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Preface 

Preface 

Every year, worldwide thousands of patients receive ventilatory support during surgery. 

Mechanical ventilation has also become an important therapy in the treatment of patients with 

an impaired pulmonary function and, in particular, in patients with the acute respiratory 

distress syndrome CARDS), which is characterized by acute respiratOlY failure with changes 

to the endogenous surfactant system and penneability changes of the alveolo-capillary 

membrane. 

Already early after the introduction of mechanical ventilation (1950s), it became 

realized that mechanical ventilation has several potential drawbacks and complications. Modes 

of mechanical ventilation, which combine high end-il1spiratOly lung volumes with low end­

expiratory lung volumes, have been shown in healthy animals to induce penneability changes 

comparable to those seen in ARDS. These permeability changes as a result of mechanical 

ventilation have led to a growing realization that some of the pathophysiological changes seen 

in ARDS, may be a consequence of our ventilatory interventions, rather than a consequence 

of the primary disease process. 

Ventilation-induced lung injury (VILI) has been extensively investigated, but such 

studies were largely descriptive. They quantified the permeability changes of the alveolo~ 

capillary ban-ier to macromolecules and the development of extravascular lung water, and 

histologically assessed lung damage as a result of overstretching. The use of positive end­

expiratory pressure (PEEP) was shown to reduce the penneability changes at the same degree 

of overstretching as measured by each of these parameters. Such studies have recognized the 

role of end-inspiratory overstretching of the lung parenchyma in the mechanisms ofVILl, and 

the reduction of capillary filtration pressure in the effect of PEEP 011 VILl. However, they 

failed to recognize ventilation-induced changes to the endogenous surfactant system as a 

mechanism of VILI. Moreover, the effect of PEEP on changes to the endogenous surfactant 

system, as a reason for the reduction in penlleability changes associated with VILI, was not 

investigated. 

Despite ventilatory support measures, the mortality of ARDS has not decreased since 

it was first described in 1967 and multiple organ failure (MOF) is still the leading cause of 

death. Although the exact mechanisms of the transition of ARDS into MOF are still largely 

unclear, bacteremia/endotoxemia and systemically circulating inflammatory mediators are 

thought to play an important role in the pathogenesis of the disease process. Given the 

potential harmful effect of mechanical ventilation, one rcason for the high mortality of ARDS 

may be the fact that there is no routinely available early indicator to monitor and recognize 

metabolic changes to the lung as a result of our ventilatory interventions. Furthennore, 

mechanical ventilation may playa role in the pathogenesis of the transition of ARDS into 

MOF. One of the mechanisms could involve ventilation-induced bacterial translocation from 

8 



Preface 

the lung into the bloodstream, especially given the high rate of ventilator-associated 

pneumonia in patients on mechanical ventilation. Another mechanism could be the release of 

inflammatory mediators from the lung into the bloodstream as a result of mechanical stretch 

on the lung parenchyma due to mechanical ventilation. 

The first part of this thesis focuses on the changes to the surfactant system resulting 

trom mechanical vcntilation, the role of ventilation-induced surfactant changes in the 

mechanisms of YILI, and the effects of exogenous surfactant therapy on VILI. In addition, 

an early marker to recognize VILI is discussed. The second part of this work addresses 

ventilation-induced bacterial translocation and inflammatory mediator release from the lung 

into the systemic circulation as a result of differcnt forms of mechanical ventilation. 

In total, this \vork provides a more comprehensive understanding of the mechanisms 

of ventilation-induced lung injury. 
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OveJview 

Ovelyiew of the thesis 

Focusing on experimental studies, Chapter 1 gives an overview of the litera hue on ventilatioIl­

induced lung injury (VILI). It compromises disturbance ofthe fluid balance over and integrity 

of both the endothelial and the epithelial layer. Special attention is given to the role of 

ventilation-induced surfactant changes and the effects of positive end-expiratory pressure 

(PEEP) on VILl. Moreover, this chapter addresses new insights in the possible mechanisms 

by which ventilation-induced changes in the lung tissue may exert systemic effects and effects 

on other organs. A basic physiological rational to prevent or minimize ventilation-induced 

lung injury and surfactant changes, and future directives on how to optimally use monitoring 

techniques during mechanical ventilation are presented. 

The study presented in Chapter 2 describes three mechanisms of ventilation-induced 

surfactant impainnent in a rat model oflung overinflation, which was first described by \Vebb 

and Tiel11ey (1974) and later nsed in studies by Dreyfnss and colleagues (1985). Much of the 

experimental evidence on the factors contributing to VILI and the effect of PEEP on VILI 

comes from this animal model. This study also describes the effect of applying 10 cmH20 of 

PEEP on ventilation-induced surfactant changes at the same degree of overinflation. 

After investigating the mechanisms of surfactant changes during VILI and describing 

the possible role of such changes in the mechanisms of VILI, Chapter 3 reports the effect of 

administration of different doses of exogenous surfactant in the rat model. These 

investigations address the effect of exogenous surfactant preceding lung overinflation on lung 

function, lung mechanics and lung pelmeability as assessed by transfer of Evans blue .dye 

over the alveolo-capillary barrier. 

Chapter 4 describes the effect of exogenous surfactant administration 011 the clearance 

of the radioactive tracer molecule 99mTc_human serum albumin from the lung into the systemic 

circulation in a lavage model of acute lung injUlY. Using more conventional methods, this 

Shldy investigates if the surfactant system is rate-limiting for the transfer of solutes over the 

alveolo-capillary barrier. 

Exogenous surfactant is an expensive treatment modality and the effects of mechanical 

ventilation on exogenous surfactant are still largely unknown. Therefore, Chapter 5 addresses 

the use of a pressure-constant time-cycled ventilation mode with high PEEP levels and 

minimal pressure swings in a mode creating auto-PEEP, as a ventilatory strategy to adequately 

support gas exchange and minimize surfactant loss and protein infiltration after exogenous 

snrf.1ctant therapy_ The effects of such a ventilatory strategy were compared to the effects of 

strategies combining larger pressure swings with lower PEEP levels. 

The realization that mechanical ventilation may, by itself, induce lung injury should 

initiate a search for early markers of the possible adverse effects of our ventilatOlY 

interventions. In Chapter 6 the breakdown products of adenosine-tri-phosphate are presented 
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as early markers of VILL The effects of PEEP application, and the administration of 

exogenous surfactant on the release of these markers after lung overinflation, are described. 

It is becoming increasingly realized that mechanical ventilation leads to the same 

pathophysiological feahues as those seen in the acute lung injury (ALI). The fact that the 

majority of patients \vith MOF develops ALI as the initial organ failure, indicates that ALI 

is an important and possibly causative part of an inflammation-induced systemic disease state 

that can evolve to MOF and that mechanical ventilation is one of the factors that initiates 

MOF. Chapter 7 describes the effect oflung overinflation, with or without PEEP, in inducing 

bacterial translocation from the lung into the systemic circulation compared to low pressure 

strategies with or without the usc of low levels of PEEP. Recent studies have shown the 

synergistic effect of lung overinflation and not using PEEP on ventilation-induced mediator 

expression in isolated lungs of rodents. Chapter 8 addresses the role of alveolar end-expiratory 

collapse in inducing ventilation-induced inflammatory mediator release from surfactant­

deficient lavaged rats lungs ill vivo. Both ventilation-induced bacterial translocation and 

inflammatory mediator expression were investigated as possible mechanisms by which 

mechanical ventilation leads to the transition of ALII ARDS into MOF. 
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Chapter 1 

Mechanisms of ventilation-induced lung injury: 

Physiological rationale to prevent it 

S.le. Verbrugge, B. Lachmann 

Depts. of Anesthesiology, Erasmus University Rotterdam, The Netherlands 

Ill: Af ouaMi A rchives for Chest Disease (in press) 
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Chapter I 

InhuductiOll 

Acute respiratory distress syndrome CARDS) has become a well-recognized condition that can 

result from a number of different causes [1]. The final common pathway results in damage 

of the alveolar epithelium and endothelium leading to high permeability edema. 

The mortality rate from ARDS has not decreased since it was first described [2] and mortality 

rates range from 10% to as high as 90%, with an average of 50% [3], Multiple organ failure 
(MOF) is the leading cause of dcath in ARDS [4] and the majority of patients with MOF 
develops ARDS as the initial organ failure [5]. Therefore, ARDS is now being regarded as 

an important, causative part of an inflammation~induced systemic disease state that can evolve 

to MOF, rather than as a sole pulmonary disease process [6]. However, new immunological 

treatment approaches for ARDS and MOF have been subjected to clinical trials without great 

success [7]. Two -recently published clinical studies have shown a decreased mortality in 

ARDS by protective lung strategies using exogenous surfactant therapy [8] and mechanical 

ventilation which prevents the overdistension and repeated collapse and reexpansion of alveoli 

[9,10]. 

ALVEOLUS 
~---!-----

LYMPH 

Figure 1 Diagram of the alveolus showing the various forces determining the fluid balance betwecn the 

thrce liquid compartments of the a]veolo-capillary barrier. (Used with penllissioJljrom Reference 12) 
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In this review we will present an overview of recent studies on the mechanisms of 
ventilation-induced lung injl1lY which provide an explanation for the reduced mortality from 
ARDS due to protective lung strategies, and give directions to prevent complications 1Il 

healthy patients and patients with respiratory failure on ventilatory support. 

Physiology of the fluid balance across the alveolo-capillmy membume 
The alveolo-capillary barrier compromises three extracellular liquid compartments: 1) 

the vascular space, 2) the interstitial space and 3) the liquid in the lumen of the alveoli, which 
are separated by the capillary endothelium and the alveolar epithelium, respectively. 

a Fluid balance aclUSS the capillary bailie!' 
The driving force for exchange of hydrophillic solutions across the pulmonary 

capillary through 'open' intracellular junctions is detennined by several factors [II, 12] 
(Figure I). 

I) The outward directing capillary hydrostatic pressure (Pc), which increases with the 
amount of filling of the capillary and is the highest in the most dependent parts of the lung. 
2) The inward directing oncotic pressure difference across the capillary, which is 

determined by the positive difference of the plasma colloid oncotic pressure (n"J and the 
interstitial colloid oncotic pressure (re) [13]. 

3) The alveolar surface tension, detennined by the attractive forces of the molecules at 
the air-liquid interface of the alveolus. These forces result in sllctioning where the curvature 

of the alveolar wall at the border of a capillary is sharp; they decrease filtration where the 
pulmonary capillary bulges into the alveolus, supporting the capillaries like the hoops of a 
barrel [14, 15] (Figure 2). The presence of surface tension at the air-liquid interface of the 
lung is believed to generate most of the obsen'ed negative pressure in the interstitial space 
(Pi) at those places where the capillary does not protrude into the alveolus. 
4) The resulting small net filtration is balanced by lymphatic drainage of the interstitium, 
which also contributes to the subatmospheric pressure in the interstitial spaces, favoring fluid 
filtration [16]. 

b Fluid balance over the epithelial banier 
Exchange of fluid also takes place over the alveolar epithelium between the interstitial 

and alveolar fluid compartment [12] (Figure 1). 
1) The hydrostatic pressure (PL) of the fluid compartment in the alveolus lining the 
epithelial layer is equal to the pressure of gas in the airspace (pJ, minus a certain amount of 

pressure necessary to compensate the collapse tendency of the alveolus (PCO!llp;~) caused by 
the retractive forces at the air-liquid interface of the alveolus. This collapse pressure is given 

by the law of LaPlace, PCoHap,e = 2y/r (y = surface tension at the air-liquid interface; r = radius 
of the alveolus) and is very low in the normal alveolus. Depending on the status of the 
alveolus, inflating or deflating, PL directs a fluid stream into or out of the alveolus. 
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--" . 

v 
p 

Endothelium 

Interstitium 

Epithelium 

Figure 2 Pulmonary capillary in an alveolar wall showing the three principal forces to which the vessel 

is exposed. Both an increase in capillary pressure (I) and an increase in lung inflation (3) stretch the capillary 

wall. The surface tension of the alveolar lining layer (2) is thought to be protecth'c. (Used with pennissiollfrom 

Reference /5). 

2) The interstitial pressure (Pi) is negative, which favors a fluid stream from the alveolus 
into the interstitial spaces (see above). 

3) The epithelium is impenneable for proteins. Therefore, a large oncotic pressure 

gradient may be created between the alveolar (Tt A ) and interstitial (Tt i ) fluid compartment. The 

magnitude is unknown, but a net oncotic pressure gradient favoring absorption has been 
reported [12]. 

4) Finally, there is an active transport of sodium by the epithelium out of the lung lumen, 

which leads to active lung water transport out of the lung lumen into the interstitium. 

DistUlb:mce of the fluid balance due to mechanical ventilation 

Despite initial controversy about the role of mechanical ventilation in inducing lung 

injury [17] it has now been undisputably demonstrated in different animal models that 
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mechanical ventilation at high peak inspiratory lung volumes can cause lung injury and 
edema, which does not fundamentally differ from that seen in human acute respiratory distress 
syndrome (ARDS) [18]. Pulmonary edema is considered hydrostatic when due to increased 

hydrostatic pressures and/or filtration and when the permeability of the endothelial barrier to 
protein is intact; it is considered high permeability edema when it is caused by permeability 
of the endothelial barrier to protein. The distinction between the two is a grey area because 
increased permeability makes the lung more susceptible to increased hydrostatic 

pressures/filtration [19] and, on the other hand, high capillary circumferential tensions 
eventually lead to pelmeability changes [15]. 

a Smfactant changes due to mechanical ventilation 
Pioneering work of Mead in 1959 showed that mechanically ventilated dogs had a 

progressive fall in pulmonary compliance [20]; such mechanical changes were related to the 
pulmonary surfactant system as shown by Greenfield and coworkers who demonstrated 
increased surface tensions of lung extracts in dogs ventilated at peak inspiratory pressures of 

28-32 cmll,o for I to 2 hours (21). A subsequent rcp0l1 by Sladen et al. showed that also 
patients ventilated for long periods suffered from an increased alveolar-arterial oxygen 
gradient, and a fall in respiratory system compliancc [22]. 

Early studies by Benzel' have demonstrated that rabbits ventilated with an open thorax 

at a peak inspiratory pressure of 30 cmH20 with 5 cmH20 of PEEP or with a closed thorax 
without PEEP had a better preserved surfactant system at the end of a 75-minute ventilation 
period than animals ventilated \vith an open thorax without PEEP [23]; these observations 
were extended in a subsequent report by \Voo and Hedley-\Vhytc who observed pulmonary 
edema foam in the airways of open~chest dogs vcntilated with large tidal volumes, whereas 
the same ventilator settings in closed-chest animals induced no such abnormalities [24]. 

Two primary mechanisms of surfactant inactivation by mechanical ventilation have 
been described. First, mechanical ventilation was shown to enhance surfactant release from 

the pneumocyte type II into the alveolus [25-28]. This material is subsequently lost into the 
smal1 airways as a result of compression of the surfactant film when the surface of the 
alveolus becomes smal1er than the surface occupied by the surfactant molecules [29, 30] 
(Figure 3). 

A second mechanism to describe the surfactant changes associated with mechanical 
ventilation is based on the observation that the alveolar surface area changes associated with 
mechanical ventilation, result in the conversion of surface active large surfactant aggregates 
into non-surface active small surfactant aggregates [31-33] (Figure 4). 

Surfactant changes due to mechanical ventilation are reversible as a result of a 
metabolical1y active process, involving de novo production of surfactant [34]. It probably 
involves a balance between secretion and production of large aggregates, and uptake clearance 
and reconversion of small aggregates in the pneumocyte type II [35]. 

17 
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Inspiration Expiration 
A 

5 cmllp 

B 
Inspiration End-insph'ation 

Expiration Inspiration 

c 

Figure 3 (A) Balance between synthesis, release and consumption of surfactant in the healthy lung. The 

pressure values given represent the intrapulmonary pressure needed to open up the alveolus. At the surface and 

the hypophasc (micelles), there are sufficient molecules of surfactant. These micelles deliver the surfactant 

necessary to replace the molecules squeezed out during expiration. 

(B) Imbalance between synthesis, release and consumption of surfactant due to artificial 

ventilation. At the beginning of inspiration, there is an apparent deficiency of surfactant molecules but there is 

a respreading of molecules stored in the hypophasc of the surfactant layer. At the end of inspiration there is, in 

principle, enough surfactant on the surface. 

(C) With the next expiration, surface active molecules are squeezed out and no surface active 

molecules are left in the hypophase for respreading, creating the situation where a serious surfactant deficiency 

follows. 
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Figure 4. Effects of varying tidal volumes (from 4-6 mLlkg to 13-\6 mLlkg) on surfactant aggregate 

conversion in vivo expressed as the amount of eH]DPPC recovered in the small aggregate fraction as % total 

CH]DPPC recovered in the alveolar wash after I h ofvcntilation. Aggregate conversion correlatcd significantly 

with increasing tidal volumes (p < 0.01, r = 0.54). (Used with pennissiollfrom Referellce J/) 

Consequences of sUifactnllt changes for fluid balance and solute pemleability of the alveolo­

capillary ballier 

The hypothesis proposed by Pattie and Clements [36, 37J that surfactant inactivation 

with an increase in alveolar surface tension results in a decrease in pericapillary pressure was 

proven by demonstrating increased transmural filtration pressure, in experiments in which 

surfactant impairment was induced by cooling the lung and ventilation with large tidal volume 

[38] or by aerosolation of detergent [39]. 

However, surfactant dysfunction has also been shown to increase the permeability of 
the alveolo-capillary barrier to small solutes e,g. technetium-99m-Iabclled diethylene triamine 

pentaacetic acid t 9mTc-DTPA) in the absence of other substantial changes in the function of 
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the alveolocapillary unit [40], and increased surfactant content in healthy ventilated rabbits 

was shown to reduce the penneability for the same molecule [41]. However, surfactant is not 

only rate-limiting for the transfer of small solutes; studies in both premature animals [42, 43) 

and adult surfactant-depleted animals [44] have shown that surfactant treatment before starting 

mechanical ventilation substantially reduces the transfer of albumin over the alveolo-capil1ary 

harrier. Studies in smokers compared to healthy controls have shown that a reduction in the 

amount of phosphatidyl choline in broncho-alveolar lavage of smokers is associated with 

changes in the permeability of the alveolo-capillary barrier to 99mTc~DTPA [45]. 

These studies indicate that surfactant has a primary role in the regulation of the 

penneability of the alveolo-capillary balTier to small solutes and protein. This may be due to 

both a direct action of surfactant on the alveolo-capillary barrier and a reduction of the 

stmctural damage caused by mechanical ventilation due to the presence of surfactant (see 

below). 

b Dishnbed fluid balance over the capillary banier due to mechanical ventilation 
Functional integrity of both the endothelium and epithelium is a prerequisite for 

maintaining a normal fluid balance at the alveolo-capil1ary membrane. 

Both increased capillary filtration pressure and altered microvascular protein 

pemleability have been shown to contribute to pulmonary edema after lung overinflation. 

Studies in open-chest large animals, which indirectly calculated the capil1ary filtration pressure 

from measurements of mean pulmonary artery and left atrial pressures after lung overinflation 

at peak inspiratory pressures of around 60 cmH 20, demonstrated a mild increase in mean 

transmural microvascular pressure as a result of overinflation when compared to nonnal 

conditions [46, 47]. However, any increase in transmural microvascular pressure will have a 

dramatic effect on edema fomlation when the microvascular barrier has altered sieving 

properties [19]. The three basic forces acting on the capillary wall which can eventually result 

in loss of its functional integrity have been reviewed by 'Vest [15] (Figure 2): 

1) An increase in the circumferential tension (which is directly proportional to the 

transcapillary wall pressure and the capillary radius, and inversely proportional to the wall 

thickness). It may be speculated that ventilation-induced surfactant impainnent with alveolar 

collapse, hypoxic vasoconstriction and redistribution of blood flow to selected capillaries, may 

increase transcapillary wall pressure and thus circumferential tension in those capillaries. In 

principal this will result in hydrostatic edema, but it may be speculated that it becomes of the 

penneability type if transcapillary pressure reaches 40 mmHg or above. Injury at such 

pressures is not limited to the endothelial cells but also causes breaks in type I cells [48]. 

2) Surfactant inactivation due to mechanical ventilation results in loss of the supportive 

'hoop' function by surfactant on the capillary wall (Figure 2). An increase in surface tension 

therefore causes a reduction in perivascular pressure, with an increase in distending pressure 

on the capillary. Nieman et al. showed that the number of alveoli with continuous blood flow 

(zone III conditions) increases after lung lavage with a detergent solution elevating surface 
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tension [49]. 
3) Longitudinal tension on the capillary due to lung overintlation. Fu and colleagues have 

shown that increasing lung volume by increasing transpulmonary pressure from 5 to 20 

cmH20 at a constant capillary pressure of 32 cmH20 resulted in a significant increase in the 

number of endothelial and epithelial type I breaks [50]. The increase in the number of 

endothelial breaks produced by equivalent increases in transpulmonary pressure and capillary 

transmural pressure were similar. Thus, vascular pressures too low to affect microvascular 

penneability at low lung volume may increase microvascular permeability when the lung 

volume is sufficiently increased. 

Many studies in open and closed chest animals using different approaches have shown 

that lung overinflation is associated with changes in microvascular penneability [46, 47 51-

53]. The existence of a pressure threshold above which microvascular pemleability changes 

occur has been suggested [54], although others suggested the absence of a well-delimited 

pressure or volume threshold [55]. Independent of this, it has become clear that microvascular 

injury secondary to ventilation occurs at much lower airway pressures and volumes in isolated 

perfused lungs with inactivated surfactant due to dioctyl succinate, as compared to ventilation 

of healthy lungs [56] (Figure 5). These studies suggest that lungs with an impaired surfactant 

system arc more susceptible to overinflation than healthy lungs and that minor surfactant 

alterations, such as those produced by spontaneous ventilation during prolonged anesthesia 

[57, 58] are sufficient to synergistically increase the hamlful effects of overinflation on 

penneability of the endothelial barrier [59]. 

Similarly, whereas either oleic acid or mechanical venti1atio~l in isolated lungs did not 

significantly affect capillary penneability, the combination of the two did [60]. Studies in 

intact animals suggested a synergism rather than additivity behveen lung injury induced by 

mechanical ventilation and a-naphthyl~thiourea [59] in inducing endothelial permeability. 

c Distmbed fluid balance over the epithelial banier due to mechanical ventilation 

It is known that more than the endothelium or interstitial spaces, the epithelium is rate­

limiting for solute and fluid movement between blood and alveolus [61, 62]. Effects of 

overinflation on epithelial pemleability have been studied in fluid-filled in situ lobes, to 

exclude the effect of surface tension. As the epithelium is progressively stretched during static 

inflation there is a non-reversible opening of water-filled channels behveen alveolar cells 

resulting in free diffusion of small solutes and even albumin across the epithelial barrier [63, 

64] (Figure 6). Such changes were shown to occur only at high distending pressures and have 

been attributed to peak inspiratory epithelial overstretching \vhich occurs due to inflation in 

the supra-physiological range only [65]. Experimental studies with small solutes like 99mTc_ 

DTPA have shown that the rate of clearance of this tracer from the a lveolar space increases 

with increases in lung volume, whether caused by large tidal volume ventilation [66] or PEEP 

[67]. 
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Figure 5. Difference in change in capillary filtration coefficient (Kr,() from baseline in lungs not pretreated 

with dioclyl succinate detergent (A) and pretreated with dioclyl succinate detergent (8), which inactivates 

surfactant, and then \'cntilalcd at peak inspiratory pressures of 15, 30 and 45 cmH20. The capillary filtration was 

significantly more increased from baseline ailS. 30 and 45 cmHzO peak inspiratory pressure in animals 

pretreated with dioclyl succinate detergent. Open bars = baseline; solid bars = diocly! succinate detergent plus 

ventilation. 'p < 0.05 compared with baseline values. (Used with penllissionfro11l Referellce 56) 
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Figmc 6. Effect of inflation pressure on the epithelial permeability of fluid-filled in situ sheep lobes. 

Permeability is characterized by an equivalent pore radius. A linear rclationship was obsef\'cd bctween inflation 

pressure and pore radius. At the highest Icvels of inflation, free diffusion of albumin was sometimes observed, 

indicating the presence of large leaks. (Used with penllission from Reference 63) 

Due to damage of both the epithelial and endothelial barrier. surfactant components 

may be lost into the bloodstream [68-71]. More importantly, intra-alveolar protein infiltration 

will develop which results in dose-dependent inhibition of surfactant [72-75]. As surfactant 

is rate-limiting for the transfer of proteins over the alveolo-capillary batTier, loss of surfactant 

function will lead to further protein infiltration. This may result in a self-triggering 

mechanism of surfactant inactivation. 
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d Changes in lymph flow 

It is clear that mechanical ventilation leads to severe disturbance of both the fluid 

balance over the endothelial and epithelial batTier. Lymph flow constitutes an important safety 

factor against the development of pulmonary edema. The pumping action of the lymphatics 

effectively drains the in'terstitium under nomlal conditions and when filtration pressure 

increases, lymph flow may increase up to 8M fold. If filtration increases more, the capacity of 

the lymphatics to deal with the volume of liquid presented to them is exceeded and 

progressive pulmonalY edema will develop [76]. 

e Olher effects 

Increased filtration during mechanical ventilation also occurs at the extrawalveolar 

level. Inflating the lung decreases the pressure in the perivascular spaces due to pulmonary 

interdependence and dilates the extra-alveolar vessels. This has been established in both 

excised lungs and in in sihl lungs in open-chest animals [77, 78]. 

Role of pressure and volume in ventilation-induced lung injmy (VILl) 

Studies with high peak inspiratory pressure ventilation where peak inspiratory lung 

volume was limited by thorax restriction, have suggested that the end-inspiratory lung volume 

and not end-inspiratory pressure is the main determinant of VILI [51. 79]. However, the 

alveolar pressure alone as measured in such shldies does not provide a measure of alveolar 

distension. Rather than the absolute airway pressure, the absolute trans pulmonary pressure 

(which is equal to the alveolar pressure minus pleural pressure), is responsible for injury. 

Therefore, at a given lung-thoracic compliance, absolute transpulmonary pressure and elld­

inspiratOlY lung volume are interchangeable and non-discemible with respect to their injurious 

potential. 

Stmctmal damage of the alveolo-capillalY ballier due to repeated collapse and reexpansion 

of alveoli 

As discussed above, the basic mechanism for loss of alveolo-capillary barrier function 

has been considered to be peak inspiratory endothelial and epithelial overstretching with 

widening of intracellular junctions. However, one idea of ventilation-induced lung injury and 

epithelial stretching goes back to the pioneering work of Mead who demonstrated that, due 

to pulmonary interdependence of alveoli (Figure 7), the forces acting on the fragile lung tissue 

in non-unifonnly expanded lungs are not only the applied transpulmonary pressures, but rather 

the shear forces that are present in the interstitium between open and closed alveoli [80]. An 

alveolus with surfactant impairment would be predisposed to end-expiratory alveolar collapse 

and prone to be affected by such lshear forces'. Shear forces, rather than end-inspiratory 

overstretching, may \vel1 be the major reason for epithelial disnlphlre and loss of barrier 

function of the alveolar epithelium and considerable increases in regional microvascular 

transmural pressure. 
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Figure 7. Shear forces are caused between open and closed alveoli due to p-ulmonary interdependence 

of alveoli. This figure shows the difference between mechanical ventilation of normal alveoli (upper panel) and 

mechanical ventilation of the same alveolar unit after surfactant inactivation (lower panel) (After Referellce 80). 

Important evidence for this mechanisms comes from the findings that ventilation at 
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low lung volumes can also augment lung injury in lungs ,,,itlt an impaired surfactant system 

[SI] a concept first proposed by Robertson et al. [S2]. A recent stndy in a model of snbtlc 

surfactant perturbation by diDetyl sodium sulfosuccinate showed that surfactant changes make 

the lung vulnerable to lung parenchymal injury by mechanical vCllti1ation [83]. These studies 

confiml earlier work of Nilsson et a1. in ventilated premature ncwhol11 rabbits with a primary 

surfactant deficiency. Fetuses treated with surfactant before receiving mechanical ventilation 

had less bronchiolar epithelial lesions in comparison to non-surfactant treated controls [84]. 

It has been demonstrated that most endothelial and epithelial penneability changes 

induced by lung overillflation arc reversible [85] with excess pulmollalY fluid clearance 

through the lymphatics [47], although some microvascular penneability alterations [47] and 

protein in the epithelial lining fluid [85] were shown to persist for longer periods of time. 

Effects of increascd clld-expiratol), lung volume by positive end-expiratOI), pressure (PEEP) 

a Effects of PEEP on lung edema 

Initial studies have investigated the effect of increasing levels of PEEP at constant 

tidal volume ventilation, which resulted in higher end-inspiratory pressures and volumes. Such 

studies found that increasing levels of PEEP reduced shunt [86, 87] and improved 

oxygenation and lung mechanics [88] which was attributed to reopening of flooded alveoli 

with redistribution of edema fluid from flooded alveoli into the interstitial spaces [89-91]. 

Such studies, however, also demonstrated that the use of high PEEP levels did not reduce [86, 

88,92] or even increase edema fonnation [87, 93], These findings have been reported in both 

isolated perfused lungs [86] and in closed-chest healthy animals [88] and closed-chest animals 

with different forms of lung injury induced by bronchial hydrochloric acid administration [87], 

alloxan [92], oleic acid [94] or hydrostatic edema due to lobar venous occlusion [93]. 

Overinflation due to PEEP is probably the explanation for the lack of reduction or even 

worsening of edema reported with PEEP during such experiments [95]. 

However, it has now been unequivocally demonstrated in different animal models that 

ventilation with PEEP at lower tidal volumes results in less edema than ventilation without 

PEEP and a higher tidal volume for the same peak or mean airway pressure [52, 79, 95, 96J 

and that, more specifically, PEEP prevents alveolar flooding [33, 52]. 

b Effects of PEEP on lung parenchymal injm)' 

Studies by Dreyfuss et at. in rats ventilated at peak inspiratory pressure of 45 cmH20 

have shown that damage due to mechanical ventilation begins at the endothelial side after 5 

min and rapidly progresses to the epithelium after 20 min [53]. A subsequent study showed 

a reduction of endothelial injury and the preservation of the structure of the alveolar 

epithelium by use of 10 cmH20 of PEEP, which was accompanied by a lack of alveolar 

flooding [79], 
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How to explain the beneficial effects of PEEP? 

a Reduced miclUvascular filtration due to capillal)' compression 

Several experimcnts in closed-chest animals have suggested that PEEP reduces 

microvascular filtration pressure due to a decrease in cardiac output [86, 92, 97]. It was 

shown in rats ventilated at peak inspiratory pressure of 45 cmH20 that the main determinant 

of lung edema formation is the end-inspiratory lung volume independent of the level of PEEP 

[98]. Infusion of dopamine to correct the drop in systemic arterial pressure that occurs with 

PEEP was shown to partially abolish the reduction in pulmonary edema by PEEP (Figure 8) 

[98]. The effect of PEEP in reducing protein infiltration and permeability of the alveolo­

capillary ban-ier was attributed to a decrease in lung capillary hydrostatic pressure and, 

therefore, filtration pressure [98]. Such a mechanism occurs at sllpraphysiological PEEP 

levels, higher than the level necessary to compensate for the retractive forces of the alveolus, 

and is attributable to compression of the capillary by adjacent alveoli. However, pulmonary 

artcry pressure or cardiac output were not recorded in that study [98] and loss of the 

endothelial and epithelial barrier function was not differentiated. Moreover, despite similar 

arterial pressures, the animals ventilated with PEEP that received dopamine had less edema 

than animals ventilated without PEEP, suggesting that reduced filtration by capillary 

compression is not the only reason for thc reduction in edema by PEEP and that other 

mechanisms are acting. 

b Reduced filtration due to smfactant preservation 

Experiments in the same rat model of overinflation have shown a significant 

conversion of active into non-active surfactant aggregates compared to non~ventilated controls 

after lung overinflation; 10 cmH20 PEEP was shown to prevent a significant conversion of 

large aggregates into smal1 aggregates compared with non-ventilated controls [33]. This latter 

study suggests that the beneficial effect of PEEP in reducing protein infiltration after 

overinflation at peak inspiratory pressure of 45 cmH20 without PEEP in rats is partially 

attributable to a reduced filtration by surfactant preservation [33]. 

Two basic mechanisms have been described in literature which explain the surfactant 

presenring effect of PEEP during mechanical ventilation. Studies by \Vyszogrodski et al. have 

shown that PEEP prevents a decrease in lung compliance and surface activity of lung extracts, 

indicating a prevention of loss of alveolar surfactant function during lung overinflation [29]. 

It was suggested that PEEP prevents alveolar collapse and thus keeps the end-expiratory 

volume of alveoli at a higher level, thereby preventing excessive loss of surfactant in the 

small ainvays by a squeeze~out mechanism during expiration (Figure 3) [99, roO]. Successive 

studies by Veldhuizen and collegues have shown that the rate of conversion of surfactant 

large into small aggregates is dependent on tidal volume and on time [31]; changing the 

respiratory rate [31] or the level of PEEP [32] did not affect surfactant conversion. These 

studies suggest that the preservation of the surfactant system by PEEP comes from the 
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reduction in cyclic changes in surface area by PEEP (Figure 4). It should be noted, however, 

that at a higher functional residual capacity (FRe), comparable changes in tidal volume are 

accompanied by smaller surface area changes compared to the same volume changes at lower 

FRC. 
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Figure 8 Effect of hemodynamic support with dopamine during 45 cmH10 peak pressure ventilation with 

PEEP. The reduction of edema by PEEP ·was in part abolished when dopamine was administered. "p < 0.00 I. 

(Used wilh pel7l1issioll/rom Reference 98). 
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To further test the hypothesis that reduced filtration due to surfactant preservation is 

responsible for the reduction of edema by PEEP, our group conducted a study in which high 

peak inspiratory pressure ventilation \vithout PEEP was preceded by administration of high 

amounts of exogenous surfactant [10 I]. It was shown that an amount of 200 mg/kg 

bodyweight surfactant preserved oxygenation and lung mechanics after 20 minutes of 

overinflation at peak inspiratory pressures of 45 cmH20 \vithout PEEP. Although 400 mg/kg 

bodyweight surfactant did not reduce the lung tissue content of Evans blue dye it was shown 

to reduce intra-alveolar accumulation of Evans blue dye [101] (Evans blue dye extravasation 
has previously been shown to have a good correlation with extravasation of 125I_Albumin 

[102]). These data provide strong evidence that, besides peak inspiratory overstretching after 

lung overinflation, surfactant inactivation plays a key role in ventilation-induced intra-alveolar 

edema formation and that the effect of PEEP in reducing lung penneability to protein is at 

least partially attributable to its effect on preservation of the surfactant system. 

c Splinting open alveolar lung milts with all increased collapse tendency by PEEP 

The utilization of PEEP to splint open the airways and alveoli at end-expiration in 

surf.1ctant- deficient lungs may markedly reduce lung injury. Studies in both saline-Iavaged 

isolated perfused rat lungs [81] and saline-Iavaged intact animals [103,104] have shown that 

ventilation strategies which keep the alvcoli open throughout the respiratory cycle by 

sufficiently high levels of PEEP induce significantly less morphological injury with better 

preservation of pulmonary compliance than strategies in which alveolar collapse is allowed 

at end-expiration. Although healthy lungs do not seem to be damaged when tcnninal units are 

repeatedly opencd or closed for short periods by negative end-expiratory pressure (which 

neverthelcss reduces compliance and alters gas exchange [105]), it does bccome clcar from 

what is discussed above, that early surfactant changes, which may be induced by mechanical 

ventilation itself, predispose lungs for ventilation-induced lung injury by repeated opening and 
closure of alveolar units [83]. 

The lung as a focus of (systcnilc) inflammation and infection: lUte of ventilation-induced hmg 

InJwy 
It is becoming increasingly realized that systemic release of inflammatory mediators 

[106] and bacterial translocation from the gut into the circulation [107] playa role in MOF. 

Kolobow et al. suggested that mechanical ventilation may induce local inflammatory reactions 

in the lung and may possibly, via spread of inflammatory mediators and bacteria, contribute 

to MOF [108]. 

a Possible sites of illflammatolY mediator release 

Experiments with granulocyte-depleted animals have shown that a significant amount 

of ventilation-induced lung injury may be mediated by activated granulocytes [109] and those 

ventilation strategies that use high volume [110] andlor cyclic collapsc and reexpansion of 
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alveolar units [Ill] increase neutrophil influx and activation. The concept of ventilator­

induced mediator expression as a result of either damage to the endothelial or epithelial cells 

or stimulus of stretch receptors present on endothelial cells [112], macrophages [113] and 

epithelial cells [114] is new (the exact signal transduction pathways have been reviewed 

elsewhere [115]). 

b Ventilation-induced mediator release 

Evidence for the release of cytokines during ventilation is limited. High frequency 

oscillation (HFO) in surfactantMdepleted rabbits, which reduces shear stress, has been shown 

to induce lower levels of the inflammatory chemical mediators platelet-activating factor 

(PAF), tromboxane (TX) B, and 6-keto-prostaglandin (PG) Flu in the lavage fluid compared 

to conventional mechanical ventilation (CMV) [116]. Interestingly, this could not be 

demonstrated in healthy unlavaged lungs [116] with an intact surfactant system. Others could 

not show a difference between thromboxane A2 and prostacyclill in the perfusate of oleic acid­

injured isolated rabbit lungs ventilated with high and low tidal volume (Vt) [117]. 

Similarly, an increase in TNF-a mRNA in the intra-alveolar cells of surfactant­

depicted rabbits after 1 It of CMV was absent when such rabbits were ventilated with HFO. 

A study by Tremblay and coworkers in isolated lungs investigated the effect of different 

ventilation strategies on lung inflammatory mediator expression and production of cytokil1cS 

TNF a, IL-lp, IL-6, IL-lO, MIP-2 and y-IFN in the presence and absence of a preexisting 

inflammatory stimulus [118]. It was shown that the use of high peak inspiratory lung volumes 

and not using PEEP during mechanical ventilation have a synergis.tic effect on the release of 

pro-inflammatory mediators from the lung tissue into the ainvays. Ten cmH20 of PEEP at 

comparable peak inspiratory lung volumes or lowering peak inspiratory lung volume when 

ventilating with zero PEEP reduced these cytokine levels [118] (Figure 9). Studies by von 

Bethmann et a!. have shown that prostacyclin, tumor necrosis fact-or a and interleukin-6 are 

released into the lung perfusate of isolated perfused and ventilated mouse lungs after artificial 

ventilation [119]. For TNF release a continuous stimulation by hyperventilation is necessary 

whereas a short period of 30 minutes of hyperinflation is sufficient to stimulate release of IL-

6 for the next 120 minutes [120]. From such studies it may be hypothesized that mechanical 

ventilation serves to initiate and/or propagate an inflammatory response in the lung that acts 

as a nidus for the development of a systemic inflammatory response and that MOF could, to 

a certain degree, therefore be caused by nOll-optimal mechanical ventilation. 

Recent animal investigations by Narimanbekov et a1. suggest that treatment with 

antibodies directed against II-I reduced albumin infiltration, elastase expression and neutrophil 

counts in rabbits subjected to pulmonary lavage and 8 hours of hype roxi a and hyperventilation 

[121]. Hmvever, no effect was seen on deterioration of lung compliance and oxygenation 

which suggests that the different effects of ventilation-induced lung injury may be directed 

by different molecules. 
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Figure 9. Effect of different ventilation strategies on eytokine concentrations in isolated perfused rat 

lungs. Four different ventilation strategies were used: controls (C = normal Vt), moderate VI + high PEEP 

(MVHP), moderate Vi + zero PEEP (MVZP), high VI + zero PEEP (HVZP) resulting in the same end-inspiratory 

distension as MVHP. Major increases in cytokine concentrations were observed with HVZP. (Used with 

pennissioll from Referellce 118) 

c Ventilation-induced bacterial translocation 

Based on the observation that mechanically ventilated ARDS patients often develop 

pneumonia [122J and septicemia the question may be raised whether damaging mechanical 
ventilation can promote bacteremia andlor sepsis. It is conceivable that bacteria more readily 

gain access to the circulation from damaged lung parenchyma than from previously Honnal 

lung tissue [123, 124J. It has been established that preserving end-expiratory lung volume 

with PEEP has a beneficial effect on the course of infection in tenns of reducing bacterial 

counts recovered from the lung tissue after prolonged mechanical ventilation of lungs 

inoculated with bacteria [125]. Moreover, avoiding high peak transpulmonary pressures and 
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preserving end-expiratory lung volume with PEEP has been shown to reduce translocation of 

Pseudomonas ael1lgfJlosa [125], Escltendlfa Coli [126] and Klebsiellaplleumolliae [127] from 

the lung into the bloodstream, 

These data suggest that ventiiati0I1-induced changes in the barrier function of the lung 

epithelium and/or endothelium to bacteria may, to a certain extent, contribute to the 

development of bacteremia and endotoxemia as it is seen in MOF. Translocation may be due 

to both an increased translocation of bacteria from the alveolar space directly into the 

bloodstream or bacterial clearance from the interstitial spaces due to increased lymph flow 

which promotes drainage of bactetia from tbe lymphatics into the bloodstream. 

Physiological mtionale to prevent \'entilatioll~indllced lung injm)' 

The experimental data presented demonstrate that ventilation settings that prevent lung 

injury in both healthy and diseased lungs should recruit all alveoli and prevent their collapse 

at end~expiration. Moreover, these ventilation strategies should prevent alveolar overdistension 

or adverse hemodynamic changes due to overil1flation. 

a Preventing oveillistension 

Gattinoni et at. showed that patients with early ARDS and collapsed dependent lung 

regions, have a reduced volume of aerated lung [128]. Volume controlled mechanical 

ventilation will predominantly ventilate this aerated healthy portion of the lung with 

overdistension in such regions. Ifone assumes that 75 % of the lung is consolidated and only 

25% is ventilated, then even small tidal volume ventilation with e.g. 7 mL/kg bodyweight, 

would result in tidal volumes of 28 tnL/kg in such hmg regions with a danger of 

overdistension and further lung impainnent. Use of pressure-controlled time-cycled modes of 

mechanical ventilation in which the alveolar pressure can never exceed the peak inspiratory 

pressure set on the ventilator is then preferable to reduce dangerous alveolar overdistension 

in these lung areas [129]. 

Recent clinical investigations have shown that to prevent overdistension in ARDS 

patients, (which was defined as ventilation below the upper inflection point of the P~V curve 

of such lungs) tidal volumes have to be decreased to well below those commonly accepted 

as normal in healthy patients [130]. Other studies suggest that such decreased tidal volumes 

may increase oxygen delivery due to better hemodynamics [131, 132]. 

Preliminary reports of reduced tidal volumes by end-inspiratory airway pressure 

limitation in patients with or at risk of ARDS showed no reduction in mortality rate [133~ 

135]. Such findings may be explained by the hypercapnia, which was accepted as a 

consequence of tidal volume reduction. Hypercapnia may have several negative effects [136]. 

b Open up the lung and keep it open at end expiration 

Another explanation may be the fact that alveoli first have to be recmited to prevent 

dangerous shear forces between open and closed alveoli. It has been shown that avoiding 
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large pressure-volume variations with HFO does not totally prevent lung injury if liFO docs 

not maintain lung volume [137], which can be achieved by a preliminary sustained static 

inflation to recruit the greatest possible number of lung units before starting HFO [138]. Such 

recruited alveoli should be kept open during the whole respiratory cycle [139]. 

Gattinoni et aI., using CT scan imaging, have shown that PEEP markedly reduces the 

fraction of lung that undergoes tidal reopening and closure during mechanical ventilation of 

patients with ARDS and that the pressures required to open up all alveoli, especially the ones 

in the dependent lung, are very high [140]. Their shldies show that using peak pressures of 

50 cmH20 \vere insufficient to fully recruit alveoli in the dependent parts of the lung and/or 

PEEP pressures as high as 20 cmH20 were insufficient to keep the recruited alveoli fully open 
[140). 
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Figure 10 Schematic drawing of a pressure-volume (P-V) curve showing the proposed mechanisms of 

alveolar recruitment and collapse. With the increase of pressure during the inspiration the corresponding change 

in volume is given by the pressure-volume curve (solid line). At A the alveolus is still collapsed. It is not before 

point n that the critical opening pressure, Po, is reached, the increase in alveolar volume is immediate (dashed 

line) and reaches D. The a1veolus is recruited (note that the intra-alveolar pressure is the same at 8 and 0). 

When the pressure is reduced to the closing pressure (Pe) at point C the change in volume follows the solid line 
and the alveolus collapses again. 
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The rationale for high opening pressures to recruit the lung and the need for lower 

pressures to keep them open can be deduced from the pressure-volume curve of the individual 

alveolus (Figure 10). It was suggested by Staub and collegues that the behavior of alveoli is 

quanta I in nature [141]. Alveoli are either open or closed. A critical opening pressure has to 

be reached until previously collapsed alveoli can be opened (Figure 10). Once they are open, 

they remain open until the pressure drops below a critical level, then immediate collapse 

occurs, Reopening requires the high recruiting pressure again. Any state between open and 

closed is unstable and impossible to maintain. If this transition from closed to the open and 

from the open to the close state occurs within each single breath, the mechanisms described 

by Mead (Figure 7) postulated that stmctural damage is caused. Practical directions on how 

to open up the lung in clinical practice are beyond the scope of this chapter and have been 

described elsewhere [142, 143]. Earlier data [143] and recent data by our group [144] suggest 

that when applied early during induction of ALI in rats, this open lung approach prevents a 

decrease in pulmonary compliance associated with modes of ventilation that do not maintain 

an open lung during induction of ALI, and suggest that it is necessary to apply this open lung 

strategy early during the course of ALIIARDS [143, 144]. 

A recent clinical study by Amato et a1. showed that a ventilation strategy aimed at 

opening atelectatic lungs and keeping them open at all times in combination with a treatment 

strategy of permissive hypercapnia and a restriction on the size of tidal volume and limited 

peak inspiratory pressures, resulted in a higher rate of weaning from mechanical ventilation, 

lower rate of barotrauma, and improved 28 day survival in ARDS patients compared to 

conventional ventilation [9, 10]. 

c Smfactant thempy in acute respimtOl)' distress syudmllle 

Reestablishing a physiological surface tension at the air~liquid interface by application 

of exogenous surfactant during mechanical ventilation will prevent endMexpiratory collapse 

and dangerous shear forces between open and closed alveoli (Figure II) [11]. A recent 

multicenter, randomized pilot study showed that with high dose exogenous surfactant therapy, 

mortality of patients with ARDS of different etiology could be decreased from 43.8% to 

17.6% with better oxygenation and less ventilatory requirements [8]. Although a recent 

multicenter trial showed no effect on oxygenation or survival of nebulized surfactant 

administration in sepsis~induced ARDS patients [145], these results were likely caused by the 

low quantity of surfactant deposited in the peripheral lung tissue. Higher doses of broncho~ 

scopically administered surfactant have been shown to improve oxygenation in patients with 
sepsis-induced ARDS [146]. 

d LIquid ventilation in ARDS 

Abolishing the alveolar air-liquid interface by totally filling the lung with perfluorocarbons, 

liquids which allow gas exchange over the alveoloMcapillary balTier to continue due to their 
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capability to dissolve high amounts of oxygen and carbon dioxide, is another possibility to 

prevent alveoli from collapse and prevent dangerous shear forces [147]. However, the 

technical requirements for this technique do not make it easily routinely applicable in clinic. 

In the technique of partial liquid ventilation (PLV) the lung is partially filled up with 

perfluorocarbons and tidal volumes of gas are superimposed [147]. Preliminary reports could 

not sho\vn an improved survival and only minor improvements in oxygenation [148]. As 

perfluorocarbons have a constant surface tension and no dynamic surface tension behavior like 

surfactant (Figure 11) [149], they may predispose the lung to relative overinflation at high 

ainvay pressures and to alveolar collapse at low ainvay pressures when gas ventilation is 

superimposed. Therefore, the technique of PLY is less suitable for therapy in ARDS than 

surfactant therapy (Figure II), 
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FigUl~ 11. The surface tension behaviour of lung surfactant, serum, perflubron and waler. Lung surfactant 

shows dynamic surface tension behaviour, with low surface tension for lower surface areas and higher surface 

tension for higher surface arens. [n ARDS, the lung surfactant at the air-liquid interface is replaced with serum, 

which displays much higher surface tensions for each surface area when compared to lung surfactant. Water does 

not display dynamic surface tension behaviour and neither does perflubron. They both show a constant surface 

tension for different surface areas, which will predispose the lung alveoli to end-expiratory collapse and pcak 

inspiratory overstretching when perfluorocarbons are present at the alveolar air-liquid interface. 
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e Nihic oxide 

Inhalation of exogenous nitric oxide has been shown to be beneficial with respect to 

reducing pulmonary hypertension and improving arterial oxygenation in neonates with 

respiratory distress syndrome and in adults with ARDS [150, 151]. The main reason for 

pulmonary hypertension may well be hypoxic pulmonary vasoconstriction due to alveolar 

collapse and therefore recruitment of alveoli with abolishment of hypoxic vasoconstriction 

may well prove to be superior to the lise of nitric oxide in reducing pulmonary artery 

pressure. Moreover, Itblood gas cosmetics It by nitric oxide may direct attention away from 

establishing an optimal lung protective ventilator setting, and given the fact that nitric oxide 

is highly reactive [152], it may prove to be detrimental in the treatment of patients on 
ventilatory support. 

How to usc lllonitoting techniques to prevent ventilation-induced hmg injury 

a Lung FUIlction measmements 

Lung function measurements (Table 1) should provide basic physiological infOimation 

on 1) gas transport from the air via the lung into the blood, and 2) should - depending on the 

level of care - provide techniques which make a differentiation of the cause of the disturbance 

in gas exchange possible. 

Table 1. Monitoring requirements during mechanical ventilation 

FIRST LEVEL 
Arterial oxygen tension (Pulse oximetry) 

Acid base balance 

Airway pressuree 

SECOND LEVEL 

Lung-Thorax mechanics (compliance, resistance) 

Intra-pulmonary shunt 

Cardiac output and hemodynamics 

THmD LEVEL 

Oxygen consumption/delivery and carbon dioxide production 

Diffusion capacity 

Ventilation-Perfusion mismatching 

Lung water 

Mechanical ventilation should overcome or prevent hypoxia, which is the most 
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important and life-threatening parameter during mechanical ventilation. The oxygenation index 

(PaOiFi02) measured under standard ventilator settings, can be used to define the state of 

impainnent of the lung, although a lower than optimal oxygenation index does not 

differentiate between 1) ventilation, 2) perfusion, 3) diffusion or 4) VentilationlPerfusion 

(V/Q) problems. At present it is the most reliable and routinely available tool to define the 

state of openness of the lung under standard ventilation conditions [142]. 

Peak inspiratory pressure at flow-constant ventilation is a poor parameter to measure 

alveolar overstretching as it is influenced by a number of factors independent of alveolar 

pressure and does not allow to define the state of overinflation and/or openness of different 

lung areas [153]. To prevent repeated alveolar collapse and reexpansion, it has been suggested 

that lungs should be ventilated above the lower inflection point of their P-V curve [115, 153]; 

to prevent overdistension it has been suggested that peak inspiratory plateau pressures should 

be reduced below the upper inflection point of the P-V curve, ventilating them in the most 

compliant part of their P-V curve [115, 153]. Total lung volume and functional residual 

capacity (FRC) should ahvays be taken into account when interpreting compliance 

measurements [154]; lung compliance measurements which are not nonnalized for lung 

volume have only a limited information. Thus, if FRC measurements are not possible, one 

should at least nOID13lize lung compliance values for lean body weight. Furthermore, a 110n11al 

value for FRC does not differentiate a fully open lung from one with collapsed lung areas in 
which healthy areas are overinflated. Similarly, as the lower inflection point is thc resultant 

of the P-V curves of different lung parts with a different compliance it may be the resultant 

of overdistended anterior parts, while posterior lung parts remain collapsed (Figure 12) and 

may represent both alveolar recmitment and increases in volume of alveoli that are already 

opcn. Thus, considering the quite complicated nature of lung mechanical measurements and 

the fact that no standardized way of lung volume measurements is possible (fuIlctional 

residual capacity measurements are at this time not routinely available), oxygenation index 

is at present the best way to define the disease state of the lung. 

b IHOlphological measmements 

The development of a simple tool for detennining regional volumes during ventilation 

would be a major step fonvard in the search for safer treatment. Although CT scan may be 

used for this purpose [140], it is not likely to find its way as a routine applicable tool in 

clinics because of its price, size and possible hazards. However, electric impedance 

tomography which has been shown to have the same capabilities as CT scan, but is not 

limited by its disadvantages, may well find its way as a routine evaluation method in the 

future [155). 

c Biological malkers 

Finally, numerous biological markers have been identified which may be used to 

evaluate damage to the alveolo-capillary barrier. These have been recently reviewed elsewhere 
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[156]. For the endothelium, many specific markers are available [156], but at present only 

increased protein penneability of radio-active tracers from the alveolar lung compartment into 

the circulation evaluates the epithelial integrity, which is rate-limiting for the transfer of 

solutes over the alveolo-capillary barrier [156]. A recent preliminary report suggests the use 

of purines as a specific marker of epithelial injury [157]. The search should continue for 

highly specific biological markers in the bloodstream, such as are available for other organs, 

to monitor the metabolic and biological stress inflicted on the lung by our supportive 

ventilation therapy. 

Volume (mL) 
Overdistension Non·dependent 

~. /' .' .' . 
~ .1 ... +. 

• i .. . 
: i 

/ / 
.: ./.' 
• ,. Dependent .. ~ 

t __ ~~··~·====::::::~1t~~~·:/ ________________ _ o .+ ,,; 

o P
Oex Pressure (cm~O) 

Figure 12. Because the pressure-volume curve of the whole lung in an ARDS lung is the result of parts 

which have been affected by the disease process to different extents, the lower inflection point of the pressure· 

volume curve does not have to represent mass alveolar recruitment. but rather overdistension of non-dependent 
paris while posterior parts remain collapsed. 

Monitoring of the lung by means of physiological, morphological and biochemical parameters 

is a prerequisite for an optimal ventilation strategy in the lCU to prevent or to minimize 

ventilation-induced lung injury. Monitoring techniques should provide us as much as possible 

with non-invasive continuous data such as FRC measurements or electric impedance 

tomography or with minimal invasive data such as on-line blood gases or monitoring of 

specific biological mar~ers by means of biosensors. Some of these techniques are already 

available and some are in the experimental, developmental state. If we learn to use them to 

make the right therapeutic decisions in our patients, than it may be possible to further reduce 
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the high mortality in the leu which with we are still confronted. 

Figure 13. 
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Schcmatic presentation of the sequence of cvcnts that necessitates the usc of mechanical 

ventilation in acute respiratory distress syndrome (A RDS). Mechanical ventilation of a surfactant-deficient lung 

may lead to the development of shear forces and overinflation of 'healthy' lung parts luxating inflammatory 

mediator release and bacterial translocation from the lung into the bloodstream, which may finally lead to the 

development of a generalized inflammation: multiple organ failure (MOF). Important benefits in mortality from 

MOF may therefore be achieved by lung therapies that are directed at reducing shear forces and/or 

overdistension. 

39 



Chapter 1 

ARDSLUNG 
Bacteria, Barotrauma 

Impaired defences, Inflammation 

LIVER 
Altered Metabolism 

Ischemia 
Bacterial Translocation 

KIDNEY 

Altered BIoodflow 

Bactel'ia from Lung 

and Gut 

Endotoxin 

Inflamma tOI'Y 

Mediators 

Figure 14. Organ-organ interaction, which can perpetuate the secondary multiple organ failure (MOP)_ The 

inflammatory lung as seen with adult respiratory distress syndrome (ARDS) is usually the initiating focus, which 

may be the source of inflammatory mediators and endotoxemia_ 01, gastrointestinal. 

FUTURE PROSPECTS 

Surfactant changes playa key role in ventilation-induced lung injury. Mechanical 

ventilation strategies should avoid both continuous alveolar overdistension and repeated 

collapse and reexpansion of alveoli by keeping all alveoli open at end-expiration_ Surfactant 

therapy is likely to become another important additional therapeutic measure during 

ventilatory treatment of patients with ARDS, and recent data suggest that it may increase the 

effectiveness of antibiotic therapy for lung infection [158], which has important implications 

for patients on mechanical ventilation with ventilator-associated pneumonia [122]. 

Recent animal studies suggest that such protective lung strategies may prevent the 

release of inflammatory mediators from the lung and the transfer of bacteria and bacterial 
endotoxins to the bloodstream. This sequence of events in shown in Figure 13_ Such 

treatments may prevent the development of systemic inflammation with other organs being 

affected (Figure 14) and may have an important influence on mortality rates of ARDS_ 
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Summary 

\Ve have assessed the effects of ovcrinflation on surfactant fUllction and composition in rats 

undergoing ventilation for 20 minutes with 100% oxygen at a peak inspiratory pressure of 45 

cm H,o, with or withont 10 cm H,o PEEP (gronp 45110 and 45/0, respectively). Mean tidal 
volnmes were 48.4 (SEM 0.3) ml . kg" in gronp 45/0 and 18.3 (0.1) ml . kg" in group 45/10. 

Arterial oxygenation in group 45/0 was reduced after 20 minutes compared with group 45/10 

(305 (71) vs 564 (10) mmHg); maximal compliance of the P-V cun'e was decreased (2.09 
(0.13) versus 4.16 (0.35) ml'cm H20'!. kg'I); total lung volume at a transpulmonmy pressure 

of 5 cm H,o was reduced (6.5 (\.0) vs 18.8 (1.4) ml'kg") and the Gmenwald index was less 
(0.22 (0.02) vs 0.40 (0.05)). Broncho-alvcolar lavage flnid from the gronp of animals 

ventilated withont PEEP had a greater protein concentration (2.18 (0.11) vs 0.76 (0.22) mg 
'mr!) and a greater minimal surface tension (37.2 (6.3) vS 24.5 (2.8) mN'l11'I) than in those 

who underwent ventilation with PEEP. Group 45/0 had an increase in nOll-active to active 

total phosphoms compared with non-ventilated controls (0.90 (0.16) vs 0.30 (0.07)). We 

conclude that ventilation in healthy rats with peak inspiratory pressures of 45 cm H20 without 

PEEP for 20 min caused severe impairment of pulmonary surfactant composition and function 

which can be prevented by the use of PEEP 10 cm H20. 
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Intmductioll 

Pioneering work by Mead and Collier in 1959 showed that mechanical ventilation in dogs 

resulted in a progressive decrease in pulmonary compliance which was reversed by periodic 

forced inflations [1]. Grccnfield, Ebert and Benson related these changes in compliance to 

pulmonary surfactant by demonstrating incrcascd surface tension in lung extracts from dogs 

whose lungs were ventilated with peak inspiratory pressures of 28-32 Clll 1-12° for 1-2 h [2]. 

Intra-alveolar oedema in healthy rats subjected to intermittent positive pressure 

ventilation (IPPV) at high inflation pressures (HIPPV), without positive cnd-expiratory 

pressure (PEEP) was first demonstrated by Webb and Tiemey [3] and later confinned by 

Dreyfuss and collegues [4]. Dreyfuss and collegues showed that damage of lung tissue 

resulting in oedema formation began at the capillary endothelium and, progresscd rapidly to 

the alveolar epithelium within 20 min [4]. Using PEEP 10 cm H 20 and the same peak 

inspiratory pressure, thc lung was partially preserved from this high penneability oedema 

[4,5]. A subscquent report showed that the main dcterminant of lung oedema fonnation was 

the end-inspiratory lung volume and attributed the effect of PEEP to a decrease in lung 

capillary hydrostatic pressure [6J. 

\Ve postulate a different explanation for the effect of PEEP which may prevent 

impainnent of the pulmonary surfactant system by reducing the large changes in alveolar 

surface area which occur during mechanical ventilation with large tidal volumes. The balance 

of hydrostatic forces is altered whcn surfactant is impaired: pressure within the alveolar fluid 

lining is reduced, applying more lIsuctionll to the interstitial space, If PEEP reduces surfactant 

impainnent, this prevents suction-induced pulmonary oedema, To assess this hypothesis, we 

conducted a study to measure changes in surfactant function and composition after mechanical 

ventilation with high lung volumes or with PEEP when changes in lung volume were less. 

l\.'Iatelials and methods 

The study protocol was approved by the local Animal Committee, and the care and handling 

of the animals confonned with European Community guidelines (861609/EC). 

Twenty-four adult male Sprague-Dawley rats weighting 290-350 g, were anaesthetized with 

2% halothane and 65 % nitrous oxide in oxygen, tracheotomized and a catheter was inserted 

into a carotid artery. During the experiment anaesthesia was maintained with pentobarbital 

sodium 60 mg 'kg'! i.p. (Nembutal; Algin BV, Maassiuis, the Netherlands); neuromuscular 

block was produced with pancuronium 2.0 mg kg'! i.m. (Pavulon; Organon Technika, Boxtel, 

the Netherlands). 

After neuromuscular block, the animals were connected to a ventilator (Servo 

Ventilator 300, Siemens-Elema, Soina, Sweden) in a pressure-controlled mode, at an (Fi02) 

of 1.0, frequency 30 bpm and an VE ratio of 1:2. In order to re-open the atelectatic lung areas 

induced by the surgical procedure, mechanical ventilation with a peak airway pressure of 26 

cm H20 and a PEEP of 6 em H20 was applied for 30 s. The animals were allocated randomly 

to one of four groups (n = 6 in eaeh group). Animals in group 7/0 underwent ventilation with 
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a peak pressure of 7 em H20 without PEEP; group 45/0 undenvent ventilation with a peak 

pressure of 45 CIll H20 without PEEP; and group 45/10 ul1denvent ventilation with a peak 

pressure of 45 em H20 and a PEEP of 10 em H20. Ventilatory frequency was set at 60 bpm 

in group 7/0 and 25 bplll in group 45/10 to maintain (PaC02) within the normal range. 

Ventilatory frequency in group 45/0 was the same as in group 45/10. The control group was 

killed immediately after the surgical procedure without undergoing mechanical ventilation. 

After ventilation for 20 minutes, the other animals were killed by an overdose of pentobarbital 

via the penile vein, followed by KCI. 

Blood samples obtained from the carotid artery were measured (ABL 505, Radiometer, 

Copenhagen, Denmark) 1, 10 and 20 minutes after 30 s of ventilation with pressures of 26/6. 

Mean arterial blood pressure was measured using a Statham P23XL transducer (Spectramed, 

Oxnard, CA, USA) and recorded (Siemens Sirecust 404-1, Danvers, MA, USA). 

During mechanical ventilatioIl, animals were placed in a volume-coIlstant body 

plethysmograph to allow continuous recording of tidal volume. A pressure transducer 

(Validyne model DP 45-32, Validyne Engineering Co., Northridge, CA, USA) recorded 

pressure changes which were sampled at 10 Hz using a 12-bit analog-to-digital converter 

(DAS 1800, Keithley MetraByte, Taunton, MA, USA). 

After the animals were killed, a static pressure-volume plot was recorded using 

conventional techniques [6]. Maximal compliance (Cm"",) was defined as the steepest part of 

the pressure-volume deflation curve [8], and was detennined separately for each animal. The 

Gmenwald index, defined as (2V 5 + V 10)12V mn' where V s' V 10 and V mn = lung volumes above 

fUIlctional residual capacity (FRC) at transpulmonary pressures of 5, 10 and 35 em H20, 

respectively, was calculated [9]. FRC was taken to be total lung volume at a transpulmonary 

pressure of 5 em H20 (Vs) [10]; total lung weight was recorded. The lungs were lavaged with 

saline-CaCl2 1.5 mmol litre- I [11]. The active component of surfactant in the broncho-alveolar 

lavage fluid was separated from the non-active surfactant component by differential 

centrifugation [11], followed by subsequent phosphorus analysis [12], and the ratio of inactive 

to active surfactant was calculated. The protein concentration of BAL was determined using 

the Bradford method (Bio-Rad protein assay, Munich, Gennany) [13]. Some of the re­

suspension (20 ~I) of the active surfactant part was used for biophysical analysis of minimal 

surface tension after 50 cycles on a pulsating bubble surfactometer (PBS; Electronetics 

Corporation, Tonowanda, New York, USA), as described by Enhoming [14]. 

Statistical analysis was perfonned using the Instat 2.0 biostatistics package (GraphPad 

software, San Diego, CA, USA). Inter-group comparisons were analysed using ANOV A. 

Intra-group comparisons were analysed with repeated measures ANOV A. If ANOV A resulted 

in P < 0.05, a Bonferroni post-test was performed. All data are reported as mean (SEM). 

Results 

Data followed a normal distribution. Tidal volume, (Pa02), (PaC0 2) and mean alterial 

pressure over time in the three ventilated groups are shown in table 1. During the study 

52 



Swfaclanl damage by ovelil{flalioll 

period, tidal volumes differed markedly between groups Cfable I). At t = 1 min, (Pa02) was 
comparable in the three ventilated groups and remained stable in groups 7/0 and 45/10; (Pa02) 

in group 45/0 decreased significantly after 10 min. 

Table 1. Tidal volume (Vt)(ml'kg·'), mean arterial pressure (MAP) (nnnRg) and blood-
gas tensions (torr) of the groups who underwent ventilation during the study (mean ± SEM). 
Inter- and intra-group comparisons: ANOVA \vith Bonferroni post-test if ANOV A P<0.05. 

Significant difference compared with: #t=Q min;tt=1 min; §t=l, 10 min; *group 7/0 and 

tgroup 45/0. 

Group 710 45/10 45/0 

Time (min) 

V , 0 12.2 ± 1.2 18.2 ± 2.2'" 46.4 ± 2.7' 

12.2 ± 1.2 17.8 ± 2.1'" 49.5 ± 2.7' 

5 11.5 ± 1.0 17.9 ± 2f' 51.0 ± 2.1' 

10 10.4 ± 1.3' 18.5 ± 2.7'" 49.6 ± 2.2' 

15 10.2 ± 1.3' 18.9 ± 2.7'" 46.3 ± 2.5' 

20 10.2 ± 1.2' 18.9 ± 2f' 44.9 ± 2.6' 

PaO, 522 ± 18 511 ± 18 492 ± 12 

10 497 ± 16 525 ± 13 524 ± 17 

20 508 ± 24' 564 ± 1Of! 305 ± 71§ 

PoCO, 35.3 ± 3.3' 31.5 ± 1.9 23.4 ± 1.9 

10 37.6 ± 3.8' 42.0 ± 3.1' 21.1 ± 1.8 

20 39.6 ± 4.3' 43.1 ± 3.8f! 24.8 ± 1.7 

Meall blood 0 113.1 ± 5.2 97.0 ± 9.4 103.5 ± 10.9 

pressure 134.8 ± 5.7 65.2 ± 7.9' 77.3 ± 9.3' 

10 136.5 ± 7.7 85.4 ± 8.6' 92.3 ± 5.8' 

20 137.6 ± 5.8 97.6 ± 15.3 64.7 ± 8.1' 

Table 2 shows recovery of BAL fluid and post-mortem data for Crnn, Gmenwald 

index, V 5' total lung weight, total phosphoms, protein concentration of BAL and minimal 

surface tension for the three ventilated groups and the non-ventilated control group. There was 

no statistical difference between group 7/0 and the control group for any variable. However, 

there were significant differences, between group 7/0 and group 45/0 for all variables except 

total phosphorus. 
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Table 2. Recovery of lavage fluid and post-mortem data for maximal compliance 

(Cmax), Grucmvald index, V5, total lung weight, total phosphoms, protein concentration of 

BAL and surface tension in all four groups after the ventilation period (mean ± SEM). Inter­

group comparisons: ANDV A with Bonfen-oni post-test if ANOVA P<O.05. *Group 45/0 

significantly different compared with all otef groups. 

Group 

Conhul 7/0 45/10 45/0 

Recavel)! BAL /luid (%) 74.4 ± 1.9 75.6 ± 2.2 75.0 ± 3.2 73.3 ± 1.2 

Crnm (ml' em H}O'} . kg· l) 4.11 ± 4.49 ± 4.16 ± 2.09 ± 

Gl1lellwald index 0.41± 0.46± 0.40± 0.22± 

V, (1111' kg· l
) 17.0±1.5 16.0 ± 0.8 18.8 ± 1.4 6.5 ± 1.0' 

Total hmg weight (gram) 1.9 ± 0.1 2.0 ± 0.1 2.5 ± 0.1 3.9 ± 0.1' 

Total phospho17is (;01101) 3.8 ± 0.9 3.6 ± 0.3 4.5 ± 0.2 3.1 ± 0.3 

Proteill COIlC. BAL (lJIg"mrl) 0.44± 0.30± 0.76± 2.18± 

Jdill. SUI! tension (mN'Ill-I) 24.3 ± 1.3 26.6 ± 1.8 24.5 ± 2.8 37.2 ± 6.3' 

Figure I shows that the ratio of non-active to active surfactant was greater in group 

45/0 compared with controls. Group 45/10 showed no impainllent of any variable compared 

with the other groups or with controls. In addition, all variables were significantly different 

between groups 45/1 0 and 4510. 

Discussion 

In this shldy we used an established rat model of ventilation~induced lung injury first 

developed by \Vebb and Tiemey [3] and later intensively investigated by Dreyfuss and 

collegues [4,5]. The role of changes in the pulmonary surfactant, however, has never been 

investigated in this animal model. The study was designed to better understand the relation 

between changes in lung morphology and penneability, and changes in the pulmonary 

surfactant system. \Ve used established techniques to characterize the pulmonmy surfactant 

system. Significant changes in surfactant fUllction and composition occurred after lung 

overinflation without PEEP for a period as short as 20 min. Surfactant composition, 

characterized by significant conversion of active into non~active surfactant, was changed after 

ventilation with HIPPV. without PEEP, compared with controls who did not undergo 

ventilation. Impairment of surfactant function after lung overillflatiol1 was associated with 

impairment oflung mechanics and an increase in minimal surface tension of lung lavage fluid 

extracts. Impainnent of surfactant composition and function caused by lung overinflation was 

prevented by the use of PEEP 10 cm HlO. These findings support the hypothesis that the 
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beneficial effect of PEEP in this model of ventilation-induced lung injury is mediated by 

prevention of impairment of surfactant composition and function. 

Non-active/active total phosphorus ratio 

1.50 

* 
1.00 

0.50 

0.00 u..._--I._~i:<:<: 
Control 7/0 45/10 45/0 

Figure 1. The ratio of non-aelh'e to active lotal phosphorus. Group 45/0 has a significant conversion of 

active into non-active total phosphorus during Ihe ventilalion period compared to non-ventilated controls (Values 

are mean ± SEM; *p<O.05 group 45/0 versus control), 

Protein concentration after mechanical ventilation with high lung volumes was 

increased in BAL fluid in group 45/0; PEEP 10 cm H20 prevented protein accumulation. 

These dala arc consistent with previous studies in this model which showed less accumulation 

oflung water, lung protein penneability and absence of intra-alveolar oedema with PEEP 10 

cm H20 during ventilation with high peak inspiratory lung volumes [3,5J. 

The exact mechanism of ventilation-induced lung injury, and contributory factors, are 

still disputed. Experiments in rats with high peak inspiratory pressure ventilation of 45 cm 

H20, where peak inspiratory volume was limited by thorax restriction, have shown clearly that 

high peak inspiratory pressures alone do not induce lung injury [5J. However, a high peak 

inspiratory lung volume with peak inspiratory overstretching alone can also not explain 
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ventilation-induced lung injury, as the use of 10 em H20 of PEEP at identical peak inspiratory 

lung volumes almost completely prevented histologically assessed lung injury [5]. Although 

a role for surfactant in lung injury by lung overinflatioll was suggested [5], our data are the 

first to show the association of surfactant changes in lung injury with mechanical ventilation 

using high lung volumes. 

Several mechanisms are involved in the changes in surfactant function during 

mechanical ventilation. First, mechanical ventilation combined with overinflation enhances 

the release of surfactant from pneumocytes type II into the alveolus [15-18]. This material 

may be lost from the alveoli into the airways by compression of the surfactant film if the 

alveolar surface area becomes smaller than the surface area occupied by the surfactant 

molecules, so that surface~active material moves into the ainvays [19,20]. This mechanism 

of surfactant depletion after mechanical ventilation was first shown by Faddy in isolated rat 

lungs [20]. Mechanical ventilation increased the surface activity of lavage fluid of the 

pulmonary airways; this change in activity was dependent on the duration of ventilation and 

the size of the tidal volume [20]. Studies by \Vyszogrodski and colleagues have shown that 

PEEP prevents a decrease in lung compliance and surface activity of lung extracts, indicating 

prevention of loss of alveolar surfactant function during lung overinflation [19]. It was 

suggested that PEEP prevents alveolar collapse and thus maintains the end~expiratory volume 

of alveoli at a higher level, thereby preventing excessive loss of surfactant in the small 

airways during expiration [21]. 

Second, the pulmonary surfactant system can be divided into active and non~active 

subfractions by differential centrifugation [11]. The active subfractiol1s, which represent 

tubular~myelin like fomls of surfactant, are the metabolic precursors of the non~active 

components, which represent small vesicular stmctures [22]. Gross and Narine were the first 

to show that conversion of active into non-active surfactant sub fractions is dependent on 

cyclic changes in surface area in vitro [23]. To maintain an adequate pool of functional 

surfactant sub fractions in the airspaces in vivo, it is necessary to maintain a balance between 

secretion, uptake and clearance of the active and non~active surfactant subfractions [22]. 

Recent in vivo studies by Veldhuizen and coJIeagues in rabbits attributed surfactant 

conversion to a change in alveolar surface area associated with mechanical ventilation [24,25]. 

They found that changing ventilatory frequency [24J or the level of PEEP [25] did not affect 

the rate of conversion but that cOllversion of surfactant subfractions is dependent on tidal 

volume and time [24]. \Ve found a significant conversion of active to non~active surfactant 

in group 45/0 compared with non-ventilated controls, but no statistically significant conversion 

in the other two groups who underwent ventilation compared with controls. \Ve suggest that 

the large tidal volume in group 45/0 was able to induce significant surfactant conversion 

within 20 min. However, this 20~min period was too short to cause a significant difference 

in surfactant conversion in the groups ventilated with lower tidal volumes compared with nOI1-
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ventilated controls. The exact mechanisms underlying surfactant conversion as a result of 

changes in surface area are unknown. 

An important function of pulmonary surfactant is to aid fluid balance in the lung, and 

prevent pulmonary oedema from increased suction forces at the alveolo-capillary batTier [26]. 

Loss of surfactant function with an increase in surface tension at the air-liquid interphase on 

the alveolar walls will decrease the pressure in the alveolar fluid, altering the pressure 

gradient across the aiveoio-capillary membrane in the alveolar direction [26-28]. In vitro and 

in vivo studies have shown that pulmonary oedema, and in particular plasma-derived proteins 

in this oedema, are capable of inactivating surfactant in a dose-dependent manner [29-32]. 

This further decreases the pressure in alveolar fluid and thus causc further surfactant 

inactivation. \Vhen this vicious circle of surfactant inactivation has started, the resulting 

protein-rich pulmonary oedema accounts for much of the surfactant alternations seen in group 

45/0. The importance of subtle primary changes in the pulmonary surfactant system in 

increasing the pressure gradient across the alveolo-capillary mcmbrane, initiating a subsequent 

cascade of protein inactivation, was recently shown in a model of surfactant perturbation by 

dioctyl sodium sulfosuccinate, which does not cause any other damage of the alveolo-capillaty 

barrier [28]. The study also showed that changes in surfactant make the lung vulnerable to 

damage by mechanical ventilation [28]. 

Findings in animals with induced acute respiratory failure and in patients with acute 

respiratory distress syndrome (ARDS) suggest that changes in the pulmonary surfactant 

system playa central role in this disease process [33]. ItTespective of the cause, decreased 

surfactant function increases the forces acting at the air-liquid interface of the alveolus and 

can lead to consequences such as decreased pulmonary compliance, decreased FRC with end­

expiratory alveolar collapse; right-to-left shunt and hypoxemia with anaerobic metabolism 

[33]. Such changes necessitate the usc of mechanical ventilation to maintain adequate oxygen 

delivery to the tissues. Mechanical ventilation may, however, perpetuate the altematlons in 

the pulmonary surfactant system as found in this shldy, indicating that mechanical ventilation 

with high peak inspiratory pressures in patients with ARDS may impair the function of those 

alveoli that are still intact. The data also suggest that it is important to use PEEP in these 

patients to preserve normal surfactant function of alveoli that are not yet affected by the 

disease process. 

\V c conclude that ventilation of the lungs of healthy rats with high peak inspiratory 

volumes at peak inspiratory pressure of 45 cmI-I20 without PEEP caused severc impainnent 

of pulmonary surf.1ctant composition and function. PEEP prevented this impairment of the 

surfactant system, probably by reducing the amount of change in alveolar surface area, which 

prevents: surfactant displacement from the alveolar air-liquid interface into the small ainvays; 

increased conversion of active into nOll-active surfactant sub fractions; and increased 

hydrostatic forces over the alveolo-capillary barrier which could lead to a self-propagating 
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mechanism of surfactant inactivation. 
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Abstract 
Background: Intclmittent positive pressure ventilation with high peak inspiratory lung 

volumes (HIPPV) has been shown to induce pulmonary edema and surfactant changes. \Ve 

tested the effect of exogenous surfactant preceding HIPPV on lung function and permeability. 
Methods: Five groups of6 Sprague-Dawley rats received intratracheal administration of 
saline or 50, 100 or 200 mg/kg surfactant or no intra-tracheal administration prior to 20 min 
of HIPPV. Gas exchange was measured. A sixth group served as non-treated, non-ventilated 

controls. Post-mortem static pressure-volume curves and total lung volume at 5 cmH20 
transpulmonary pressure (Vs) were recorded; Gruenwald index and the steepest part of the 

compliance curve (Crna.;:) were calculated. Active and non-active total phosphorus and minimal 
surface tension (Ymin) ofbroncho-alveolar lavage (BAL) were measured. In another experiment 
in 5 groups of 6 rats, Evans blue lung penneability was measured. Four groups received 100, 
200 or 400 mg/kg surfactant intra-tracheally or no intra-tracheal administration prior to 20 
min HIPPY. A fifth group served as non-treated, non-ventilated controls. 
Results: Most active phosphorus was recovered in the group that received 200 mg/kg 
surfactant. This dose preserved Ys, Cmax, Gruenwald index and oxygenation after 20 min 

HIPPV and reduced Ym'" of BAL to control valuc; 200 and 400 mg/kg surfactant reduced 
Evans blue permeability. 
Conclusions: Exogenous surfactant preceding HIPPV prevents impainnent of 
oxygenation, lung mechanics and minimal surface tension of BAL fluid and reduces Evans 
blue pemleability. These data indicate a beneficial effect of surfactant on ventilation-induced 
lung injury. 
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Introduction 

The development of pulmonary edema and alveolar flooding in healthy rats after lung 

overinflation with peak inspiratory pressures of 45 cmH 20 \vithont positive end-expiratory 

pressure (PEEP) were tlrst demonstrated by \Vebb and Tiemey [I] and were later con finned 

by-Dreyfuss et a!. [2]. The main determinant for edema development is the peak inspiratory 

lung volume [3]. Experiments with thoracic restriction in this rat model have clearly shown 

that high peak inspiratory pressures themselves that are not accompanied by high peak 

inspiratory lung volumes, do not induce lung injury [3]. 

However, peak inspiratory overstretching by lung overinflation can itself not explain 

ventilation-induced lung injury, since 10 cmH20 at the same degree of O\;erdistension (e.g. 

the same peak inspiratory pressure) in this animal model has been shown to reduce 

permeability edema and almost completely prevent lung parenchymal injury [2,3J. One study 

has attributed this reduction in perll1eability edema by PEEP to a decrease in the pulmonary 

capillary hydrostatic pressure [4], which will reduce edema formation when the pressure 

balance between (1) plasma colloid oncotic pressure, (2) capillary hydrostatic pressure, (3) 

interstitial oncotic pressure and (4) alveolar surface tension at the alveolo-capillary barrier is 

shifted away from the alveolar direction [5J. However, a recent study by our group in the 

same rat model has shown a reduction in the amount of surface tension reducing surfactant 

components after 20 min of lung overinflation without PEEP. Impairment of the surfactant 

system could be prevented by the use of 10 cmH20 of PEEP [6] which prevented the 

conversion of surface active hlbular myelin-like fOl1ns of surfactant (large aggregates) into 

non-active components which represent small vesicular structures (small aggregates). Gross 

et al. were the first to show that conversion of active into non-active surfactant subfractions 

is dependent on cyclic changes in surface area in vitro [7]. Studies by Veldhuizen et a!. in 

vivo have cOllfinned that conversion is dependent on the change in alveolar surface area 

associated with mechanical ventilation [8]. These studies suggest that the reduction in alveolar 

flooding by PEEP is partially caused by its preservation of the surfactant system and suggest 

that ventilation-induced surfactant changes play a role in the development of alveolar 
flooding, 

To further elucidate the role of surfactant changes in the pathogenesis of ventilation­

induced lung injury, we investigated the effect of different doses of exogenous surf.1ctant 

preceding lung overinflation on oxygenation, lung mechanics and Evans blue dye 

penneability. 

i\'1atelials and methods 

The study protocol was approved by the local Animal Committee, and the care and handling 
of the animals conformed with the principles approved by the Council of the American 

Physiologic Society. A total of 66 adult male Sprague Dawley rats (body weight 290-350 
grams) was used. 
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Studies 011 the effects of exogenous smfacta1l1 
In the first set of experiments, 36 rats were randomly divided into six groups, anesthetized 

with nitrous oxide/oxygenlenflurane (Ethrane®, Abbott, Amstelveen, The Netherlands) 

(65/33/2 volume %), tracheotomized and a metal cannula was inserted into the trachea. The 

operation area was infiltrated with lidocaine 3.0 rug/kg (Xylocaine'», Astra Pharmaceutica BV, 
Rijswijk, The Netherlands). 

Four groups received: 1.5 ml of saline (group saline) or exogenous surfactant (Leo 

Pharmaceuticals, Copenhagen, Denmark) dissolved in 1.5 ml of saline at a dose of 50 (group 

S50), 100 (group S 100) and 200 (group S200) mglkg bodyweight administered into the 

tracheal cannula over a 5 min period. During this period the animals were turned to the 

supine, prone and both side-positions and were breathing spontaneously. The surfactant used 

in this study is a natural surfactant isolated from minced pig lungs as previously described, 

which contains surfactant proteins Band C, but not surfactant protein A [9]. One group of 
animals did not receive any intra-tracheal administration (group 45/0). All animals were then 

allowed to recover from anesthesia and those that were given intratracheal administration 

could resorb saline from the lung during the subsequent period of spontaneous breathing, this 

to avoid an interaction between mechanical ventilation and saline in damaging the lung [10]. 

Thirty minutes after tracheotomy, the animals were re-anesthetised under gaseous 

anesthesia (see above) and a polyethylene catheter (0.8 mm outer diameter) was inserted into 

a carotic artery. After this surgical procedure, gaseous anesthesia was discontinued and 

anesthesia was replaced with pentobarbital sodium 60 mg/kg, intra peritoneally (Nembutal®; 

Algin BV, Maassluis, the Netherlands) during the remainder of the experiment; muscle 

relaxation was attained with pancuronium bromide 2 mglkg, intramuscularly (Pavulon®; 

Organon Technika, Boxtet, the Netherlands). After muscle relaxation, the animals were 

connected for 20 min to a ventilator (Servo Ventilator 300, Siemens-Elema, Solna, Sweden) 

set in a pressure-controlled mode at a peak inspiratory pressure of 45 cmH20 without PEEP, 

a frequency of 25 breaths/min, an UE ratio = 1:2 and an Fi02 = 1.0. 

Blood samples taken from the carotid artery were measured 1, 10 and 20 min after 

starting mechanical ventilation (ABL505, Radiometer, Copenhagen, Denmark). 

After 20 min of mechanical ventilation, all animals were sacrificed (overdose pentobarbital 

sodium through the penile vette). A sixth group of animals was sacrificed immediately after 

tracheotomy in an identical way. Static pressure-volume diagrams were then recorded using 

conventional techniques [11]. For these measurements the thorax and diaphragm were opened. 

The animals were placed into a volume and temperature constant bodybox and the lungs were 

reexpanded with pure nitrogen up to a pressure of35 cmH20 and subsequently deflated again. 

This procedure was perfonned to rcopen lung areas that became atelectatic after this surgical 

procedure. The lungs were then immediately reinflated starting from 0 pressure in steps of 

1 cmH20 up to an intra-alveolar pressure of 35 cmH20 and subsequently deflated in steps of 

1 cmH20. This was done by changing the PEEP level on the ventilator while in CPAP mode 

(Senro Ventilator 300, Siemens-Elerna, Sola, Sweden). Pressure changes in the bodybox were 
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recorded (Validyne model DP 45-32, Validyne Enginccring Co., Northridge, CA, USA) at a 
sampling ratc of 10Hz using a (I2-bit) analog-to-digital convcrter (DAS 1800, Keithlcy 
MetraByte, Taunton, MA, USA) and stored in a computer. With the rat still in the bodybox, 
the pressure signals from the bodybox were calibrated for known volume changes 

immediately after pressure volume-recordings, by injection of known volumes of air into the 
bodybox, using a prccise syringe. The maximal compliance (Cmn) was defined as the steepest 
part of the pressure-volume deflation curve, and was detennined separately for each anima19

• 

The Gmenwald index, defined as (2Vs + VJO) 12 V mil,\: (where Vs, VJO and V mn are the lung 
volumes above functional residual capacity (FRC) at transpulmonary pressures of 5, 10 and 

35 cmH20) was calculated [12]. FRC was estimated by measuring total lung volume at a 
transpulmonary pressure of5 cmH20 (Vs) as previously dcscribed12

• For this measurement the 
lungs and the heart were removed from the thorax. After dissection ii-om the heart, the lungs 

were reexpanded with nitrogen up to a pressure of 35 cmH20 to reopen lung areas that 
became atelectatic during excision. The lungs were then left to deflate against a positive 
pressure of 5 cmH20, which ,vas chosen to compensate for the loss of negative intra-thoracic 
pressure. The total weight of lungs (W) was registered and the lungs were then immersed in 
saline at a preset depth to measure the upward force (F). According to Archimedes' principle, 

this force is caused by fluid displacement equal to the volume of the lungs. V 5 was then 
calculated as 0.99*F -0.94 *W [13). 

Thercafter, the lungs were lavaged with salinc/1.5 111M CaC12 (30 mllkg) five times. 
The percentage recovered lung lavage fluid was calculated. The obtained lavage fluid was first 
centrifuged at 400 g (Beckman OPR, Beckman Instruments Inc., Palo Alto, CA, USA) for 10 
min at 4°C to remove cells and cellular debris. The supematant of this 400 g fraction (crude 
lavage) was then centrifuged at 40,000 g for 15 min at 4'C (Beckman L8-70M) to separate 

a surface active surfactant pellet (large aggregates) from a non-surface active supernatant 
fraction (small aggregates) [14]. The large aggregates were resuspended in 2 ml conversion 
buffer (0.15 M NaCl1! OmM Trisl! 111M CaCi/O.! mM EDTA, pH 7.4) [12). Total phosphorus 
of the small and large aggregates was detennined by phospholipid extraction [15] follmved 
by subsequent phosphorus analysis [16]. Twenty ~tL of crude lavage and the resuspension of 

the active surfactant part was used for biophysical analysis of minimal surface tension after 
50 cycles on a pulsating bubble surfactometer (PBS; Electronetics Corporation, Tonowanda, 
New York, USA) as described by Enhoming [17]. This apparatus records pressure across the 
surface of a bubble, expanded in the sample fluid and communicating with ambient air. The 
bubble pulsated within a sample chamber at a frequency of 20 pulsations per minute between 
defined radius limits. The sample temperature was set at 37°C. From the known pressure 
gradient across the bubble surface and the minimal bubble radius, the minimal surface tension 
was calculated according to the Law of LaPlace (P ~ 2 ytr). 

Pel1ueability studies 

To further elucidate the exact mechanism of the effect of surfactant in HIPPV shown in the 
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first part of the shldy, a second set of studies was perfonned. Thirly rats were randomly 

divided into 5 groups of 6 rats and tracheotomized as described above. Identical to the way 

described above, three groups received exogenous surfactant at a dose of 100, 200 and 400 
mglkg bodyweight (groups SIOO, S200 and S400) and one group did not receive any 
intratracheal instil1ation. After the animals were recovered from anesthesia, allowed to breathe 

spontaneous and reanesthetised, a carotid artery was cannulated and the animals were 
connected to the ventilator, to receive mechanical ventilation. A fifth group of animals served 
as non-treated, non-ventilated healthy controls (group control). 

Vascular penneability was quantified by the extravasation of Evans blue (EB) dye over 
19 min (Sigma, Steinheim, Germany) which correlates well with the extravasation of 
radio labeled albumin at high rates of plasma leakage [18]. The dye (30 mg/ml) was filtered 
using a 0.22 ,.un Millipore filter (MILLEX-GV, Millipore Products Division, Bedford, MA, 

USA) before use [19]. One min after starting mechanical ventilation and after tracheotomy 
in the control group, EB dye (30 mglkg) was injected through the penile vene. Nineteen min 

after EB injection, the lungs were lavaged once with waml saline (30 mllkg). The lavage was 
centrifuged at 400 g to remove cells and cellular debris. The high amount of surfactant 
dissolved in the broncllo-alveolar lavage (BAL) was shown to disturb photospectrometric 

measurements of EB dye concentration. Pilot experiments (not reported) measuring the 
extinction of the chloroform layer at 620 urn at various EB concentrations in saline after 
Bligh Dyer extraction, demonstrated that EB does not dissolve in chlorofonn but completely 
dissolves in a water-methanol phase. Therefore, one ml of BAL was llsed for phospholipid 
extraction according to Bligh and Dyer [15] to separate phospholipids in a chloroform layer 
from EB in the water-methanol phase. 

After BAL, the tissue content of EB dye was detennined by perfusing the lung 

circulation via the pulmonary artery with 20 ml of waml saline (37°C) to remove 
intravascular dye. For this purpose the aorta was cut at the level of the diaphragm and the left 
auriculum was removed from the heart before lung vascular perfusion. EB was extracted from 
the lungs by incubation at room temperature for 3 days in 12 ml fomlamide (Sigma) in 
stoppered tubes [19]. 

The absorbance of water-methanol extracts of EB from BAL and of the fonnamide 
tissue extracts of EB were determined against a water-methanol and fonllamide blank at 620 
11m wavelength and by interpolation from a standard cun'c of EB in the range 0.5-10 ~lg/ml 

in water-methanol and fonnamide, respectively [19]. It could be demonstrated (data not 
reported) that after Bligh Dyer extraction there are no substances in the BAL of animals with 
lung edema not given EB that affect the absorbance for water-methanol at 620 urn. The total 
amount of EB (mg) recovered from the BAL and in the tissue was calculated. 

Statistical analysis 

Inter-group comparisons were analysed with ordinary ANOV A. Intra-group comparisons were 
analysed with repeated measures ANOV A. If ANOVA resulted in a p<0.05 a Student-
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Newman-Keuls post-hoc test was perfonned. All data are reported as mean ± standard 

deviation (SD). 

Results 

Table I gives data on Pa02 and PaC02 over time in the five ventilated groups in the studies 

on lung function. After 20 min, oxygenation decreased in the two groups that did not receive 

exogenous surfactant. Oxygenation ,vas preserved over time. in the group that received 200 

mg/kg bodyweight surfactant. 

Table 1. Data on blood gas tension (mmI-Ig) of the five vcntilated groups during the 

study period in the lung function experiments. Values are mean (SD). Inter- and intra-group 

comparisons ANDV A with Shldent-Ncwman-Keuls post-hoc test if ANDV A P < 0.05. 

Statistical significance compared with 'group 45/0; #group S100; °group 3200; St = 10 min; 
~t =20 min. 

PaO, 

PaCO, 

Gmup 

Time 

(min) 

10 

20 

10 

20 

45/0 

495.8 

(28.2), 

518.2 

(40.7)' 

307.5 

(186.8)" 

22.6 

(4.1) 

20.6 

(3.9) 

23.7 

(4.4) 

saline 

481.9 
(102.8),-°·' 

412.5 
(123.4)'·0 

322.0 

(150.7)' 

24.7 

(3.0) 

22.7 

(4.0) 

21.8 

(7.0) 

S50 8100 8200 

510.4 578.7 587.5 
(42.0),-' (25.4)'·' (25.4)' 

499.3 566.8 632.4 

(142.3) (52.1)' (39.2) 

443.1 457.7 608.4 

(191.0) (114.8) (37.7) 

24.4 23.7 23.6 

(5.4) (4.0) (2.7),.$ 

21.1 18.9 18.5 

(3.3) (2.7) (1.6) 

21.5 19.1 18.2 

(3.9) (3.7) (2.6) 

Gruenwald index, Cma\ and Vs Cfable 2) in group 8200 were comparable to non-ventilated 

controls. The amount of active surfactant in the BAL fluid was higher in group S200 than in 

all other groups. The resuspension of active surfactant in group S200 showed marc surface 

activity than in the other groups, except for group S 100. The minimal surface tension of the 
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crude lavage fluid in group S200 was comparable to group control hut was increased in all 

other ventilated groups. 

Table 2. Recovery ofBAL fluid and post~tnortem data for Cmax, Gmenwald index, V5• 

total lung weight, total phosphorus of small aggregates (SA) and large aggregates (LA) and 

minimal surface (min. surf.) tension of cnlde lavage and large aggregate rcsuspension in the 

lung function experiments in the lung function experiments. Values are mean (SD). Inter~ 

group comparisons ANDV A with Student-Newman-Keuls post-hoc test if ANOVA P < 0.05. 

Statistical significance compared with group 'S200; #group control; °group 45/0;tgroup SlOO. 

GIUUp ContlUl 45/0 saline 850 8100 8200 

RecovelJ' BAL 74.6 76.6 73.3 71.6 75.6 81.3 
fluid (%) (4.7) (4.2 ) (2.9)' (1.3)' (4.7) (6.6) 

Cmax 3.9 2.3 2.5 2.9 3.1 4.2 

(ml/cmH,D/kg) (0.7) (0.5) (0.7), (0.6)' (0.6) (0.9)' 

Gl7lellwald 0.47 0.25 0.28 0.23. 0.37 0.52 

index (0.13) (0.08)'-' (0.10)'" (0.09)'" (0.07) (0.21) 

V, (ml) 18.2 6.0 4.1 7.4 9.2 15.4 

(4.1) (2.5)' (2.4)"'" (3.2) (2.9)' (3.5)' 

Total phosplzo11ls 0.8 1.3 1.2 3.0 4.9 5.8 
(SA) (0.4) (0.3) (0.2)'" (0.9)····' ( 1.3)'-' (2.7)'" 

Total phosphol1is 3.0 2.0 2.6 6.3 7.7 17.0 

(LA) (1.6) (0.7)' (1.0)' ( 1.6)' (2.5)' (6.5)'" 

A1ill. Sill! tension 28.5 40.0 46.1 39.5 37.7 29.7 

cl1lde (mNlm) (6.5) ( 1.5)'-' (0.7)"'" (6.8),-' (7.7)'" (2.6) 

A1in. SUI! tension 24.8 38.4 45.0 14.8 6.2 1.8 
LA (mN/IIl) (2.9) (5.9)' (3.22""'" (10.52"0.'.' (7.92'" (1.5t' 

In the pemleability experiments (Table 3), oxygenation was decreased in group 45/0 

after 20 min of HIPPV. Oxygenation after 20 min was preserved and significantly higher in 

groups S200 and S400 than in groups 45/0 and S 1 00. The amount of EB dye recovered from 

the tissue was lower in controls than in all ventilated groups; there was no significant 

difference in the amount of EB dye recovered from the tissue in the ventilated groups. The 

amount of EB dye recovered from the BAL was significantly higher in group 45/0 compared 

to group control and significantly lower in groups S200 and S400 than in group 45/0. 
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Table 3. Data all blood gas tension (mmHg) and penneability indices (mean ± SD) in 

the five different groups in the penneability shldics. Values are mean ± SD. Inter- and intra-

group comparisons ANDV A with Shldent-Nc\vman-Kculs post-hoc tcst if AND V A P < 0.05. 
Statistical significance with -group 4510; #group SIOO; tgroup control. 

Group Control 45/0 8100 8200 8400 

Time 

(min) 

PaG} 535.9 514.4 538.2 542.9 

(24.3) (51.4) (47.3) (22.6) 

10 507.2 561.8 560.0 555.9 

(79.4) (38.3) (39.3) (36.6) 

20 280.1 408.4 555.9 585.0 

(114.1) (154.5) (3 1.1)'-' (38.1)'" 

PoCO, 26.9 24.0 27.5 27.0 

(2.7) (1.4) (4.1) (5.1) 

10 23.4 19.6 21.4 20.0 

(3.3)' (1.6)" (3.9)" (1.4)" 

20 21.5 20.0 22.3 19.4 

(3.4)' (2.7)" (5.1)" (2.1)' 

Evans B file 0.11 0.64 0.61 0.58 0.55 

Tisslle (mg) (0.05) (0.08)' (0.25)' (0.12)' (0.14)' 

Evans Bille 0.06 0.94 0.53 0.43 0.28 

BAL (mg) (0.01) (0.36)' (0.26) (0.40)' (0.15), 

Evans Blue 0.17 1.58 1.14 1.01 0.83 

Total (mg) (0.04) (0.43)' (0.44) (0.45)'" (0.21)t.' 

DisclIssion 

This study demonstrates that exogenous surfactant at a dose of 200 mg/kg bodyweight given 

to rats prior to HIPPV prevents impairment of lung mechanics and oxygenation after 20 min 

of HIPPV. Moreover, surfactant at a dose of 200 and 400 mglkg bodyweight significantly 

reduced the amount of EB dye recovered from the BAL fluid after 20 min of HIPPV. These 

data show that exogenous surfactant has a beneficial effect on ventilation-induced lung injUlY. 

Changes in penneability of the alveolo-capillary barrier to protein have been attributed 

to epithelial stretching. Equivalent pore radii indicate that the epithelium, rather than the 
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endothelium, is primarily responsible for restricting solute transport from the capillaries across 

the alveolo~capillary membrane into the alveolus [20,21]. As the epithelium is progressively 

stretched there is an opening of water-filled channels between alveolar cells [22,23]. 

Imp0l1ant evidence on the role of capillary hydrostatic pressure in inducing edema in 

the HIPPV rat model comes from the effect of 10 cmH20 PEEP, which was shown to reduce 

edema infiltration [1,3], This effect was attributed to hemodynamic alterations due to PEEP, 

which will reduce filtration pressure over the alveolo-capillary membrane [4]. Indeed, infusion 

of dopamine to correct the drop in systemic arterial pressure that occurs with PEEP 

ventilation was shown by Dreyfuss et a1. to partially abolish the reduction in pulmonary 

edema induced by PEEP [4]; however, this effect was only partial and as pulmonary artery 

pressure 'vas not recorded in their study it cannot be excluded that the transpulmonary 

filtration pressure after dopamine infusion, was higher than in the animals ventilated without 

PEEP [4]. Therefore, it can not be excluded that other factors contribute to intra-alveolar 

edema development. 

Loss of surfactant function with an increase in surface tension at the air-liquid 

interface on the alveolar waUs has been shown to direct the net driving force across the 

alveolo·capillary membrane to the alveolar side, resulting in intra-alveolar fluid and protein 

accumulation [5,24,25]. Based on such observations, a recent study by our group postulates 

a different mechanism for the effect of PEEP on the reduction of lung penneability edema 

in HIPPY [6]. It describes the mechanisms of surfactant impainnent after HIPPY, which 

include surfactant displacement from the alveolar air-liquid interface into the small airways 

and increased conversion of active into non-active surfactant sub fractions, and shows that 

PEEP reduces such HIPPV-induced surfactant impainnent [6]. Surfactant preservation by 

PEEP will reduce the contribution of surface tension to fluid and particle transport across the 

alveolo-capillary barrier, which would be a different explanation for the reduction in 

pemleability edema induced by PEEP [6]. If this mechanism is valid, then exogenous 

surfactant preceding HIPPV should be able to reduce permeability edema after HIPPV. The 

present study shows that this is the case and that 200 and 400 mg of exogenous surfactant per 

kg bodyweight are able to reduce intra-alveolar Evans blue dye influx. This is a substantial 

amount given the normal total surfactant phospholipid pool size of to mg/kg bodyweight in 

rats [26]. The present data demonstrate that, although peak inspiratory epithelial pore 

overstretChing and capillary hydrostatic pressure are important determinants of permeability 

edema, surfactant actively stabilizes the fluid balance in the lung and protects the lung from 

penneability edema at the level of the broncho-alveolar lavage accessible space. Such findings 

are consistent with recent findings in a model of mild surfactant pertubation by dioctyl 

sodium sulfosuccinate, which was shown to initiate protein infiltration [27], and previous 

findings on the rate-limiting effect of supra-physiological amounts of (exogenous) surfactant 

on solute permeability of nonna-ventilated rabbits [28]. The contribution of surface tension 

to fluid and particle transport across the alveolo-capillary barrier appears to be most 

prominent on transudation across the alveolo·capillary barrier, as demonstrated by the reduced 
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EB dye in the broncho-alveolar lavage accessible space, and appears to be less prominent on 

exudation from the capillary, evidenced by the equal amount ofEB recovered from the tissue. 

Once protein infiltration has startcd, plasma-derived proteins dose-dependently inhibit 

surfactant [29, 30]. This will result in a vicious circle of more fluid and protein influx as a 

result of increased surface tension with further surfactant inactivation by plasma-derived 

proteins and more destabilisatioll of the small airways. In the present Shldy, exogenous 

surfactant at a dose of 200 mgfkg preceding HIPPV prevented a drop in arterial oxygenation 

after 20 min of HIPPV and preserved Gruenwald index, Cmn: and Ys at control values. These 

findings indicate that exogenous surfactant preceding HIPPY is able to preserve normal end­

expiratory lung stability even after 20 min of HIPPY. This end-expiratory alveolar 

stabilization due to exogenous surfactant is likely caused by a more advantageous protein­

phospholipid ratio, which is a critical t:1ctor for normal surfactant function [30]. The reason 

for this more beneficial ratio is two-fold. First, there was a higher amount of surfactant 

present in the broncho-alveolar lavage accessible space, as evidenced by the higher amount 

of total phosphorus of both surface active large and non-surface active small aggregates in 

the animals given exogenous surfactant (Table 2). Second, the reduction in surface tension 

over the alveolo-capillary barrier towards nonnal levels by exogenous surfactant will have 

reduced protein influx. The large aggregate resuspension of the group given 200 mg/kg of 

exogenous surfactant showed morc potential to reduce surface tension than that of non­

ventilated controls (Table 2). HO\vever, when the influence of surfactant inhibiting proteins 

in the broncho-alveolar lavage accessible space was included, the net surface tension reducing 

potential was nonnalized to the level of controls, evidenced by the normalisation of the 

minimal surface tension of the crude lavage on the pulsating bubble surfactometer in group 

S200 (Table 2), 

Such dishlrbance of surfactant function may be the reason for repeated collapse and 

reexpansion of the lung and, thus, for ventilation-induced lung parenchymal damage [27]. It 
may thus be suggested, that surfactant changes are (partially) responsible for the lung 

parenchymal damage previously demonstrated in this animal model 2
• Such a relationship has 

been previously shown by Nilsson et al. in prematurely delivered rabbits. It was shown that 

exogenous surfactant preceding mechanical ventilation with both constant tidal volumes (to 
rnllkg) and constant peak inspiratory pressures increases lung-thorax compliance and reduces 

epithelial lesions [31]. Further studies need to be conducted to test such a hypothesis in this 

HIPPV-induced lung injury model. 

The present data show that there is an important interaction between mechanical 

ventilation and surfactant changes in inducing lung injury. Such changes occur both in a 

model of both acute lung injury of premahlrely delivered animals characterized by an 

immature surfactant system [31] and, as our data show, in a model of acute lung injury in 

adult animals, in which surfactant changes are induced by mechanical ventilation itself [6]. 

It has now been demonstrated that high amounts of exogenous surfactant have a beneficial 

effect on lung function and, possibly, survival in patients with acute respiratory distress 
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syndrome [32]. Our data suggest that administration of high amounts of exogenous surfactant 

may beneficially influence further irnpainnent of lung function due to mechanical ventilation 

in such patients by protecting the healthy lung areas that are not yet affected by the disease 

process. 

In conclusion, our data show that exogenous surfactant administration preceding 20 

min of lung overinflation without PEEP is able to reduce Evans blue accumulation in the 

broncho-alveolar lavage accessible space and preserve end-expiratory lung stability. These 

data indicate that exogenous surfactant has a beneficial effect on ventilation-induced lung 

injury. 
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SIllUmal)' 

Objective: Pulmonary clearance of technctium~labeJled human sennll albumin was 

measured in order to investigate whether the surfactant layer is a rate-limiting factor for the 

penneability of the alveolar-capillary membrane for 99flJTc_Iabclled albumin. 

Design: 

Settings: 

Subjects: 

Prospective, randomized, controlled trial. 

Research iaboratOly. 

Nineteen white New Zealand adult rabbits. 

lntelvent/Olls: Three groups of rabbits were studied: group I animals received natural 

surfactant after lung lavage; group 2 animals underwent lung lavage only and group 3 animals 

were not lavaged and served as an untreated, healthy control group. All animals were 

ventilated with high pressures. 

lvfeasllremellts GIld main results: 99mTc_labellcd albumin was nebulized into the inspiratory 

line of the breathing circuit with an air jet nebulizer. The clearance measurements were then 

immediately started. Gamma camera images were obtained in I-minute frames for 120 

minutes and stored in a 64 x 64 image matrix in a computer. 

Tn group I animals, surfactant restored bloodgases to near normal, and all animals except one 

had bi-exponential clearance curves. The half-time of the fast compartment being 35.9 ± 6.4 

mins, and the half-life of the slow compartment was 847.5 ± 143.5 mins. All group 2 animals 

also had bi-exponential clearance curves of the tracer (the half-lives of the fast and slow 

compartments were 14.6 ± 6.7 and 459.8 ± 167 mins, respectively). The half-lives of both the 

fast (p < .01) and slow (p < .01) components were significantly different behveen groups 1 

and 2. Group 3 had a mono-exponential half-life of 580 ± 225 mins. 

Conclusions: The use of 99illTc_human serum albumin as a tracer molecule is possible and 

feasible. The clearance of this tracer is, in part, detenl1ined by the integrity of the pulmonary 

surfactant system, as it is with 99fllTc-diethylenetriamine pentaacetate. 
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Illtmductioll 

It is well known that the permeability of the pulmonary blood-air barrier increases after 

surfactant depletion or impairment. Alveolar edema and presence of protein in the alveolar 

fluid represent major causes of further deterioration of nonnal lung function [1]. In order to 

measure and quantitate this change or increase in 110nnal penneability characteristics, some 

techniques have been developed with the use of radionuclides. The most frequently used 

tracer is 99mTc-diethylenetriaminc pentaacetate, which is a small, simple-to-obtain and stable 

molecule. Many reports [2-4] have shown that by using this tracer molecule, the pemleability 

of the alveolo-capillary membrane can accurately be described. The pulmonary surfactant 

system was shown [3,4J to be rate-limiting for the clearance of 99n1Tc-diethylenctriamine 

pentaacetate from the lung. 

However, the use of 99!llTc-diethylenetriamine pentaacetate has some important 

drawbacks. Thus, for example, a simple increase in lung volume causes a dramatic increase 

in pulmonary clearance of 99mTc-diethylenetriamine pentaacetate to levels found in severe 

pulmonary diseases [5,6]. This sensitivity to volume increases is one of the reasons why some 

investigators have suggested the use of different, somewhat larger molecules than 99mTc_ 

diethylenetriamine penta acetate. One such molecule is 99mTc-labelied-human semm albumin. 

Therefore, in this study, we investigated whether 99mTc_human serum albumin could 

be used to quantify the penneability characteristics of the alveolo-capillary barrier instead of 

using the conventional method with 99mTc-diethylenetriamine penta acetate. Moreover, \ve 

investigated whether the pulmonary clearance rate of 99mTc_human serum albumin is 

decreased, and wheter the clearance characteristics of 99mTc_human semm albumin are 

changed in the presence of surfactant, as it is with 99n1Tc-diethylenetriaminc pentaacetate. 

l\'1ateIials and methods 

A llima{s 

Nineteen New Zealand adult rabbits (harlan Laboratory, Zeist, The Netherlands), weighing 

3.0 ± 0.5 .kg, were used. Approval of the protocol was obtained from the instihltional Animal 

Investigation Committee. Care and handling of the animals were in accordance with the 

European Community guidelines. The animals were anesthetized with sodium pentobarbital 

(50 mg/kg body weight/h iv). After tracheotomy, neuromuscular blockage was induced with 

pancuronium bromide (0.5 mg/kg body weight/h Lm). A carotid artery was cannulated for 

blood gas measurements and blood pressure monitoring (Figure 1). 

All animals underwent pressure controlled ventilation (Servo Ventilator 900 C, 

Siemens-Elema AB, Soilla, Sweden). Initial ventilatory settings were: frequency (j) of 301m in, 

inspiratory/expiratory ratio of 1:2, Fi02 of 1.0 and a- positive end-expiratory pressure (PEEP) 

of 2 em H20. PEEP was applied to prevent atelectasis formation during preparation. The 

minute ventilation was set to keep PaC02 between 30 - 40 tOlT (4.0-5.3 kPa) by adjusting the 

peak inspiratory pressure. 

Respiratory failure was induced in 13 animals by perfomling lung lavage [71. 
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Ventilatory settings were changed as follows: peak inspiratory ainvay pressure was set at 26 

COl H20 and PEEP at 6 em H20. Lung lavage was perfonned with 30 mL/kg body weight of 

isotonic saline al 37°C. Each volume of saline was administered through the tube at a 

pressure not exceeding 40 cm H20, The lungs were lavaged until Pa02 decreased to < 100 

torr « 13.3 kPa) with these ventilatory settings, which were not changed during the 

obsen'ation period. Animals were randomly assigned to group 1 or 2, In group 1 (n=7) natural 

surfactant was instilled via the tracheal tube after the lavage procedure. Group 2 animals 

(n=6) received no surfactant. Another group of six animals served as unlavaged, healthy 

controls (group 3). These animals were ventilated during the 120-min study period according 

to the settings of groups I and 2 after the lavage procedure, 

I \ 

). Filter E) SV 900 C 

3" )Lun;:~ CZJ!IJ • •• •••• • !IUIt (, •• • • '/ "'I Nebulizer ~ 
I 
Blood Blood Control 
Gases Pressure Unit -

Fig, 1 Schematic representation of the experimental apparatus, SV 900 C, Servo ventilator 900 C, 

The surfactant used in this experiment is a natural surfactant isolated from pig lungs 

[8J. Each animal was given 100 mg surfactant phospholipids/kg body weight suspended in 

0.9% saline (25 mg phospholipids/mL), 

A solution of 1850 Mega Becquerel 99mTc_human serum albumin was prepared, using 

a commercial kit (Technescan DRN 4361, Mallinckrodt Diagnostica, Petten, The Netherlands) 

and placed into an air jet nebulizer (Ultravent, Mallinckrodt Diagnostica, Petten, The 
Netherlands). Before and after nebulizing, the binding percentage of the 99mTc_label with the 

human semm albumin molecule was tested using thin layer chromatography, 

The aerosol was then administered via the ventilation circuit [9]. The nebulizer was 

placed in the inspiratory line of the ventilation circuit. The supply of pressurized air to the 

nebulizer was controlled by a pneumatic valve which, in turn, was connected to the Servo 

Ventilator via an electronic circuit. During the period of aerosol administration, the nebulizer 

was operating during expiration only, filling the tubing in the inspiratory line with aerosol. 

The particles thus produced were administered with the ensuing insufflation. Aerosol was 
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administered until a count rate of ~ 300 counts/sec had been reached (after I to 2 mins). The 

clearance measurement was then immediately started. Gamma camera images were obtained 

in I-minute frames for 120 minutes and stored in a 64 x 64 image matrix in a computer 

(PDP 11134, Digital Equipement Corporation, Maynard, MA). 

After lID min, a small dose of 99mTc_human selUm albumin \vas injected intravenously 

in all animals in order to correct for blood background activity [10]. 

During the study period, blood gas tensions were measured at 30-min intervals during 

the 2-hr observation period. \Vhen the clearance measurement \vas completed, the animal was 

killed with an overdose of pentobarbital sodium. 

Data analysis 

Clearance measurements were analyzed by selecting a region of interest over both lungs and 

generating a time-activity curve (Fig. 2). Each corrected time-activity curve was analyzed by 

fitting a mono-exponential equation (Eq. 1) as well as a bi-exponential equation (Eq. 2) to the 

experimental data: 

A(t) ~ A(O) e'" 

A(t) ~ AP(O) eWl< + As(O) c·"S) , 
[1) 

[2) 

where A(t) is the radioactivity in the lung at any time t, A(O) is the radioactivity in the lung 

at time zero and k the decay constant. In the bi-exponential analysis, A,,(O) and As(O) 

represent the amount of radioactivity eliminated with the fast (kF) and sIo\v (ks) clearance 

components. Clearance was expressed as the half-life time (TYz = In2/k) for the single 

clearance component in the mono-exponential and for the fast (TYz f) and slow (T!h s) 

clearance components in the bi-exponential analysis. The relative amount of tracer cleared by 

the fast clearance component (fF) was calculated as AF(O)/(AF(O) + As(O)). 

Thc desired quantities (i.e. A(O), k, A,(O), As(O), kF and ks) were obtained by 

minimization of the sum of squares by using the Neider-Mead simplex method [II ,12]. This 

method for multidimensional minimization which does not rely 011 the use of gradient 

information. Different initial values were used to investigate the convergence properties of 

the method; in this study, similar estimates were obtained for widely different initial values. 

A lower boundary on the standard enol' for each parameter estimate was calculated on the 

basis of the Fisher information matrix. The F test was used for detecting differences between 

the mono- and bi-exponential fits. 

Statistical analysis 

Values arc expressed as mean ± SD. Differences between the Pa02 values of the three groups 

on t = 0, 30, 60, 90 and 120 mins were evaluated with a non-parametric Kruskal-\Vallis 

analysis of variance test. Subsequent 2 x 2 analysis between the groups was done, using the 

Mann-Whitney test for unpaired samples. Pre- and post-lavage Pa0 2 data for the surfactant 
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group (group I) were evaluated with the Friedman nonparamctric test for paired samples. 

Differences between the fast and slow components of the half-life of group 

(surfactant treated) and group 2 (Iavaged) and differences between fF of groups I and 2 were 

evaluated using the Mann-Whitney test for unpaired samples. Differences were considered 

statistically significant at a p < 0,05. 

Fig, 2 
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Time-activity cun'es of the different groups during the study period. Data are mean ± SD. From 

top to boltom: solid line control animals (group3); dotted line, surfactant-treated animals (group I); dashed line 

lavaged animals (group 2). Group I and 2 animals show bi-exponential clearance curves and group 3 animals 

show a mono-exponential clearance curve. 

Results 

All animals were kept under stable circulatory conditions throughout the experiment. Testing 

of the binding percentage ofthe labelling showed that before nebulization 98 ± 0.4% and after 

nebulization 99 ± 0.1 % of the label was connected to the albumin molecule. 

The pulmonary distribution of 99lnTc_human serum albumin was uniform in all animals. 

There was a distinct difference in clearance of the tracer between the groups. 

All clearance curves of 99ffiTc_human serum albumin of the lavaged animals (groups 

I and 2) except one, were of a bi-exponential character, with bi-exponential curves fitting 
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statistically significantly better than mono-exponential curves in all animals. Analysis of the 
surfactant-treated animals of group 1 resulted in a half-life of the tracer for the fast 
compartment of36.0 ± 6.4 mins, and for the slow compartment in a half-life of847.5 ± 143.5 
mins. In one animal of group I, however, the monophasic equation analysis fitted better than 
the biphasic equation, and the half-life was 515 mins. The fF value was 0.27 ± 0.06. In group 
2, the half-life of the fast compartment was 14.6 ± 6.6 min, and the half-life of the slow 
compartment was 460 ± 167 mins. These values, both the fast and slow component, are 
statistically significantly different from the values of group 1. The relative amount of tracer 
cleared by the fast compartment (fF) in the animals of group 2 was 0.32 ± 0.04, which did not 
significantly differ from the fF of group 1. The clearance curve of the controls (group 3) was 
monophasic of character. Group 3 had a half-life of 580 ± 225 mins. Figure 2 shows the time­
activity curves of groups 1,2 and 3 during the study period. 

Lung lavage decreased blood gas tensions to < 100 torr «13.3 kPa) in all lavaged 
animals (groups 1 and 2). The number of lavages necessary for this decrease was ~ 12 to 14 
lavages. In group 1, surfactant restored blood gas tensions almost to nonllal and there were 
no statistical differences from the pre-lavage blood gas tensions in this group. There was a 
statistically significant difference in blood gas tensions between group I after lavage and 
surfactant replacement, and group 3 (controls), except for t = 120 mins. The animals in group 
3 were slightly hyperventilated, as shown by the PaC02 values. The blood gas tensions of 
group 1 after lavage and surfactant replacement, and group 3 were statistically significantly 
different from the blood gas tensions in group 2 after lavage. Table I shows the blood gas 
tensions of the three groups during the study period. 

Discussion 
This study demonstrates that the clearance of 99mTc-human serum albumin is also, at least in 
part. detenllined by the integrity of the pulmonary surfactant system, as it is with 99mTc_ 
diethylenetriamine pentaacetate. The clearance rates in the surfactant treated animals (group 
1) are smaller than in the non-treated group (group 2). The clearance curves of almost all 
animals in group 1, however, are ofa bi-exponential character, in contrast to the control group 
(group 3) indicating still possible abnonnal penlleability and transfer characteristics of the 
tracer through the membrane. The initial fast compartment clearance rate of the surfactant­
treated group is, however, significantly slower than that of lavaged animals. 

The binding percentage of the 99mTc_Iabcl with the human scnnn albumin indicates that 
at least no dissociation has taken place in vitro. In vivo dissociation by infiltrated proteolytic 
enzymes [13] can not be entirely excluded, although no accumulation of radioactivity in the 
thyroid and salivary glands ,vas measured during these experiments, which indicates that no 
large amount of free 99mTc04- was fonned. 

In rabbits, the lung lavage model initially represents a pulmonary surfactant deficiency 
at the alveolar level [7]. The surfactant layer in the alveoli and airways is washed away by 
the wanned saline, leading to decreased lung compliance, atelectatic areas and deterioration 
of blood gas tensions. \Vhen mechanical ventilation is applied to these lungs, higher peak 
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airway and end-expiratory pressures are needed to open up the alveoli and stabilize them 

during the ventilatory cycle when compared to nOf).-lavaged animals. Exogenous surfactant 

instillation can restore lung functions and mechanics to almost 1101111ai when administered 

immediately after the last lung lavage [8], as shown in other models of respiratory failure 

[ 14]. 

Table 1. Blood gas tensions of the three groups during the Shldy period (mean ± SD) 

in torr (kPa). Group I, lavaged and surfactant-treated animals; Group 2, Javaged animals; 
Group 3, healthy control animals. A p < 0.05 was considered statistically significant (by 
Mann-\Vhitney test for unpaired samples): aStatistical significance, group I compared with 

group 2; bStatistical significance group 2 compared with group 3; CStatistical significance, 

group 1 compared with group 3. 

Group 1 Group 2 Group 3 

TIme PaD} PaCO, PaD, PaCO, PaD, PaCO, 

(mIn) 

-5 537.5±17.4 32.5±3.0 538.5±16.2 33.8±3.8 

(17.5±2.3) (4.3±O.4) (71.8±2.2) (4.5±O.5) 

0 78.4±20.3 37.7±4.5 74.2±19.5b 35.2±3.8 578.5±33.0' 27.8±8.3 

(lO.5±2.7) (5.0±O.6) (9.9±2.6) (4.7±O.5) (77.0±4.4) (3.7±1.1) 

30 460.2±84.4' 38.8±4.5 176.7±63.3b 34.0±5.3 572.3±36.9' 22.2±7.5 

(6 1.3± 10.3) (5.2±O.6) (23.5±7.4) (4.5±O.7) 76.3±4.9 (3.0±1.0) 

60 464.9±I01.2' 40.5±3.9 214.3±116.9b 35.8±5.3 579.3±61.3' 18.2±6.2 

(62.0±13.5) (5.4±O.5) (28.6±14.2) (4.8±O.7) (77.2±8.2) (2.4±O.8) 

90 469.7±118.5' 40.4±6.8 184.9±112.4b 39.5±4.5 587.1±53.9' 16.3±6.8 

(62.6±15.8) (5.4±O.9) (24.7±15.0) (5.3±O.6) (78.3±7.2) (2.2±O.9) 

120 500.1±80.7' 38.6±3.8 178.7±94.4b 41.3±4.5 553.1±47.5' 15.5±7.0 

(66.7±1O.8) (5.2±O.5) 23.8±12.7 5.5±O.6 (73.7±6.3) (2.I±O.9) 

Several workers [15-17] have shown that exogenous surfactant instillation in immature 

lungs reduces pemleability of the alveolar-capillary membrane in the immature. Surfactant 

thereby restricts fonnation of pUlmonary edema and the influx of water and proteins into the 

intra-alveolar air spaces. For these pelmeability measurements, intravenously injected iodine-
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labelled albumin was used, and permeability was assessed by measuring the amount of 

labelled albumin recovered in lung lavage fluid. These studies showed that although the 

epithelium is of greatest importance in limiting free diffusion of water and solutes into the 

alveolar air space, without the surfactant layer, high permeability of the membrane exists; this 

indicates that the phospholipid-protein layer has a critical sealing-off function. It also restores 
permeability of the alveolar-capillary barrier, as measured by 99mTc-diethylenctriamine 

pentaacetate clearance [3, 18-21]. Some workers, however, have queried thc sensitivity of this 

99mTc-diethylcnctriamine pentaacetate technique based on the fact that, even in healthy lungs, 

pulmonary clearance of 99mTc-diethylenetriamine pentaacetate can increase to levels found in 

severe acute respiratory distress syndrome by physiological factors, such as increase of lung 
volume, or even by cigarette smoking [5,6,22]. This led to the hypothesis that 99mTc_ 

diethylenetriamine pentaacetate (492 dalton, 0.6 nm (2)) could be a too small molecule to I) 

allow discrimination between intel1nediate damage and severe damage to the membrane; and 

2) allow discrimination between increased permeability resulting from damage to the 

membrane and increased due to physiological factors. This hypothesis provided the rationale 

for using radio labelled solutes ,,,hich have a greater molecular weight and radius as, for 

instance, human serum albumin (69,000 dalton, 3.5 nm [23-27]). It has been reported [28] that 

epithelial pellneability measurements could be better perfol1ued using larger molecules whose 

transfer across the membrane is less influenced by physiological factors such as lung volume. 

Barrowcliffe and colleagues [21] showed that 99mTc-albumin is a suitable tracer molecule for 

measuring epithelial penneability. 

The finding that exogenous surfactant therapy restores nonnal penneability [15-17] is, 

in part, confinned by this study, as shown by the slower clearance rates in the surfactant 

treated animals (group 1) than in the non treated group (group 2). The reason behind the multi­

exponential clearance curves in the surfactant treated animals (group 2) in contrast to the 

control group (group 3), could be that between the first lung lavage and the moment of 

exogenous surfactant administration, ventilation-induced damage had already developed. 

Studies by Nilsson and colleagues [29] showed that epithelial disnlption takes place after only 

a few breaths in case of surfactant deficiency combined with mechanical ventilation. This 

damage could largely be prevented by direct surfactant instillation to the lungs [30]. In the 

present study, surfactant instillation probably prevented further damage to the epithelium with 

subsequent, at least partial, restoration ofnoffiml integrity of the alveolar-capillary membranc. 

Inhomogeneity of surfactant distribution in the lungs, probably due to the still imperfect 

surfactant administration techniques and surfactant preparations, also may have caused 

differences in clearance rates [31]. Alveoli receiving almost no surfactant have a higher 

permeability. and alveoli receiving sufficient amounts of surfactant probably had Honnal or 

even decreased penneability for the tracer molecule [4]. This feature of the technique might 

enable the evaluation of different surfactant preparations, in which the more effective ones 

will spread more homogeneously in the lungs, leading to restored monophasic clearance 
characteristics. 
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In the lavaged animals (group 2), a hi-phasic clearance curve exists, probably caused 

by a combined effect of the induced alveolar surfactant deficiency and the nonoptimal 

mechanical ventilation mode. Lung lavage could affect individual alveoli andlor lung regions 

to a different degree, inducing differing degrees of damage and resu Iting in different half-lives 

of the tracer. This biphasic clearance curve is also seen in a model of nitrogen dioxide­

induced lung injury [32]. 

Increased alveolo-capil1ary permeability with increased intra-alveolary albumin can 

inactivate surfactant [33], which may lead to a vicious circle of protein infiltration and 

subsequent surfactant inactivation, as seen in the respiratory distress syndrome [8]. Our results 

show a possible mechanism: surfactant depletion in this model causes increased human serum 

albumin pemleability. \Ve demonstrate that exogeneous surfactant replacement prevents 

increased pemleability of the alveolo-capillary ban-ier for human semm albumin. 

Nilson and \Vollmer [34] perfonned 99mTc-Albumin and 99mTc-diethylenetriamine 

pentaacetate clearance measurements in rabbits after diocty! sodium sulphosuccinate 

administration, inducing surfactant dysfunction, foHowed by oleic acid administration, 

inducing severe damage of the alveolar-capillary membrane. The authors [34] found increased 

clearances for both substances in the oleic acid model. ·With detergent, however, clearance 

was raised for Tc-diethylenetriamine pentaacetate but not for 99mTc_Albumin. The authors [34] 

suggested that the epithelial barrier may be rate-limiting for 99mTc_Albumin, not the surfactant 

barrier. The detergent model results in depletion of surfactant at the alveolar surface but does 

not result in increased pulmonary microvascular membrane permeability to macromolecules 

[35]. Increased microvascular penneability, however, does occur in our model in combination 

with ventilation [7], which is an explanation for the faster clearance of 99mTc-Albumill in our 

study. 

The control group (group 3) in the prescnt study showed a mono-exponential clearance 

curve for 99mTc_human serum albumin, which has also been demonstrated by others [21,28]. 

The rate of clearance is so slow that one cannot exclude mechanisms of transport other than 

diffusion across the alveolar-capillary barrier with these small quantitics of protein. This 

transport, for instance, could be due to an active vesicle transport system [36]. 
The data of this study show that for 99mTc_human serum albumin clearance 

measurements, the surfactant layer is also a rate-limiting factor. Questions remain conceming 

in vivo stability and possible dissociation of the 99IDTc_human semm albumin tracer and the 

exact path of [diffusion[ of the molecule. These problems need to be addressed in further 

studies. 
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Summal), 

Objective: High frequency oscillation studies have shown that ventilation at high end-

expiratory lung volumes combined with small volume cycles at high rates best preserves 

exogenous surfactant and gas exchange in Iavaged lungs. \Vc investigated whether surfactant 

composition and gas exchange can also he preserved by conventional modes of mechanical 

ventilation which combine high levels of positive end-expiratory pressure (PEEP) with small 

pressure amplitudes. 

Design: Prospective, randomized, non-blinded, controlled study 

Setting: Research laboratory 

Subjects: Thirty male Sprague-Dawley rats 

lute/vell/iolls: Rats were lung-lavaged and treated with exogenous surfactant (100 mg/kg). 

After 5 minutes, four different ventilator settings (Fi02 = 1.0) were applied for three hours in 

4 groups of rats [peak inspiratory pressure (cm H20); static PEEP (cm H20); lIE ratio; 

frequency]: 261211:2/30 (group 26/2); 26/611:2/30 (group 26/6); 20/lOl1:2/30 (group 20110-

static); 20/617:3/130 creating au auto-PEEP of 4 cmH,O (group 20/10-auto). 

Aleasllremellts and Alain Results: In all groups, Pa02 increased immediately to pre-lavage 

values after surfactant therapy. In group 26/2, Pa02 deteriorated to post-lavage values within 

30 min when PEEP was decreased to 2 cm H20, whereas Pa02 remained stable for three 

hours in the other groups. The PaC02 increased in groups 26/2 and 20/10-static; PaC02 could 

not be reduced by increasing ventilation frequency up to 130 in group 20/1O-static. Groups 

26/6 and 20/10-auto remained nomlOcapnic. Broncho-alveolar lavage protein concentration 

was higher in groups 2612 and 26/6 compared to groups 2011 O-static and 20/lO-auto. There 

was significantly more conversion of surfhce active large aggregates into non-active small 

aggregates in group 26/2 compared to groups 201l0-static and 201l0-auto. 

Conclusions: \Vc conclude that exogenous surfactant composition is preserved by 

conventional modes of mechanical ventilation which use small pressure amplitudes and 

adequate oxygenation is maintained by high end-expiratory pressure levels. Effective carbon 

dioxide removal could be achieved by applying a ventilation mode that creates auto-PEEP and 

not by a mode which applies the same level of PEEP by static-PEEP only. 
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Intmductioll 
In neonates with respiratory distress syndrome (RDS), exogenous surfactant immediately 
reverses hypoxemia and has decreased mortality by 30-40% [1]. There are indications that 
surfactant therapy may also be beneficial in pediatric patients with acute RDS [2,3]. 

It is known from experimental studies that ventilation strategy influences the effect of 

surfactant therapy [4-6]. Studies by Froese et al. have shown that high frequency oscillation 
(HFO) at high lung volumes when combined with surfactant therapy, could improve Pa02 to 
a constant level with lower alveolar protein influx and a higher amount of active surfactant 
at the end of the study period than conventional mechanical ventilation (CMV) where Pa02 

decreased over time [5]. 
Recent data suggest that differences in conversion of active into non-active surfactant 

in both healthy animals and animals with acute lung injury receiving surfactant therapy [6-8] 
are caused by differences in cyclic changes in alveolar surface area. As tidal volumes were 

ten-fold higher during CMV than during HFO in the study by Froese and colleagues [5), this 
raises the question whether lower rates of surfactant conversion can also be obtained by 
modes of CMV that combine small volume cycles at high rates with high PEEP levels. We 
therefore investigated the effect of different pressure amplitudes and PEEP settings on 

exogenous surfactant therapy with respect to gas exchange, protein influx and conversion of 
active into non-active surfactant during a three-hour ventilation period in lung-Iavaged rats. 
Moreover, the effect of auto-PEEP on PaC02 versus a mode creating the same level of PEEP 
by static PEEP only was investigated. 

Matetials and methods 
This study was approved by the Institutional Review Board for the care of animal subjects. 

Care and handling of the animals were in accordance with National Institute of Health 
guidelines. 

The non-blinded studies were perfonned in male Sprague-Dawley rats (n ~ 24) with 
a body weight of 260-330 g (IFFA Credo, The Netherlands). After induction of anesthesia 
with nitrous oxide, oxygen and ethrane (66/33/3%), a polyethylene catheter (0.8-mm outer 

diameter) was inserted into the right carotid artery for drawing artcrial blood samples. Before 
tracheotomy, the animals received pentobarbital sodium 60 mg/kg bodyweight Lp. 

(Nembutal'v; Algin BV, Maassluis, The Netherlands) and the inhalation of cthrane was 
decreased by 50%. After a metal cannula was inserted into the trachea, muscle relaxation was 
given with pancuronium bromide 2.0 mg/kg, Lm. (Pavulon®; Organon Technika, Boxtel, The 
Netherlands) and the animals were connected to a ventilator. Anesthesia was maintained with 
pentobarbital sodium Lp. (Nembutal v; 60 mg/kg/h) and muscle relaxation was attained with 
pancuronium bromide Lm. (Pavulon'v; 2 mg/kg/h). Body temperature was kept within nonnal 
range by means of a heating pad. 

The animals were mechanically ventilated in parallel (6 animals simultaneously) with 

a Servo Ventilator 300 (Siemens-Elenta AB, Solna, Sweden) at the following ventilator 
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settings: pressure constant time cycled mode, frequency of 30 breaths/min, peak inspiratory 

pressure (PIP) of 12 em 11,0, PEEP of 2 cmll,O, liE ratio of 1:2, and an FiO, of 1.0. 

Initially. PIP was increased to 20 em H20 for I min to opcn up atelectatic regions in the 

lungs. After this opening up procedure, the ventilator settings were retumed to the previous 

ones and a 0.15 tnl blood sample 'vas taken and replaced by heparinized (10 IElml) saline 

(0.9% NaCI). Pa02• PaC02• and pH were measured by conventional methods (ABL 505, 

Radiometer, Copenhagen, Denmark). Next, respiratory failure was induced by repeated whole­

lung lavage as described by Lachmann et al. [9]. Each lavage was performed with saline (32 

mllkg) heated to 37°C. Just before the first lavage, PIP and-PEEP were elevated to 26 and 

6 cm H20, respectively. Lung lavage was repeated 5-8 times \vitll 5 min inten'als to achieve 

a Pa02<85 torr (11.3 kPa). Five minutes after the last lavage, blood gases were measured and 

within 10 min each animal received 1.2 ml of a surfactant suspension (25 mg/ml) at a dose 

of 100 mg/kg. The surfactant used in this experiment is a natural surfactant isolated from pig 
lungs as previously described [10]. 

Five minutes after surfactant replacement the animals were randomized in groups of 

six to be pressure-constant time-cycled ventilated with an Fi02 = 1.0 at different PIP, PEEP, 

VE ratio and frequency settings. One group (n=6) was ventilated with a peak pressure of 26 
cmH20, a PEEP of 2 cm H20, an VE ratio of 1:2 and a frequency of 30 breaths/min (group 

26/2); a second group (n=6) was ventilated with a PIP of 26 cm H 20, a PEEP of 6 cm H20, 

an liE ratio of 1:2 and a frequency of 30 breaths/min (group 2616); a third group (IF6) was 

ventilated at a PIP of 20 cm 11,0 and a PEEP of 10 em 11,0, an liE ratio of 1:2 and a 

frequency of 30 breaths/min (group 20/1O-static). A fourth group (n=6) was ventilated at a 

PIP of 20 cm ",0, a PEEP of 6 em H,O, an lIE ratio of 7:3 and a frequency of 130 

breaths/minute necessary to create an auto-PEEP of 4 cm H20 (group 20/1O-auto). The total 

level of PEEP \vas recorded with a tip catheter pressure transducer (Raychem EO 2A 121, 

USA) in combination with a Siemens Sirecust 1280 monitor (Siemens, Danvers, Mass., USA) 

from a Y -connection piece with the tip located in one lumen of the Y -connection piece 

proximal to the tracheal tube in each animal. It was verified that end-expiratory flow was zero 

in the groups ventilated with static PEEP by recording time-flow curves (Servo Screen, 
Siemens-Elema, Soilla, Sweden). 

Blood gases were recorded at 5, 30, 60,120 and 180 min after surfactant replacement 

in all four groups. At the end of each experiment, all animals were killed with an overdose 

of pentobarbital sodium injected through the penile vein. 

After killing, the lungs were lavaged five times with saline/1.5 mM CaCI, (32 mllkg) 

[11]. The percentage of lung lavage fluid recovered was calculated. The active component of 

surfactant in the broncho-alveolar lavage was separated from the non-active surfactant 

component by differential centrifugation [11] followed by subsequent phosphoms analysis 

[12J and the ratio of inactive to active surfactant was calculated. To get an indication of the 

concentration of plasma-derived inhibitory proteins in the lavage fluid, protein concentration 

in the supernatant of the 40,000 g centrifugation was determined [13] using a 
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photo spectrometer (Beckman DU 7400, Fullcrton CA, USA) at 595 nm with bovine serum 

albumin (Sigma St Louis, MO, USA) as a standard. 

To investigate the effect of ventilation frequency on carbon dioxide removal in the 

group ventilated with a PIP of 20 cm H20 and a static PEEP of 10 cm H20, a group of 6 rats 

was prepared as described above and surfactant depleted and ventilated accordingly. Five 

minutes after surfactant therapy, the ventilator was set at Fi0 2 = 1.0; PIP = 20 em H20; PEEP 

= 10 em H20; liE ratio = 1:2. Frequency was set at 30, 60, 90 and 130 breaths per minute 

in a non-randomized order with 15 min intervals; bloodgases wcrc recorded. 

Statistical analysis was perfomled using the Instat 2.0 biostatistics package (GraphPad 

software, San Diego, CA, USA). Inter-group comparisons were analysed with ANOV A. Intra­

group comparisons werc analysed with repeated measures ANOV A. If ANOV A resulted in 

p::;;0.05 a BonfcIToni post-test was perfomlcd. Statistical significance was accepted when 
p::;;O.OS. All data are rcported as mean ± standard deviation (SD). 
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Figure 1. Pa02 values in torr (mean ± SO) of group 26/2 (.), group 26/6 (A), group 201l0·static (U) and group 

201l0-auto (+) over time. H = healthy, L = after lavage. Time 5, 30, 60, 120 and 180 min indicate Pa02 values 

5, 30, 60, 120 and 180 min after exogenous surfactant treatment. Statistical significant differences have been 
indicated in the text. 
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Results 

All animals survived the study period. Data followed a normal distribution. 

Arterial PaOz and PaC02 before lavage, after lavage and 5 min after exogenous 

surfactant therapy were comparable in all four groups (Figures 1 and 2), After switching to 

2612 arterial oxygen tensions decreased to post-lavage values and were significantly lower 

than in the other three groups. Arterial P02 was stable and showed no inter-group differences 

(Figure 1) in the other three groups. The animals in group 20/1O-static showed a marked 

increase in PaC02 that was significantly higher at all tiIlle points compared to the other 

groups. Arterial carbon dioxide tensions could not be reduced by increasing ventilation 

frequency up to 130 breaths pcr minute (Table 1). Group 2612 also had increasing PaC02 

lcvels over the ventilation period. Groups 26/6 and 201l0-auto remained noml0capnic during 

the study period. 
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Figure 2. PaC02 values in torr (mean ± SD) of group 2612 (e), group 26/6 (.I.), group 20/10-static (B) and 

group 201l0·auto (+) over time. H = healthy, L = after lavage. Time 5, 30. 60,90,120 and 180 min indicate 

PaC01 values 5, 30, 60. 120 and 180 min after exogenous surfactant treatment. Statistical significant differences 

have been indicated in the text. 
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The recovery oflhe lavage fluid (mean ± SD) was 87.8 ± 1.3,92.0 ± 2.3, 85.6 ± 4.7 and 
87.3 ± 1.9% in groups 2612, 26/6, 20/1O-static and 20/1O-auto, respectively. The recovery was 

significantly higher in group 26/6 than in groups 20/10-static and 20/10-auto. 
Differences in the ratio of small to large surfactant aggregates have been depicted in 

figure 3 (0.69 ± 0.23,0.46 ± 0.35, 0.13 ± 0.06 and 0.15 ± 0.06 in groups 26/2, 26/6 20110 static 
and 20/10 auto). Protein concentration ofbroncho-alveolar lavage fluid (mglmL) between groups has 

been depicted in figures 4 (1.01 ± 0.20, 0.99 ± 0.41, 0.33 ± 0.11 and 0.41 ± 0.09 in groups 2612, 

2616 , 20110 static and 20110 auto. 
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Figure 3. Surfactant small (SA) to surfactant largc aggregate (LA) ratio. Group 2612 showed a significant 

conversion from surface active large aggregates into non-surface active small aggregates during the ventilation 

period (values are mean ± SD; .. p~O.05 versus groups 201l0-slntic and 20/l0-auto). 

Discussion 

This study shows that during CMV, settings that combine small pressure amplitudes with high 
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levels of PEEP best preserve the large aggregate, surface-active component of exogenous 
surfactant. The advantage of applying a mode ofventiiatioll that creates auto-PEEP, compared 

to a mode that applies the same level of PEEP by static PEEP only, is a more effective CO2 

removal. Moreover, it is shown that PEEP has a major impact on the effect of exogenous 
surfactant therapy on arterial oxygenation. A ventilator setting with a low PEEP does not 
preserve oxygenation and blood gases deteriorate immediately, whereas higher levels of PEEP 

restore oxygenation to pre-lavage values for at least 3 hours. 

Table 1. Effect of increasing frequency (bpm) on PaC02 and Pa02 in lung Iavaged rats 
given exogenous surfactant (100 mg/kg) and ventilated at PIP of20 cm H20, static-PEEP of 
10 cm H20 and IIE ratio of 1 :2. Values are mean ± SD. 

PaCO, in 10"· (kPa) PaO, in I?,,· (kPa) 

Before lavage 27±1 (3.6±O.1) 535±19.3 (71.4±2.6) 

After lavage 49±2 (6.5±O.2) 55±4.0 (7.3±O.5) 

After swfactanl 27±5 (3.6±O.6) 528±37 (70.4±4.9) 

Fi"eq. oj 30 64±IO (8.5±1.3) 546±71 (72.8±9.4) 

Freq. oj 60 82±24 (lO.9±3.2) 580±67 (i7.3±9.0) 

Freq. oj 90 77±26 (IO.3±3.4) 560±53 (74.7±7.1) 

FI~q. oj 130 80±30 (lO.7±4.1) 570±62 (76.0±8.3) 

Exogenous surfactant therapy is now routinely applied in premature neonates with 
RDS [1] and several studies have shown a beneficial effect of the use of exogenous surfactant 
in acute RDS [2,3]. However, in some neonates exogenous surfactant leads to only transient 
improvements or arterial oxygenation [1]. Although the exact reasons for this are not fully 

understood, it is becoming increasingly realized that such differences are attributable to: the 
efficacy of alveolar surfactant delivery of the application technique [14]; the composition of 
the surfactant preparation [15]; differences in the amount of surfactant inhibitors in the 
alveolar space [16]; and the mode of mechanical ventilation [4-6]. 

Data on the influence of mechanical ventilation on exogenous surfactant therapy are 
limited. Surfactant replacement studies by Kobayashi et al. in lung-Iavaged rabbits ventilated 
at a PIP of 20 cm H20 showed that a PEEP of 4 cm H20 improved survival and normalized 
blood gases and compliance as opposed to surfactant-treated rabbits ventilated without PEEP 

[4]. Our data confinn the importance of a sufficiently high level of PEEP to maintain 
adequate oxygenation (group 26/6 versus group 2612). 
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Figure 4. Protein concentration (mg/ml) of the 40,000 g supernatant fraction. Groups 26/2 and 26/6 had a 

significant increase in protein concentration compared to the other three groups (values are mean ± SD; .. p~0:05 

compared to groups 201l0-slatic and 201l0-auto). 

More recent studies by Froese and colleagues in surfactant treated (80 mg/kg) lung­

lavaged rabbits have clearly demonstrated that HFO with small volume cycles at high rates 

and high end-expiratory lung volumes is most beneficial in exogenous surfactant treatment 
and leads to a constant improvement of PaOz with a low alveolar protein influx and a high 

amount of active surfactant at the end of a 4 hour study period [5]. However, HFO may not 
be routinely available in most neonatal intensive care units. The improvements in oxygenation 

after exogenous surfactant therapy with conventional volume-constant ventilation in the same 
study showed a decline over time; analysis of surfactant composition at the end of the study 

period demonstrated a greater conversion of active into non-active surfactant with CMV than 

with HFO [5]. Such differences in conversion were explained by differences in volume cycles, 

which were ten-fold higher during CMV than during HFO [5]. Gross el al. were the first to 

show that conversion of active into non-active surfactant sub fractions is dependent on cyclic 

changes in surface area in vitro [17). To maintain an adequate pool of functional surfactant 
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subfraction in the air spaces in vivo, it is necessary to maintain a balance between secretion, 

uptake and clearance of the active and non-active surfactant sub fractions [18], Recent in vivo 

studies by Veldhuizen et al. in rabbits attribute the surfactant conversion to a change in 

alveolar surface area associated with mechanical ventilation [6, 8]. They fO}lI1rl that changing 

the respiratory rate did not affect the rate of conversion hut that conversion of surfactant 

subfractions is dependent on tidal volume and time [8]. 

It may be reasoned that also conventional modes of mechanical ventilation that 

combine small pressure amplitudes with high end-expiratory lung volumes have a beneficial 

effect on exogenous surfactant composition and function. T~le low surfactant conversipn rate 

and the adequate oxygenation in group 201l0-static show that this is indeed the case. 

However, the PaC02 level indicates that carbon dioxide could not be effectively removed with 

these settings of the ventilator. Increasing the ventilation fr~quency in the static-PEEP group 

to the same level as in the auto-PEEP group had 110 influence 011 PaC02 (Table 1), which 

indicates that alveolar ventilation could not be increased by increasing ventilation frequency. 

The more effective carbon dioxide removal is therefore not explained by the ventilatory 

frequency, hut rather by the differences in driving pressures, which is 14 cmH20 (20 cmH20 

PIP - 6 cmH20 static PEEP) at the start of expiration in the auto-PEEP group, whereas it is 

only 10 cmH,o in the static-PEEP group. High levels of PaCO, may lead to 
pathophysiological changes in the cardiovascular system and central nervous system [19]. 

Therefore, although CMV with small pressure amplitudes and high end-expiratory pressure 

levels preserves the active exogenous surfactant subfraction, the resulting high levels of 

PaC02 associated with such ventilator settings (at any of the set ventilatory frequencies) may 

not be desirable in certain categories of patients [19]. 

If at pressure-constant ventilation- one either increases the IIE ratio at a constant 

frequency, or increases the frequency at a constant IIE ratio (or both) to establish an 

expiratory time which will be too short to allow emptying of the lung to the ambient pressure, 

an auto~PEEP will be created [20-24]. This mode of mechanical ventilation can only be 

applied during pressure-constant time-cycled mechanical ventilation, and not during volume­

constant ventilation, where there is the risk of dangerous lung overinflation. Our data show 

that when applying the same level of total-PEEP with such a ventilation mode (by 4 cm H20 

of auto-PEEP and 6 cm H20 static-PEEP), effective oxygenation and carbon dioxide 

elimination can be achieved with the same level of preservation of the active surfactant 

sub fraction as with static PEEP only. Our findings on carbon dioxide elimination confinn 

previous results with this type of mechanical ventilation in patients with acute RDS [23]. 

It has been established that (plasma-derived) proteins inhibit surfactant dose­

dependently [16]. Therefore, to establish an optimal function of exogenous surfactant, it is 

necessary to maintain an optimal ratio between surfactant phospholipids and such inhibitory 

proteins. Next to higher levels of active surfactant, CMV with small pressure amplitudes and 

high end-expiratory lung volumes, both with static and auto PEEP, also resulted in a lower 

intra-alveolar protein influx than in animals ventilated with higher pressure amplitudes and 
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low PEEP levels; such findings will also have influenced Pa02 levels. 

'Ve conclude that pressure-constant time-cycled ventilation with high PEEP levels in 

a mode creating auto-PEEP may be a useful ventilation mode after exogenous surfactant 

therapy. In our study it resulted in steadily improved blood gases and effectively preserved 

surfactant. It may thus reduce the necessary amount of exogenous surfactant and treatment 

costs in clinical practice. Moreover, our data confiml that even changing ventilator settings 

during conventional mechanical ventilation has a major impact on exogenous surfactant 

therapy. Future studies are necessary to confinl1 such findings under clinical conditions and 

to compare this type of mechanical ventilation to flow-constant, pressure-limited ventilation 

and HFO. 
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SlUllIllal)' 

Objective: To investigate in a rat model of ventilation-induced lung injury (VILI) 

whether metabolic changes in the lung are reflected by an increased purine concentration 
[adenosine, inosine, hypoxanthine, xanthine and urate; an index of adenosine-triphosphate 
breakdown] of the brOllcho-alveolar lavage fluid (BALF) and whether purine can thus 

indirectly serve as a marker of VILI. 
Design: Prospective, randomized, controlled trial 
Settillg: Research laboratory 

Subjecls: Forty-two male Sprague-Dawley rats 
lnte/velliions: Five groups of Sprague-Dawley rats were subjected to 6 minutes of 

mechanical ventilation One group was ventilated at a peak inspiratory pressure (PIP) of 7 
cmH20 and a positive end-expiratory pressure (PEEP) of 0 cmH20. A second group was 
ventilated at a PIP of 45 cmH,O and a PEEP of 10 cmH,O. Three groups of Sprague-Dawley 
were ventilated at a PIP of 45 cmH20 without PEEP; prior to mechanical ventilation two of 

these groups received intra-tracheal administration of saline or exogenous surfactant at a dose 
of 100 mglkg and one group received no intra-tracheal administration. A sixth group served 

as non-ventilated controls. 
Aleasuremellis and Alaill Results: BALF was conected in which both purine concentration 

(lIM, meau ± SD, ANOVA P < 0.0001) and proteiu conceutration (mg/mL, ANOVA p < 
0.0001) were detennined. Statistical differences were analysed by a one-way ANOVA with 
a Student-Newman-Keuls post-hoc test. Purine and protein concentrations were different 
between groups (ANOVA p-value for purine and protein < 0.0001). Both purine and protein 
concentration in BALF were increased in 45/0 (3.2 ± 1.9 and 4.2 ± 1.6, respectively) 

compared to 7/0 (0.4 ± 0.1, P < 0.05 and 0.4 ± 0.2, p < 0.001) and controls (0.2 ± 0.2, P < 
0.01 and 0.2 ± 0.1, P < 0.001) and in group 45INa (5.8 ± 2.5 and 4.2 ± 0.5) compared with 
710 (purine and protein p < 0.001) and controls (purine and protein p < 0.001). PEEP 
prevented an increase in purine and protein concentration in BALF (0.4 ± 0.3 and 0.4 ± 0.2, 

respectively) compared to 45/0 (purine p < 0.01; protein p < 0.001) and 45INa (purine and 
protein p < 0.00 I). Surfactant instillation preceding lung overinflation reduced purine and 

protein concentration in BALF (2.1 ± 1.6 and 2.7 ± 1.0) compared to 45INa (purine p < 
0.001; protein p < 0.01); Surfactant instillation reduced protein concentration compared to 
group 4510 (p < 0.01). 
Conclusions: This study shows that metabolic changes in the lung as a result ofVILI 
are reflected by an increased level of purine in BALF and that purine may thus serve as an 
early marker for VILI. Moreover, the study shows that both exogenous surfactant and PEEP 
reduce protein infiltration and that PEEP decreases the purine level in BALF after lung 
overinflation. 
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Inhuduction 

Ventilatioll~illduced lung epithelial penneability changes can be described by increased protein 

concentration of the broncho~alveolar lavage fluid (BALF) [I] and increased lung clearance 

ofradio~active tracer molecules [2]. Changes in the pulmonary surfactant system, which have 

been shown to be rate-limiting for the clearance of 99ffiTc_human serum albumin from the lung, 

may be (partially) responsible for such changes [2, 3]. These penneability changes, however, 

are no direct reflection of ventilation-induced morphological changes or beginning injury of 

the lung parenchyma [I]. 

From studies in animals and patients it is known that disturbance of the delicate 

equilibrium between adenosine-triphosphate (ATP) supply and demand in ischemic heart 

tissue, leads to excretion of myocardial ATP-catabolites [adenosine, inosine, hypoxanthine, 

xanthine and urate] into the systemic circulation [4]. These purines can thus serve as 

biochemical markers for ischemic heart disease [4]. Studies in isolated perfused rat lungs have 

shown that ventilation with hypoxic gas mixtures results in increased urate concentrations of 

lung perfusate and lung tissue homogenates (5]. These changes have been attributed to 

hypoxia~induced pulmonary edema resulting in pertubation of adenine hmlOver and, more 

likely, to direct metabolic altemations due to hypoxia [5]. \Ve hypothesized that metabolic 

changes in the lung tissue induced by ventilation-induced edema or (beginning) lung 

parenchymal injury are reflected by purine production of the lung tissue and that purines may 

thus indirectly serve as markers of ventilation-induced lung injury (VILT). To test this 

hypothesis we used a rat model of lung injury induced by intermittent positive pressure 

ventilation at high inflation pressures (6~9]. The effect of exogenous surfactant instillation and 

positive end-expiratory pressure (PEEP) on ventilation-induced metabolic changes in lung 

tissue reflected by purine release and their effect on proteiu pClmeability in this animal model 

were investigated. 

:MateIials and methods 

The study protocol was approved by the Institutional Revic\v Board for the care of animal 

subjects. Care and handling of the animals were in accordance with the National Institute of 

Health guidelines. The animals had free access to commercial chow (Hope fanns, \Voerden, 

The Netherlands), 

A pilot experiment \vas designed to get an indication of the applicability of purine in 

both the blood and BALF as marker of metabolic changes in the lung tissue as a result of 

VILI. Four adult male Sprague-Dawley rats (body weight 290-340) were anesthetized with 

nitrous oxide/oxygen/halothane (65/3312 volume %), a metal hlbe was placed in the trachea 

and a catheter was inserted into a carotic artery. Two animals were connected to a ventilator 

(Servo Ventilator 300, Siemens-Etema, Solna, Sweden) for 6.5 min set in a pressure­

controlled mode, at an Fi02 of 1.0, a frequency of 30 breaths/min and an lIE ratio of 1:2. 

During mechanical ventilation, anesthesia \vas replaced with pentobarbital sodium (Nembutal; 

Algin BV, Maassluis, The Netherlands) 60 mg/kg, illtraperitoneally; muscle relaxation was 

101 



Chapter 6 

attained \'lith pancuroniul1l bromide (Pavulon; Organon Technika, Boxtel, The Netherlands) 

2.0 mg/kg, intramuscularly. In order to fe-open atelectatic lung areas induced by the surgical 

procedure, the airway pressure ,vas increased to a peak inspiratory pressure of20 cmH10 and 

a PEEP of 3 cmH20 for 0.5 min. Two rats served as non-treated, non-ventilated controls and 

were killed immediately after preparation (overdose pentobarbital through the penile vcne). 

In the main experiment. in 38 animals a metal tube was put in the trachea as described 

above. Thirty-two of these animals were randomized to one orthe following five experimental 

groups to he mechanically ventilated for 6.5 minutes. After an opening procedure identical 

to the one described in the pilot experiment, one group of animals was ventilated with a peak 

inspiratory pressure of 7 cmH20 without PEEP (group 7/0, n=6). A second group was 

ventilated with a peak inspiratory pressure of 45 cmH20 with 10 cmH20 PEEP (group 45/10, 

n=6). Three other groups were ventilated with a peak inspiratory pressure of 45 cmH10 

without PEEP; immediately prior to mechanical ventilation one of these groups received 100 

mglkg body weight surfactant dissolved in 1 mL of saline (group 451S, 11=7); a second group 

received I mL of saline only (group 45/Na, n=6); a third group did not receive any intra­

tracheal administration (group 4510, n=7). After the ventilation period, the animals were killed 

by an overdose of pentobarbital through the penile vein. A sixth group of animals (n=6) was 

randomized to serve as non-treated, non-ventilated controls (control group) and was killed 

(overdose pentobarbital through the penile vene) immediately after a metal tube was placed 
in the trachea. 

All chemicals were purchased from Sigma (St. Louis, MO) unless stated otherwise. 

In the pilot experiment, immediately after the ventilation period, 3 mL of heparinized blood 

were drawn from the artcrial line. In all animals, thc lungs werc immediately lavaged with 

wanu saline (3rc, 30 mLlkg). The blood and the BALF were centrifuged (Beckman OPR, 

Palo Alto, CAl at4'C at 400 x g for 10 min to remove cells and cellular debris. The plasma 

and part of the BALF were both immediately mixed 1: 1 with a cold aqueous solution of 

dipyridamole 20 ~tM and EHNA 10 fJ.M. These mixtures were deproteinized with equal 

amounts of cold perchloric acid (8%, w/v), and then centrifuged at 3000 x g for 10 min at 

4'C. The pH of the supernatant fluid was adjusted to 5-7 with 6 M KOHI2 M K,CO,. The 

solution was then centrifuged at 11,000 g. The supernatant \vas stored at _80°C until further 

analysis. 

Protein concentration in the BALF was detelluined with the Bradford method (Bio-Rad 

protein assay, Munich, Gelluany) using a photospectromcter (Beckman DU 7400, Fullerton, 

CA) at 595 nm with bovine serum albumin as a standard [10]. 

Purine was detemlined by reversed phase high-perfonnance liquid chromatography 

(HPLC) according to Smolenski et al. [II). In brief, a CIS column (Hypersil ODS 3 [un, 150 

x 4.6 mm; Alltech, Deerfield, IL) was employed combined with a CIS guard column (Hypersil 

ODS 5 fJ.m, 7.5 x 4.6 mm). The system configuration consisted of a Waters 510 pump, a 

cooled \Vaters 712 \VISP autos ampler, a Spectra Focus fonvard optical scanning detector 

(Spectra-Physics, San Jose, CAl and a Waters MilleniulIl 2010 data system (Waters, Milford, 
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MA). Peaks were detected at 254 nm (hypoxanthine, xanthine, inosine, adenosine) and at 280 

nm (uric acid). BALF purines were identified based on their retention times, their co-elution 

with standards and their 254/280 ratios. 

Statistical analysis: 

Intra-group comparisons were analyzed with a one-way ANOV A. If ANDY A resulted in a 

p < 0.05 a Shldent-Newman-Keuls post-hoc test was perfOlTIled. All data are reported as mean 

± standard deviation (SD). 

RCSldts 

ANOV A for both purine and protein resulted in a p-value < 0.000 I. 

In the pilot experiment, total purine levels in the blood were 12.4 and 6.6 J.tM in the 2 control 

animals and 9.0 and 5.6 J.tM in the 2 animals in group 45/0. Total purine levels in BALF 

were 0.4 and 0.6 J.tM in the 2 control animals and 2.6 and 1.7 ~lM in the two ventilated 

animals. 

Purine concentration (I-'M) 

10 

8 

Control7/0 45/10 45/0 45/S 45/Na 

Figure 1. Purine concentration in broncho-alvcolar lavage fluid (~Ii\-1, mean ± SD) in all experimental 

groups. See text for statistical differences. 

Both purine concentration (Fig. I) and protein concentration (Fig. 2) in BALF were 

significantly increased in groups 45/0 compared to non-ventilated (group C, purine p < 0.0 I; 
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protein p < 0.001) and ventilated controls (group 7/0, purine p < 0.05; protein p < 0.001) and 

in group 45/Na compared to non-ventilated (purine and protein p < 0.001) and ventilated 

controls (purine and protcin p < 0.001); in group 45/S only protein concentration was 

significantly increascd versus ventilated and non-ventilated controls (both p < 0.00 I). 

The group ventilated with 10 cmH20 PEEP at the same peak inspiratory pressure 

(45/1O) showed no increase in purine concentration (Fig. 1) or protein concentration (Fig. 2) 

in BALF compared to ventilated and non-ventilated controls. Both total purine and protcin 

concentrations were significantly lower in the group ventilated with 10 cmH20 than in the 

animals ventilated at the same peak inspiratory pressure without PEEP {purine p < 0.0 I; 

protein p < 0.001 and group 45/Na (purine and protein p < 0.001). 

Surfactant instillation preceding lung overinflation without PEEP prevented a 

significant increase in purine concentration after lung overinflation compared to controls, 

significantly lowered purine and protein concentrations in BALF compared to sa tine-treated 

animals (purine p < 0.001; protein p < 0.001) and lowered protein concentrations compared 

to non-treated (45/0) animals (p < 0.01). 

Protein concentration was significantly lower in group 45/10 than in 45/S (p < 0.001). 

Purine concentration \vas significantly lower in group 45/0 than in 45INa (p < 0.001). 

Protein concentration (mgjmL) 
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4 

2 
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Control 710 45/10 45/0 45/S 45/Na 

Figure 2. Protein concentration in broncho-alvcolar lavage fluid (mg/mL, mean ± SD) in all 

experimental groups. See text for statistical differences. 
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Discussion 

This study demonstrates that early metabolic changes in rat lung tissue as a result of 

mechanical ventilation at peak pressures of 45 cmH20 without PEEP for 6 min are reflected 

by a significant increase in purine concentrations in BALF compared to ventilated and IlOIl­

ventilated controls. At the same peak pressure PEEP decreases the purine level in BALF. Both 

exogenous surfactant and PEEP reduce protein infiltration, which is increased after lung 

overinflation. 

Increasing data supports the role of mechanical ventilation in the pathogenesis of acute 

lung injury (ALI), and the clinical relevance of ventilation-induced lung injury is becoming 

increasingly realized [12]. The exact mechanisms of VILI and contributing factors are still 

disputed [13]. Experiments in rats with high peak inspiratory pressure ventilation of 45 

cmH20, where peak inspiratory volume was limited by thorax restriction, have clearly shown 

that rather than peak inspiratory pressure, the peak inspiratory lung volume is injurious [8]. 

More recently, mechanical ventilation at low lung volumes has become recognized as an 

important contributing factor to ventilation-induced lung injury if end-expiratory alveolar 

collapse is allowed [14]. 

Experiments in rats [6, 7] showed that mechanical ventilation \vith high peak 

inspiratory pressures of 45 cmH20 without PEEP results in penneability and structural 

changes of the alveolo~capillary barrier comparable to those seen in acute lung injury. The 

use of 10 cmH20 of PEEP at such peak pressures prevents ventilation~induced permeability 

and lung parenchymal changes. This PEEP effect is attributable to both decreased lung 

capillary hydrostatic pressure [8] and preservation of the surfactant system [3], which decrease 

filtration pressure over the alveolo~capillary barrier. Our data on protein concentration of 

BALF in groups 45/0 and 45/10 are consistent with such findings. 

In the present study, we evaluated whether purines are formed in VILI and may be 

lIsed as early markers to show metabolic changes in lung tissue. Moreover, to further 

elucidate the mechanisms of VILI, we investigated the effect of PEEP and surfactant on 

ventilation-induced purine and protein release in the epithelial lining fluid. \Ve chose to 

ventilate for only 6 min because early signs of increased capillary permeability (which 

included an increase in 22Na distribution space, dry lung weight and fractional albumin uptake 

[7]) are already present after 6 min of mechanical ventilation in this animal mode1. 

The pilot experiment showed no increase in serum purine concentration in rats 

subjected to lung overinflation compared to controls. This in contrast to experiments in 

isolated perfused rat lungs after hypoxic stress which showed increased urate concentrations 

in a Krebs-Ringer bicarbonate perfusion buffer [5]. \Ve suggest that a possible increase in 

plasma purine concentration as a result of ventilation-induced lung parenchymal metabolic 

changes or injury, is obscured by the high basal total purine concentration of plasma [4]. 

Therefore, we did not further investigate the use of total purine levels in the plasma as a 
marker of (metabolic changes in) VILI. 

In group 4510 there was an increase in total purine concentration of BALF compared 
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to PEEP-treated and ventilated and non-ventilated control animals. It has been shown in this 

animal model, that the combination of a high peak inspiratOlY lung volume and a lack of 

PEEP is the main stimulus for lung injury [3, 6-9J. A previous publication by our group [3] 

has shown that the tidal volume is 48.4 mL/kg in group 4510,18.2 mL/kg in group 45/10, and 

12.2 mLlkg in group 7/0. The tidal volume of spontaneously breathing, healthy Sprague­

Dawley rats has been reported as 7.2 mLlkg [15]. These differences in tidal volume and PEEP 

are likely the most important reason for the observed differences in protein infiltration and 

recovery of purine in BALF. 

In contrast to ATP, purine has no polarity restrictions in crossing cell membranes. 

Therefore, first, purine release in these experiments on VILI may indicate that cells with an 

intact cell membrane suffered from stress by a stimulus, that resulted in increased conversion 

of ATP. Such metabolic stress would be reversible. Second, the purine may have also been 

released from cells with a ruptured cell membrane, which would indicate irTeversible cell 

damage. \Vith the present data, we are not able to make a distinction between the two. 

However, it is evident that the most injurious type of mechanical ventilation (the combination 

of high end inspiratory lung volumes without PEEP) resulted in the highest levels of purine 

in BAL. 

In the rat model of VILI used in the present study, both the lung endothelium and 

epithelium are possible sites of purine release [8]. Another cause for the increased purine 

concentration in BALF lllay be purine from the blood, reaching the alveolar space by 

increased permeability of the alveolo~capillary barrier. 

In the rat, the average cell number (108
)/ cmJ in the lung is: 1.3S, 2.65 and 7.S6 for 

type I, type II and endothelial cells, respectively [16] and the volume percentage of those cells 

in the lung tissue is 12.6,9.7 and 26.4%, respectively [16]. The ATP concentration of cultured 

type II cells has been reported as 5.0 nmoIlIO' cells [17], which would ,equal 1325 nmol/g 

type II tissue; that of the cultured myocardial vascular endothelium is 14.2 nmol/g wet tissue 

[IS]. We do not know of any publication that defines the ATP content ofpneumocytes type 

1. However, we could exclude the type I cell as a possible site of purine release and consider 

the type II cell as the only site in the lung epithelium from which purines were released. It 

is likely that the type II cell can produce purinc because metabolical1y it is highly active and 

contains sufficient amounts of ATP-ase [16]. Even when we assume that the type I cell does 

not contribute to purine production, only on the basis of the ATP content of the type II cell 

the potential for purine production in the lung epithelium would be a factor 34 greater than 

that of the endothelium. 

During mechanical ventilation at a peak inspiratory pressure of 45 cmHzO without 

PEEP in rats, the pulmonary infiltrate consists of pure plasma [7]. The plasma protein 

concentration in the rat has been reported as 80 mg/mL [20]. By multiplying the protein 

concentration of the BALF (4.2 ± 1.6 mg/mL) with the amount of BALF (8.8 ± 0.7 mL), it 

is calculatcd that the amount of protein that infiltrated the alveolar space in the rats ventilated 

at a peak inspiratory pressure of 45 cmHzO without PEEP was 37 mg. Therefore, the amount 
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of plasma that infiltrated the alveolar space was about 0.5 mL. The average plasma purine 

concentration in the rat in our pilot experiments was 8.4 ~lM. Therefore, the total amount of 

purine in the alveolar space as a result of plasma infiltration would be 4.2 nmo1. If this would 

be totally recovered in the BALF, the maximal concentration of purine in BALF attributable 

to plasma infiltration would be 0.4 J.lM, which is 14% of that actually found. These 

calculations and the fact that BALF rinses the lung epithelium, give strong support to the idea 

that the increased purine concentration in BALF in our study reflects early epithelial changes 

and not endothelial changes or serum purine infiltration. 
The most likely candidate for ventilation-induced hypoxic metabolic changes andlor 

mechanical stress injury is the surfactant producing type II pneumocyte, whose surfactant pool 

becomes impaired as a result of lung overinflation [21-23]. Recent investigations in this rat 

model of lung injury induced by lung overinflation have shown that mechanical ventilation 

without PEEP induces impaimlent of the surfactant system, which is prevented by the use of 

PEEP [3]. Our data on the PEEP-treated group 45/10 suggest that surfactant preservation may 

have resulted in decreased purine concentration in BALF after PEEP, which may reflect 

prevention of hypoxic metabolic changes andlor mechanical stress of the pneumocyte type II. 

Decreased protein pemleability in the surt:1ctant-treated group 45/S is then attributable to 

prevention of a decrease in pressure of the alveolar fluid, altering the pressure gradient across 

the alveolo~capillary barrier into the alveolar direction [3, 24], which is in accordance with 

previous results on exogenous surfactant therapy in, surfactant~depleted rabbits [2]. 

Concluding, the data from this study show that purines in BALF reflect ventilation~ 

induced metabolic changes to the lung tissue and may thus indirectly serve as markers of 

VILI. The most likely origin of purine is the epithelial type II cell. Moreover, our data 

provide strong evidence that in this animal model of VILI, early changes of injury are not 

confined to the endothelium [7] and that the epithelium also suffers from early changes of 

injury. These findings are especially interesting since, at present, no specific marker for lung 

epithelial injury in ALI is available [1]. The study also shows that both PEEP and surfactant 

are capable of reducing protein infiltration in VILI; PEEP also decreased purine concentration 
ofBALF. 
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Sunuuary 

Objective: To detennine the effect of peak inspiratory pressure (PIP) and positive 

end-expiratory pressure (PEEP) 011 the development of bacteremia with Klebsiellaplleulllolliae 

after mechanical ventilation of intratracheally inoculated rats. 

Design: 

SetNng: 

Subjects: 

IllteJ1'enlions: 

Prospective, randomized, animal study 

Experimental intensive care unit of a University 

Eighty male Sprague Dawley rats 

Intratracheal inoculation with 100 ~tl of saline containing 3.5-5.0 x 105 

colony fonning units (CFUs) K. pneulllolliae/ml. Pressure-controlled ventilation (frequency 

30 bpOl; lIE ratio ~ 1:2; FiO, ~ 1.0) for 180 min at the following settings (PIP/PEEP in 

cOlH,O): 13/3 (n ~ 16); 13/0 (n ~ 16); 30/10 (n ~ 16) and 30/0 (n ~ 16), starting 22 hours 

after inoculation. Arterial blood samples were obtained and cultured before and 180 min after 

mechanical ventilation and immediately before sacrifice in 2 groups of non-ventilated control 

animals (n = 8 per group). After sacrifice, the lungs were homogenized to determine the 

number of CFUs K. pllellmoJliae. 

Aleasurements and results: The number ofCFUs recovered from the lungs was comparable 

in all experimental groups. After 180 min, 11 animals had positive blood cultures for K. 

plleuJllolliae in group 30/0, whereas only 2, 0 and 2 animals were positive in 13/3, 13/0, and 

30110, respectively (p < 0.05 group 30/0 versus all other groups) 

Conc/usions: These data show that 3 hours of mechanical ventilation with a PIP of 30 

cmI-I10 without PEEP in rats promotes bacteremia with K. plleulllolliae. The use of 10 cmH10 

PEEP at such PIP reduces ventilation-induced K. pllellmolliae bacteremia. 
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Introduction 

Patients suffering from acute lung injury (ALI) or acute respiratory distress syndrome (ARDS) 
who receive mechanical ventilation often develop pneumonia and finally die of septicemia or 
multiple organ failure (MOF) [1]. The realization is growing that bacterial translocation from 
the gut into the systemic circulation [2] and the systemic release of inflammatory mediators 
[3] playa major role in the pathophysiology of MOF. 

Recently, it could be demonstrated that using a high peak inspiratory pressure (PIP) 
and not using positive end-expiratory pressure (PEEP) during mechanical ventilation have a 
synergistic effect on the release of pro-inflammatory mediators from the lung tissue into the 
ainvays [4]. Moreover, use of a high PIP was shown to induce the release of pro­

inflammatory mediators into the systemic circulation [5]. LO\vering PIP [4, 5] or increasing 
the level of PEEP [4] reduced these pro-inflammatory cytokine levels. From these findings 
it was hypothesized that mechanical ventilation serves to initiate and/or propagate an 
inflammatory response in the lung that acts as a nidus for the development of a systemic 
inflammatory response and that MOF could, to a certain degree, therefore be caused by non­
optimal mechanical ventilation [4]. 

Based on the observation that mechanically ventilated ARDS patients often develop 

pneumonia and septicemia, we raised the question whether mechanical ventilation can 
promote bacteremia. To test this hypothesis we invcstigated the role of peak inspiratory 
pressure (PIP) and the effect of positive end-expiratory pressure (PEEP) on development of 
bacteremia with K. pneumolliae after mechanical ventilation of rats inoculated with K. 

plleUl1I011iae. 

lUatctials and methods 

The shldy protocol was approved by the institutional Animal Investigation Committee. Care 

and handling of the animals were in accordance with the European Community guidelines. 
An inoculum of 3.5-5.0 x 105 colony fornling units (CFU)/ml Klebsiella pneumonia 

(ATCC 43816; serotype 2) was prepared as follows: stationary-phase culhlres were prepared 
by incubation for 16 hours at 37°C in Mueller-Hinton broth (MHB; Difco Laboratories, 
Detroit, Michigan, USA). After proper dilution and reincubation for 90 minutes at 37°C, the 
culture was washed twice with saline. The inoculum was stored on ice until use. To verify 

the number of viable bacteria in the inoculum, 1 00 ~tl of 10-fold dilu tion steps in phosphate 
buffered saline (pH 7.3; Oxoid Ltd., Basingstoke, UK) on ice were plated on Iso-Sensitest 
agar plates (Oxoid Ltd., Basingstokc, UK). The agar plates were incubated overnight at 37 
°C and CFUs were counted the following day. 

A total of 85 male Sprague Dawley rats (body weight 270-320 gram) was used. 
Anesthesia ,vas induced with a mixhlfe of nitrous oxide, oxygen and ethrane (66/33/1-2%). 
Anesthesia was maintained for approximately half-au-hour by intramuscular injection of a 
mixture of ketamine (12 mglkg, Ketalin, ApharnlO, Amhem, the Netherlands) and xylazine 
(0.8 mg/kg, Xylalin, Aphanno). The rats \vere then inoculated intratracheally with 100 ~tl of 
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the K. pnellmoniae inoculum as previously described, using a Hamilton constant flow syringe 

[6]. The animals were housed in plastic cages overnight with standard chow (Hope Fanns, 

\Voerden, the Netherlands) and water ad libitum. 

Twenty-two hours after inoculation, anesthesia was induced by inhalation (see above) 

and a polyethylene catheter \vas inserted into one of the carotid arteries for drawing arterial 

blood samples. Before tracheotomy, the animals received pentobarbital sodium (60 mg/kg bw, 

Lp., Nembutal. Algin, Maassluis, The Netherlands) and the inhalation of ethrane was 

decreased by 50%. A metal cannula was inserted into the trachea and muscle relaxation was 

induced with pancuronium bromide (2 mglkg bw, Lm., Pavulon, Organon, Boxtel, The 

Netherlands). 
The animals were then mechanically ventilated in parallel in a pressure-controlled 

mode (Siemens Servo 300 and 900C, Siemens-Elema, Solna, Sweden; frequency = 30 breaths 

per minute; IIE ratio = 1:2; Fi02 = 1.0), To re-aerate atelectatic lung areas induced by the 

surgical procedure, the airway pressure was increased to a PIP of 30 cmH20 at a PEEP level 

of 3 cmH20 for 30 seconds, The animals were then ventilated for 180 min at four different 

settings (PIP/PEEP): 13/3 (group 13/3); 13/0 (group 13/0); 30/10 (group 30/10) and 30/0 

(group 30/0); n = 16 per group. Dead space was adapted to obtain nonllocapnia at t = 2 min 
in all groups. Body temperature was kept at 37°C by means of a heating pad. Two groups 

of control animals without mechanical ventilation were killed 22 (group control t = 22 h) and 

25 (group control t = 25 h) hours after inoculation; n = 8 per group. 

Arterial blood gases in the ventilated groups were measured with conventional methods 

(ABL 505, Radiometer, Copenhagen, Denmark) 2, 60, 120 and 180 min after starting 

mechanical ventilation. Two milliliters of blood was drawn from the arterial line immediately 

before and 180 min after starting mechanical ventilation in the ventilated groups, and before 

sacrifice (overdose pentobarbital) in the non-ventilated groups and cultured undiluted for K. 

pllelllllOniae on two blood agar plates (Bactim, Breukelen, The Netherlands), To replace blood 

loss, a bolus of 2 ml Ringer's lactate at 37°C was given through the arterial line. The blood 

agar plates were incubated at 37 °c ovemight and the number of colonies was detemlined the 

next day. Bacteremia was defined as having Olle or more colonies of K. plleu11Iolliae in 2 tnl 

of blood. Colonies were identified by standard microbiological methods. The average colony 

count per 2 ml of blood in blood positive animals in the different groups was calculated, 

Animals which had positive blood cultures for K. plleu11Iolliae before starting mechanical 

ventilation were excluded from further analysis, 

Pulmonary edema coming from the ventilatory tube in group 30/0 was collected over 

the 180 min ventilation period. The other groups had no pulmonary edema coming from the 

ventilatory tube. After sacrifice, at the end of the 180 min ventilation period and immediately 

in the control groups, the lungs were taken sterile from the thorax, weighed and homogenized 

in 20 ml saline for 1 min at 40.000 rpm with a blender (Virtis 1123 11, The Virtis Company Inc" 

N,Y., USA). The number of viable bacteria in the lung homogenates and in the pulmonary 

edema of group 30/0 was determined by plating 10-fold dilution steps on Iso-Sensitest agar 
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plates. 

Intra-group comparisons for pH, Pa02, PaC02 and number of CFUs recovered from 

the lung after logarithmic transformation, were analyzed with an ordinary ANOV A. If 

ANOV A resulted in a p less than 0.05 a Bonferroni post-test was performed. Inter-group 

comparisons for pH, Pa02 and PaC02 were analyzed with repeated measures ANOV A with 

a Bonferroni post-test. Data for pH, Pa02 and PaC02 are reported as mean ± standard 

deviation (SD). Differences in the number of positive blood cultures for Klebsiella 

pllelllJloniae at t = 22 hand t = 25 h in all groups were detennined with an exact x2-test on 

a 2 x 5 contingency table. If p was less than 0.05, Fisher's exact post-tests on 2 x 2 

contingency tables were performed; statistical significance was accepted at p less than 0.05. 

Results 

Verification of the number of viable bacteria in the inoculum sho\ved that the rats were 

inoculated with 100~t1 of saline containing 3.5-5.0 x 105 CFU K. pneIlJ1lolliae/mt. 

The number of CFUs K. pJlellmoniae recovered from the lung homogenates was 

comparable in all groups (Figure 1). The number of CFUs K. pJleumolliae recovered in the 

pulmonary edema of group 30/0 (2.5 ± 1.5 ml) was on average 17% of the number recovered 

from the lungs. 
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Figure 1. Quantitativc lung bactcrial count in four experimental and two control groups. There were no 

significant differenccs in the number of bacteria recovered from the lung tissue. 
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Five animals were excluded from analysis because the animals had bacteremia before 

starting mechanical ventilation (1, I, 1 and 2 animals in groups 13/3,13/030/0 and 30/0, 

respectively). Figure 2 shows the number of animals with positive blood cultures for K. 

pneumoniae in the ventilated groups in the animals that did not have bacteremia before 

starting mechanical ventilation (n = 16 per group). Significantly more animals had positive 

blood cultures at t = 25 h in group 30/0 than in the other groups. The average colony count 

in positive animals was LO, L3 and 5.0 CFUs K. plleumolliae 12m! in groups 13/3,30/10 

and 30/0 respectively. None of the animals in either control groups were bacteremic. 
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Figure 2. Number of animals with posilive blood culturcs for K. Pneullloniae in 2 ml of blood all = 180 

min. that were not bactcremic at 1=0 min (n=16 in each group). 'p < 0.05 versus all other groups. 

Arterial oxygenation over time is given in figure 3. There were no decreases in 
oxygenation over time in groups 13/3 and 30/10, whereas oxygenation slowly decreased over 

time in group 13/0 and dropped significantly over time in group 30/0. 

All four groups were nonnocapnic and had nomlal pH values at t = 2 min (Table I). The 
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animals ventilated with PEEP remained llomlOcapnic and retained nannal pH values during 

the whole study period, whereas the animals in the groups ventilated without PEEP became 

hypercapnic and acidemic. 

The lung weight (mean ± SD) was 1.5 ± 0.3, 1.5 ± 0.2, 1.8 ± 0.2, 3.0 ± 0.3, 1.6 ± 0.1 and 
1.5 ± 0.1 in groups 13/3, 13/0,30/10,30/0, control t ~ 22 h and control t ~ 25 h, respectively 

and was significantly higher in group 30/0 compared to all other groups. 

Discussion 

The present study shows that mechanical ventilation with a combination of a high PIP of 30 

cmH20 without PEEP induces K. jJlleumolliae bacteremia after a ventilation period of 180 

min. The use of 10 cmH20 PEEP at the same PIP reduces K. jJlIeumolliae bacteremia. A low 

PIP of 13 cmH20 without PEEP or in combination with 3 cmH20 of PEEP could not induce 

K. jJlleul1Ioniae bacteremia in the given time period. 
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Figure 3. Pa01 values (mean ± SD) of the different ventilated grOUps. Legends indicate peak inspiratory 

pressure/positive end-expiratory pressure. 

To exclude inter-group differences before starting mechanical ventilation, animals with 

positive blood cultures before starting mechanical ventilation were excluded from analysis. 
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\Ve chose to start mechanical ventilation 22 hours after inoculation. Inoculation just before 

starting mechanical ventilation resulted in a significantly lower bacterial recovery from lungs 

that developed edema, which was attributed to a washout effect of edema on bacteria from 

the lungs into the small airways. Studies by Roosendaal et aL have shown that after 

intratracheal inoculation of healthy rats with 8 x 104 CFUs K. plleumolliae, bacteremia does 

not develop in the first 24 hours after inoculation [7]. OUf pilot experiments showed that 

inoculation with a higher count of K. pneulllolliae (3.5 x 105 CFUs) in healthy nOll-ventilated 

animals induced bacteremia in 5 out of 8 animals after 22 hours. Inoculation with a lower 

count of K. pnelllllolliae (3.5 x 103 CFUs) did not induce bacteremia 22 hours after 

inoculation. These data showed a relationship between the concentration of the bacterial 

inoculum and the presence or absence of bacteremia. Mechanical ventilation at a PIP of 30 

cmH20 without PEEP 22 hours after inoculation in the group inoculated with 3.5 x 103 CFUs 

induced bacteremia in 3 out of 7 animals only. Therefore, the highest possible inoculum was 

used for the experiments, one comparable to the experiments of Roosendaal et al. [7]. 

It was first demonstrated by \Vebb and Tiemey that mechanical ventilation can be injurious 

to intact animals [8]. Mechanical ventilation in rats at a PIP of 30 cmH20 resulted in 

pulmonary perivascular edema, whereas a PIP of 45 cmH20 without PEEP also induced intra­

alveolar edema [8]. Subsequent shldies in the same animal model have shown that 

ultrastructural changes to the lung parenchyma include damage to endothelial and epithelial 

cells with denudement of their base membranes [9]. The use of 10 cmH20 PEEP at a high 

PIP has been shown to partially prevent pemleability edema and almost completely prevent 

histologically assessed lung injury [8, 10]. 

The development of pulmonary edema in group 30/0 is probably the key factor for the 

increase in bacteremia in this group. Pulmonary edema may mediate bacteremia by several 

mechanisms. It has been shown that pulmonary edema dose-dependently impairs bactericidal 

activity of the alveolar macrophage [11], which is essential in the pulmonary defense against K. 

pneumolliae [12]. Moreover, it is a well-known fact that pulmonary edema, as seen in group 30/0, 

also results in a dose-dependent inhibition of pulmonary surfactant [13]. Surfactant impainnent 

with a resulting impaired gas exchange with hypoxemia (Figure 1) and acidosis (Table I) as seen 

in group 30/0, are all factors that Illay be associated with a reduced efficacy oflung antibacterial 

defense [14, 15]. However, the average Pa02 value of 70.1 mmHg in group 30/0 is well above 

those currently regarded as safe (50 mmHg) during artificial ventilation of ARDS patients [16]. 

Moreover, the animals in group 13/0 also had acidosis but did not develop bacteremia. Therefore, 

although hypoxemia and acidosis are factors which may contribute to development of bacteremia, 

they are not likely to be the main cause for bacteremia in this study. 

Studies in hamsters in paraquat-induced lung injury with prior Pseudomonas ael1lginosa 

challenge suggest that the effect of this type oflung injury in facilitating bacteremia can be due 

to changes in both lung and systemic defense against this organism and not to the lowering of 

the threshold value for bacterial translocation from the lung into the bloodstream [17]. In a 

preliminary Shldy in dogs inoculated with Pseudomonas ae11lgiJlosa and ventilated for 24 hours 
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(! 5 mVkg) with or without the use of 10 cmH,o PEEP it was shown that, without PEEP, lung 

defense was reduced and histologically assessed lung injury was increased; two out of four non­

PEEP treated dogs showed positive blood cultures whereas none of four PEEP treated animals 

were positive [18]. In the present study, however, the number of viable bacteria recovered from 

the lung homogenates was the same in all experimental groups, which indicates that differences 

in lung defense due to pulmonary edema are not likely to be the main explanation for the 

difference in bacteremia. 

Table 1. Data on arterial carbon dioxide tension and pH over time (mean ± SD) in the 
ventilated groups. a,b,cIntra_group comparisons over time; p < 0.05 vs at = 2 min; bt=120min; 

ct=180 min (Repeated measures ANOVA with Bonferroni post test if p < 0.05). d,e,fIntergroup 

comparisons; p < 0.05 'group 30/0; 'group 1310; 'group 30/10 (Ordinary ANOYA with BonfeIToni 

post test if p < 0.05). 

Gmup 

Time 30/0 30/10 13/3 13/0 

2' pH 7.41 ± 0.07 7.35 ± O.OS 7.35 ± 0.07' 7.41 ± 0.05 

pCO, 32.4 ± 6.1 37.9 ± 5.9' 37.S ± 4.S'·' 35.S ± 5.0 

60' pH 7.36 ± 0.13b., 7.3S ± 0.04 7.40 ± 0.07 7.34 ± 0.06,·b., 

pCO, 43.4 ± 11.2'·' 43.S ± 4.4,·b., 42.S ± 7.3'·' 50.7 ± 8Aa,b,c 

120' pH 7.IS ± 0.17' 7.39 ± 0.06'·' 7.40 ± 0.05'·' 7.25 ± 0.07' 

pCO, 54.1 ± 10.9'·' 39.3 ± 5.2'·' 44.S ± 6.1'·' 66.1 ± 16.1'·'·' 

180' pH 7.0S ± 0.12' 7.42 ± 0.07'·'·' 7.40 ± 0.06~' 7.IS ± O.OS,·b.£ 

pCO, 77.0 ± 17.5' 37.S ± 6.1'·' 45.1 ± 4.3'·'·' SI.O± 14.3' 

It is conceivable that bacteria more readily gain access to the circulation from damaged 
lung parenchyma than from previously normal lung tissue [17, 19], Pulmonary edema contributes 

to a great extent to ventilation-induced lung injury, although the exact mechanisms remain a point 

of discussion [20]. Peak inspiratory overstretching alone can not explain ventilation-induced lung 

edema because the use of PEEP at the same high PIP prevents pulmonalY edema [8, 21] (group 

3010 versus 30/10). This lack of pulmonary edema with PEEP has been attributed to reductions 

in capillary hydrostatic pressure, which will reduce filtration over the alveolo~capillary barrier 

[21], However, such a mechanism can not explain the protective effect of PEEP 011 lung 

parenchymal changes [21], Recently, it was shown that even mild surfactant changes predispose 

the lung to ventilation-induced lung parenchymal damage by promoting repeated opening and 

closure of alveolar units which create intra-pulmonary shear forces [22], It might be speculated 
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that in the present study, ventilation-induced surfactant inhibition by pulmonary edema [13] may 

have interacted with K. Plleumolliae induced surfactant changes through endotoxins Of a direct 

effect of these bacteria on type II cells [14]. The rapid decrease in oxygenation in group 13/0, 

probably due to atelectasis, suggests that such surfactant changes have occurred. Ventilation­

induced lung parenchymal changes may well be responsible for the lowering of the threshold for 

K. pneumoniae translocation in group -3010, whereas such changes did not occur in the other 

groups. 

Finally, pulmonary edema results in an increased lymph flow which promotes drainage 

of bacteria from the lymphatics into the bloodstream [23] which in group 30/0 may have been 

a contributing factor for increased bacteremia. 

It can not be excluded that bacteremia originated from the splanchnic area, due to liver 

or splenic septic metastasis, which might have been present prior to starting mechanical 

ventilation, as demonstrated in other animal models oflung infection [17J. However, it has been 

shown that PEEP results in a reduced blood flow to liver [24J, which would increase the 

likelihood of development of bacteremia, and not result in a reduction in bacteremia, as shown 

in our study. Therefore, we believe that the effect of PEEP in reducing development of 

bacteremia is mediated by a direct effect of prevention of lung injury, as shown by others [8, 10], 

and not to secondary effects on other organs. Further studies are needed to fully elucidate the 

mechanisms of ventilation-induced bacteremia and the effect of PEEP. 

The lung is a potential source of bacteremia in inhlbated patients with K. plleuJllolliae. 

This shldy in rats shows that (1) mechanical ventilation with a high PIP of 30 cmH20 without 

PEEP induces K. plleumolliae bacteremia; (2) the use of 10 cmH20 PEEP at the same PIP 

reduces K. pneWl101liae bacteremia. \Ve suggest that such results are likely attributable to 

ventilation-induced damage of the alveolo-capillary ban-ier, which results in lowering of the 

threshold for bacterial translocation. \Vhen translated to a clinical setting, our data advocate the 

use of a level of PEEP sufficiently high to prevent bacteremia in inhlbated patients receiving 

mechanical ventilation. 
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Summary 

Background: This study was designed to investigate the role of alveolar end~expiratory col~ 

lapse in inducing ventilation-induced inflammatory mediator release from the lung 

parenchyma ill vivo. 
Alethods: In adult rats, mechanically ventilated with 100% oxygen, acute lung injury was 

induced by repeated lung lavage to obtain a PaO, < 85 mmHg (peak pressure/PEEP: 26/6 

cmH20). Then, animals were randomly divided to receive either exogenous surfactant therapy, 

partial liquid ventilation, ventilation with high PEEP (16 cmH20, open lung concept (OLC», 

ventilation with low PEEP (8 cmHzO), or ventilation with an increase in peak inspiratory 

pressure (to 32 cmH10). Two groups of healthy non-lavaged rats were ventilated at peak pres­

sure/PEEP of32/6 and 32/0 cmH20, respectively. Blood gases were measured. POI2 and TNF­

a concentrations in semm and broncho-alveolar lavage fluid (BALF) as well as protein 

concentration in BALF were determined after 90 and 240 minutes and compared to ventilated 

and non-ventilated controls. 

Results: Ventilation strategies directed at prevention of alveolar collapse improved 

oxygenation and reduced BALF protein levels. The lavage procedure appeared to favor TNF-a 

release into BALF in a subgroup of animals. Ventilation with high PEEP at high mean air­

way pressure levels (open lung concept) increased BALF POI2 levels, whereas BALF TNF-a 

levels showed no difference between groups. Semm POI2 and TNF-a levels did not increase 

compared to controls as a result of mechanical ventilation. 

Conclusions: Although ventilation strategies markedly differed with respect to their injUlious 

potential in acute lung injury, there were no indications for ventilation-induced systemic or 

pulmonary POI2 and TNF-a release. Mechanical ventilation at high mean ainvay pressure 

levels increased POI2 levels in the broncho-alveolar lavage accessible space. 
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Iutmduction 

Recent studies in rodents have shown that mechanical ventilation itself call be suffi­

cient to elicit production and release of pro-inflammatory mediators (1-3]. In isolated non­

perfused rat lungs Tremblay et al. have shown that mechanical ventilation at tidal volumes 

of 40 mllkg body weight without positive end-expiratory pressure (PEEP) induces inflam­

matory mediator expression after 2 h in the lung tissue and results in inflammatory mediator 

release into the broncho-alveolar lavage accessible space [2]. In the same study, the use of 

10 cmH20 PEEP was shown to reduce inflammatory mediator expression and release at the 

same degree of end-inspiratory overstretching [2]. These responses occurred in both healthy 

rat lungs and lungs of rats exposed for 50 minutes to lipopolysaccharide (LPS) [2]. While 

these studies provided evidence that injurious ventilation strategies may result in pulmonary 

mediator release, the studies from von Bethmann et al. indicated that ventilation may result 

even in systemic mediator release [1, 3]. In isolated and perfused mouse lungs from healthy 

donors a peak inspiratory pressure (PIP) of 25 cmH20 with 2 cmH20 of PEEP induced 

inflammatory mediator release into the perfusate, whereas a PEEP of 10 cmH20 at the same 

level of PIP did not [I, 3]. The study supports the idea proposed by Kolobow et al. that 

detrimental modes of mechanical ventilation may not only induce local inflammatory reactions 

in the lung but, via the spread of inflammatory mediators, also contribute to systemic multiple 

organ failure [4]. 

The mechanism of the ventilation-induced mediator release is unknown at present, but 

may result from: 1) stimulus of stretch receptors present on endothelial cells [5], macrophages 

[6] or epithelial cells [7] andlor 2) intrapulmonary neutrophil accumulation and activation [8]. 

It is becoming increasingly realized that next to peak inspiratory overstretching of the lung 

parenchyma [9, 10], impainnent of the surfactant system (as a result of mechanical 

ventilation) [11, 12] with subsequent repeated end-expiratory alveolar collapse and re­

expansion [13], contributes to lung parenchymal stretch [13], neutrophil accumulation [8] and 

ventilation-induced lung injury [13]. 

The present study was designed to elucidate a possible role of repeated alveolar col­

lapse and re-expansion during mechanical ventilation in inducing inflammatory mediator 

release from the lung in an ill vivo rat model of acute lung injury. \Ve compared the effect 

of ventilation strategies directed at prevention of alveolar end-expiratory collapse with strat­

egies that do not prevent end-expiratOlY collapse. 

l\'1atetials and methods 

Preparation of animals 

The study was approved by the local Animal Committee of the Erasmus University 

Rotterdam. Care and handling of the animals were in accord with the European Community 

guidelines (861609/EC). 

The studies were performed in male Sprague-Dawley rats (body weight 250-330 g, 
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Harlan CPB, Zeist, The Netherlands). After induction ofancsthcsia with 2% enfluranc in 65% 

nitrous oxide in oxygen, a sterile polyethylene catheter (0.8 mIll outer diameter) was inserted 

into a carotid a11ery for drawing arterial blood samples. Before tracheotomy, the animals 

received 60 mg/kg pentobarbital sodium, Lp. (Nembutal'~; Algin, rvlaassiuis, The Netherlands) 

and the ethrane concentration \vas decreased to 0.5-1.0%. Thereafter, a sterile metal cannula 

was inserted into the trachea. 

NOll-ventilated animals 

One group of animals served as non-treated, non-ventilated controls (group Control, n = 10). 

Six animals served as non-ventilated, tumor necrosis factor-a (TNF-a.) positive controls. They 

were injected 15 mg/kg lipopolysaccharide intraperitoneally (LPS, 5 m1 Salmonella abortus 

equi S. form, Metalon GmbH, \Vusterhausen, Gennany) and exposed for 90 (n = 3) and 240 

(n = 3) minutes (group LPS). All these animals were killed immediately after induction of 

anesthesia. 

Ai echanical ventilation 

After cannulation of the trachea, in all other animals muscle relaxation was induced by 

pancuronium bromide 2 mg/kg, Lm. (Pavulon'Z,; Organon Teknika, Boxtel, The Netherlands) 

foHowed by immediate connection to a ventilator. Body temperature was kept within nonnal 

range by means of a heating pad. The animals were mcchanically ventilated in parallel, with 

a Servo Ventilator 300 (Siemens Elema, Solna, Sweden) in a pressure constant time cycled 

mode, with the following settings: frequency of 30 breaths per min (bpm), peak inspiratory 

pressure (PIP) of 13 cmH,D, positive end-expiratory pressure (PEEP) of 3 cmH,D, 

inspiratory/expiratory ratio of 1:2, and 100% oxygen. Initially, PIP was increased to 20 

cmH20 for half a minute to recruit atelectatic areas (open-up procedure). Thereafter, the 

ventilator settings were returned to the previous ones and blood gases wcre recorded 

(Instrumentation Laboratory, Synthesis 25, Milan, Italy). Anesthesia was maintained with 

hourly injections of pentobarbital sodium (60 mglkg/h, Lp.) and muscle relaxation was 

maintained with hourly injections of pancuronium bromide (2 mg/kg/h, Lm.). 

Healthy control animals 

One group ofnon-Iavaged (=Healthy (H}) ventilated animals served as controls and ventilator 
settings were not changed. Ventilation was continued for 35+90 (n = 10) and 35+240 (n = 

10) min (group 13/3H). The 35~min period was included to compensate for a 35-min period 

in which the animals in the other ventilated groups were being lavaged (see below). 

Lavaged animals 

In 100 animals which received mechanical ventilation, acute lung injury was induced after the 

open~up procedure by repeated broIlcho~alveolar lavage (= lavage (L}), according to 

Lachmann and colleagues [14]. Each lavage was perfonned with saline (32 mUkg) heated to 
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37°C. Just before the first lavage PIP and PEEP were elevated to 26 and 6 cmH20, respect­
ively. Lung lavage was perfollned over a 35-min period and repeated 4-5 times to achieve a 
Pa02 $ 85 mmHg. Immediately after lavage, these animals were randomized to be treated 
with: 

partial liquid ventilation (PLY) at a dose of 15 ml perfluorocarbon per kg bodyweight 
(Perflubron®; Alliance Corp., San Diego, USA) for 90 (n ~ 10) and 240 (n ~ 10) min (group 

PLY). 
exogenous surfactant at a dose of 120 mg/kg for 90 (n ~ 10) and 240 (n ~ 10) min 

(group Surf). The surfactant used was isolated from minced pig lungs, that were processed 
as previously described [15]. The freeze-dried material was suspended in warm saline to a 
concentration of 40 mg/ml, and administered intratracheally, for which the animals were 
disconnected from the ventilator. The surfactant suspension was administered as a bolus 
followed by a bolus of air (12 mllkg), directly into the endotracheal tube via a syringe, and 
was immediately followed by reconnection to the ventilator. 

an increase in PEEP of 2 cmH,O for 90 (n ~ 10) and 240 (n ~ 10) min resulting in 

a PIP of 28 cmH,O and a PEEP of 8 cmH,o (group 28/8) 
an increase in PIr of 6 cmH20 for 90 (n = 10) and 240 (n = 10) min resulting in a 

PIP of 32 cmH,O and a PEEP of 6 cmH,o (group 32/6) 
an open lung concept for 90 (n ~ 10) and 240 (n ~ 10) min (group OLC). In thcsc 

groups the lung were opened by increasing PIP to 40 cmI-I20, PEEP to 20 cmH20, VE ratio 
to I: I and frequency was set at 100 bpm after lung lavage. After 2 to 3 min, PIP was 
decreased to 32 cmH20 and PEEP was set at 16 cmH20. These settings were shown not to 
result in auto-PEEP because end-expiratOlY flow on a ServoScreen (Siemens) connected to 
the ventilator was zero. 

Other ventilator settings were not changed. In all ventilated animals, blood gases were further 
recorded at 5, 30, 60, 90 min (in the animals ventilated for 90 min) and at 5, 30, 60, 120, 180 
and 240 min (in the animals ventilated for 240 min) after starting the experimental mode of 
mechanical ventilation. 

Chemical analysis 

At the end of the study period, a broncho-alveolar lavage was performed in all animals with 

saline (32 mllkg heated to 37 °C) and 4 ml of heparinized blood was taken from the arterial 
line. The animals were then killed by an overdose of pentobarbital sodium through the penile 
vena. The blood and the broncho-alveolar lavage fluid (BALF) were centrifuged at 4 °C at 
400 x g for 10 min to remove cells and cellular debris. Supematant of both blood and BALF 
were taken and snap-frozen on liquid nitrogen and stored at -80 °C until further analysis. 

The protein concentration of the BAL supernatant was detennined with a 
photo spectrometer (Beckman DU 7400, Fullerton CA, USA) at 595 11m using the Bradford 
method (Bio-Rad protein assay, Munich, Gellnany) with bovine semm albumin (Sigma St 
Louis, MO, USA) as a standard [16). 
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Prostacyclin was assessed as the stable metabolite 6-keto-PGFJa and was measured by 
EIA (Cayman, Ann Arbor, MI, USA). Rat TNF-a was assessed by rat specific ELISA 
obtained from Genzyme (Cambridge, MA, USA). 

Non-Iavaged ventilated animals 

To investigate whether washout of alveolar macrophages might have affected TNF-a release, 
40 healthy animals were not lavaged (=Healthy (H» but underwent mechanical ventilation 
only. After the open-up procedure, they were ventilated for 35 min at control settings (PIP 
13 cmH20; PEEP 3 cmH20; IIE ratio = 1:2; frequency 30 breaths/min; Fi02 = 1.0) to 
compensate for the 35-min lavage period in which the animals in the other experimental 

groups were being lavaged and ventilated. After this period the animals were exposed to the 
following ventilator settings (other ventilator settings were not changed): 

a PIP of 32 cmH,O with 6 cmH,o of PEEP for 90 (n ~ 10) and 240 (n ~ 10) min 

(group 32/6 H). 
a PIP of32 cmH,O without PEEP for 90 (n ~ 10) and 240 (n ~ 10) min (group 32/0 

H). In this group dead space was increased to keep PaC02 > 20 111l11Hg. 
A group of non-ventilated control animals (n = 6) and 2 groups of ventilated control animals 
(13/3 II) ventilated for 90 (n ~ 3) and 240 (n ~ 3) min were included. 

Blood gas analysis was perfonned as described above. Blood was taken and a broncho­
alveolar lavage was perfonned. The samples were treated and protein and TNF-a concentra­
tions were detenllined as described above. 

Statistical analysis 

Intra-group comparisons for Pa02 and PaC02 were analysed with a repeated measures 
ANOVA. Inter-group comparisons for protein, mediator levels and Pa02 and PaC02 were 
analysed with ANOV A. If ANOV A resulted in a p ~ 0.05, a Tukey-Kramer post-test was 

perfomled. Statistical significance was accepted when p ~ 0.05. All data are reported as mean 
± SD. 

Results 
Arterial oxygenation and carbon dioxide levels over time with statistically significant 

differences have been indicated in Table 1 and Table 2, respectively. In groups 28/8 and 32/6 

oxygenation levels did not significantly recover from post-lavage values. In groups OLC, PLY 
and Surf oxygenation levels were restored to pre-lavage values after 60 min, although in 

group PLY they gradually decreased over the next 3 hours. In group 32/0 H, oxygenation 
levels decreased over time as a result of mechanical ventilation only, whereas they remained 
stable in group 32/6 H. 

The protein concentration was increased in the BALF of aillavaged animals after 90 
and 240 min (Figure 1). However, treatment with OLC, surfactant or PLY partially reduced 
the BALF protein concentrations. 
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Figure 1 Protein concentration in the BALF in the different experimental groups after 90 (open) and 240 

(dashed) min of mechanical ventilation. Data are mean±SD from groups of 10 animals. Statistically significant 

(p<0.05) • vs group 28/8 90 and 240, 32/6 90 and 240, OLC 240, PLY 240, Surf 240, 32/0H 90 and 240; • vs 

group 28/8 90, OLC 90 and 240, PLY 90 and 240, Surf 90 and 240, 32!OH 90 and 240, 32/6H 90 and 240; • \'s 

groups OLe 90, PLY 90 and Surf 90; (> vs groups 32/6 90 and 240; - vs groups PLY 240 and 28/8 90. 

Since previous studies had shown that ventilation alone may be sufficient to cause 

release of the eicosanoid prostacyclin [3] as well as the important pro-inflammatory cytokine 

TNF [2, 3] from isolated lungs ill vitro, in the present study we have focused on these two 

mediators, Figures 2 and 3 depict data on BAL and serum concentration ofTNF-a and PGI2, 

respectively, There was no significant increase in serum concentrations of these mediators 

caused by the ventilation procedures, Increased TNF levels were found only in the serum of 

the LPS-treated animals. TNF levels in the BAL were not significantly increased, although 

the data suggest that there might be responsive and unresponsive animals: after 90 min 14 out 

of 50 animals that were lavaged and ventilated exceeded a threshold of 200 ng/ml TNF in the 

BALF, compared with only 2 out of 33 in the non-Iavaged animals (p < 0.05 in Fisher's exact 

test). Thus, although not all animals responded, the number of animals that released increased 

amounts ofTNF was significantly higher among lavaged animals. This division in responders 

and non-responders may also explain the high standard deviations. However, the increased 

TNF levels in the BALF of the responsive animals did not correspond to increased 
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prostacyclin levels in the same animals. 'Vith respect to prostacyclin in BALF, significantly 

increased values were observed in OLe group after 240 min only. 

Discussion 

This study demonstrates that ventilation strategies that prevent end-expiratory col1apse, 

as indicated by levels of arterial oxygenation, reduce protein accumulation in the brollcho­

alveolar lavage accessible spaces in lung lavaged rats as compared to ventilation strategies 

which do not prevent alveolar collapse. TNF-a concentrations ofBALF showed no differences 

between groups, although surfactant deficiency might have favored TNF production in a 

subgroup of animals. Thus, our ill vivo findings did not COnfilll1 previous studies in isolated 

lungs subjected to different modes of hyperinflation [1-3]. Of note, the large increase in serum 

TNF induced by LPS, shows that under our conditions changes in serum TNF would have 

been noticed. Furthermore, in our ShIdy high PEEP at high levels of mean ainvay pressure 

(OLC group) resulted in a significant release of POI2 in the broncho-alveolar lavage accessible 

space, which is some\vhat in contrast to the increases in lavage mediator levels of isolated 

lungs as a result of mechanical ventilation at high PIPs without PEEP [2]. 

III vivo studies in intact, healthy rats at tidal volumes comparable to the ones used by 

Tremblay et al. [2] in their ex vivo isolated and non-perfused rat lungs (40 mllkg and above), 

have shown that the penncability changes as well as the changes in lung mechanics and 

oxygenation associated with this type ofmcchanical ventilation [9-12], can (at least partially) 

be prevented by application of PEEP or administration of exogenous surfactant preceding 

mcchanical ventilation. Both of these mcasures are supposed to reduce repeated alveolar 

collapse and reexpansion [13], which induces stretch on the lung parenchyma [13] and may 

result in injury even at low ainvay pressures [17]. This suggests that ventilation-induced 

mediator expression is to an extent attributable to primary ventilation-induced surfactant 

changes with repeated alveolar collapse and reexpansion [11]. The reduction of the level of 

inflammatory mediators by PEEP application in isolated lungs [2] supports this hypothesis. 

The application of ventilator settings resulting in tidal volumes of 40 mllkg and above, 

however, is lethal in intact rats within one hour, likely due to respiratory failure [18]. This 

period, however, is within the time frame of first assessment of inflammatory mediators in 

the ex vivo studies reported above [1-3]. 

The use of ex vivo lung preparations has other limitations. First, unlike ill situ, isolated 

lungs are prone to overstretching by the loss of thoracic restriction at end inspiration [19]. 

This may become particularly pertinent during ventilation with high volumes and may be one 

of the major reasons for the lack of agreement between our data and those of isolated lungs 

which released inflammatory mediators at pressures as low as 25 cmH20 [2, 3]. Second, not 

intrapulmonary pressures but absolute transmural pressures detennine ventilation-induced lung 

injury and will be higher in isolated lungs than in ill situ lungs [9, 20] unless special 
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precautions are taken [3]. Third, priming of ischemia on lung expression of va rio liS mediators 

ex vivo cannot always be mled out. Other limitations of ex vivo preparations include the 

absence of innervation and perfusion [2] as well as perfusion by an artiticial buffer instead 

of blood [1,3]. Taken together, tissue responses to stress in isolated lung preparations appear 

not be identical to those seen ill vivo. 

For the reasons presented above, the role of repeated alveolar collapse and reexpansion 

in ventilation-induced inflammatory mediator expression in vivo was investigated in a rat lung 

lavage model at more clinicaHy relevant moderately high peak ainvay pressures. Broncho­

alveolar lavage increases surface tension of the alveolar lining fluid and decreases lung-thorax 

compliance and functional residual capacity by 35% [21, 22]. Treatment procedures to prevent 

repeated alveolar collapse and reexpansion are aimed at: I) counterbalancing the increased 

retractive forces by applying pressure-controlled ventilation that recmits collapsed lung areas 

by applying an inspiratory pressure that overcomes the opening pressure of collapsed but 

recmitable lung units. After recmitment, ventilation pressures are reduced and PEEP is set just 

above the critical closing pressure of these lung units to prevent end-expiratory collapse [23], 

2) decreasing alveolar surface tension by application of surface active material (exogenous 

surfactant therapy) [24], and 3) partial liquid ventilation, in which ventilation is superimposed 

011 lungs that are filled with perfluorocarbons thus preventing expiratory collapse [25]. Our 

data demonstrate that all these strategies recruited collapsed alveoli, as indicated by the 

improved oxygenation (Pa0 2/Fi0 2 > 500 mmHg) compared to after broncho-alveolar lavage. 

Moreover, the protein levels were lower than in groups 28/8 and 32/6, even at comparable 

PIPs in group OLC. These findings can be explained by the reduction in lung parenchymal 

shear stress by prevention of repeated alveolar collapse and reexpansion of recruitment 

strategies, and epithelial stretch in particular [26]. This will increase penneability of the 

alveolo-capillalY barrier to protein [26] and, due to alveolar collapse, increase suction to the 

interstitial spaces [12]. However, despite the differences in lung function and shear stress with 

these different ventilatory strategies no differences in serum TNF-a or PGI2 concentrations 

were found. 

Mechanical ventilation with high PEEP levels at high levels of mean ainvay pressure resulted 

in an increase in the PGI2 level of the BALF after 240 min of mechanical ventilation (group 

OLC). It may be speculated that POI2 release as a result of mechanical ventilation foons a 

self-regulating physiological adaptation mechanism of vasodilatation of the lung 

microvasculature. This will protect the lung from reduced capillary perfusion as a result of 

compression associated with mechanical ventilation at high mean ainvay pressures. As the 

barrier function of the alveolo-capillary membrane in lung lavage lungs is lost even to large 

molecules [27], POI2 may freely diffuse over the alveolo-capillary batTier, which makes its 

origin unclear. Stretching of both cultured rat lung cultures [28] and cultured endothelial cells 

[29] has been shown to result in PGI2 production. 

129 



Chapter 8 

Lavage TNF alfa concentration (pg/ml) 
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Figure 2. BALF (A) and serum (B) concentrations ofTNF-a in the different experimental groups after 

90 (open) and 240 (dashed) min ofmcchunical ventilation. Data are mcan±SD from groups of 10 animals (except 

control n = 16 and 13/3H n = 13). Fig. 2A: There were no statistical differences between groups in SAL. Fig 

28: Statistically significant (p<O.05) • \'$ all other groups 
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Lavage 6-keto PGF1a concentration (pg/ml) 
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Figure 3. BALF (t\) and serum (11) concentrations of6-keto-PGF I in the different experimental groups 

after 90 (open) and 240 (dashed) min of mechanical ventilation. Data are mean±SD from groups of 10 animals. 

Fig. 3A: statistically significant (p<0.05) \'s *all other groups. Fig. 313: In all ventilated groups the values at t 

= 90 min within one group were higher than the values at t = 240 min. Within the lavaged animals, all values 

at t = 240 were lower than the values at t '" 90 min in aU groups except for PLV 90 versus 32f6 240 and OLC 

240. Statistically significant (p<0.05) • vs all other groups except Surf 90 and 13/3 90; # vs all other groups 

except control; •• \'s. 32/6 90, OLC 90 and Surf 90. 
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Table 1. Arterial oxygenation (Pa02) in the different ventilated groups over time (mean 

(SD)). Statistical differences have been indicated.Intra~group differences: Significant 
differences vs lall time points; 230, 60 and 90 min; 35, 3D, 60 and 90 min; "'3D, 60, 90, 120, 
180 and 240 min; '60, 90, 120, 180 and 240 min. Inter~group differences: Significant 

differences 628/8 and 3216 vs all others; 7non-lavaged vs lavagcd; 8 vs OLe; 9yS OLe, PLY, 

Surf, 32/6 H; 1028/8, 3216 and 32/0 H vs all others. 

Gmup 

Time 13/3 II 28/8 3216 OLe PLY SUIf 32/6 II 32/0 H 

Before 548.5 538.81 530.61 552.7 53904 543.2 520.6 532.8' 

(44.7) (44.9) (2904) (39.9) (44.1) (44.6) (57.8) (53.6) 

After' 564.9 68.8 67.4 66.91 57.11 66.91 510.6 520.2' 

(43.2) (12.6) (13.9) (12.8) (14.2) (14.6) (90.6) (72.5) 

5,6 549.0 98.9 105.6 556.3 507.4 534.1 530.3 543.9' 

(39.9) (29.4) (45.0) (58.3) (55.6) (43.8) (71.5) (50.2) 

30 ,6 563.3 107.5 111.3 572.2 547.2 543.0 518.9 340.0'·9 

(53.8) (54.1) (64.6) (49.7) (51.1) (41.2) (63.6) (190.2) 

60,10 563.5 110.5 117.7 574.2 556.2 552.1 527.7 127.8 

(46.6) (67.7) (73.4) (45.2) (44.2) (48.5 (60.2) (138.5) 

90 dO 593.0 89.8 92.1 57S.6 553.0 564.7 517.2 74.2 

(45.9) (24.1) (57.5) (68.2) (45.7) (5/.5) (48.1 ) (24.1) 

120 ,/0 54104 13S.5 130.7 570.2 534.4 522.5 547.2 66.8 

(4S.I) (115.3) (105.5) (3S.5) (69.3) (44.5) (47.7) (24.6) 

180 ,10 546.6 133.3 125.2 579.0 429.7'" 50S.6 542.S 97.0 

(56.5) (120.2) (110.7) (44.7) (142.5) (60.7) (65.S) (77.6) 

240 ,10 554.0 12S.0 12404 597.7 350.6'·8 494.0 516.2 67.3 

(6004) (124.3) (S2.2) (47.4) (lS8.5) (SI.3) (113.3) (14.4) 
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Table 2. Arterial carbon dioxide tension (PaC02) in the different ventilated groups over 

time (mean (SD». Statistical differences have been indicated. Intra-group differences: 

Significant differences vs tall other time points; 2A and 5 min; 360, 90, 120, 180,240 min; 

4 vs b, 60, 90, 120. Inter-group differences: Significant differences 528/8 vs an others; 613/3, 

32/6 Hand 32/0 H vs all others; 'vs 32/6; 832/0 H; 'vs PLY; IOVS 2S/S 

Group 

Tillie 13/3 H 28/8 32/6 OLe PLY SlUf 32/6 H 32/0 H 

Before 33.6 32.91 33.3' 33.5 35.1' 32.9' 33.1' 35.6 

(5.0) (6.4) (6.3) (4.7) (5.7) (6.5) (5.1 ) (6.5) 

After' 32.5 55.6 52.6 1 53.3 1 55.3 1 47.SI 31.6 30.4 

(6.3) (7.S) (10.1) (S.2) (10.0) (14.6) (5.5) (5.6) 

5" 30.2' 53.7 40.S 36.6' 35.2'·8 34.5' 31.9'·8 26.5'" 

(4.1) (12.6) (10.S) (7.6) (4.7) (4.2) (4.6) (2.6) 

30's 34.4 50.5 35.6 33.7 29.0 30.3 30.S 30.6 

(5.7) (1 1.6) (S.S) (7.9) (5.1) (3.5) (5.5) (6.6) 

60,5 31.1 50.6 33.9' 34.2' 25.2 2S.6 30.2 35.S' 

(6.2) (12.2) (S.O) (8.3) (3.S) (3.5) (5.4) (7.0) 

90 ,5 2S.S 4S.6 37.5 30.4 23.1' 27.4' 30.1 35.3' 

(5.4) (10.9) (S.I) (3.6) (3.9) (4.0) (3.9) (6.0) 

120' 35.5'" 50.9 35.4' 32.4 23.2 10 28.910 27.010 35.3 9,10 

(S.I) (12.1) (11.0) (10.7) (3.5) (4.3) (7.0) (7.5) 

180 ,5 29.0 49.8 35.4 33.3 23.9' 2S.8 27.0 33.5 

(3.2) (14.3) (9.4) (6.0) (4.3) (5.8) (6.4) (10.7) 

240' 33.09,10 50.4 3S.0 33.910 26.310 30.8\0 29.610 35.3 

(4.8) (15.7) (11.5) (7.7) (4.5 (9.3) (3.0) ( 11.5) 
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\Ve do not have an explanation for the consistent finding of a decrease in 

semm POI2 concentration over time. It may be the result of decreased tlow speeds in the lung 

vasculature [30], or depletion of a POI2 pool, altered POI2 metabolism, or a naturally occur­

ring physiological vascular adaptation to changes in lung perfusion as a result of mechanical 

ventilation. 
The BALF control levels ofTNF-a were in the same order of magnitude as in isolated 

rat lungs [2], Although our data showed no statistically significant effect of lavage or 

ventilation on BALF TNF levels ill vivo, our data suggested that lavage may favor TNF 

release in a subgroup of responsive animals. Alveolar macrophages are primary candidates 

for mediator release [31] and TNF-a in particular [32], which may be induced by mechanical 

stretch [6]. The failure to see ventilation-dependent TNF release ill vivo, could in theory have 

been due to the washout of alveolar macrophages from the alveolar spaces. To exclude this 

possibility, we included two groups of healthy, non-Iavaged rats exposed with comparable 

PIPs but different PEEP levels. Again, ventilation strategy profoundly affected the levels of 

arterial oxygenation and protein infiltration. Interestingly, although serum levels of TNF-a 

showed a tendency to decrease over time in lavaged animals (90 min vs 240 min), this did 

not OCClir in the healthy, non-Iavaged lungs. Data by von Bethmunl1 et at. have sho\vll that 

prolonged stretch is required for TNF-a release [I]. Stretch may have decreased in the 

lavaged groups due to changes in compliance over time, whereas such changes did not or only 

insufficiently occur in healthy animals to result in a decrease in TNF-a concentration. 

Independent of this, end-expiratory collapse did also occur in group 32/0 H as evidenced by 

the levels of arterial oxygenation. However, both serum and lavage TNF-a levels did not 

increase in healthy non-Iavaged animals as a result of mechanical ventilation compared to 

non-ventilated controls and were in the same order of magnitude as in the ventilated and 

lavaged animals. Therefore, it is unlikely that broncho-alveolar washout of macrophages 

affected broncho-alveolar TNF-u levels. 

In conclusion, different ventilation strategies had a profound effect on lung pennea­

bility and protein levels in lungs from lavaged rats ill vivo. However, except for an increase 

in the level of PGI2 in the broncho-alveolar lavage fluid by mechanical ventilation with high 

levels of PEEP (OLC), we could not demonstrate any increase in TNF-u. or PGI2 levels in 

serum or broncho-alveolar lavage fluid as a result of these different ventilatory strategies in 

lavaged rats ill vivo. This is in contrast to previous findings in isolated perfused lungs [1~3]. 

It is therefore stressed that caution should be exercised to extrapolate the data on ventilation­

induced inflammatory mediator expression in isolated lung preparations with high levels of 

lung parenchymal stretch to ill vivo preparations and the clinical situation. Moreover, the data 

demonstrate that acute lung injury and possible ventilation-induced mediator expression are 

different modalities which do not necessarily coincide with each other. Future studies should 

investigate the possible interaction between ventilation-induced bacterial translocation [33] and 
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ventilation-induced inflammatory mediator release ill vivo, particularly given the high 

frequency of ventilator associated pneumonia in ventilated patients [34]. 
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Summary and conclusions 

As outlined in Chapter I, the consequences of detrimental forms of mechanical ventilation 

on the fluid balance over the alveolo-capillary barrier have been extensively described in 

literature. Moreover, possible mechanisms by which such ventilation strategies exert systemic 

effects and effects on other organs are becoming increasingly realized. It is now generally 

accepted that the most detrimental f01111s of mechanical ventilation combine high peak 

inspiratory lung volumes with low levels of end-expiratory lung volumes. Ventilation-induced 

changes of the fluid balance over the alveolo-capillary batTier include permeability and 

stmctural changes to both the epithelial and endothelial layers. However, these changes can 

not be explained by endMinspiratory overstretching alone, since the use of positive endM 

expiratory pressure (PEEP) has been shown to reduce/prevent pemleahility and structural 

changes at the same level of endMinspiratory pressure. The effect of PEEP on lung 

pen11eability can be partially explained by the decrease in capillary filtration pressure resulting 

from it. However, this can not explain how PEEP leads to a reduction in structural damage 

caused by lung overinflation. As described in Chapter 1, changes to the surfactant system as 

a result of mechanical ventilation may provide a common denominator to explain both 

penneability and structural changes to the alveolo-capillaty membrane as a result of 

mechanical ventilation, as well as a basis for the effect of PEEP on velltilatiollMinduced lung 

injury (VIL!). Insight in the exact mechanisms of VILI may indicate the ventilation strategies 

which prevent or minimize VILI and surfactant changes in both healthy and sick lungs: they 

should, on the one hand, prevent end~inspiratory alveolar overdistension and, on the other, 

repeated collapse and re-expansion of alveolar units. Future monitoring techniques during 

mechanical ventilation should provide us with minimal or nonMinvasive onMline infonnation 

to enable these therapeutic directives to be achieved, and thus prevent lung parenchymal 

injury or stress. 

Chapter 2 describes the mechanisms of ventilatiollMinduced surfactant changes in a rat 

model of VILT with high peak inspiratory lung volumes at peak inspiratory pressures of 45 

cmH20 without PEEP. This animal model was first described by \Vebb and Tiemey and later 

used in studies by Dreyfuss. The mechanisms of ventiiatiollMinduced surfactant impainnent 

include: 1) surfactant displacement from the alveolar airMliquid interface into the small 

airways, 2) increased conversion of active into nOllMactive surfactant subfractions, and 3) 

inactivation by intraMalveolar plasma proteins which infiltrate the alveolar space as a result 

of mechanical ventilation. Tn our study, use of PEEP was shown to prevent the increased 

conversion of active into non-active surfactant subfractions which was related to preservation 

of lung mechanics. It was postulated that surfactant changes with an increase in surface 

tension at the airMliquid interface playa key role in the mechanism of VILI by increasing 

suction forces at the air-liquid interface of the alveolar walls; surfactant changes will alter the 

pressure gradient across the alveoloMcapillary barrier in the alveolar direction. This will result 

in a vicious circle of increased surfactant inactivation by proteinMrich edema. Studies by 
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Taskar et al. have shown that such surfactant changes will make the lung more vulnerable to 
damage by mechanical ventilatioIl. Our data demonstrate that mechanical vcntilation may 

perpetuate alterations in the pulmonary surfactant system, indicating that mechanical 
ventilation with high peak inspiratory pressure levels ,vithont sufficiently high enough levels 
of PEEP in patients with ARDS, may impair the function of those alveoli that are still intact. 
Our data support the use of PEEP in patients with ARDS on ventilatory support to preserve 
nonnal surfactant function of alveoli that arc not yet affected by the disease process. 

Although such studies demonstrate that surfactant changes occur in VILI, they do not 
nndisputably prove that surfactant changes playa central role in its mechanisms. Therefore, 
in Chapter 3, we describe a study on the effect of exogenous surfactant therapy, preceding 

lung overinflation ,vithout PEEP, on lung function and lung permeability. It demonstrates that 
high doscs of exogenous surfactant, preceding lung overinflation, preserve lung mechanics and 
reduce infiltration of Evans blue dye in the alveolar spaces. It has now been demonstrated that 
large amounts of exogcnous surfactant have a beneficial effect oulung function, and, possibly 
survival in patients with ARDS. Our data suggest that administration of large amounts of 
exogenous surfactant may beneficially influence further impaimlent of lung function due to 

mechanical ventilation in ARDS patients by protecting the lung areas not yet affected by the 
disease process. 

The study presented in Chapter 4 confirms that surfactant is rate-limiting for the 
transfer of proteins across the alveolo-capillary barrier, by demonstrating in lung lavaged 
rabbits, a reduced clearance of radio-labelled 99illTc_humal1 scmm albumin from the lung after 

exogenous surfactant therapy. The data suggest that fitting a mono-exponential or bi­
cxponential clearance characteristic to the clearance curve of tb.is tracer molecule, might 
enable the use of the technique for the evaluation of the efficiency of different surfactant 

preparations. 
In Chapter 5, it is demonstrated that a pressure-controlled ventilatory mode that uses 

small pressure amplitudes and high levels of end-expiratory pressure bctter preserves the 
active sub fraction of surfactant after exogenous surfactant therapy than ventilation strategies 
that use higher pressure differences at lower levels of PEEP. Moreover, this ventilation 
strategy was shown to better preserve oxygcnation and reduce alveolar protein infiltration. Thc 
advantage of modes of mechanical ventilation that create PEEP by inverscd ratio ventilation, 
with an early intelTuption of the expiratory flow, over modes of mechanical ventilation that 

create the same level of PEEP by static PEEP only, is a more effective carbon dioxide 
elimination. These data show that pressure-controlled inversed ratio ventilation may reduce 
the required amount of exogenous surfactant and, thus, treatment costs in clinical practice 
during exogenous surfactant therapy. 

Although pemleability changes of the alveolo-capillary barrier provide strong 
indication for structural changes of the alveolo-capillary barrier, they are not a direct 
reflection of ventilation-induced morphological changes or beginning injury of the lung 

parenchyma. In Chapter 6 it is demonstrated that the breakdown products of adenosine-
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triphosphate (ATP), the purines, in the broncho~alveolar lavage fluid indicate early metabolic 

and, possibly, stmctural changes to the alveolo~capillary barrier as a result of mechanical 

ventilation. The most likely origin of these A TP breakdown products is the alveolar type II 

cell. The lise of PEEP was shown to prevent ventilation~induced increases in these A TP 

breakdown products, and exogenous surfactant was shown to prevent a significant increase 

in these products compared to non-ventilated controls. 

As is discussed in Chapter 1, there are strong indications from experimental studies 

that mechanical ventilation induces inflammatory processes that do not remain localized to 

the lung, but may give rise to a more generalized systemic inflammatory reaction. Such an 

inflammatory reaction could promote the failure of other organs, leading to the development 

of MOF, which is still the leading cause of death in ARDS. 

Given the fact that the majority of intubated patients develop a ventilation-associated 

pneumonia, Chapter 7 discusses one possible mechanism by which mechanical ventilation 

may influence the development of MOF. It was shown that 3 hours of mechanical ventilation 

in rats inoculated with Klebsiella pllelllllolliae with a peak inspiratory pressure of 30 cmH20 

without PEEP promotes bacteremia with Klebsiella pneIl11l011iae. The use of 10 cmHlO of 

PEEP was shown to reduce ventilation~induced bacteremia. Three hours of mechanical 

ventilation at low peak inspiratory pressures with or without the use of PEEP, did not increase 

bacterial translocation from the lung into the bloodstream, when compared to non-ventilated 

controls. \Vhen translated to the clinical setting, our data advocate the use of a sufficiently 

high level of PEEP to prevent bacteremia in intubated patients receiving mechanical 

ventilation at high levels of peak inspiratory pressure. 

The \vork in Chapter 8 demonstrates in lung lavaged rats that the ventilation strategy 

strongly affects the level of lung injury as measured by intra~alveolar protein infiltration and 

lung fUIlction. However, we could not demonstrate differences in the serum levels ofTNF~a. 

and PGIl with different ventilation strategies. These results were in contrast to findings reported 

by others which showed differences in the levels of inflammatory mediators in the perfusate 

of isolated perfused ex vivo lung preparations as a result of different ventilation strategies. 

It is concluded that: 1) lung injury and inflammatory mediator release from the lung tissue 

are two different entities that do not necessarily coincide with each other ill vivo, and that 2) 

inflammatory mediator release from the lung tissue as a reaction to mechanical ventilation 

may be the result of the limitations of ex vivo lung preparations and that caution is required 

in extrapolating the data from such studies to the clinical situation. 

In summary, the studies in this thesis contribute to the knowledge on VILT, providing 

evidence for the role of surfactant changes and for the possibility of development of systemic 

inflammatory reactions in the mechanism of YILI. 
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Smnenvatting en concillsies 

Zoals uiteengezet in Hoofdstuk 1, zijn de consequellties van schadelijke vormen van 

kunstmatige beademing op de vloeistofbalans van de alveolus-capillail' barriere uitgebreid in 

de literahlllr beschl'even. Ook groeit het inzicht in de mogelijke mechanismen waal'door dcze 

beademingsstrategieen systemische effecten en effecten op andere organen uitoefenen. Het is 

nl! algemeen geaccepteerd, dat kUllstmatigc beademing met eell combinatie van hoge piek 

inspiratoire longvolumes met lage eind-expiratoire longvolumes dc meest schadelijke is. 

Ventilatie-getnduceerde veranderingcn van de vloeistofbalans over de alveolus-capil1air 

balTiere omvatten zowel penneabiliteitsveranderingen als structurele verandcringen in het 

longepitheel en cndotheel. Echter, eind-inspiratoire lIitrekking van het long parenchym kan 

op zichzelf deze verandel'ingen niet verklaren, omdat, bij een gelijke mate van eind­

inspiratoil'e druk, het gebmik van positief eind-expiratoire dmk (PEEP) penneabiliteits en 

stmcturele veranderingen vennindert/voorkomt. Het effect van PEEP op de longpenneabiliteit 

kan gedeeJtelijk verklaard worden door eell vermindeting van de capillaire filtraticdmk Lg.v 

PEEP. Echter, dit mechanisme kan de venllindering in structurele schade niet verkiarell. Zoals 

in Hoofstuk 1 beschreven wordt, vormen veranderillgen in het surfactant systeem cen 

gemeenschappelijke verklaring voor zowel penneabiliteits als structurele veranderingen t.g.v. 

kunstmatige beademing, als ook een verklaring voor het effect van PEEP op beademings­

ge'induceerde longschade. De exacte mechanismen van beademings-ge'induceerde longschade 

geven inzicht in die beademingsstrategieen die zowel beademings-ge'induceerde longschade 

als surfactant veranderingen in gezonde en zieke longen voorkomen of minimalisercn: Ze 

moeten enerzijds een te grote eind-inspiratoire uitrekking en anderzijds het herhnnldelijk 

samenvallen en openen vall alveoli voorkomen. Voor de toekol11st moet gezocht worden naar 

minimaal of non-invasieve bewakingstechniekcn, \vaardoor men kan vaststellen of deze 

therapeutische doelstellingen bereikt worden en dus schade en uitrekking van het 

longparenchym wordt voorkomen. 

Hoofds/uk 2 beschrijft de mechanismen van beademings-ge'induceerde surfactant 

veranderingell in een rat model van beademings-ge'iuduceerde longschade t.g. v het gcbruik 

van hoge piek-inspimtoire long volumcs bij piek-inspiratoire drukken van 45 cmH20 zonder 

PEEP. Dit diemlOdel werd voor het eerst beschreven door Webb and Tiemey (1974) en later 

ook in studies van Dreyfuss (1985). De mechanismen van beademings-getnduceerde surfactant 

schade omvatten 1) surfactant dislocatie van het alveolaire vloeistof-gas scheidingsvlak naal' 

de klcine luchtwegen, 2) eell verhoging van de omzetting van actieve in niet-actieve surfactant 

componenten cn 3) inactivatie van surfactant door intra-alveolaire plasmaeiwitten die de 

alveolair ruimte infiltreren Lg.v kunstmatige beademing. In deze studie werd- aangetoond dat 

PEEP de verhoogde omzetting van actieve in niet-actieve surfactant componenten voorkomt, 

\vat gerelateerd was aan het behoud van dc longmechaniek. Verondersteld wcrd dat surfactant 

veranderingen met een verhoging van de oppervlaktespanning op het gas-vloeistof 

scheidingsvlak van de alveolus cell centrale rol spelen in het mechanisme van beademings-
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ge'induceerde longschade door de zuigkrachten op het gas-vloeistof scheidingsvlak te 

verhogen. Dit zal leiden tot een verschuiving van de drukgradient over de alveolus-capillair 

barriere in de richting van de alveolus, wat vervolgens resulteert in een vicieuze cirkel van 

meer surfactant inactivatie door eiwit-rijk oedeem. Studies door Taskar hebben aangetoond 

dat surfactant veranderingen de long kwetsbaarder maken voor schade door kunstmatige 

beademing. Dnze data tonen aan dat kunstmatige beademing veranderingen in het surfactant 

systeem van de long kan induceren, hetgeen weer aantoont dat kunstmatige beademing met 

hoge piek-inspiratoire drukniveaus zonder voldoende hoge PEEP niveaus in patienten met 

ARDS, de functie van gezonde alveoli kan verstoren. Dnze data ondersteunen het gebruik van 

PEEP in patienten met ARDS, om de nonnale surfactant functie te beschennen van die alveoli 

die nog niet zijn aangedaan door het ziekteproces. 

Alhoewel deze studies aantonen dat surfactant veranderingen plaats vinden tijdens 

beademings-ge'induceerde longschade, bewijzen ze niet ontegenzeggelijk dat surfactant 

veranderingen een centrale rol spelen in het mechanisme van beademings-ge'induceerde 

longschade. Daarom wordt in Hoofdstuk 3 een studie beschreven naar het effect van vooraf 

toegediend exogeen surfactant op de verstoring van de longfunctie en tocname van de 

iongpenneabiliteit door ventilatie met hoge piek-inspiratoire longvolumes zonder PEEP. De 

studie toont aan dat exogeen surfactant toediening in hoge dosering voorafgaand aan ventilatie 

met hoge piek-inspiratoire longvolumes, leidt tot een behoud van de longmcchaniek en cen 

vermindering van de infiltratie van Evans blue naar de alveolaire ruimte. Recent is aangetoond 

dat surfactant in hoge dosering cen positief effect heeft op de long functie en, mogeJijk, op 

de overleving van ARDS patienten. De data van deze studie suggereren dat toediening van 

exogeen surfactant in hoge dosering een gunstig effect heeft op de verdere verslechtering van 

de longfunctie ten gevolge van kunstmatige beademing in ARDS patienten, door die longdelen 

te beschenllen die nog niet zijn aangedaan door het ziekteproccs. 

De studie uit Hoofs/uk 4 bevestigt dat surfactant een beperkende factor is voor de 

filtratie van eiwittell over de alveolus-capillair barriere. In konijnen waarvan de longen 

gelaveerd zijn, vermindcrt door exogeen surfactant de klaring van humaan serum albumine, 

gemerkt met radioactief 99mTc, vanuit de long naar de bloedbaan. Bovendicn veronderstcllen 

de data dat door het correleren van een mono-exponentiele of bi-cxponentielc curve op de 

klaringscurvc van dit l1101ecuul de effectivitcit van verschillcnde surfactant preparaten 

geevalueerd kan worden. 

In Hoofdstuk 5 wordt aangetoond, dat ccn vorm van drukgestuurde kunstmatige 

beademing die kleine drukamplituden combineert met hoge niveaus van eind-expiratoire druk 

leidt tot een beter behoud van de actieve component van exogeen surfactant, dan beademings­

strategieen die grotere dmkamplitudes combineren met lage PEEP niveaus. Bovendicn leidt 

zo'n beademingsstrategie tot een betel' behoud van de artcricic zuurstofsp31111ing en vennindert 

het eiwit infiltratie. Het voordeel van het gebruik van auto-PEEP gecreeerd door een 

voortijdige onderbreking van de expiratoire flow door het gebruik van inversed-ratio 

beademing boven het gebruik van statische PEEP, is cen cffectievere koolstofdioxide uitwas. 
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Vanuit een klinisch perspectief betekent dit dat drukgeshmrde inversed-ratio beademing de 

hoeveelheid exogeen surfactant, en dus de behandelingskosten tijdens het gebmik van exogeen 

surfactant kan verminderen. 

Permeabiliteitsveranderingen zijn een sterke aanwijzing voor stmcturele veranderingen 

van de alvcolus-capillair membraam, echter, ze zijn geen directe weerspiegeling van 

beadcming-getnduceerde morfologische veranderingen of beginnende schade van het long 

parenchym. In Hoofdstuk 6 wordt aangetoond dat de afbraakproducten van adenosine­

trifosfaat (ATP), de purines, in de broncho-alveolaire lavage als markers van vrocge metabole 

en, mogelijk, stmcturele veranderillgcn van de alveolus-capillair membraan Lg.v. kunstmatige 

beademing kunnen functioneren. De Illecst waarschijnlijke oorsprong van deze ATP­

afbraakproducten is de alveolaire type II eel. Het gebmik van PEEP voorkomt een 

beademings-ge"induceerde stijging in deze ATP-afbraakproducten en exogeen surfactant 

voorkwam een significante stijging in deze ATP-afbraaktproducten Lv.m. niet-beademde 

controle dieren. 

Zoals bediscussieerd in Hoofds/uk 1, zijn er stcrke aanwijzingen nit experimentele 

studies dat kunstmatige beademing ontstekingsprocessen in de long induceert, die niet 

gelocaliseerd blijven in de long, maar die aanleiding geven tot een meer gegeneraliseerde 

systemische ontstekingreactie. Zotn ontstekingsreactie ZOll aanleiding kunnen gevell tot het 

falen van andere organen, wat uiteindelijk kan leiden tot het ontstaan van multiorgaan falen 

(MOF), wat nog steeds de belangrijkste doodsoorzaak is van ARDS. 

Gebaseerd op het feit dat de meerderheid van de geintubeerde patienten een 

beademings-geassocieerde pneumonie ontwikkelt, wordt in Hoofdstuk 7 een mogelijk 

mechanisme beschreven waardoor kunstmatige beademing het ontstaan van MOF kan 

be"invloeden. Er werd aangetoond dat 3 uur kUIlstmatige beademing met piek inspiratoire 

drukken van 30 cmH20 zonder PEEP in ratten ge"il1oculeerd met Klebsiella plleu11lolliae, 

bacteremie met dit organisme induceert. Het gebmik van PEEP verminderde deze 

beademings-geYnduceerde bacteremie met Klebsiella pllell11lol1iae. Drie Hur kunstmatige 

beademing met lage piek inspiratoire drukken met of zonder het gebruik van PEEP leidde 

Lv.m. niet-beademde controle dieren niet tot een stijging van de translocatie van bacterien 

vanuit de long naar de bloedbaan. \Vanneer dit wordt vertaald naar de klinische setting, 

ondersteunen onze data het gebruik van een voldoende hoog PEEP-niveau om bacteremie te 

voorkomen in paticnten die kunstmatig beademd worden met hoge piek-inspiratoire 

dmkniveaus. 

De studie nit Hoo/cls/uk 8 demonstreert dat verschillende beademingstrategieen in 

long-gelaveerde ratten de longfunctie en de mate van longschade weerspiegeJd door intra­

alveolaire eiwit infiltratie, sterk be"invloeden. Echter, een verschil in de serum spiegels van 

TNF-a en PGI2 als gevolg van verschillende beademingsstrategieen, kon niet worden 

waargenomen. Deze bevindingen zijn niet in overeenstemming met de bevindingen van een 

andere onderzoeksgroep, die aantoonde dat in ge"isoleerde, geperfundeerde ex vivo long­

preparaten van knaagdieren, de hoogte van de spiegels van ontstekingsmediatoren van de 
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pcrfusievloeistof afiwukelijk is van de beademingsstrategie. Gecondudeerd kan worden dat 

1) beademingsRge'illduceerde longschade en beademingsRge1nduceerde afgifte van 

olltstekingsmediatoren {wee verschil1ende fenomenel1 zijn die, ill vivo, niet noodzakelijkenvijs 

samenvallen met elkaar en dat 2) de afgifte van ontstekingsmediatoren vanuit het longweefsel 

Lg. v kunstmatige beademing in ex vivo long preparaten een gevolg kan zijn van de 

beperkingen van dit soort preparaten en dat voorzichtigheid geboden is met het extrapoleren 

van de resuitaten van deze onderzoeken naar de klinische situatie. 

Samengevat dragen de studies bij aan de kennis over beademingsRgei'nduceerde 

longschade, door bewijs aan te voeren voor de rol van surfactant vcranderingen en de 

mogelijkheid tot de ontwikkeling van een systemische ontstekingsreactie in het mechanisme 

van beademingsRgeIuduceerde longschade. 
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