, 
69], MCP-4 [70], interleukin (IL)-8 [71-73], and eotaxin [74]. Chemokines are a group of 
chemotactic and pro-inflammatory cytokines and can be divided into at least four groups 
depending on the number and position of cysteine residues [75, 76]. C-X-C ehemokines 
predominantly arc chemotactic for neutrophils. and include IL-8, neutrophil-activating pep­
tide (NAP)-2, Gro-Cl., ~, and y, and macrophage inflammatory protein (MIP)-2. C-C 
chemokines, on the other hand, preferentially attract monocytes, eosinophils and T lympho­
cytes. Members of this snbgroup include MCP-I, MCP-2, MCP-3, MCP-4, eotaxin and 
RANTES. Two small subgroups of chemokines are the C chemokines (with at present only 
one member: Iymphotactin, also known as SCM-lor ATAC [77-80]) and the CX3C 
chemokines (also with jllst one member [81]). Chemokines act through binding to the 
chemokine receptors, which are GTP-coupled seven-transmembrane domain receptors {82]. 
At present, four CXC chemokine receptors (CXC R I through 4), at least eight CC ehemokine 
receptors (CC R-I through 8), and one CX3C chemokine receptor (CX3C R) have been 
cloned and characterized [76, 83]. 

Bronchial epithelial cells from asthmatics have been shown to release more IL-8 ill vitro 
than epithelial cells obtained from healthy controls [73]. In addition, increased levels ofIL-
8 were demonstrated in BAL fluid of asthmatics {84]. Using immunohistochemical tech­
niques, an increased expression of MCP-I [69] and eotoaxin [85, 86] has been found in the 
bronchial epithelium of asthmatics. In contrast, no differences in RANTES protein or mRNA 
expression could be observed between healthy subjects and asthmatics [87]. Clearly, bron­
chial epithelial cells of asthmatic patients release increased amounts of CC and CXC 
chcmokines and therefore contribute to the recmitment of inflammatory cells. 

IL-16 is a recently discovered cytokine, which has been shown to have selective chemo­
tactic activity for CD4-positive cells, monocytes, and eosinophils iI/vi/IV [88, 89]. IL-16, 
which shows no similarity to other cytokines or members of the chemokine family, uses CD4 
as its receptor [88, 89]. In the lung, it is produced by epithelial cells, and CD4-positive and 
CD8-positive T lymphocytes [90]. Increased expression of IL-16 by bronchial epithelial 
cells has been described in asthmatics compared to healthy subjects, and the epithelial IL-16 
expression was shown to correlate with the number of CD4-positive cells within the lamina 
propria [91]. In addition, IL-16 has been detected in BAL fluid by six hours following 
subsegmental allergen or histamine challenge in asthmatics, but not in atopic non-asthmatics 
or healthy subjects [92]. 

Bronchial epithelial cells have also been shown to release platelet-activatingfactor (PAF), 
a potent eosinophil chemoattractant [93]. 
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Cell-cell adhesion alld ;nteractioJl 
Bronchial epithelial cells may interact with other cells by direct contact mediated via 

smface membrane-bound molecules, such as adhesion molecules and major histocompa­
tibility complex (MHC) molecules. 

Adhesion molecules arc glycoproteins expressed on the surface of cells, which mediate 
the contact between two cells or between the cell and the components of the extraceHular 
matrix. These molecules therefore play an important role in the transmigration of leukocytes 
through the endothelial wall, localization of leukocytes at sites of inflammation in the epithe­
limn, and adherence of the epithelial celis to the basement membranc. Four main families of 
adhesion molecules can be distinguished: the immunoglobulin-gene supelfamily, the integrins, 
the selectins, and the cadherins [94]. 

The imlJlulloglobulin (/g)-gene ,HlpelfamUy consists of cell surface proteins characte­
rized by a variable number of extracellular Ig-like domains [95, 96]. These molecules are 
involved in antigen recognition, complement binding or cellular adhesion [95]. Human bron­
chial epithelial cells express two mCinbers of this family: intercellular adhesion molecule-l 
(ICAM-I) and lymphocyte function-associated antigen-3 (LFA-3) [57]. It has been reported 
that the epithelial expression of ICAM-I is increased in asthmatics compared with healthy 
subjects, and that the level of expression correlated with the severity of the disease [97, 9S]. 
However, no difference in ICAM-I expression was found in another study [99]. In the BAL 
fluid of asthmatics, increased levels of soluble ICAM-l have been found after allcrgen chal­
lenge [100, 101]. Circulating ICAM-I levels in the blood were elevated in patients with 
acute asthma compared to stable asthmatics or healthy subjects [101-103]. It has been shown 
that pro-inflammatory cytokines like IL-IJ3, TNF-a and IFN-y, are able to increase the ex­
pression ofICAM-I on epithelial cells ill vitro [57, 104, 105]. Since the ligand for ICAM-I, 
LFA-I (CD II a1CD IS), is expressed on the sUlface of neutrophils, monocytes, lymphocytes 
and eosinophils [J 06], increased expression ofICAM-1 during inflammatory responses may 
contribute to the adhesion and subsequent maturation and activation of leukocytes in the 
epithelial compartment. The observation that, in primates, intravenous administration of anti­
ICAM-l antibodies attenuated both airway eosinophilia and bronchial hyperresponsiveness 
further supports the important role of ICAM-l in the recruitment and adhesion of leukocytes 
[97,107]. In contrast to ICAM-I, LFA-3 expression on bronchial epithelial cells could not 
be modulated by pro-inflammatory cytokines [57] and its role in the pathogenesis of asthma 
remains to be established. 

bltegrills are molecules composed of two non-covalently associated heterodimers, desig­
IUlted the (J. and ~ subunit [94, 106, 108]. ~I integrins may associate with nine distinct (J. 

subunits and play an important role in tissue organization. Human bronchial epithelial cells 
have been shown to express the a-2.6 integrins. both ill vivo and ill vitro [107, 109-112]. 
Recent studies have shown the expression of 0\'136 on human bronchial epithelial cells [113, 
114]. The expression of this adhesion molecule is increased after epithelial injury, inflanuna­
lion or exposure to EGF or TOP-fl. Shldies using transgenic mice indicate that a,·J36 may be 
involved in the down-regulation of airway inflammation [115, 116]. ~2 integrins (LFA-I 
(aL~2)' Mac-I «(J.M~2)' and p150,95 «(J.X~2)) are exclusively expressed on leukocytes. 

These/eetill family (consistingofE- (endothelial), P- (platelet), and L- (leukocyte) selectin) 
is only expressed on activated endothelial cells or leukocytes [95, 1l7, lIS]. No expression 
can be found on human bronchial epithelial cells [57]. 

Cadllerins are involved in the ceBulaI' architecture and in ce11-cell adhesion. Cadherins 
may interact with the cytoskeleton and bind to a group of cytosolic proteins termed catcnins 
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[119]. It has been suggcstcd that alterations in the binding of epithelial cadherin to catenins 
may be involved in the desquamation and shedding of the epithelium associated with the 
airways of asthmatic subjects. 

Human bronchial epithelial cells are also capable to express the MHC class II antigens 
(including human leukocyte antigens (HLA)-DR) [66, 98]. Bronchial epithelial HLA-DR 
expression has been shown to be increased in asthmatic patients compared to healthy sub­
jccts, and the level of expression is correlated with the severity of the disease [98]. III Vi/IV, 

the expression of MHC class II on human bronchial epithelial cells is relatively low, but after 
stimulation with IFN-yor histamine its expression is strongly increased [66,120,121]. Al­
though it has been demonstrated that bronchial epithelial cells are capable of inducing T cell 
proliferation [122-124], it is not clear at present whether presentation of antigens to lympho­
cytes by bronchial epithelial cells is involved in the pathogenesis of asthma. 

Expression of the low-affinity IgE receptor (CD23) has been described in bronchial epi­
thelial cells of asthmatic patients, but not ofhcalthy controls [125]. Stimulation of bronchial 
epithelial cells of asthmatics with IgE/anti-IgE resulted in increased release of elldothelin-l 
(ET-I). This suggests that bronchial epithelial cells of asthmatic patients may be directly 
activated by an IgE-dependent mechanism. 

Modulation of illjlanmwtOJ)' or parenchYlJlal cell activity 
Human bronchial epithelial ceHs are capable of producing a wide range of mediators, 

which are important in modulating cellular responses in the airways, both spontaneously and 
after stimulation. These mediators include chemokines, lipid mediators, cytokines, endothelin, 
growth factors, and NO (Table 2). 

As mentioned before, chemokines are able to recruit leukocytes to the site of inflamma­
tion [82, 126]. These mediators often also activnte the attracted leukocytes. For example, it 
has been shown that MCP-I is able to activate monocytes and basophils, and can induce 
ICAM-I expression on endothelial and vascular smooth muscle cells [127-130]. IL-8 and 
LTB4 not only attract neutrophils, bul also calise neutrophil degranulation and superoxide 
production, allcasl illvitlv [131]. 

Lipid mediators produced by bronchial epithclial cells include the arachidonic acid me­
tabolites LTB" I5-HETE, PGF,w and PGE, [65, 132-134]. As mentioned before (chapter I), 
PGE, plays a role in skewing the Th lymphocytes toward a Th2 phenotype. In addition, PGE, 
is a vasodilator, and its release lllay therefore result in the formation of oedema. 15-HETE 
increases the secretion ofmuclis and enhances an early response to inhaled allergens [135], 
whereas PGF2« functions as a bronchoconstrictor [136, 137]. Prostacyclin and PGF2« can 
stimulate sensory nerve endings, thereby causing reflex bronchoconstriction [138]. 

Bronchial epithelial cells can also produce and release a wide range of cytokines. These 
include granUlocyte/macrophage-colony stimulating factor (GM-CSF), TNF-a, IL-I a, IL­
l~, lL-3, IL-6, IL- 10, IL-lI, leukemia inhibitory t'lCtor (LIF), and IL-16 [71,73, 139-146]. 
GM-CSF production by the bronchial epithelium has been shown to be increased in asthma­
tics [73, 139]. Tllis may contribute to a prolonged survival of neutrophils and eosinophils 
with concomitant cell activation [147-149]. IL-I ~ and TNF-a; are pro-inflammatory cytokines, 
which may activate a large number of cells. IL-6 and IL-Il have many overlapping effects, 
including B cell activation and production of acute phase proteins [150-152]. In addition, IL-
11 has neuropoietic properties: it is a survival factor for sensory and motor neurons, causes 
noradrenergic sympathetic neurons to take on a cholinergic phenotype, and induces sub­
stance P (SP), somatostatin, and vasoactive intestinal peptide-related peptide in sympathetic 
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neurons [153]. This raises the possibility that disregulated IL-II production could lead to 
pathologic conditions characterized by cholinergic or neuropeptide excess. IL-16 not only 
attracts CD4-positive IYlnphocytes, cosinophils and monocytes but also activates these cells, 
resulting in cell adhesion, induction of CD25 and HLA-DR expression, and lor cytokine 
synthesis [S9]. 

Bronchial epithelial cells of asthmatic patients have been shown to produce increased 
levels ofll..-I13, ll..-6, IL-S, GM-CSF, and 1L-16 compared to healthy subjects [73, 91, 154]. 
This indicates that bronchial epithelial cells are in an activated state in the asthmatic airways. 
Transcription factors like NF-Kl3 probably play an important role in the upregulation of these 
cytokines [155, 156]. Interestingly, a recent report showed that the allergen Der pi induced 
NF-KB activation through intelference with Iid3a function in astlunatic bronchial epithelial 
cells, indicating that allergens may directly interact with transcription factors involved in the 
transcriptional regulation of inflammatory genes [157]. 

Elldolhelills are a family of highly homologous 2 I-amino acid pep tides, characterized by 
two intrachain disulfide chains, a hairpin loop consisting of polar amino acids, and a hydro­
phobic C-terminal chain [15S]. Human bronchial epithelial cells have been shown to pro­
duce ET-I [54, 159, 160], which promotes the proliferation of smooth muscle cells, is a 
potent constrictor of both vascular and non-vascular smooth muscle celis, increases the se­
cretion of mucus, and may activate infiammatOlY cells [15S, 160, 161]. ET-I also stimulates 
collagen gene expression and through its inhibitory actions on collagenase will promote 
airway wall collagen deposition, thereby contributing to airway wall thickening which un­
derlies bronchial hyperresponsiveness [162-164]. Increased levels ofET-I-immunoreacti­
vity were detected in airway epithelium and vascular endothelium ofbrollchial biopsy speci­
mens from asthmatics compared to healthy subjects [159,165,166]. Furthermore, increased 
ET-I levels have been detected in BAL fluid and blood plasma of asthmatics [167, 168]. 

Several growth/actors can be produced by the bronchial epithelium. These include epi­
dermal growth factor (EGF), transforming growth factor (TGF)-13, insulin-like growth factor 
(IGF) and platelet-derived growth factor (PDGF) [20, 169, 170]. TGF-13 is an important 
profibrotic growth factor, which has been implicated in airway remodeling and pulmonary 
fibrosis [171]. In asthma, there is an increased expression ofTGF-13 on epithelial cells which 
is correlated with the number of fibroblasts beneath the basement membrane and with the 
thickness of the basement membrane [3, 166, 172]. TGP-p has been shown to increase the 
release of fibronectin from human bronchial epithelial cells ill vitro [173]. IGP also is a 
major fibroblast and epithelial cell mitogen, but a role for this growth factor in asthma has 
not been determined yet. However, it has been shown that airway epithelial cells express 
increased numbers of IGF-receptors after stimulation with eosinophil cationic protein [174]. 
Studies on PDGF, which has high mitogenic activity for smooth muscle cells and fibroblasts, 
have not demonstrated any up-regulation in the expression of tills growth factor in the bron­
chial epithelium of asthmatics [172, 175, 176]. In contrast, epithelial cells of asthmatics do 
show increased immunoreactivity for EGF, which is an important factor in the regulation of 
epithelial growth and differentiation [175]. 

Nitric oxide (NO) may play an important role in regulating airway function and in the 
pathophysiology of asthma [l77-ISO]. NO is produced by nitric oxide synthase (NOS), which 
exists in several isoforms: n (neuronal)-NOS, e (endotheliaIJ-NOS, and i (inducible)-NOS 
[lSI, 182]. Both the inducible and constitutive form have been identified in bronchial epi­
thelial cells [183-IS5] and increased expression of iNOS has been observed in response to 
pro-inflammatory cytokines and oxidants [179,185,186]. There is an increased expression 
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of iNOS in the epithelium of asthmatic patients and increased NO levels have been found in 
exhaled air of asthmatics [183, 187, 188]. Increased NO production in the airways may result 
in hyperemia. plasma exudation, and mucus secretion. NO also has been implicated in skew­
ing T lymphocytes towards a Th2 phenotype, through inhibition of Th I cells and their pro­
duction of IFN-y [189]. 

4.3.2. Allti-illj/allllllatOlY potelltial 

Besides the potential of human bronchial epithelial cells to recmit and activate leuko­
cytes or parenchymal cells, bronchial epithelial cells may also down-regulate inflammatory 
responses. This may occur via the release of anti-inflanunatory mediators, by the release of 
soluble receptors, or by the inactivation of pro-inflammatory mediators. 

Release of Gllti-inj1aIllIllGtOl)' mediators 
Human bronchial epithelial cells arc able to produce several components of the IL-l 

system, including agonists. antagonists and receptors. As discussed before, human bronchial 
epithelial cells can release IL-la and IL-l~, which both exert many pro-inflammatory ef­
fects. These effects are mediated via binding to the IL-I receptor (IL-I R) type I, whereas the 
IL-I R type II has a short cytoplasmic domain and appears to function as a scavenger for IL­
I~ [190-192]. The extracellular portions of both receptors may be shed from the plasma 
membrane and then act as IL-l inhibitors' [193]. Three splice variants of the IL-I receptor 
antagonists (IL-I RA) gene have been described thus far: secreted IL-I RA, intracellular IL­
l R type I and type II. It has been shown that human bronchial epithelial cells are able to 
produce and release the intracellular IL-I receptor antagonists type I, which may counteract 
the pro-inflammatory actions oflL-1 a and IL-~ [154, 194, 195]. In addition, these cells may 
release the lL-1 R type I. Recently, a new cytokine (IL-18) with structural homology to IL-I 
has been found [196,1971. This cytokine requires cleavage by either IL-I~ convcrting en­
zyme or another caspase to generate a mahlre bioactive molecule, and signals tlu'ough IL-J 
receptor-associated kinase (IRAK) to induce activation ofNF-KB [198]. Clearly, the balance 
of the different components of the IL-l system determines whether the overall effect will be 
pro- or anti-inflammatory. 

TGF-~ has been identified in the epithelial lining fluid of the lung and in airway epithelial 
cells [199, 200]. In addition to its pro-inflammatory effects (described above), TGF-~ has 
many anti-inflammatory properties, including inhibition ofIL-2 dependent proliferation ofT 
lymphocytes, inhibition of cytokine production by macrophages, and inhibition of IL-4-in­
duced IL-8 release by human bronchial epithelial cells [201-205]. TGF-~ may also be in­
volved in neural repair via stimulation ofIL-11 production by bronchial epithelial cells [145]. 

PGE2 and JL-6 produced by bronchial epithelial cells may have both pro- and anti-in­
flammatory properties. PGEz can reduce the production of neutrophil chemoattractants by 
macrophages, can act directly as a bronchodilator (as does prostacyclin), and inhibits fibro­
blast matrix production [206, 207]. IL-6 has been found to reduce inflammatory reactions in 
several models, including an in vivo model of pulmonary inflammation [205]. However, the 
mechanism by which IL-6 exerts this effect is not completely understood. 

IL-IO is a potent regulatory cytokine that decreases inflammatory responses and T cell 
activation [208-210]. It reduces the production of TNF-a and IL-I ~ by macrophages [211-
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213]. Down-regulation of IL-I0 production, as has been described in patients with cystic 
fibrosis [1441, may enhance local inflammation and tissue damage. 

Interactions between epithelial cells may be of primary importance in directing repair of 
injury. Fibronectin, together with growth factors, is thought to have a significant role in the 
modulation of epithelial cell migration. Its production is increased after injury and after 
exposure of epithelial cells to inflammatory mediators, such as cytokines and endothelin-l 
[62, 142,214-216]. 

NO produced by bronchial epithelial cel1s may also have beneficial effects. It increases 
the ciliary beat frequency, thereby facilitating the clearance of mucus with trapped agents 
[23]. NO is also a potent bronchodilator [179,217]. In contrast to guinea pigs, human studies 
have failed to demonstrate that EpDRF is identical to NO [218-22IJ. 

Release oj soluble receptors 
The release of soluble receptors is another mechanism to control inflammatory processes 

[222,223]. Soluble receptors may bind their ligand, thereby reducing the amount of ligand 
able to bind membrane-bound receptors. Bronchial epithelial cells have been shown to re­
lease the IL-6 receptor and the p55 (type I) soluble TNF-o: receptor (sTNF-R), which may 
down-regulate the effects ofIL-6 and TNF-o:, respectively [224-226]. In a study with stable 
asthmatic children, no difference in sTNF-R levels in senUll could be observed compared to 
healthy subjects [227]. However, during asthma exacerbations serum levels of sTNF-R were 
significantly increased in both non-atopic and atopic asthmatics [228]. 

As already mentioned above, epithelial cells possibly also release the IL-l R type I. At 
present, no data are available all the role of this soluble receptor in asthma. 

Inhibitioll of pro-il{flammatOl)' mediators 
Bronchial epithelial cells express several enzymes which are able to degrade, and thereby 

often inactivate, a variety of mediators, including neuropeptides, histamine, bradykinin, and 
cytokilles. Epithelial cells express histamine N-methyltransferase, and thus are capable of 
modulating histamine-mediated effects [229, 230]. The best-studied peptidase expressed by 
bronchial epithelial cells is NEP. A reduced activity of this enzyme has been implicated in 
the pathogeuesis of asthma [52, 231, 232]. The characteristics aud biological functions of 
peptidases are described in more detail in chapter 3. 
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Chapter 5 

Glucocorticoids 
Mechanisms of action and anti-inflammatory potential in asthma 

Glucocorticoids are hormones synthesized in the adrenal cortex and secreted into the 
blood, where the levels of glucocorticoids fluctuate in a circadian mode. In humans, the 
naturally occurring glucocorticoid is hydrocortisone (cortisol), which is synthesized frOln its 
precursor cortisone. 

The beneficial effects of glucocorticoids in asthmatic patients were first described in 
1950 [I]. Since then on, many studies have focussed on the therapeutic potential of glucocor­
ticoids. Several synthetic glucocorticoids, much more potent than cortisol and without the 
unwanted mineralocorticoid side effects, have been developed. Nowadays, glucocorticoids 
are powerful agents in the treatment of inflammatory discases and are by far the most effec­
tive anti-inflanuuatory dlllgS used in the treatment of asthma. 

5,1. MECHANISM OF ACTION 

Although glucocorticoids have been known for a long period of time, their precise mecha­
nism of action is still not completely understood. However, recent studies have increased our 
understanding of their complex mechanisms of action. 

5.1.1. Glucocorticoid receptor 

To exert their effe.ets, glucocorticoids need to bind to a specific cytoplasmic glucocorti­
coid receptor (OR). Almost all cells of the body express the OR, but the number of receptors 
may vmy between different cell types [2]. Cloning of the OR has revealed that the OR con­
sists of approximately 800 amino acid residues, and that certain areas of the molecule show 
homology with other steroid receptors, receptors for thyroid hormones, and receptors for 
retinoic acid [3-7]. All members of the nuclear hormone receptor family share a characteris­
tic three-domain structure, first described for the human OR (Fig. 1). The C-terminal domain 
is equal in size in all nuclear receptors studied (about 250 amino acids) and its main function 
is to bind the steroid [8]. It also contains the binding sites for the heat shock proteins (hsp) 90 
[9, 10]. Removal of the steroid-binding domain results in a constitutively active OR 
molecule, indicating that tlus part of the molecule acts as a repressor of the transcription­
activation function. The most conserved central domain is involved in direct binding of the 
receptor to DNA. It contains two distinct loops of protein, each bound at their base via four 
cysteine residues to a single zinc ion, the so-called zinc fingers [11]. These zinc clusters are 
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involved in binding of the OR to the major groove of the DNA double helix and playa role 
in dimerization oftlVo OR molecules [12, 13]. In addition, the central DNA-binding domain 
has a transcription-activation function [4, 14]. The steroid-binding and DNA-binding do­
mains are separated by the 'hinge-region', which contains sequences that are important for 
nuclear translocation and dimerlzation [9, 10]. The N-terminal domain is extremely variable 
in size (24-600 amino acids), Its precise role is 8til1 uncertain, but it is required in transcrip­
tional activation [15]. 

hinge region 

DNA binding 
domain 
~ 

steroid binding 
domain 

COOH 

) transcription-activation 
sile 1 I 1 

transcription-activation 
site 3 

transcription-activation 
site 2 

zinc-finger II 

zinc-finger I 

Figure 1. Linear alignment of the human glucocorticoid receptor (adapted from reference [16]). 

Two different forms of thc human OR havc becn described [3, 17]. These two highly 
homologous isoforms, termed ORa and ORP, are generated by alternative splicing of the 
human OR pre-mRNA. The ORP isofonn differs from the ORo: isoform only in its C-termi­
nal domain, in which the last 50 amino acids of the latter are replaced by a unique 15 amino 
acid sequence. However, this replacement has dramatic functional consequences, since the 
GR~ isofofIll is unable to bind glucocorticoids and to transduce ligand-dependent 
transactivation. However, the physiological significance of the GR~ isoform remains ques­
tionable, since some recent studies indicate that tlus form is not conserved among species 
and no dominant negative inhibition of ORa. activity could be found [18, 19]. Nevertheless, 
abundant expression of ORP protein can be found in the epithelial cells lining the terminal 
bronchioli of the lung [20]. 

The expression of the GR may be regulated by numerous factors either at the transcrip­
tional, translational or post-translatiollallevel [21, 22]. Glucocorticoids have been shown to 
down-regulate the expression of the GR, both ill vitro and bl vivo [23, 24]. In contrast, in­
flanlillatory mediators like interleukin (IL)-I p, IL-4, tumor necrosis factor (TNF)-a, li­
popolysaccharide (LPS) and intelferon (JFN)-y have been shown to increase glucocorticoid 
binding ill vitro [25-29]. However, the increase in GR numbers may be accompanied by a 
reduced affinity for glucocorticoids [25, 29]. Analysis of OR localization in normal and 
asthmatic lung has not revealed differences in the level or sites of GR expression [30]. 
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5.1.2. Regula/ion of gene //'{Il/scriptiOI/ 

In the absence of glucocorticoids. the GR is present in the cytoplasm of the cell as a 
hetem-oligomer consisting of the OR itself, hvo molecules of hsp 90, one molecule hsp 70, 
and one molecule ofhsp 56 (which probably does not interact with the GR itself, but interacts 
with hsp 90) [31-35]. Glucocorticoids enter the cytoplasm of the cell by passive diffusion 
through the cell membrane. hI the cytoplasm they bind to the GR complex, which subse­
quently undergoes conformational changes, resulting in the dissociation of the hsp 90 and 
hsp 56 molecules. Upon tltis activation, the glucocorticoid-OR complex passes the nuclear 
membrane, enters the nucleus, and the hsp 70 molecule is dissociated. Furthermore, in the 
nucleus liganded GR form homodimers (Fig. 2). 

Within the nucleus, the GR homodimers may regulate gene transcription in several ways: 
I. via binding of the glucocorticoid-GR complex to specific DNA sequences, thereby di­
rectly activating or repressing genes; 2. via interaction with other transcription factors; and 3. 
via modulating the stability of specific mRNA molecules [36-40]. 
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Figure 2. Cellular events after administration of glucocorticoids (adapted from reference [401). 
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Biuding to DNA sequences 
Several steroid-responsive genes contain glucocorticoid responsive elements (ORE) in 

their promoter region [36, 41]. Binding of GR hOlllodimers to GRE may either result in 
transcriptional activation of the gene (via a positive ORE) or repression of the gene (via a 
negative GRE) (Fig. 2). The consensus sequence for (positive) GRE is the palindromic 15-
base-pair sequence GGTACAnnnTGTTCT, whereas the negative ORE has a lllorC variable 
sequence [37]. The rate of transcriptional regulation of steroid-responsive genes is depen­
dent on both the numbers ofGRE, the affinity of the glucocorticoid-GR complex to the GRE, 
and the position of the ORE relative to the transcriptional start site. Binding of the complex 
to ORE may result in conformational changes in the DNA and exposure of previollsly rnasked 
areas, resulting in increased binding of other transcription factors [42-45], 

InteractioJl with other transcription/actors 
Many steroid-responsive genes do not have GRE in their promoter region. However, 

binding sites for other transcription factors, including activating protein (AP)-l, nuclear fac­
tor (NF)-KB, and cAMP-responsive element binding protein (CREB), often can be found 
[46]. 

AP-l, which is a dimer of two proto-oncogenes (members of the c-jun and c-fos family) 
[47,48], is involved in the regulation of several genes, including adhesion molecules and 
cytokines (reviewed in [48]). Direct protein-protein interaction between AP-l and the gluco­
corticoid-GR complex results in reciprocal repression of one another's transcriptional acti­
vation by preventing binding of the AP-l and glucocorticoid-GR complex to AP-l sites and 
GRE, respectively (Fig. 2) [38,49,50]. 

Comparable to AP-l, NF-KB (a heterodimer ofp50 and p65 snbunits; [51,52]) regulates 
the transcription of several genes involved in inflammatory reactions [51, 53, 54], In 
unstimulated cells, NF-KB is retained in the cytoplasm of the cells through the interaction 
with the inhibitors Itdla and IKB~ [55-57]. Upon cell stimulation, for example by IL-l~ or 
TNF-a, IKB are rapidly phosphorylated, ubiquitinated, and consequently proteolyzed [54, 
58]. The liberated NF-KB dimers translocate to the nucleus where they can activate target 
genes. Glucocorticoids may inhibit NF-KB-stimulatcd genes by a direct interaction between 
the glucocorticoid-GR complex and the p65 subunit of NF-KB, resulting in transrepression 
(Fig. 2) [52, 56, 59, 60]. Furthermore, glucocorticoids may indirectly antagonize NF-tdl 
mediated transcription by up-regulating the synthesis of the inhibitory protein IKBa, which 
traps NF-KB in inactive cytoplasmic complexes [40, 55, 56]. A large number of 
imllmnoregulatOlY genes, whose expression is induced by a variety of pro-inflammatory 
mediators, contain NF-KB sites in their promoters/regulatory regions. Therefore, it is no 
wonder that glucocorticoids have been found to prevent the expression of these genes, in­
cluding those coding for IL-l~, IL-2, IL-6, IL-8, monocyte chemotactic protein (MCP)-l, 
RANTES (Regulated upon Activation, Normal T cell Expressed, and presumably Secreted), 
grannlocyte macrophage colony-stimulating factor (GM-CSF), the IL-2 receptor, intercellu­
lar adhesion molecule (ICAM)-l, and E-selectin (reviewed in [46]). Probably, interactions 
between glucocorticoids and NF-KB or AP-I will explain most of the anti-intlamlllatOly and 
inullunosuppressive activities of glucocorticoids. 

An interaction between CREB and the glucocorticoid-GR complex has also been sug­
gested [61, 62]. ~-agonists, which are used as bronchodilators in the treatment of asthma, 
increase cAMP formation and subsequently activate CREB. Therefore, simultaneous treat-
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ment of asthmatic patients with glucocorticoids and p-agonists may result in reduced respon­
siveness of the airways for steroids [62-64], 

Mot/II/atioll alII/RNA stability 
A third mechanism by which glucocorticoids may regulate the synthesis of proteins is via 

enhanced transcription of specific ribonucleases which are able to degrade mRNA contain­
ing constitutive AU-rich sequences in the untranslated 3'-region [65]. Such glucocorticoid­
mediated modulation of posHranslational events (resulting in decreased mRNA stability and 
reduced half-life time) has been observed for IL-I~, IL-6 and GM-CSF [66, 67]. 

5.2. GLUCOCORTICOID REGULATED GENES 

Glucocorticoids are able to modulate the transcription of a variety of genes, including 
cytokines and chemokines, receptors, enzymes, adhesion molecules, and inhibitory proteins 
(Table I). Since epithelial cells may be one of the most imp0I1ant targets for glucocorticoid 
therapy in asthma, the effects of glucocorticoids on epithelial expressed inflammatory genes 
wiJI be emphasized in this review. 

Table 1. Influence of glUCOCOliicoids on the synthesis of proteins with (anti-)illflummatory effects by bron­
chial epithelial cells. 
Protein Glucocorticoid effect 
Cytokines 

IL-l~, IL-6, IL-II , TNF-a, GM-CSF 
IL-IO, LIF 
G-CSF 

Chemokines 
MCP-I, eotaxin, IL-8, RANTES, MTP-Ia 

Receptors 

NK"GR 
IL-I R II, IL-6R, ~,-adrenergic receptor 

Enzymes 
iNOS, COX-2, cPLA, 
NEP 

Adhesion molecules 
TCAM-I 

IllhibitOJ)' pmteins 
Lc-I 
IL-I RA type T, SPLI 

? 

t 
t 

t 
t 
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CylokbleS and cI,elJlokines 
Glucocorticoids inhibit the transcription of most cytokines and chemokines that are re­

levant in asthma, including IL-I~, TNF-o:, GM-CSF, IL-3, IL-4, IL-5, IL-6, IL-8, IL-II, 
IL-12, IL-13, RANTES, eotaxin, and macrophage inhibitory protein (MIP)-Io: [46, 67]. In 
general, reduced synthesis of these mediators may result in a decreased recruitment and 
activation of leukocytes, also indirectly due to effects on adhesion molecules and cell sur­
vival. Since many cytokine gene promoters do not contain a negative ORE, the effects of 
glucocorticoids on cytokine and chemokine production arc probably mediated via an effect 
on a critical transcription factor (especially NF-Jd3 and AP-I) [68]. 

Bronchial epithelial cells arc capable of producing a variety of cytokines and chemokines 
that may contribute to the initiation and perpetuation of airway inflammation. Several studies 
have shown that cytokine-induced expression of eotaxin, IL-6, IL-8, OM-CSF, and RANTES 
can be diminished by glucocorticoids ill vitro [69-77]. In contrast, glucocorticoids did not 
modulate the secretion of G-CSF by human bronchial epithelial cells [77]. III vivo studies 
have shown that treatment with inhaled steroids decreases both the expression of GM-CSF 
[78], IL-8 [79], and RANTES [80] by the bronchial epithelium, together with the number of 
activated eosinophils in the epithelium. 

Receptors 
Glucocorticoids may modulate the expression of several receptors. The expression of the 

neurokinin (NK)I receptor, which mediates many effects of substance P (SP) in the airways 
and is believed to be up-regulated in asthma [81], is down-regulated by glucocorticoids [82]. 
Since the NKI receptor gene promoter region has no GRE but has an AP-I response element, 
this effect probably will be mediated via an interaction of the glucocorticoid-OR complex 
with AP-l. 

In contrast to NK J receptors, expression of the Pradrenergic receptor is increased by 
glucocorticoids [83]. Since the human Pradrencrgic receptor gene contains three potential 
GRE, this effect of glucocorticoids probably is a direct one [83]. Upregulation of~,-adrener­
gic receptors by glucocorticoids may be relevant in asthma as it may prevent down-regula­
tion in response to prolonged treatment with ~,-agonists [84]. 

The IL-I receptor type II, which functions as a decoy receptor [85], may also be up­
regulated by glucocorticoids, thereby reducing the functional activity of IL-I agonists [86, 
87]. Soluble TNF-receptor type I (p55) release by human bronchial epithelial cells, both 
constitutive as well as IL-I ~-induced, has been shown to be reduced by glucocorticoids [88]. 
In contrast, glucocorticoids up-regulate the expression ofIL-6 receptors in rat hepatoma and 
human epithclial cells [89, 90]. Thus far little is known about this process in human bronchial 
epithelial cells, which constitutively express these receptors [91]. 

Olucocorticoids also modulate the expression of their own receptor. In a recent study it 
was shown that expression of the a-form (but not the p-fonn) of the GR in human bronchial 
epithelial cells was down-regulated in healthy subjects after 4 weeks of budesonide inhala­
tion [24]. 

Enzymes 
Olucocorticoids inhibit the synthesis of several inflammatory mediators implicated in the 

pathogenesis of asthma through an inhibitory effect all enzyme induction. The synthesis of 
inducible nitdc oxide synthase (iNOS) by human airway epithelial cells is inhibited by glu­
cocorticoids, both ill vitro and ill vivo [92-94]. This effect seems to be mediated via inactiva­
tion of NF-Jd3 [95, 96]. Since nitric oxide (NO) may contribute to skewing of Th Iympho-
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cytes towards a Th2 phenotype, thereby promoting IgE production and eosinophil recmit­
ment, inhibition of iNOS may be of importance in anti-inflammatOlY therapy in asthma [97]. 

Glucocorticoids also inhibit the gene transcription of a cytosoJic form of phospholipase 
A, induced by cytokines [98] and inhibit the gene expression of cyclooxygenase-2, resulting 
in reduced formation of prostaglandins and thromboxanes [99]. 

In contrast to the enzymes mentioned above, glucocorticoids have been shown to in­
crease the expression of neutral endopeptidase (NEP) [100,101], thereby potentialiy limit­
ing neurogenic infiammatOl)' responses ([102]; see chapter 3). However, this glucocorticoid­
mediated increase in NEP expression could not be confirmed in another study [103]. 

Adhesion molecules 
Adhesion molecules play an important role in the recruitment of inflammatory ceUs to the 

inflammatory loclls. Expression of adhesion molecules on endothelial, epithelial or inflam­
matory cells is often induced by cytokines, whereas glucocorticoids reduce slIlface expres­
sion of adhesion molecules. This effect may be due either to inhibition of cytokille synthesis 
or to a direct effect of giucocorticoids on adhesion molecule gene transcription. It has been 
shown that the expression of ICAM-I, endothelial leukocyte adhesionlllolecule (ELAM)-I, 
and E-selectin is down-regulated by steroids [104]. Basal and cytokine-stimulated ICAM-I 
expression on hUlllan bronchial epithelial ceil lines is inhibited by glucocorticoids [105, 106]. 
However, inhaled glucocorticoids did not modulate ICAt..1-1 expression by bronchial epithe­
lial cells from asthmatics ill vivo [107]. 

Eosinophil adhesion to cytokine-stimulated bronchial epithelial cells was shown to be 
inhibited by the synthetic glucocorticoid dexamethasone [108]. Although cytokine-activated 
epithelial cells showed increased expression of ICAM-I, this molecule did not seem to be 
involved in the decreased adhesion of eosinophils observed in the presence of dexametha­
sone [108]. 

InhibitOl)' proteins 
The anti-inflammatory effects of glucocorticoids may be mediated by increasing the pro­

duction of inhibitory proteins, such as lipocortins. Lipocortins are members of a superfamily 
of proteins characterized by their ability to bind calcium and anionic phospholipids, now 
known as the 'annexins' [109, 110]. In several cell types, but not all, glucocorticoids are 
inducers of Iipocortins, which have an inhibitory effect on the activity of phospholipase A2 
[lll, 112). As a resuit, the synthesis of lipid mediators, including prostaglandins and 
eicosanoids, will be reduced. However, in human bronchial epithelial ceBs glucocorticoids 
do not seem to upregulate the expression of lipocortins [113]. Furthermore, no significant 
difference was found between lipocortin-l concentration in BAL fluid from asthmatic pa­
tients receiving inhaled glucocorticoid therapy and those who were not treated with gluco­
corticoids [114). 

Recently, glucocorticoids have also been shown to increase the expression of intracellu­
lar JL-I receptor antagonist type I by hUlllan bronchial epithelial cells [115]. Increased pro­
duction of this mediator may inhibit the effects ofIL-1 agonists, thereby reducing inflamma­
tiOI1. 

To provide protection against potentially injurious agents, airway epithelial cells secrete 
a number of mediators, including antiproteases. Secretory leukocyte protease inhibitor (SLPI) 
is the predominant antiprotease in the airways. Its expression has been shown to be increased 
in airway epithelial cells after stimulation with glucocorticoids [116]. 
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5.3. CELLULAR AND CLINICAL EFFECTS OF GLUCOCORTICOIDS IN ASTHMA 

Several studies have determined the effects of inhaled glUCOCOliicoids on bronchial inflam­
mation, either by measurements in bronchoalveolar lavage (BAL) fluid, spunnn, or exhaled air, 
or by perfonning bronchial biopsie~. Although differences can be observed between different 
trials, these studies have confirmed that glUCOCOliicoid treatment of asthmatic patients reduces 
the number and activation of inflammatory cells in the airways, together with an improvement 
ofillng function. Nowadays, the potent anti-inflammatory actions of glUCOC0l1icoids arc thought 
to underlie the clinical efficacy of oral glucocorticoids [117]. 

Effects of glllcocorlicoids 011 immullopathology 
Inhaled glucocorticoids decrease the number and activation status of most inflammatory 

cells in the bronchus, including mast cells, dendritic cells, eosinophils, and T lymphocytes. 
Changes in cellular infiltration are accompanied by modulated expression of several cytokines. 
Inhaled glucocorticoids have been shown to decrease mRNA expression of GM-CSF, IL-13, 
IL-4, and IL-5, whereas mRNA levels ofIL-12 and IFN-yincreased, suggesting a shift from 
a Th2- towards a more Th I-like environment [78, 118. 119]. 

Glucocorticoid treatment is associated with a reduction in mast cell numbers in the bron­
elms [79, 117, 120-123] and with reduced mast cell associated mediators in BAL tluid [123, 
124]. This may be due to a reduction in IL-3 and stem cell factor production, which are 
necessary for the survival of mast cells in tissue. The (IgE-dependent) release of mediators 
from mast cells does not seem to be affected by glucocorticoid treatment [125. 126]. 

Dendritic cells play an important role in presenting antigens to (naive) T cells [127. 128]. 
Inhaled glucocorticoids have been shown to reduce the number of dendritic cells in the llU­
man bronchial epithelium [129]. 

Increased numbers of eosinophils are a prominent feature of asthmatic airways [130-
136]. In vitro studies have shown that many eosinophil functions, including adherence and 
chemotaxis, are diminished following glucocorticoid treatment [126]. However, most data 
suggest that eosinophil responses to steroids are likely to be indirect, since eosinophil func­
tion is markedly affectcd by cytokines elaborated from T lymphocytes (IL-3, IL-4. IL-5. 
GM-CSF). endothelial cells (GM-CSF) and epithelial cells (GM-CSF) [137-141]. Tn vivo 
studies indicate that treatment with inhaled steroids reduces the number of COSillOphils and 
eosinophil-related mediators in BAL tluid [79. 136, 142] and the number of (activated) eosi­
nophils in bronchial biopsies [79,117,120,121,143]. Recently. induced sputum has been 
suggested as a useful tool for evaluating the effects of therapy on airway mucosal inflamma­
tion. Thus far, most studies have focussed on the presence of eosinophils and eosinophil­
related mediators. In accordance with the findings in BAL fluid and bronchial biopsies, glu­
cocorticoid treatment was associated with a reduction in sputum eosinophil numbers, eosino­
phil cationic protein (ECP), and eosinophil peroxidase (EPO) [144J. 

Glucocorticoids also reduce the number of activated T lymphocytes in bronchial biopsies 
and BAL fluid [117, 121,122. 143. 145]. In addition, inhaled corticosteroids reduced the 
number of cells expressing mRNA for IL-4 or IL-5, and increased the number of cells ex­
pressing mRNA for IFN-y [119. 120], thcreby favoring the development ofThl cells [146]. 

In addition to the effects of glucocorticoids on epithelial cells described above. inhaled 
glucocorticoid therapy has been shown to reduce the shedding of epithelial cells [143,147, 
148]. No consistent effect of corticosteroids on the thickness of the basement meIilbrane has 
been observed [79. 148. 149]. 
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Besides the suppressive effects on inflammatory cells, inhaled glucocorticoids have also 
shown to inhibit mucus secretion and microvascular leakage (as determined by the down­
regulation of plasma proteins in BAL fluid) [148, 150-154]. At present it is not clear whether 
tills is mediated via a direct effect of glucocorticoids on endothelial or mucous cells, or via a 
reduction of inflammatory mediators that increase mucus secretion and vascular leakage. 

Effects of glucocorticoid.\· on lung jUllctioll 
Treatment with glucocorticoids has been consistently shown not only to reduce the symp­

toms of asthma, but also bronclllal hyperresponsiveness [122, 155]. In contrast to the rapid 
inhibitory effects of ~ragonists, giucocorticoids given in a single dose are not effective in 
preventing early allergen-invoked bronchoconstriction, but inhibition of the late response 
has been clearly demonstrated [156, 157]. In contrast, cllfOllic treatment with either oral or 
inhaled steroids attenuates even the early bronchoconstriction to allergen [157-159], an ef­
fect that probably !S mediated via the anti-inflammatory actions of giucocorticoids already 
described. Although inhaled glucocorticoids consistently reduce airway hyperreactivity in 
asthmatics [155], even after several months of treatment responsiveness fails to return to the 
normal range. TIllS lllay reflect persistence of structural changes that cannot be reversed by 
steroids (such as the thickening of the basement membrane), despite of suppression of the 
inflammatory and immunological processes. 
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Chapter 6 

Aims of the studies 

The studies described in this thesis have focussed on three main topics: peptidases, the 
bronchial epithelium, and glucocorticoids. Our aim was to further define the contribution of 
peptidases and the bronchial epithelium to the intlammatOl), process characteristic for the 
asthmatic airways and to determine the anti-inflammatory effects of glucocorticoids on these 
processes. As pointed out in the fIrst part of this thesis, several studies have demonstrated or 
suggested a role for peptidases and bronchial epithelial cells in the pathogenesis of asthma. 
However, several questions remain to be answered. 

6.1. PEPTIDASES 

Neurogenic inflammation mimics many of the pathophysiological features of asthma, 
and a role for neuropeptides in the pathogenesis of asthma has been implicated. Although the 
apparent upregulation of the sensory neuropeptide effects may be due to several mechanisms 
(see chapter 2.4); studies using laboratory animals have indicated that peptidases, especially 
neutral endopeptidase (NEP), playa major role in limiting neurogenic inflammatory responses. 
Therefore, we hypothesized that the expression and/or activity of peptidases is reduced in the 
airways of asthmatic patients, thereby contributing to neurogenic inflammation. Furthermore, 
we hypothesized that treatment with (inhaled) glucocorticoids increases the activity ofpepti­
dases in the human airways, thereby reducing neurogenic inflammation. Testing the first 
hypothesis can be subdivided into two phases: 1) the analysis of the expression/activity of 
peptidases in the human airways (both in bronchial tissue and in the bronchoalveolar lumen); 
and 2) the comparison of the expression/activity ofpeptidases between healthy subjects and 
asthmatic patients. 

In chapter 7 we investigate the distribution of two peptidases, aminopeptidase N (APN) 
and dipeptidyl peptidase IV (DPP IV), in human bronchial tissue and compared their distri­
bution with the known distribution of NEP. Similar to NEP, APN and DPP IV are able to 
degrade a variety of inflammatory peptides and may therefore modulate inflammatory pro­
cesses (see chapter 3). To investigate whether the expression of APN and DPP IV was al­
tered in asthma, we determined the expression of APN and DPP IV in bronchial biopsies of 
asthmatic patients and compared tllis with the expression detected in bronchial biopsies of 
healthy controls. 

Soluble peptidases have been found in blood, although their origin, fate, and function are 
still largely unknown. Increased levels of soluble peptidases have been found in blood samples 
of patients with pulmonary inflammation and it has been suggested that tIlis may reflect local 
tissue damage (see chapter 3). In chapter 8 we describe studies on the analysis of peptidase 
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activities (NEP, APN, and DPP IV) in serum and bronchoalveolar lavage (BAL) fluid, which 
may more properly reflect local changes. To determine whether asthma was associated with 
altered peptidase activities, we compared peptidase activities in senUll and BAL fluid from 
healthy subjects and allergic asthmatics. Finally. to analyze whether glucocorticoids exert 
part of their anti-inflammatory actions via modulation of peptidase activities, we studied the 
effects of treatment with inhaled glucocorticoids on the activity of peptidases of asthmatic 
patients. again both in BAL fluid and in scnUll. 

6.2. PEPTIDASES AND THE BRONCHIAL EPITHELIUM 

Studies using laboratOly animals have shown that NEP present on the bronchial epithc­
limn plays a major role in the hydrolysis of neuropeptides and thereby il1l11odulating neuro­
genic inflammation. It has been shown that NEP activity may be reduced by a variety of 
exogenous stimuli, like viral infections, ozone, and cigarette smoke (see chapter 3.6). In 
contrast, little is known about the modulation ofNEP activity on bronchial epithelial cells by 
endogenously released mediators. Asthmatic airways are chronically inflamed and inflam­
matory mediators, such as cytokines, lllay affect peptidase expression and thereby modulate 
(neurogenic) inflammation. In chapter 9 we aim to answer two questions: I) what is the 
effect of cytokines on the activity and expression of peptidases on hUlllan bronchial epithelial 
cells; and 2) what is the effect of glucocorticoids on the activity and expression of these 
peptidases? Since it is hard to obtain large numbers of bronchial epithelial cells in primary 
culture, we used for tItis study the bronchial epithelial cellliue BEAS 2B, which expresses 
NEP and APN. We first studied the effects of the cytokines interleukin (IL)-l p, IL-4, tumor 
necrosis factor (TNF)-a, interferon (IPN)-y, and epidermal growth factor (EOP) on the pep­
tidase activity and expression. These cytokines are abundantIy present in the inflamed bron­
elms. Second, we studied the effects of glucocorticoids, which are widely used in the treat­
ment of asthma, on the expression and activity of both peptidases. These studies were per­
formed both in the absence and in the presence of cytokines, since the latter condition may 
more properly reflect the ill vivo situation during glucocorticoid therapy. 

6.3. THE BRONCHIAL EPITHELIUM 

Until recently the bronchial epithelium was considered to be a passive batTier between 
the environment and the internallTIilieu of the lung. In addition to this barrier function, bron­
dlial epithelial cells are now considered to play an essential role in iIlitiating and perpetuat­
ing inflammatory reactions (chapter 4). 

JL-4 is thought to be an important mediator in the development and perpetuation of aUer­
gic diseases like asthma (see chapter 1.4). Asthmatic airways show an increased number of 
cells expressing IL-4, predominantly Th2lymphocytes and eosinophils, and increased levels 
of IL-4 can be found in BAL fluid from asthmatics compared to healthy controls. Therefore, 
we analyzed whether human broncllial epithelial cells express functional IL-4 receptors, both 
ill vivo and ill vitro, and whether this expression is altered in asthmatic patients. We first 
determined the expression ofll..-4 receptor mRNA and protein in bronchial epitheHal cells ill 
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vivo (using in situ hybridization and immunohistochemistry) and in vitro (using RT-PCR and 
flowcytomctry). Second, we studied the expression ofIL-4 receptors in bronchial biopsies of 
allergic asthmatics and compared this with the expression in healthy subjects. To determine 
whether the IL-4R on human bronchial epithelial cells is also functionally active, we investi­
gated whether stimulation of cultured human bronchial epithelial cells with IL-4 can modu­
late the release of the pro-inflammatory mediators IL-8 and monocyte chemotactic protein-l 
(MCP- I) and the anti-inflammatory mediator IL-I receptor antagonist. Finally, we studied 
whether ll..-4 receptor expression on human bronchial epithelial cells ill vitlV can be modu­
lated by cytokines (lL-I~, IL-6, IL-4) orphannacological agents (dibutyryl-cAMP and phorbol 
myristate acetate). These studies are presented in chapter 10. 

Accumulation of leukocytes in the lung is dependent upon the presence of chemokilles 
and the expression of appropriate adhesion molecules. Bronchial epithelial cells are able to 
produce a variety of chemokines, and therefore may contribute to the increased numbers of 
leukocytes observed in the asthmatic airways (see chapter 4.3.1.). In addition, bronchial 
epithelial cens may express surface membrane molecules involved in the adhesion or activa­
tion of the recmited leukocytes, such as intercellular adhesion molecule (ICAM)-I and the 
human leukocyte antigen (HLA) class II molecule. Modulation of chemokine release and 
surface membrane molecules may serve as an important mechanism to control the recruit­
ment and activation of leukocytes. In chapter 11 we describe studies regarding the release of 
MCP-I, the prototype C-C chemokine, and IL-8, the prototype C-X -C chemokine, by human 
bronchial epithelial cells. We investigated whether inflammatory agents, like cytokines (IL­
I p, TNF-o:, IFN-y) and the bacterial cell wand product lipopolysaccharide (LPS), can modu­
late the release of these chemokines. In addition, we investigated whether stimulation of 
bronchial epithelial cells by these cytokines can also affect the expression of molecules in­
volved in the adhesion and activation of the recmited leukocytes. Therefore, we analyzed the 
epithelial expression of ICAM-I, HLA class II, and the costimulatory molecule CD40, both 
in the absence and in the presence of cytokines. Finally, the effects of glucocorticoids on the 
cytokine-induced responses were analyzed to determine whether these drugs can exert part 
of their anti-inflammatory actions through inhibition of chemokine release or marker expres­
sion by human bronchial epithelial cells. 

In Chapter 12, the experimental fIndings of chapters 7 through II are discussed in the 
context of the present literature. In this chapter also future research directions will be given. 
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ABSTRACT 

BACKGROUND: Asthma is characterized by reversible airway obstruction, airway 
hypelTcsponsiveness, and chronic inflammation of the airways. Since peptides are able to 
produce many of the pathophysiological feattlres characteristic of asthma, peptide-mediated 
inflammation is thought to playa role in this disease. The effects of peptides are modulated 
by peptidases, which are able to degrade peptides, mostly resulting in their inactivation. 

OBJECtIVE: In tills study, we investigated the distribution of two peptidases, aminopeptidase 
Nand dipeptidyl peptidase IV, in the human bronchus and determined whether their expression 
was altered in allergic asthmatics. 

MmHODS: We first dctellnined the distribution of aminopeptidase Nand dipeptidyl peptidase 
IV in the human bronchus using inullullo- and enzymchistochcmistry and compared tills with 
the distribution of neutral endopeptidase. Second, the expression of aminopeptidase Nand 
dipeptidyl peptidase IV was determined in bronchial biopsies of healthy sllbjects (n=8) and 
allergic asthmatics (n=12), 

REsULTS: Aminopeptidase N was localized in connective tissue, blood vessels, gland ducts, 
perichondrium, nerves and leukocytes (mainly mononuclear phagocytes, dendritic cells, and 
eosinophils), Dipeptidyl peptidase IV was localized in serosal glands, blood vessels, alld T 
cells. Immunohistochemistry and enzymehistochemistry gave similar results. Comparison of 
the expression of aminopeptidase Nand dipeptidyl peptidase IV in bronchial biopsies of 
healthy controls and atopic asthmatics revealed no significant differences in the lamina prop­
ria. In contrast, in the bronchial epithelium of atopic asthmatics an increased number of 
aminopeptidase N-positive ceHs could be found. Double-staining identified these cells as 
L25+ dendritic cells and eosinoplllis. 

CONCLUSION: We conclude that expression of aminopeptidase Nand dipeptidyl peptidase 
IV is restricted to specific sites within the human bronchus. Furthermore, in the bronchial 
epithelium of allergic asthmatics an increased number of aminopeptidase' N-expressing 
dendritic cells and eosinophils can be found. 

INTRODUCTION 

Asthma is clinically characterized by reversible airway obstruction and airway 
hyperresponsiveness [1]. Nowadays, it is thought that these symptoms result from a chronic 
inflammation of the airways, characterized by an influx of leukocytes and increased levels of 
inflammatory mediators [2}. This inflammation is caused, at least partially, by peptides like 
cytokines and neuropeptides. Degradation of peptides by peptidases is an imp0l1ant mechanism 
to modulate peptide-mediated inflammation. It has been demonstrated that inhibition of 
peptidases, either by drugs or by environmental factors such as ozone, results in potentiation 
of neuropeptide-induced effects in the airways [3-7]. In contrast, adnllllistration of an 
aerosolized recombinant peptidase prevented neuropeptide-mediated cough [8]. Based on 
these results, it is thought that peptidases also play an important role in the modulation of 
peptide-mediated inflammation in asthma (reviewed in [9]). Until now, most attention has 
been given to neutral endopeptidase (NEP, identical to CD 10 [10]), In the human bronchus, 
this peptidase has been identified in the epithelium. smooth muscle. submucosal glands, and 
endothelium [11]. However, other membrane-bound peptidases, such as aminopeptidase N 
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(APN) and dipeptidyl peptidase N (DPP IV) may also be involved in the modulation of 
peptide-mediated inflammation. 

APN, which is identical to CD 13 [12], preferentially cleaves neutral amino acids from the 
N-terminus of peptides, including enkephalins, fMLP, tachykinins, and cytokines like IL-I13, 
IL-2, IL-6 and IL-S [13- I 5], Its general function is to reduce cellular responses to peptides, 
but APN may also be involved in processing MHC-bound peptides [16] and in the degradation 
of type IV collagen [17]. APN is expressed on myeloid cells (granulocytes, monocytes and 
macrophages), in the intestinal and renal epithelium, endothelium, placenta, brain, kidney, 
breast, and liver (reviewed in [IS]). Gnmany cells, APN is co-expressed with NEP and it is 
thought that initial cleavage by NEP may precede APN activity. 

DPP IV (which is identical to CD26 [19]), is a ~erine protease which preferentially cleaves 
Xaa-Pro and less frequently Xaa-Ala dipeptides from the NH,.tenninus of polypeptides [20]. 
Among the possible substrates for DPP IV are substance P (SP) and bradykinin [21, 22]. 
DPP IV may also be able to degrade cytokines,like IL- 113, IL-2 and IL-6, although preceding 
cleavage by an endopeptidase may be required [14]. In addition, DPP N may also function 
as an adhesion molecule to fibronectin [23J, as a co-receptor for HIV [24], and is involved in 
T-cell activation [25]. DPP IV is expressed by a variety of cell types, most abundantly in 
epithelia of the small intestine, liver and kidney [26,27], but also by activated T-Iympho­
cytes [28]. 

Given the known characteristics of APN and DPP IV, these two pcptidases may be involved 
in the modulation of peptide-mediated inflammation in the airways. Therefore, our aims 
were to determine the expression and activity of APN and DPP IV in the human bronchus 
and to compare tlris distribution with the recently established distribution ofNEP. In addition, 
the expression of APN and DPP IV in bronchial biopsies of healthy controls and atopic 
asthmatic patients was shldied to detenlline whether APN and DPP IV are involved in bronchial 
inflammation. 

MATERIALS AND METHODS 

Patients alld control subjects 
Bronchial mucosal biopsy specimens were obtained from twelve non-smoking allergic 

asthmatic patients (9 men, 3 women, median age 32 years, range 20 - 56 years). Asthma was 
defined as a history of episodic wheezing and reversible airway obstruction characterized by 
an increase in forced expiratOlY volume in one second (FEV,) of ~ 9% after inhalation of 
1000 Ilg terbutaline. The asthmatic subjects had a mean FEV, of87% of the predicted value 
(range 59 - 108%); the median of the 210gs of the provocative concentrations of inhaled 
methacholine required to reduce their FEV, by 20% (PC,o) was 0.29 mg/ml (range -3.S9 -
3.43 mg/ml). Allergy was defined by one OJ' more positive skin-prick tests to extracts of 16 
common aeroallergens. All patients were receiving inhaled p-agonists, and none had taken 
oral or inhaled corticosteroids in the month prior to the study. 

A control group was composed of 8 non-allergic non-asthmatic subjects (5 men and 3 
women, median age 24 years, range 23 - 52 years). All controls had a PCzo histamine of more 
than S mglml and a median FEV, of 100 (88 - 109)% of the predicted value. Characteristics 
of patients and controls are shown in Table 1. The study was approved by the local Ethics 
Committee and all participants gave their written informed consent. 
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Table!. Characteristics of patients and healthy subjects. 

Patient number Sex Age FEV! 'log PC,o 
(years) (% predicted) (mg/ml) 

Allergic asthmatics I M 51 59 1.47 
2 M 41 83 -1.83 
3 M 55 60 -1.80 
4 M 23 104 2.85 
5 M 56 79 1.93 
6 F 21 105 -3.42 
7 M 32 91 0.64 
8 F 20 91 -0.06 
9 M 43 67 3.43 

10 F 26 92 2.86 
II M 47 81 -1.05 
12 M 23 108 -3.89 

Healthy subjects I M 23 109 
2 F 24 103 
3 F 23 96 
4 M 23 88 
5 M 52 88 
6 F 33 97 
7 M 24 104 
8 M 26 109 

Bronchial biopsy 
Bronchial biopsy specimens were taken from the carinae of the lingula or the right upper, 

middle or lower lobes via an Olympus BF IT 10 fiberoptic bronchoscope (Tokyo, Japan) using 
alligator forceps. Olympus FB 15C. Each biopsy specimen was immediately placed in isotonic 
saline and frozen within 20 min in Tissue-Tek II OCT embedding mediulll (Miles. Naperville, 
IL, USA). Samples were stored at _800 C ulltiluse. 

Tissue 
Samples of human bronchus were obtained from patients undergoing pneumonectomy or 

lobectomy. Tissue distinct from the tumor and having a normal appearance was embedded into 
Tissuc-Tek, frozen in liquid nitrogen, and stored at -80°C. 

As control tissues for the enzymehistochemical studies, murine kidney and placenta, and 
guinea-pig trachea were used. These tissues were treated in the same way as the human samples. 

Antibodies 
The following mouse monoclonal antibodies were used: CLB-CD 13 (Central Laboratory of 

the Blood Transfusion Service, Amsterdam, The Netherlands) and WM-47 (gift of dr. E. 
Favaloro, Westmead, Anstralia), both specific for APN; Ta-I (Coulter Clone, Hialeah, FL, 
USA), specific for DPP N [28]; L25 (kindly provided by Dr. T. Takami, Gifu, Japan), directed 
against B cells and dendritic cells (DC) [29]; OKT6 (American Type Culture Collection, 
Rockville, MA, USA), directed against the CDla antigen of DC [30]; SIOO (DAKOpalts, 
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OlostlllP, Denmark) directed against DC; anti-CD3 (LeuA), anti-CD4 (Leu-3) and anti-CDS 
(Leu-2), all from Becton Dickinson (San Jose, CA, USA); anti-CD 14 (My-4; Coulter Clone); 
anti-CD 19 (B4; Coulter Clone); EO I, recognizing eosinophil cationic protein (ECP) in resting 
and activated eosinophils (Phannacia, UppsaIa, Sweden); BMK13, recognizing Major Basic 
Protein (MEP) in resting and activated eosinophils (Oenzyme, Cambridge, MA, USA); and 
E02, (Phallnacia) recognizing the cleaved form of Eep in activated eosillophils. 

immlillohistochelliistry 
Sections (6 ~!In) were cut using a cryostat and collected on poly-L-Iysine (Sigma, SL Louis, 

MO, USA) coated slides. The sections were air-dried for at least one hour, and stored at -20oe 
until lise. Before immunohistological staining, frozen tissue sections were brought to room 
temperature and fIXed in acetone for 10 minutes. 

Immunohistochemical staining of bronchial biopsies was pelfonned with the immuno-alkaline 
phosphatase anti-alkaline phosphatase (APAAP) method [31], using new fuchsin (Chroma­
Gesellschaft, SnIttgart, Germany) as the chromogen. For tissue obtained after lung surgel)" the 
avidiu-biotincomplex (ABC) method (DAKOpaUs) was performed with diaminobenzidine 
(DAB; Sigma) as substrate [32]. Staining of bronchial tissue with the APAAP or ABC method 
did not reveal significant differences in staining pattem and relative intensity. 

Double-stainings were pelfonned essentially as described earlier [33]. However, sections 
were fixed in acetone for 10 min and saponin was not added to the washing-buffer. 

Ell zyJ 11 eh i stochell1 ist I)' 
Enzyme activities for APN, DPP IV and NEP were detennined according to Lojda [34] with 

some small modifications. Briefly, frozen tissue sections were brought to room temperanlre 
and either fixed in Cafoma (1 g CaCI" 10 mI formalin, 90 ml macrodex (dextran 60 gfl + NaCI 
9 gil» for one minute or used immediately. Similar results were obtained with both methods. 
Substrates used are ala-4-methoxynaphtylamide (aIa-I'vINA; Sigma) for APN, gly-pro-MNA 
(Bachern, Bubendorf, Switzerland) for DPP IV, and glut-ala-ala-phe-MNA (Sigma) for NEP. 
EnzymehistochemistlY using proIyl-MNA (pro-MNA; Sigma) was used as a control for the 
specificity of APN activity, since this substrate is resistant to cleavage by APN. Tluee milligrams 
of substrate were dissolved in 0.5 ml N,N-dimethylfonnamide (Merck, Darmstadt, Oennany). 
For APN and DPP IV, tltis solution was mixed with 9.5 ml PBS containing 10 mg Fast Blue B 
saIt (Sigma), and futered. Sections were incubated in a moist chamber at room temperature for 
two hours, followed by a short wash in PBS, and embedded in Aquumountant (BDH LaboratOly 
Supplies, Poole, UK). 

For detection ofNEP activity, a two-step reaction was used. Three milligrams of the substrate 
were dissolved in 0.5 ml N,N-dimethyIfonnamide, mixed with 9.5 ml50 mM TRIS-HCI pH 
7.4 containing 10 mg Fast Blue B, and filtered. Subsequently, alanine-aminopeptidase (3 units; 
Sigma) was added. Alanine-aminopeptidase cleaves the phe-MNA bond after the initial cleavage 
ofthe ala-phe bond by NEP. To determine specific NEP activity, parallel sections were incubated 
with the same substrate, with the addition of phosphoramidon (Sigma), a specific NEP inhibitor 
(final concentration: I flM). Sections were incubated in a moist chamber at 37°e for 24 hours, 
washed shortly in 50 mM TRIS-HCI pH 7.4, and embedded in Aquamountanl. 

Sections were analysed inunediately using a light microscope. Negative controls included: 
1. omission of Fast Blue B in the incubation medium, 2. heating the sections at 90° e for 5 min 
in buffer prior to incubation, and 3. omission of the substrate in the incubation medium. 
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Since no counter-staining was lIsed in the enzymchistological stainings, serial sections were 
stained using the periodic acid Schiff (PAS) method. 

Qltalltijicatiol1 
Biopsies were coded and two sections were counted in a blinded fashion for each antibody 

and each biopsy at a magnification of lOx40. \Vith an eye piece graticule the number of positively 
stained cells were counted in the epithelium and in a zone 100 J.lIll deep in the lamina prapda 
along the length of the epithelial basement membrane (BM), which had to be covered with 
epithelium over at least sao I-lm. 

Cells were counted if they stained red and contained a nucleus. The cell counts were expressed 
as the number of cells per HUll ofbascmcnt membrane. Since the majority of APN in the lamina 
propria \Vali.expressed on pennanent stmcturc.o;; within the bronchus (i.e. not confmed to infiltrating 
cells), APN expression in the lamina propria was scored semi-quantitatively on a 0 - 3 scale (0= 
negative; 1= weak; 2= moderate; 3= strong). 

Statistical analysis 
Median cell counts of biopsies of allergic asthmatics were compared with median cell counts 

of the control subjects using the Mann-Whitney V-test. Correlation coefficients were obtained 
by Pearson's rank method. A value of p < 0.05 was considered statistically significant. 

RESULTS 

Distribution of aminopeptidase N 
The distribution of APN in the human bronchus was investigated using WM-47 and CLB­

CD 13 antibodies. The two antibodies displayed identical reactivities in all tissues. As shown in 
Figure INB and Table 2, APN was observed in connective tissue (especially just beneath the 
basement membrane of the bronchial epitheJium and submucosal glands), secretOlY epithelium 
of bronchial glands, perichondrium, nerves, and endothelial cells. Some positively staining 
leukocytes, mainly in the lamina propria, could be observed. Using double-stainings with CD 14, 
the m,tiority of these cells was identified as mononuclear phagocytes. In addition, APN was 
expressed by eosinophils (double-staining with BMKI3) and certain dendritic cells (double­
staining with L2S but not with CD I a). 

Using the enzymehistochemical staining for APN activity, a pattern similar to the 
immunohistochemical staining was obtained (Fig. I C/D and Table 2). No activity could be 
observed using pro-MNA as a substrate (for incubation periods up to 48 hours; data not shown). 

Distribution of dipeptidyl peptidase IV 
DPP IV expression could be detected in submucosal glands and leukocytes (Fig. 2NB and 

Table 2). In submucosal glands, DPP IV seemed to be located intracellularly. Blood vessels, in 
particular venules but also capillaries. expressed DPP IV weakly. To determine whether serosal 
or mucosal glands displayed DPP IV expression, serial sections were stained using the PAS­
method. This revealed that DPP IV was only present in serosal glands. No staining of fibroblasts, 
bronchial epithelium and smooth muscle cells could be observed. Double-stainings with CD3 
revealed that the majority of DPP IV-positive leukocytes were T cells. 
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Figure 1. Distribution of APN in human bronchial tissue. Expression of APN was determined by 
inmmnohistocbemistry (A and B) and cllzymehistochemistry (C and D). A and C: negative control (omission of 
primary antibody or substrate, respec/il'eiy); B: CLB-CD13, an antibody specific for APN; D; ala-1-INA. Original 
magnification: 160 x. 

Enzymehistochemistry revealed strong DPP IV activity in submucosal serosal glands, blood 
vessels, and leukocytes (Fig, 2C/D and Table 2), 

Distriblltioll oflleiltral elldopeptidase 
To compare the distilbution of APN and DPP IV with NEP, the activity ofNEP was detennined 

using enzymehistochemistry. In the human bronchus, a very weak NEP activity was observed, 
but attribution of this activity to a certain cell type was difficult. Faint staining of the bronchial 
epithelium, submucosal glands, smooth muscle and blood vessels could be observed (Table 2), 
In all cases, no activity could be observed in the presence of phosphoramidon (1 flM), indicating 
that indeed NEP activity was measured. In contrast to the human bronchus, in the guinea-pig 
trachea NEP activity could easily be detected, especially within the epithelium (data not shown), 

APN alld DPP IV ill brollchial biopsies alhealthy colllrols alld allergic asthmatics 
Analysis of the type of cell infiltrate revealed no statistically significant difference in the 

numbers ofT cells, B cells, monocytes, or dendritic cells between healthy subjects and allergic 
asthmatics. In contrast, the number of (activated) eosinophils in the lamina propria of allergic 
asthmatics (as determined by staining with EG I, EG2 and BMK13) was significantly increased 
compared to healthy subjects (Table 3), 

No difference was observed in APN expression of the lamina propria of healthy subjects and 
allergic asthmatics (Fig 3B). In contrast, in the bronchial epithelium of allergic asthmatics an 
increased number of APN-positive cells could be observed compared to healthy controls (Fig, 
3A). These APN-positive cells morphologically appeared to be infiltrating leukocytes rather 
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I<'igllrc 2. Localization of DPP IV in human bl'onchial tissue. Expression of DPP rv was determined by 
immunohistochemistry (A and B) and enzymchistochemistry (C and D). A and C: negative control (omission of 
primary antibody or substrate, respectively); B: Ta-I, an antibody specific for DPP IV; D: gly-pro-MNA. Original 
magnification: 63 x. 

Table 2. Distribution ofamillopeptidase N (APN), dipeptidyl peptidase IV (DPP IV), and neutral 
endopeptidase (NEP) in the human bronchus I. 

APN DPP IV NEP 
Bronchial epithelium ± 

Smooth muscle ± 

Connective tissue ++ 
Blood vessels ++ +1±2 ± 

Serosal/mucosal glands -/- ++/- ±f± 
Gland ducts ++ 
Nerves + 
Leukocytes -' + + + 

Staining intensity (as determined by immunohistochemistry and cllzymehistochemislry) was arbitrarily graded as 
negative (-), weak (±), moderate (+). and intense (++). 

Staining intensity of venule ... > capillaries"'" artenes. 
1 See text for details. 

than bronchial epithelial cells themselves. In addition, weak but significant cOlTelations were 
found between the APN score in tile bronchial epithelium and the number of BMK I Y eosinophils 
(r, = 0.582;1' <0.05), EG2+ eosinophils (1', = 0.569;1' < 0.05) or L2s+ dendritic cells (1', = 0.473; 
I' < 0.05) in the bronchial epithelium. Double-stainings using CLB-CDI3 and L25 or BMK13 
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confirmed the presence of APN on L2S+ dendIitic cells and eosinophils. Although L25 may 
also be present on B cells, the expression of APN seems to be restricted to L2S+ dendritic cells, 
since B cells (CD 19+) were hardly obselved in the bronchial biopsies. In addition, double­
staining with CDI9 and CLB-CDI3 (APN) revealed no double-positive cells. 

The number of DPP IV -positive cells in the bronchial epithelium or lamina propria did not 
differ between healthy controls and allergic asthmatics (Fig. 4A and 4B). 

T.1ble 3. IVledian cell counts (ranges) in bronchial epithelium and lamina proplia in aJlergic asthmatics 
and illnOn~allel'gic non-asthmatic controls pCI' nUll of basement membrane. 
Marker Epithelium Lamina propria 

Controls Asthmatics Controls Asthmatics 

CD3 11.0 (3.4-34.1) 13.8 (0.4-59.1) 33.8 (8.8-52.9) 16.2 (6.3-127.2) 
CD4 3.2 (0.0-5.0) 0.0· (0.0-1.1) 13.6 (4.2-3S.5) 16.5 (1.3-37.6) 
CD8 0.4 (0.0-9.5) 5.3 (0.0-18.2) 4.0 (O.O·IS.I) 10.7 (0.0-18.2) 
CDI9 0.0 (0.0·0.0) 0.0 (0.0·0.7) 0.0 (0.0-2.7) 0.0 (0.OA.5) 
CDI4 0.0 (0.0-1.7) 0.0 (0.0·0.0) 1.2 (0.0-3.8) 0.0 (0.0·1.6) 
ECP 0.0 (0.0-0.0) 0.0 (0.0-1.0) 0.0 (0.0-0.0) 3.S' (1.0-14.4) 
MEP 0.0 (0.0-0.0) 0.0 (0.0-12.2) 1.7 (0.0-3.8) 4.5' (1.7-16.0) 
ECPde,i,ed 0.0 (0.0-0.0) 0.0 (0.0-1.0) 0.0 (0.0-1.7) 1.9' (0.0-29.3) 
COla 0.0 (0.0-3.6) 0.9 (0.0-4.0) 0.0 (0.0-1.7) 0.9 (0.0-5.4) 
1.25 0.7 (0.0-3.2) 0.6 (0.0-5.8) 1.7 (0.0-9.0) 4.0 (0.0-13.8) 
SIOO 0.0 (0.0-0.0) 0.0 (0.0-2.0) 0.4 (0.0-2.1) 1.2 (0.4-5.2) 

• p < 0,05 compared to controls, 

DISCUSSION 

In this study, we show that APN and DPP IV are expressed at specific and distinct sites 
within the human bronchus. APN was localized in connective tissue, blood vessels, gland ducts, 
perichondrium, nerves and leukocytes (mainly mononuclear phagocytcs, dendritic cells, and 
eosinophils). opp IV was localized in serosal glands, blood vessels, and T cells. Comparison 
of the expression of both peptidases in bronchial biopsie..1) of healthy controls and atopic asthmatics 
revealed a significantly increased number of APN-positive cells in the bronchial epithelium of 
atopic asthmatics. These cells were identified as L2S+ dendritic cells and eosinophils. 

Asthma is characterized by reversible airway obstruction, airway hypel1'esponsiveness and 
chronic inflammation of the airways, characterized by an influx of leukocytes and increased 
levels of inflammatory mediators [I, 2 J. III vitro and animal studies have shown that peptides, 
especially neuropeptides, are able to produce many of the pathophysiological features charac­
teristic of asthma [35]. Therefore, it is thought that (neuro)peptides play an important role in the 
pathogenesis of asthma. The effects of bio-active peptides are modulated by peptidases. Most 
attention has been given to NEP and several studies have indicated that NEP plays an important 
role in the modulation of peptide-mediated effects,like'neurogenic inflammation [3-7]. In addi­
tion to NEP, other peptidases, such as APN and DPP IV, may be involved in the modula­
tion of peptide-mediated inflammation. However, at present little is known about their 
function and distribution within the human bronchus. Therefore, we determined the distribution 
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I·'igurc 3, APN expression in bronchial biopics obtained from healthy contl'Ols and aJergic asthmatics. Indi­
vidual cell COllnts for cells expressing APN in the bronchial epithelium (A) and individual score of APN expression 
in the lamina propria (B) of bronchial biopsies obtained from healthy controls (He) and allergic asthmatics (AA). 
NS: not significant. 

of APN and DPP N within the healthy human bronchus and investigated whether their expression 
was modified in asthmatic airways. 

APN expression and activity was observed in connective tissue just beneath the basement 
membrane of the bronchial epithelium and submucosal glands. At these sites, APN is in a 
pelfeet location to degrade neuropeptides released by sensory nerves, since many of these 
nerves end beneath the bronchial epithelium [36]. APN, but also DPP N, was present on blood 
vessels indicating that it may be involved in the processing of intravascular peptides, such as 
SP. APN expression could be observed in arteries, capillaries and venules, whereas 
aminopeptidase A activity (as detennined by the cleavage of glut-MNA) was confined to 
capillmies (data not shown) and DPP IV was mainly present in venules. The latter location is of 
interest, sinceSP-induced plasma leakage occurs in these postcapillmy vennles [37]. We speculate 
that DPP IV expressed on these post-capillary venules is involved in the regulation of SP­
induced plasma leakage and that the site-restricted presence of different peptidases in blood 
vessels may represent a mechmusm to control blood flow and plasma leakage at specific locations. 
However, the exact physiological function of these peptidases is still unknown and needs fmiher 
study. 

Comparison of the expression of APN in bronchial biopsies of healthy controls and allergic 
asthmatics revealed a significantly increased number of APN-positive cells in the bronchial 
epithelium of allergic asthmatics. In accordance to the known distribution of APN among 
cells of myeloid origin [38], these cells were shown to be dendritic cells and eosinophils. 
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Figure 4. DPP IV expression in bronchial biopsies obtained rrom heallhy controls and allergic asthmaties. 
Individual cell counts fOTceUs expressing DPP IV in the bronchial epithelium (A) and lamina propria (8) of bronchial 
biopsies obtained from healthy controls (He) and allergic asthmatics (AA). NS: not significant. 

Other studies have shown an increased number of dendritic cells in bronchial biopsies of patients 
with asthma [33] and during inflammatory responses in the rat lung [39]. FUl1hermore, recent 
studies have indicated a role for APN in processing MHe-bound peptides [40]. Recl1litment of 
APN-positive dendritic cells may therefore serve as a mechanism to effectively take up and 
process foreign antigens. However, since in our study the number of dendtitic ceUs and eosinophils 
in the bronchial epithelium did not differ significantly between healthy subjects and allergic 
asthmatics, it can not be excluded that the increase in the number of APN-positive cells within 
the bronchial epithelium of allergic asthmatics is due to an upregulation or induction of APN all 

the surface of these cells. In previous studies, we have shown that IL-4 is able to upregulate 
APN expression on mononuclearphagocytes [41]. Although we did not observe a difference in 
the number ofIL-4-positive cells in bronchial biopsies of allergic asthmatics compared to healthy 
controls (data not shown), other reports have indicated that IL-4 Jllay be increased in asthma 
[42,43]. Therefore, it may be possible that the increase in the number of APN-positive cells is 
a result of increased APN expression due to elevated JL-4 production in asthmatic airways. 

Recruitment of APN-positive cells in the bronchus of asthmatics may also result in a more 
rapid degradation of bronchodilating peptides, like vasoactive intesinal peptide and peptide 
histidine Jllethionine, released by nonadrenergic nerves [44]. This may result in exaggerated 
bronchial responsiveness, thereby contributing to the pathology of asthma [45]. 

The APN-score in the lamina propria of allergic-asthmatics did not differ significantly from 
healthy subjects. However, since the majority of APN was expressed 011 permanent stl1lCnlreS 
(e.g. connective tissue, glandular ducts, endothelium) in the bronchus, it was not possible to 
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determine the expression of APN quantitatively. Therefore, changes in the number of APN­
positive leukocytes within the lamina propria will be hard to detect. 

DPP IV activity and expression were strongly present in serosal glands and seemed to be 
located intracellularly. This may indicate that glandular DPP IV is not involved in the modulation 
of peptide-mediated effects on glandular cells, but rather is a product of these cells. 111is suggests 
that DPP IV may be secreted into the epithelial lining fluid, thereby being able to degrade 
intraluminal peptides, such as substance P and bradykinin [21,22]. Indeed, DPP IV activity can 
be detected in bronchoalveolar lavage fluid (data not shown), 

hl patients with chronic obstructive pulmonmy diseases (COPD), a submucosal gland 
hypertrophy has been observed [46]. This may result in an increased DPP IV activity, and thus 
in an increased (neuro)peptide-degradation in the lumen of the bronchus. To our knowledge. no 
data concerning a role for DPP IV in degrading peptides in the humalllullg ill vivo or a role for 
DPP IV in COPD are available yet. 

In the lamina propria of the bronchus, T cells appeared to be a major site for DPP IV activity. 
Comparison of healthy subjects and allergic asthmatics did not reveal significant differences in 
DPP IV expression. indicating that the number of activated T cells was not changed. A limitation 
of our study is that the bronchial biopsies hardly contained submucosal glands. one of the most 
prominent locations for DPP IV. 

The expression ofNEP protein and mRNA in the human bronchus has been described recently 
[ll].ln that study, NEP could befound in the bronchial epithelium, smooth muscle, submucosal 
glands. and endothelium. In our snldy, we used enzymehistochemistry to detect NEP activity in 
the human bronchus. Although NEP activity in the guinea-pig tmchea could easily be detected, 
NEP activity in the human bronchus was low and attribution ofNEP activity to a certain cell 
type was difficult. Nevertheless, weak activity could be observed within the bronchial epithelium 
and submucosal glands. Comparison of the distribution of NEP, APN and DPP IV indicates 
that these peptidases are localized at specific and often distinct sites within the human bronchus 
which are also known to possess receptors for many peptide mediators. TIllS colocalization 
suggests that the cellular response to a peptide can be modulaled by peptidases on the surface 
of the same cell. 

In conclusion, peptidases are widely disttibuted in the human bronchus. The peptidases 
studied have a distinct distribution, with APN expressed by blood vessels, nerves, gland ducts, 
perichondtium, connective tissue and leukocytes (monolluclearphagocytes, eosinophils, dendritic 
cells), and DPP IV predominantly expressed by submucosal glands, blood vessels and T cells. 
In bronchial biopsies of allergic asthmatics an increased number of APN-positive cells (mainly 
dendritic cells and eosinoplllls) can be found in the bronchial epithelium, whereas no differences 
are appamnt for DPP IV. The distribution and characteristics of APN and DPP IV suggest that 
these peptidases are involved in the modulation of peptide-mediated inflammatory reactions in 
the human bronchus. 
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ABSTRACT 

Ncuropcptidcs may be involved in the pathogenesis of asthma by evoking neurogenic 
inflammation. The effects of neuropeptides are limited by peptidases. We investigated pepti­
dase activities in bronchoalveolar lavage (BAL) fluid and senUll of healthy non-smokers, 
smokers, and allergic asthmatics, and studied the effect of inhaled glucocorticoids on pepti­
dase activities in the asthmatic patients. 

Serum and BAL f1uid was obtained from non-smoking and smoking volunteers and from 
allergic asthmatics both before and after treatment with placebo or inhaled fluticasone propi­
onate. Activities of neutral endopeptidase (NEP), aminopeptidase N (APN) and dipeptidyl 
peptidase IV (DPP IV) were determined using coloromctric assays. 

Reduced OPP IV activity in serum and reduced NEP and APN activities in BAL fluid 
were found in healthy smokers compared to non-smokers. In allergic asthmatics, reduced 
APN activity was observed in BAL fluid compared to healthy non-smokers. Fluticasone 
propionate did not affect peptidase activities in the asthmatic patients. 

\Ve conclude that reduced peptidase activities in serum or BAL fluid can be found in 
healthy smokers and allergic asthmatics and that inhaled glucocorticoids do not affect pepti­
dase activities in BAL fluid or serum of asthmatics. Reduced peptidase activities may result 
in impaired degradation of neuropeptides and thereby contribute to the inflammatory pro­
cess. 

INTRODUCTION 

Neuropeptides like substance P (SP) and neurokinin A (NKA) have been demonstrated 
in sensory airway nerves of animals and man and are thought to be neurotransmitters of local 
axon reflexes [1-3]. Activation of sensory nerves may occur after exposure to a variety of 
stimuli, such as bradykinin, viral infections, and cigarette-smoke. This activation results in 
the release of neuropeptides, which subsequently exert a variety of effects, including the 
contraction of smooth muscle celis, secretion of mucus, vasodilation, increased microvascu­
lar leak, and the recmitment and activation of leukocytes. This sequence of events is now 
known as 'neurogenic inflammation' [4]. Since neurogenic inflammation milnics many of 
the pathophysiological features of asthma, lleuropeptides have been implicated in the patllo­
genesis of this disease. Several studies have shown that asthmatic airways are more respon­
sive to neuropeptides [5] and increased amounts of SP can be detected in BAL fluid of 
allergic asthmatics [6] and in serum during asthmatic exacerbations [71. 

The effects of nelll'opeptides are normally limited by rapid degradation by peptidases [4, 
8]. Thus far, most peptidase studies have focussed on the role of NEP, which, in the human 
lung, is expressed on the bronchial epithelium, submucosal glands, smooth muscle cells, 
endothelial cells, and alveolar epithelial cells [9-11]. It has been demonstrated that inhibition 
of NEP, either by drugs or by environmental factors such as ozone, results in increased re­
sponses to exogenously applied or endogenously released peptides [8]. In contrast, neuropep­
tide-mediated cough can be prevented by administration of an aerosolized recombinant pepti­
dase [12]. Based on these resuIts, it has been hypothesized that peptidases play an important 
role in the modulation of peptide-mediated intlammation in asthma. 
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In addition to NEP, other peptidases may be involved in modulating peptide-mediated 
effects in the human airways. APN preferentially cleaves neutral amino acids from the 
N-terminus of pep tides, including enkephalins, fMLP, tachykinins, and cytokines like 
interleukin (IL)-8. APN is widely distributed in the human lung, being present on endothelial 
cells, glandular ducts, fibroblasts, and alveolar epithelial cells [II, 13]. DPP IV is a serine 
protease cleaving peptides like SP and bradykinin. In the human lung, DPP IV is mainly 
present on serosal submucosal glands and endothelial cells, but can also be found on acti­
vated T lymphocytes [II, 14]. 

Although peptidases are normally membrane-bound enzymes, soluble forms can be de­
tected in body fluids. These soluble counterparts may either be derived from shedding of 
membrane-bound peptidases or may be formed by post-translational cleavage of the mem­
brane-bound form [15]. NEP activity in serum probably arises from shedding of the entire 
membrane-bound peptidase [16]. Increased serum activity of NEP has been observed in 
underground miners exposed to coal dust particles [16] and in patients with adult respiratory 
distress syndrome (ARDS) [17] or sarcoidosis [18J. Although the source of the increased 
NEP levels remains to be determined, it has been suggested that increased NEP levels may 
rellect local tissue damage with subsequent shedding of membrane-bound NEP [16, 17]. 
Alternatively, NEP might be released from activated granulocytes sequestered in the lung 
and leak into the bloodstream [17, 19J. DPP IV activity in sennll has recently been shown to 
originate, at least in part, from the DPPL-T antigen expressed on the smface of activated T 
cells [20], whereas serum APN activity predominantly comprises a circulating isofOfm of the 
CDI3 antigen [21]. There is evidence that serum DPP IV activity is dccreased in patients 
with malignancies and in auto-immune and inflammatory disorders [22-26]. Thus far, little is 
known about the presence ofNEP, APN, and DPP IV in BAL fluid and the activities of these 
peptidascs in serum and BAL fluid of subjects with airway inflammation. In asthma, pepti­
dases may act as central modulators of neurogenic inflammation and may therefore serve as 
an important therapeutical target to control asthmatic symptoms. Additionally, one of the 
working mechanisms of glucocorticoids, which are widely used in the treatment of asthma, 
may be upregulation of peptidase activity [27-30]. However, to our knowledge no data are 
cunently available on the effects of inhaled glucocorticoids on peptidase activities in serum 
and BAL fluid. 

In this study, we aimed to investigate the activity ofNEP, APN, and DPP IV in selUill and 
BAL fluid from healthy non-smokers, smokers, and allergic asthmatics. We also studied 
whether treatment with inhaled glucocorticoids could alter the activity of these peptidases. 

MATERIALS AND METHODS 

Pafiellf characteristics 
Thirty-one allergic patients (8 women, 23 men; Table I), all naIl-smokers, participated in 

tlus sttldy. The diagnosis of asthma was based upon a history of attacks of breathlessness and 
wheezing without chrOluc (Le. for more than 3 months per year) cough or sputum produc­
tion, according to the criteria of the American Thoracic Society [31]. Reversible airway 
obstruction was defined by an increase in forced expiratory volume in one second (FEY I) of 
::> 9% after inhalation of 1000 J.lg terbutaline. Allergy was defined by one or more positive 
skin prick tests to extracts of 16 common aeroallergens. All patients were receiving inhaled 
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Bragonists. and none had taken oral or inhaled glncocorticoids in the month prior to the 
study. At entry of the study, all patients showed airway hypcrrcsponsiveness defined as a 
20% decrease in FEV I caused by inhalation of a histamine concentration (pelO) of less than 
8 mg/ml. After a run-in period of two weeks, patients were treated double-blind with the 
inhaled glucocorticoid f1uticasone propiouate (500 ~tg twice daily; n= 15) or placebo (n= 16) 
for 12 weeks [321. Venous blood samples and BAL were taken before and after this treatment 
period and at both visits a methacholine dose-response curve was determined. Patient clm­
racteristics before and after treatment are shown in Table 1. The study protocol was ap­
proved by the Medical Ethics Committee of the Erasmus UniversityfUniversity Hospital 
Dijkzigt. Rotterdam, and all participants gave their written informed consent. 

Healthy subject characteristics 
Nineteen healthy subjects (7 women, 12 men; 10 non-smokers, 9 smokers; Table I), who 

denied symptoms of pulmonary diseases and did not us.e any steroidal or nonsteroidal anti­
intlammatory drugs, participated in tIus study. All controls had a PCm of more than 8 mg/ml. 
Venous blood samples were collected and BAL was performed as described below. In addi­
tion, venous blood samples were collected from 11 other healthy non-smoking subjects (3 
women, 8 men; median age 29 years, range 22 ~ 53 years). 

Bronc/walveolat lavage 
BAL was performed after premedication with inhaled terbutaline (2 puffs of 250]lg via 

Nebuhaler) and atropine 0.5 mg intramuscularly. The nose, throat and vocal cords were an­
aesthetized with topical lidocaine spmy (2% w/v). The bronchoscope (Olympus B I IT 10, 
Tokyo, Japan) was placed in wedge position in the middle lobe, and four aliquots of 50 ml 
sterile phosphate-buffered saline (PBS) solution were infused andaspimted immediately in a 
siliconized spccimen trap placed on melting ice. Immediately after collection, the HAL fluid 
was strained through a stcrile nylon gauze to trap large mucous particles. Subsequently, the 
BAL cells were separated from the fluid by centrifugation at 4°C and 400 g for 5 min. 
Cytocentrifuge preparations were prepared and stored at -80°C until use. Differential cell 
counts (analyzing at least 500 cells) were done after May-GrUnwald Giemsa staining. Su­
pernatants were stored at -80°C lIntil biochemical analysis. 

Blood salllpies 
Venous blood samples were collected in hepariruzed tubes and clotting tubes. Blood was 

either allowed to clot at room temperature, after which the serum was separated by centrifu­
gation, or used for differential cell counts (after May-GrUnwald Giemsa staining and by 
counting at least 500 cells). Previous experiments indicated that clotting time (30 min - 24 h) 
did not affect peptidase activities in serum (data not shown). Sennll was aliquoted and stored 
at -80°C until use. 

Neutral endopeptidase activity 
NEP activity was determined in a two-step reaction using the substrate succinyl-alanyl­

alanyl-phenylalanyl-para-nitro-anilide (Suc-Ala-Ala-Phe-pNA; Sigma, St. Louis, MO). One 
hundred and fifty ~ll BAL fluid or 100 ]l11O-fold diluted serum (in saline) was incubated with 
Suc-Ala-Ala-Phe-pNA (final concentration: 4mM in TRIS-HCI pH 7.4) and I ~lg aminopepti­
dase (Sigma), in the presence or absence of phospho rami dOll (final concentration: 1 pM; 
Sigma). The reaction (total volume: 250 ~tl for BAL, 200 ]ll for sera) was performed 
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Table I. Characteristics of healthy non-smokers, smokers and allergic asthmatics. 
Patient Sex Age Before treatment After treatment 
Number FEV1 11ogPC) FEV, lJog PC20 

(% predicted) (mglml) (% predicted) (mg/mJ) 

Healthy non-smokers M 19 102 
2 M 24 100 
3 ivl 21 99 
4 IV[ 23 109 
5 M 23 109 
6 F 24 108 
7 F 23 96 
8 M 23 88 
9 M 52 88 

10 F 35 110 
Healthy smokers 11 M 20 104 

12 M 18 124 
13 F 33 97 
14 ivl 26 109 
15 F 45 118 
16 M 24 104 
17 F 21 91 
18 Ivf 23 110 
19 F 27 89 

Allergic asthmatics 
Placebo 20 F 44 80 -0.67 81 0.58 

21 1'1 52 63 -0.33 59 1.47 
22 M 41 87 -1.62 83 -1.83 
23 M 55 60 -1.80 62 -2.34 
24 F 17 89 -3044 93 -1.87 
25 M 55 72 3.57 72 1.06 
26 M 26 95 0.74 88 1045 
27 M 22 92 -0.52 87 -1.53 
28 M 56 84 304 79 1.93 
29 M 25 86 2.57 76 3.21 
30 F 21 105 -3042 106 -1.80 
31 F 26 97 -2.56 93 -0.58 
32 M 24 47 0.04 21 1.19 
33 M 32 91 0.64 102 1041 
34 F 26 95 7.98 92 2.86 
35 ~'f 23 108 -3.89 85 -1.10 

Flllticasolle propiollate 36 F 25 90 0.77 115 5.50 
37 M 51 84 4.12 96 4.99 
38 M 21 93 2040 98 >8 
39 M 24 90 -0.91 93 304 
40 M 22 78 0.12 84 2.06 
41 M 24 100 -0.99 86 4.02 
42 M 23 63 -0.04 81 2.53 
43 M 23 104 2.85 108 6.72 
44 M 21 99 -5.18 103 0.15 
45 M 42 60 0.25 64 -0.18 
46 M 20 61 -0.68 90 1.18 
47 F 17 104 -0041 107 1.23 
48 F 20 91 -0.06 91 2.08 
49 M 43 67 3.43 63 >8 
50 M 47 81 -1.05 87 6.85 
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in duplo in a 96-wellmicrotiter plate at 37°C. The increase in specific absorbance at 405 11m 

(as a result of the accumulation of free p-nitroanilide) was determined using a Titertek 
Multiskan MCC plate reader (I.C.N. Biomedicals B.Y., Amsterdam, The Netherlands). NEP 
activity was determined as the activity that could be inhibited by phosphoramidon and is 
expressed as nmoles/mg protein/min. 

Aminopeptidase N( -like) activity 
APN-like (APL) activity was determined by incubating 150 fll BAL fluid or 50 III 10-

fold diluted serum with alanyl-para-nitro-allilide (ala-pNA; 4 mM; Sigma) at 37°C and mea­
suring the increase in specific absorbance at 405 nm. To determine specific APN activity, 
BAL fluid or diluted senlln was fIrst incubated with the CD 13 monoclonal antibody WM-15 
(pharmingen, San Diego, CAl, which specifically inhibits the enzymatic activity of APN 
[33], As a control, BAL fluid or serum was incubated with PBS, an isotype-matched control 
antibody, or WM-47 (an antibody that binds to APN but does not inhibit the enzymatic 
activity; generous gift of dr E. Favaloro, Westmead, Australia). After incubation at room 
temperature for IS min, ala-pNA (fInal concentration: 4 mM) was added (total volume: 300 
~{l for BAL, 20.0 ~(1 for sera) and the increase in absorbance at 40.5 Illl was measured. APL 
and APN activity are expressed as Ilmoles/mg protein/min. 

Dipeptidyl peptidase 11' activity 
DPP IV activity was determined by incubating 150 fll BAL fluid or 100 fll IO-fold di­

luted serum with glycyl-prolyl-para-nitro-anilide (gly-pro-pNA; 4 mM; Sigma) at 37°C and 
measuring the increase in specific absorbance at 40.5 nm. The reaction (total volume: 250. ~ll 
for BAL, 200 III for sera) was performed in duplo in a 96-well microtiter plate. DPP IY 
activity is expressed as 111l1oles/mg protein/min. 

Protein analysis 
Total protein levels in semm and BAL fluid were determined according to Bradford [34]. 

Albumin levels were determined by routine biochemical assessment. 

Statistical analysis 
Data are presented as mean and SEM. For comparisons between groups, an Analysis of 

Variance (ANOYA) was used where multiple conditions were compared. Variables for which 
significant differences were found or significant trends observed were also analyzed by simple 
comparisons between groups using unpaired Student's t-test. Data which were statistically 
significant with unpaired (-tests were also significant in a Mann-Whitney U-test. The effects 
of treatment in the asthmatic patients were analyzed using the paired Student's t-test. Rela­
tionships between parameters were examined by the Spearman Rank Correlation Coeffi­
cient. Statistical significance was taken as p < 0.05. 
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RESULTS 

Study 1. Comparison between healthy non-smokers, smokers, and allergic asthma­
tics 

Cel/ular compositioll of blood samples 
Total protein levels in sennll and total white blood cell numbers in blood samples did not 

differ significantly between healthy nOll-smokers, smokers and allergic asthmatics (Table 2). 
The percentage of eosinophils in blood samples was significantly increased in allergic asth­
matics compared with healthy non-smokers, whereas relative numbers of other cell types did 
not differ between the three groups (Table 2). 

Table 2. l\'Iean (± SEl\'I) total white blood cell count, relative cell numbers, and protein content of 
serum samples of healthy non-smokers, smokers, and allergic asthmatics. 

Total cell number (10'/1) 
Lymphocytes (%) 
Monocytes (%) 
Neutrophils (%) 
Eosinophils (%) 
Basophils (%) 
Total protein (mglml) 

Non-smokers Smokers 
5.2 ± 0.2 6.2 ± 0.5 

35 ±2 34 ±3 
7±1 7±1 
56± 3 55 ± 2 
2±1 3±1 
I±O I±O 

53.1 ± 0.9 52.8 ± 2.0 

t; 1'<0.05 compared to healthy non-smokers 

Peptidase activities in serum 

Allergic asthmatics 
5.6 ± 0.2 

33 ± I 
7±0 
54±2 
5 ± I t 

I±O 
50.3 ± 0.8 

NEP, APL and APN activity did not differ signitlcantly between healthy nOll-smokers, 
smokers, and allergic asthmatics (Fig. I). In contrast, DPP IV activity was significantly de­
creased in serum of smokers, comparcd to both healthy non-smokers and allergic asthmatics 
(Fig. I). 

Cel/u/ar compositioll of BALfllIid 
Percentage recovelY of BAL fluid did not differ significantly between healthy non-smo­

kers, smokers and allergic asthmatics (Table 3). In BAL fluid of smokers, a significant in­
crease in total cell numbers was found, but the cellular composition did not differ compared 
to healthy non-smokers (Table 3). In contrast, total cell numbers in BAL fluid of allergic 
asthmatics tended to be reduced compared to healthy subjects (1'=0.051). Furthermore, BAL 
fluid of asthmatic patients showcd increased relative numbers of eosinophils and lympho­
cytes, whereas the relative number of macrophagcs was reduced (Table 3). However, the 
absolute numbers of lymphocytes, eosinophils and macrophages did not differ between healthy 
non-smokers and allergic asthmatics (data not shown). BAL fluid of smokers showcd a re­
duced percentage of epithelial cells compared to allergic asthmatics, but the absolute num­
bers did not differ. Total protein and albumin levels in BAL fluid did not differ significantly 
between the three groups studied (Table 3). 
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l'igure 1. I\TEP, APL, APN, and DPP IV activity in serum. Peptidase activities were measured in semm from 
healthy non-smokers (shaded bars), smokers (white bars), and allergic asthmatics (heavily shaded). ': p < 0.05 
compared to healthy non-smokers. 

Table 3. Recovery, total white blood eeJi count and relative cell numbers in BAL fluid of healthy 
non-smokers, smokers, and allergic asthmatics (mean ± SE:r\'l). 

Recovery (%) 
Total cell number (106) 

Lymphocytes (%) 
Macrophages (%) 
Neutrophils (%) 
Eosinophils (%) 
Epithelial cells (%) 
Total protein (flg/mJ) 
Albumin (flg/ml) 

Non-smokers Smokers 
68 ± 2 57 ± 6 

16.0 ± 2.2 39.2 ± 6.1 t' 
4.5 ± 1.3 4.1 ± 1.0 
90.1 ± 2.5 92.6 ± 1.4 
1.9 ± 1.2 2.1 ± 0.6 
0.0 ± 0.0 0.0 ± 0.0 
3.5 ± 1.4 1.2 ± 0.5 ' 
63±8 103± 16 
23±5 30±6 

Allergic asthmatics 
56 ± 3 

11.2±1.1 
11.6 ± 1.3 tl 

80.3 ± 1.4 " 
2.2 ± 0.6 

0.8 ± 0.2 t 
5.0 ± 0.9 
97 ± 10 
36 ± 5 

t: 1'<0.05 compared to healthy non-smokers; I: p<O.OS compared to smokers; ': p<0.05 compared to allergic 
asthmatics 

Peptidase activities ill BALfluid 
All four peptidase activities were significantly higher in BAL fluid than in serum (Fig. 1 

and 2), The BAL fluid:serum ratios of the peptidase activities in healthy non-smokers were 
62.7 (NEP). 5.3 (APL). 5.1 (APN). and 2.3 (DPP IV). 

Comparison ofDPP IV activity in BAL fluid of healthy non-smokers, smokers, and aller­
gic asthmatics did not reveal significant differences (Fig. 2). NEP activity (either expressed 
per ml or per mg protein) was significantly reduced in BAL fluid of smokers (Fig. 2). APL 
activity (expressed in nmoles/mg protein/min) in BAL fluid of smokers and allergic asthma­
tics was reduced compared to healthy non-smokers, but these differences did not reach statis­
tical significance (p=0.070 for both comparisons). These reductions were completely due to 
a decreased APN activity in BAL flnid of both smokers and allergic asthmatics (p<0.05; 
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Fig.2). However, APL and APN activity per ml BAL fluid were not significantly different 
between the three groups (data not shown). 
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Figure 2.l\'EP, APL, APN, and DPP IV aethity in BAL fluid, Peptidase activities were measured in HAL fluid 
from healthy non-smokers (shaded bars), smokers (whi!e bars), and allergic asthmatics (heavily shaded). ': p < 
0.05 compared to healthy non-smokers. 

Correlations between peptidase activities and eel/numbers 
NEP activity in BAL tluid showed a strong correlation with APL and APN activity (Fig. 

3A and C). These correlations were not due to lack of specificity of the assays since 
phosphoramidon did not affect APN activity, and NEP activity could not be inhibited by the 
CD 13 monoclonal antibody WNI-15 (data not shown). NEP activity in serum also correlated 
with senun APL activity (r, = 0.3466; P < 0.01) and APN activity (r, = 0.2798; P < 0.05), 
although these correlations were less clear. APL activity conelated significantly with APN 
activity, both in BAL fluid and in serum (Fig. 3B and D). There were no significant correla­
tions between peptidase activities in BAL fluid and serum. Furthermore, there were no sig­
nificant correlations between peptidase activities in BAL fluid or serum and relative or abso­
lute cell numbers (data not shown). 

Study 2. Effect of inhaled fluticasone propionate 011 peptidase activities ill BAL 
fluid alld serum of allergic asthmatics 

Clinical parameters and cellular composition of blood samples and BALflrdd 
Patients receiving inhaled fluticasone propionate for three months showed improved lung 

function as determined by an increase in FEV [ and PClO values (Table I). No improvement 
was observed in the patients receiving placebo. 

BAL fluid recovery, cell numbers, total protein levels, and albumin levels did not differ 
before and after treatment with either fluticasone propionate or placebo (data not shown). 
Relative numbers of lymphocytes in BAL fluid were increased after treatment with fluticasone 
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Figure 3. H.clatiollship between peptidase acthities in BAL fluid (A, n, C) and serulII (D). Diamonds: healthy 
nOIl~slllokcrs (He); Squares: smokers (S); Triangles: allergic asthmatics (AA). Activities are expressed as nllloles/ 
rug protein/min. 

propionate (before: 11.0 ± 2.0%. after: 16.9 ± 3.1 %), whereas other cell numbers were un­
changed. Total leukocyte numbers in blood samples were significantly increased after treat­
ment with tluticasone propionate (before: 5.4 ± 0.3, after: 6.7 ± 0.5), This was accompanied 
by a reduction in the relative number of eosinophils (before: 6.1 ± 0.8%, after: 3.5 ± 0.4%) 
and all increase in the relative numbers of neutrophils (before: 53.8 ± 1.8%, after: 58.9 ± 
1.9%). No differences in total and relative cell counts were observed in BAL fluid or blood 
samples of allergic patients treated with placebo (data not shown). 

Peptidase activities ill serum alld BALjluid 
Treatment with inhaled fluticasonc propionate for three months did not significantly af­

fect peptidase activities in serum (Fig. 4). Peptidase activities in BAL fluid were also not 
affected by fluticasone propionate treatment (Fig. 5). However, in contrast to the reduced 
APN activity in BAL fluid observed before treatment of asthmatics, APN activity after treat­
lllent with either placebo or fluticasone propionate did not differ significantly compared to 
healthy controls (data not shown), In the asthmatic patients treated with placebo, no signifi­
cant differences in peptidase activities in serum or BAL fluid were observed (data not shown). 
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Figure 5. Effcct of flullcasonc propionate on peptidase activities in BAL fluid. Allergic astlmlatics were 
treated for 12 weeks with inhaled fluticasone propionate. Before and after this period peptidase activities were 
analyzed in serum. 

DISCUSSION 

In this study, we present data on the activity of peptidases in BAL fluid and semm of 
healthy non-smokers, smokers, and allergic asthmatics, and show for the first time that NEP 
activity can be detectcd in human BAL fluid. Our results indicate that DPP IV activity is 
significantly reduced in serum of smokers, whereas NEP and APN activity arc reduced in 
BAL fluid as compared with healthy non-smokers. In allergic asthmatics, the activity of APN 
was reduced in BAL fluid as compared with healthy non-smokers. Trcatment of allergic 
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asthmatics with inhaled glucocorticoids for three months improved their FEV I and PC20 values 
but did not affect peptidase activities in serum or BAL fluid. 

Comparison of serum and BAL fluid revealed that activities (expressed as nmoles/mg 
protein/min) of all peptidases studied were considerably higher in BAL fluid and that there 
was no cOlTclation between peptidase activities in BAL fluid and serum. These findings 
suggest that the presence of peptidases in these two compartments is regulated independently 
of each other and suggest local release of the enzymes in the airways. Although alveolar 
macrophages [35J and granulocytes [36J express NEP, we could not detect any correlation 
between NEP activity and neutrophil or macrophage numbers in BAL fluid. Therefore, NEP 
activity inBAL fluid most likely results from sbedding ofNEP from epithelial cells [16, 37J. 
TillS is supported by the observation that NEP activity can be detected in culture superna­
tants of human bronchial epithelial cells (V.H.J. van der Velden, unpublished data). DPP IV 
activity in BAL may, comparable to DPP IV activity in serum, be released from activated 
CD4-positive T lymphocytes [20, 38, 39], but numbers of these cells in normal HAL fluid are 
low. Alternatively, DPP I V may be secreted by serosal submucosal glands, as these are major 
sites for DPP IV activity in the human bronchus [II], or may be released by alveolar ma­
crophages [40], DPP IV activity on alveolar macrophages is, however, much lower than on 
activated T cells (V.H,J. van del' Velden, unpublished data). APN activity in serum predomi­
nantly comprised an isofonu ofCDl3, since the inhibitory monoclonal antibody WM-15 
inhibited the majority (65%) of APL activity in senuu. This is in accordance with the results 
described by Favaloro and colleagues [21], In BAL fluid, CDI3 activity comprised more 
than 60% of the APL activity and there was a strong con-elation between APL and APN 
activity. This suggests that in the human lung, the release of both activities is regulated in a 
simi1ar manner. In the human lung, APN may be shed from granulocytes, dendritic cells 01' 

macrophages [II, 39]. However, we and others [39] did not observe a significant relation­
ship between cell numbers and APN(-like) activity in BAL fluid, suggesting that APN(-like) 
activity may rather be derived from nOll-hematopoietic cells in the airways. Since APN 
(-like) activity also showed a strong relation with NEP activity in BAL fluid, both enzymes 
may be derived from the same source, possibly alveolar epithelial cells which express both 
NEP and APN [10, 13]. 

Cigarette smoke has been shown to inhibit NEP activity in laboratory animals. This effect 
is thought to be due to oxydation of the enzyme by hydroxyl radicals [41-43J. Our study 
shows that in hmlHms, cigarette smoke reducesNEP activity in BAL fluid. SinceNEP modu­
lates the growth and differentiation of bronchial epithelial cells by hydrolyzing bombesin­
like peptides (BLP), reduced NEP activity Illay promote HLP-mediated proliferation and 
facilitate the development of small-cell carcinomas of the lung [44-46]. In accordance to our 
observation, increased levels of BLP have been found in the lower respiratory tract of 
asymptomatic smokers [47]. Furthermore, recent snldies indicate that human lung cancers 
show low or absent NEP activity [45J. We hypothesize that cigarette smoke facilitates the 
development of small-cell carcinomas of the lung at least in part by inhibiting NEP and APN 
activity. Further snldies need to be performed to demonstrate that cell smface NEP activity in 
humans is also inhibited by cigarette smoke and to prove that the reduced NEP activity is due 
to inactivation of the enzyme rather than decreased presence of the peptidase itself. 

DPP IV activity in serum of smokers was significantly decreased compared to both healthy 
non-smokers and allergic asthmatics. In BAL fluid, a comparable reduction in DPP IV acti­
vity was observed, but this did not reach statistical significance. DPP IV activity in serum or 
BAL fluid may have an important immunoregulatOlY fUllction, as it is able to act as a costimu-
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lating molecule for T lymphocytes [20,38,48]. Reduced DPP IV activity in senUll of smokers 
may therefore contribute to the down-regulated immune responsiveness observed in smokers 
[49]. DPP IV may also interfere with the processing of cytokines, such as IL- IP, JL-2, aud 
IL-6, which have an essential role in the proliferation or activation of helper T cells and B 
cells [50]. 

In BAL fluid from stable allergic asthmatic patients, no significant difference in NEP 
activity was observed compared to healthy subjects. However, APN activity was signifi­
cantly reduced in BAL fluid of asthmatics. The lack of reduced NEP activity is in accordance 
with the observation that thiorphan (an inhibitor of NEP) reduced NKA-induced 
brollchoconstriction in asthmatics, suggesting the presence of endogenous NEP activity [51]. 
Down-regulation of NEP activity in asthma may be prevented by the apparent chronically 
enhanced release of neuropeptides providing increased amounts of substrate for NEP 
upregulation [6, 42]. In addition, our previous studies have shown that IL-IP and TNF-a, 
which are abundantly present in the inflamed asthmatic airways, are able to increase the 
activity of NEP ou human bronchial epithelial cells [27]. In contrast to NEP, APN activity 
per mg protein was significantly reduced in allergic asthmatics (and smokers) compared to 
healthy subjects, but APN activity per ml BAL fluid was not changcd. This reduction ap­
pears therefore to be due to the elevated total protein levels in the BAL fluid of allergic 
asthmatics and not to a reduction in the amount of APN itself. 

Several studies have shown an increased NEP activity in serum from patients with pul­
monary inflammatory diseases, such as sarcoidosis and ARDS [17,18]. Increased enzyme 
activities in serum may reflect local tissue damage with subsequent shedding of membrane­
bound enzymes [16]. In this study, we did not observe significant increase in NEP or APN 
activities in serum from patients with stable allergic asthma, indicating that there probably is 
little acute tissue damage in the lungs. One could speculate that NEP and APN activities in 
serum could be altered during or shortly after acute asthmatic exacerbations. However, pre­
liminary results indicate that peptidase activities in serum during and up to five days after 
exacerbations do not differ from those in healthy subjects (Y.H.I. van der Velden, unpub­
lished data). 

Treatment of allergic asthmatic patients with inhaled fluticasone propionate for three 
months resulted in an improvement of lung function but did not significantly affect peptidase 
activities in BAL fluid or serum. In contrast, several studies have shown that glucocorticoids 
upregulate the surface expression of peptidases on human bronchial epithclial cells, both ill 
vivo [28] and in vitro [27, 29, 30]. Thus, glucocorticoids may exert part of their anti-inflam­
matory actions by increasing the surface expression of peptidases. However, they do not alter 
soluble peptidase activities in SAL fluid or scrum of stable allergic asthmatics. Finally, 
fluticasone propionate treatment resulted in an increase in total white blood cells in blood, 
indicating systemic effects of inhaled glucocorticoids. 

ACKNOlVLEDGMENTS. IVe gratefully acknowledge D" E.J. Favaloro for providing the 
IVM-47 allfibody and helpful suggestions, and Prof DI: B.P. Roques for his collaboration. 
lVe thank Prof DI: R. Bennerfor his continuous support and helpful discussions, Ms. P.c. 
Assemsfor secretarial assistance, and M,: T.M. vall Os jorpreparillg the figures. lVe acknowl­
edge the support of the Clinical Research Departlllellf of GlaxolVellcollle (Drs. E.C.G. Will 

Geffen, D,: I.A.M. Raaijmakers). This investigation was supported by a grant from The 
Netherlands Asthma Foundation (grant 32.92.73). 



158 Chapler 8 

REFERENCES 

I. Barnes PI: Asthma as an axon retlex. Lancet 1986; 1 :242-245. 
2. Barnes PI, Baraniuk IN and Belvi5i i .... IG: Neuropeptides in the respiratory tract. Part I. Am Rev Respir Dis 

1991; 144:1187-1198. 
3. Barnes PJ, Bararuuk IN and Relvi5i MG: Neuropeptides in the respiratory tract. Part II. Am Rev Respir Dis 

1991; 144:1391-1399. 
4. Nadel JA and Borson DB: i'vlodulation of neurogenic inflammation by neutral endopeptidase. Am Rev 

Respir Dis 1991; 143:S33-S36. 
5. Joos GF, Gennonpre PR, Kips Ie, Peleman RA and Pauwels RA: Sensory ncuropcptides and the human 

lower airways: present state and future directions. Eur Respir J 1994; 7:1161-1171. 
6, Nicher K, Baumgarten C, 'Witzel A, Rathsack R, Oehme P, Brunnee T, Kleine-Tebbe J and Kunkel G: The 

possible role of substance P in the allergic reaction, based on two diOerent provocation models. Int Arch 
Allcrgy Appllmmunol1991; 94:334-338. 

7. Cardell LO, Uddman Rand Edvinsson L: Low plasma concentrations of VIP and elevated lcvcls of other 
neuropeptides during exacerbations of asthma, Eur Respir J 1994; 7:2169-2173. 

8. Lilly 0.'0'1, Drazen J{\,I and Shore SA: Peptidase modulation of airway enects ofncuropcptides. Proc Soc Exp 
Bioi r.,·fed 1993: 203:388-404. 

9, Baraniuk IN, Ohkubo K, Kwon OJ. j .... lak J, Ali 1'1, Davies R, 1\vort C, Kaliner M, Letarte II,'I and Barnes PJ: 
Localization ofncutral cndopeptidase (NEP) mRNA in human bronchi. Eur Rcspir J 1995; 8:1458-1464, 

10. Johnson AR. Ashton J, Schulz WW and Erdos EG: Neutral mctal!oendopcptidase in human lung tissue and 
cultured celis, Am Rev Respir Dis 1985; 132:564-568, 

11. van der Vclden VHJ, Wierenga-Wolf AP, Adriaansen-Soeling PWC, Overbeck SE, Moller GM, Hoogsteden 
HC and Versncl ~\'fA: Exprcssion of aminopeptidase Nand dipeptidyl pcptidase IV in the healthy and 
asthmatic bronchus. Clin Exp Allergy 1998; 28:110-120. 

12. Kohrogi H, Nadel JA, Malfroy B, Gomlan C, Bridenbaugh R, Patlon JS and Borson DB: Recombinant 
human cnkcphalinasc (ncutra1 endopcptidase) prevents cough induccd by tachykinins in awake guinea 
pigs. J Clin Invest 1989; 84:781-786. 

13. Funkhollser JD, Cheshire LB, Ferrara TB and Peterson RD: Monoclonal antibody idcntification of a type II 
alvcolar epithelial ccll antigen and cxprcssion of thc antigcn during lung development. Dev Bioi 1987; 
119:190-198. 

14. Fox DA, Hussey RE, Fitzgerald KA, Acuto 0, Poole C, Palley L, Daley JF, Schlossman SF and Reinherz 
EL: Tal, a novel 105 KD human T ccll activation antigen defincd by a monoclonal antibody, J Inununol 
1984; 133:1250-1256. 

15, Ehlers MR and Riordan JF: i'vlembrane proteins with soluble counterparts: role of proteolysis in the release 
of transmcmbrane protcins. Biochemistry 1991; 30:10065-10074. 

16, Soleilhac JM, Lafuma C, Porcher JM, Auburtin G and Roques BP: Characterization of a soluble form of 
neutral endopeptidase-24.11 (EC 3.4,24,11) in human semm: enhancement of its activity in semm of un­
derground miners cxposed to coal dust particles. Eur J Clin Invest 1996; 26: 1011-1017. 

17. Johnson AR, Coalson JJ, Ashton J, Larumbide M and Erdos EG: Neutral endopeptidase in serum samples 
from patients with adult respiratory distress syndrome. Comparison with angiotensin-cOIlYerting enzyme. 
Am Rev Rcspir Dis 1985; 132:1262-1267. 

18, Almenoff J, Skovron ML and Teirstein AS: Thcrmolysin-Iike serum metalioendopeptidase, A ncw marker 
for activc sarcoidosis that complements se~m angiotensin-converting enzymc. Ann NY Acad Sci 1986; 
465:738-743. 

19, Zimmerman GA, Renzetti AD and Hill HR: Functional and metabolic activity of granulocytes from patients 
with adult respiratory distress syndrome. Evidence for activated neutrophils in the pulmonary circulation, 
Am Rcy Rcspir Dis 1983; 127:290-300. 

20. Duke-Cohan JS, Morimoto C, Rocker JA and Schlossman SF: Serum high molecular weight dipeptidyl 
peptidase IV (CD26) is similar to a novel antigen DPPT-L released from activated T ceUs. J Immunol 1996; 
156:1714-1721. 

21. Favaloro El, Browning T and Nandurkar 1-1: TIlC hcpatobiliary disease marker serum alanine aminopepti­
dase predominantly comprises an isoform of the haematological myeloid differentiation antigen and leu­
kacmia marker CD-13/gpI50, Clin Chim Acta 1993; 220:81-90, 

22. Stancikova M, Lojda Z, Lukac J and Ruzicko"a M: Dipeplidyl peptidasc IV in paticnts with systemic lupus 
erythematosus. Clin Exp Rheumatol 1992; 10:381-385. . 

23, Urade M, Komatsu fliI, Yamaoka M, Fukasawa K, Harada M, Mima T and Matsuya T: Serum dipeptidyl 
pcptidasc activities as a possible marker of oral cancer. Cancer 1989; 64: 1274-1280. 



Peptidase activiaes ill BALfluid and serum 159 

24. Uematsu T, Urade lvi, Yamaoka M and Yoshioka W: Reduced expression of dipeptidyl peptidase (DPP) IV 
in peripheral blood T lymphoc)1eS of oral cancer patients. J Oral Patholl'o.'fed 1996; 25:507-512. 

25. de l\'1cester I, l\'lertens AV, de Clerck LS, Scharpe S, Bridts CH and Stevens WJ: Correlations between 
dipeptidyl peptidase IV ilnd disease activity of rheumatoid arthritis (RA), J Allergy Clin Immunol 1993; 
91:228-232. 

26, Fujita K, Hirano M, Ochiai J, Funabashi ~\'I, Nagatsu I, Nagatsu T and Sakakibara S: Scrum glycylproline p­
nitroanilidase activity in rheumatoid arthritis and systemic lupus erythematosus, Clin Chim Acta 1978; 
88:15-20. 

27. van der Velden VHJ, Nabcr BAE, Van der Spoel P, Hoogsteden HC and Versnel MA: Cytokines and gluco­
corticoids modulate human bronchial epithelial cell peptidases, Cytokine 1998; 10:55-65. 

28, Sont JK, van Krieken JR, van Klink HC, Roldaan AC, Apap CR, Willems LN and Sterk PJ: Enhanced 
expression of neutral endopeptidase (~TEP) in airway epithelium in biopsies from steroid- versus nonsteroid­
treated patients with atopic asthma. Am J Respir Celll\'lol Bioi 1997; 16:549-556. 

29. Borson DB and Gruenert DC: Glucocorticoids induce neutral endopeptidase in transformed human tracheal 
epithelial cells. Am J PhysioI 1991; 260:L83-L89. 

30. Lang Z and f'..'lurlas CO: Dexamethasone increases airway epithelial cell neutral endopeptidase by enhanc­
ing transcription and new protein synthesis. Lung 1993; 171: 161-172. 

31. ATS: Standards for the diagnosis and care of patients with chronic obstructive pulmonary disease (COPD) 
and asthma. Amcrican TIlOracic Society. Am Rev Respir Dis 1987; 136:225-244. 

32. Overbeek SE, Rijnbeek PR, Vons C, Mulder PO, Hoogsteden HC and Bogaard JM: Effects of tluticasone 
propionate on methacholine dose-response curves in nonsmoking atopic asthmatics. Eur Respir J 1996; 
9:2256-2262. 

33. Favaloro EJ: CD-13 ('gpI50'; uminopeptidase-N): co-expression on endothelial ilnd haemopoietic cclls 
with conservation of functional activity. Immunol Cell Bioi 1991; 69:253-260. 

34. Rradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utiliz­
ing the principle of protein-dye binding. Anal Biochem 1976; 72:248-254. 

35. Lesser M, Fung K, Choi HS, Yoo OH and Cardozo C: Idcntification of two zinc mctalloendopeptidases in 
alvcolar macrophages of rats, guinea pigs, and human beings. J Lab Gin Med 1992; 120:597-603. 

36. Connelly lC, Skidgel RA, Schulz WW, Jolmson AR and Erdos EG: Neutral endopeptidase 24.11 in human 
neutrophils: cleavage of chemotactic peptide. Proc Natl Acad Sci USA 1985; 82:8737-8741. 

37. Dragovic T, Igic R, Erdos EG and Rabito SF: i .... letabolism of bradykinin by peptida.~es in the lung. Am Rev 
Respir Dis 1993; 147:1491-1496. 

38, Duke-Cohan JS, fioforimoto C, Rocker JA and Schlossman SF: A novel form of dipeptidylpeptidase N 
found in human serum. Isolation, characterization, and comparison with T lymphocyte membrane 
dipeptidylpeplidase IV (CD26). J Bioi Chem 1995; 270:14107-14114. 

39. luillemt-Jeanneret L, Aubert J-D and Leuenberger P: Peptidases in human bronchoalveolar lining fluid, 
macrophagcs, and epithelial cells: Dipeptidyl (amino)peptidase IV, aminopeptidase N, and dipeptidyl 
(carboxy)peptidase (angiotensin-converting enzyme). J Lab Clin J\'led 1997; 130:603-614. 

40. Jackman HL, Tan F, Schraufnagel D, Dragoyic T, Dezso B, Rccker RP and Erdos EO: Plasma membrane­
bound and lysosomal peptidases in human alveolar macrophages. Am J Respir Cell Mol Bioi 1995; 13:196-
204. 

41. Dusser DJ, Djokic TD, Borson DB and Nadel JA: Cigarctte smoke induccs bronchoconstrictor 
hyperresponsivcness to substance P and inactivates airway neutral endopeptidase in the guinea pig. Pos­
sible role of free radicals. J Clin Invcst1989; 84:900-906. 

42. Kuo HP and Lu LC: Sensory neuropeptidcs modulate cigarette smoke-induced decrease inlleutral endopep­
tidase activity in guinea pig airways. Life Sci 1995; 57:2187-2196. 

43. Lei YH, Barnes PJ and Rogers DF: Im'olvement of hydroxyl radicals in neurogenic airway plasma exuda­
tion and bronchoconstriClioll in guinea-pigs in vivo. Sr J Phannacol 1996; 117:449-454. 

44. Shipp !vIA, Tarr GE, Chen CY, Switzer SN, Hersh LB, Stein H, Sunday ME and Reinherz EL: CDIO/neutral 
endopeptidasc 24.11 hydrolyzes bombesin-like peptides and regulates the growth of smal1 cell carcinomas 
of the lung. Pmc Nail Acad Sci USA 1991; 88:10662-10666. 

45. Cohen Al, Bunn PA, Franklin W, ~'Iagill-Solc C, Hartmann C, Helfrich B, Gilman L, Folkvord J, Helm K 
and Miller YE: Neutral endopeptidase: variable expression in human lung, inactivation in lung cancer, and 
modulation of peptide-induccd calcium flux. Cancer Res 1996; 56:831-839. 

46. Ganju RK, Sunday M, Tsarwhas DO, Card A and Shipp MA: CD IO/NEP in non-smail cell lung carcino­
mas. Relationsltip to cellular proliferation. J Clin Invest 1994; 94:1784-1791. 

47. Aguayo SM, Kane MA, King TE, Jr., Schwarz fin, Grauer L and Miller YE: Increased levels of bombcsin-likc 
peptides in the lower respiratory tract of asymptomatic cigarette smokcrs. J Clin hlYest 1989; 84: 1105-1113. 



160 Chapter 8 

48. Tanaka T, Duke-Cohan JS, Kameoka J, Yaron A, Lee I, Schlossman SF and Morimoto C: Enhancement of 
antigen-induced T-cell proliferation by solublc CD26/dipeptidyi peptidase IV. Proe Natl Acad Sci USA 
1994; 91:3082-3086. 

49. Johnson]D, Houchens DP, Kluwe Wt-f, Craig DK and Fisher GL: Effects of mainstream and environmental 
tobacco smoke on the immune system in animals and humans: a review, Crit Rev Toxicol1990; 20:369-395, 

50. Kubota T, Flentke GR, Baehovchin WW and Stollar BD: Involvement of dipeptidyl peptidase IV in an in 
vivo immune response. Clin Exp Immunol 1992; 89: 192-197, 

51, Cheung D, Timmers MC, Zwinderman AH, den Hartigh J, Dijkman JH and Sterk PJ: Neutral endopeptidase 
activity and airway hyperresponsiveness to neurokinin A in asthmatic subjects in vivo, Am Rcv Respir Dis 
1993; 148:1467-1473. 



Chapter 9 

Cytokines and glucocorticoids modulate 
human bronchial epithelial cell peptidases 

Vincent H.1. van del' Vcldcn l,2, Brigitta A.E. Naber!, Petra van der Spocl l , 

Hcnk C. Hoogsteden' , and Mmjan A. VersneP 

Deparhuellts of IUlIIllm%gyl alld of Pulmollwy lWedicine2, Erasmus Universityalld 
University Hospital Dijkzigt, Rotterdam, The Netherlands 



162 Chapter 9 

ABSTRACT 

Peptidascs play an important role in the regulation of peptide-mediated effects. Modulation 
of peptidase activity may therefore be a major mechanism to control peptide actions. Our aim 
was to analyse the effects of cytokines and glucocorticoids on peptidases expressed by human 
bronchial epithelial cells, which have been shown to be an important site for peptidase activity. 

The effects of cytokines (IL-l~, TNF-a, lL-4, lFN-y, and EGF) and/or dexamethasone 
(DEX) on both expression and activity of neutral endopeptidase (NEP) and aminopeptidase N 
(APN) by BEAS 2B cells were determined using flow cytol11chy and activity assays, respectively. 

lL-l p and, to a lesserextcnt, TNF-a and IL-4 increased NEP activity and expression, whereas 
IFN-y decreased NEP. The effect of IL-l ~ was mediated, at Icast in part, via a cAMP-depen­
dent pathway which did not involve prostaglandin Ez synthesis. APN was increased after 24 h 
stimulation with IFN-y, whereas other stimuli had no effect. DEX strongly increased NEP and 
APN expression and activity, both in the absence and in the presence of cytokines. 

We conclude that cytokines and glucocorticoids are able to modulate the activity of NEP 
and APN on BEAS 2B cells. Our results suggest a role for the human bronchial epithelium in 
the control of inflammation and indicate that one beneficial effect of glucocorticoids on asthma 
may be upregulation of peptidases expressed by bronchial epithelial cells. 

INTRODUCTION 

The bronchial epithelium is considered to play an important role in the regulation of 
inflammatory and imlIlUllological reactions in the airways. Bronchial epitheJial cells are able to 
produce a variety of pro-inflammatory mediators, like cytokines, chemokines and arachidonic 
acid metaboJites [1]. Release of such mediators may result in tbe initiation and perpetuation of 
inflammation. In contrast, bronchial epithelial cells lllay down-regulate intlammatory and 
immunological responses by the release of anti-inflammatory mediators, like interleukin (IL)­
I receptor antagonist [2], soluble tumor necrosis factor (TNF)-receptor [3], and lipocortins [4], 
and by inactivation of pro-intlammatOly peptides by epithelial cell-bound peptidascs [5]. 
Although peptidases are present on a number of cell types within the lung, several studies have 
indicated that neutral endopeptidase (NEP, E.C.3.4.24.11) expressed by the bronchial epithelium 
plays a major role in limiting peptide-mediated inflammation [6, 7J. 

NEP (identical to COIllIllon acute lymphoblastic leukemia antigen (CALLA) or CD 10 [8]) 
is a membrane-bound metalloenzyme which cleaves peptide-bonds at the amino side of 
hydrophobic amino acids, thereby being able to inactivate a variety of small peptides, including 
substance P, neurokinins, bradykinin, endothelin, and bombesin-Iike peptides [9]. In the human 
lung, NEP is expressed in the bronchial epithelium, but can also be found in smooth muscle, 
endothelium, and submucosal glands [5]. Loss of NEP activity, for example as a result of viral 
infection, has been shown to prolong the actions of neuropeptides released by sensOlY nerves, 
thereby resulting in neurogenic inflammation [10]. Tins neurogenic inflammation is characterized 
by mucus secretion, cough, vasodilation, increased vascular permeability, infiltration of 
leukocytes, and bronchoconstriction [10], findings that are comparable with the 
pathophysiological features characteristic of asthma. Therefore, it has been implicated that 
peptidases playa role in the pathogenesis of asthma. 
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Recent studies indicate that even small changes in NEP activity affect peptide-mediated 
events in the human lung. The activity of NEP may be modulated by external and internal 
factors. With regard to exte11lal factors, several studies have shown that NEP activity is reduced 
after exposure to viruses [II], cigarette smoke [12], ozone [13] or chemicals, such as toluene-
2,4-diisocyanate [14]. In each case, this reduction resulted in increased responses to exogenously 
applied or endogenously released peptides. In contrast, little is known about the effect of 
endogenously released mediators, such as cytokines, on the activity of NEP. Cytokines are 
increasingly recognized to be important in chronic inflammation and playa critical role in 
orchestrating inflammatory responses. Multiple cytokines, including IL-I p, TNF-a, IL-4, 
interferon (IFN)-y, and epidel1nal growth factor (BOP), are present during inflammatory res­
ponses in the lung [15] and may control peptide actions by modulating the activity of peptidases. 

Olucocorticoids are widely used in the treatment of asthma and are able to reduce 
inflammatory reactions in the airways. The bronchial epithelium is an actual target for inhaled 
glucocorticoid therapy, since the greater pm1 of inhaled glUCOC0l1icoids precipitate on the epithelia 
of the larger airways [16], and bronchial epithelial cells possess functional glucocorticoid 
receptors [17]. Glucocorticoids are potent inhibitors of cytokine production by a variety of 
cells, thereby suppressing inflammatory responses. In addition, the anti-inflammatory actions 
of glUCOC0l1icoids may be mediated by modulation of peptidase activity by bronchial epithelial 
cells. Data concerning the effects of glucocorticoids on NEP activity are contradictOlY, since 
some studies indicate that NEP is upregulated by steroids [18, 19], whereas other investigators 
did not observe any effect [20]. Furthermore, little is known about the modulation of peptidase 
activity by glucocorticoids in the presence of cytokines. which may more properly reflect the ill 
vivo situation during glucocorticoid therapy. 

Tn this study we investigated the effects of cytokines, glUCOC0l1icoids, and their combination, 
on the expression and activity of peptidases by the human bronchial epithelial cell line BEAS 
2B. In comparison with the data on primary cultures of human bronchial epithelial cells, the 
BEAS 2B cell line has been shown to be an appropIiate model [21,22]. In addition to NEP, 
BEAS 2B cells also express aminopeptidase N (APN, identical to CDl3, E.C.3.4. I 1.2 [23]). 
Comparable to the role ofNEP, it is hypothesized that APN plays an important role in modulating 
the activity of bioactive peptides [24]. Accordingly, APN may playa role in the regulation of 
inflammatory and immunological responses. Although human bronchial epithelial cells ill vil'o 
nonnally do not express tills peptidase [25], they do have APN-like activity (unpublished 
observations). Therefore, we also investigated the effects of cytokines and glucocorticoids on 
APN activity and expression to clarify whether the expression and activity oftlus peptidase was 
regulated in a way similar to NEP. 

MATERIALS AND lVIETHODS 

Cytokines, steroids and chemicals 
Cytokines used in this study were IL-I ~ (10 Uing, UBI, Lake Placid, NY), TNF-a (5 U/ng, 

UBI), IL-4 (5 U/ng, UBI), and IFN-y (20 Uing, Boehringer Ingelheim, Germany). A stock 
solution (10 /.tglIllI) ofEGF (Collaborative Research Inc., Lexington, MA) was prepared in 10 
mM phosphate-buffered saline, pH 7.4 (PBS)/O.I % bovine senUll albumin (BSA) and stored at 
-20°C. 
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A 10 mM stock solution of the synthetic giucoc0l1icoid dexamethasone lllicronisatum (DEX; 
Duchefa b.v., Haarlem, The Netherlands) was prepared in ethanol and stored at -20°C, The 
glucocorticoid antagonist RU 38486 was kindly provided by Roussel Uelaf (Romainville, 
France). A stock solution of 10" M RU 38486 in ethanol was prepared and stored at 4°c' The 
metabolically stable testosteron analogue RI881 (10') M in ethanol) was kindly provided by dr. 
H. Bl1lggenwiL1h (Rotterdam, The Netherlands) and stored at 4°C. The concentration of ethanol 
during culture was less than 0.05% in each experiment. 

Dibutyryl-cyclic adenosine monophosphate (db-cAMP) and 3-isobutyl-I-methylxanthine 
(IBMX) were obtained from Sigma (St. Louis, MO). Solutions were freshly made in milli Q­
filtered watcr before each experiment. 

Cell clIllllre 
The SV-40 transfolll1ed human bronchial epithelial cell line BEAS 2B was kindly provided 

by dr. J. Lechner (Inhalation Toxicology Research Instinrte, Albuquerque, NM) [26]. The cells 
were cultured in a 1: lllllxhire ofDulbecco's modified Eagles mcdiulll und Ham's F12 (DMEMI 
F 12)(Gibco Ltd., Paisley, Scotland), supplemented with insulin (Om mg/ml; Sigma), hydrocor­
tisone (0.1 [tg/ml; Phanna Chemie, Haarlem, The Netherlands), transfenin (Om mg/ml; Behring, 
Marburg, Germany), EGF (10 ng/ml), fetal calf serum (FCS; Gibco) (I %), Na,SeO) (50 nM), 
glutamine(lmM; JT Baker, Devcnter, The Netherlands), penicillin G sodium (100 Ulml; Gist­
Brocades, Delft, The Netherlands) and streptomycin sulfate (O.lmg/ml; Biochrom KG, Berlin, 
Germany) (complete medium). Plastic cell culture plates (Becton Dickinson, Plymouth, UK 
and Nunclon, Roskilde, Denmark) were precoated as described by Lechner et ai. with a mixture 
ofhUlnan fibronectin (10 J.lg/ml; Central Laboratory or the Blood Transfusion Service, Amster­
dam, The Netherlands), collagen (Vitrogen 100, 30 ~rg/ml; Collagen COlp., Palo Alto, CAl and 
BSA (10 [lg/ml; Boehringer; Mannheim, Germany) in PBS [27]. Medium was replaced three 
times weekly and cultures were passaged when the monolayers were 80 to 90% confluent. 
Passages 16 through 34 were used in this study. 

The human promyelocytic leukemic cell line HL60 [28] and T-Ieukemia cell line DND41 
[29] served as controls for the detection of peptidase expression and activity. Under the conditions 
used, the HL60 cell line is NEP- APN+, whereas DND41 cells are NEP+ APN-. 

Stimulat;on of cells with cyfokines, gillcocorticoids andlor other agents 
To ensure similar cell densities in the different assays, cells were seeded in fixed numbers 

per cm' (20 x 103 cells/cm'). Using these cell numbers, cells reached -90% con fluency during 
the standard time ofthe experiments (5 days). After 24 hours, the complete mediulll was replaced 
by a basal medium consisting ofDMEM/FI2 (I: I) supplemented with 1% FCS and antibiotics. 
After 24 hours, cytokines, glucocOliicoids and/or other agents were added to the medium in the 
following doses (unless indicated otherwise): IL-IP, TNF-a, and IL-4: 20 ng/ml; IFN-yand 
EGF: 5 ng/ml; DEX IO~ M; db-cAMP: I mM; IBMX: 100 11M. These doses were widely 
shown to be effective in vitro. If the effect of IBM X was to be studied, tllis inllibitor was added 
30 minutes prior to cytokine administration. After the addition of the stimuli the culture was 
continued for an additional 24 or 48 hours, unless indicated otherwise. 

Proliferation assay 
The number of viable cells in proliferation was detcrmined using a colorimctric method 

following the instructions of the manufacturer (CellTiter 96Tht AQu",.us Non-Radioactive Cell 
Proliferation Assay, Promega). Briefly, cells (5 x 103) were seeded in a coated 96-well plate and 
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stimulated as described above. Cell proliferation was determined by the addition of 3-(4,5-
dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-suIfophenyl)-2H-tetrazolium (MTS) 
and phenazine methosulfate (PMS) and the increase in absorbance at 490 lllll was measured 
after 30 min. 

Detection ofswface peptidase e.\pJt!ssioll 
For immunofluorescence staining of human bronchial epithelial cells, the following 

monoclonal antibodies (mAbs) were used: J5 (Coulter Clone, Hialeah, FL), BMA-CALLA 
(Behring), OKB-CALLA (011ho Diagnostic Systems, Raritan, NJ), VIL-AI (dr. W. Knapp, 
Vienna, Austria), all directed against NEP; CLB-CDI3 (CLB, Amsterdam, The Netherlands) 
and WM-15 (generous gift of dr. E. Favaloro, Westmead, Australia), both directed against 
APN; and BBA-4 (anti-ICAM-I, ITK Diagnostics, Uithoorn, The Netherlands). Epithelial cells, 
cultured iu80 cm2 culture flasks, were rinsed with PBS and detached using 0.02% EDTA. Cells 
were harvested in PBS/O.5% BSA, washed and resuspended in PBSIBSA to a final concentration 
of2 x 106 cells/ml. Fifty JlI ofthis bronchial epithelial cell suspension was incubated with 50 fll 
of one of the optimally titrated mAb at 4°C for 30 min. Irrelevant mouse isotype-matched 
primary antibodies were used as a control for nonspecific binding. After two washings with 
PBSIBSA Ihe cells were incubated with FITC-Iabelled rabbit-anti-monse antibody for 30 min 
at 4°C. After another two washings the cell pellets were resuspended for analysis of the 
fluorescence intensity by means of a FACScan (Becton Dickinson, San Jose, CA). 

Fluorescence intensities were quantified llsing calibrated fluorescence standards (FCSC 
Quannlll1 26, Research Triangle Park, NC) which were measured in each experiment. Using the 
standard curve obtained by plotting the median fluorescence intensity of the standards against 
the Molecules of Equivalent Soluble Fluorescence (MESF) for each peak, the MESF of the 
membrane antigens was calculated. After subtraction of the :MESF of cells incubated with 
isotype-matched control antibody, the antigen-specific MESF was obtained. 

Neutral endopeptidase activit)' 
NEP activity was measured as previously described with some small modifications [30]. 

BEAS 2B cells, cultured in 6-well culture dishes, were rinsed with 50 mM Tris-HCI pH 7.4. A 
volume of 600 ftl of N-dansyl-D-alanyl-glycyl-p-nitro-phenylalanyl-glycine (DAGNPG, a 
synthetic NEP substrate; 25 flM in Tris-HCI; Sigma) was added to each well. The dishes were 
incubated at 37°C for2 hours. Subsequently, a 500 gl aliquot was transfen-ed to a microcentrifuge 
!llbe, 500 fll DMSO were added, and the mixture was spun in an EppendOlf microcentrifuge at 
15,000 rpm for 5 min. The fluorescence of the supematant was measured in a Perkin-Elmer 
spectrophotofluorometer (type LS50B) with excitation at 329 nm and emission at 531 nm. 
These wave lengths appeared to be optimal under the conditions used. A standard curve was 
measured in each experiment to determine the amount of product formed. In some experiments, 
the specificity of the reaction was confinued by the addition of the NEP inhibitor phosphoramidon 
(dissolved in Tris-HCI; final concentration: I pM; Sigma). All assays were performed in duplo 
at least. After measuring NEP activity, the cells were trypsinized and counted using a 
hemacytometer (Coulter). NEP activity was calculated as pmoies/minllQ6 cells. 

Aminopeptidase N-like acti\ l ity 
APN-like activity was determined on adherent cells in 6-well culture dishes. After rinsing 

the BEAS 2B cells with PBS (pH 7.4), 600 fll L-alanine-p-nitroanilide (an APN substrate; 8 
mM in PBS; Sigma) were added and the dishes were incubated at 37°C for 30 min. Subsequently, 
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the reaction mixture was transferred to a microcentrifllge hlbe and spun in an Eppcndorf 
Iuicrocentrifuge at 15,000 rpm for 5 min. An aliquot 0[200 f.ll of the supcmatant was transfer­
red into a 96-wel1 microtiter plate (in dupla) and the increase in specific absorbance at 405 11m 

(as a result of accumulation of free p-llitroanilide) was detcl1uined immediately by using a 
Titertek Multiskan MCC plate reader (I.C.N. Biomedicals B.Y., Amsterdam, The Netherlands). 
All assays were petformed in duplo at least. After measuring APN-like activity, the cells were 
trypsinizcd and counted using a hemacytometer. APN-Iike activity was expressed as the 
production of p-nitroanilide in 1 min by 106 cells (llllloies/mill/l O~ cells), using a standard curve 
which was detcnnined in each experiment. 

Specific aminopeptidase N activity 
In some experiments the specific APN activity was determined using the monoclonal anti­

body WM-15, which specifically blocks the enzymatic activity of APN [3IJ. BEAS 2B cells, 
cultured in 24-well cell culture dishes, were rinsed with PBS and pre-incubated with Wi\1-15 
(1:50) for 15 min. As control, cells were pre-incubated in PBS/O.5% BSA, with an isotype­
matched control antibody, or with WM-47 (an antibody that binds to APN but does not inhibit 
the enzymatic activity; generous gift of dr. E. Favaloro). After this pre-incubation, cells were 
rinsed with PBS and assayed for APN activity essentially as described using 250 ~II L-alanine­
p-nitroanilide, transferring 100 J.lI for absorbance measurements, and incubating at room 
temperature for 100 min. All measurements were pelformed in dupio at least. APN activity was 
expressed as the production of p-nitroanilide in I min by 106 cells (nll1oles/min/IO' cells). 

Statistical allalysis 
In experiments where the effects of cytokines and dexamethasone were shldied, data are 

expressed as the relative expression or activity compared to unstimulated control cells. Data 
are expressed as mean ± SEM, and were subjected to nonparametric statistical analysis, using 
the Mann-Whitney U test for between-group comparison. A p-value of <0.05 was considered 
significant. 

RESULTS 

Activity and e.\pressioll peptidases ol1l111stimulated BEAS 2B cells 
The bronchial epithelial cell line BEAS 2B expresses NEP and APN. NEP activity, APN­

like activity, NEP expression and APN expression of unstimulated BEAS 2B cells, which are 
shown in Table I, did not change significantly during the time period used to pelform the 
expedments. When cells were grown in complete medium, NEP and APN activity increased 
with growing cell densities from approximately 0.19 x 10' cells/cm' and up (data not shown). 
Below tlus density, NEP and APN activity remained largely unaltered. During the standard 
time period used to perform the experiments (5 days), cell densities consistently did not exceed 
O. I 7 X 106 cells/cm'. 

Effect of cytokil1es, growth/actors and dexamethasone Oil cellllumbers 
Cell numbers of unstinlUlated cells increased in time (0.52 ± 0.04 (0 h), 1.07 ± 0.08 (24 h), 

and 1.63 ± O. 15 (48 h) x 106 cells/well of a 6-well culture dish). After 24 hours of stimulation, 
IFN-yand the combination ofIFN-yand DEX resulted in significantly decreased cell numbers 
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Table 1. NEP activity, APN-like acthity, NEP expression, and APN c:\.llression of unstimulated 
BEAS 2B cells'. 

Oh 24h 48 h 
Neutral endopeptidase activityb 9.4± 1.3 9.2± 1.5 8.6± 1.7 

Aminopeptidase N-like activityc 4.7± 0.3 3.8± 0.4 3.4± 0.6 

Neutral endopeptidase expressiond 2.12± 0.84 2.03± 0.77 1.68± 0.66 
Aminopeptidase N expressiond 34.1 ± 10.3 29.8± 10.7 23.8± 8.6 

a. BEAS 2B cells were passaged in complete medium at day -2. At day - I, the medium was replaced by Ihe basal 
medium. At dayO, I (24 hours) and 2 (48 hours) NEP and APN-Iike activity and NEP and APN expression were 
detemlined using activity a~says and flow cytometry, respectiyely. Values represent the arithmetic mean ± Sm"'i 
(n;::: 6). 

b. Neutral endopeptidase actiyity is expressed as pmoles/min/lO" cells. 
c. Aminopeplida~e N-like activity is expressed as nmolesiminllO" cells. 

d. Expression wa" detennincd by flow cytomCIr}' and is cxpressed as Ifrl ~\iIESF. 

(85 ± 3% and 88 ± 5% of control, resp., p<O.05). This decrease was even larger after 48 hours 
of stimulation (70 ± 5% and 78 ± 5% of control, resp., 1'<0.05). In contrast, cell numbers were 
increased after 24 and 48 hours stimulation with EGF (114 ± 5% and 131 ± 5% of control, 
resp.,1'<0.05) or EGF and DEX (I 17 ± 7% and 134 ± 4% of control, resp.,p<0.05). The effects 
ofIFN·yand EGF on cell number were dose·dependent (data not shown). Other stimuli uscd in 
our experiments had no significant effect on cell number (data not shown). 

When cell proliferation was detenuined after 48 hours of stimulation with the various media­
tors, comparable results were obtained (i.e. decreased proliferation after stimulation with IFN­
rand increased proliferation after stimulation with EGF) (data not shown). 

Effect of dexamethasone 011 pepadase activity 
Incubation of BEAS 2B cells with IO~ M DEX resulted in a time·dependent increase in 

NEP and, to a lesser extent, APN-like activity (Fig. IA). Changes in activity could be observed 
as early as 6 hours after the addition of DEX and lasted at least 5 days. The effect of DEX on 
NEP and APN·like activity were dose·dependent (Fig. IB) with ED50 values of - 10 nM for 
both enzymes. 

To f1ll1hercharacterize the DEX·mcdiated effects, specific inhibitors ofNEP or APN were 
added dming the activity assays. NEP activity of unstimulated cells could be inhibited completely 
by the NEP·specific inhibitor phosphoramidon (I ~tM), indicating that all activity could be 
attributed to NEP. After stimulation with DEX, all the activity could still be inhibited by 
phosphoramidon (data not shown), indicating that the DEX-mediated increase in activity is 
completely due to an increased activity ofNEP. 

APN·Iike activity of unstimulated cells could be inhibited by the CD I 3 monoclonal anti· 
body WM· 15 to 67 ± 4% compared to inhibition by an isotype·matched control antibody, i.e. 
33% of the APN·Iike activity is due to APN (1'<0.05). After stimulation with DEX, WM· 15 
was able to reduce the APN-like activity to a similar level of APN-like activity detected in 
WM· 15 treated control cells (Fig. 2). Therefore, the DEX·mediated increase in APN·Iike activity 
was completely due to an increase in APN (to 22 I ± 30% of control; 24 h, 1'<0.05). 

TheDEX·mediated effccts on NEP and APN·like activity could be inhibited completely by 
the addition of a 10·fold excess of the glucocorticoid receptor antagonist RU38486 (data not 
shown). Furthermore, the stable testosterone analogue RI 88 I (10-7 M) did not modify the NEP 
or APN-like activity (data not shown). 
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Figure 1. Effect of DE X on NEP and APN aelMty. (A) DEX (lQ-fi M) stimulated NEP (open circles) and APN-Iike 
(closed circles) activity in a time-dependent manner (mean ± SEM; 11::::2- 10). (B) DEX stimulated l\TEP (open bars) 
and APN (solid bars) in a dose-dependent manner (mean ± SEM; 0=4; 24 h incubation). Activity of unstimulated 
cells:::; 100%. 'p<O.05 compared to control. 

F;fj'ect of cytokilles Oil peptidase activity 
The effects of IL-I~, TNF-a, IFN-y, IL-4, and EGF on NEP activity are shown in figure 

3A. NEP activity was significantly increased after 48 hours by IL-I~ (155 ± 7%), TNF-a (122 
± 4%) and IL-4 (119 ± 6%). EGF did not modulate NEP activity significantly. In contrast, IFN­
y decreased NEP activity after 24 hours (91 ± 3%) and 48 hours (83 ± 5%). All effects were 
dose-dependent (data not shown). Changes in NEP activity induced by IL-I~, TNF-a, IL-4 or 
IFN-ywere not observed after 2 or6 hours, peaked around day 2 and lasted at least 5 days (data 
not shown). 

APN-Iike activity was not significantly modified by stimulation (24 and 48 h) with IL-I~, 
TNF-a, IL-4, or EGF (Fig. 4A). Even after 5 days of stimulation with these mediators, no 
changes in APN-Iike activity were observed (data not shown). Stimulation with IFN-yincreased 
APN-Iike activity after 24 hours (121 ± 4% of control), whereas no effect was obselved at 2, 6, 
48, or 120 h after the addition of IFN-y. 

Effect of DEX and cylokilles all peptidase e.\pressioJl 
To detennine whether the changes in activity were paralleled by changes in membrane 

expression, the effects of DE X and cytokines on membrane-expression ofNEP and APN were 
determined by flolV cytometry. The expression of ICAM-I selved as a positive control for the 
effects of the cytokines IL-IP, TNF-a, and IFN-y. In all experiments, ICAM-I expression was 
strongly increased after stimulation with these cytokines (data not shown), 

NEP expression (determined using the mAb IS) was significantly increased by DEX (200 
± 22% (24 h) and 217 ± 5% (48 h)), IL-I~ (151 ± 13% (48 h)), TNF-a (145 ± II % (48 h», and 
IL-4 (Ill ± 6% (48 h». EGF had no significant effect on NEP expression (101 ± 18% (48 h», 
whereas IFN-y significantly decreased NEP expression, both after 24 (84 ± 2%) and after 48 
hours (62 ± 4%). Comparable resuits were obtained using other monoclonal antibodies directed 
against NEP (data not shown). 
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Figure 2. Characterb.ation of APN-like activity and effect of DEX. APN-like activity (mean ± SEM; n=S) of 
BEAS 2B ceUs was detemlined after pre-incubation with PBSIBSA, an IgOI isotypc control antibody, the CDI3 
mAb WM-IS, or the CDI3 mAb WM-47. It is assumed that after pre-incubation with WM-JS the detectable 
aminopeptidase activity is nolmedialed by APN. WM-47 is a CDI3 mAb that binds to APN but does not affect its 
activity. After stimulation with DEX (10 6 1\'1, 24 h), WM-IS reduccd APN-Iike activity to a similar level of APN-Iike 
activity detected in control ceUs pre-incubated with WM-IS, indicating that the DEX-mediated increase in APN-Iike 
activity is completely due to an increased APN activity. Activity of unstimulated ceUs pre-incubated with PBSmSA 
= 100%. 
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Figure 3, Effects of cytokines on NEP activity in the absence (A) or presence (ll) ofDEX. BEAS 2B cells were 
stimulated for 24 (open bars) or48 (solid bars) hours with IL-IP (20 ng/Illl), TNF-CI. (20 ng/ml), LFN-y(S ng/IllI),IL-
4 (20 ng/Illl) or EOP (S nglml) in the presence (A) or absence (B) of DE X, after which NEP activity was detemlined 
(mean ± SEM; II=S-II). Activity of unstimulated cells = 100%. ·p<o.OS compared to control. #p<O.OS compared to 
DEX, 
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APN expression was significantly increased by DEX (259 ± 24% (24 h) and 332 ± 6% (48 
h) ofnnstimulated cells). Stimulation with IFN-yconsistently resulted in a slightly increased 
APN expression after 24 hours (116 ± 6%), whereas no significant changes were observed after 
48 hours. Other stimuli did not significantly modify APN expression (data not shown). 
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I;'igurc 4. Effeds of q10kines on APN-likc acth'ity ill the ubsence (A) or presence (D) ofIJEX. BEAS 2B cells 
were stimulated for 24 (open bars) or48 (solid bars) hours with IL-lp (20ng/ml), TNF-a (20 ng/ml), IPN-y(5ng/ml), 
IL-4 (20 ng/mi) or EGF (5 nglml) in the absence (A) or presence (B) of DE X, aner which APN activity was detemlined 
(mean ± SE/vl; n=5-11), Activity of unstimulated cells = 100%. '1'<0.05 compared to control. #"p<O.05 compared to 
DEX. 

Effect of gill co corti co ids 011 peptidase activities ill the presence ofcytokilles 
Simultaneous stimulation of BE AS 2B cells with DEX and IL-I p, TNF-o:, or ILA resulted 

in increased NEP activities that were comparable to the increases observed with DEX alone 
(Fig. 3B). When cells were stimulated with DEX and IFN-y, also an increase in NEP activity 
was observed, although this effect was less than the effect observed in the presence of DEX 
alone. Costimulntion of cells with DEX and EGF resulted in an increased activity of NEP that 
was less than the increases observed after stimulation with DEX alone (Fig. 3B). 

Simultaneous stimnlation of BEAS 2B cells with DEX and IL-I p, TNF-o:, IL-4 or EGF 
resulted in an increased APN-like activity that was similar to the increase observed after 
stimulation with DEX alone (Fig. 4B). After 24 hours of stimulation with DEX and IFN-yan 
approximately additive effect was observed. 

Involvement of secondmy messengers 
To investigate the possible involvement of secondmy messengers in the IL-l ~-mcdiated 

increase in NEP activity, we analyzed the effect ofthe cyclic-AMP analogue db-cAMP and the 
phosphodiesterase inhibitor lBMX on NEP activity. Db-cAMP time-dependently increased 
NEP activity: after 6, 24 and 48 hours NEP activity was increased to 121 ± 5%, 140 ± 8% and 
149 ± 14%, respectively (Fig. SA). Db-cAMP did not modulate APN-like activity (data not 
shown). lBMX did not affect NEP activity after a 48 h incubation time (Fig. SB). However, 
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stimulation with JL-I B in the presence ofIBMX resulted in a small but significantly enhanced 
effect ofIL-I~ (Fig. SB). 

Figure 5. Role of secondary mcsscngers in 11,·1 p-mediated effects on NEP activity. (A) Efi'ect of the cyclic-AMP 
analogue db-cAl'llP (l ~'I) on NEP activity (mean ± Sm.'I; n=3-6). (B) Effect of phosphodiesterase inhibition by 
IB~'IX (0.1 mM) onIL-lp-mcdiatcd eHects on NEP activity (48 h stimulation) (mean ± SEM; n:;;;6). The activity of 
unstimulated cells = 100%. ·p<0.05 compared to control. #p<0.05 compared to IL-Ip. 

DISCUSSION 

Peptidases play an important role in the regulation of peptide-mediated events in the human 
lung, such as neurogenic intlammation [10). Modulation of peptidase activity or expression 
may therefore be a major mechanism to control peptide actions, and thereby inflammatory 
responses. Several snldies have shown that the activity ofNEP can be reduced by a variety of 
external factors, including vimses [11], cigarette smoke [32], ozone [13], and chemicals [14]. 
In contrast, little is known about the effects of cytokines on NEP activity and expression. 
Therefore, we investigated the effccts of the cytokines IL-I~, TNF-!X, IFN-y, !LA and EGF, 
which are known to be present during inflammatory reactions in the human airways [15], on the 
activity and expression of peptidases by human bronchial epithelial cells, since these cells have 
been shown to be a major site for peptidase activity [6, 7]. 

NEP activity and expression were increased after 48 hours of stimulation with ll..-l p and, to 
a lesser extent, with TNF-a or ll..-4. After 24 hours no significant increase could be observed, 
raising the possibility that these cytokines had an indirect effect, involving the release of a 
secondmy mediator. It has been shown that lung fibroblasts increaseNEP activity after stimulation 
with IL-I!X, IL-6, and TNF-!X and that this upregulation, which could already be detected after 
6 h of stimnlation, is dependent upon prostaglandin synthesis and elevation of cAMP [33]. We 
therefore aimed to investigate whether ll..-l p, which in our study was the cytokine with the 
most potent effect on NEP activity, acted via similar mechanisms in bronchial epithelial cells. 
Stimulation of BE AS 2B cells with the cyclic-AMP analogue db-cAMP resulted in an increased 
NEP activity which was of similar magnitude but had a more rapid onset (~ 24 h earHcr) 
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compared with the effect observed after stimulation with IL-I p. In addition, inhibition of 
phosphodiesterases with IBMX significantly enhanced the effect ofIL-1 p. These data strongly 
snggest that the effect of IL-I p on NEP activity is mediated, at least pat1ially, via a eAMP­

dependent pathway. In contrast to fibroblasts, prostaglandin-dependent mechanisms did not 
seem to be involved in BEAS 2B cells, since these cells hardly produced prostaglandins under 
the culture conditions used (data not shown). Thus, IL-I p-mediated upregulation ofNEP activity 
by BEAS 2B cells involves a cAMP-dependent pathway, which seems to be independent of 
prostaglandin ~ synthesis. Since the promotor region of NEP contains potential binding sites 
for the NF-IL6 transcription factor [34] and IL-I p is known to stimulate the release ofIL-6 by 
bronchial epithelial cells [35], it may be that the effect ofIL-1 p is mediated via release of IL-6. 
Further stndies will be necessary to test this possibility. 

The increase in NEP activity and expression observed after stimulation with IL-l P and, to 
a lesser extent, TNF-a or 1L-4 may result in an increased capacity to degrade peptides 1ike 
substance P, kinins, neutrophil chemoattractants, and possibly cytokines [9], As a consequence, 
the biological effects of these peptides (e.g. increased secretion of mucus, vasodilatation, 
increased microvao;;cular penneability, recruitment of neutrophils, release of inflanllnatOlY media­
tors) will be decreased, resulting in reduced infianm1atOlY responses. Thus, upregulation of 
NEP on bronchial epithelial cells by cytokines, or in general during infianllllatOlY reactions, 
might limit peptide-mediated inflammation in the human bronchus, either by paracrine or 
autocrine mechanisms. 

In contrast to NEP, APN-like activity and APN expression were not markedly modulated 
after stimulation of BEAS 2B cells with IL-I~, TNF-a, ILA, or db-cAMP for up to 5 days. 
Since no change in APN-expression and no change in APN-like activity was found, specific 
APN-activity was not determined. Other reports, using hUinan glomerular epithelial cells [36], 
endothelial cells or monocytes [37], have shown an increased expression and activity of APN 
after stimulation with ILA. IFN-y has been shown to decrease APN expression on monocytes 
in culnu"e [37], whereas it increased APN activity in glomerular epithelial cells [36]. In our 
study we also found an increased APN activity after stimulation with IFN-y. The difference in 
response between 1l10nocytes and epithelial cells lllay be due to the presence of alternative 
promoters in myeloid and epithelial cells [38]. The IFN-y-indllced increase in APN activity and 
expression is of great interest, since a recent repOli demonstrated a role for APN in trinllllng 
MHC class II-associated peptides [39]. Sillce IFN-yalso increases HLA-DR expression by 
epithelial cells [40], this may represent a mechanism to process and present (viral) peptide 
antigens. 

Glucocorticoids are widely used in the treatment of pulmonary diseases characterized by 
inflammation. The anti-inflammatory action of glucocorticoids may be mediated, in pm1, by 
modulating the activity and expression of peptidases by bronchial epithelial cells. In our study, 
we found a strong increase in NEP and APN activity and, as detennined by flow cytometry, 
expression. Using the inhibitOlY CD 13 monoclonal antibody WM-15, wc were able to show 
that the DEX-mediated increase in APN-like activity was completely due to an increased activity 
and expression of APN. The DEX-mediated increase in NEP and APN activity was reversed 
by the glucoC0l1icoid receptor antagonist RU38486, indicating that these effects were mediated 
by the glucocorticoid receptor. FurthenTIore, the effect seemed to be specific for glucacorticaids 
and not for other steroid hormones, since the stable testosteron analogue R 1881 had no effect 
on NEP or APN activity. DEX-mediated changes in NEP and APN activity/expression were 
time- and dose-dependent and could be observed with concentrations likely to occur around the 
epithelium ill vivo after the inhalation of glucoC0l1icoids [41]. Therefore, one beneficial effect 
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of inhaled glucocorticoids may be an increased peptidase activity by bronchial epithelial cells, 
thereby limiting the effects of pro-inflammatOly peptides. In accordance with our results. an 
increased NEP expression was observed in the epithelium of glucocorticoid-treated asthmatics 
compared to non-treated asthmatics [42]. 

\Ve subsequently determined the effects of DEX on peptidase activities in the presence of 
cytokines, since tlus may reflect the ill vivo conditions during glucocorticoid therapy more 
properly. Although the effect of DE X on NEP activity was reduced in the presence ofIFN-yor 
EGF, stimulation of BEAS 2B cells with DEX in the presence of cytokines allways resulted in 
increased NEP and APN activities. It should be noted that the DEX-mediatcd increase in NEP 
activity was much higher than the cytokine-mediated increases in NEP activity. and that the 
IFN-y-mediated decrease in NEP activity was counteracted by DEX. The reduced effect of 
DEX on NEP and APN activity in the presence of EGF suggests that stimulation of BEAS 2B 
cells with EGF decreases the responsiveness of NEP and APN for DEX. an observation that 
merits further snldy. Our data indicate that also in the presence of cytokines. DEX is able to 
increase NEP and APN activity by human bronchial epithelial ceUs. This suggests that even 
during infiammatOlY reactions ill vivo. when several cytokines are simultaneously present [15], 
glucocorticoids are able to increase peptidase activities on human bronchial epithelial cells. In 
addition, cytokines released during inflammatory reactions may increase the activity of the 
hypothalamo-pinlitmy-adrenoc0l1ical axis, resulting in the release of the natural glucocorticoid 
hydroc0l1isone [43]. Our results suggest that hydrocortisone may prevent the body's defense 
reactions against stress from overshooting and needless tissue damage. at least pm'tially, by 
upregulaling peptidases which are able to inactivate pro-inflaI111l1atOl)' peptides. 

In conclusion, JL- I~, TNF-a and JL-4 are able to up-regulate NEP activity and expression 
by humml bronchial epithelial cells. whereas IFN-yresults in a decreased activity mld expression. 
In contrast, APN activity and expression were upregulatcd by IFN-y, whereas other cytokines 
used in our experiments had no effect. DEX strongly increased NEP and APN activity and 
expression, both in the presence as in the absence of cytokines. Our results Sllpp0l1 a role for the 
human bronchial epithelium in the control of intlammation and indicate that an important anti­
inflammatOlY effect of glucocorticoids in the treatment of asthma may be upregulation of 
peptidases expressed by bronchial epithelial cells. 
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ABSTRACT 

Asthma is considered a Th2-like disease, characterized by locally increased levels of 
interlcukin (IL)-4. The bronchial epithelium plays an important role in the initiation and 
perpetuation of inflammatory reactions within the airways. However, little is known about the 
presence of IL-4 receptors on human bronchial epithelial ceils, or the effects of IL-4 on these 
cells. 

In tins rep0l1, we present definitive evidence oflLA receptor expression on human bronchial 
epitheJial cells using several methods. ll..-4 receptor expression on human bronchial epithelial 
cells in vivo was demonstrated using ill shu hybridization and immunohistochemistry. No 
difference in IL-4 receptor protein expression was observed between bronchial biopsies of 
healthy subjects compared to allergic asthmatics. Cultured human bronchial epithelial cells 
also expressed ILA receptor mRNA and protein (as determined by RT-PCR analysis and 
tlowcytomCh)', respectively). ILA receptor protein expression by bronchial epithelial cells could 
be increased by stimulation with PMA + calcium ionophore, whereas lL-l f3 and IL-6 decreased 
IL-4 receptor expression. A cyclic AMP analogue and IL-4 had no effect. Finally, we show that 
the IL-4 receptor is functionally active as JL-4 stimulates the release of JL-8, monocyte 
chemotactic protein-I, and pat1icularly IL-I receptor antagonist by human bronchial epithelial 
cells. 

We conclude that human bronchial epithelial cells express IL-4 receptors both ill vivo and 
ill vitro. Stimulation of human bronchial epithelial cells by IL-4 may result in the release of both 
pro- and anti-inflammatory mediators known to be upregulated in asthmatic airways. 

INTRODUCTION 

Asthma is clinically defined by reversible airway obstmction and hyperresponsiveness of 
the airways. Chronic inflammation of the airways is a prominent feature of astbma and is generally 
believcd to underJy the clinical symptoms. This inflammation is characterized by an influx of 
eosinophils. mast cells, mononuclear phagoeytes and T cells, and by increased levels of 
inflammatOl)' mediators [I, 2]. Recent studies indicate a predominance of Th2 cells and Th2 
cell-derived cylokines, such as interleukin-4 (IL-4) and IL-5, in the pathogenesis of bronchial 
asthma (reviewed in [31). Bronchial biopsies of asthmatic patients show an increased number 
of cells containing IL-4 mRNA and protein, compared to heallhy controls [4, 5]. In addition, 
increased levels of IL-4 have been found in bronchoalveolar lavage fluid of asthmatic patients 
[6]. 

IL-4, which lllay also be released by basophils, mast cells, and eosillophils [7, 8], exerts a 
wide range of effects 011 several cell types. These effects include proliferation of T and B cells 
[9], isotype switching to IgE in B cells [10], adhesion molecule expression on endothelial cells 
[II], and induction of m'\ior histocompatibility complex class II, CD 13 and CD23 expression 
on mononuclear phagocytes [12. 13]. In addition, anti-inflalllmatory properties of IL-4 have 
been described. FOl'example, IL-4 inhibits the release of prostaglandin Eb IL-I p, tumor necrosis 
factor-a, IL-6, and IL-8, and upregulates the release of IL-l receptor antagonist by monocytes 
[14-16]. 

The activity of IL-4 is mediated Ihrough binding to the IL-4 receptor (IL-4R). On many 
cells, the JL-4R is a heterodimcric complex comprising an a chain and a second chain. The 
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a chain, which is shared with the ll.,-13 receptor [17], is a 130 kD transmembrane protein 
consisting of a 220 amino acid extracellular domain including two pairs of cystein residues and 
the typical WSXWS motif of the hematopoietin or type I cytokine receptor supetfamily. The 
second subunit of the ll.,-4R is, at least in some cells, the common ychain, which is also used by 
the IL-2R, IL-7R, IL-9R, and IL-15R [IS, 19]. However, some recent repOlts have indicated 
that in celtain cell types IL-4 may signal via the IL-4R in the absence of the common y chain 
[20-23]. 

The bronchial epithelium has long been regarded as a passive barrier between the environ­
ment and the internal milieu of the lung. Currently, the bronchial epithelium is also considered 
to play an important role in the regulation of inflammatory and imlllunological reactions in the 
airways [24,25], Bronchial epithelial cells are able to produce a variety of inflammatOl), media­
tors, such as cytokines, chemokines and arachidonic acid metabolites [24], Release of such 
mediators may result in the initiation and perpetuation of inflammation. Bronchial epithelial 
cells recovered from asthmatics show increased expression ofinflammatOlY mediators, including 
IL-S [26] and monocyte chemotactic protein-I (MCP-I) [27], and increased levels of these 
mediators have been found in bronchoalveolar lavage fluid of asthmatic patients [28, 29]. In 
addition, human bronchial epithelial cells may produce anti-inflammatory mediators, including 
IL-I receptor antagonist (IL-IRA). Increased levels ofIL-lRA immunoreactivity have been 
found in the bronchial epithelium of asthmatics [30]. 

No IL-4 receptors (IL-4R) have been demonstrated on human bronchial epithelial cells yet. 
Therefore, we analyzed the mRNA and protein expression of IL-4R a chain by bronchial 
epithelial cells both ill vivo and in vitIV. We subsequently determined whether the expression of 
the ll.,-4R by bronchial epithelial cells differed between healthy subjects and allergic asthmatics 
and analyzed the modulation of ll.,-4R expression by human bronchial epitheJial cells in vitro. 
Finally, we snldied the effect of IL-4 on the release of the pro-infiammatOlY chemokines IL-S 
and MCP-l and the anti-inflammatory cytokine ll.,-IRA by human bronchial epithelial cells. 

MATERIALS AND METHODS 

Materials 
Recombinant cytokines used in tillS snldy were IL-I ~ (10 U/ng, UBI, Lake Placid, NY, 

USA), IL-4 (5 U/ng, UBD, and IL-6 (1000 U/ng, kindly donated by prof. dr. L. Am'den, Am­
sterdam, The Netherlands). Stock solutions were prepared in 10 mM PBS, pH 704/0.1 % BSA 
and stored at -20°C. 

DibutYlyl-cyclic adenosine monophosphate (dibutyryl-cAMP) was obtained from Sigma 
(St. Louis, MO, USA). Solutions were freshly made in milli Q-fiItered water before each expe­
riment. PMA (Sigma) and the calcium ionophore A231S7 (Sigma) were disolved in 
dimethylsulphoxide aud stored at -20°C until use. 

Antibodies 
Monoclonal antibodies (mAb) used are MR6, which is directed against gp200-MR6, a 200 

kDa molecule functionally associHled with the human IL-4R complex ([31], kindly donated by 
dr. M. Larche, London, Uillted Kingdom); M-57, directed against the human IL-4R a. chain 
(CD 124; [32], kindly provided by Immunex, Seattle, WA, USA); MAB2S4, directed against 
the common ychain (CD 132; R&D Systems, Abingdon, United Kingdom); BBA-4 (anti-ICAM-
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I (CD54), British Biotechnology Products Ltd., Oxon, United Kingdom); Ta-I (anti-CD26; 
Coulter Clone, Hialeah, FL, USA); CK-I, directed against a panmarkerof epithelial cytokeratins 
(DAKOpatts, Glostrup, Denmark); OKT6, directed against the CD I a antigen of dendritic cells 
(American Type Culture Collection, Rockville, MA, USA); LeuA (anti-CD3), Leu-2 (anti­
CDS), and Leu-3 (anti-CD4), all from Becton Dickinson (San Jose, CA, USA); MyA (anti­
CD 14) and B4 (anti-CD 19) (both from Coulter Clone); EG I recognizing eosinophil cationic 
protein in resting and activated eosinophils (Phmmacia, Uppsala, Sweden); BMK 13, recognizing 
major basic protein in resting and activated eosinophils (Genzyme. Cambridge, MA, USA); 
and EG2, recognizing the cleaved form of eosinophil cationic protein in activated eosinophils 
only (Pharmacia). For double-stainings (see below) FlTC-Iabeled LeuA (CD3) and FITC­
labeled My-4 (CDI4) were used. 

Bronchial fiSSile 

Samples of human bronchus were obtained from patients undergoing pneumonectomy or 
lobectomy (University Hospital Dijkzigt, Rotterdam, the Netherlands). Tissue distinct from the 
nUllOr and having a normal appearance was dissected and either used for bronchial epithelial 
cell culture (see below) or directly embedded into Tissue-Tek (Miles Inc., Elkhart, IN, USA), 
frozen in liquid nitrogen, and stored at _80°C. 

Bronchial mucosal biopsy specimens were obtained from eleven non-smoking aUergic 
asthmatic patients (8 men, 3 women, median age 32 years, range 20 - 56 years). Asthma was 
defined as a history of episodic wheezing and reversible airway obstruction characterized by an 
increase in forced expiratory volume in one second (FEV1) of ~ 9% of the initial value after 
inhalation of 1000 fig terbutaline. The asthmatic subjects had a mean FEY! of 91 % of the 
predicted value (range 60 - 108%). The median of the 210gs of the provocative concentrations 
of inhaled metbacholine required to reduce their FEY! by 20% (PC,,) lVas -0.06 mg/mI (range 
-3.S9 - 3.43 mg/mI). Allergy was defined by one or more positive skin-prick tests to extracts of 
16 comlllon aeroallergens. All patients were receiving inhaled ~-agonists only, and none had 
taken oral or inhaled corticosteroids in the month prior to the study. 

The control group consisted of 6 non-allergic non-asthmatic subjects (4 men and 2 women, 
median age 24 years, range 23 - 52 years). All controls had a PCm histamine of more than 8mg/ 
mI and a median FEY! of 104 (S8 - 109)% of the predicted value. The study was approved by 
the local Ethics Committee and all participants gave their written informed consent. 

immlll1ohistochemistl), 
Immunohistochemical (double) stainings were performed as described previously [33]. To 

evaluate IL-4R expression between healthy subjects and asthmatics, biopsies were coded and 
two sections per staining were analyzed in a blinded fashion for each biopsy at a magnification 
of IOx40. IL-4R expression by the bronchial epithelium or lamina propda was scored sellll­
quantitatively on a 0 - 4 scale (0= negative; 1= weak; 2= moderate; 3= strong; 4 = very strong). 
hI addition, the number of positively stained cells were counted in a zone covering 100 pm of 
the the lamina propria along the length of the epithelial basement membrane (BM), covered 
with epithelium over at least 500 ~lm. Cells were counted jf they stained red and contained a 
nucleus. Each section was evaluated by at least two independent investigators. The cell counts 
are expressed as the number of ceUs per mill of BM. Composition of the cellular infiltrate was 
determined using specific leukocyte markers (see Antibodies) and counted as described above. 
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In situ hybridization (ISH) 
Anti-sense and sense oligonucleotides were synthesized with a DNA Synthesizer 380B 

(Applied Biosystems, Foster City, CA, USA). The JL-4R oligos were designed using the Oligo 
Primer Analysis Software (MedProbe, Oslo, Nonvay), and displayed no homology to known 
complementmy cDNA sequences (except human JL-4R cDNA), as verified by searching EMBL 
database. Anti-sense oligonucleotides used me (5'to 3') GTG GAC GCA GAG GCT GAT 
GTA CTC GTA GAG; TCT TIC TIA CCA CCC TAG TCT AAG GGT TGG; CGG ACA 
AGG ACC TGG ACG AGC CTC TCC TCT; TGA CAC GGG GTI GGA CTC GGT CIT 
TGG ACC. The sense oligonucleotides overs panned the same regions ill the gene. 
Oligonucleotides were 3'-tailed with digoxigenin (DIG) using the DIG Oligonucleotide Tailing 
Kit (Boehringer Mannheim, Mannheim. Germany). Labeling effIciency was vedfied using 
hybridization and comparison with a DIG-tailed control oligonucleotide (supplied with the kit) 
according to the instmctions of the manufacturer. Prior to use for ISH, a mixture of the four 
sense or the four anti-sense oligonucleotides was prepared. 

DIG-labeled oligonucleotides for a-actin (British Biotechnology Products Ltd.) and DIG­
labeled oligo-dT (R&D Systems) were used as control for the preservation of cellular RNA. 

ISH and immunological detection were pelformed essentially as described previously [34]. 
The negative controls included omission of oligollucleotides or antibody and hybridization 
with the sense probe mixture. Human skin biopsies of psoriatic patients were used as positive 
control tissue [35]. 

Culture of humall bIVllcllial epithelial cel/s and eel/lines 
Human bronchial epithelial cells were cultured from bronchial tissue (obtained from 110n­

allergic patients undergoing lung surgelY) as desctibed previollsly [36]. Cells were characterized 
using a mouse monoclonal antibody directed against a number of human cytokcratins (CK-I). 
At least 99% of the isolated cells stained positive for cytokeratin. When cells were 70-90% 
confluent, they were used for experiments. 

The human bronchial epithelial cell line BEAS 2B [37] wa, kindly provided by dr. J. Lechner 
(Inhalation Toxicology Research Institute, Albuquerque, NM, USA) and cultured as described 
previously [38]. Medium was replaced three times weekly and cultures were passaged when 
the monolayer, were 80 to 90% confluent. Passages 16 through 35 were used in this study. 

Thc human histiocytic lymphoma cell line U937 [39] was cultured in RPMI 1640 medium 
(Gibco) supplemented with 10% FCS and antibiotics. The THP-I cell line [40] was obtained 
from the American Type Culture Collection and maintained according to their instructions. 

Stimlliatioll oJ blVllchial epithelial cells 
When cultures rcached 70-90% confluency, the medium was replaced by a basalmcdium 

consisting of DMEMlF 12 (1: 1) supplemented with antibiotics and IL-I f} (20 ng/Illl), JL-4 (20 
ng/ml), JL-6 (0.1 ng/Illl), dibutYlyl-cAMP (I mM), or PMA (10 ng/ml) and calcium ionophore 
A23187 (I flg/ml) were added to the medium. These doses were widely shown to be effective 
in vitlV. For studies on the effect of ILA on cytokine release by human bronchial epithelial 
cells, the culnlres were continued for an additional 24 h, after which culture supernatants were 
collected and cells were trypsinized and counted lIsing a haematocytometer (Coulter). For stu­
dies on the modulation of IL-4R expression by human bronchial epithelial cells, cells were 
stimulated for 24 h, after which the cells were analyzed by flowcytometry. 
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FlowcylOl1lefl)' 

For imlllunofluorescence staining of human bronchial epithelial cells, the following mAb 
were used: M57, MAB284, BBA-4, and Leu-4 (control for nonspecific binding). Bronchial 
epithelial cells were rinsed with PBS and detached using 0.02% EDTA. Cells wcrc harvested in 
PBS/O.5% BSA, washed and resuspended in PBS/BSA to a final concentration of2 x 10' cellsl 
Illl. Flowcytometry was pClformed as described previously [38]. Fluorescence intensities were 
quantified using calibrated fluorescence standards (FCSC Quanhllll 26, Research Triangle Park, 
NC, USA) and expressed as Molecules of Equivalcnt Soluble Fluoresccnce (MESF) [38). 

RNA isolation and eDNA s)'llflzesis 
Total cellular RNA was isolated from human bronchial epithelial cells and BEAS 2B cells 

according to Chomczynski and Sacchi [41). The integrity of the RNA was assessed by 
electrophoresis of the RNA samples on a 1 % ethidiul11 bromide-stained agarose gel and 
observation of intact S28 and S 18 tibosomal bands. The RNA was stored at -80°C until use. 
RNA isolated from the HTLV-I infected human T cell line MT-l [42) was kindly donated by 
dr. M.C.M. Verschuren from the department of Immunology (Erasmus University Rotterdam, 
The Netherlands). 

Prior to amplification, a I Ilg aliquot of total cellular RNA was treated with RNase-free 
DNase (Gibco) to remove contaminating genomic DNA. RNA was reversed transcribed to 
cDNA as descdbed by previously (total volume: 20 J.l1) [34]. The cDNA were stored at -20°C 
until usc. 

Polymerase chain reaction (PCR) ana(vsis 
For peR analysis I ~ll eDNA solution was used. The reaction mixture contained 10 mM 

Tris-HCI (pH 8.3), 50 mM KCl, 1.5 mM MgCI" 0.2 mM dNTPs, I pM sense and anti-sense 
oligonucleotide pdmers, and 20 Uiml Taq polymerase (Amplitaq, Perkin-Elmer Cetus, Nor­
walk, CT, USA) in a total volume of 50 J.ll. Analysis of cDNA levels of hypoxanthine 
phosphatidyl ribosyJtransferase (HPRT) was used as an internal control to standardize for total 
cellular mRNA. The following primers (synthesized with a DNA Synthesizer 380B (Applied 
Biosystems)) were used (5' to 3'): IL-4R sense: CTG GAG CAC AAC ATG AAA AGG; II.AR 
anti-sense: AGT CAG GTT GTC TGG ACT CTG; common y chain sense: GAT TAT AGA 
CAT AAG TIC TCC; and common ychain anti-sense: GAT GAT TAT CAA CAG AAA CIT; 
HPRT sense: GTG ATG ATG AAC CAG GTI ATG ACC TI [43J; HPRT anti-sense: CTI 
GCG ACCTIG ACC ATC TTT GGA [43). The amplified cDNA products are 510, 831, and 
454 base pair in size, respectively. Samples were amplified in a DNA Thermocycler 480 (Per­
kin-Eimer Cetus) for 35 cycles, each cycle consisting of denaturation at 94°C for 30 sec (IL-4R 
and HPRT) or I min (common ychain), annealing at 55°C for 30 sec (lL-4R and HPRT) or I 
min (collllllon y chain), and extension at 72°C for 1 min. These conditions appeared to be 
optimal as detennined in preliminary experiments. Aliquots of PCR products were nm on 1 % 
agarose gels and visualized by ethidium bromide staining. HPRT was used as an intemal control 
for total cellular mRNA. Each expedment included positive controls (cDNA from a THP-I cell 
line (IL-4R) or MT-I and U937 cell line (common ychain» and tlVO negative controls (water 
and DNA treated with DNAse). 

Radioactive hybridization of PCR products 
Agarose gels containing the amplified cDNA were blotted to Nytran N nylon membranes 

(Schleicher and Schnell, Dassel, Germany) and fixed to the membrane with a 254 nm UV 
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crosslinker. Oligonuclcotide probes used are (5' to 3') TGG CCA GAG AGC ATC AGC GT 
(IL-4R a chain) and GTG AGGTGA GTA TGA GAC GCA GGTG (common ychain). The 
oligonucleotides, being complemental)' to internal sequences of the PCR products, were end­
labeled with "P-y-ATP (lCN Pharmaceuticals Inc., Irvine, CA, USA) by T4 polynucleotide 
kinase (Pharmacia LKB, Piscataway, NJ, USA). Blots were hybridized in 5x SSPE (50 mM 
SodiumPyrophosphate, 0.9 M NaCI and 5 mM EDTA, pH 7.0), 0.6% SDS and 50 /lg/ml 
salmon sperm DNA for 2 h at 55°C. Subsequently, blots were rinsed twice for 20 min with 5x 
SSPE with 0.1 % SDS at 55°C and exposed to phosphor scrccns, after which the intensities of 
the signals were measured using a PhosphorImager (type Storm 820; Molecular Dynamics, 
Sunnyvale, CA, USA) and analyzed using ImageQnaNT software (Molecular Dynamics). 

ELISA!o!' IL-8, MCP-I alld soluble IL-4R achaill 
IL-8 was measured with a commercially available sandwich ELISA (Central Laboratory of 

the Blood Transfusion Service, Amsterdam, The Netherlands) with a detection limit of I pg/ml. 
Levels of immunoreactive MCP-l were quantified in a previously described sandwich ELISA 
[44], using a novel, highly specific monoclonal antibody against MCP-I (5D3-F7 mAb, IgG,) 
and a polyclonal rabbit anti-MCP-l serum. The sensitivity of tIus assay was 30 pglml. Human 
soluble IL-4R a chain levels in the culhlre supernatants were measured using a commercially 
available sandwich ELISA (R&D Systems; detection limit: 5 pg/ml). IL-IRA levels were 
determined using a conunercially available sandwich ELISA (Medgenix, Etten-Leur, The 
Netherlands) with a detection limit of 10 pg/ml. 

Statistical analysis 
Data arc expressed as mean ± SEM (cytokine levels) or median with range (immuno­

histochemical analyses). The Mann-Wlutney U test was used to assess significant differences 
in cytokine-release and IL-4R expression between stimulated and unstimulated cultures of human 
bronchial epithelial cells and IL-4R expression bctween bronclual biopsies of asthmatics and 
healthy subjects. Correlation coefficients were obtained by Pearson's rank method. A p-valuc 
less than 0.05 \vas considered significant. 

RESULTS 

E'pressiol1 of IL-4R mRNA alld pmteill ill vivo 
Although some recent rep0l1s indicate an effect of IL-4 on human bronchial epithclial cell 

function, no IL-4R have been demonstrated on these cells yet. Therefore, we determined the 
expression ofIL-4R mRNA and protein in bronchial tissue. This tissue was obtained from non­
allergic patients undergoing lung surgery. III situ hybridization (ISH) of bronchial tissue showed 
that IL-4R mRNA was strongly present in the bronchial epithelium and in smooth muscle cells 
(Fig. I). In addition, JL-4R mRNA IVas detected in blood vessels and infiltrating cells (Fig. I). 
ISH using the DIG-labeled 13-actin 01' oligo-dT oligonucleotides showed strong and roughly 
equal hybridization signals in all cells. 
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.. 
Figure 1. III situ hybridization (ISH) of IL·4R mRNA in bronchial tissue. ISH of IL-4R mRNA using the DIG­
labelcdanti-sense oligonucleotide mixture (A). The IL-4R sense oligonucleotide mixture gave no hybridization signal 
(B). Magnification: 160x. 

The ISH data were substantiated by immunohistochemical stainings of bronchial tissue, 
using the mAb MR6 and M57. Strong IL-4R protein expression was demonstrated in the entire 
bronchial epithelium and in smooth muscle cells (Fig. 2). The expression ofIL-4R protein was 
particularly restricted to the membrane of these ceUs. Less intense staining was observed in 
blood vessels and infiltrating cells within the lamina propria. Using double-stainings with anti­
CD3 and anti-CD 14 mAb, the m'liOlity ofthe IL-4R-positive inflitrating cells could be identified 
as T-Iymphocytes and mononuclear phagocytes (data not shown). The MR6 and M57 mAb 
(which recognize distinct pat1s of the IL-4R) showed similar staining patterns. These results 
indicate that in the healthy human bronchus, IL-4R expression can be found in the bronchial 
epithelium, smooth muscle, blood vessels, and infIltrating cells (predominantly T lymphocytes 
and mononuclear phagocytes). 

Figure 2. IL·4R innllullorcacth'ity in buman bronchial tissue. Human bronchial tissue was stained using the 1\,157 
mAb (A). Mouse isotypc-matched control antibody showed no reactivity (B). Magnification: 160x. 

IL-4R e.\preSSioll ill bIVllchial biopsies of asthmatics 
To determine whether the expression of IL-4R was altered in bronchial tissue of asthmatic 

patients, we evaluated the expression of IL-4R protein in bronchial biopsies of healthy non­
allergic subjects and allergic asthmatics. Bronchial biopsies of asthmatic patients showed an 
increased number of total eosinophils (EO IIBMKI3 positive) and activated eosinophils (E02 
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positive) in the lamina propria compared to healthy subjects. In addition, the number of CD 1 a­
positive dendritic cells in the bronchial epithelium was increased in the asthmatic patients. No 
significant differences were observed for the number of T cells (CD3, CD4, or CD8 positive), 
B cells, or mononuclear phagocytes (data not shown). 

Comparison ofthe bronchial epithelium between bronchial biopsies of healthy non-allergic 
subjects and allergic asthmatics (using the MR6 mAb) did not reveal significant differences in 
the IL-4R expression ill vivo (Fig. 3, left part). In addition, IL-4R expression in the lamina 
propria, as determined by semi-quantitative analysis, did not differ between both groups (Fig. 
3, right part). Quantitative analysis of the numberofIL-4R-positivecells in the lamina propda 
also revealed no significant differences between healthy controls (median: 8.4 cells/mm BM 
(range: 4.5-47.5)) and allergic asthmatics (median: 7.5 cells/mm BM (range: 0.8-94)). Semi­
quantitative and quantitative analysis showed strong cOlTelation with each other (Speannan's 
rank correlation coefficient 0.88 (1'<0.01)). 

epithelium lamina propria 

4 • • 
3 • • • 
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•••• ••••• •••• • •••••• 

ol-____ -. ______ -. ______ -L ____ -. ________ ,-____ ~ 

HC M HC AA 

Figure 3. Score for IL-4R eX}lression in bronchial biopsies of healthy controls (HC) und ullergic asthmatics 
(A.A.). IL-4R immunoreactivity of the bronchial epithelium and lamina propria was semi-quantitatively scored on 
a 0-4 scale. See text for details. 

IL-4R expression in the lamina propria (using either s~mi-quantitative or quantitative data 
of both healthy controls and allergic astlunatics) showed a conelation with the number of activated 
(EG2-positive) eosinophils in the lamina propria (r,= 0.8995;1'<0.00 I; Fig. 4). IL-4R expression 
in the lamina propria showed a tendency to cOl1'elate with the number of activated (CD26-
positive) T cells in the lamina propria (semi-quantitative analysis: l~;::; O.S369;p<O.OS; quantitative 
analysis p=0.068). 

These results suggest that the expression of ILAR on the bronchial epithelium is rather 
constitutive and is not significantly altered in the asthmatic airways. Furthennore, the expression 
ofIL-4R in the bronchus significantly cOl1'elates with the number of activated eosinophils, and 
less clearly with activated T cells, within the lamina propria. 
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I'igurc 4. Correlation between IL-4R e":pl'ession and actimted eosinol1hils in the lamina propria. IL-4R expression 
(quantitative) tlnd the Ilumberof activated (EG2-positive) eosinophils in the lamina propria wa~ detemlilled a~ described 
in the :Materials u'"!d methods section. 

E'pressioll of IL-4R mRNA alld protein ill cultured human bronchial epithelial cells 
'Ve subsequently determined whether culhlred human bronchial epithelial cells expressed 

the IL-4R mRNA and protein. Using RT-PCR analysis, IL-4R mRNA could be observed both 
in plill1lliY cultures of human bronchial epithelial cells and in the established BEAS 2B cell line 
(Fig. SA). In addition, IL-4R protein expression (as determined by flowcytometly using the 
M57 mAb), could be observed in cultured human bronchial epithelial cells (Fig. SB). Basal 
expression ofll..-4R and ICAM-I was 0.88 ±O.22x IO'MESFand 13.8 ±S.I x IO'MESF, 
respectively (n=7). 111e expression ofIL-4R mRNA and protein seemed to be rather independent 
of the time of culture and the confluency of the cultures (data not shown), The IL-4R expression 
by cultured human bronchial epithelial cells was further demonstrated by the observation that 
soluble 1L-4R a chain immunoreactivity could be detected in the culture supernatants of these 
cells (mean ± SEM: 41.9 ± 6.8 pglllll; n=17; range 7.8 - 116.6 pglml). 

Since the common "{chain (CD132) is, at least in certain cell types, a functional component 
of the IL-4R, we aimed to analyze the expression of this molecule in cultured human bronchial 
epithelial cells. RT-PCR analysis and subsequent hybridization of the common ychain eDNA 
showed expression of common "{chain mRNA in cultured human bronchial epithelial cells and 
BEAS 2B cells (Fig. SA). In addition, expression of the common y chain protein on human 
bronchial epithelial cells and BEAS 2B cells was demonstrated by flowcytometry (data not 
shown). The expression levels of the common y chain (0.66 ± O.IS x 10' MESF; n=8) were 
almost similar to the expression levels of the IL-4R a chain. 

These results demonstrate that cultured human bronchial epithelial cells express both mRNA 
and protein for the 1L-4R a chain and the common "{ chain. 
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Figure S.lL-4R expression in culhucd human bronchial cpithcUal cells. A: IL-4R a chain mRNA and common 
y chain mRNA expression were determined using RT-PCR analysis and subsequent hybridization. HPRT mRNA 
levels were comparable in all samples (data not shown). B: IL·4R a chain protein expression on cultured human 
bronchial epitheUal cells was detemuned by fIOWC)10111etry using the j\157 mAb (thick line). ICArvl-1 (thin line) and 
an isotype-matched antibody (dotted line) served as positive and negative controls, respectively. One representative 
experiment out of scycn is shown. 

lWodulatioll of brollcMal epitheliallL-4R protein e.\pressioll 
To analyze whether the expression of the lL-4R could be modulated ill vitro, we stimulated 

human bronchial epithelial cells with IL-I~, IL-4, IL-6, dibutyryl-cAMP, or PMA + A23l87 
for 24 h. Stimulation with PMA + A23187 consistently increased IL-4R expression on human 
bronchial epithelial cells (Fig. 6). In contrast, a small but consistent decrease in IL-4R expression 
was observed after stimulation with IL-I~ or IL-6 (p < 0.05 for both cytokines). IL-4 and 
dibntyryl-cAMP did not significantly affect on IL-4R expression by human bronchial epithelial 
cells. Comparable results were obtained after stimulation for 48 or 72 hours (data not shown). 
ICAM-l expression was consistently increased after stimulation with IL-I~ (297 ± 54% of 
unstimulated cells) or PMA + A23187 (672 ± 560%), whereas IL-4 (lIS ± 10%), IL-6 (92 ± 
6%) and dibutyryl-cAMP (124 ± 25%) had no significant effect. 
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Figure 6. Modulalion of IL·4R express:ion 011 human bronchial epilhelial ccUs. Human bronchial epithelial cells 
were stimulated for 24 h with IL-I 13, IL-4. IL-6, dibutyl}'l-cAtvIP (db-cAl\'tp) or P~lA + calcium ionophore A23187 
(ea). IL-4R expression was determined by flowcytometry (using the M57 mAb). Data represent the mean ± Sm.,l 
(n=3-5). 

Effects of IL-4 Oil lIIediator release by hUlllall blVllchial epithelial cells 
To study whether the IL-4 receptors expressed by human bronchial epithelial cells were 

functionally active, human bronchial epithelial cells were stimulated with IL-4. For comparison, 
wc also stimulated human bronchial epithelial cells with IL-I~. As shown in figure 7, IL-I ~ 
increased the IL-8 and Mep-! release. IL-4 also consistently increased the release ofIL-8 and 
MCP-I rclease, although to a lesser degree (Fig. 7). IL-I RA production by human bronchial 
epithelial cells was strongly increased by stimulation with IL-I~ and IL-4. Thus, IL-4 stimulates 
the release of both IL-S, MCP-I and pat1icularly IL-IRA from cultured human bronchial cpithelial 
cells. 

DISCUSSION 

This paper shows for the first time that IL-4R are expressed by human bronchial epithelial 
cells and that this IL-4R is functionally active_ Since IL-4 is thought to be an important cytokine 
in asthma, our findings are of importance for our understanding of the pathogenesis of this 
disease. Increased numbers of cens containing IL-4 mRNA and protein have been found in 
bronchial biopsies of asthmatics [4, 5] and increased levels of IL-4 have been found in 
bronchoalveolar lavage fluid of asthmatic patients compared to healthy individuals [6]. T 
lymphocytes and eosinophils have been shown to be an important source ofIL-4 in the inflamed 
bronchus, and both cell types can be found in close proximity to the bronchial epithelium. 
Thcrefore, it is very likcly that bronchial epithelial cells will be exposed to IL-4 during 
inflanmmtory and immunological responses within the lung. Our findings indicate that human 
bronchial epithelial cells express the IL-4R. Fm1hermore, we show that tltis IL-4R is functionally 
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Figure 7. Effect of lL-lp and lL-4 on ll.-8, l\ICP-l, and IL-IRA production by human bronchJal epilhcUal 
cells. Human bronchial epithelial cells were stimulated with IL-IP (20 ng/ml; closed bars) or IL-4 (20 ng/ml; open 
bars) for 24 h. IL-8. MCP-I, and IL-IRA levels in the supernatant were analyzed llSing ELISA. Data are expressed a<; 
percentage production compared to unstimulated cells (mean ± SEM; n ~ 3). 

active, since exposure of human bronchial epithelial cells to IL-4 stimulated the release of IL-
8, MCP-l, and pru1icularly IL- I RA, which arc mediators known to be upregulated in the asthmatic 
bronchial epithelium [26, 27, 30]. 

Using ill situ hybridization and immunohistochemistry, we show that the human bronchial 
epithelium expresses IL-4R mRNA and protein in vivo. IL-4R expression was also observed in 
endothelial cells, smooth muscle cells and infiltrating cells (T cells and mononuclear phagoeytes), 
all of which are known to possess IL-4R [45, 46J. Expression of the IL-4R has also been 
described for other epithelial tissues, like intestinal epithelium [47J, epidermal cells [35], and 
breast epithelium [48J, suggesting that expression of IL-4R is a general feature of epithelial 
cells. 

IL-4R expression in the lamina propria of healthy controls and allergic asthmatics showed 
a strong correlation with the number of activated eosinophils and a weak correlation with the 
number of activated T cells. Eosinophils are known to express IL-4R [49], however, it is not 
known at present whether these receptors are upregulated on activated eosinophils. Unstimulated 
T cells express low levels of IL-4R, but the number of IL-4R is upregulated upon activation 
[50]. Therefore, one may speculate that the conelation between IL-4R expression and number 
of activated eosinophils or activated T cells is a reflection of the increased IL-4R expression on 
these cells. On the other hand, activated T cells or activated eosinophils may secrete mediators 
(for example IL-4) which subsequently increase the IL-4R expression in a pru·acrine or autocrine 
manner. 

Expression ofIL-4R mRNA and protein was also demonstrated in cultured human bronchial 
epithelial cells and in the BEAS 2B cell line. In addition, protein and mRNA expression of the 
conUllon ychain was observed in these cells. The common ychain (CDI32) is believed to be a 
functional component of the IL-4R [18,19], but recent reports have shown that in certain cell 
types IL-4 may signal via the IL-4R in the absence of the common y chain [20, 21J. Although 
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we did not directly determine the subunit structure of the IL-4R, it can be assumed that in 
human bronchial epithelial cells ILA signals, at least in pmt, via binding to an IL-4R composed 
of the IL-4R a chain and the common y chain. 

Modulation of IL-4R expression ill vitro was studied using several cytokines, the cA1vlP 
analogue dibutyryl-cAMP, and stimulators of protein kinase C (PMA + calcium ionophore). 
Stimulation with PMA + calcium ionophoreconsistently increased the IL-4R exprc.-'ision, whereas 
IL-4 and dibutyryl-cAMP had no effect. JL-4R expression on T cells and B cells has been 
shown to be upregulated by IL-4 and calcium ionophore [51-53). In contrast, JL-4R expression 
on lllonocytes has been shown to be npreguiated by PMA or stimulation of intracellular cAMP 
levels, whereas IL-4 and calcium ionophore had no effect [51]. It was hypothesized that this 
discrepancy might be caused by the presence (T cells) or absence (monocytes) of the common 
"(chain [51]. Our results do not support this hypothesis since we did not observe an increased 
IL-4R expression after IL-4 stimulation of human bronchial epithelial cells, expressing the 
comlllon ychain. After stimulation with IL-lp or IL-6, a small but consistent decrease in IL-4R 
expression was observed. The physiological role of this decrease, however, remains to be 
established and it would be of interest to determine whether changes in receptor numbers are 
accompanied by changes in receptor affinity. 

Comparison of IL-4R expression by the bronchial epithelium of asthmatics and healthy 
subjects did not reveal significant differences. In addition, no difference was found in IL-4R 
expression in the lamina propria. Although IL-4levels are increased in asthmatic patients [4-6], 
our ill vitro data show that this does not affect IL-4R expression on the bronchial epithelium. In 
fact, from our ill vitlV data one might expect a decreased IL-4R expression due to elevated IL­
Ip and IL-6levels in asthmatics [54]. On the other hand, our in vivo data should be interpreted 
with caution, since our method may not detect small changes in receptor numbers, and the 
number of patients was relatively smail. Nevetiheless, the lack of difference in bmnchial epithelial 
1L-4R expression between asthmatics and healthy subjects and the only minor effects of stimuli 
on bronchial IL-4R expression ill vitro suggest that the expression oflL-4R on human bronchial 
epithelial cells is rather constitutive. 

Recent reports have demonstrated an effect of IL-4 on human bronchial epithelial cells. In 
one study, it was shown that IL-4 upregulated the release of granulocyte/macrophage colony­
stimulating factor, thereby stimulating eosinophil survival [55]. In contrast, other studies have 
shown that IL-4may exert anti-inflammatory properties on human bronchial epithelial cells by 
inhibiting cytokine-induced RANTES expression [56) or inducible nitric oxide synthase 
expression [57]. In the latter sttldies, JL-4 was added 30 min prior to stimulation of the cells by 
a mixture of IL-I p, tumor necrosis factor-a, and interferon-yo Anti-inflaullllatory effects ofIL-
4 on human bronchial epithelial cells have also been described by Levine and colleagues [58), 
who demonstrated that IL-4 increased the release ofIL-iRA. Our results substantiate these data 
and show that IL-4 may act both pro-inflammatory (by increasing IL-8 and MCP-I release) and 
anti-inflammatory (by increasing IL-IRA release) on human bronchial epithelial cells. However, 
the strongest effect of JL-4 was observed on the production of JL-IRA. It may be speculated 
that in the healthy bronchus, IL-4 is involved in controlling inflammatOlY reactions by stimulating 
the release of JL-IRA by bronchial epithelial cells. 

In conclusion, bronchial epithelial cells express IL-4 receptor mRNA and protein both in 
vivo and ill vitlV. The functionality of the receptor was demonstrated by the ability of IL-4 to 
stimulate JL-8, Mep-I, and paI1icularly JL-IRA release by culttlred human bronchial epithelial 
cells. Enhanced levels of IL-4 in the asthmatic airways may therefore, together with other 
cytokines, result in increased responses of bronchial epitheHal cells, thereby resulting in an 
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increased recllIitment and activation of leukocytes. Our results further support a role for the 
human bronchial epithelium in the control of inflammation and indicate that IL-4 may stimulate 
bronchial epithelial cells to produce inflanllnatOlY mediators. 
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ABSTRACT 

Airway inflanunation is charactedzed by an accumulation of activated leukocytes. Bronchial 
epithelial cells may contribute to this process by releasing chcmokines and by expressing sUlface 
membrane molecules involved in the adhesion and activation of the recruited leukocytes. In 
this study, we analyzed the effects of cytokines and glucocorticoids on the release of monocyte 
chemotactic protein-l (MCP-I), a potent chemoattractant for predominantly monocytes and 
luymphocytes, by human bronchial epithelial cells and compared tills with the release of 
interleukin-8 (lL-8), which potently attracts neutrophils. In addition, we analyzed the effects of 
cytokines and glucoCOlticoids on the epithelial expression of intercellular adhesion molecule 
(ICAM)-I, CD40, and human leukocyte antigen (HLA) class II molecules. 

Primmy cultures of human bronchial epithelial cells constitutively released MCP-I and IL-
8. IFN-y strongly increased MCP-I release, which was accompanied by increased expression 
of MCP-I mRNA and an increased monocyte chemotactic potential. In contrast, IFN-yhad no 
effect on the release ofIL-8, but it did increase the epithelial expression ofiCAM-I, CD40, aud 
HLA class II molecules. IL-I ~ increased both MCP-I and IL-8 release, and increased the 
expression of ICAM-I and CD40, but not HLA class II molecules. Dexamethasone partially 
inhibited the cytokine-induced release of MCP-I and IL-8 and the expression of ICAM-I, 
CD40, and HLA class II molecules by human bronchial epithelial cells. 

Our results indicate that IFN-yand IL-I ~ differentially regulate the MCP-I and IL-8 release 
by human bronchial epithelial cells. In addition, IL-I~ and pat1icularly IFN-y increase the 
expression of ICAM-I, HLA class II and/or CD40 molecules, which are involved in the adhesion 
and possibly activation ofthe recmited leukocytes. Finally, the beneficial effect of glucocorticoid 
therapy in airway illflanllmtOlY diseases may be mediated in part by inhibition of chemokine 
release and ICAM-I, CD40, and HLA class II expression by bronchial epithelial cells. 

INTRODUCTION 

Asthma is a chronic inflammatory disease of the airways. The inflanlll1atOlY process is 
characterized by an accumulation of activated leukocytes, predominantly macrophages, T 
lymphocytes and eosinophils, in the bronchial wall [I, 2]. The recmitment of peripheral blood 
leukocytes into the airways is mediated tluough several signals, including adhesion molecules 
and chemotactic factors produced at the inflammatory focus. MCP-I, a member of the C-C 
branch of the chemokine family, has chemotactic properties for monocytes, basophils, T 
lymphocytes and NK cells [3]. hl addition, MCP-Imay activate monocytes and basophils, and 
can induce leukocyte adhesion molecules on endothelial and vascular smooth muscle cells [4-6]. 
IL-8 is a member of the C-X-C branch of the chemokine family and is ill vitro predominantly 
chemotactic for neutrophils [7]. The composition of the cellular infiltrate will therefore be 
determined, at least in part, by the chemokines present during inflammatory reactions in the 
airways. 

The bronchial epithelium is considered to play an important role in the regulation of 
inflammatory and immunological reactions in the airways [8]. Bronchial epithelial cells have 
the capacity to recmit inflatllllatory cells via the release of chemokines, to direct inflammatory 
cell adhesion via the expression of cell surface molecules, and to regulate illfla1llll1atOlY cell 
activity both via the release of cytokines and via expression of cell smface molecules. Bronchial 
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epithelial cells are known to produce MCP-I [9] and IL-8 [10]. Increased expression of MCP-
1 and IL-8 protein has been found in the bronchial epithelium [11, 12] and in brollchoalvcolar 
lavage fluid [13, 14] of asthmatic subjects compared to normal subjects. IL-8 release by human 
bronchial epithelial cells has been shown to be increased after stimulation with pro-inflammatory 
cytokines [10], but at present little is know about the regulation of MCP-I release by these 
cells. Human bronchial epithelial cells can also express surface molecules like adhesion 
molecules, coslimulatory molecules, and Ill.A class II molecules. The bronchial epithelium of 
asthmatics shows increased expression of ICAM-I and HLA class II molecules [15, 16], which 
may contribute to the retention and activation of recmited leukocytes in the a."Ithmatic airways [8]. 

The release of chemokines and the expression of smface molecules is thought to be modulated 
by cytokines, which are increasingly recognized to be impOliHllt in chronic inflammation and 
playa critical role in orchestrating inflammatory responses. In bronchoalveolal' lavage fluid of 
asthmatics, increased levels ofIL-IP, TNF-o:, and IFN-yhave been detected compared to healthy 
controls [17, 18]. Bactedal cell wall products, such as lipopolysaccharide (LPS), may also 
contribute to the inflammatory process in the airways [19]. In contrast, glucocorticoids, which 
are the most effective.dmgs in the treatment of asthma [20], reduce the number of mast cells, 
eosinophils, lymphocytes and monocytes in the bronchial wall [21]. These anti-inflanunatOl), 
effects of glucocorticoids may be mediated, at least in part, by inhibition of the MCP-I and IL-
8 release by bronchial epithelial cells and by a reduced epithelial expression of ICAM-I, HLA 
class II, and CD40 molecules. 

The present study was designed to investigate the effect of cytokines (IL-I p, IFN-y, TNF-
0:), LPS and glucocOl1icoids on the release ofMCP-1 by human bronchial epithelial cells. The 
effects of these stimuli were compared with the effects on lL-8 release by human bronchial 
epithelial cells to detennine whether the release of these chemokines was regulated differcntially. 
In addition, we investigated the effects ofIL-l p and IFN-y, which were the most potent stimu­
lators of MCP-I release, on the expression of ICAM-I, HLA class II, and costimulatory CD40 
molecules by human bronchial epithelial cells, to detcnnine whether these mediators could also 
be involved in the modulation oflcukocytc adhesion and possibly leukocyte activation. Finany, 
we investigated the effects of glucocorticoids on the cytokine-induced effects on chemokine 
release and smface marker expression. 

MATERIALS AND METHODS 

Reagellts 
Cytokines used in tltis study were IL-I p (10 U1ng, UBI, Lake Placid, NY, USA), TNF-u. (5 

U1ng, UBI), and IFN-y(20 U1ng, Boehringer Ingelheim, Gennany). A 10 mM stock solution of 
the synthetic glucocorticoid dexamethasone micronisatum (DEX; Duchefa b. v., Haarlem, The 
Netherlands) was prepared in ethanol and stored at -20"C.LPS (E. coli 0127:B8) lVas purchased 
from Difco Laboratories (Detroit, MI, USA). 

Cell cllltllre 
Bronchial tissue was obtained from patients undergoing surgery for lung cancer and used 

immediately for culture of the epithelial cells by a cell culture method described previously 
[22]. Cells were characterized as epithelial cells by immunofluorescence staining using a mouse 
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monoclonal antibody directed against a number of human cytokeratins (CK-l; DAKOpatts, 
Glostl1lp, Denmark). At least 99% ofthe isolated cells stained positive forcytokeratin (data not 
shown). 

Stimulation experiments with cyto/"illes andlor dexamethasone 
To study the effects of cytokines and dexamethasone, human bronchial epithelial cells were 

plated onto 6-well culture dishes (0.5 x 106 cells/well). After the cells reached 80 to 90% 
conlluence, the culture medium was replaced by a basal medium (DMEM1F12 (I: I) with penicil­
lin G sodium and streptomycin sulfate), and IFN-y, lL-IP, TNF-o:, LPS andlor DEX were 
added. Supcmatants were collected after 24 h (unless stated otherwise), ccntdfllged and stored 
at -80°C for subsequent analysis. In some experiments, cells were used for RNA isolation or 
llowcytometlY as described below. 

Allalysis ~r MCP-J alld IL-8 release 
Levels of immunoreactive MCP-l in the culture mediulll were quantified in a previously 

described sandwich ELISA (sensitivity: 30 pglm]) [23]. 
Levels of inununoreactive IL-8 in the culture medium were quantified using a commer­

cially available ELISA (Central Laboratory of the Blood Transfusion Service, Amsterdam, 
The Netherlands), according to the manufacturer's instruction (sensitivity: 1 pglml). 

RNA ;solatioll and semi-quan/Uative polymerase chain reaction (peR) analys;s 
Total cellular RNA was isolated from human bronchial epithelial cells according to 

Chomczynski and Sacchi [24] with some small modifications [22]. For cDNA synthesis a mixt­
ure containing I Ilg of total cellular RNA and 10 flglml oligo(dT)15 (Phannacia, Uppsala, 
Sweden) was heated at 7DoC for 5 min, cooled down to room temperature and the RNA was 
subsequently reversed transcribed to eDNA as described previously [25]. 

Semi-quantitative PCR analysis, using serially diluted eDNA samples, was perfonned 
essentially as descIibed by Horikoshi [26]. Hypoxanthine phosphatidyl ribosyitransferase (HPRT) 
was used as an internal control for total ceBular mRNA. The reaction mixture contained 10 mM 
Tris-HCI (pH 8.3), 50 mM KCl, 1.5 mM MgCI" 0.2 mM dNTPs, ] pM sense and] pM anti­
sense oligonucleotide primers (synthesized with a DNA Synthesizer 380B (Applied Biosystems, 
Forster City, CAl), and 20 U/m] Taq polymerase (Alllplitaq, Perkin-Elmer Cetus, Norwalk, 
CT) in a total volume of 50 Ill. Primers lIsed are (5' to 3'): MCP-] sense: CTG GAG CAC AAC 
ATG AAA AGG; MCP-] antisense: AGT CAG GIT GTC TGG ACT CTG [9]; HPRT sense: 
GTG ATG ATG AAC CAG GIT ATG ACC IT; HPRT antisense: CIT GCG ACC ITG ACC 
ATC TTT GGA [27]. The amplified cDNA products are 510 and 454 basepairs, respectively. 
Samples were amplified in a DNA Thennocycler (Perkin-Elmer Cetus) for 30 cyCles, each 
consisting of denaturation at 94°C for 30 sec, annealing at 55°C (HPRT) or 65°C (MCP-I) for 
30 sec, and extension at 72°C for 1 min. Theseconditions were shown to be optimal in preliminruy 
experiments. Ten III aliquots of PCR products were electrophoresed on ] % agarose, blotted to 
Nytran N nylon membranes (Schleicher and Schuell, Dassel, Germany) and tixed to the 
membrane with a 254 nIll UV crosslinker. Oligonucleotides, being complementary to intemal 
sequences of the PCR products, were end-labeled with -"P-yATP (ICN Pharmaceuticals Inc., 
Irvine, CA, USA) by T4 polynucleotide kinase (Pharmacia LKB, Piscataway, NJ). 
Oligonucleotide probes used are (5' to 3'): TGG CCA GAG AGC ATC AGC GT (MCP-I) and 
GAA GAG CTA ITG TAA TGA CCA GTC A (HPRT). Blots were hybridized according to 
standard procedures, and subsequently exposed to phosphor screens (Molecular Dynamics, 
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Sunnyvale, CA, USA). The intensity of the radio-active signals was measured using a 
PhosphorImager (type Storm 820; Molecular Dynamics) and analyzed using ImageQnaNT 
software (Molecular Dynamics). The resulting intensity values were plotted against the amount 
of RNA originally present in the samples, and a line was fitted in the linear part of the graph. 
The amonnt of RNA was calculated as the slope of the MCP-I-curve divided by the slope of 
the HPRT-clllYe [26]. 

Chemotaxis 
Monocyte chemotaxis was measured in a microchemotaxis assay as described by Falk [28]. 

A 48-well microchemotaxis chamber (Neuro Probe Inc., Cabin John, MD, USA) was used. 
The bottom wells were filled with bronchial epithelial cell culture supernatants, culture me­
dium (negative control), or 10" M N-fonllyl-Methionyl-Leucyl-Phenylalanine (tMLP; positive 
control). The upper chambers were tilled with 50 ~ll cell suspension containing 20,000 monocytes. 
The test was always pelformed in triplo. The wells were separated by a polycarbonate filter 
with 5 ~ltn pores (Nuclepore, Pleasanton, CA, USA). After 30 min, migrated cells were swept 
of using a windscreenwiper. Subsequently the filters were air dried and stained with Coomassie 
blue. Migrated cells were counted in a blinded fashion either automatically using a VIDAS-RT 
image-analyzing computer (Kontron Elektronik GmbH, Neufarn, Germany) or under a 
microscope at magnification of 10x40. Chemotaxis was calculated from the mean number of 
migrated cells in the presence of culture supematant minus the mean number of migrated cells 
with basal medium (to which corresponding cytokines were added). 

To evaluate specific MeP-I-mediated chemotaxis, a neutralizing monoclonal antibody 
directed against MCP-I (MAB279, 5 ~g/ml; R&D Systems, Abingdon, United Kingdom) was 
added to the culture snpematants, after which monocyte chemotaxis was determined as described 
above. 

Flowcytometl)' 
For immunofluorescence staining of human bronchial epithelial cells! the following mAb 

were used: anti-CD40 (Immunotech, Marseille, France), anti-HLA class II (HLA-DR; Becton 
Dickinson, San Jose, CA, USA), BBA-4 (anti-ICAM-I (CD54), British Biotechnology Products 
Ltd., axon, United Kingdom), and Leu-4 (CD3, control for nonspecific binding; Becton 
Dickinson). Bronchial epithelial cells were rinsed with PBS and detached using 0.02% EDTA. 
Cells were harvested in PBS/O.5% BSA, washed and resuspended in PBS/BSA to a fmal 
concentration of 2 x 106 cells/m!. Flowcytomelly was performed as described previously [29]. 
Fluorescence intensities were quantified using calibrated fluorescence standards (FCSC Quan­
tum 26, Research Triangle Park, NC, USA) and expressed as Molecules of Equivalent Soluble 
Fluorescence (MESF) [29]. 

Statistical analysis 
Data are expressed as mean ± SEM. The Manll-\Vhitney U test was used to assess signifi­

cant differences in chemokine release, chemotactic potential! or marker expression between 
stimulated and unstimulated cultures of human bronchial epithelial cells. A p-value of less than 
0.05 was considered significant. 
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RESULTS 

Modulalion oj Me?-l and lL-8 prolein release by cylokines and LPS 
To investigate the modulation of MCP-I release, primary cultures of human bronchial 

epithelial cells (>99% pure) were stimulated with IL-I p, TNF-o:, IFN-y, or LPS. Unstimulated 
human bronchial epithelial cells released small amounts ofMCP-1 (0.5S ± 0.12 ng/l 0' cells/24 
h). As shown in tlgure I (left Palt), MCP-I release was significantly increased when human 
bronchial epithelial cells were stimulated for 24 h with IL-I p, TNF-o:, or particularly IFN-y. In 
contrast, LPS did not significantly modulate the MCP-I release. Simultaneous stimulation with 
IFN-y, IL-I P and/or TNF-o: resulted in approximately additive effects (data not shown). 

The effect of inflammatory mediators on the release of MCP-I was compared with the 
effect on the release ofIL-8, a neutrophil chemotactic cytokine. Unstimulated human bronchial 
epithelial cells released 55.S ± 6.S ng IL-S/l 06 cells!24 h. In contrast to MCP-I, JL-S release by 
human bronchial epithelial cells was not modulated by IFN-y at concentrations up to 200 Uiml 
(Fig. I and data not shown). IL-Ip dose- and time-dependently increased the release ofIL-S by 
human bronchial epithelial cells (Fig. I and data not shown). LPS also increased the IL-S 
release, whereas TNF-a did not have a significant effect (Fig. 1). 

Since IFN-y and JL-I p were the most potent stimulators of MCP-I release, the effects of 
both cytokines were analyzed in more detail. As shown in figure 2A, both IFN-y and JL-I p 
increased MCP-l release in a concentration dependent manner. However, the IFN-y-induccd 
increase was stronger and could already be observed at lower doses. The IFN-y-induced increase 
in MCP- I production could be detected as early as 4 It after stimulation and increased with time 
up to 24 h (Fig. 2B). IL-Ip also induced a time-dependent increase in MCP-I levels, with the 
earliest effect measurable 6 h after stimulation (Fig. 2B). Thus, both IFN-yand IL-I p strongly 
increased MCP-I release in a time- and dose-dependent manner, but only IL-l P increased the 
release of IL-S by human bronchial epithelial cells. 
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Figure I. Modulation ofl\ICP-l and lL-8 release by LPS and cytokines. Human bronchial epithelial cells were 
stimulated with LPS (I flglm1), IL-IP (200 U/mI), TNF-a (100 Vlml), or IFN-y(2OD U/ml) for 24 h, after which the 
I\'ICP-I (left) and IL-S (right) release were determined by ELISA. Data are expressed a<; percentage release compared 
to unstimulated cells (mean ± Sm.'I; 023), • : p < 0.05 compared to unstimulated cells. 
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Modillatioll of MCP-1mRNA by 1L-1 f3 alld IFN-y 
To investigate whether the effects of IFN-y and IL-I p on MCP-I protein release were 

paralelled by increased MCP-ImRNA levels, RNA was isolated 6 h and 24 h after stimulation 
with IFN-yoI' IL-lp and mRNA levels were detelllllned using a semi-quantitative peR analysis. 
Stimulation with IFN-yresuJted in increased MCP-I mRNA levels. After 6 h, a 2 fold increase 
lVas observed (data not shown); after 24 h MCP-ImRNA levels were increased 3-fold (Fig. 3). 
IL-I P slightly increased MCP-I mRNA levels after 6 h (1.4 fold), but after 24 h levels had 
rctuI1led to control values (data not shown). 

Effect of 1L-1 f3 alld IFN-y Olllllollocyte chemotaxis 
To determine whether the changes in MCP-I release were reflected in the capacity to attract 

monocytes, supematants of stimulated bronchial epithelial ce1ls were tested in chemotaxis assays. 
As shown in figure 4, conditioned media derived from human bronchial epithelial cells stimulated 
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Figure 2. IL-IJl and U'N-), incret15c MCP-I release by human bronchial ellilhelial ceUs in a concentration-and 
(inlc-dependentmannel~ A: Human bronchial epithelial cells were stimulated with IL-IJl (0-200 Vlml; circles) or 
lFN-y (0-200 Ulml; squares) for 24 h, after which !vICP-1 levels were determined by ELISA (mean ± SEf'.'f; n~3). 
B: Human bronchial epithelial cells were stimulated wilh lL-IJl (200 Vlm1; circles) or IFN-y (200 V/ml; squares) 
for 0 to 24 h, after which MCP-I levels were determined using ELISA. Data are expressed as mean ± SEM 
(u23) after subtracting basal release of MCP-l at each individual time-point. • : p < 0.05 compared to unstimulated 
cells. 
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with IFN-y for 24 h, consistently increased monocyte chemotaxis (p<O.05). The monocyte 
chemotaxis induced by conditioned media derived from human bronchial epithelial cells 
stimulated with IL-l p was increased compared to conditioned media of unstimulated cells, 
but the increase was more heterogeneously and did not reach statistical significance (Fig.4; p 
=0.081). In three experiments the specific contribution ofMCP-1 to the monocyte chemotaxis 
was determined by using a neutralizing antibody directed against Mep-I. Addition of this 
antibody to conditioned medium derived from unstimulated cells reduced chemotactic activity 
by 19±19%. Chemotaxis induced by conditioned medium derived from IL-I~- or IFN-y­
stimulated cells was inhibitcd by 31±16% and 49±9%, respcctively. 
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Figure 3. IFN-yillcreasesmRNA levels fol' .i\lCP-l in human bronchial epltheUal cells. Human bronchial epithelial 
cells were incubated for 24 h in the absence (left) or presence (right) of IFN~y (200 U/1ll1), after which RNA wa~ 
isolated. RT-PCR 1malysis was perfonned a<; described in the Materials and ~kthods section. Hybridization signals 
(A) were quuntit1cd using ImageQuant software and plaited against the amount of RNA originally present (B). A 
representative experiment out of four is shown. 

Effect of IL-I f3 and IFN-y onICAM-I, HLA class l/, and CD40 expression 
To determine whether the cytokines that induced an increase in chemokine release were 

also able to increase the expression of cell smface molecules involved in leukocyte adhesion 
and activation, we analyzed the expression of ICA!vI-l, HLA class II, and CD40 on human 
bronchial epithelial cells. Unstimulated human bronchial epithelial cel1s expressed ICAM-l 
(12.2 ± 2.9 x lD' MESF) and CD40 (7.6 ± 0.8 x lD' MESF), but HLA class II expression was 
low or absent (0.4 ± 0.3 x 10' MESF). IFN-yincreased CD40 expression, and strongly enhanced 
ICAM-I and HLA class II expression by human bronchial epithelial cells (Table I). Stimulation 
with IL-IP increased ICAM-I and CD40 expression, but did not affect HLA class II expression 
(Table I). 
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Figure 4. Effect orbronchial cpilhcUal cell culture supenmtanls ollmollocylc chemota.xis. Data are expressed <l" 

the mean number of monocytes ± SE~l which have transmigrated a membrane filler towards conditioned media 
derived from human bronchial epithelial cells stimulated by LL-IP (200 Vlml) or IFN-y (200 Vlml) for 24 h (n;::"4). 

Table 1. ICAI\,I-l, HLA-DR, and CD40 expression by human bronchial epithelial cells: effeds of 
HAP (200 U/ml), IFN-y(200 U/mI), andlo .. DEX (10·' M) (24 II stimnlation) ,_ 

Cylokil1e IL-I P JFN-y 

DEX + + + 
ICAM-1 100 69 ±2' 208±3 ' 134±33 'f 980±4' 216±7'f 

lILA-DR 100 259 ± 108' 114±3 ' 321 ±79" 2455 ± 2178' 387 ± 205 'f 
CD40 100 93 ±9 168 ± 2 ' 132 ± 2 'f 138± 10' 91 ± 9 f 

t Data are expressed as relative expression compared with unstimulated cells (mean ± SEM; n ;::.. 2) . 
• P < 0.05 compared to unstimulated cells. 
f p < 0.05 compared to stimulation in the absence of DEX. 

Effect of Dexamethasone 011 cytokine-induced chemokine release alld marker e.\pressioll 
To investigate the effect of glucocorticoids on chemokine release and adhesion molecule 

expression by human bronchial epithelial cells, cells were stimulated with cytokines in the 
absence and presence of DE X (10' M). DEX did not affect unstimulated MCP-J (Fig. 5) or JL-8 
release (100 ± 9% compared to unstimulated ceUs). Costimulation of human bronchial epithelial 
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cells with cytokines and DEX resulted in decreased release ofMCP-l compared to stimulation 
with cytokines or LPS alone (Fig. 5). However, DEX never reduced MCP-I release to basal 
(unstimulated) levels and thus only partially inhibited the cytokine-induced MCP-I release. 
DEX also partially reduced the IL-I~-induced IL-8 release (331 ± 98% without DEX; 255 ± 
80% with DEX) and completely inhibited the LPS-induced IL-8 release (134 ± 15% without 
DEX; 103 ± 15% with DEX). 

Basal and cytokine-stimulated ICAM-I expression was significantly inhibited by DEX (Table 
I). DEX also inhibited the cytokine-stimulated expression of CD 40, and slightly enhanced the 
low basal expression ofHLA class II. IFN-y-stimulated HLA class II expression was significantly 
reduced by simultaneous stimulation with DEX (Table 1). 
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Figure 5. Effect of dexamethasone on basal and cytokinc·stimulatcd MCP-l release by human bronchial 
epithelial cells. Human bronchial epithelial cells were stimulated with LPS (I ~lg/ml). IL-Ip (200 U1ml), TNF-CI. 
(100 U/IllI) or IFN-y(200 UlmI) or in the absence (hatched bars) or presence (open bars) of I ~a\-'l dexamethasone for 
24 h, after which i'vICP-I release was detennined by ELISA. Data are expressed as percentage release compared to 
unstimulated cells (mean ± SEi",J; n~) .• : p < 0.05 compared to cells stimulated in the absence of DEX. 

DISCUSSION 

In this study, we show that lFN-yis a strong stimulator ofMCP-I, but not ofIL-8 release by 
human bronchial epithelial cells. The increased release of MCP-I is parallelled by increased 
MCP-I mRNA levels and increased monocyte chemotactic potential. In addition, IFN-y 
upregulates the expresion ofiCAM-I, HLA class II, and CD40 molecules, which may contribute 
to the retention and activation of the recmited leukocytcs. IL-I ~ increased both MCP-I and IL-
8 release, and stimulated the expression ofICAM-I and CD40, but not HLA class II molecules. 
DEX pat1ially inhibited MCP-I and IL-8 release and reduced the expression of ICAM-I, HLA 
class II, and CD40 molecules by human bronchial epithelial cells. 

While bu.'ml MCP-I release was low, pro-inflammatOly cytokines. in pm1icular IFN-y, strongly 
increased MCP-I release by human bronchial epithelial cells. Although cytokine-induced MCP-
1 release has been observed in a variety of cell types, including mononuclear phagocytes, 
mesothelial cells, and epithelial cells [9, 30, 31], bronchial epithelial cells are to our knowledge 
unique in that IFN-yis the most potent inducerofMCP-I. In contrast to MCP-I, IL-8 release by 
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human bronchial epithelial cells was not affected by IFN-y, a phenomenon which has also been 
observed in human microvascular endothelial celis, renal cortical epithelial celis, and airway 
smooth muscle cells [32-34]. Increased levels ofIFN-y, produced by activated T lymphocytes, 
have been found in bronchoalveolar lavage of patients with intrinsic asthma compared to control 
groups [17]. In addition, increased levels of IFN-y, together with TNF-cx, were observed in 
bronchoalveolar lavage of allergic patients aftcr antigen challenge [35]. IFN-yis also produced 
during viral infections, which are important triggers of asthmatic attacks [36]. Therefore, viral­
or antigen-induced production ofIFN-y may result in the release ofMCP-l by human bronchial 
epithelial cells, thereby contributing to the influx of monocytes and lymphocytes. 

IFN-yalsoupregulated the expression ofICAM-I and HLA class II molecules on bronchial 
epithelial cells, which is in accordance with previous reports [37,38]. In addition, we show that 
human bronchial epithelial cells express CD40 and that IFN-y(and also IL- IP) upregulated the 
expression of tlus molecule. CD40, which plays a critical role in the regulation of immune 
responses [39], may interact with CD40 ligand expressed on T lymphocytes, thereby activating 
these cells. Thus, IFN-ynot only increases the releaseofMCP-1 by human bronchial epithelial 
cells, but it also stimulates the epithelial expression of molecules involved in adherence and 
activation of the recmited monocytes and lymphocytes. Although we did not detennine the 
capacity of IFN-y-stilllulated bronchial epithelial cells to activate lymphocytes, previous stu­
dies have shown that human bronchial epithelial cells filay function as antigen-presenting cells 
[37,40]. Furthermore, preliminary data indicate that stimulation of human bronchial epithelial 
cells with an antibody directed against the CD40 molecule stimulates the release of IL-6 and 
tlle expression ofICAM- I, indicating that adherence oflymphoeytes may also modulate epithelial 
cell functions (V.H.I. van del' Velden, unpublished data). 

IL-I P is considered as an early responsecytokine [41] and is likely to be present in the lung 
of patients with airway inflammatory diseases such as asthma [17, 18]. The release of early 
response cytokines is important for induction of adhesion molecule expression, the uutiation of 
cytokine cascades, the upregulation of specific chemokines and the recmitment of leukocyte 
subsets [41]. In this study, we demonstrate that IL-J ~, in contrast to JFN-y, increased the release 
of both MCP-I and IL-8 by human bronchial epithelial cells. In addition, IL-I P stimulated the 
expression of ICAM-I and CD40, but not HLA class II molecules. The 5'-upstream 
transcriptional regulatory regions of the human MCP-I, IL-8, and ICAM-I gene all contain 
consensus sequences for the transcription factors NF-KB and AP-I [42-45], which both can be 
activated by IL-l~. Therefore, it is very likely that these transcription factors are ulVolved in the 
IL-I J3-mediated ulcrease in MCP-l and IL-8 release and ICAM-I expression by human bronchial 
epithelial cells. 

Our findings and previous studies suggest that IFN-ypredominantly increases the release of 
C-C chemokines, and not of C-X-C chemokines by human bronchial epithelial cells [46,47]. 
Although the effect of IFN-y lVas not snldied on the release of other C-X-C chemokines, we 
hypothesize that IFN-ymay be a relatively specific stimulator for the influx of mOllocytes and 
lymphocytes compared to IL-I J3 and TNF-a, which can stimulate the recmitment of all types of 
leukocytes. This effect lllay even be more pronounced since IL- IP, TNF-cx, and LPS have 
recently been shown to induce a rapid down-regulation ofCCR-2 expression, the main receptor 
for MCP-I [48,49]. 

LPS increased the release of IL-8 by human bronchial epithelial cells, whereas it had no 
effect on the release ofMep-l, sngge.."Iting that LPS may selectively attract neutrophiIs. Bacterial 
infections are a cOlnmon characteristic of patients with chronic obstructive pulmonary disease 
(COPD) [50] and increased levels of IL-8 have been detected in sputum of patients with COPD 
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compared to healthy subjects [51], Therefore, LPS-mediated IL-8 release may contribute to the 
influx of neutrophils observcd in patients with COPD [I, 51]. 

Dexamethasone decreased the cytokine-induced release of MCP-l and IL-8 by human 
bronchial epithelial cens, but in general no reduction to basal levels was observed. Thus far, no 
studies have been pcrfonuect on the molecular mechanism of dexamethasone-mediated inhibition 
of MCP-I. However, the presence of AP-I and NF-KB sites in the MCP-I gene suggests that, 
similar to IL-8, the inhibitOl)1 effcct of dexamethasone may be mediated, at least in part, through 
the repression ofNF-KB activity by the glucocorticoid-glucocorticoid receptor complex and by 
a glucocorticoid-induced indnction ofIKB protein [52]. In addition to the inhibitory effects of 
DEX on chemokine release, DEX also inhibited the expression of ICAM-I, HLA-DR and 
CD40 molecules by human bronchial epithelial cells. To our knowlcdge, this is the fIrst report 
on the effects of glucocorticoids on ICAM-I, HLA-DR, and CD40 molecule expression by 
primary cuihucs of human bronchial epithelial cells. Using bronchial epithelial cell lines, 
glucocorticoid-mediated inhibition of basal and IFN-y-induced ICAM-l expression has been 
descdbed [53, 54]. Stimulation with glucocOiticoids thus not only inhibits chemokine release 
by human bronchial epithelial cells, but also reduces the epithelial expression of molecules 
involved in the adhesion and activation of the recmited leukocytes. Thus, inhaled glucOCOliicoids 
may limit the recruitment as well as the adherence and subsequent activation of leukocytes in 
the asthmatic airways. 

In conclusion, IFN-yis a potent stimulatorofMCP-1 but not IL-8 releac;;e by human bronchial 
epithelial cells, and simultaneously increases the expression ofICAM-I, HLA-DR, and CD40 
on these cells. hI contrast, IL-I p increases both MCP-I and JL-8 release. Therefore, IFN-ymay 
be a relatively specitlc and potent stimulator of the influx, adherence and possibly activation of 
monocytes and lymphocytes into the human lung. Finally, part of tbe benefIcial effect of 
glucocorticoid therapy in airway inflammatOlY diseases may be mediated via the inhibition of 
MCP-I and IL-8 release and ICAM-I, HLA-DR, and CD40 molecule expression by bronchial 
epithelial cells. 
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Chapter 12 

General discussion 

Asthma is a chronic inflammatory disease of the airways, characterized by increased 
numbers of eosinophils, mast celis, and activated T lymphocytes, and by increased levels of 
inflammatory mediators (reviewed in chapter 1), The inflammatory process in the airways is 
the result of complex interactions between inhaled allergens, cells of the immune system, 
nerves, and structural cells, like epithelial cells, endothelial cells, and fibroblasts. These 
interactions arc mediated via cell-cell contact and via the release of a variety of mediators, 
including cytokines, chemokines, and neuropeptides. 

Peptidascs (reviewed in chapter 3) play an important role in the modulation of peptide 
mediated effects, like neurogenic inflammation, and may affect several cell functions, in­
cluding cellular activation, antigen presentation, and cellular migration and adhesion. In the 
lungs, reduced expression of peptidases may contribute to the pathogenesis of asthma by 
enhancing (neurogenic) inf1ammatory reactions. 

Bronchial epithelial cells (reviewed in chapter 4) contribute to the initiation and perpetu­
ation of the inf1ammatory response by releasing and expressing molecules which are in­
volved in the recmitment, adhesion, and activation of leukocytes. In addition, bronchial epi­
thelial cells are considered an important site for peptidase activity. 

Glucocorticoids (reviewed in chapter 5) are widely used in the treatment of asthma as 
they have potent anti-inflammatory effects. The beneficial effects of treatment of asthmatic 
patients with glucocorticoids may be mediated in part by modulation of peptidases or by 
modulation of bronchial epithelial cell functions. 
TIlis chapter briefly discusses the results of the studies described in this thesis in relation to 
our present understanding of asthma. Future research directions will be proposed. 

12.1. Peptidase,,: importallt ill astilll/a? 

Neurogenic inflammation mimics many of the pathophysiological features of asthma, 
and a role for neuropeptides in the pathogenesis of asthma has been implicated [l]. Although 
the apparent increased effects ofthe sensory neuropeptide may be due to several mechanisms 
(see chapter 2.4), studies using laboratory animals have indicated that peptidases playa 
major role in limiting neurogenic inflammatory responses. Initial studies have focussed on 
the role of neutral endopeptidase 24.11 (NEP) in the modulation of tachykinin-induced 
bronchoconstriction, mucus secretion, vasodilation, and microvascular leakage. In the past 
few years, it became clear that neuropeptides also have many immunomodulatory functions 
(see chapter 2). Thus, ncuropeptides not only evoke bronchoconstriction by direct effects on 
smooth muscle cells, submucosal glands, and blood vessels, but also may contribute to the 
iIlitial and chronic phase of the airway inflammation observed in asthmatics. 
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In addition to NEP. several other peptidases are able to hydrolyze (neuro)peptides and 
therefore may be involved in the modulation of peptidcrgic effects. Anunopeptidase N (APN) 
and dipeptidyl peptidase IV (DPP IV) are of particular intcrcst. since both enzymes arc 
membrane-bound molecules (and thus able to cleave extracellular peptides) and both en­
zymes have been characterized both on non-hematopoietic ceBs and hematopoietic cells 
(where they are known as the CDI3 aud CD26 antigen. respectively). 

Localization of APN and DPP IV inlhe human bronchus 
Using immunohistochemistry and cnzymehistochemistry we analyzed the distribution of 

APN and DPP IV in the human bronchus (chapter 7). APN was widely distributed. being 
present on blood vessels, glandular ducts, connective tissue, perichondrium, and nerves. Many 
of these sites also possess NEP activity [2J. which is in accordance with the proposed sc­
quential inactivation of peptides by NEP and APN [3]. Thus. NEP and APN may collaborate 
on the surface of these cells to modulate the cell's response towards peptide-mediated sig­
nals. In contrast to NEP, no expression of APN was found on smooth muscle cells and bron­
clual epithelial cells. This is in accordance with the lack of effect of APN-inhibitors on 
tachykinin-induced smooth muscle contraction [4-7]. 

In addition to structural airway cells, mononuclear phagocytes, eosinophilic granulo­
cytes and certain dendritic ce1ls expressed APN. APN expression on granulocytes has been 
shown to be involved in the modulation of chemotactic responses [3.8]. whereas APN ex­
pression on mononuclear phagocytes and dendritic cells may be involved in processing of 
major histocompatibility class II-bound peptides [9]. In addition, some preliminary data in­
dicate that APN may be involved in the maturation and/or differentiation of dendritic cells 
(Y.H.J. van der Vclden. unpublished data). 

Comparison of APN expression in bronchial biopsies of allergic asthmatics and healthy 
subjects revealed an increased number of APN-expressing cells in the bronchial epithelium 
of asthmatics. The number of APN-expressing cells cOlTelated with the number of L2S­
positive dendritic cells and with the number of eosinophils found in the bronchial epithelium. 
Double-stainings showed that both cell types indeed are able to express APN. which is in 
accordance to the known distribution ofCDI3 on these cells [1O-12J. Therefore. it seems 
likely that the increase in APN-positive cells in the bronchial cpithelium reflects the incrcase 
of dendritic cells and eosinophils observed in the bronchial epithelium of asthmatics. Bron­
chial epithelial cells of asthmatic patients can release increased amounts of chemokines and 
express higher levels of adhesion molecules compared to healthy controls (chapter II and 
[13-18]). As a consequence, eosinophils and dendritic cells can be recruited by, and be re­
tained in the bronchial epithelium. 

Alternatively. the increased number of APN-expressing cells in the bronchial epithelium 
of asthmatic paticnts could be due to an upregulation or induction of APN on certain leuko­
cytes. Previous studies have shown that APN can b~ upregulated on the smface of mono­
nuclear phagocytes by interleukin (ll..)-4 [19J. Asthma is considered a Th2-like disease [20J. 
and increased levels of IL-4 have been detected in asthmatic airways [21-23J. To determine 
whether increased expression of APN on mononuclear phagocytes is a feature of asthma, it 
would be of interest to compare the expression of APN OIl alveolar macrophages of healthy 
individuals and allergic asthmatics. A recent study has indicated that APN expression can 
also be induced on T lymphocytes after adhesion to epithelial cells [24J. However. it is not 
likcly that this explains the increased number of APN-expressing cells in the asthmatic pa­
tients, since there was no increase in the number of T lymphocytes in the bronchial epithc-
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IiUln of asthmatics compared to healthy controls. The lack of difference in the number of 
APN-positive cells in the lamina propria is probably due to the observation that the majority 
of APN is expressed on non-hematopoietic ceUs. It was therefore not possible to accurately 
quantify APN expression on infiltrating leukocytes. 

opp IV expression was strongly present in serosal submucosal glands and moderately 
expressed on blood vessels, predominantly post-capillary venules. OPP IV expression in 
submucosal glands did not seem to be restricted to the ceB membrane, but appeared to be 
located intracellularly as well. It is not clear whether the opp IV of submucosal glands is 
secreted in the bronchial lumen. However, OPP IV activity can be detected in bronchoalveolar 
lavage (BAL) fluid (chapter 8). DPP IV has also been found in submandibular and parotid 
glands [25, 26], and a role for DPP IV in the secretion or reabsorption process of secretory 
proteins and peptides has been suggested [25]. In glandular endometrial epithelial cells from 
cows, a DPP IV molecule missing the signal sequence has been detected. Further studies 
(e.g. inununo-electron microscopy, sequencing of the protein and mRNA) are required to 
determine the characteristics of the DPP IV molecule in serosal submucosal glands. Endo­
thelial cells were shown to express all peptidases examined (NEP, APN, DPP IV, APA), but 
the distribution amongst arteries, capillaries and veuules showed some marked differences. 
The site-restricted presence of different pcptidases may represent a mechanism to control 
blood flow and plasma leakage at specific locations. Studies using selective inhibitors are 
needed to determine the physiologic functions and relevance of the different peptidases ex­
pressed on endothelial cells. 

DPP IV expression could also be found on T cells (double labeling with CD3). DPP IV 
has been shown to be a marker for activated T cells [27, 28] and plays an important role in T 
cell responses (see chapter 3.3.2). Comparison of OPP IV expression between bronchial 
biopsies of healthy controls and allergic asthmatics did not reveal significant differences, 
suggesting that the number of activated T cells did not differ. Several other snldies have 
shown that the airways of allergic asthmatics contain increased numbers of activated, but not 
total, T cells [29-331. This apparent discrepancy lIIay be explained by recent studies indica­
ting that DPP IV is predominantly expressed on ThO and Thl cells [34, 35], whereas many T 
cells in the airways of allergic asthmatics show a Th2-like phenotype [21,22]. 

The expression of NEP in the human bronchus has been described by Baraniuk et a!. [2]. 
NEP was found on epithelial cells, smooth muscle cells, submucosal glands, and endothelial 
cells. In our study (chapter 7), we used enzymehistochemistry to determine the distribution 
of NEP in the human bronchus. A very weak NEP activity was observed, but attribution of 
tlus activity to a certain cell type was difficult. Low levels of activity were observed in the 
bronchial epithelium and submucosal glands. In contrast, we observed strong NEP activity in 
the guinea pig trachea, especially in the tracheal epithelium, as has also been found previ­
ously [36]. This may indicate that (epithelial) NEP is much more important in the lIIodulation . 
of neurogenic inflammatory reactions in the guinea pig than in humans. Alternatively, this 
may suggest that peptidergic mechanisms are less prominent in humans compared to guinea 
pigs. Indeed, whereas a dense network of tachykinin-contailling peptidergic nerves can be 
found in the airways of rodents, peptidergic innervation of human airways seems sparse [37-39]. 

Since NEP activity in the human bronchus was hard to detect, we were not able to deter­
mine whether there was a difference in NEP activity between bronchial biopsies of healthy 
controls and allergic asthmatics. In another study it was found that asthmatics treated with 
steroids expressed significantly more NEP on their bronclual epithelium than did nonsteroid­
treated asthmatics [40], However, in this study no comparison was made between non-asth-
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matic subjects and asthmatic patients. Therefore, it remains to be established whether this 
difference was due to a reduced NEP expression in the nonsteroid-treated patients that could 
be reversed by the use of steroids, or that inhaled steroids increased the normal expression of 
NEP. The latter possibility is supported by the increased upregulation of NEP on human 
bronchial epithelial cells by steroids (see chapter 9) and the lack of an obvious difference in 
NEP activity between control subjects and mildly asthmatic subjects found in an ill vivo 
study [411. 

Modulation o/peplidases npressed 011 bronchial epithelial cells 
Studies lIsing laboratory animals have shown that NEP present on the bronchial epithe­

limn plays a major role in the hydrolysis of neuropeptides, and thereby in modulating neuro­
genic inflammation [4,7,42-47]. NEP activity may be modulated by a variety of exogenous 
stimuli, like viral infections, ozone, and cigarette smoke (see chapter 3.6). In contrast, at the 
time tlus study started little was known about the modulation of NEP activity on bronchial 
epithelial cells by endogenously released mediators. In chapter 9 we therefore addressed two 
questions: I) what is the effect of cytokines (IL-J p, tumor uecrosis factor (TNF)-o:, inter­
ferOlI (IFN)-y, IL-4, and epidermal growth factor (EGF)) on the activity and expression of 
peptidases on human bronclual epithelial cells; and 2) what is the effect of glucocorticoids on 
the activity and expression of peptidases on human bronchial epithelial cells? Since large 
numbers of bronclual epithelial cells in primary culture are hard to obtain, we used in these 
studies the bronchial epithelial cell line BEAS 2B as a model. Our results indicate that both 
cytokines and glucocorticoids modulate the expression and activity of NEP and APN on 
human bronchial epithelial ceBs (chapter 9). NEP expression and activity was increased by 
IL-IP and, to a lesser extent, TNF-a. and IL-4, whereas IFN-y significantly reduced NEP. It 
has been shown that lung fibroblasts increase NEP activity after stimulation with IL-I a, IL-6, 
and TNF-a and that tlus upregulation, which could already be detected after 6 h of stimulation, 
is dependent upon prostaglandin synthesis and elevation of cAMP [48]. In human bronchial 
epithelial cells, the effect of IL-l p was mediated in part by a cAl VIP-dependent pathway, 
since a phosphodiesterase inhibitor enhanced the IL- I p-mediated increase in NEP activity. 
In addition, a cAMP analogue mimicked the effect of IL-IP, although this effect had a Illore 
rapid onset. Prostaglandins did not seem to be involved, and the exact mechanism by which 
lL-I p, and also TNF-a and IL-4, increase NEP expression in bronclual epithelial cells re­
mains to be determined. IL-I p and TNF-a arc considered to be potent pro-inflmnmatory 
cytokines. It is therefore surprising that both cytokines upregulated the expression of NEP, 
which can be considered as an anti-inflammatory molecule. As IL-I~ and TNF-a only in­
creased NEP expression and activity after 48 h of stimulation, one could speculate that 
upregulation of NEP by these cytokines may down-regulate (neurogenic) inflammatory re­
sponses. 

Stimulation of human bronchial epithelial cells \vith IFN-y reduced NEP activity and 
expression. IFN-y is produced during viral infections, which are associated with increased 
bronchial responsiveness and with asthmatic exacerbations [49]. In several animal models, 
infection with Inf1uenza virus or Sendai virus was shown to result in enhanced bronchocon­
strictor responses to tachykinins, an effect that was mediated by decreased epithelial NEP 
activity [6, 50-52]. Our results suggest that the vil11s-induced reduction in NEP activity is 
mediated, at least in part, via the release of IFN-y. Inhibition of NEP activity may result in 
reduced degradation of neuropeptides and thereby contribute to the airway hypelTespon­
siveness observed during viral respiratory infections. Studies eXUlnining the inluhitory effect 
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of NEP inhibition on tachykinin-induced bronchoconstrictioll in subjects with and without 
respiratory infections should clarify whether slich mechanisms OCCllr;1l vivo. 

In contrast to NEP, APN expression and activity was hardly affected by cytokines. Only 
IFN-y modulated APN expression Hnd activity: a transient increase in APN expression and 
acti-vity was detected 24 h after stimulation. Upregulation of APN by IFN-y has also been 
observed in glomerular epithelial cells [53], but not in monocytes [19], suggesting that this 
effect may be specific for epithelial cells. Indeed, separate promoters for APN can be found 
in epithelial and myeloid cells and this may account for the difference in their responsiveness 
[54]. Since IFN-y also induces the expression of human leukocyte antigcn (HLA) class II 
molecules by human bronchial epithelial cells (chapter II and [55, 56]), increased expres­
sion of APN may be involved in the processing of HLAdass II-bound peptides [57]. 

Stimulation of BE AS 2B cells with the synthetic glucocorticoid dexamethasone (DEX) 
strongly increased NEP and APN expression and activity, both in the absence and in the 
presence of cytokines (chapter 9). These effects were mediated via the glucocorticoid recep­
tor and appeared to be specific for glucocorticoids and not for other steroid hormones. Using 
the CD 13 monoclonal antibody WM-15, which specifically inhibits APN activity, we could 
show that the DEX-mediated increase in APN-like activity was completely due to an in­
crease in APN activity. These results were confirmed by flowcytometly, which showed a 
similar increase in APN expression. Thus, DEX does not modulate the expression of other 
aminopeptidases able to cleave alanyl-paranitroanilide on human bronchial epithelial cells. 
Furthermore, these data provide further evidence that WM-15 completely and specifically 
inhibits APN activity, which supports some previous reports [58, 59J. In accordance to our 
data, an il1l'ivo study has shown increased expression ofNEP on the bronchial epithelium of 
steroid-treated asthmatics compared to nonsteroid-treated asthmatics [40]. Part of the ben­
eficial effects of glucocorticoid treatment in asthma may thus be mediated via upregulation 
of NEP by human bronchial epithelial celis, thereby limiting neurogenic inflammation. 

Our study has several limitations that should be kept in mind when examining the results. 
First, during inflammatory processes ill vivo several cytokines are simultaneously present, 
whereas in our study we did not investigate the effects of cytokine combinations on peptidase 
expression. Since IFN-y decreased NEP cxpression and IL-I~, TNF-a, and ILA increased 
NEP expression, it would be interesting to determine the effect of IFN-y in combination with 
one of the other cytokines. Second, we stimulated the cells when the mono layers were ap­
proximately 80-90% confluent. NEP expression is dependent on the confluence and prolif­
eration of the cells (chapter 9 and [60]). In our experiments, IFN-y decreased and EGF in­
creased cell numbers. However, NEP and APN activity were only affected by ceJl numbers 
exceeding 0.19 x 106 ce1ls/cm2 and during our experiments cell numbers consistently re­
mained below 0.17 x 106 cells/cm'. It is therefore not likely that the effects of eytoleines are 
due to effects on cell numbers or proliferation. Nevertheless, we can not exclude the possibil­
ity that confluent cells respond in a different way. Finally, in this study we used the bronchial 
epithelial cell line BEAS 2B. Although in several studies this cell line has been shown to be 
an appropriate model for human bronchial epithelial cells [55, 61], the results obtained in 
this study should be confirmed using primary cultures of human bronchial epithelial ce1ls. 

Soluble peptidases ill serum and brollchoalveolar lavage jlrdd 
Although NEP, APN, and DPP IV are normally membrane-bound enzymes, soluble coun­

terparts can be detected in serum and BAL fluid (chapter 8). Several studies have shown that 
peptidase activities may be altered in serum of patients with a malignancy or inflammatory 
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disorder. Increased serum activity ofNEP has been observed in underground miners exposed 
to coal dust particles [62] and in patients with adult respiratory distress syndrome (AROS) 
[63] or sarcoidosis [64]. NEP activity in serum probably arises from shedding of the entire 
membrane-bound peptidase [62], which may reflect local tissue damage or activation of 
granulocytes [62, 63, 65]. OPP IV activity in serum has recently been shown to originate, at 
least in part, from the OPPL·T antigen expressed on the snrface of activated T cells [66], 
whereas scmll1 APN activity predominantly comprises a circulating isofonn of the eDt3 
antigen [67]. There is evidence that serum DPP IV activity is decreased in patients with a 
malignancy and in auto-immune and inflammatory disorders [68-72]. In contrast to serum, 
until recently little was known about the presence of peptidases in BAL fluid. In chapter 8, 
we demonstrate for the first time that NEP and APN activity can be detected in human BAL 
fluid, and confirm thc recent data on OPP IV and APN·like activity in BAL fluid [73]. 

Comparison of peptidase activities in SClUlll and BAL fluid from healthy controls and 
stable asthmatics did not reveal significant differences in NEP and DPP IV activity, whereas 
APN activity (expressed per mg protein) was reduced in BAL fluid of asthmatics. However, 
APN activity expressed per ml BAL fluid was not significantly different between healthy 
controls and allergic asthmatics. In addition, after treatment of asthmatics with either pla­
cebo or fluticasone propionate (which both did not significantly affect APN activity) no 
difference in APN activity between asthmatics and healthy controls was observed anymore. 
The significance of this observation is therefore not completely clear. The lack of difference 
in NEP activity in serum and BAL fluid between healthy controls and allergic asthmatics 
may indicate that NEP activity is not altered in the airways of asthmatics. It may also indicate 
that there is little tissue damage in the airways of stable asthmatic patients. One could specu­
late that tissue damage occurs during asthmatic exacerbations and that this may cause in­
creased peptidase activities in serum [62, 63]. Remarkably, our preliminary data suggest that 
also during and up to 5 days after an asthmatic exacerbation no increase in peptidase activi­
ties can be observed in serum. 

In addition to increased peptidase levels in serum due to tissue damage, increased serum 
peptidase activities may reflect activation of granulocytes sequestered in the airways [63]. In 
contrast to ARDS, which is characterized by strongly increased numbers of neutrophils in 
the airways, the numbers of (eosinophilic) granulocytes in the asthmatic airways are rela­
tively low. Thus, if NEP and/or APN were released from granulocytes sequestered in the 
airways of asthmatic airways, the absolute amounts probably will be low. Furthermore, we 
and others did not observe a correlation between peptidase activities in selUm or BAL fluid 
and cell numbers of leukocytes (chapter 8 aud [73]), suggesting that there is no predominant 
hematopoietic source of the soluble peptidases in healthy controls or asthmatic patients. 
During other pathological conditions (such as neoplasms, infections or sarcoidosis) increased 
numbers of granulocytes or lymphocytes in the airways may significantly contribute to the 
activities of APN and OPP IV in BAL fluid [73]. 

We cannot rule out the possibility that similar NEP activity in BAL fluid (and senun) 
from healthy controls and asthmatics is the result of a reduced membrane-bound NEP activ­
ity (either due to reduced expression or inactivation of the enzyme) together with increased 
shedding of the enzyme. To determine whether inactivation of NEP occurs in asthmatics, 
data on NEP activity in BAL fluid should be compared with ELISA data. Analysis of soluble 
intercellular adhesion molecule (ICAM)-l or cytokeratin-19 levels may indicate whether 
increased shedding or epithelial injury occurs in the airways of asthmatics compared to healthy 
controls [74·76]. Finally, NEP expression and activity should be determined in bronchial 
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biopsies from healthy controls and allergic asthmatics. 
Although we did not find major differences in peptidase activities in BAL fluid from 

allergic asthmatics and healthy controls, it will be of interest to determine the sources of 
NEP, APN, and DPP IV in BAL fluid. Comparison of semm and BAL fluid revealed that 
activities (expressed as nmoles/mg protein/min) of all peptidases studied were considerably 
higher in SAL fluid and that there was no correlation between peptidase activities in SAL 
fluid and serum. These findings suggest that the presence ofpeptidases in these twocompart­
ments is regulated independently of each other and suggest local release of the enzymes in 
the airways. Several cell types present in the airways express peptidascs on their surface 
(chapters 4 and 7, and [2, 73]), but little is known about the shedding of these molecules from 
the membranes. Our preliminary results indicate that NEP activity can be detected in culture 
supernatants of human bronchial epithelial cells and alveolar macrophages. It remains to be 
established whether shedding of peptidases by these cells is a regulated process that can be 
modulated by (anti-)illflamrnatory stimuli. Since NEP, APN, and DPP IV may exist in sev­
eral isoforms, which can be distinguished based on their molecular weight [66, 77-80], re­
vealing the molecular weight of the peptidases present in the BAL fluid may give some 
indications about the source of these enzymes. Furthermore, the striking correlation between 
NEP and APN activity in BAL fluid strongly suggests that both enzymes are either released 
by the same source or that both enzymes are regulated in a similar way. 

Treatment of allergic asthmatics with the glucocorticoid fluticasone propionate for 12 
weeks significantly improved their lung function (chapter 9). In contrast, no effects were 
observed on peptidase activities in SAL fluid or serum. To our knowledge, no other studies 
thus far have determined the effects of glucocorticoids on peptidase activities in serum or 
BAL fluid. III vitro studies have shown that glucocorticoids upregulate tbe expression of 
NEP on human bronchial epithelial cclls (chapter 9 and [81, 82]). In addition, treatment of 
asthmatic patients with inhaled glucocorticoids increases NEP expression by the bronchial 
epithelium [40]. Thus, (inhaled) glucocorticoids increase the surface membrane expression 
of NEP on bronchial epithelial cells, but do not affect solnble NEP activity in BAL f1nid. 
This may indicate that NEP activity in BAL fluid is not derived from bronchial epithelial 
cells. Otherwise, shedding ofNEP from the surface of bronchial epithelial cells may not be a 
random process but may be affected by glucocorticoids (which upregulate surface membrane 
expression but possibly reduce the relative amount of NEP shedded from the membrane). 
Analysis of NEP activity in culture supernatants of human bronchial epithelial cells stimu­
lated with or without steroids will give a definite answer. 

Current view all peplidases ill asthma 
Studies on the role of peptidases in the pathogenesis of asthma have not been able to 

convincingly demonstrate a dysfunction of these enzymes in the airways of stable asthmatics. 
Although asthmatic airways are more responsive to tachykinin-induced bronchoconstriction 
and nasal congestion [83-85], no apparent reduction in NEP activity could be found in stable 
mild asthmatic patients [41]. Our studies indicate that peptidase activities in BAL fluid and 
serum do not remarkably differ between healthy controls and allergic asthmatics (chapter 9). 
In addition, we did not observe major differences in the expression of APN and DPP IV 
between bronchial biopsies of asthmntics and healthy controls (chapter 7). No data are cur­
rently available on the expression of NEP in the airways of asthmatics compared to healthy 
subjects, although some data may suggest a reduced NEP expression in the bronchial epithe­
limn, but not the lamina propria, from nonsteroid treated asthmatics [40], It seems therefore 
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unlikely that there is a generally reduced activity of peptidases in the airways of stable asth­
matic patients. 

Pcptidases lllay however be involved in exacerbations of asthma. Several stimuli that 
may trigger asthmatic exacerbations (including ozone [86, 87], yimses [51, 52], cigarette 
smoke [88J, toluene diisocyanate [89], and possibly allergens [90]) have been shown to re­
duce NEP activity in animal models and to stimulate sensory nerves, either directly or indi­
rectly. Increased levels of substance P and neuropeptide Y together with decreased levels of 
vasoactive intestinal peptide have been found in the serum of patients with an asthmatic 
exacerbation [91], and this may reflect reduced NEP activity and increased activity of tryptic 
enzymes. 

To further determine whether peptidases and ncuropeptides contribute to asthma, illl'ivo 
studies using selective neurokinin receptor antagonists should be performed both in the pres­
ence and absence of NEP or other peptidase inhibitors. Neurokinin receptor antagonists should 
first be tested against tachykinin-induced bronchoconstriction in order to determine the opti­
IIlal dose of the antagonists. Second, the effects of these antagonists should be analyzed in 
allergen-induced bronchoconstriction, both in the absence and in the presence of peptidase 
inhibitors. Furthermore, it would be interesting to treat allergic asthmatics with appropriate 
neurokinin receptor antagonists (either intravascular or by inhalation) for a longer period of 
time, and to determine whether this affects allergen-induced bronchoconstriction and bron­
chial inflammation (as determined by analysis of bronchial biopsies and BAL fluid). This 
wil1 give insight in the contribution of tachykinins to the (chronic) inflammatory process in 
the airways of asthmatic patients. Finally, the contribution of tachykinins and peptidases in 
asthma may be demonstrated by treating asthmatic patients with recombinant NEP, and ana­
lyzing the effects on bronchoconstriction induced by allergens or environmental agents such 
as cigarette smoke. 

]2,2, B/'onchial epithelial cells: actions and /'eactions 

The bronchial epithelium forms the inteIface between the respiratory system and the 
inspired air. Therefore, bronchial epithelial cells may be exposed to all molecules present 
within the inspired air, including allergens, environmental factors, and dlllgs. To defend the 
airways against the entry of noxious substances, bronchial epithelial cells form a tight and 
continuous layer that functions as a physical barrier. The bronchial epithelial cells also have 
cilia, which contribute to the mucociliary clearance, and secrete mediators that provide pro­
tection against a wide range of potentiaUy injurious agents (chapter 2). In addition, bronchial 
epithelial ceUs may participate in the initiation and perpetuation of inflammatory reactions 
by releasing mediators and by expressing surface membrane molecules, which may interact 
with otber cells or mediators. 

Human bronchial epithelial cells e.\press interleukill-4 receptors 
The inflammatory process in the asthmatic airways is characterized by an increased num­

ber of leukocytes, especially eosinophils and activated T cells [92-94J. In addition, several 
studies have shown all increased presence ofTh2 cells and Th2 cell-derived cytokines, such as 
IL-4, in bronchial biopsies and BAL fluid of asthmatic patients compared to healthy controls 
[21-23]. In addition to T lymphocytes, eosinophils are an important source of IL-4 in the in-
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flamed bronchus [21, 22J, and both cell types can be found in close proximity to the bronchial 
epithelium. Therefore, it is likely that bronchial epithelial cells will be exposed to Il.A during 
inflammatory and inulluno!ogical responses within the lung. However, at the time this study 
started little was known about the presence of receptors for IL-4 on human bronchial epithelial 
cells and the effects of ILA on epithelial cells. In the studies described in chapter lOaf this 
thesis, we present evidence that human bronchial epithelial cells express receptors for IL-4 (IL-
4R). Expression of JL-4R mRNA and protein ill vivo was determined using ill situ hybridiza­
tion and immunohistochemistry, respectively. Both methods demonstrated expression of Il .... -4R 
on the bronchial epithelium. Expression of the IL-4R has also been described for other epithe­
lial tissues, like intestinal epithelium [95J, epidermal cells [96J, and breast epithelium [97], 
suggesting that expression of IL-4R is a general feature of epithelial cells. In addition to the 
bronchial epithelium, IL-4R expression was found on smooth muscle cells. This is in accor­
dance with a recent report indicating that stimulation of human airway smooth muscle cells 
with IL-4 inhibits eytokine-induced IL-8 release [98J. In addition, IL-4R expression was ob­
served on certain leukocytes and we observed that IL-4R expression in the lamina propria 
correlated with the number of activated (EG2-positive) eosinophils and the number of acti­
vated (CD26-positive) T cells in the lamina. Eosinophils are indeed known to express IL-4R 
[99], however, it is not known at present whether these receptors are upregulated on activated 
eosinophils. Unstimulated T cells express low levels of ILAR, but the number of IL-4R is 
upregulated upon activation [100]. Therefore, one may speculate that the correlation between 
IL-4R expression and number of activated eosinophils or activated T cells is a reflection of the 
increased IL-4R expression on these cells. Alternatively, activated T cells or activated eosino­
phils may secrete mediators (for example IL-4) which subsequently increase the ILAR expres­
sion in a paracrine manner. 

Comparison of IL-4R expression between bronchial biopsies from healthy controls and 
allergic asthmatics did not reveal significant differences, neither in the epithelium nor in the 
lamina propria (chapter 10). The lack of difference in bronchial epithelial IL-4R expression 
between asthmatics and healthy subjects and the limited effects of stimuli on bronchial IL-4R 
expression illl'itro suggest that the expression of IL-4R on human bronchial epithelial cells is 
rather constitutive. Increased expression of IL-4R has been found in some epithelial proliferative 
diseases, such as psoriasis [96], suggesting that IL-4 may be involved in the proliferation of 
keratinocytes. We did not observe effects ofILA on human bronchial epithelial cell numbers ill 
vhro (chapter 9 and unpublished data) and increased epithelial cell proliferation is not a 
characteristic feature of asthma. Although JL-4R expression levels did not seem to differ be­
tween healthy controls and allergic astlunatics, we cannot exclude the possibility that the affinity 
of the IL-4R for IL-4 is changed or that there was a difference in IL-4R signalling (see below). 

Analysis ofIL-4R expression (both mRNA and protein) ill vitro shmved that cultured human 
bronchial epithelial ceIls also expressed IL-4R. In addition, mRNA and protein of the common 
y chain was detected (chapter 10). On many cells, the IL-4R is a heterodimeric complex 
comprising the IL-4R a chain and a second chain. The IL-4R a chain is shared with some 
fonns ofthe IL- 13 receptor [101- I04J. IL-4 can also bind to certain, but not all IL-13R, whereas 
IL-13 cannot bind to the IL-4R [101-103]. The second subunit of the IL-4R is, at least in some 
cells, the common y chain, which is also used by the IL-2R, IL-7R, IL-9R, and IL-15R [105, 
106J. Some recent reports have indicated that in cel1ain cell types IL-4 may signal via the IL-4R 
in the absence of the common ychain [107- I 10]. Although we did not directly determine the 
subunit structure of the IL-4R, we hypothesize that in human bronchial epithelial cells IL-4 
signals, at least in pati, via binding to an IL-4R composed of the IL-4R a chain and the COlllmon 
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ychain. Further studies have to be performed to determine whether human bronchial epithelial 
cells also express one or Illore forms of the IL-13R a chains [102-104, 108]. 

Stimulation of cultured human bronchial epithelial cel1s with IL~4 caused an increased 
release of IL-8, monocyte chemotactic protein (MCP)-I, and particularly IL-I receptor 
antagonist (IL-I RA) (chapter 10). Thus, IL-4 present in the asthmatic ainvays mal' contribute 
to the increased expression of these three molecules in the bronchial epithelium of asthmatics 
[13, 14, Ill], Some other recent reports have also demonstrated an effect of IL-4 on human 
bronchial epithelial cells. In one study, it was shown that IL-4 upregulated the release of 
granulocyte/macrophage colony-stimulating factor, thereby stimulating eosinophil survival [1121. 
In contrast, other studies have shown that ILA may have anti-inflalllll1atOly effects on human 
brouchial epithelial cells by inhibiting cytokine-induced RANTES expression [113] or inducible 
nitric oxide synthase expression [114]. In the latter studies, IL-4 was added 30 min prior to 
stimulation of the cells by a mixture ofIL-IP, TNF-a, and IFN-y('eytomix'). Preliminmy data 
indicate that pre-treatment with IL-4 also reduced the cytomix-induced release of MCP-l 
(unpublished data). Anti-inflammatmy effects ofIL-4 on human bronchial epithelial cells have 
recently also been described by Levine and colleagues [115], who demonstrated that IL-4 
increased the release of IL-lRA. Our results substantiate these data and show that IL-4 may act 
both pro-inflanunatmy (by increasing IL-8 and MCP-l release) and anti-inflununatory (by 
increasing lL-IRA release), but the data obtained thus far suggest that the effects of IL-4 on 
human bronchial epithelial cells are predominantly anti-intlammatory. 

The effects ofIL-4 stimulation were only analyzed in cultures of human bronchial epithelial 
cells derived from non-asthmatic patients. One could speculate that epithelial cells derived 
from astillnatic patients respond differently. Interestingly, a recent fepmi has shown the presence 
of a novel IL-4R u. chain allele, in which guanine was substituted for adenine at nucleotide 
1902 [116]. The resulting receptor protein, with a glutamine to arginine replacement at position 
576, showed enhanced signalling as determined by the IL-4-induced upregulation of CD23 on 
peripheral blood mononuclear cells. Furthermore, a strong association oftllis gain-of-function 
mutation in the ex submlit of the IL-4R with atopy was found. It remains to be established 
whether stimulation of bronchial epithelial cells, obtained from atopic individuals bearing the 
mutated aUele, with IL-4 results in increased release ofMCP-I, IL-8, and IL-lRA, and whether 
this enhancing effect is similar for al1 three cytokines. 

Recmitment of leukocytes: chemof...ille release and e.\pressioll o/molecules involved ill adhesion 
mill act;vatiOJI 

Accumulation of leukocytes in the lung is dependent upon the presence of chemokines 
and the expression of appropriate adhesion molecules. Bronchial epithelial cells are able to 
produce a variety of chemokines and to express surface membrane molecules involved in the 
adhesion or activation of the recruited leukocytes, such as ICAM-I and HLA class II (chap­
ter4). Bronchial epithelial cells from asthmatic patients show an increased epithelial expres­
sion of MCP-I, IL-8, HLA-DR, and ICAM-I compared to healthy subjects [13-16], which 
may contribute to the increased numbers of leukocytes observed in the asthmatic airways 
[92-94]. In chapter II we present data on the release ofMCP-I, the prototype C-C chemokine, 
and IL-8, the prototype C-X -C chemokine, by human bronchial epithelial cells. We show that 
IFN-ystrongly increased the release of MCP-I, whereas it did not affect the IL-8 release. 
IFN-y-stimulated MCP-I release has also been demonstrated in mononuclear phagocytes, 
mesothelial cells, and epithelial cells [117-119]. FlIIihennore, the lack of effect of IFN-yon IL-
8 release by broncllial epitheJial ce1ls is in accordance with the lack of effect found in human 
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microvascular endothelial cells, renal cOl1ical epithelial cells, and airway smooth muscle cells 
[98, 120, 121]. These findings and previous studies suggest that IFN-ypredominantly increases 
the releaseofC-C chemokines (e.g. MCP-I and RANTES), and not ofC-X-C chemokines (e.g. 

IL-8) by human bronchial epithelial cells [113, 122]. IFN-y is present in increased amonnts in 
the BAL fluid of patients with intrinsic asthma compared to control groups [29], especially 
after antigen challenge [123]. IFN-y is also produced during viral infections, which are impor­
tant triggers of asthmatic attacks [49]. Therefore, viral- or antigen-induced production ofIFN­
y may result in the release of MCP-I by human bronchial epithelial cells, thereby contributing 
to the influx of monocytes and lymphocytes. Since IFN-yalso increased the epithelial expres­
sion of ICAM-I, HLA class II, and CD40 molecnles, the recruited leukocytes may adhere to 
the epithelium (via ICAM-I) and possibly be activated (via HLA class II-associatcd antigen 
peptides and CD40 molecules). Other studies have demonstrated that viral infections indeed 
increase the expression of ICAM-l on airway epithelial cells [124-127]. Moreover, virus-in­
fected epithelial cells showed increased adhesion of lymphocytes, neutrophils, and eosinophils, 
which could be inhibited by an ICAM-I blocking antibody [126, 128]. Upregulation ofICAM-
1 expression by viral infections may also cause an increased susceptibility to infections [124], 
since ICAM-I is the receptor for the major group rhinovil1lses [129]. Further studies are re­
quired to determine whether IFN-y-activated bronchial epithelial cells show increased adhe­
sion of monocytes and lymphocytes and whether adhesion'to the bronchial epithelium results in 
their activation. Subsequently, the contribution of the distinct molecules in these processes 
should be determined using neutralizing antibodies. Our results indicate that stimulation of 
bronchial epithelial cells with IFN-y may contribute to the increased epithelial expression of 
MCP-I, HLA-DR, and ICAM-I found in bronchial biopsies of astlnnatic patients [13,15, 
16]. 

1L-1 ~ is a potent pro-inflammatory cytokine and is considered as an early-response cytokine 
[130]. It is able to upregulate the expression and/or release of a variety of molecules, includ­
ing adhesion molecules, chemokines, and cytokines, thereby quickly but aspecifically evo­
king inflammatOlY responses [131]. In the study described in chapter II, we demonstrate that 
IL-I~, in contrast to IFN-y, increased the release of both lvlCP-I and IL-8 by human bron­
chial epithelial cells. In addition, IL-I~ stimulated the expression oflCAM-1 and CD40, but 
not HLA class II molecules. The increased expression of ICAM-l on bronchial epithelial 
cells by IL-I~ is in accordance with some previous reports [55, 56, 132]. The differences 
between the effects ofIL- I~ and IFN-y can be explained, at least in part, by different intra­
cellular signaling pathways. Whereas stimulation ofNF-K'B and/or AP-I activity may be the 
most prominent signaling pathway of IL-I ~ [133], IFN-y predominantly activates the JAK/ 
STAT pathway [134, 135J. Indeed, many effects of IL-I ~ arc mediated via activation of the 
transcription factors NF-K'B and AP-l and recognition sites for these transcription factors 
can be found in the promoter region of the MCP-I, IL-8, and ICAM-I gene [136- 139J. The 
exact mechanisms by which IFN-y increases the expression of these molecules still remains 
to be elucidated. 

Glucocorticoids partially inhibited the cytokine-induced release of MCP-I and IL-8 and 
the expression ofICAM-I, CD40, and HLA class II molecules on human bronchial epithelial 
cells ill vitro. These effects may be mediated, at least in part, through the repression of NF­
KB and/or AP-I activity by the glucocorticoid-glucocorticoid receptor complex and by a 
glucocorticoid-induced induction of IKB protein [140]. In addition, a negative glucocorti­
coid-responsive element has been described on the 5' -flanking region of the IL-8 gene [141 J. 
Glucocorticoid-mediated inhibition of basal and IFN-y-induced ICAM- 1 and HLA class II 
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expression has also been described for epithclial cell lines [142-144]. III vivo studies have 
shown that treatment of allergic asthmatics with inhaled glucocorticoids reduces the number 
of activated T lymphocytes in bronchial biopsies and BAL fluid [145-149]. Our results indi­
cate that this effect lUay be mediated, in part, by the inhibition of MCP-l release by the 
bronchial epithelial cells, and by a reduction in the expression of ICAM-I, CD40, and HLA 
class II molecules. Inhaled glucocorticoids, however, did not modulate the ICAM-l expres­
sion by bronchial epithelial cells from asthmatics ill vivo [150], but in that particular study 
also no increased epithelial expression of ICAM-I was found in asthmatics compared to 
healthy controls. In contrast, topical nasal glucocorticoid therapy in patients with nasal poly­
posis was associated with a reduced expression of ICAM-l and HLA-DR in the epithelium 
[151]. To our knowledge, no data are currently available on thc effects of inhaled glucocor­
ticoids on MCP-I, IL-8, or CD40 expression by bronchial epithelial cells ill vivo. 

12.3. Conclusions 

Based on the results obtained from the work presented in this thesis, we draw the follow­
ing conclusions. 

I. APN is widely distributed in the human bronchus, being expressed on endothelial cells, 
glandular ducts, connective tissue, perichondrium, nerves, and certain leukocytes (in pat'licu­
lar granulocytes, mononuclear phagocytes, and certain dendritic cells). An increased number 
of APN-expressing cells can be found in the bronchial epithelium of allergic asthmatic pa­
tients. DPP IV is expressed 011 serosal submucos.il glands and leukocytes (predominantly T 
cells) in the human bronchus. Expression of DPP IV is not altered in bronchial biopsies of 
asthmatic patients compared to healthy subjects. 

The activities of NEP, APN, and DPP IV in BAL fluid and serum of asthmatic patients 
are not altered compared to healthy controls. In contrast, non-asthmatic smokers display 
reduced DPP IV activity in their serum and reduced NEP and APN activity in their BAL 
fluid. 

2. Cytokines cau upregulate (IL-I p, TNF-o:, ILA) or downregulate (IFN-y) thc expression 
and activity of NEP on BEAS 2B cells, but have little cffects on APN expression and activity. 

Human bronchial epithelial cells express receptors for IL-4 and stimulation of bronchial 
epithelial cells with IL-4 results in an increased release of both pro- (IL-8 and MCP-l) and 
anti-inflammatory mediators (IL-lRA). There is no difference in the expression of IL-4 re­
ceptors between healthy controls and allergic asthmatics. 

Upon stimulation with IFN-y, human bronchial epithelial cells increase their release of 
MCP-I, but not IL-8, and increase their slllface expression of ICAM-I, HLA class II, and 
CD40 molecules. IL-I P stimulates human bronchial epithelial cells to release both MCP-I 
and lL-8, and increases their sUlface expression of ICAM-l and CD40, but not HLA class II 
molecules. 

3. Glucocorticoids upregulate the expression and activity of NEP and APN by BEAS 2B 
cells. In contrast, glucocorticoids rcduce the IL-I P or IFN-y-mediated rclease of MCP-I 
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andlor IL-8 and inhibit the IL-I ~ or IFN-y-mediated increase in ICAM-I, HLA class II, and 
CD40 molecule expression by human bronchial epithelial cells. 

The activity of NEP, APN, and DPP N in BAL fluid and senUll is not altered by treat­
ment with inhaled glucocorticoids. 

Thus, comparison of the expression and activity of peptidases in the human airways of 
healthy subjects and allergic asthmatics does not support the hypothesized dysfunction of 
these enzymes in stable asthma. Regarding bronchial epithelial cells, ollr data further indi­
cate that these cells play an important role in the inflammatory process observed in the asth­
matic airways. Finally. giucocorticoids may exert their anti-inflammatory effects in part by 
modulation of bronchial epithelial peptidascs and cell functions. 
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SUlVIMARY 

Asthma is clinically defined by a reversible airway obstruction and bronchial hyperrcac­
tivity. Nowadays, a chronic inflammation of the airways is thought to underlie these clinical 
features. Bronchial biopsies and bronchoalvcolar lavage (BAL) fluid of asthmatic patients 
show increased numbers of eosinophils, activated lymphocytes, and mast cells compared to 
healthy controls. In addition, increased levels of inflammatory mediators, such as cytokines, 
neuropeptides, and chemokines, can be found in asthmatic airways. In chapter 1 a brief 
overview is given on asthma, with emphasis on the immunological aspects. 

Autonomic nerves (reviewed in chapter 2) play an irp.portant role in the regulation of 
bronchial smooth muscle tone, secretion of mucus, and blood flow in the airways. In addition 
to the well-known parasympathetic (cholinergic) and sympathetic (adrenergic) nervous sys­
tems, non-adrenergic non-cholinergic (NANC) innervation can be found in the airways. The 
inhibitory-NANC system, which is the only neural bronchodilator pathway in the human 
airways, is localized in parasympathetic nerves, whereas the excitatory-NANC system is 
locatcd predominantly in a sllbpoplilation of sensOlY nerves. Stimulation of sensory nerves 
can, via a local axon reflex, result in the release ofncuropeptides. These neuropeptides have 
a variety of effects, including the contraction of smooth muscle cells, the secretion of mucus, 
vasodilation, microvascular leakage, and the recmitment and activation of leukocytes. This 
sequence of events is now known as neurogenic inflammation. Since neurogenic inflamma­
tion mimics many of the pathophysiologic features of asthma, a role for neuropcptides in the 
pathogenesis of asthma has been implicated. 

The effects of neuropeptides are normally limited by rapid degradation by peptidases 
(reviewed in chapter 3). A reduced activity of peptidases may therefore result in exaggeratcd 
responses to neuropeptides and thus in neurogenic inflammation. In the human bronchus, 
several peptidases can be found, including neutral endopeptidase (NEP), aminopeptidase N 
(APN), and dipeptidyl peptidase IV (DPP IV), These peptidases are not only involved in the 
modulation of neurogenic inflammation, but may also affect several proliferative and immu­
nological responses. Studies using animal models have indicated that the bronchial epithe­
limn is an important site for peptidase activity. Bronchial epithelial cells form the interface 
between the inhaled air and the respiratory system. These cells may therefore be exposed to 
an array of molecules present within the inhaled air, such as allergens, other environmental 
factors (including viruses, ozone, cigarette smoke, chemical irritants), and dmgs. Several of 
these agents are known to reduce peptidase activity, thereby exaggerating the neurogenic 
inflammation. 

Bronchial epithelial cells not only form a passive physical barrier but are also able to 
participate in the initiation and perpetuation of inflammatory reactions. Besides expressing 
peptidases, bronchial epithelial ce11s express several molecules on their surface that are in­
volved in the adhesion and activation of leukocytes. In addition, bronchial epithelial cells are 
able to release a variety of mediators, which may recruit and activate leukocytes. The bron­
chial epithelium and its functions are reviewed in chapter 4. 

Glucocorticoids are widely used in the treatment of asthma. They possess potent anti­
inflammatory effects, which may underlie their clinical efficacy. In chapter 5, the mecha­
nisms of action of glucocorticoids are briefly reviewed, with special attention to the effects 
of glucocorticoids on epithelial cell functions. 
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In the studies described in this thesis, we aimed to further define the contribution of 
peptictases and the bronchial epithelium to the inflammatory process in the asthmatic air­
ways. In addition, we aimed to determine the effect of glucocorticoids on peptidases and the 
bronchial epithelium. The aims of the sttldies arc described in chapter 6. 

In the studies described in chapters 7, 8, and 9, we investigated the expression and 
activity of peptidases in the airways of healthy subjects and allergic asthmatics, both in bron­
dual tissue and in the bronchoalvcolar lumen. In addition, we determined whether glucocor­
ticoids could modulate the peptidase expression andlor activity. We hypothesized that the 
expression and/or activity of peptidases is reduced in the airways of asthmatic patients, thereby 
contributing to exaggerated (neurogenic) inflammatOlY reactions, and that glucocorticoids 
increase the expression and/or activity of peptidases in the airways. 

In chapter 7 we present data on the distribution of APN and DPP IV in the human 
bronchus. The distribution of both enzymes was determined using immunohistochemistry 
and enzymehistochelllistty, and compared with the distribution ofNEP. APN expression and 
activity was found on blood vessels, connective tissue, glandular ducts, perichondrium, and 
leukocytes, predominantly mononuclear phagocytes, dendritic cells, and eosinophils. DPP 
IV expression and activity was present in serosal submucosal glands, blood vessels, and T 
lymphocytes. DPP IV in serosal submucosal glauds appeared to be localized predominantly 
intracellularly, suggesting that DPP IV may be secreted in the bronchial lumen. NEP activity 
was weak in the human bronchus and appeared to be present in the bronchial epithelium, 
submucosal glands, blood vessels, and smooth muscle cells. In contrast, NEP activity was 
easily detected in the guinea pig trachea, especially in the epithelium. Thus, APN and DPP 
IV are expressed at specific sites within the human bronchus, where they may be involved in 
the modulation of the cell's response towards peptidergic stimuli. 

Comparison of the expression of APN and DPP IV in bronchial biopsies of healthy 
controls and allergic asthmatics revealed no significant differences in the lamina propria. In 
contrast, in the bronchial epithelium of the allergic asthmatics, an increased number of APN­
positive cells was found. Weak but significant correlations were found between the number 
of APN-positive cells and the number of eosinophils and L25-positive dendritic cells. Using 
double-stainings, we confirmed the presence of APN on these cells. 

Although peptidases normally are membrane-bound enzymes, soluble counterparts of 
these molecules can be found in serum and BAL fluid. In chapter 8 we analyzed the activity 
of NEP, APN, and DPP IV in serum and BAL fluid of healthy non-smokers, smokers, and 
allergic asthmatics. In addition, we analyzed whether treatment of allergic asthmatics with 
the inhaled glucocorticoid fluticasone propionate for twelve weeks could alter the activity of 
peptidase in serum andlor BAL fluid. NEP, APN, and DPP IV aclivit)' could be delected both 
in serum and in BAL fluid. The activity of all three peptidases (expressed per mg protein) 
was higher in BAL fluid than in serum, suggesting local release of the enzymes in the air­
ways. No correlations were found between peptidase activities and cell numbers in serum or 
BAL fluid, indicating no predominant hematopoietic source of the peptidases. NEP activity 
in BAL tluid correlated with APN activity in BAL fluid, suggesting that both enzymes are 
regulated in a similar manner. 

Comparison of NEP and APN activity in serum did not reveal significant differences 
between the three groups. In contrast, DPP IV activity was significantly reduced in the senllll 
of smokers compared with healthy non-smokers. In BAL fluid, NEP and APN activity were 
reduced in smokers. Reduced activity ofNEP and APN in BAL fluid may enhance peptide­
mediated effects in the airways and thereby promote the intlammatory process or epithelial 
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proliferation. APN activity (expressed per mg protein) in BAL fluid from allergic asthmatics 
was reduced compared to healthy non-smokers, whereas NEP and DPP IV activity did not 
differ. The similar levels of NEP activity in BAL fluid from allergic asthmatics and healthy 
subjects may indicate that there is no dysfunction of NEP in asthma. Alternatively, similar 
levels may be due to reduced expression/activity of membrane-bound NEP going together 
with increased shedding. Treatment of asthmatics with inhaled glucocorticoids improved 
lung function parameters, but did not affect the peptidase activities in serum and BAL fluid. 

Studies using laboratOly animals suggested an important role for peptidases expressed 
on bronchial epithelial cells in the modulation of neurogenic inflammation. Therefore, we 
analyzed the modulation of epithelial peptidases by cytokines present during infiammatOlY 
reactions and by glucocorticoid treatment. We used the human bronchial epithelial cell line 
BEAS 2B. which expresses NEP and APN. as a model for these studies. In chapter 9 we 
show that inter/eukin (JL)-l f}. tumor-necrosis factor (TNF)-o:. and JL-4 increased the expres­
sion and activity ofNEP (as determined by flowcytometry and a specific fluorometric assay, 
respectively). In contrast. inteIferon (IFN)-y reduced the expression and activity of NEP. 
whereas epidermal growth factor (EGF) did not have an effect. The effect of JL-I f}. which 
was the most potent cytokine in increasing NEP expression and activity, was enhanced by 
inhibition of phosphodiesterase and minncked by a cyclic-AMP analogne, suggesting that 
the effect was mediated in part by a cyclic-AMP dependent pathway. The APN expression 
and activity. on the other hand. was not modulated by IL-I f}. ILA. TNF-o:. or EGF. Stimula­
tion of BE AS 2B cells with IFN-y transiently increased the APN expression and activity after 
24 h. The synthetic glucocorticoid dexamethasone strongly increased the expression and 
activity ofNEP and APN. both in the presence and in the absence of cytokines. This effect of 
dexamethasone was abolished by the glucocorticoid receptor antagonist RU38486, indicating 
that the effect was mediated via the glucocorticoid receptor. The synthetic testosterone ana­
logue R 1881 had no effect on NEP and APN activity. suggesting that the effect is specific for 
glucocorticoids and not for steroid hormones in general. The anti-inflammatory effects of 
glucocorticoids may therefore be mediated in part through upregulation of peptidases ex­
pressed on bronchial epithelial cells. 

From these shldies, we conclude that peptidases are widely distributed in the human 
bronchus. However, no apparent dysfunction of these enzymes was found in the airways of 
a11ergic asthmatic patients. Upregulation of epithelial peptidases by inhaled steroids may, 
however, have clinical implications. 

In chapters 10 and 11, we investigated the role of the bronchial epithelium in the initia­
tion and perpetuation of inflammatory reactions in the airways. Asthmatic airways show an 
increased number of eosinoplnls and activated T cells, predominantly of the Th2-like pheno­
type. Both celllypes are able to release IL-4, and increased amounts of IL-4 can be found in 
bronchial biopsies and BAL fluid of asthmatic patients compared to healthy controls. In 
chapter 10, we present definite evidence of IL-4 receptor expression on human bronchial epi­
thelial cells. IL-4 receptor a chain expression on human bronchial epithelial cells ill vivo was 
demonstrated using ill situ hybridization and inullunohistochemistly. No difference in IL-4 
receptor protein expression was observed between bronchial biopsies ofheaIthy subjects com­
pared to allergic asthmatics. Cultured human bronchial epithelial cells also expressed JL-4 
receptor a chain mRNA and protein (as determined by RT-PCR analysis and flowcytometry, 
respectively). In addition, cultured bronchial epithelial cells expressed mRNA and protein of 
the common y chain, which is a functional component of the IL-4 receptor in many cell types. 
IL-4 receptor protein expression by bronchial epithelial cells iI/ vitro could be increased by 



240 SlIlIlmGlY 

stimulation with phorbol myristate acetate plus calcium ionophore, whereas IL-I ~ and IL-6 
decreased the IL-4 receptor expression. A cyclic-AMP analogue and IL-4 had no effect. Fi­
nally, we show that the ILA receptor is functionally active as ILA stimulates the release of IL': 
8, monocyte chemotactic protein-I (MCP-I), and particularly IL- I receptor antagonist by 11lI­
man bronchial epithelial cells. 

From this study we conclude that human bronchial epithelial cells express IL-4 receptors 
both ill vivo and ill vitro. Stimulation of human bronchial epithelial cells by IL-4 may result in 
the release of both pro- and anti-inflammatory mediators known to be upregulated in asthmatic 
airways. 

Bronchial epithelial cells may participate in the recmitmcnt and activation of leukocytes 
by releasing chemokines and by expressing molecules which can interact with leukocytes. In 
chapter 11 we present data on the effects of cytokines and glucocorticoids on the release of 
MCP-I, the prototype C-C chemokine, and IL-8, the prototype C-X-C chemokine, by human 
bronchial epithelial cells. In addition, we analyzed the effects of eytokines and glucocorticoids 
on the epithelial expression of intercellular adhesion molecule (lCAM)-I, CD40, and human 
leukocyte antigen (HLA) class II molecules. These surface membrane molecules are involved 
in the adhesion and activation of the recmited leukocytes. 

Primary cultures of human bronchial epithelial cells constitutively produced MCP-I and 
IL-S. Stimulation of bronchial epithelial cells with IFN-ystrongly increased the MCP-l release, 
which was accompanied by increased expression ofMCP-lmRNA and an increased monocyte 
chemotactic potential. In contrast, IFN-y had no effect on the release of ll..-8, suggesting that 
IFN-y may selectively increase the release of chemokines that attract monocytes and lympho­
cytes. IFN-y increased the epithelial expression of ICAM-I, CD40, and HLA class II mo­
lecules. IL-l p increased both the !\1CP-l and IL-8 release, and increased the expression of 
ICAM- I and CD40, but not of HLA class II molecules. These results indicate that IFN-yand 
IL-l ~ differentially regulate the MCP-l and IL-8 release by human bronchial epithelial cells. In 
addition, IL-l ~ and particnlarly IFN-yincrease the expression ofICAM-I, HLA class II and/or 
CD40 molecules. 

Dexamethasone partially inhibited the cytokine-induced release of MCP-l and IL-8 and 
the expression of ICAM- I, CD40, and HLA class II molecules by human bronchial epithelial 
ceBs. The beneficial effect of glucocorticoid therapy in asthma may therefore be mediated in 
pHlt by inhibition of chemokine release and ICAM- I, CD40, and HLA class II expression by 
bronchial epithelial cells. The results described in chapters 9, IO and I I SUppOlt the role of 
the human bronchial epithelium in the inflammatory process observed in the airways of asth­
matic patients. 

Summarizing, the results described in this thesis do not support a general dysfunction of 
peptidases in the asthmatic airways and substantiate the important role of the bronchial epi­
thelium in inflammatory reactions in the airways. Finally, the beneficial effect of glucocorti­
coid therapy in asthma may be mediated in part by modulation of epithelial cell functions and 
peptidases expressed by bronchial epithelial cells. 
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SAMENVATTING 

Astma wordt klinisch gekenmcrkt door een reversibcle vernauwing van de luchtwcgen en 
een bronchiale hyperrcactiviteit. Tegenwoordig wordt gedacht dat een cluonische ontstekillg 
van de luchtwegen ten grondslag Jigt Hall deze klinische verschijllselen. Bronchusbiopten en 
bronchoalveolaire lavage (BAL) vloeistofvan astmapatienten vertanen een verhoogd aantal 
eosinofieien, gcactiveerde lymfocyten, en mestcellen vcrgeleken met gezonde controles. 
Bovendien worden verhoogde niveans van ontstekingsmcdiatoren, zoals cytokinen, 
neuropeptiden, en chemokinen, gevondcn in astmatische luchtwegen. In 11OOfi/sfuk 1 wordt 
een kart overzicht gegeven over astma, waarbij de nadruk ligt op de immul1ologische aspec­
ten. 

Autonome zenuwen (samengevat in /lOofdstuk 2) spelen een belangrijke rol in het regule­
ren van de bronchiale spierspanning, secretie van slijm, en de doorbloeding van de luchtwe­
gen. Naast de welbekende parasympatische (cholinerge) en sympatische (adrenerge) zenuw­
systemen, wordt non-adrenerge non-cholinerge (NANC) innervatie gevonden in de Ilichtwe­
gen. Het inhiberende NANC systeem, dat de enige neurale bronchodilaterende route is in de 
humane luchtwegen, is gelocalizecrd in parasympatische zenuwen, terwijl het exciterende 
NANC systeem met name gelocalizeerd is in cen subpopulatie van sensorische zenuwen. 
Stimulatie van sensorische zenuwen kan, via cen locale axon reflex, resulteren in de afgifte 
van neuropeptiden. Deze neuropeptiden hebben eell verscheidenheid aan effect en, inclusief 
de samentrckking van glad spicrwcefsel, de afgifte van slijm, vasodilatie, microvasculaire 
lek, en de aantrekking en activatie van leukocyten. Deze volgorde van gebeurtenissen is 
tegenwoordig bekend ais neurogene ontsteking. Omdat neurogene ontsteking veel 
pathofysiologische verschijnselen van astma nabootst, wordt een rol voor ncuropeptiden in 
de pathogenese van astma verondersteld. 

De effecten van neuropeptiden worden nonnaliter beperkt door snelle afbraak door 
peptidasen (samengevat in IlOofdstuk 3). Een verminderde peptidase activiteit zal dam'door 
dus kunnen resulteren in versterkte responsen op neuropeptiden en dus in neurogene ontste­
king. Verschillende peptidasell kUllnen worden gevonden in de humane bronchus, inclusief 
neutraal endopeptidase (NEP), aminopeptidase N (APN), en dipeptidyl peptidase IV (DPP 
IV). Deze peptidasen zijn niet atleell betrokken bij de lllodulatie van neurogene ontsteking, 
maar kunnen oak vcrschillende proJiferatieve en inllTIlIl1ologische responsen be'invloeden. 
Studies met proefdieren hebben aangetoond dat het bronchusepithecl cell belangrijke plaats 
is voor peptidase activiteit. BronchuscpitheelceUell vormen de interfase llissen de ingea­
demde Iucht en het ademhalingssysteem. Deze ceBcn kunnen daardoor worden blootgesteld 
aan een verscheidenheid aan moleculen aanwezig in de illgeadcmde lucht, zoals allergen en, 
andere omgevingsfactoren (inc1usiefvirussen, ozon, sigarettenrook, chemische irritantia), en 
medicijnen. Van verschillende van deze agentia is bekend dat zij de peptidase activiteit vef­
Iagen, waardoor zij neurogenc ontstekingen verergeren. 

Bronchusepitheclcellen vonnen niet aileen een passieve fysieke barriere maar kunnen 
oak bijdragen aan de illitiatie en instandhouding van ontstekingsreactics. Naast peptidasen 
brcngen bronchusepitheelcellen verschillellden andere moleculen, betrokken bij de adhesie 
en activatie van leukocyten, op hun oppervlak tot expressie. Bovendien zijn bronchus­
epitheelceUcn in staat tot de afgifte van een vcrscheidellheid aan mcdiatoren die leukocyten 
aantrekken en activeren. Het bronchuscpitheel en zijn fUl1cties worden besproken in hoofd­
s(lIk 4. 
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GlucocorticoYden worden op grate schaal gebruikt in de behandeling van as1l11a. Ze bezit­
ten patente anti-inflauuuatoire effecten, hctgecn hUll klinische werkzaamheid kan verklaren. 
In hoof tis/uk 5 zijn de wcrkingsmcchanismen van glucocorticoYden kart samengevat, met 
speciale aandacht voor de effectcn van glucocorticoi'den op epithclialc celfuncties. 

In de onderzoeken beschreven in dit proefschrift hebben wij getracht om de bijdrage van 
peptidasen en het bronchusepitheel aan het ontstekingsproces in de astmatische luchtwegen 
te olltrafelen. Daarnaast hebben wij het effect van glucocortico'iden op peptidasen en het 
bronchusepilheel onderzochl. De doeislellingen van hel onderzoek zijn beschreven in/wofd­
s/uk 6. 

In het onderzoek bcschreven in hoofdstukken 7, 8, en 9 hebben wij de expressie en acti­
viteit van pcptidasen onderzocht in de luchtwegen van gezonde controlepersonen en allergi­
sche astmapatienten, zowc} in bronchiaal weefsel als in het bronchoalveolairc lumen. Tevcns 
hebbcn wij bepaald of glucocorticoYden de peptidase expressic en/of activiteit kunnen module­
reno DIize hypothese was dat de expressie en/of activiteit van peptidasen is verminderd in de 
luchtwegen vall astmapatienten, dam·door bijdragend aan versterkte (neurogene) ontstekings­
reacties, en dat glucocortico"iden de expressie en/of activiteit van de peptidasen in de lucht­
wegen verhagen. 

In Iwofilstuk 7 presenteren wij gegevens over de distributie van APN en DPP IV in de 
humane bronchus. De distributie van beide enzymen werd bepaald door middel van 
inul1unohistochemie en enzymhistochemie, en vcrgeleken met de distributie van NEP. APN 
expressie en activiteit werd gevonden in bloedvaten, bindweefsel, afvoergangen van klieren, 
perichondrium, en leukocyten, met name mononucleaire fagocyten, dendritische cellen, en 
eosinofielen. DPP IV expressie en activiteit was aanwezig in sereuze submucosale klieren, 
bloedvaten, en T lymfocyten. DPP IV in sereuze submucosale klieren leek voornamelijk 
intracellulair voor te komen, suggerercnd dat DPP IV kan worden gesecerneerd in het 
bronchiale lumen. NEP activiteit was zwak in de humane bronchus en leek aanwezig te zijl1 
in het bn;mchusepitheel, submucosale klieren, bloedvaten, en glad spierweefsel. NEP activi­
teit was,daarentegen gemakkelijk te detecteren in de trachea van de cavia, met name in het 
epilbee!. Ous, APN en OPP IV komen 101 exprcssie op specifieke plaalsen in de humane 
bronchus, waal' ze mogelijk betrokken zijn bij de modulatie van de respons van de cel op 
pepliderge prikkels. 

VergeJijking van de expressie van APN en DPP IV in bronchusbiopten van gezonde 
controles en allergische astmatici bracht geen verschillen in de lamina propria aan het licht. 
In het brollchusepitheel van astmapatienten daarentegen wel'd cen verhoogd aantal APN­
positieve cellen gevonden. Zwakke maar significante correlaties werden gevonden tussen 
het aalltal APN-positieve cellen en het aantal eosinofielen en L25-positieve dendritische 
ceHen. Door gebmik te maken van dubbelkleuringen konden wij de aanwezigheid van APN 
op deze cellen bevestigell. 

Alhoewel peptidasen normaliter membraan-gebonden enzymen zijn, kunncn zij ook wor­
den gevollden in serum en BAL vloeistof. In Iwo/ds/uk 8 analyzcerden wij de activiteit van 
NEP, APN, en DPP IV in serum en BAL vloeistofvan gezonde lliet-rokers, rokers, en aller­
gische astmatici. Bovendien analyzeerden wij of behan de ling met het illhalatieglucocortico"id 
fluticasone propionate gedurende twaalf wekell de activiteit van peptidasen in serum en/of 
BAL vloeistofkon veranderen. NEP, APN, en DPP IV activiteit konden zowel in het serum 
als in de BAL vloeistof worden aangetoond. De activiteit van aile drie peptidasen (uitgedrukt 
per mg eiwit) was hoger in BAL vloeistof dan in serum, suggererend dat de enzymen plaat­
selijk in de luchtwegen worden afgegeven. Er werden geen correlaties gevonden tussen de 
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peptidase activiteit en de cel aantal1en in het selUlll of de BAL vloeistof, aangevend dat er 
geen overheersende hematopoietische bron is van de peptidasen. De NEP activiteit in de 
BAL vloeistof correleerde met de APN activiteit in de BAL vloeistof, suggererend dat beide 
enzymen op een vergelijkbare wijze worden gereguleerd. 

Vergelijking van de NEP en APN activiteit in het Sel1Ull bracht geen significante verschil­
len aan het Hcht hlssen de drie onderzoeksgraepen. De DPP IV activiteit was daarentegen 
significant verminderd in het serum van rakers vergeleken met gezonde niet-rokers. In de 
BAL vlocistof waren de NEP en APN activiteit verminderd in rakers. Venninderde NEP en 
APN activiteit kan peptide-gemedieerde effecten in de llichtwegen versterken en dam'door 
het ontstekingspraces of de praliferatie van het epitheel bevorderen. De APN activiteit (uit­
gedrukt per mg eiwit) in BAL vloeistof van allergischc astmatici was verminderd ten op­
zichte van gezonde niet-rokers, terwijl de NEP en DPP IV activiteit niet verschilden. De 
gclijkc nivcalls van NEP activiteit in BAL vloeistof van allergische astmatici en gezonde 
controles kunnen erop duiden dat er gcen dysfunctie van NEP is in astma. Anderzijds, gelijke 
niveaus zouden ook het gevolg kunnen zijn van een venninderde expressie en/of activiteit 
van membraan-gebonden NEP samengaand lllet een verhoogde shedding. Behandeling van 
astmapatienten met inhalatieglucocortico'iden verbeterde de longfunctie parameters, maar 
had geen effect op de peptidase activiteiten in Sel1Ull en BAL vloeistof. 

Studies met proefdieren suggereerden dat het bronchusepitheel een belangrijke rol speelt 
in de lllodulatie van neurogene ontsteking. Daarom bestudeerden wij de lllodulatie van 
epitheliale peptidasen door cytokinen, die aanwezig zijn gedurende ontstekingsreacties, en 
glucocorticoIden. Wij gebmikten de hUllIane bronchiale epitheelcelllijn BEAS 2B, welke 
NEP en APN tot expressie brengt, als een model in deze studies. In hoofdstllk 9 tonen wij 
aan dat intcrleukine (IL)- IP, tumor-necrosis factor (TNF)-o:, en lL-4 de expressie en activi­
teit van NEP (bepaald middels flowcytometrie, respectievelijk een specifieke tluorometrische 
test methode) verhogen, Interferon (IFN)-ydaarentegen verminderde de expressie en activi­
teit van NEP, terwijl epiderm ale groeifactor (EGF) geen effect had. Het effect van ll..-IP, wat 
het meest potente cytokine was in het verhogen van de NEP expressie en activiteit, werd 
versterkt door renllning van fosfodiesterase en nagebootst door een cyclisch-AMP analoog, 
suggererend dat het effect deels werd gemedieerd door een eye lisch-AMP afllankelijke route, 
De expressie en activiteit van APN werd echter niet gemoduleerd door IL-I P, IL-4, TNF-o:, 
of EGF. Stimulatie van BEAS 2B cellen met IFN-y verlaagde tijdelijk de expressie en activi­
teit van APN na 24 lIur. Het synthetisch glucocorticoYd dexamethason gaf een sterke verho­
ging van de cxpressie en activiteit van NEP en APN, zowel in de aan- als afwezigheid van 
cytokinen. Het effect van dexamethason werd opgeheven door de glucocorticoId 
receptorantagonist RU38486, aangevend dat het effect was gemedieerd via de glucocorticoId 
receptor. Het synthetisch testosteron analoog RI881 had geen effect op de NEP en APN 
activiteit, suggererend dat het effect specifick is vaal' glucocorticoi'den en niet voor stero'id 
honnonen in het algemcen, Dus, de anti-intlammatoire effecten van glucocorticoYden wor­
den mogeJijk deels gemedieerd door verhoging van peptidasen die op epitheel tot expressie 
worden gebracht. 

Uit deze studies concluderen wij dat peptidasen uitgebreid voorkomen in de humane 
bronchus, Echter, er werd geen duidelijke dysfunctie van deze enzymen gevonden in de 
luchtwegen van allergische astmapatiCnten, Verhoging van epithelia Ie peptidasen door 
inhalatie-steroYden ZOll echter klinische implicaties kunnen hebben, 
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In hoofdstukken 10 en II hebben wij de rol van het bronchusepitheel in de initiatie en 
illstandhouding van ontstekingsrecaties in de luchtwegen ondcrzocht. Astmatische luchtwe­
gen Ycrtonen cen verhoogd aantal eosinofielcn en geactiveerde T cellen, voornamelijk van 
het Th2-achtig fenotypc. Beide celtypen zijn in staat om ll.-4 af te geven; verhoogde hoe­
vcclheden IL-4 werden gevonden in bronchusbiopten en BAL vloeistof van astmatische pa­
tienten in vergelijking met gezonde controles. In hoofi/sfUk 10 presenteren \Vij definitief 
bewijs voor de expressie van IL-4 receptoren op humane bronchusepitheelcellen. IL-4 receptor 
a-ketcn expressie op humane bronchusepitheelcellen ill vivo werd aangetoond door middel 
van ill situ hybridizatie en immunohistochemie. Er werd gcen vcrschil gevonden in IL-4 
receptor eiwit expressie tussen bronchusbiopten van gezonde controles en allergische astma­
patienten. Gekweekte humane bronchusepitheelceHen brachten ook IL-4 receptor a-keten 
lllRNA en eiwit tot expressie (bepaald llliddeis respectievelijk RT-PCR analyse en 
flowcytometrie). Bovendien brachten gekweekte humane bronchllsepitheeiceHen mRNA en 
eiwit van de gemeenschappelijke 'Y-keten, een functionele component van de IL-4 receptor in 
veel ceitypen, tot expressie. De IL-4 receptor eiwit expressie op bronchusepitheelcellen ill 
vitro kon worden verhoogd door stimulatie met phorbol myristaat acetaat plus calcium 
ionofoor, terwijl IL-I ~ en IL-G de exprcssie van de IL-4 receptor verlaagden. Een cyclisch­
ANIP analoog en IL-4 hadden geen effect. Tenslotte tonen wij aan dat de IL-4 receptor func­
tioneel aktief is, daar IL-4 de afgifte van IL-8, monocyt chelllotactisch proteIne (MCP-I), en 
in het bijzonder IL-l receptor antagonist door bronchusepitheelcellen verhoogde. 

Uit deze studie concluderen wij dat humane bronchusepitheelcellen IL-4 receptoren tot 
expressie brengen, zowel ill vivo ais illl'itm. Stimulatie van humane bronchuscpitheelceUen 
met IL-4 kan resulteren in de afgifte van zowel pro- ais anti-inflanuuatoire mediatoren waar­
van het bekend is dat zij verhoogd voorkomen in astmatische Iuchtwegcn. 

Bronchusepitheelcellen kunnen bijdragen aan het rekruteren en activeren van leukocyten 
door de afgifte van chemokinen en door moleculen tot expressie te brengen die een interactie 
kUllncn aangaan met leukocyten. In Iwoldstuk 11 presenteren wij gegevens over het effect 
van cytokinen en glucocortco"iden op de afgifte van MCP-I, het prototype C-C chemokine, 
en IL-8, het prototype C-X-C chemokine, door humane bronchusepitheeicellen. Daamaast 
bestudeerden wij de effecten vall cytokinen en gillcocorticoi"den op de epitheliale expressie 
van intercellulair adhesie molekuul (ICAM)-l, CD40, en HLA klasse II moleculen. Deze 
oppervlakte membraan moleculen zijn betrokken bij de adhesie en activatie van de aange­
trokken leukocyten. 

Primaire kweken van humane bronchusepitheelcellen produceerden constitutief MCP-t 
en IL-8. Stimulatie van bronchusepitheelcellen met IFN-y verhoogde de afgifte van MCP-l 
sterk, en dit ging samen met een verhoogde expressie van MCP-l mRNA en een verhoogd 
monocyt chemotactisch vermogen. IFN-yhad daarentegen geen effect op de afgifte van IL-8, 
suggererend dat IFN-y selectief de afgifte verhoogd van chemokinen die monocyten en 
lymfocyten aantrekken. IFN-y verhoogde de epitheliale expressie van ICAM-I, CD40 en 
HLA klasse II moleculen. IL-I ~ verhoogde zowel de afgifte van MCP-I als van IL-8, en 
verhoogde de expressie van ICAM-I en CD40, maar niet van HLA klasse II moleculen. 
Deze resultaten geven aan dat IFN-yen IL-8 de afgifte van MCP-I en IL-8 door humane 
bronchusepitheelcellen verschillend reguleren. IL-I~ en in het bijzonder lFN-y verhagen 
bovendien de expressie van ICAM-I, HLA klasse II en/of CD40 moleculen. 

De cytokine-gei"nduceerde afgifte van MCP-I en IL-8 en de expressie van ICAM-I, CD40, 
en HLA klasse II moleculen door humane bronchusepitheeicellen werd gedeeltelijk geremd 
door dexamethason. Het gunstige effect van glucocorticoi'd behandeling bij astma wordt 
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mogelijk dus deels gemedieerd door rcmming van de chemokine afgifte en de ICAM-l, 
CD40, en HLA klasse II expressie door de brollchusepitheelcellell. De resuItaten beschreven 
in de hoofdstukken 9, 10 en 11 olldersteullell de rol van het bronchusepitheel in het ontstekings­
proces zoals dat wordt waargenomen in de luchtwegen van astmapatienten. 

Kart samengevat, de resultaten beschreven in dit proefschrift wijzen niet op een alge­
mene dysfunctie van peptidasen in de luchtwegen bij astma en bevestigen de belangrijke rol 
van het bronchusepitheel in ontstekillgsreacties in de luchtwegcn. Tenslatte, het gUllstige 
effect van glucocorticoi'dtherapie in astma kan deels worden gemedieerd door het bei'nvIoe­
den van epitheliale cclfuncties en peptidasen die door bronchusepitheel tot expressie worden 
gcbracht. 
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ABBREVIATIONS 

IS-HETE 15-hydroxycicosatctranoic acid EpDRF Epithelial-derived relaxing factor 
13-HODE I 3-hydroxy-lilloleic acid EPO Eosinophil peroxidase 
AA Allergic asthmatics ET-I EildotheIin-1 
ABC Avidin-biotin complex FeERI High affinity receptor for imllluilo-
ACE Agiotcnsin-collvcrtillg enzyme globulin E 
Aeh Acetylcholine FEY, Forced expiratory volume in one 
ADA Adenosine deaminase second 
AIDS Aqurred immuno-deficiency fMLP Fonllyl-mctheonyl-leucyl-phenyla-

syndrome Junine 
ANF Atrial natriuretic factor G-CSF Granulocyte-colony-stimulating 
AP-I Activating protcin-I factor 
APAAP Alkaline phosphatase anti-alkaline GM-CSF Granulocyte macrophage colony-

phosphatase stimulating factor 
ARDS Adult respiratory distress syndrome GR Glucocorticoid receptor 
BAL Bronchoalveolar lavage GRE Glucocorticoid responsive elements 
BALT Bronchus-associated lymphoid Gro-o: Growth regulated oncogen-o: 

tissue HC Healthy controls 
BK Bradykinin HIY Human immunodeficiency virus 
BLP Bombesin-like peptides HLA Human leukocyte antigens 
bp Base-pair HPRT Hypoxanthine phosphatidyl 
BSA Bovine serum albumin ribosyl transferase 
CALLA Common acute lymphoblastic Hsp Heat shock proteins 

leukemia antigen IBMX 3-isobutyl-l-methylxanthine 
cAMP Cyclic adenosine monophosphate ICAM-I Intercellular adhesion molecule-l 
CGRP Calcitonin gene-related peptide IFN-y Interferon-y 
eNOS Constitutively expressed form of IgE Immunoglobulin E 

nitric oxide synthase IGF Insulin-like growth factor 
COPD Chronic obstructive pulmonary IL Interleukin 

disease IL-IR Interleukin- I receptor 
CPN Carboxypeptidase N IL-4R Interleukin-4 receptor 
CREB cAMP-responsive element binding IL-IRA Interleukin- I receptor antagnonist 

protein i-NANC Inhibitory NANC 
DAB Diaminobenzidine iNOS Inducible nitric oxide synthase 
DAGNPG N -Dan sy 1-D-a lallY I-gl ycy 1-p- IRAK Interleukin- I receptor-associated 

nitrophenylalallyl-glycille kinase 
Db-cAMP Dibutyryl-cyclic adenosine mono- ISH In situ hybridization 

phosphate LAR Late phase asthmatic reaction 
DEX Dexamethasone micronisatum LFA-3 Lymphocyte function-associated 
DIG Digoxigenin al1tigen-3 
DMEM Dulbecco's modified Eagles LlF Leukemia inhibitory factor 

medium LPS Lipopolysaccharide 
dNTP Deoxynucleotide triphosphate LT Leukotrienes 
EAR Early asthmatic reaction LTC, Lcukotricne C~ 
ECE Endothelin-converting enzyme LTB, Leukotriene 8 4 

ECP Eosinophil cationic protein mAb Monoclonal antibody 
EGF Epidermal growth factor MBP Major basic protein 
ELAM-I El1dothelialleukocyte adhesion MCP Monocyte chemotactic protein 

lllolecule-l MCT Mast cells containing predominantly 
e-NANC Excitatory NANC tryptase 
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MeTe Mast cells containing chymase and PG Prostaglandin 
tryptase PGE, Prostaglandin E2 

MESF Mean equivalent soluble fluores- PHM Peptide histidine methionine 
cence PMS Phenazine methosulfate 

MHC Major histocompatibility complex pNA Para-nitroanilide 
Mll'-la Macrophage inflammatory protciIl- PPT Preprotachykin 

la RANTES Regulated upon Activation, Nonnal 
MNA 4-methoxynaphtylamidc T cell Expressed, and presumably 
MTS 3-(4 ,5-d i met Ity I tit i azoI-2-yI)-5-(3- Secreted 

carboxymethoxy -phenyl) -2-(4- RT-PCR Reverse transcriptase-polymcrasc 
sui fophcnyJ)-2 H -tetrazoii lim chain reaction 

NANC Non-adrenergic non-cholinergic S Smokers 
NAP-2 Neutrophil-activating peptide-2 SDS Sodium dodecyl sulphate 
NEP Neutral endopeptidase sIgA Secretory inullunoglobulin A 
NF-KB Nuclear factor-KB SLPI Secretory leukocyte protease 
NK Neurokinin inhibitor 
NKA Neurokinin A SP Substance P 
NKB Neurokinin B SSC Standard sodium citrate 
NO Nitric oxide SuB Substrate-binding 
NOS Nitric oxide synthase TCR T cell receptor 
NP-y Neuropeptide-y TO! Toluene dtisocyanate 
NPK Neuropeptide K TGF Transfonning growth factor 
NPY Neuropeptide Y Till T helper cell type 1 
PACAP Pituitary adenylate cyclase actiyat- Til2 T helper cell type 2 

ing peptide TK Tachykinin 
PAP Platelet-activating factor TM Transmembrane 
PAS Periodic acid Schiff TNF Tumor necrosis factor 
PBS Phosphate-buffered saline pH 7.4 UTR Ulltranslated region 
PC20 Provocative concentration required VCAM Vascular cellular adhesion molecule 

to reduce FEY 1 by 20% VIP Vasoactive intestinal peptide 
PCR Polymerase chain reaction VLA Very late activation antigen 
PDGF Platelet-derived growth factor ZB Zinc-binding 
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DANKWOORD 

Het feit dat enkel mijn naam op dit boekje staat wilnog niet zeggen dat dit proefschdft 
helemaal het werk van mij aIleen is geweest. Hct.poppctje op de voorkant lijkt aileen te zijn, 
maar wie even verder kijkt, ziet dat het hand in hand staat met andere poppetjes. Een poppctje 
staat nn op de voorkant en cen paal' andere staan op de achterkant; alles wat in dit proefschrift 
tussell beide kaften staat is dan oak door hen samcn gedaan. Ik wll daarom icdereen die op de 
plaats had kUllncn staan van een van de poppctjes heel erg hartclijk bedanken voor hUll 

bijdrage. 
Het poppetje op de voorgrond staat niet stil, maar springt van blijdschap een gat in de 

lucht. Het heeft plezier, en dat heb ik de tijdens de afgelopen jaren (meestal) ook gehad. Niet 
aileen omdat het leuk is om onderzoek te doen, maar oak omdat ik het erg naar mijn zin heb 
gehad (en heb) op de afdeling. Tijdens het werk maar oak daarbuiten heb ik veel leuke 
dingen kunnen doen met mijn collega's. Voar aile (koffie)praatjes, FC-activiteiten, 
squashpartijtjes, etentjes, en natuurlijk de vele en gezeJ1ige bon-cIs wiI ik dan oak iedereen 
bedanken! 

Op dc achtergrond van deze pagina staan vele poppetjes. Ik wiI dan oak aIle vrienden en 
familie, met name "'s pa cn 's ma'\ bedanken voor hun belangstelling en hun aanhoudende 
pogingen (vaak tevergeefs) am op de hoogt te blijven van aIle ins en outs van mijn 
werkzaamheden. Ten slotte wiI ik Angela bedallken vaal' haar beJangstelling, adviczcll, geduld 
als ik "nag even ging computeren", en al die andere dingen die ik niet goed met wDorden 
weet te zeggen maar die jij weI begrijpt. 

Bedanktf 
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