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Abstract

We propose to estimate the parameters of the Market Share Attraction Model

(Cooper & Nakanishi, 1988; Fok & Franses, 2004) in a novel way by using a non-

parametric technique for function estimation called Support Vector Regressions (SVR)

(Vapnik, 1995; Smola, 1996). Traditionally, the parameters of the Market Share At-

traction Model are estimated via a Maximum Likelihood (ML) procedure, assuming

that the data are drawn from a conditional Gaussian distribution. However, if the

distribution is unknown, ML estimation may seriously fail (Vapnik, 1982). One way to

tackle this problem is to introduce a linear loss function over the errors and a penalty

on the magnitude of model coefficients. This leads to qualities such as robustness to

outliers and avoidance of the problem of overfitting. This kind of estimation forms the

basis of the SVR technique, which, as we will argue, makes it a good candidate for

solving the Market Share Attraction Model. We test the SVR approach to predict (the

evolution of) the market shares of 36 car brands simultaneously and report stronger

results than when using a ML estimation procedure.

1 Introduction

The Market Share Attraction Model is a popular tool for analyzing market competitive

structures (Cooper & Nakanishi, 1988; Fok & Franses, 2004). It is typically applied for si-
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multaneously predicting the market shares of several brands within a given product category

simultaneously. The model helps to evaluate the effect of marketing-mix variables on brands’

performances as well as the effect of an individual brand’s own efforts while conditioning on

competitors’ reactions. A detailed econometric analysis of the model can be found in Fok,

Franses, and Paap (2002). What makes this model rather special is the requirement that

the forecasted market shares are all non-negative and sum to unity.

The traditional unrestricted Market Share Attraction Model often suffers from poor pre-

dictability, especially for the relatively larger brands. The poor performance is likely to be

due to various causes, including heteroscedasticity and failure to account for a trend in the

data. The huge number of coefficients to be estimated is another source of concern. A com-

mon way to address those issues is to restrict the model coefficients or to aggregate brands

into categories. More fundamentally, however, one can also address the commonly applied

estimation procedure, which is Maximum Likelihood (ML). ML estimation is appropriate

(and optimal) in cases the dependent variable has been drawn from a conditional Gaussian

distribution. In cases where this is not so, the least-squares techniques are suboptimal and

could lead to severely mismatched solutions for some densities (Vapnik, 1982). In cases

like this, improved coefficient estimation can be obtained by using estimation methods put

forward in the literature on Support Vector Machines (SVMs) and this is what we address

in this paper.

SVMs are a nonparametric tool that can be used for both classification and regression

estimation tasks (Vapnik, 1995; Burges, 1998; Cristianini & Shawe-Taylor, 2000). They

have gained considerable popularity during the last years, following a series of successful

applications in areas ranging from Bioinformatics and Optical Character Recognition to

Economics and Finance (see, among others, Schölkopf, Guyon, & Weston, 2001; Schölkopf,

Burges, & Vapnik, 1995; Pérez-Cruz, Afonso-Rodŕıguez, & Giner, 2003; Tay & Cao, 2001).

SVMs, and in particular Support Vector Regression (SVR), capitalize on two facts. The

first one is the proposition that the linear loss function is the best error loss function of

the worst model over any probability density function of the dependent variable given the

independent variables (Huber, 1964). Thus, if the dependent variable is drawn from an

unknown distribution, a linear loss function over the errors could be more appropriate than

the common quadratic one. The second building block is the bound obtained on the test error

(less than infinity) using the so-called Structural Minimization Principle (Vapnik, 1995).
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This bound arises when a certain error-insensitive region around the predicted value of the

dependent variable is introduced. The width of this region can be made arbitrarily small

however. Therefore, if the dependent variable has not been sampled from a conditional

Gaussian distribution, the SVR can lead to better predictions than those obtained via a

least squares (ML) procedure (Pérez-Cruz et al., 2003).

SVRs solve a quadratic programming problem to obtain a solution. Unlike competing

techniques such as Neural Networks, this solution is unique and does not suffer from a local

minimum. Further desirable properties of SVRs in general are their ability to avoid in-sample

overfitting and their robustness against outliers in the data, and particularly those properties

make them very suitable for the application to the Market Share Attraction Model.

The paper is organized as follows. The next section introduces the Market Share At-

traction Model in its traditional form. Section 3 outlines the SVR technique and augments

it with SVR estimation and Section 4 discusses its nonlinear extension. Section 5 presents

our main findings on a data set that is used to predict the evolution of market shares of 36

car brands for a certain period. The final section gives a conclusion.

2 The Market Share Attraction Model

The purpose of the Market Share Attraction Model is to provide an overall model for the

market share Mi,t of brand i at time t for the I brands constituting the market over a period

from t = 1 to T . An important characteristic of a market share Mi,t is that 0 ≤ Mi,t ≤ 1

and that it sums over all brands to one, that is,
∑I

i=1 Mi,t = 1. The typical interval

between the measurements of the market shares is a week or a month. The model uses

K predictor variables with nonnegative values xk,i,t to predict the market shares described

below. Typical predictor variables are price, distribution, advertising spending, etcetera.

The usefulness of the model lies in its ability to describe the competitive structures and to

infer cross effects of marketing-mix instruments (Fok et al., 2002).

The so-called Multiplicative Competitive Interaction (MCI) specification of a market

share Mi,t builds on the attraction Ai,t of brand i at time t that is defined as

Ai,t = exp(µi + εi,t)
I∏

j=1

K∏

k=1

x
βk,j,i

k,j,t for i = 1, . . . , I, (1)

where βk,j,i is the unknown coefficient for brand i and µi is a brand-specific intercept term

corresponding to the size of the brand. The vector of error terms εt = [ε1,t, . . . , εI,t]′ is
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usually assumed to be normally distributed with zero mean and some unknown covariance

matrix Σ. The market share of brand i at time t can be defined as the attraction of brand

i at t divided by the sum of all attractions at t, that is,

Mi,t =
Ai,t∑I

j=1 Aj,t

for i = 1, . . . , I. (2)

The model in (1) with (2) is the Market Share Attraction Model. Notice that the definition

of the market share of brand i at time t given in (2) implies that the attraction of the

product category is the sum of the attractions of all brands and that equal attraction of two

brands results in equal market shares.

In addition to the predictor variables xk,i,t, one could also include lagged variables

xk,i,t−1, xk,i,t−2, . . . , xk,i,t−P and lagged market shares Mi,t−1,Mi,t−2, . . . , Mi,t−P as predic-

tors. With these P lags, the attraction Ai,t specification with a P -th order autoregressive

structure becomes

Ai,t = exp(µi + εi,t)
I∏

j=1

(
K∏

k=1

x
βk,j,i

k,j,t

P∏
p=1

(
M

αp,j,i

j,t−p

K∏

k=1

x
βp,k,j,i

k,j,t−p

))
, (3)

where αp,j,i is the effect of lagged market shares on the attraction and βp,k,j,i the effect of

lagged explanatory variables. Clearly, this specification involves quite a number of parame-

ters.

To estimate the parameters, the model is linearized in two steps. First, we choose brand

I as a benchmark brand and express the market share of each of the remaining brands as a

fraction of this benchmark brand, that is,

Mi,t

MI,t
=

exp(µi + εi,t)
∏I

j=1

(∏K
k=1 x

βk,j,i

k,j,t

∏P
p=1

(
M

αp,j,i

j,t−p

∏K
k=1 x

βp,k,j,i

k,j,t−p

))

exp(µI + εI,t)
∏I

j=1

(∏K
k=1 x

βk,j,I

k,j,t

∏P
p=1

(
M

αp,j,I

j,t−p

∏K
k=1 x

βp,k,j,I

k,j,t−p

)) . (4)

The second step is to take the natural logarithm (denoted by log) of both sides of (4).

Together, these two steps result in the (I − 1)-dimensional set of equations given by

log Mi,t − log MI,t = (µi − µI) +
I∑

j=1

K∑

k=1

(βk,j,i − βk,j,I) log xk,j,t

+
P∑

p=1

I∑

j=1

(αp,j,i − αp,j,I) log Mj,t−p

+
P∑

p=1

I∑

j=1

K∑

k=1

(βp,k,j,i − βp,k,j,I) log xk,j,t−p + ηi,t. (5)

Because the µi parameters only appear as the difference µi − µI with the benchmark pa-

rameter µI , they are not uniquely identified. However, the parameters µ̃i = µi − µI
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are uniquely identified. Similarly, β̃k,j,i = βk,j,i − βk,j,I , β̃p,k,j,i = βp,k,j,i − βp,k,j,I , and

α̃p,j,i = αp,j,i − αp,j,I can also be uniquely identified. Therefore, for estimation we use

µ̃i, β̃k,j,i, β̃p,k,j,i, and α̃p,j,i.

The errors ηi,t in (5) are equal to ηi,t = εi,t − εI,t, or, equivalently, ηt = Lεt with the

(I − 1)× I matrix L = [I | − 1] where I an (I − 1)-dimensional identity matrix and 1 is an

(I − 1)-vector of ones. Hence, given the earlier assumptions that εt is normally distributed

with mean 0 and covariance matrix Σ, ηt is also normally distributed with mean 0 and

a (I − 1) × (I − 1) covariance matrix equal to Σ̃ = LΣL′. As a consequence, out of the

I(I + 1)/2 unknown (co)variances in Σ, we can only identify I(I − 1)/2 values.

Using the substitution above to obtain unique estimates for the effects, the general attrac-

tion model in (5) can be expressed as an (I−1)-dimensional P -th order vector autoregression

with exogenous variables, that is, by

log Mi,t − log MI,t = µ̃i +
I∑

j=1

K∑

k=1

β̃k,j,i log xk,j,t +
P∑

p=1

I∑

j=1

α̃p,j,i log Mj,t−p

+
P∑

p=1

I∑

j=1

K∑

k=1

β̃p,k,j,i log xk,j,t−p + ηi,t. (6)

Under the assumption that the error variables are normally distributed with some unknown

covariance matrix, maximum likelihood (ML) is the appropriate estimation method. In our

application, the explanatory variables for each brand are the same, that is, xk,1,t = xk,2,t =

. . . = xk,I,t. Under these conditions and if there are no parameter restrictions then ordinary

least squares (OLS) estimators are equal to the ML estimator (Fok et al., 2002).

If the dependent variable has not been drawn from a conditional normal distribution,

then the parameters of the general Market Share Attraction Model (6) are not guaranteed

to be optimally estimated by a least-squares technique (Vapnik, 1982). An alternative way

to estimate the model parameters in this case is by means of the suggested SVR, which is

outlined below.

3 Linear Support Vector Regression

Support Vector Regressions (SVRs) and Support Vector Machines (SVMs) are rooted in the

Statistical Learning Theory, pioneered by Vapnik (1995) an co-workers. Detailed treatments

of SVR and SVM can be found, for example, in Burges (1998), Smola (1996) and Smola

and Schölkopf (1998). The following is a self-contained basic introduction to Support Vector
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Regressions (SVRs).

SVRs have two main strengths and these are good generalizability/avoidance of over-

fitting and robustness against outliers. Generalizability refers to the fact that SVRs are

designed in such a way that they provide the most simple solution for a given, fixed amount

of (training) errors. A function is referred to as being simple if the coefficients of the predic-

tor variables are penalized towards zero. Thus, an SVR addresses the problem of overfitting

explicitly, just like many other penalization methods such as Ridge Regression (Tikhonov,

1963) and Lasso (Tibshirani, 1996). The robustness property stems from considering abso-

lute, instead of quadratic, values for the errors. As a consequence, the influence of outliers is

less pronounced. More precisely, SVRs employ the so-called ε-insensitive error loss function,

which is presented below. To put it in a nutshell, (linear) SVR departs from the classical

regression in two aspects. The first one is the utilization of the ε-insensitive loss function in-

stead of the quadratic one. The second aspect is the penalization of the vector of coefficients

of the predictor variables.

The classical multiple regression has a well known loss function that is quadratic in the

errors, r2
i = (y−f(xi))2. The loss function employed in SVR is the ε-insensitive loss function

g(ri) = |yi − f(xi)|ε ≡ max{0, |yi − f(xi)| − ε } = max{0, |ri| − ε}

for a predetermined nonnegative ε, where yi is the true target value, xi is a vector of input

variables and f(xi) is the estimated target value for observation i. Figure 1 shows the

resulting function for the residual. Intuitively speaking, if the absolute residual is off-target

by ε or less, then there is no loss, that is, no penalty should be imposed, hence the name

“ε-insensitive”. However, if the opposite is true, that is |yi − f(x)| − ε > 0, then a certain

amount of loss should be associated with the estimate. This loss rises linearly with the

absolute difference between y and f(x) above ε.

Because SVR is a nonparametric method, traditional parametric inferential statistical

theory cannot be readily applied. Theoretical justifications for the SVR are instead based

on statistical learning theory (Vapnik, 1995). There are two sets of model parameters

in SVR: coefficients, and a manually-adjustable parameter C that explicitly controls the

interplay between model fit and model complexity. For each value of the manually-adjustable

parameter C there is a corresponding set of optimal coefficients, which are obtained by

solving a quadratic optimization problem that is tuned using a cross-validation procedure. In

such a procedure, the data set is first partitioned into several mutually exclusive parts. Next,
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ε−ε

g(ri)

ri

Figure 1: The ε-insensitive loss function that assigns no penalty to residuals ri ∈ [f(xi) −
ε, f(xi) + ε] for point i. As |ri| gets larger than ε, a nonzero penalty g(ri) that rises linearly
is assigned.

models are built on some parts of the data and other parts are used for evaluation of the fit-

versus-complexity parameter C. This is quite analagous to the process of adjusting the bias-

versus-variance parameter in Ridge Regression, for instance. We start out with assuming

implicitly that the fit-versus-complexity parameter C has been set to unity, and later relax

that assumption. In the nonlinear SVR case, other manually-adjustable parameters may

arise. Then a grid search over a certain range of values for C and these parameters has to

be performed.

Let us first consider the case of simple linear regression estimation by SVR by the usual

linear relation y = β1x1 + b, where β1 and b are parameters to be estimated. Figure 2 shows

an example with three cases of possible linear functional relations. The SVR line is the solid

line in Figure 2c, given by the equation f(x1) = β1x1 + b. The “tube” between the dotted

lines in Figure 2 consists of points for which the inequality |y − f(x1)| − ε ≤ 0 holds, where

ε has been fixed arbitrarily at 2. All data points that happen to be on or inside the tubes

are not associated with any loss. The rest of the points will be penalized according to the

ε-insensitive loss function. Hence, the solutions in Panel (b) and (c) both have zero loss in

ε-insensitive sense.

The exact position of the SVR line of Figure 2c is determined as follows. The starting

point is that the SVR line should be as horizontal/simple/flat as possible. The extreme case

of β1 = 0 in Figure 2a will unavoidably yield several mistakes, as ε is not big enough to

give zero loss for all points. This case represents a simple but quite “lousy” relationship.

However, notice that the resulting region between the dotted lines, referred to as the ε-

insensitive region, occupies the greatest possible area (for ε = 2). It is argued in the

SVR literature that this particular area can be seen as a measure of the complexity of

the regression function used. Accordingly, the horizontal regression line provides the least
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Figure 2: Three possible solutions to a linear regression problem with data points that lie on
a line. The vertical line segments in panel (a) indicate loss per observation, which is equal to
|y−f(x1)|−ε, for ε = 2. In line with the ε-insensitive loss function, a point is not considered
to induce an error if its deviation from the regression line is less than or equal to ε. The
horizontal regression line in panel (a) is the simplest possible one since it hypothesizes that
there is no relation between y and x1, and it produces too much loss. Panel (b) gives the
classical linear regression estimation, yielding zero loss. Panel (c) shows the linear SVR,
which also yields zero loss but it flatter than the regression in Panel (b).

complex functional relationship between x1 and y, which is equivalent to no relationship at

all.

Consider the next step in Figure 2b. Here, the solid line fits the training data extremely

well. This line is the actual regression function from classical regression analysis, where

the loss measured as the sum of squared errors of the estimates is being minimized. The

distance between the dotted lines however has clearly diminished as compared to Figures 2a

and 2c. What the SVR line of Figure 2c aims for is to find a balance between the amount

of “flatness” (or complexity) and training mistakes (or fit). This balance is the fundamental

idea behind SVR analysis. Good generalization ability is achieved when the best trade-

off between function’s complexity (proxied by the distance between the dotted lines) and

function’s accuracy on the training data is being struck. The idea that such a balance

between complexity and amount of training errors should be searched has been formalized

in Vapnik (1995).

To find a linear relationship between p independent variables and a single dependent

variable in a data set of n observations, the mathematical formulation of the optimization

problem of SVR can be derived intuitively as follows. The objective is to find a vector

of p coefficients β and an intercept b so that the linear function f(x) = β′x + b has the

best generalization ability for some fixed ε error insensitivity. From the “complexity” side,
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this linear surface should be as horizontal as possible, which can be achieved by minimizing

the quadratic form β′β. From the “amount of errors” side however, a perfectly horizontal

surface (obtained for β = 0) will generally not be optimal since a lot of errors will typically

be made in such a case. According to the ε-insensitive loss function, the sum of these errors

is defined to be equal to
∑n

i=1 g(ri) =
∑n

i=1 max{0, |yi − f(xi)| − ε}. One can strike a

balance between amount of errors and complexity by minimizing their sum

Lp(β, b) :=
1
2
β′β + C

n∑

i=1

max{0, |yi − (β′xi + b)| − ε},

where C is a user-defined constant that controls the relative importance of the two terms.

This minimization problem formulation is the familiar penalty plus loss minimization paradigm

that arises in many domains (see, e.g., Hastie, Tibshirani, & Friedman, 2001).

The problem can equivalently be represented by introducing the so-called slack variables

ξ and ξ∗. Then, minimizing Lp(β, b) can be represented as the constrained minimization

problem

minimize Lp(β, b, ξ, ξ∗) :=
1
2
β′β + C

n∑

i=1

(ξi + ξ∗i ), (7)

subject to yi − (β′xi + b) ≤ ε + ξi,

β′xi + b− yi ≤ ε + ξ∗i , and

ξi, ξ
∗
i ≥ 0

(Vapnik, 1995; Smola & Schölkopf, 1998).

If the estimate β′xi + b of the ith observation deviates from the target yi by more than ε,

then a loss is incurred. This loss is equal to either ξi or ξ∗i , depending on which side of the

regression surface observation i lies. It turns out that (7) is a convex quadratic optimization

problem with linear constraints, and thus a unique solution can always be found. As already

mentioned, the objective function in (7) consists of two terms. The first term, 1
2β′β, captures

the degree of complexity, which is proxied by the width of the ε-insensitive region between

surfaces y = β′x + b + ε and y = β′xi + b − ε. If β = 0, then complexity ( 1
2β′β) is

minimal since the ε-insensitive region is biggest. The slack variables variables ξi and ξ∗i ,

i = 1, 2, . . . , n, are constrained to be nonnegative. All points i inside the ε-insensitive region

have both ξi = 0 and ξ∗i = 0. If a point i lies outside the ε-insensitive region, then either

ξi > 0 and ξ∗i = 0, or ξi = 0 and ξ∗i > 0. All data points that lie outside the ε-insensitive

region (that is, for which |y− f(xi| ≥ ε) are called “support vectors”. It can be shown that
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the final solution for the SVR line depends only on the support vectors, and thus all other

points are completely irrelevant (Smola & Schölkopf, 1998). This property is referred to

as the sparse-solution property of SVR. In other words, the final formulation of the SVR

function would remain the same even if all data points that are not support vectors were

removed from the original data set.

Generally, it is not possible to have both terms 1
2β′β and C

∑n
i=1(ξi + ξ∗i ) equal to zero.

If β = 0, then the loss C
∑n

i=1(ξi + ξ∗i ) can be large, as depicted in Figure 2a. Likewise, if

the sum C
∑n

i=1(ξi + ξ∗i ) is relatively small, then β will generally be large, and consequently

1
2β′β too. Therefore, at the minimum of the objective function in (7), a balance is found

between 1
2β′β (complexity) and C

∑n
i=1(ξi + ξ∗i ) (fit), ensuring that neither the resulting

function f(x1) = β′x + b fits the data too well, nor that it is too flat. The constraints in

the optimization problem ensure that the degenerate solution β = ξ = ξ∗ = 0 is avoided.

4 Nonlinear Support Vector Regression

Another useful feature of the SVR is that nonlinear relationships can be easily included.

This property may be useful in the Market Share Attraction Model if there is a nonlinear

relation between the log attraction differences and the predictor variables.

4.1 Preliminaries

To introduce nonlinearities in SVR estimation, we need to discuss an alternative compu-

tational solution to the so-called primal linear minimization problem defined in (7). In

particular, instead of minimizing Lp directly, a dual representation is used. Thus, the un-

known parameters of the linear SVR β, b, ξi and ξ∗i , i = 1, 2, . . . , n of the original primal (7)

can be found as the unique solution of the dual problem, where the dual is defined as

maximize Ld(α) := −1
2

n∑

i,j=1

(αi − α∗i )(αj − α∗j )(x
′
ixj) + (8)

+
n∑

i=1

(αi − α∗i )yi − ε

n∑

i=1

(αi + α∗i )

subject to 0 ≤ αi, α
∗
i ≤ C, i = 1, 2, . . . , n and

n∑

i=1

(αi − α∗i ) = 0,

where the unknowns αi and α∗i are the Lagrange multipliers of the primal (for a step-by-step

derivation of the dual see, for example, Vapnik (1995), Smola (1996)). They are the weights
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Figure 3: Three possible nonlinear SVR solutions to the problem of estimating the function
y = sin(x1) from examples.

associated with each data point i. If both αi and α∗i for point i are equal to zero, then

this point lies inside the ε-insensitive region. It has a weight of zero and plays no role for

the final formulation of the SVR function. The SVR regression function takes the form of

(Smola & Schölkopf, 1998):

f(x) =
n∑

i=1

(α∗i − αi)(x′xi) + b, (9)

where x is a vector containing the values of the independent variables for a new (test)

point. Note that since the SVR regression function can be expressed as f(x) = β′x + b, it

follows that β′x =
∑n

i=1(α
∗
i − αi)(x′xi) at the optimum, and therefore model coefficients

are obtained as β =
∑n

i=1(α
∗
i − αi)x.

4.2 Nonlinear SVR

Now we introduce nonlinear SVR estimation. The construction of nonlinear SVR is carried

out in two steps. First, the data are mapped through x → Φ(x) into a higher -dimensional

space. Second, a linear regression function is constructed in the transformed space. This

function corresponds to a nonlinear one in the original, non-transformed space. The op-

timal linear regression function in the transformed space should be, analogically to the

non-transformed case, as flat as possible (Smola & Schölkopf, 1998) to ensure a good gen-

eralization ability. Due to the mapping x → Φ(x), the SVR estimates in the nonlinear case

take the form (Smola & Schölkopf, 1998):

f(x) =
n∑

i=1

(α∗i − αi)k(x,xi) + b,
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where k(xi,xj) = Φ(xi)′Φ(xj) is a so-called kernel function that computes dot products in

a transformed space. Often, the Gaussian kernel k(xi,xj) = Φ(xi)′Φ(xj) = e−γ‖xi−xj‖2 is

used, where γ is a manually adjustable parameter that controls the degree of similarity be-

tween any two vectors in the transformed space. Note that coefficient estimates for nonlinear

SVR are available only if the mapping x → Φ(x) is carried out explicitly. The coefficients

are then calculated as β =
∑n

i=1(α
∗
i − αi)Φ(x). Other kernels exist but are beyond the

scope of this paper.

Let us now consider Figure 3, which shows 17 sample points (black dots) from the

function y = sin(x1). Three possible nonlinear SVR solutions to this problem are given in

this figure. By construction there is no noise in the data. The nonlinear transformation

of the original data is carried out via the Gaussian kernel. All SVR manually adjustable

parameters are the same in all three panels, except for ε, which is equal to 0.1, 0.45 and 0.9

in panels (a), (b), and (c), respectively. As ε increases, the estimated functional relationship

between y and x1 becomes weaker (and therefore flatter); furthermore, the amount of errors

reduces substantially. Notice that the estimated relationship also becomes flatter as x1

takes on values that are farther away from the values of the original data points, which is

an attractive property of SVR for extrapolation.

So far the question of how to choose the manually adjustable parameters (such as C,

ε and γ) has been left aside. One very common way to proceed is to use a k-fold cross-

validation procedure. In a such a procedure, the data set is split in k (equally-sized) parts.

Then, k models for a fixed set of values for the manually adjustable parameters are built on

k− 1 folders and each time the one remaining folder is used for validation (or, testing). The

chosen parameters are those that produce minimal mean squared error on average (over all

k test parts).

4.3 Links between SVR and Classical Regression

The classical OLS approach to function estimation is to find the vector of coefficients β = β∗

and intercept term b = b∗, which minimize the loss LOLS(β, b) =
∑n

i=1(yi − β′xi − b)2,

where {yi,xi}, i = 1, 2, . . . n, is a data point. The Ridge Regression approach extends OLS

by modifying the loss to LRR(β, b) = λβ′β +
∑n

i=1(yi − β′xi − b)2, for λ ≥ 0. Hence, the

linear SVR, OLS, and Ridge Regression optimization problems can be thought of special
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cases of the general optimization problem

minimize LAll
p (β, b, ξ, ξ∗) :=

A

2
β′β +

C

k

n∑

i=1

((ξi)k + (ξ∗i )k) (10)

subject to yi − β′xi − b ≤ ε + (ξ∗i )k,

β′xi + b− yi ≤ ε + (ξi)k, and

ξi, ξ
∗
i ≥ 0,

for i = 1, 2, . . . , n,

where ε ≥ 0, k ∈ {1, 2}, A ≥ 0, C > 0. The classical linear regression optimization problem

is a special case of (10), where k = 2, ε = 0, C = 2, and A = 0. The linear ridge regression

estimation problem is obtained for k = 2, ε = 0, C = 2, and A = 2λ. Finally , the linear

SVR estimation problem (7) corresponds to the restrictions k = 1, ε > 0, C > 0, and A = 1.

5 An Illustration for New Cars

The technique of SVR might be particularly useful for the Market Share Attraction Model

as it is not certain that the log of the market shares are conditionally Gaussian and also as

the log transformation can create outlying data points. Here we present and compare the

results of SVR and ML estimation of the coefficients of the Market Share Attraction Model

on empirical data. Carrying out an extensive benchmark study is beyond the scope of the

present paper and we refer to Pérez-Cruz et al. (2003) for a number of simulation studies.

They report superior performance of SVR vis-a-vis ML coefficient estimation in cases where

the dependent variable has not been drawn from a conditional normal distribution as well

as in cases where the distribution is actually normal, but with small sample size.

5.1 Description of the Data

The data are monthly sales figures per brand of new cars, in the Netherlands starting in

January 1992 and ending in October 2001 obtained from Statistics Netherlands (CBS).

Market shares are computed by dividing brand sales by total sales. There is a total of

36 different brands, one being ’Other’ collecting all the smallest brands. The price series

concerns the price of new cars. This price series is based on the best selling model per brand

in a particular year. Note that we only have the prices of models for the 26 best selling

brands. The source is www.autoweek.nl. To find the price of that best selling model we
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Figure 4: Market shares of 36 brands on the Dutch market between January 1992 and
October 2001.

consulted various annual editions of (Dutch language) Autoboek, Autovisie, and Autotest.

The market shares are presented in the line plots of Figure 4.

5.2 Estimation of the Market Share Attraction Model

We now turn to the estimation of the (unrestricted) Market Share Attraction Model, applied

to our data. We expect that the prices and market share of each brand will have an effect

on the market share of all the other brands. In other words, we assume that the explanatory

variables in the model are the same for each brand. For convenience, we denote with xk,t

the kth explanatory variable for any brand at time t, no matter whether it is in a lagged or
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other form, or it represents price or another explanatory variable. Thus, the attraction of

brand i at time t, given in the general equation (1), becomes in our case

Ai,t = exp(µi + εi,t)
K∏

k=1

x
βk,i

k,t for i = 1, . . . , I, (11)

with k = 1, 2, . . . , 88, t = 1, 2, . . . , T and I = 36. The length of the time horizon T ranges

from 50 to 117, since we study the evolution of market shares over time. For each T a

separate Market Share Attraction Model for all brands is estimated. The first 26 explanatory

variables are current prices; the next 26 variables are one month lagged prices, and the last

stack of 36 variables are one month lagged market shares of all brands. Using brand I as a

base brand, (1) translates into the market share equations for brands 1, 2, . . . , I − 1 at time

t (akin to (5))

log M1,t − log MI,t = µ̃1 +
∑K

k=1 β̃k,1zk,t + η1,t

log M2,t − log MI,t = µ̃2 +
∑K

k=1 β̃k,2zk,t + η2,t

... =
... +

... +
...

log MI−1,t − log MI,t = µ̃I−1 +
∑K

k=1 β̃k,I−1zk,t + ηI−1,t,

(12)

where zk,t = log xk,t. For notational convenience, we denote yi,t = log Mi,t − log MI,t,

yi = (yi,1, yi,2, . . . , yi,T )′, β̃i = (β̃1,i, β̃2,i, . . . , β̃K,i)′ and ηi = (ηi,1, ηi,2, . . . , ηi,T )′. Further,

we denote with Z the common matrix of independent variables for each brand over time

t = 1, 2, . . . , T . Consequently, (12) can be modeled in matrix form as



y1

y2

...

yI−1




=




Z 0 · · · 0

0 Z
...

...
. . .

...

0 · · · 0 Z







β̃1

β̃2

...

β̃I−1




+




η1

η2

...

ηI−1




. (13)

The coefficients of this model can now be estimated using OLS or SVR. For OLS, one esti-

mates the model coefficients by minimizing the sum of squared errors,
∑I−1

i=1

∑T
t=1 η2

i,t. For

SVR estimation, one minimizes the sum 0.5
∑I−1

i=1

∑K
k=1 β̃k,i + C

∑I−1
i=1

∑T
t=1 max{0, |ηi,t| −

ε}.
Because of the structure of the block diagonal matrix with blocks Z, the OLS estimates

can be computed very efficiently. The inverse (Z′Z)−1 only needs to be computed once and

β̃i = (Z′Z)−1Z′yi contains the OLS optimal weights for brand i. In a similar way, the

weights for the linear SVR problem can be estimated separately for each brand i. Computa-

tionally, this split will be much faster than inserting (13) directly into a linear SVR program.
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However, for nonlinear SVR, the problem cannot be split up into I smaller nonlinear SVR

problems because its solution is defined in the dual where the nonlinearity is added to the

full problem. Hence, splitting up the nonlinear SVR into smaller parts does not solve the

full nonlinear SVR problem.

Although coefficient estimates for SVR are not always available in the nonlinear case (see

Section 4), predicted values for the y’s can always be created. Once all y’s are obtained, say

using values for the predictor variables at test time t∗, market shares can be derived using

the relationship

eyi,t

∑I
i=1 eyi,t

=
e(log Mi,t−log MI,t)

∑I
i=1 e(log Mi,t−log MI,t)

=
Mi,t/MI,t∑I
i=1 Mi,t/MI,t

= Mi,t,

which uses the fact that the market shares sum up to unity.

5.3 Results

We estimated the coefficients of the Market Share Attraction Model given in (13) using

both the SVR and OLS techniques. As indicated in Section 2, OLS is equivalent to ML

estimation because (a) the dependent variable is assumed conditionally Gaussian, (b) the

explanatory variables are the same for all brands, and (c) there are no parameter restrictions.

The dependent variable is the log-ratio of market shares of 35 car brands and an arbitrary

base brand, which we have chosen to be Volvo. The predictor variables include current

prices, one period lagged prices, and one period lagged market shares. For SVR, we have

used the linear SVR and the nonlinear SVR with the popular Radial Basis Function (RBF)

kernel. We use an expanding window of historical in-sample data to produce a forecast for

a given out-of-sample month. That is, we have estimated the market share model (13) 68

times, each time using slightly different, one-month-extended data. Thus, to forecast the

first out-of-sample month March 1996, we use the first 50 months from January 1992 to

February 1996. For each following out-of-sample month we add one month of historical data

to the estimation window. In the end, we calculate the Root Mean Squared Prediction Error

(RMSPE) and Mean Absolute Prediction Error (MAPE) per brand per month, where an

error is defined as true brand market share minus predicted market share. Note that the

market shares are always between 0 and 1.

For each of the 68 periods, we tested whether the assumption of OLS holds that the

dependent variable is sampled from a Gaussian distribution. Therefore, we carried out two
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normality tests, that is, the large-sample Jarque-Bera and small-sample Lilliefors tests. Both

tests rejected normality of the dependent variable at the 5% significance level for each of

the 68 models for all samples. This result already suggests that SVR may perform better

than OLS.

As noted in Section 4, SVR requires some parameters to be tuned, notably C and the

width ε of the error-insensitivity region. In the case of RBF kernel, an additional γ parameter

has to be tuned. The tuning is usually done via a grid parameter search, where each grid

point is evaluated using a cross-validation procedure. In our case, we use a five-fold cross-

validation procedure, which is carried out as follows. A given training data set is divided

into five equal parts. A particular point on the grid is selected. It represents a tuple of

values for the tuning parameters. Five models are trained, where each of the five parts is

considered as an out-of-sample test set and the remaining four parts as a training set. The

parameter combination that produces minimal squared error over the five test sets is then

used to train the whole data set (consisting of all five parts) and produce an out-of-sample

forecast for the following month.

The main results of the experiments are presented in Table 1. Overall, SVR outperforms

OLS considerably and consistently in terms of RMSPE and MAPE over the 68-month out-

of-sample period from March, 1996, to October, 2001. The average monthly RMSPE over all

brands for the out-of-sample period is equal to 0.028839 for OLS. The corresponding figure

for the linear SVR is 0.008466, and for SVR with RBF kernel the RMSPE is 0.008452.

Figure 5 shows a detailed out-of-sample monthly RMSPE performance averaged over all

brands. There are about 6 to 8 months that could visibly be considered as out-of-sample

outliers, since both OLS and SVR perform relatively worse there. Clearly, OLS performs

much worse, which suggests that SVR is capable of mitigating the effect of outliers and

perform better in times of relative market distress.

Interestingly, both the linear SVR and the highly nonlinear SVR produce more or less

the same prediction results, suggesting that there is not enough evidence in the data to

favor a nonlinear relation among the dependent and independent variables. Nevertheless,

linear SVR has performed substantially better than OLS, suggesting that the robustness and

penalization properties of SVR have worked out well on this particular market share predic-

tion task. As demonstrated in Pérez-Cruz et al. (2003), factors working against OLS and in

favor of SVR are the dependent variable not being sampled from a Gaussian distribution,
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Table 1: Performance results over 68 out-of-sample months (March 1996 – October 2001):
Mean Absolute Prediction Error (MAPE) and Root Mean Squared Prediction Error (RM-
SPE) for OLS, linear SVR (lin SVR), and nonlinear SVR with Radial Basis Function kernel
(RBF SVR) models. MAPE and RMSPE represent the average of the average monthly
errors over all 36 brands during the out-of-sample period.

improvement of improvement of
OLS lin SVR RBF SVR lin SVR over OLS RBF SVR over OLS

MAPE 0.012803 0.004882 0.004879 2.622 times 2.624 times
RMSPE 0.028839 0.008466 0.008452 3.406 times 3.412 times
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Figure 5: 68 monthly average RMSPE’s over all brands for OLS, Linear SVR, and nonlinear
RBF SVR.
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the large amount of predictors relative to T , and the number of in-sample months.

It was noted above that RBF SVR gives similar forecasts to linear SVR. Adding nonlin-

earities to a model with a true linear relationship may lead to overfitting the training data

and worse out-of-sample forecasts. In the case of RBF SVR, there is no danger of overfitting

as the penalization and ε-insensitive loss function work in the direction of producing a linear

relation, unless there is sufficient evidence in the data for the presence of nonlinearities, as

argued also in Figure 1. What is more, Keerthi and Lin (2003) have demonstrated that

there is no need to consider linear SVR since the RBF SVR is capable of discovering linear

relations quite well.

Next we focus on the coefficient estimates produced by OLS and the linear SVR. Such

estimates are not readily available for the nonlinear RBF SVR. As argued from the theo-

retical viewpoint in Sections 3 and 4, the estimated coefficients in SVR are shrunk towards

zero vis-a-vis the corresponding OLS coefficients. This effect can be observed for our task

as well. Figures 6 depict the effects of each of the 88 predictor variables on each of the 35

explained variables y1,y2, . . . ,yI−1 for OLS (left column) and linear SVR (right column).

The explanatory variables are divided into three groups: the first group consists of current

prices, the second of the lagged prices, and the third group of lagged market shares. Each

of these effects does not stand for one particular period T . Rather, it represents the average

value over the 68-month out-of-sample period. The filled circles represent the average effect

over the 68-month out-of-sample period of the predictor variables on y10, the log-difference

of the market shares between brand 10 (Ford) and the base brand (Volvo). A key observa-

tion to make here is the striking difference between the magnitude of the OLS and linear

SVR coefficients in general.

To visualize the influence of particular predictors, the sign of the effect is of less impor-

tance than the size. Therefore, we also present the absolute values of the effects of each

predictor variable on y1,y2, . . . ,yI−1 in Figure 7. For each predictor variable, the sum of

absolute effects on y1,y2, . . . ,yI−1 is depicted. Thus, the number of different shades of

gray is I − 1 (or, 35 in our case). This representation allows us to observe whether OLS

and linear SVR consider the same variables to be influential. For example, consider the 26

current-price variables. A striking feature, that is not easily observable from Figure 6, is

that the variables that appear to play a key role in OLS estimation have also a relatively

big impact in linear SVR estimation, most notably prices of Fiat, Ford, Mercedes, Renault,
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Figure 6: Regression weights (small dots) of the predictor variables obtained by OLS and
linear SVR for each of the 35 explained variables on average, where the averaging is done
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Seat, Subaru, and Volvo. In linear SVR, there are some additional variables that stand out

as important: prices of Alfa Romeo, Citroen, Daihatsu, and others. Overall, the linear SVR

coefficients have much lower magnitude in absolute sense, and are more evenly spread than

the corresponding OLS coefficients.

To see how the three models differ in predicting the market shares, we have plotted the

prediction errors for each brand. Figure 8 shows these plots for OLS and Figure 9 for linear

SVR. We do not present a representation of the errors for the nonlinear RBF SVR because

there is hardly any difference with the errors of linear SVR. The most striking feature again

is that OLS has several large errors whereas the largest errors of linear SVR are at least a

factor 5 smaller. The error plots can be interpreted for each brand separately. To consider

one case of the residual plot for linear SVR, Volkswagen had around January 1999 and

again around January 2000 a positive error, whereas Toyota had simultaneously two spikes

of negative errors. As a consequence, the linear SVR model apparently has underestimated

the market share of Volkswagen and overestimated the market share of Toyota at these time

points.

6 Conclusion

The Market Share Attraction Model may suffer from estimation problems when the model

assumptions are not satisfied. In this paper, we have introduced SVR as an alternative

estimation procedure for this model. An intuitive and self-contained introduction to SVR

was provided. To test the estimation procedures, we compared OLS to linear and nonlinear

SVR to empirical market share data of the Dutch automobile sales of 36 brands. It was

found that the prediction by either linear or nonlinear SVR was much better than OLS.

There was hardly any difference between linear and nonlinear SVR indicating that for these

data it is not necessary to allow for a nonlinear prediction.

There are some remaining issues for SVR. For example, is there an optimal kernel function

for the Market Share Attraction Model or is the linear SVR sufficient? What is the best

procedure for tuning the manually-adjustable parameters in the SVR? Other issues are how

to compute confidence intervals for the predictions and how to interpret the parameters of

the nonlinear SVR model. Also, it would be interesting to see how SVR compares to other

penalization methods.
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Figure 7: Distribution of absolute regression weights of the variables obtained by OLS and
linear SVR for each of the 68 estimation periods. The darkness of the area indicates the
density of the absolute regression weights.
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Figure 8: Out of sample prediction error of OLS estimation.

Clearly, more experiments have to be carried out to confirm or refute more convincingly

the applicability of SVR in marketing tasks and as a competitor to ML estimation. Our

empirical comparison suggests that when the OLS assumption of normality of the errors in

the Market Share Attraction Model is not satisfied, SVR is a good alternative to estimate

its parameters.
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