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Abstract 

In this paper we compare two univariate time series models, i.e. one with and one without an imposed unit root, 
in a forecasting experiment for the fourteen annually observed US data analyzed by Nelson and Plosser (1982, 
Journal of Monetary Economics 10, 139-162). Our main result is that the unit root model is regularly preferred. 
This result holds for a variety of sample sizes and forecast horizons as well as for one-step and multi-step ahead 
forecasts. 
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1. Introduction and summary 

Nelson and Plosser (1982) investigate fourteen 
annual US macroeconomic  time series for the 
presence of a unit root using the Dickey-Ful le r  
(1979) method.  If a univariate t ime series con- 
tains a unit root ,  it should be analyzed after 
t ransforming it by taking first differences. Such a 
t ime series is called a difference-stationary (DS) 
process. The  trend in a DS process with a drift 
te rm is partly deterministic and partly stochastic. 
If  a t ime series does not have a unit root,  and it 
can be described using a t ime series model  which 
includes a purely deterministic trend,  it is called 
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a trend-stationary (TS) process. One of the main 
reasons to investigate unit roots in univariate 
t ime series is that DS processes assume that 
shocks have a permanent  effect, while such 
shocks only have a transitory effect for TS 
processes. Fur thermore ,  given this permanent  
effect of shocks for the DS process, the multi- 
step ahead forecast intervals of  the DS process 
are much wider than those of the TS process, 
especially for long horizons. 

Nelson and Plosser (1982) find that only one 
of the fourteen time series they investigate, i.e. 
the Unemployment  Rate,  is not a DS process, 
that there is weak evidence that Real G N P  is a 
TS process, and hence that most  t ime series 
analyzed can be described by a DS process. 
Since this seminal study, many  researchers have 
re-analyzed the Nelson and Plosser (1982) data 
set, possibly in an extended form. The main 
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motivation for most additional studies is that the 
Dickey-Fuller test can have low power in small 
samples. Another drawback of this unit root test 
may be that it assumes the approximate 
adequacy of an autoregressive (AR) time series 
model. A limited selection of relevant studies 
includes Schotman and van Dijk (1991) where a 
Bayesian approach is considered, Rudebusch 
(1992) where a small-sample correction of the 
original Dickey-Fuller test is given, Lucas 
(1995) where outlying observations are taken 
into account, and Perron (1989) where one 
known structural break is allowed to be present 
in the time series. As expected, the conclusion of 
these studies usually is that more than one of the 
fourteen time series can be described using the 
TS model, although the results are mixed across 
the various approaches. 

Despite the large focus on testing for unit 
roots in the Nelson-Plosser data in the econo- 
metric literature, the impact of assuming the 
adequacy of the TS or the DS process on out-of- 
sample forecasting is not analyzed in the above 
studies. In this short paper we seek to fill this 
gap by explicitly analyzing the relative forecast- 
ing performance of both models. Our evaluation 
method is very straightforward. We estimate DS 
and TS models for various sample sizes and we 
generate one-step and multi-step ahead forecasts 
for various horizons. We calculate the mean 
squared prediction errors (MSPE) and mean 
absolute percentage errors (MAPE) to compare 
the relative quality of the forecasts. Non- 
parametric sign and Wilcoxon signed-rank tests 
are used to check whether differences between 
these measures are statistically significant. Note 
that we do not calculate forecast intervals since 
the intervals of the DS process in general may be 
wider than those of the TS process. 

The main conclusion of this paper is that, in 
cases where the differences between the point 
forecasts are significant, the DS forecasts out- 
perform those of the TS model. Moreover, the 
DS model produces better forecasts for more 
time series when the forecast horizon increases. 
This conclusion holds for one-step and multi-step 
ahead forecasts. 

The outline of this short paper is as follows. In 
Section 2, we review in more detail the DS and 

TS models and highlight some of their specific 
properties. In Section 3, we discuss the forecast 
evaluation method and the results we obtain 
which lead to the overall conclusions. In Section 
4, we conclude the paper with some remarks on 
the practical impact of our findings. 

2. The models 

Consider an annually observed time series Y t ,  

where t =  1 , . . . , n ,  and denote e, as a zero- 
mean uncorrelated process with constant vari- 
ance. In this case y ,  can be described by 

Yt  = 8 + 7 t  + [31yt_ 1 + • • • + f l p + l Y t - p - 1  d- E t , 

(1) 

i.e. an A R ( p  + 1) process, and when the charac- 
teristic roots of this A R  polynomial lie outside 
the unit circle, it is said that Yt can be described 
by a trend-stationary (TS) process. If, however, 
one of the roots of the A R ( p  + 1) polynomial is 
equal to one, the model in (1) can be written as 

Aly  t = p~ + O~lAlYt_ 1 4 -  " " "  -I- OlpAlYt_ p "t- E t , (2) 

where A 1 is defined by A l y , = y  , - y , _ ~ .  Model 
(2) is called a difference-stationary (DS) process. 
One may extend (1) and (2) by allowing e t to be 
some moving average (MA) process. However,  
in practice this extension is usually not pursued, 
also since the standard Dickey-Fuller test only 
considers pure A R  processes. In fact, it is 
assumed that any MA-type dynamics can be 
mopped up by increasing the order of the AR 
polynomial. 

To highlight the main differences between (1) 
and (2), consider the DS process 

Y , = Y , - x  + l ~ + e, , (3) 

which is a simple random walk with drift. Via 
recursively substituting lagged y, in (3), it is easy 
to derive that 

Y,  = Y0 +/zt  + ~ e i , (4) 
i = 1  

where Y0 is the starting-value of yr .  T h e  expres- 
sion in (4) indicates that a DS model contains a 
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deterministic trend component/zt and a stochas- 
tic trend component E l=le i. Furthermore, the 
impact of a shock e i does not die out as t 
increases, and hence shocks have a permanent 
effect on y,. It is clear from (1) that this does not 
apply to the TS process, where the shocks only 
have a transitory impact. Finally, the models in 
(1) and (4) indicate that forecasts for the long- 
run will be dominated by the trend terms. This 
suggests that the modification of the TS and DS 
models to include MA terms may yield only 
small differences in long-run forecasting com- 
pared to the models with only AR terms. 

3. Forecasting 

In this section we describe our procedure to 
evaluate the forecasting performance of the TS 
and DS models. Note that we abstain from 
making statements about which model is best 
within the sample and that we use real-life and 
not simulated data. 

For our forecasting evaluation we consider the 
fourteen Nelson-Plosser time series, including 
such variables as Real GNP, Stock Prices, Real 
Money, and the Unemployment Rate. The origi- 
nal Nelson-Plosser data covered only years until 
1970. In this paper we use the data set extended 
until 1988, which is given in Schotman and van 
Dijk (1991). The number of annual observations 
for the various macroeconomic time series now 
ranges from about 80 to about 120. 

The order of the AR polynomial in (1) and (2) 
is an important issue in practice. In this paper we 
consider the same model orders as those dis- 
played in Rudebusch (1992, Tables 2 and 3). 
These model orders were obtained for the sam- 
ple until 1970. When we experimented with the 
extended data set, we did not find significant 
differences between the AR order for the ex- 
tended and the original data set. Furthermore, 
some casual investigation of the forecasts from 
AR models with higher orders did not yield 
significantly different results either. Finally, the 
AR order tends to be reasonably constant 
throughout the entire sample, i.e. in subsamples 
one may at most want to include a single addi- 
tional lag. For the extended sample, the esti- 

mated models all pass conventional LM-type 
diagnostic checks for residual autocorrelation. 
This implies that the models apparently do not 
display the patterns described in Chan, Hayya 
and Ord (1977) and Pierce (1975), i.e. there are 
no obvious indications that the time series are 
overdifferenced in the DS model or underdiffer- 
enced in the TS model. In contrast to the model 
order, the parameters are not assumed to be 
constant over all subsamples, and hence (if 
needed) we re-estimate each model using the 
relevant subsample observations. Unreported 
estimated parameter values suggest, however, 
that usually the hypothesis of parameter con- 
stancy cannot be rejected. 

Our empirical forecast evaluation method is as 
follows. The models (1) and (2) are estimated 
using the observations until 1976, 1970 and 1952. 
The first sample is chosen in order to capture the 
oil crisis in 1973 in the estimation period. The 
second sample corresponds to the Nelson-Plos- 
ser data set, and the third sample is chosen such 
that one may assume that the World War II 
effects have become negligibly small. Unre- 
ported results for other samples indicate that the 
forthcoming results are fairly robust with respect 
to the choice of the sample. Based on the 
estimated rnodels, one-step ahead and multi-step 
ahead forecasts are generated (using the conven- 
tional methods as given in time series textbooks) 
for 1977-1988, 1971-1988 and 1953-1988, re- 
sulting in 12, 18 and 36 pairs of forecast errors to 
evaluate. For each of the models we calculate 
the MSPE and MAPE, and the differences 
between the ratios for the TS and DS models. 
For the one-step ahead forecasts we use the sign 
test and the Wilcoxon signed-rank test to investi- 
gate whether these differences are significant, 
see Flores (1989) for an exposition of the second 
test. Even though the number of forecasts may 
be small, we use the normal approximation 
formulas for these two nonparametric test statis- 
tics. Our experience is that this approximation 
does not yield results very different from those 
reported below. For the multi-step ahead fore- 
casts we do not calculate the nonparametric test 
statistics since the forecast errors are correlated. 

In Table 1, we report the results for the one- 
step ahead forecasts. Each cell of Table 1 con- 
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T a b l e  1 

O n e - s t e p  a h e a d  f o r e c a s t s  

F o r e c a s t  h o r i z o n  

12 18 36 

V a r i a b l e  M S P E  M A P E  M S P E  M A P E  M S P E  M A P E  

R e a l  G N P  . . . .  + ~ + "  
Nominal GNP +..b _~a.b + a , b  + a , b  + a , b  + a , b  

R e a l  G N P  p e r  c a p i t a  . . . .  + + 

I n d u s t r i a l  P r o d u c t i o n  + . . . . .  

E m p l o y m e n t  + + + + + - 
G N P  d e f l a t o r  + ,.b + a.b + a.b + ,.b + ,  + ,  
Consumer Prices + a ,b .4_ a ,b q._ a ,b .~_ a ,b ~. a ,b ~t" a ,b 

W a g e s  + "'b + , . b  + a.b + a.b + a.b + , . b  

R e a l  W a g e s  + , . b  +a.b +a.b +a.b + b  + b  

M o n e y  S t o c k  + a + ,  + ,.b + , . b  + ~ + 

Ve loc i ty  _ _ + ~.b + a.b + ,.b + a.b 

B o n d  Y i e l d  _ b  _ b  + _ +a.b +a.b 
Stock Prices + _~ .~_ _]_ .~_ a.b ..]_ a,b 

U n e m p l o y m e n t  + - + - - - 

Notes: "The d i f f e r e n c e s  b e t w e e n  t h e  c r i t e r i a  a r e  s ign i f i can t ly  d i f f e r e n t  a t  a 5 %  level  u s i n g  t h e  n o n p a r a m e t r i c  s ign - t e s t .  

b T h e  d i f f e r e n c e s  b e t w e e n  t h e  c r i t e r i a  a r e  s ign i f i can t ly  d i f f e r e n t  a t  a 5 %  level  u s i n g  t h e  W i l c o x o n  s i g n e d - r a n k  tes t ,  see  F l o r e s  

( 1989 ) .  

tains either a " + "  or a " - " ,  where the first 
means that the MSPE or  MAPE for the TS 
model exceeds that for the DS model. Hence a 
" + "  means that the DS model outperforms the 
TS model in forecasting. Furthermore, we indi- 
cate whether this outperformance is significant 
using the sign test (a) and the Wilcoxon signed- 
rank test (b). For the one-step ahead forecasts 
we observe that in 22 of the 42 cases the DS 
model significantly outperforms the TS model 
(where significance here means that either the 
sign or the signed-rank test indicates signifi- 
cance), that in only one case the TS model 
significantly outperforms the DS model (Bond 
Yield for 12 forecasts), and that there are no 
significant differences for the other 19 cases. 
Furthermore, the differences between DS and 
TS increase when the forecast horizon increases, 
i.e. for 12 periods ahead the DS model is better 
for 6 of the 14 variables while for 36 periods 
ahead this applies to 10 variables. 

In Table 2, the outcomes for the multi-step 
forecasts are displayed. When one generates 
forecasts for 1 through 12 periods ahead, based 
on a model estimated until 1976, the DS model 
will outperform the TS model in 8 of the 14 
cases, while the TS model seems better in the 

case of Consumer Prices and Velocity. For 18 
forecasts ahead the DS m6del is better 8 times, 
while the TS model outperforms the DS model 4 
times. Comparable results emerge for 36 fore- 
casts. Hence, for the 42 cases it implies that DS 
is better 26 times while the TS is better 10 times. 
Note that these results should be interpreted 
with care, since we cannot substantiate the 
results with test statistics which are significant at 
a 5% significance level. 

We can conclude from the results in Tables 1 
and 2 that when the differences between the 
forecasts from the DS and TS models are signifi- 
cant, the DS model usually outperforms the TS 
model in forecasting the fourteen annual macro- 
economic series for .the US economy. This result 
seems to be consistent across sample sizes, 
forecast horizons and one- and multi-step fore- 
casts. 

Finally, in Table  3 we report the results of 
constructing one-step ahead forecasts from re- 
cursive regressions. For this purpose we estimate 
the models until 1952, generate a forecast for 
1953, re-estimate the model until 1953, generate 
a forecast for 1954, and so on. This results in 36 
forecasts which are based on re-estimated regres- 
sion models. This recursive analysis allows for 
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Table 2 
Multi-step ahead forecasts 

287 

Forecast horizon 
12 18 36 

Variable MSPE MAPE MSPE MAPE MSPE MAPE 

Real GNP + + + - + + 
Nominal GNP + + + + + + 
Real GNP per capita + + + - + + 
Industrial Production . . . . . .  
Employment + + + + + + 
GNP deflator + + + + + + 
Consumer Prices . . . . . .  
Wages + + + + + + 
Real Wages + + + + + + 
Money Stock + + . . . .  
Velocity . . . .  + + 
Bond Yield + - + - + + 
Stock Prices + + + + + + 
Unemployment + + . . . .  

p a r a m e t e r  noncons tancy ,  if t he re  is any. Since 

we cons ide r  one - s t ep  ahead  forecasts ,  we may  

again  use the n o n p a r a m e t r i c  test  statistics as in 

T a b l e  1. T h e  resul ts  in Tab le  3 indicate  that  for  6 

of  the 14 series,  the  DS  m o d e l  significantly 

o u t p e r f o r m s  the  TS m o d e l ,  whi le  only for one  

case the  r eve r se  holds.  Fo r  7 series the re  are  no 

significant  d i f ferences .  In sum,  it seems  that  t h e  

Table 3 
One-step ahead forecasts from rolling regressions 

Variable MSPE MAPE 

Real GNP + + 
Nominal GNP +~.b +~.b 
Real GNP per capita - - 
Industrial Production ~ - 
Employment + + 
GNP deflator + a.b + a,b 
Consumer Prices _ a.b _ a.b 
Wages + a,b + a,b 
Real Wages +a.b +,.b 
Money Stock - - 
Velocity + a,b + ~.b 
Bond Yield + + 
Stock Prices +~.b +~,b 
Unemployment 

Note: a The differences between the criteria are significantly 
different at a 5% level using the nonparametric sign-test. 
b The differences between the criteria are significantly differ- 
ent at a 5% level using the Wilcoxon signed-rank test, see 
Flores (1989). 

results  in Tab le  3 b road ly  co r r e spond  to those  

ob ta ined  in Tab les  1 and 2. 

4. Remarks 

Obvious ly ,  the results  in the  p rev ious  sec t ion  

do not  au tomat ica l ly  imply that  a DS  process  is 

the " t r u e "  under ly ing  da ta  gene ra t i ng  process  

for  the  fou r t een  t ime  ser ies  unde r  cons ide ra t ion .  

N e i t he r  do they imply tha t  the  D S  process  is the  

mos t  l ikely m o d e l ,  nor  that  the same resul ts  will 

e m e r g e  for  o the r  t ime series var iab les  for  the  U S  

e c o n o m y  or  for  s imilar  var iab les  for  o the r  

economies .  

In fact ,  it Seems mos t  app rop r i a t e  to i n t e rp re t  

the o u t c o m e s  in t e rms  of  s t ructura l  o r  t e m p o r a l  

b reaks  in the forecas t  eva lua t ion  pe r iod ,  i .e .  no t  

' i n  the per iod  for  which the m o d e l  is e s t ima ted  

but  in the ou t -o f - sample  per iod .  H e n c e ,  these  

breaks  cannot  be cons ide red  in the e s t ima t ion  

process  since these  are u n k n o w n  b e f o r e h a n d .  

This is most  easily u n d e r s t o o d  as fol lows.  A 

change  in the  t rend  p a r a m e t e r  in the post-es t i -  

ma t ion  sample  o f  a t rue  TS process  can yield 

one-s tep  ahead  forecas t  e r ro rs  for  a TS process  

which are  larger  than  those  f rom an " i n c o r r e c t "  

DS mode l .  A n d ,  the  reverse  resul t  does  n o t  

hold.  H e n c e , , a  DS  process  is able  to adap t  m o r e  
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rapidly to structural parameter changes, at least 
for one-step ahead forecasts. Notice that this 
corresponds to the findings in Table 3. Given 
that the forecast periods considered in the pres- 
ent paper incorporate possible break-points, it 
may not be surprising that the DS model seems 
to outperform the TS model. 

Of course, when a TS model is the DGP and 
there are no breaks, forecasts from a TS model 
outperform those of the incorrect DS model, at 
least theoretically. Therefore, it seems worth- 
while to investigate the presence of structural 
breaks within the sample while selecting between 
a DS and a TS process, and also to investigate 
whether the economic process at hand is suscep- 
tible to structural shifts once in a while. Recent 
developments in this area are Perron and Vog- 
elsang (1992) and Zivot and Andrews (1992). 
Naturally, it remains uncertain whether such 
breaks will indeed also occur in the forecasting 
sample. It seems then of interest to analyze time 
series forecasting models which are able to adapt 
to changes in parameters or even to changes in 
the model structure. 

In the meantime, the practitioner who wants 
to select between a DS and a TS model may add 
the out-of-sample forecasting performance to the 
set of selection criteria. Indeed, confidence in a 
certain model is gained when it persistently 
outperforms its rival model over a range of 
forecast horizons. Furthermore, even though the 
standard and regularly used Dickey-Fuller meth- 
od does not have much power in small samples, 
this method often indicates that the DS model is 
appropriate within sample. Given that our re- 
suits suggest that the same model is often useful 
for out-of-sample forecasting, the Dickey-Fuller 
test remains worthwhile to consider in practice. 
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